WO2004108772A1 - 硬化性表面改質剤およびそれを用いた硬化性表面改質用組成物 - Google Patents

硬化性表面改質剤およびそれを用いた硬化性表面改質用組成物 Download PDF

Info

Publication number
WO2004108772A1
WO2004108772A1 PCT/JP2004/007179 JP2004007179W WO2004108772A1 WO 2004108772 A1 WO2004108772 A1 WO 2004108772A1 JP 2004007179 W JP2004007179 W JP 2004007179W WO 2004108772 A1 WO2004108772 A1 WO 2004108772A1
Authority
WO
WIPO (PCT)
Prior art keywords
site
fluorine
resin
formula
ethylenic polymer
Prior art date
Application number
PCT/JP2004/007179
Other languages
English (en)
French (fr)
Inventor
Mihoko Ohashi
Kazuyuki Sato
Takayuki Araki
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to US10/559,657 priority Critical patent/US7842389B2/en
Priority to JP2005506744A priority patent/JP4375335B2/ja
Publication of WO2004108772A1 publication Critical patent/WO2004108772A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • C08F220/24Esters containing halogen containing perhaloalkyl radicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • Y10T428/31544Addition polymer is perhalogenated

Definitions

  • the present invention relates to a curable surface modifier and a curable surface modifying composition using the same.
  • the present invention relates to the surface properties of various coating films, particularly the surface slipperiness (low friction coefficient), surface hardness, abrasion resistance, chemical resistance, stain wiping property, water repellency, oil repellency, solvent resistance
  • the present invention relates to an invention that improves the properties and the like and imparts a modified surface property to the surface of a conventional coating film.
  • the present invention relates to an invention capable of improving the surface slipperiness without impairing the transparency of the antireflection film and maintaining the antireflection ability for a long period of time.
  • an antireflection film is provided on the screen of the image display device.
  • an antireflection film is provided on the screen of the image display device.
  • the antireflection film is extremely thin at 0.03-0.5 / m in order to ensure transparency, and the surface has poor slipperiness (high friction coefficient). Repeated wiping of dirt etc. may cause scratches or peel off.
  • Rf is a perfluoroalkyl group having 13 to 13 carbon atoms, and A is bound to the —CF—terminal.
  • a perfluoropolyether structure represented by a cross-linking group (a linking group such as an alkylene group or an oxyalkylene group and not a cross-linking functional group), and T is a reactive functional group.
  • Fluorine-modified hydrogen-containing compounds obtained by polycondensation, polyaddition or graft reaction of a modifier with a hydrogen-containing monomer or polymer (for example, polyurethane or polyacrylate).
  • the fluorinated modified hydrogen-containing polymer described in JP-A-10-287719 is synthesized by reacting a fluorinated modifier with a hydrogen-containing polymer on the surface of a substrate when a thin film is produced. ing. Furthermore, this fluorinated modifier, especially a fluorinated modifier having a long-chain, highly fluorinated fluoropolyether structure with excellent antifouling properties and slipperiness, is soluble in fluorinated solvents but not soluble in general-purpose solvents. Since a fluorinated solvent is required in the process of synthesis and coating, the cost is high and the burden on the environment is large.
  • the present inventors have conducted intensive studies to develop a surface modifier which improves surface slipperiness, is soluble in a non-fluorine-based general-purpose solvent, and can easily form a thin film. Was completed.
  • the present invention relates to a fluorine-containing ethylenic polymer (IAB) having a site A and a site B at the same force or at least a part of a different side chain, or a fluorine-containing ethylenic polymer having the site A at at least a portion of a side chain.
  • a general-purpose solvent-soluble curable fluorine-containing resin (I) comprising a polymer (IA) and a fluorine-containing ethylenic polymer (IB) having a site B in at least a part of a side chain,
  • the site A has the formula (1):
  • nl, n2, n3, and n4 are the same or different and are integers of 0 or 1 or more, and nl + n2
  • n3 + n4 is an integer of 7 to 40;
  • X 1 is the same or different, H, F or Cl;
  • Rf is a fluorine-containing alkyl group having 1 to 10 carbon atoms.
  • One more Is a site consisting of two or more bonds,
  • the site B is a site formed by bonding one or two or more self-crosslinkable functional groups Y to the terminal;
  • the site (A) and the site (B) are removed from the fluorine-containing ethylenic polymer constituting the resin (I), and the ethylenic polymer portion (M) does not contain a fluorine atom, or the fluorine content is 10% by weight or less and hydrogen is contained.
  • the present invention relates to a curable surface modifier comprising a curable fluorine-containing resin (I) (first invention).
  • the fluorine content of such a general-purpose solvent-soluble curable fluorine-containing resin (I) should be 0.1% by weight or more and 35% by weight or less to improve the surface slipperiness and dissolve in a general-purpose solvent. It is preferable because the properties can be achieved in a well-balanced manner.
  • the self-crosslinkable functional group Y of the site B includes [0019] [Formula 4]
  • the surface modifier of the first invention can be used alone or in combination with other components or additives to improve the surface slipperiness.
  • the curable surface modifier of the first invention is coated on a substrate, preferably an anti-reflection film, and then cured (coated with an anti-reflection film).
  • Surface modification method including a substrate (second invention).
  • a surface-modified polyolefin comprising a continuous or discontinuous cured film of the antireflection film and the curable surface modifier of the first invention formed directly on the antireflection film is provided.
  • An antireflection film having a layer structure can be provided (third invention).
  • the present invention also provides (a) the general-purpose solvent-soluble curable fluorine-containing resin (I), and
  • the present invention relates to a powerful active energy ray-curable composition for surface modification (fourth invention).
  • the present invention provides (a) the general-purpose solvent-soluble curable fluorine-containing resin (I),
  • At least one general-purpose solvent selected from the group consisting of a ketone-based solvent, an acetate-based solvent and an alcohol-based solvent, or a mixed solvent containing the general-purpose solvent
  • the present invention also relates to a powerful active energy ray crosslinkable surface modifying composition (fifth invention).
  • the active energy ray-crosslinkable surface-modifying composition of the fourth or fifth invention is applied onto a substrate, preferably an antireflection film, and then cured by irradiation with active energy rays. Thereby, the surface characteristics of the substrate (anti-reflection film) can be modified.
  • the present invention further relates to (d) providing the site A and the site B with at least one of the same force or different side chains.
  • site A is of the formula (1):
  • nl, n2, n3, and n4 are the same or different and are integers of 0 or 1 or more, and nl + n2
  • n3 + n4 is an integer of 7 to 40;
  • X 1 is the same or different, H, F or Cl;
  • Rf is a fluorine-containing alkyl group having 1 to 10 carbon atoms.
  • the polymer part MA excluding the parts A and B from the fluorine-containing ethylenic polymer constituting the resin ( ⁇ ) does not contain a fluorine atom, or the fluorine content is 10% by weight or less and a part of the hydrogen atoms is A fluorine-containing resin that is an ethylenic polymer moiety substituted by a fluorine atom (11), and
  • the present invention relates to an antireflection film obtained by applying a powerful antireflection film forming composition to a substrate (sixth invention).
  • X 18 and X 19 are the same or different; H, F or CF; Rf 1 is a fluorine-containing alkyl group having 1 to 40 carbon atoms or a fluorine-containing alkyl group having an ether bond having 2 to 100 carbon atoms, and Y 1 or Y 2 (is a monovalent organic group having 2 to 10 carbon atoms having an ethylenic carbon-carbon double bond at the terminal, and Y 2 is a cross-linkable cyclic ether structure in which a hydrogen atom may be replaced by a fluorine atom.
  • the structural unit derived from the fluorinated ethylenic monomer, the structural unit C is a structural unit derived from a monomer copolymerizable with the fluorinated ethylenic monomer giving the structural unit N] Number average molecular weight 500-100, containing 0.1-100 mol% of structural unit N and 0-99.9 mol% of structural unit C 0000 fluorine-containing polymer of (IIINC) 100 mol 0 /. Curable fluorine-containing resin ( ⁇ ), and
  • the present invention provides (i) the antireflection coating material (e) used in the sixth invention or the
  • the present invention also relates to a method for forming a cured product, which is applied and dried by using a liquid composition comprising, and then cured after forming a film, in particular, a method for forming an antireflection film (eighth invention).
  • soluble in a general-purpose solvent means that it is soluble in at least one organic solvent not containing a fluorine atom (dissolves at a concentration of 10% by weight or more at 25 ° C.).
  • organic solvent having no fluorine atom include ketone solvents and ester solvents.
  • Agents, alcohol solvents, propylene glycol solvents, cellosolve solvents, aromatic hydrocarbons, aliphatic hydrocarbons, ether solvents, acetal solvents, turpentine oils, and mixed solvents of the same or different types, or Non-fluorinated mixed solvents containing these solvents are exemplified.
  • MIBK methyl isobutyl ketone
  • MEK methyl ethyl ketone
  • IPA isopropyl alcohol
  • MIBK methyl isobutyl ketone
  • MIBK methyl isobutyl ketone
  • MEK methyl ethyl ketone
  • IPA isopropyl alcohol
  • MIBK methyl isobutyl ketone
  • MIBK methyl ethyl ketone
  • IPA isopropyl alcohol
  • IPA isopropyl alcohol
  • Resin (I) is a resin composed of a fluorine-containing ethylenic polymer having site A and / or site B in at least a part of the side chain, and contains both site A and site B as the resin. And soluble in general-purpose solvents.
  • Examples of the fluorine-containing ethylenic polymer which may be contained in the resin (I) include a fluorine-containing ethylenic polymer (IAB) having a site A and a site B at the same force or at least a part of a different side chain, A fluorine-containing ethylenic polymer (IA) having A in at least a part of the side chain; and a fluorine-containing ethylenic polymer (IB) having a site B in at least a part of the side chain.
  • a fluorine-containing ethylenic polymer (IAB) having a site A and a site B at the same force or at least a part of a different side chain A fluorine-containing ethylenic polymer (IA) having A in at least a part of the side chain
  • a fluorine-containing ethylenic polymer (IB) having a site B in at least a part of the side chain
  • the resin (I) may be composed of the polymer (IAB) alone, but may further contain the polymer (IA) and / or the polymer (IB) in addition to the polymer (IAB).
  • the resin (I) may contain a polymer MP other than the polymers (IAB), (IA) and (IB) as long as the above requirements are satisfied.
  • the curable fluorine-containing resin (I) comprising a fluorine-containing ethylenic polymer having a specific ethylenic polymer site M, a specific site A and a site B has the above-mentioned properties as a whole, Gives coatings with chemical properties, transparency and low refractive index.
  • the fluorine-containing ethylene polymer has a site having an arbitrary functional group in addition to the site A and the site B in order to provide the ethylenic polymer site M with properties required according to the purpose. It may have a side chain.
  • polymer (IAB), polymer (IA), polymer (IB), and polymer MP will be described.
  • the self-crosslinkable functional group-containing fluorine-containing ethylenic polymer has a site A and a site B in at least a part of a side chain, and has a polymer (IAB) force excluding site A and site B.
  • IAB a polymer having an ethylenic polymer moiety M.
  • the ethylenic polymer moiety M enhances solubility in general-purpose solvents and imparts good coating and film forming properties. Further, it also imparts toughness to a coating film formed on the surface to be modified.
  • Site A has a structure that imparts slipperiness to the surface to be modified and also imparts water and oil repellency and antifouling properties.
  • Site B does not significantly affect the physical properties of the polymer (IAB) and the resin (I) when the self-crosslinking functional group in the structure has not reacted, but after the crosslinking reaction, It is made insoluble in solvents, including solvents, to give a high hardness so that the coating film formed on the surface to be modified is not deformed or damaged, and to provide scratch resistance and abrasion resistance.
  • the ethylenic polymer portion M enhances the solubility of the fluorine-containing ethylenic polymer (IAB) in general-purpose solvents, imparts good coating and film forming properties, and is formed on the surface to be modified. It also has the function of imparting toughness to the coating film, and is obtained by polymerizing an ethylenic monomer.
  • the portion other than the portions corresponding to the portions A and B (corresponding to the ethylenic polymer portion M) does not contain a fluorine atom or has a fluorine content of 10% by weight or less.
  • an ethylenic polymer moiety M having no fluorine atom in the skeleton structure or having a fluorine content of 10% by weight or less is formed.
  • the first preferred form of the ethylenic polymer moiety M is represented by the following formula (2) as a structural unit: [0046] [Chemical Formula 7] C HCH
  • Those having a structure of (R 1 to R 3 are the same or different and have a hydrogen atom, a carboxy group or an organic group having 11 to 10 carbon atoms) have a solubility in a general-purpose solvent, It is preferable because it has good compatibility with other components, and further has good coatability and film formability.
  • R 3 is preferably C, more specifically, one CH, one CH, one CH ⁇ H, one C ⁇ H, one CH Cl,-
  • R 4 Preferable specific examples of R 4 include _H, -CH, -CH CH,-(CH) CH,-(CH) C
  • R 5 examples include —H, —CH OH, and —H.
  • R 6 examples include —CH, —CH CH and the like.
  • ethylenic polymers having _ ⁇ H, _C OH, _NH, _COCl, _NC ⁇ , etc. are preferably vinylamine-based structural units as the polymer moiety M, Those having a butyl isocyanate-based structural unit and an isopropenyl isocyanate-based structural unit are preferred.
  • the ethylenic polymer moiety M contains the above-mentioned structural units.
  • the force S contains other structural units derived from the comonomer.
  • R 7 is a hydrogen atom, a hydroxyl group, a carboxy group, or an organic group having 11 to 10 carbon atoms) and the like.
  • These other structural units can be selected according to the required properties.
  • the ethylenic polymer moiety M is one having an ester group, a cyclic acetal structure or a hydroxyl group in the side chain or a plurality thereof, and has a solubility in a general-purpose solvent, a coating property, It is preferable from the viewpoint of good film forming property.
  • those having a combination of a cyclic acetal structure and a hydroxyl group, or a combination of an ester group and a ⁇ H group are particularly preferred because of their excellent solubility in general-purpose solvents.
  • those having 0-80 mol%, more preferably 170-mol%, and especially 5-60 mol% of the structural units having a hydroxyl group are preferred because of their excellent solubility in general-purpose solvents. Les ,.
  • the ethylenic polymer moiety M does not contain a fluorine atom from the viewpoint of solubility in general-purpose solvents. Are preferred. However, if some hydrogen atoms can be replaced by fluorine atoms for the purpose of improving the compatibility with certain other fluoroplastics or lowering the refractive index, the solubility will decrease. To avoid this, the fluorine content of the ethylenic polymer moiety M is preferably 10% by weight or less, more preferably 5% by weight or less.
  • the site A has a structure that imparts slipperiness to the surface to be modified and also imparts water repellency, oil repellency, and antifouling property.
  • the polyfluoropolyether chain P represented by the above formula (1) is It has one or two or more at the end.
  • the polyfluoropolyether chain P is
  • It has a total of 7 or more of one or more of the fluoroether units of -CF O-.
  • the fluorinated polyether chain P of the formula (1) contains 7 or more of the above-mentioned fluoroether units, whereby surface slipperiness, water and oil repellency, and stain resistance can be imparted. You.
  • the unit force of the fluoroether in the polyfluoropolyether chain P exceeds S40, the solubility in a general-purpose solvent is reduced, and in an application requiring transparency, the transparency is reduced. Not desirable. It is preferably 35 or less, and more preferably 30 or less.
  • a particularly preferred chain of fluoroether units is one having 7 to 40 _CF CF CF O- alone, and the surface can be remarkably modified particularly in terms of slipperiness and antifouling properties.
  • Rf is a fluorine-containing alkyl group having 11 to 10 carbon atoms. The carbon number is 5 or less and 3 or less from the viewpoint of good slipperiness.
  • Rf include, for example,
  • the site A may contain two or more polyfluoropolyether chains P. If the amount is too large, the solubility in a general-purpose solvent is reduced.
  • the site A is preferably a compound represented by the formula (1a):
  • P is a polyfluoropolyether chain of the formula (1); R 8 is a divalent or tetravalent organic group; M is an ethylenic polymer moiety M; p is an integer of 13 to 13, preferably l; q is represented by 0 or 1) (P) —
  • the R 8 is polyfurfuryl O b polyether chains P and an ethylenic if the polymer moiety M 2-tetravalent organic group linked Yogu preferably hetero atom or a chlorine atom into the number 1 one 20 of carbon Examples thereof include divalent and tetravalent hydrocarbon groups. Preferred specific examples of (P) _ (R 8 ) —
  • the site B does not significantly affect the physical properties of the entire curable fluororesin (I) when the self-crosslinkable functional group Y in the structure is not reacted, but after the crosslinking reaction.
  • the self-crosslinkable functional group refers to a functional group capable of causing a cross-linking reaction between the same functional groups, and specifies the functional group in terms of function and properties.
  • a curing agent is required to promote the curing (crosslinking) reaction.
  • a relatively low-molecular-weight unreacted curing agent segregates on the surface of the coating film. Surface modification hardening may be reduced.
  • the self-crosslinking functional group does not require a curing agent for the curing reaction, so that the surface modification effect can be sufficiently exhibited.
  • the present invention does not exclude the case where one self-crosslinkable functional group causes a cross-linking reaction with another type of self-crosslinkable functional group or non-self-crosslinkable functional group. ), which does not eliminate the cross-linking reaction.
  • Examples of the self-crosslinkable functional group Y include a self-crosslinkable functional group reactive with radical polymerization, a self-crosslinkable functional group reactive with cation polymerization, and a self-crosslinkable functional group capable of crosslinking only with light. .
  • Examples of self-crosslinkable functional groups that can be crosslinked only by light include photodimerizable functional groups such as vinylcinnamic acid.
  • the self-crosslinkable functional group Y may be bonded to the end of the site B, may be directly bonded to the ethylene polymer site M as the site B, or may be, for example, a di- or tetravalent organic group. Base And may be bonded to the ethylenic polymer moiety M via
  • site B has the formula (lb): (Y)-(R 9 ) -M (lb)
  • Y _ (R 9 ) — represented by, it is bonded to the ethylenic polymer site M.
  • R 9 is as long as 2 tetravalent organic group that links the self-crosslinkable functional group Y and an ethylenic polymer moiety
  • M Yogu preferably contain hetero atom or a chlorine atom into the number 1 one 20 of carbon It may be a tetravalent hydrocarbon group.
  • R 11 is a divalent hydrocarbon group having 1 one 20 carbon atoms, m is 0 10 integer, n represents 0-5 integer, s is 0 or 1)
  • R 9 and Y More specific combinations of R 9 and Y include:
  • the fluorine-containing polymer having a self-crosslinkable functional group (IAB) is optionally added to the ethylenic polymer site M as described in the description of the ethylenic polymer site M. May also have a functional group, and further in the site A and / or site B, They may optionally have other functional groups.
  • other functional groups include a hydroxyl group, a carboxyl group, a nitrile group, an amino group, a sulfonic acid group, an anoalkylamino group, a sulfonic ester group, an isocyanate group, and a carboxylic anhydride group.
  • the combination of the ethylenic polymer moiety M, the moiety A, and the moiety B has properties such as solvent solubility, slipperiness, curability, and storage stability. What is necessary is just to select in consideration of balance.
  • Preferable combinations include, but are not limited to, the following.
  • a method of introducing sites A and B into ethylenic polymer site M (a method of producing a fluoropolymer (IAB) in which at least a part of the side chain is replaced by sites A and B)
  • a method of forming an ethylenic polymer MP containing an ethylenic polymer site M for example, (1) a method of forming an ethylenic polymer MP containing an ethylenic polymer site M, then introducing a site A into the ethylenic polymer MP, and then introducing a site B, (2) A method of forming an ethylenic polymer MP containing an ethylenic polymer site M, then introducing a site B into the ethylenic polymer MP, and then introducing a site A, (3) ethylene containing an ethylene polymer site M A method of simultaneously introducing the site A and the site B into the ethylenic polymer MP after forming the water-soluble polymer MP,
  • a method for forming the ethylenic polymer MP and then introducing the sites A and B into the ethylenic polymer MP (1)
  • One (3) (polymer reaction method) is as follows. the reactive functional groups T 1 and reactive functional groups T 2 previously introduced, the compound for site a introduced having a reactive functional group S 1 capable of reacting with force mow reactive functional groups (A- a):
  • S 1 is a reactive agent of the ethylenic polymer MP (A reactive functional group capable of reacting with the functional group ⁇ 1 ) and a reactive functional group S 2 capable of reacting with the reactive functional group ⁇ 2 ⁇ Introduction compound ( ⁇ —b):
  • S 2 is a reactive functional group capable of reacting with the reactive functional group T 2 of the ethylenic polymer MP).
  • the method of introducing by reacting with the reactive functional groups T 1 and T 2 of MP is advantageous in that the formation of the site is easy.
  • T 1 and S 1 and T 2 and S 2 may be different in Yogu homologous as long as it is a functional group capable of reacting with each other.
  • T 1 and T 2 and S 1 and S 2 may be the same or different.
  • reactive functional group for introducing the site ⁇ and the site ⁇ include, for example,
  • Preferred combinations of the reactive functional groups TT 1 and T 2 ) and S (S 1 and S 2 ) include, for example,
  • T 1 of the ethylenic polymer MP is — ⁇ H
  • specific examples of the compound (A—a) for introducing the site A include, for example,
  • T 1 of the ethylenic polymer MP is —COX 7
  • a compound for introducing the site A is used.
  • Specific examples of the compound (B_b) for introducing the site B when T 2 of the ethylenic polymer MP is _ ⁇ H include, for example,
  • CH. CH-COC 1, CHU ⁇ CH— CH, C 1
  • CH 2 CF— COF CH 2 ⁇ ⁇ ⁇ CH CH 2 C 1
  • T 2 of the ethylenic polymer MP is —COC1
  • a compound for introducing the site B is used.
  • CH 2 CHCONHCH 2 OH
  • CH 2 CX 6 COOCHCH 2 OH
  • CH 2 CX 6 COOCH 2 2C ⁇ H "CH 3 3 CH 2 CH-CH, 2 -OH
  • the polymer reaction for introducing sites A and B can be performed, for example, in the presence of an amine such as pyridine or triethylamine, or in the presence of a strong base such as NaOH or KOH.
  • an amine such as pyridine or triethylamine
  • a strong base such as NaOH or KOH.
  • the reaction can be performed with or without a solvent, but the use of a solvent is more homogeneous.
  • a preferable solvent is used because a suitable product can be obtained, the type of the solvent is not particularly limited, but a solvent containing no fluorine is preferable. If the reactivity is insufficient at this time, for example, H_ (CF CF) -CH OH (where a is an integer of 1-3), CF _ (CF) _CH O
  • a fluorinated alcohol such as CH (CF) ⁇ H; CH CC1 F
  • a fluorine-based solvent such as romethylbenzene or benzotrifluoride at a ratio of 10 to 50% based on the total solvent because reactivity can be improved.
  • the ethylenic monomer (Ma) having the site A and the ethylene having the site B are The monomer (M—b) is copolymerized.
  • M 1 is an ethylenic reactive group which gives a structural unit of the ethylenic polymer site M).
  • M 2 is the structural unit of the ethylenic polymer moiety M. An ethylenic reactive group).
  • copolymer monomers that may be copolymerized to form the ethylenic polymer moiety M include, for example,
  • This copolymerization method can be carried out by a usual radical polymerization method.
  • self-crosslinkable functional groups can be obtained by copolymerization using an azo-based polymerization initiator such as azoisobutyronitrile (AIBN) or a peroxide-based polymerization initiator such as benzoyl peroxide as a polymerization initiator.
  • AIBN azoisobutyronitrile
  • peroxide-based polymerization initiator such as benzoyl peroxide as a polymerization initiator.
  • a group-containing fluoropolymer (IAB) can be obtained.
  • the self-crosslinkable functional group-containing fluorine-containing resin may be used as long as the site A and the site B are present.
  • the polymer (IAB) may be used alone, or may be a mixture of a fluoropolymer (IA) consisting of a polymer site M and site A, or a polymer (IB) consisting of a polymer part M and site B. Furthermore, a mixture of polymer (IAB) and polymer (IA) and Z or polymer (IB) may be used. Furthermore, other polymers MP other than the polymers (IAB), (IA) and (IB) may be included.
  • the structure and production method of the fluoropolymer (IAB) are the same as those of the fluoropolymer (IAB) except that the fluoropolymer (IA) has no site B.
  • Preferred examples of the polymer (IA) include, for example, a compound represented by the formula (2):
  • A is the formula (la):
  • P is a polyfluoropolyether chain of the formula (1); R 8 is a divalent organic group; M is an ethylenic polymer moiety; p is an integer of 13; preferably l; q is 0 or
  • Particularly preferred polymers (IA) are, for example,
  • This polymer (IA) is advantageous in that it gives the resin (I) a low refractive index and transparency in addition to the surface slipperiness and solvent solubility.
  • the structure and production method of the fluoropolymer (IB) are the same as those of the fluoropolymer (IAB) except that the fluoropolymer (IB) does not have the site A.
  • Preferred examples of the polymer (IB) include, for example, a compound represented by the formula (2): [0182] [Formula 43] C H CH
  • Particularly preferred polymer (IB) is, for example,
  • CH 2 CX 6 -COCH 2 CH 2 0-C- O
  • This polymer (IB) imparts self-curing properties to the resin.
  • the other polymer MP is an ethylenic polymer MP having neither the sites A nor B, and must be soluble in a general-purpose solvent.
  • the other polymer MP is not particularly limited as long as it is soluble in a general-purpose solvent, and examples thereof include polybutyl acetal, partially saponified polybutyl alcohol, polyacetate butyl, polymethyl methacrylate, polyhydroxy methacrylate, and the like. Power is not limited to these.
  • the site A, the site B, and the polymer site M in the polymer (IB) may be the same or different.
  • the other polymer MP does not have the sites A and B
  • the corresponding sites of the polymer (IAB), (IA) and (IB) and the polymer site M may be the same or different.
  • site A, site B and polymer site M have the same force or different from the polymer (IAB), or the same force or different polymers are positively blended into resin (I) to achieve a specific purpose. Is also good.
  • the polymer (IAB) and other polymers ((IA), (IB), MP ) When Is favorable because a good coating can be formed because of its good compatibility.
  • a polymer having a polymer portion M2 different from the ethylenic polymer portion Ml of one polymer may be contained in a range that does not adversely affect the compatibility.
  • the content of the heterogeneous polymer site M2 is preferably 20% by weight or less, more preferably 10% by weight or less, and particularly preferably 5% by weight or less, in all the ethylenic polymer sites M (M1 + M2).
  • the content of the polymer (IAB), (IA), (IB), and MP in the resin (I) is determined by the properties required for the resin (I) (fluorine content, chain P content, refractive index Etc.) and the type and amount of site A, site B and polymer site M.
  • the molecular weight of the resin (I) is preferably 100 or more, more preferably 300 or more, particularly 500 or more as the number average molecular weight, because of its good coating properties and slipperiness. 100,000 or less, especially 10,000 or less is preferred because of good solvent solubility and storage stability.
  • the number average molecular weight was determined by gel permeation chromatography (GPC) using GPC HLC-8020 manufactured by Tosoh Corporation, and using a Shodex column (one GPC KF-801 and GPC KF-802). One GPC KF-806M is connected in series), and tetrahydrofuran (THF) is used as a solvent at a flow rate of 1 ml / min.
  • GPC gel permeation chromatography
  • the fluorine content of the resin (I) is preferably at least 0.1% by weight, more preferably at least 1% by weight, and particularly preferably at least 5% by weight in terms of good slipperiness and antifouling properties. It is preferable that the content is 35% by weight or less, more preferably 25% by weight or less, particularly 20% by weight or less, in view of good solvent solubility.
  • the resin (I) contains 1% by weight or more, more preferably 5% by weight or more, particularly 10% by weight or more in the resin (I). It's preferable. Also, the upper limit is preferably 60% by weight, more preferably 50% by weight. If the content of the polyfluoroether chain P is less than 1% by weight, the desired effect of improving the slipperiness of the resin (I) cannot be obtained, and if it exceeds 60% by weight, the compatibility of the resin (I) decreases. However, when mixed with a solvent or a resin, cloudiness occurs, and further, separation or precipitation occurs. Water repellent and antifouling For the purpose of improvement, it is preferable that the content of the polyfluoroether chain P is contained in the fluororesin (I) by 10% by weight or more and 50% by weight or less.
  • the content of the self-crosslinkable functional group Y is at least 0.02 mol per 1 kg of the resin (I), more preferably at least 0.02 mol.
  • It is preferably at least 1 mol, particularly at least 0.2 mol, and at most 100 mol, more preferably at most 50 mol, particularly preferably at most 20 mol. If the amount of the functional group Y is too small, the curing reactivity and the solvent resistance, abrasion resistance, and abrasion resistance after curing are insufficient, while if it is too large, the storage stability of the polymer, resin, and surface treatment agent is increased. Is reduced.
  • the curable fluorine-containing resin (I) can have a low refractive index.
  • the refractive index can be 1.48 or less, or 1.45 or less depending on the composition ratio.
  • the resin (I) used in the present invention may be used alone or in combination with other additives in addition to the curable surface modifying compositions according to the fourth and fifth inventions described in detail below. Alternatively, it can be dissolved in a solvent to form a surface modifier, and applied to a substrate to modify the surface of the substrate (second invention).
  • the feature of the resin (I) is that it can be dissolved in a general-purpose solvent. Therefore, the solvent-type surface modifier dissolved in the solvent can form a uniform and uniform thin film having good coatability. It is preferable because it can be formed and can be produced at high cost with high productivity.
  • the solvent is not particularly limited as long as it can uniformly dissolve the resin (I), and examples thereof include ketone solvents, ester solvents such as acetate solvents, alcohol solvents, and propylene glycol solvents.
  • Non-fluorinated solvents such as solvents, cellosolve solvents, aromatic hydrocarbons, aliphatic hydrocarbons, ether solvents, acetal solvents, turpentine, or mixed solvents of the same or different types, and mixed solvents containing these General-purpose solvents.
  • ketone solvents examples include acetone, methyl ethyl ketone (MEK), methyl buty ketone (MBK), methyl isobutyl ketone (MIBK :), 2_hexanone, cyclohexanone, methynoleaminoketone, 2_ Heptanone and the like are preferable, and MIBK, MEK and MBK are particularly preferable.
  • Examples of the acetic acid ester-based solvent include ethyl acetate, butyl acetate, isobutyl acetate, propyl acetate, and amyl acetate, and particularly propyl acetate, butyl acetate, and diacetic acid. Sobutyl is preferred.
  • Examples of the alcohol solvent include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, isopentyl alcohol, and the like. Chill alcohol is preferred.
  • ester solvents other than the acetate solvents include ethyl butyrate, butyrate butyrate, methyl lactate, ethyl lactate, methyl 3-methoxypropionate, methyl 3-methoxypropionate, and 2-hydroxyisobutyric acid.
  • Examples thereof include methyl, ethyl 2-hydroxyisobutyrate, getyloxalate, ethyl ethyl pyruvate, etinole 2-hydroxybutyrate, and ethyl acetoacetate.
  • propylene glycol-based solvent examples include propylene glycol monomethyl ether, propylene glycol monomethyl ether ether, propylene glycol monobutynole ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate.
  • Examples of the cellosolve-based solvent include methyl sorbate in ethylacetate, solvate in ethylose, sorbate acetate in methylose, and solvacetate in ethylose.
  • aromatic hydrocarbons examples include toluene and xylene.
  • Examples of the aliphatic hydrocarbons include industrial gasoline, hexane, and octane.
  • ether solvent examples include tetrahydrofuran (THF), dioxane, methylbutyl ether and the like.
  • Examples of the acetal solvent include dimethoxymethane, diethoxymethane, and the like.
  • At least one solvent selected from ketone-based solvents, acetate-based solvents and alcohol-based solvents or a mixed solvent containing at least one of these solvents has good solubility, It is particularly preferable because it has a relatively small effect on the environment.
  • the content of the solvent depends on the type of the polymer contained in the resin (I), the type of other solids to be dissolved, and the use of a curing agent.
  • the total solid content is 0.01% by weight or more, further 0.1% by weight or more, and 20% by weight. It is preferable that the content is less than 10% by weight.
  • additives examples include a curing agent (crosslinking agent) other than the active energy ray curing initiator described below, a leveling agent, a viscosity modifier, a light stabilizer, a moisture absorber, a pigment, a dye, a supplementary agent.
  • curing agent crosslinking agent
  • curing agent other than the active energy ray curing initiator
  • those having one or more radicanoles or cation-reactive functional groups are preferred, and specifically, radical polymerizable compounds such as acrylic monomers And cationically polymerizable monomers such as epoxy or glycidyl monomers. These monomers may be monofunctional or multifunctional monomers.
  • a coating method in the case of a solvent type surface modifier, for example, a roll coating method, a gravure coating method, a microgravure coating method, a flow coating method, a bar coating method, a spray coating method, a die coating method, a spin coating method, Coating method, dip coating method, etc. can be adopted.
  • powder type (fluorinated resin (I) alone or composition with other resin) surface modifier for example, powder coating method, thermal spraying Methods can be adopted, and the method may be selected in consideration of the type, shape, and productivity of the base material.
  • the curing method is not particularly limited.
  • a curing agent crosslinking agent
  • a curing reaction is caused at the starting temperature or under conditions of the curing agent, or when a curing agent is not added, a self-crosslinking function is required. It should be cured under conditions that cause self-crosslinking by heating (heating to 50-150 ° C or standing at room temperature).
  • the type of the base material is not particularly limited.
  • inorganic materials such as glass, stone, concrete, and tile; polyolefin resins such as polyethylene and polystyrene; acrylic resins such as polymethyl methacrylate; and polyolefins such as polyarylate and polyethylene terephthalate.
  • Cellulose resins such as steal resin and triacetyl cellulose, rubber resins such as rubber hydrochloride, butyl chloride resin, polycarbonate resin, phenol resin, xylene resin, urea resin, melamine resin, diaryl phthalate resin, furan resin, Synthetic resins such as polyamide resins, polyimide resins, alkyd resins, polyurethane resins, vulester resins, polysulfone resins, and ionomer resins; metals such as iron, aluminum, and copper; wood, paper, printed matter, photographic paper, and paintings; A protective film such as a hard coat layer, a film having an antistatic function, an antireflection film, or the like formed on these substrates; furthermore, an optical recording medium or a magnetic recording medium or a hard coat layer thereon. Anti-reflection coatings, coatings with specific wavelength light absorption, etc. are formed. By applying a surface modifier, it is possible to improve slipperiness of the surface, scratch resistance, water-
  • resin substrates such as acrylic resins, polycarbonate resins, cellulose resins, polyester resins (for example, polyethylene terephthalate), polyolefin resins, and the like; It is preferably applied to the formed substrate.
  • the resin (I) has a low refractive index
  • by applying directly on the antireflection film it is possible to effectively impart the slipperiness and the antifouling property without lowering the antireflection performance.
  • the antireflection film is made of, for example, magnesium fluoride (MgF 2) or silicon oxide (SiO 2).
  • an antireflection film and a multilayer structure antireflection film that is a cured film of the surface modifier.
  • the cured film of the filler may be a continuous film directly above the antireflection film, or may be a discontinuous film formed in an island shape.
  • the film thickness is preferably 500 ⁇ m or less from the force of a monomolecular film (about 0.2 to 0.3 nm), and more preferably 50 nm or less, since the adverse effect on the optical properties is small. Amount of coating, by weight of the resin (I), 0.
  • the surface modifier of the present invention has excellent slipperiness when formed into a thin film, has high durability, has a low refractive index, and is transparent. They are preferred as surface modifiers for articles and the like.
  • the fourth aspect of the present invention is: (a) the general-purpose solvent-soluble curable fluororesin (I), and
  • the present invention relates to a powerful active energy ray-curable surface modifying composition.
  • a cross-linking (curing) reaction can be easily started by a straight line of active energy, and a high-temperature A cross-linking (curing) reaction can be performed in a short time at a relatively low temperature that does not require heating, so that it has low heat resistance and is easily deformed, decomposed, or colored by heat, such as a transparent resin substrate. Preferable because it can be adapted.
  • the curable fluororesin (I) used as the component (a) in the fourth invention is the resin (I) used in the first invention, and is preferably a polymer (IAB), (IA), (IB), MP ⁇ and the resin (I) are the same as those in the description and the specific examples of the polymer and the resin (I) in the first invention described above, and therefore, the description is omitted here.
  • the active energy ray curing initiator which is the component (b), is irradiated with an active energy ray such as an electromagnetic wave or an electron beam having a wavelength of 350 nm or less, such as ultraviolet rays, X-rays, and 7 rays, to form a radical or a radical. It is a compound that generates cations, and the generated radicals or cations function to initiate a crosslinking (curing) reaction of the crosslinking functional group Y.
  • an active energy ray such as an electromagnetic wave or an electron beam having a wavelength of 350 nm or less, such as ultraviolet rays, X-rays, and 7 rays
  • the active energy ray curing initiator (b) is based on the type of crosslinking group (radical reactive or cationic reactive) in the curable fluororesin (I) as the component (a), and the active energy used. line (Wavelength range, etc.) and irradiation intensity are appropriately selected.
  • preferred crosslinkable functional groups Y in the polymers (IAB) and (IB) are the same as those in the first invention. Examples thereof include self-crosslinkable functional groups reactive with radical polymerization and self-crosslinkable functional groups reactive with cationic polymerization.
  • Benzophenone benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, hydroxypropylbenzophenone, acrylated benzophenone, Michler's ketone, etc.
  • a fluorine-containing polymer (IAB) having a cation-reactive carbon-carbon double bond or epoxy group oxacyclopropanyl group as self-crosslinkable functional group Y using active energy rays in the ultraviolet region examples include the following.
  • Estenole of anolequinolenosolefonic acid Estenole of nodroanolequinolenosolefonic acid, arinoresnolefonic acid ester, iminosulfonate, etc.
  • rhododium salts, sulfonium salts, diazonium salts, and metamouth compounds are preferred, and aromatic diazonium salts, aromatic sulfodium salts, aromatic rhododium salts, and metamouth salts are more preferable.
  • aromatic diazonium salts, aromatic sulfodium salts, aromatic rhododium salts, and metamouth salts are more preferable.
  • at least one aromatic compound selected from the group consisting of the stilts are preferred because they generate cationic species that initiate cationic polymerization at a quantum efficiency upon light irradiation.
  • the amount of the active energy ray curing initiator (b) is 0.001 equivalent or more, more preferably 0.005 equivalent or more, especially 0.01 equivalent or more with respect to 1 equivalent of the crosslinkable functional group Y. It is not more than 1 equivalent, more preferably not more than 0.5 equivalent, especially not more than 0.1 equivalent. If the amount of the initiator (b) is too small, the curability is reduced and the strength and hardness of the film are insufficient. If the amount is too large, the slipperiness is reduced and the refractive index tends to increase.
  • composition of the fourth invention of the present invention other curing agents and additive agents may be further blended as necessary.
  • curing agent and other additives those exemplified in the first invention can be used.
  • the composition of the fourth invention can be prepared by mixing the component (a) and the component (b) with another curing agent or additive, or by mixing and dissolving or dispersing with a solvent.
  • a solvent that dissolves the resin (I) the invention of a composition using such a solvent that is soluble in the resin (I) will be described as the fifth invention.
  • Solvents other than the solvent used in the fifth invention described later include ester solvents other than the acetic acid ester solvents exemplified in the first invention, propylene glycol solvents, cellosolve solvents, and aromatic hydrocarbons. , Aliphatic hydrocarbons, ether solvents, acetal solvents, turpentine or mixed solvents of the same or different types, and non-fluorinated mixed solvents containing these.
  • the content of the solvent depends on the type of polymer constituting the resin (I), the type of other solids to be dissolved, the presence or absence and use ratio of a curing agent, Is appropriately selected depending on the type of the base material and the target film thickness, etc.
  • the compounding be made so that it is not less than 01% by weight, further not less than 0.1% by weight, not more than 20% by weight, and further not more than 10% by weight.
  • the same coating method as in the first invention can be adopted.
  • the fifth aspect of the present invention is: (a) the general-purpose solvent-soluble curable fluorine-containing resin (I),
  • At least one general-purpose solvent selected from the group consisting of a ketone-based solvent, an acetate-based solvent and an alcohol-based solvent, or a mixed solvent containing the general-purpose solvent
  • the present invention relates to a powerful active energy crosslinkable surface modifying composition.
  • the fifth invention is a composition in which the specific solvent (c) is further added to the composition of the fourth invention.
  • the specific solvent (c) is at least one general-purpose solvent selected from the group consisting of a ketone-based solvent, an acetate-based solvent, and an alcohol-based solvent or a mixed solvent containing the general-purpose solvent.
  • a ketone-based solvent As the acetic ester-based solvent and the alcohol-based solvent, the solvents described in the first invention can be used.
  • the solvent may be mixed with the ketone-based solvent, acetate-based solvent or alcohol-based solvent.
  • Other solvents include ester-based solvents other than the acetate-based solvent described in the first and fourth inventions.
  • the ketone-based solvent, the acetate-based solvent, or the alcohol-based solvent can be used to make up at least 10% by volume, more preferably at least 30% by volume, especially at least 50% by volume of the resin (I). This is preferred from the viewpoint of improving the solubility of ()).
  • composition of the fifth invention can be prepared by adding the resin component (a) and the active energy ray curing initiator (b) to the solvent (c) and dissolving at least the resin (I).
  • Other additives, concentrations, coating methods, and the like are the same as in the fourth invention.
  • the curable surface modifying compositions of the fourth and fifth inventions were applied to a substrate and dried.
  • the surface of the substrate can be modified by irradiating the obtained coating film with an active energy ray to cure it.
  • the dose of the active energy ray is, for example, 10
  • OmjZcmU or more preferably about 500 mJZcmU.
  • the active energy ray curing initiator (b) Upon irradiation with active energy rays, the active energy ray curing initiator (b) generates radicals or cations, and the self-crosslinkable functional group Y of the fluoropolymers (IAB) and (IB) is polymerized between the polymer molecules. And crosslink.
  • the film hardness is increased, the mechanical strength is improved, the abrasion resistance and the abrasion resistance are improved, and furthermore, it becomes insoluble in the solvent that was dissolved before curing, and other components that only become insoluble It is insoluble in many kinds of solvents, and the durability is improved.
  • the excellent lubricity provided by the curable fluororesin (I) can be maintained even after the application of the force and the active energy ray.
  • the preferred thickness of the film obtained by coating and curing a surface modifier applied to various substrates is not particularly limited, but is preferably 0.5 nm or more, more preferably 1 nm or more, or It is 500 ⁇ m or less, and even 50 nm or less.
  • the film thickness is large, coloring due to visible light interference may be observed.
  • the refractive index of the substrate and the refractive index of the surface modifier composition may be made equal.
  • the type of the base material is not particularly limited, and examples thereof include those exemplified in the first invention.
  • resin base materials such as acrylic resins, polycarbonate resins, cellulose resins, polyester resins (for example, polyethylene terephthalate), polyolefin resins, and the like, and an antireflection film is formed on these resin base materials. It is preferably applied to the formed substrate.
  • the resin (I) has a low refractive index
  • by directly applying the resin (I) to the antireflection film it is possible to effectively impart the slipperiness and the antifouling property without lowering the antireflection performance.
  • the antireflection film is formed of the above-mentioned silicone polymer-based antireflection film material, fluorine-containing polymer antireflection film material, porous antireflection film material, etc., and has particularly excellent transparency and good antireflection effect.
  • a fluoropolymer-based anti-reflective coating approximately 0.03-0.5 xm
  • the curable surface modifying composition of the fourth invention or the fifth invention the coating strength of the antireflection film and the surface modifier or the curable surface modifying composition is obtained.
  • a multilayer antireflection film can be formed.
  • the coating film of the surface modifying agent may form a continuous film on the antireflection film, or may be a discontinuous film formed in an island shape.
  • the film thickness after hardening is 50 nm or less, and more preferably 20 nm or less.
  • the lower limit is a monolayer (about 0.2-0.3 nm), even 0.5 nm, especially lnm
  • amount of coating by weight of the resin component (a), 0. 5mg / m 2 or more, preferably lmg / m 2 or more, 100 mg / m 2 or less, preferably 50 mg / m 2 or less. If the amount is too small, effects such as slipperiness and abrasion resistance will be insufficient. If the amount is too large, the antireflection effect will be unfavorably affected.
  • the curable surface modifying composition of the present invention has excellent slipperiness when formed into a thin film, has high durability, has a low refractive index, and has the same properties as the surface modifier of the first invention. Since it is transparent, it is effective when applied to the following forms of articles such as displays.
  • Displays such as CRT (TV or personal computer monitor), liquid crystal display, plasma display, organic EL display, inorganic thin film EL dot matrix display, rear projection display, fluorescent display tube (VFD), FED (Field Emission Display), etc.
  • CTR TV or personal computer monitor
  • liquid crystal display plasma display
  • organic EL display organic thin film EL dot matrix display
  • rear projection display fluorescent display tube (VFD), FED (Field Emission Display), etc.
  • VFD fluorescent display tube
  • FED Field Emission Display
  • LCD display components such as front lights and diffusion sheets, or those whose surfaces have been subjected to anti-reflective coating treatment
  • Touch panels for PCs, PDAs, ATM devices, etc. optical touch filters, touch screens, etc. in the world
  • Optical components such as spectacle lenses, prisms, lens sheets, pellicle films, polarizers, optical filters, lenticular lenses, Fresnel lenses, rear-projection display screens, optical fibers, optical couplers, etc.
  • anti-reflective coating such as spectacle lenses, prisms, lens sheets, pellicle films, polarizers, optical filters, lenticular lenses, Fresnel lenses, rear-projection display screens, optical fibers, optical couplers, etc.
  • Optical recording media such as magneto-optical discs, optical discs such as CD 'LD' DVDs, phase-change optical discs such as PDs, hologram recording, etc., or those whose surfaces have been subjected to an anti-reflection coating treatment
  • Magnetic recording media such as magnetic tapes, magnetic disks, magnetic drums, and magnetic flexo disks, or those whose surfaces have been treated with an anti-reflective coating
  • the sheet or film formed from the curable surface modifying composition of the present invention is suitable as a sheet or finolem to be attached to the uppermost surface of various articles as listed above. Can also be used. In this case, the surface of the article can be easily modified, and the disposal or recycling of the article is easy.
  • the sheet or film may be obtained by, for example, applying the curable surface-modifying composition of the present invention on the substrate described in the first invention by any of the various coating methods described above. It is preferable that the substrate is obtained by covering the surface of the substrate with an antireflection film.
  • the resin having both the polyfluoropolyether chain and the self-crosslinkable functional group Y (I ) On a base material (anti-reflection film) by the above-mentioned coating method, it is possible to provide not only high slipperiness but also performance such as antifouling property and water / oil repellency. explained.
  • the polymer for surface modification is confined to some extent inside the anti-reflective coating by the curing of the anti-reflective material. They found that a crosslinkable reactive group was not required, and completed the sixth invention of the present invention.
  • the sixth invention provides (d) the fluorine-containing ethylenic polymer (IAB) or the fluorine-containing ethylenic polymer (IA), which is soluble in a general-purpose solvent and has a fluorine content of 1% by weight or more and 35% by weight or more. % Or less of the fluorine-containing resin (II), and
  • the present invention relates to an antireflection film obtained by applying a powerful antireflection film forming composition to a substrate.
  • the resin (II) to be internally added to the antireflection film material may or may not have the site B (self-crosslinkable functional group Y), that is, contains the polymer (IB). It is the same as resin (I) except that it may or may not be present and the fluorine content is 1% by weight or more and 35% by weight or less.
  • the resin ( ⁇ ) is a resin containing at least the polymer (IAB) or the polymer (IA).
  • Polymer (IB) and other polymers MP may or may not be included.
  • the fluorine content of the resin ( ⁇ ) is 1% by weight or more, more preferably 5% by weight or more, particularly 10% by weight or more, the refractive index is reduced, the slipperiness is increased, and 35% by weight or less, more preferably 25% by weight or less, particularly preferably 20% by weight or less from the viewpoint of improving the antifouling property, from the viewpoint of good solvent solubility and excellent transparency .
  • the resin (II) preferably has a refractive index of 1.48 or less, more preferably 1.45 or less, so as not to adversely affect the optical properties of the antireflection film.
  • the antireflection film material as the component (e) may be any material that can be applied in liquid form on a substrate (such as a film).
  • conventionally known anti-reflective coating materials such as organic silicon compound materials, fluorine-containing organic silicon compound materials, crosslinkable silicone resin materials, crosslinkable fluorine-containing silicone resin materials, and fluorine-containing acrylic
  • An anti-reflective coating material made of a compound material, a fluorine-containing epoxy compound material or a curable fluorine-containing polymer material can be used.
  • the anti-reflective coating material (e) may contain a curing agent, a leveling agent, a viscosity modifier, a light stabilizer, a moisture absorber, a pigment, a dye, a reinforcing agent, and the like.
  • organic silicon compound-based material examples include, but are not limited to, JP-A-10-14
  • Curable resin compositions containing a siloxane bond described in JP-A-7740 and JP-A-2000-1648 are exemplified.
  • fluorine-containing organic silicon compound-based material examples include, but are not limited to, those described in JP-A Nos. 10-147739, 2000-10965, and 2000-17028.
  • a composition for forming an antireflection film made of a silane compound is exemplified.
  • fluorine-containing acrylic compound-based material include, but are not limited to, those disclosed in
  • compositions include polyfunctional fluorinated acrylics described in JP-A-203801 and JP-A-2000-194503.
  • fluorine-containing epoxy conjugate material include, for example, those disclosed in
  • composition comprising a polyfunctional fluorinated epoxy compound described in JP-A-302058 and JP-A-2000-17099.
  • curable fluoropolymer-based material examples include, but are not limited to, the strength of the fluoropolymer (IIINC) used in the seventh invention described later, for example, in JP-A-11-337706. And others.
  • the amount of the resin ( ⁇ ) added to the component (d) depends on the type of the resin component (d) used, the type of the antireflection film material, the required characteristics, etc. Depending on the force it is at least 1% by weight of the total solids, more than 5% by weight, especially at least 10% by weight. If the amount is too small, the surface modification effect is not exhibited.
  • composition for forming an antireflection film is dissolved or dispersed in various solvents. It is advantageous in that it can be applied to various substrates to form a coating film, and after forming the coating film, it can be efficiently crosslinked (cured) by irradiation with active energy rays or the like, and a cured film can be obtained. .
  • the same non-fluorine-based solvent and the same fluorine-based solvent as those described in the first invention can be used, and the target paintability, film-forming property, film thickness uniformity, The type, amount, etc. may be appropriately selected from the above-described examples according to the productivity of the coating and the like.
  • solvents selected from ketone solvents, acetate solvents, and alcohol solvents are preferred.
  • the fluorinated solvent include H_ (CFCF) -CH ⁇ H (where a is an integer of 1 to 3), CF—
  • (CF) —CH ⁇ H (where b is an integer of 1 to 5), fluorinated alcohols such as CH (CF) ⁇ H; fluoroalkanes such as CH CC1 F, CF CF CHC1, CC1F CF CHC1F; 3_ bistrifluoromethylbenzene, benzotrifluoride and the like are preferable.
  • the preferred solid concentration of the composition for forming an antireflection film varies depending on the resin component (d) to be added, the type of the antireflection film material, the required characteristics, and the like. However, it is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, particularly 1% by weight or more, preferably 20% by weight or less, further preferably 10% by weight or less.
  • the cured product (coated film) after curing has a refractive index of 1.45 or less, more preferably 1.42 or less, and especially 1.40 or less. Preferably, there is. It is most preferably 1.38 or less, and a lower value is advantageous in that an excellent antireflection effect is exhibited.
  • a preferable thickness of the antireflection film of the sixth invention is a force SO. 03 ⁇ m or more, more preferably 0. 07 ⁇ m or more, and particularly 0. ⁇ It is preferably not less than 08 ⁇ m and not more than 0.5 zm, more preferably not more than 0.1, particularly preferably not more than 0.12 ⁇ m. If the film thickness is too thin, the effect of lowering the reflectivity due to light interference with visible light will be insufficient, while if it is too thick, the reflectivity will depend almost exclusively on the reflection at the interface between the air and the film. The effect of lowering the reflectivity due to light interference tends to be insufficient. Above all, it is preferable to set the film thickness so that the wavelength showing the minimum value of the reflectance of the article after applying the antireflection film is usually in the range of 420 to 720 nm, more preferably 520 to 620 nm.
  • the substrate on which the composition for forming an antireflection film is applied the substrate ( However, those having an anti-reflection film are excluded) can be used in the sixth invention.
  • the base material is a base material coated with a hard coat layer, a high refractive index layer, an antistatic layer, and the like, and the composition for forming an antireflection film is coated thereon (the outermost surface). It is preferable to work.
  • the hard coat layer is not limited to a force capable of using a hybrid with an inorganic material represented by a usual acrylic resin hard coat for optical use, a melamine resin, an acrylic silicone resin, an hybrid coat, and the like.
  • Examples of the high refractive index layer include, in addition to the acrylic silicone hybrid coat, those in which inorganic fine particles are dispersed in an acrylic resin, and the like, but are not limited thereto.
  • the high refractive index layer has a minimum reflectance of 1 if the refractive index is 1.58 or more. / 0 or less is preferable because it is easy to realize.
  • the antistatic layer may be one combined with a hard coat layer or the like, in addition to a method using sputtering or the like.
  • the hard coat layer, high refractive index layer, antistatic layer, and the like may each independently cover the top of the substrate, or may be a combination of a plurality of each to cover the top of the substrate.
  • these functions can be further provided.
  • an outermost layer of 0.05 / m or less may be further provided on the antireflection film thus formed.
  • Preferred as the outermost layer are an antifouling layer capable of suppressing the adhesion of oil and dust, or an easy-wiping of them, a lubricating layer capable of reducing scratching, or a combination thereof.
  • a material having a perfluoropolyether structure and having a functional group having good adhesion to the underlying material is preferred.
  • the antireflection film of the sixth invention is, like the surface modifier of the first invention, excellent in slipperiness when formed into a thin film, has high durability, has a low refractive index, and is transparent.
  • CRT TV or personal computer monitor
  • liquid crystal plasma display
  • organic EL display organic thin-film EL dot mat i
  • rear projection display fluorescent display tube (VFD)
  • FED Field Emission or protection plate for the display
  • LCD display components such as front lights and diffusion sheets
  • Optical filters, touch panels for PCs, PDAs, ATM devices, etc. which are retrofitted to PC monitors to improve visibility (also referred to as touch sensors, touch screens, etc. worldwide)
  • Optical components such as spectacle lenses, prisms, lens sheets, pellicle films, polarizers, optical filters, lenticular lenses, Fresnel lenses, rear projection display screens, optical fibers and optical couplers.
  • Optical recording media represented by magneto-optical disks, optical disks such as CD 'LD' DVDs, phase-change optical disks such as PDs, and hologram recording
  • Magnetic recording media such as magnetic tapes, magnetic disks, magnetic drums, and magnetic flexures
  • the sheet or finolem formed from the composition for forming an anti-reflection film used in the sixth invention is used as a sheet or film to be attached to the uppermost outermost surface of various articles as listed above. Can also be suitably used. In this case, the formation of the anti-reflection film can be facilitated, and the disposal or recycling of the article is easy.
  • the sheet or film may be coated with the antireflection film forming composition used in the sixth invention by, for example, the above-described various coating methods on the substrate described in the first invention. It is obtained by curing after mounting.
  • the antireflection film of the sixth invention is advantageous in terms of workability, productivity, cost, and the like in that a step of providing a surface modification layer is unnecessary.
  • the seventh aspect of the present invention relates to a curable resin composition suitable for the composition for forming an antireflection film used in the sixth invention.
  • X 18 and X 19 are the same or different; H, F or CF; Rf 1 is a fluorine-containing alkyl group having 1 to 40 carbon atoms or a fluorine-containing alkyl group having an ether bond having 2 to 100 carbon atoms, and Y 1 or Y ⁇ Y 1 is a monovalent organic group having 2 to 10 carbon atoms having an ethylenic carbon-carbon double bond at the terminal, and ⁇ 2 is a cross-linkable cyclic ether structure in which a hydrogen atom may be substituted by a fluorine atom.
  • the structural unit derived from the fluorinated ethylenic monomer, the structural unit C is a structural unit derived from a monomer copolymerizable with the fluorinated ethylenic monomer giving the structural unit N] Number average molecular weight 500-10000000 containing 0.1 100 mol% of structural unit N and 0-99.9 mol% of structural unit C Fluoropolymer of IIINC
  • the fluorine-containing polymer (IIINC) as the organic group Rf 1 is a side chain end groups of the structural unit N of the formula (N), the number 1 one 40 of a fluorine-containing alkyl group or the number of carbon-carbon 2- 100
  • the fluorine-containing alkyl group having an ether bond of Y 1 or Y ⁇ Y 1 is a monovalent organic group having 2 10 carbon atoms having an ethylenic carbon-carbon double bond at the terminal
  • ⁇ 2 is a hydrogen atom having a fluorine atom. It is characterized in that it has an organic group in which 1 to 3 carbon atoms (a monovalent organic group having 2 to 100 carbon atoms and having 1 to 5 cross-linkable cyclic ether structures which may be substituted) are bonded. is there.
  • ethylenic carbon organic group Upsilon 1 has in Rf 1 - Any crosslinkable cyclic ether structure having carbon double bonds and Upsilon 2 are self-crosslinking functional group, and an active energy ray crosslinkable It is a functional group.
  • the structural unit N in the formula (N) is represented by the formula (N1)
  • Rf 1 is the same as described above; a fluorine-containing polymer which is a structural unit N2 derived from an ethylenic monomer; or
  • Rf 1 is the same as defined above, and is a fluorine-containing polymer represented by the structural unit N3 derived from the fluorine-containing ethylenic monomer
  • Preferred specific examples of the polymer (IIINC-1) include, for example,
  • CH 2 CFCF 2 OCFCH 2 0- Y 1
  • CH 2 CFCF 2 0- ⁇ CFCF 2 0- n CF-Y 1
  • CH 2 CFCF 2 0 CFCF 2 OHCFCH 2 OCH 2 CHCH 2 -Y 1 ,
  • CH 3 CFCF 20- CF 3 CF- n CH 2 -Y 1 ,
  • CH 2 CFCF 2 0 CF 2 CF 2 ⁇ -n Y 1 ,
  • the fluorine-containing polymer having an organic group Y 2 having a crosslinkable cyclic ether structure (IIINC) (hereinafter, "referred to the polymer (IIINC-2)" is a novel polymer der found by the present inventors Therefore, the bridging functional group-containing fluorine-containing polymer which has already been filed (Japanese Patent Application No. 2002-235924) and described in the specification of the application can be used in the seventh invention.
  • Polymer (IIINC-2) the basic skeleton is the same as the polymer (IIINC-l), the organic group Y 2 is, crosslinking at least one containing 3-6 membered ring ether linkages Examples thereof include a polymer which is a monovalent organic group having 2 to 100 carbon atoms and having 1 to 5 cyclic ether structures (a hydrogen atom may be substituted with a fluorine atom).
  • X is the same or different, and is a hydrogen atom, a fluorine atom, an alkyl group having 16 carbon atoms or a fluorine-containing alkyl group having 16 carbon atoms
  • X is the same or different, and is a hydrogen atom, a fluorine atom, an alkyl group having 16 carbon atoms or a fluorine-containing alkyl group having 16 carbon atoms
  • Q is a monovalent or divalent organic group in which a hydrogen atom of a monocyclic structure, a bicyclic structure or a heterocyclic structure having 3 to 100 carbon atoms may be substituted by X
  • X is the same or different, and is a hydrogen atom, a fluorine atom, a C16 alkyl group or a C16 fluorine-containing alkyl group
  • X is the same or different, and is a hydrogen atom, a fluorine atom, a C16 alkyl group or a C16 fluorine-containing alkyl group
  • Specific polymers include, for example,
  • CH, CFCF s O CFC F 2 0-7CFCH 3 ⁇ 4 OCH a C—— CH
  • CH 2 CFCF 2 0 CFCF 2 0 'CFCH, OCH, ⁇ H— CH ⁇
  • the organic group Rf 1 is may have both Y 1 and Y 2, have both Rf 1 in which the polymer (IIINC) has a Rf 1 and Y 2 that have a Y 1 Ttere, teyore,
  • the structural unit C is a structural unit derived from a monomer copolymerizable with the fluorine-containing ethylenic monomer giving the structural unit N, and is an optional component.
  • Preferred structural units C the same as a basic skeleton a structural unit (N), the organic group Z (Z instead of the organic group Y 1 - ⁇ _H -CH OH _CO_ ⁇ _H, carboxylic acid derivatives, _S ⁇ H or a cyano group), and examples thereof include those in which Y 1 in the preferred structure of the structural unit (N) of the polymer (Ilia) is replaced with Z.
  • CH ? CFCF ? 0- ⁇ CFCF, 0 ⁇ : CFHCF.
  • the resin (III) may contain the polymer (IIINC) alone, or may contain another polymer depending on the purpose.
  • This resin (III) is a transparent polymer having a refractive index of 1.45 or less, further 1.42 or less, particularly 1.40 or less, and has excellent properties as an optical material.
  • the mixing ratio of the resin ( ⁇ ) and the resin (II) is such that the resin ( ⁇ ) having a surface-modifying ability is 0.1 part by weight or more, and further 1 part by weight, based on 100 parts by weight of the resin (III).
  • the amount is preferably not less than 10 parts by weight, particularly not less than 10 parts by weight, not more than 50 parts by weight, and more preferably not more than 30 parts by weight. If the amount of the resin (II) is too large, it may adversely affect optical characteristics such as refractive index and transparency. Is less likely to be played.
  • a mixing method for example, a method of dissolving the resin (II) and the resin (III) in a solvent to form a uniform solution; a method of forming each into an aqueous dispersion and then mixing the aqueous dispersions; A method in which solid resins are kneaded with each other; a method in which each resin is made into a powder and then the powder is mixed can be employed.
  • the curable resin composition of the seventh invention is useful as the composition for forming an antireflection film of the sixth invention, and a hard coat composition for plastic lenses;
  • the composition is also useful as a material such as a composition for a surface hard coat such as packaging film, paper, resin, and wood, and a composition for a protective film on a printed material surface.
  • the present invention further provides (i) the antireflection coating material (e) used in the sixth invention or the curable fluororesin (111) used in the seventh invention,
  • the present invention also relates to a method for forming a cured product, which is applied and dried by using a liquid composition comprising, and then cured after forming a film, in particular, a method for forming an antireflection film (eighth invention).
  • the composition for forming an antireflection film used in the sixth invention or the curable resin composition of the seventh invention is made into a liquid composition using a solvent.
  • the solvent to be used in addition to the non-fluorinated organic solvent exemplified in the first invention, the fluorinated organic solvent described in the sixth invention can be preferably used.
  • the solid content concentration of the liquid composition is not particularly limited, but is 0.01% by weight or more, more preferably 0.1% by weight or more, particularly 1% by weight or more, preferably 20% by weight or less, more preferably 10% by weight or less. .
  • the liquid composition is applied to a target substrate or the like.
  • the above-described methods and examples can be adopted in the eighth invention.
  • drying is performed to remove the solvent from the formed coating film. Drying is performed by appropriately selecting conditions under which the resin component and other compounding agents do not denature.
  • the dried coating film is cured by curing to form a cured product.
  • a curing method a person skilled in the art may use an optimal method from conventional methods depending on the curing reactivity of the curable resin.
  • the composition may be cured by irradiation with active energy rays, or may be mixed with various curing agents and cured by a known curing method (eg, peroxide crosslinking).
  • the cured product obtained by the force is various cured products described in the sixth and seventh inventions, for example, as an antireflection film, a hard coat for a plastic lens; a deep-colored material on a fiber surface; It is useful as a hard coat on the surface of films, papers, resins, wood, etc., and as a protective film on the surface of printed matter, and can exhibit excellent functions especially as an antireflection film.
  • MIBK methyl isobutyl ketone
  • MEK methyl ethyl ketone
  • IPA isopropyl alcohol
  • Solute 1/1 (weight ratio) mixed solvent of MIBK and dioxane
  • the reaction product is cast into a petri dish to form a film, and the refractive index (n D ) at 589 nm is measured using an Abbe refractometer 2T manufactured by Atago.
  • Example 1 reaction product was obtained in the same manner as the (oxygenate chill ether) [0379] The obtained reaction product was dissolved in acetone one d 6 19 F- NMR and 1 H-NMR measurement The composition was as shown in Table 1 from the measurement results, and was found to be resin (I).
  • Formalized PVA was synthesized in the same manner as in Synthesis Example 3 except that a mixed solvent of dioxane (20 ml) and water (2 ml) was used as the solvent (formalization ratio: 80%).
  • a reaction product was obtained in the same manner as in Example 2 except that the formalized PVA obtained in Synthesis Example 3 was used instead of the acetalized PVA obtained in Synthesis Example 1.
  • a reaction product (getyl ether solution) was obtained in the same manner as in Example 1 except that A was used.
  • Example 1 The foils obtained in Example 1, Example 3, Example 4, Example 5, Example 7, and Example 8, respectively.
  • a uniform coating composition for surface modification was prepared (Examples 9 to 14).
  • the coating composition for surface modification obtained in the above (1) was applied on an untreated acrylic plate at room temperature by a spin coater and dried at room temperature for 30 minutes.
  • the coating was performed by maintaining the rotation speed of the spin coater at 300 rpm for 3 seconds and then at 100 rpm for 20 seconds.
  • the dried film was irradiated with ultraviolet rays at 1500 mj / cm 2 in the air using a high-pressure mercury lamp and light-cured to produce a cured film.
  • AFT-15-1S manufactured by Tosoh Seimitsu Kogyo Co., Ltd.
  • the value of the coefficient of friction of each sample is evaluated as a relative value (index) when the coefficient of friction of the control antireflection film (control) prepared in Reference Example 1 is set as a reference (100).
  • ⁇ s The surface free energy ( ⁇ s ) is calculated from the contact angle between pure water and hexadecane.
  • a finger is pressed against the application surface of the acrylic plate, and the ease with which a fingerprint is attached is visually determined. Evaluation is based on the following criteria.
  • the attached fingerprint is wiped three times with a Kimwipe (trade name, manufactured by Jujo Kimberly Co., Ltd.), and the ease with which the attached fingerprint is wiped is visually determined. Evaluation is based on the following criteria.
  • The fingerprint can be completely wiped off.
  • the mixture was stirred at 20 ° C. for 24 hours under a nitrogen stream to produce a high-viscosity solid.
  • the polymer was analyzed by 19 F-NMR, ⁇ -NMR analysis and IR analysis. As a result, a fluorine-containing polymer consisting only of the structural units of the above-mentioned fluorine-containing aryl ether and having a hydroxyl group at a side chain terminal was obtained. Met. Further, the number average molecular weight measured by GPC analysis (solvent THF) was 72,000, and the weight average molecular weight was 118,000.
  • MEK was diluted with the fluorine-containing polymer solution having an ⁇ -fluoroacryloyl group obtained in the above (2) to adjust the polymer concentration to 5.0% by weight.
  • the above coating composition was applied to an untreated acrylic plate at room temperature by a spin coater.
  • the number of revolutions of the spin coater was adjusted to be 10 nm.
  • the dried film was irradiated with ultraviolet light at room temperature using a high-pressure mercury lamp at an intensity of 1500 mj / cm 2 U. Irradiation produced an antireflection film.
  • a coating composition for surface modification was prepared in the same manner as in Example 9 except that the fluororesins obtained in Examples 1, 4, 7, and 8 were used (Example 15). I 18).
  • the surface modification coating composition obtained in the above (1) was coated on the control antireflection film prepared in Reference Example 1 at room temperature by a spin coater, and dried at room temperature for 30 minutes.
  • the spin coating was performed at a rotation speed of 300 rpm for 3 seconds and then at 100,000 rpm for 20 seconds.
  • the reflectance is measured with a visible ultraviolet spectrometer equipped with a 5 ° regular reflection unit for light having a wavelength of 550 nm.
  • control anti-reflection film (control) prepared in Reference Example 1 the friction coefficient, pencil hardness, contact angle, falling angle, fingerprint adhesion, fingerprint wiping property and reflectance were evaluated in the same manner as in Example 15. Was. Table 3 shows the results.
  • the coating composition for surface modification obtained in the above (1) was coated on an untreated acrylic plate at room temperature by a spin coater and dried at room temperature for 30 minutes.
  • the spin coating speed was maintained at 300 rpm for 3 seconds and then at 1000-1500 i "pm for 20 seconds. At this time, the rotation speed of the spin coater was adjusted so that the film thickness after drying was 90-110 lOnm. It was adjusted.
  • Example 9 was repeated except that the fluororesin (I) obtained in Example 3 and Example 7 was used.
  • a coating composition for surface modification was prepared (Examples 27-28).
  • a coating composition for surface modification was prepared in the same manner as in Example 9 except that the fluororesin (IA) obtained in Example 2 and Example 6 was used (Comparative Examples 415).
  • a cured film was formed on an acrylic plate in the same manner as in Example 9 except that the coating composition for surface modification obtained in (1) above was used.
  • the surface-modified acrylic plate obtained in the above (2) was subjected to the following wiping treatment, and changes in characteristics before and after wiping were examined. Table 5 shows the results.
  • the measured items were the measurement of the coefficient of friction, the measurement of the contact angle of n-hexadecane, the adhesion of the fingerprint and the wiping of the fingerprint, and were carried out in the same manner as in Example 9.
  • MEK was added to the fluorine-containing polymer solution having a perfluoroacryloyl group obtained by the method described in (2) of Reference Example 1 and diluted to adjust the polymer concentration to 5.0% by weight. 10 g of the fluororesin obtained in Example 3 and 200 g of propyl acetate were added to 560 g of the polymer solution, stirred, and filtered through a polypropylene filter having a pore size of 1 zm to prepare a coating composition. .
  • the base material is a 100 xm PET film that has been hard-coated (refractive index: 1.52, thickness: 5 ⁇ m) on one side, and the coating composition of (1) above is applied. Done.
  • the coating conditions were as follows: using a microgravure roll having a gravure pattern of 180 lines / inch and a depth of 40 / m and having a diameter of 230 mm and a doctor blade, the rotation speed of the gravure roll was 13 rpm, and the transfer speed was 5 m / min.
  • the film was irradiated with ultraviolet rays using a 240 W / cm air-cooled metal halide lamp (manufactured by I-Graphics Co., Ltd.) under a nitrogen purge to cure and wind.
  • the haze value of the film is measured using a direct-reading haze meter manufactured by Toyo Seiki Seisakusho in accordance with JIS K6714.
  • the back side (uncoated side) of the film is polished well with # 240 sandpaper and painted with a black spray.
  • the reflectance of the antireflection coated surface of this film is measured in the same manner as in the reflectance measurement method described in Example 15.
  • the surface treatment of the acrylic plate was performed in the same manner as in Example 9.
  • the surface-treated acrylic plate obtained in the above (2) was evaluated for solvent resistance in the same manner as in Example 27.
  • Table 9 shows the results.
  • a coating composition was prepared in the same manner as (1) of Example 9 except that the resin (IB) obtained in Synthesis Example 5 was used.
  • the surface treatment of the acrylic plate was performed in the same manner as described above.
  • the surface-treated acrylic plate was polished in the same manner as in Example 9 (3).
  • the friction coefficient, pencil hardness, contact angle, falling angle, fingerprint adhesion and fingerprint wiping properties were evaluated. Table 8 shows the results.
  • the surface modification of the antireflection film was performed in the same manner as in Example 15, (2) except that the coating composition for surface modification obtained in Example 30 was used.
  • the surface modification of the antireflection film was performed in the same manner as in Example 15, (2) except that the coating composition obtained in Comparative Example 7 was used.
  • the surface properties of various coating films particularly the surface slipperiness (low friction coefficient), surface hardness, abrasion resistance, abrasion resistance, chemical resistance, contamination wiping properties, and water repellency It can improve oil repellency and the like, and can impart a modified surface property to the surface of the original coating film.
  • the surface slipperiness can be improved without impairing the transparency of the antireflection film, and the antireflection ability can be maintained for a long period of time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Polyethers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)

Abstract

 長鎖ポリフルオロポリエーテル鎖含有部位Aおよび/または自己架橋性官能基含有部位Bを側鎖の少なくとも一部分に有する含フッ素エチレン性ポリマーからなり、樹脂として部位Aおよび部位Bの両方を含み、かつ汎用溶剤に可溶である樹脂からなる硬化性表面改質剤であって、各種の塗膜、特に反射防止膜の表面性状、特に表面滑り性(低摩擦係数化)、表面硬度、耐磨耗性、耐薬品性、汚染拭き取り性などを改善し、本来の塗膜の表面に改質された表面性状を付与することができる硬化性表面改質剤を提供する。

Description

明 細 書
硬化性表面改質剤およびそれを用いた硬化性表面改質用組成物 技術分野
[0001] 本発明は、各種の塗膜の表面性状、特に表面滑り性 (低摩擦係数化)、表面硬度、 耐磨耗性、耐薬品性、汚染拭き取り性、撥水性、撥油性、耐溶剤性などを改善し、本 来の塗膜の表面に改質された表面性状を付与する発明に関する。
[0002] 特に反射防止膜の透明性を損なうことなく表面滑り性を改善し、長期に亘つて反射 防止能を維持させることができる発明に関する。
^景技術
[0003] テレビや OA機器のモニターなどの画像表示装置にぉレ、て、光の映り込みを防止ま たは軽減するために、画像表示装置の画面上に反射防止膜を設けることが行なわれ ている(たとえば国際特許公開 WO 02/18457)。
[0004] しかし、反射防止膜は透明性を確保するためにも 0. 03-0. 5 / mと極めて薄いも のであり、また表面の滑り性も良好ではなく(摩擦係数が高い)、表面の汚れなどを繰 り返し拭き取ることにより傷が付いたり、剥落したりする場合もある。
[0005] 一般に、表面の滑り性を改良する方法として、低分子量のシリコーンオイルやフッ素 オイルなどの液状の撥水撥油剤を塗布または内添することが知られているが、効果 に持続性がない。
[0006] また、ポリマーの形態で適用し、表面の滑り性を改善する方法も提案されている(た とえば特開平 10—287719号公報)。特開平 10—287719号公報に提案されている 方法によれば、式:
RfO (CF CF O) (CF O) CF -A _T
2 2 m 2 n 2 q p
(式中、 Rfは炭素数 1一 3のパーフルォロアルキル基、 Aは— CF—末端に結合してい
2
る架橋基(アルキレン基やォキシアルキレン基などの連結基であって、架橋性の官能 基ではない)、 Tは反応性官能基)で示されるパーフルォロポリエーテル構造を有す るフッ素変性剤と水素含有単量体または重合体 (たとえばポリウレタンやポリアクリレ ートなど)とを重縮合、重付加またはグラフト反応させて得られるフッ素化変性水素含 有重合体をガラスなどの基材に塗布し uv架橋やパーオキサイド架橋することにより、 表面の摩擦係数を低減し、耐磨耗性を付与でき、表面硬度を高め、対水接触角を高 め、耐薬品性を向上できるとされている。
[0007] しかし、特開平 10—287719号公報に記載のフッ素化変性水素含有重合体は、薄 膜を作製する際にフッ素化変性剤と水素含有重合体を基材表面で反応させて合成 されている。さらにこのフッ素化変性剤、特に防汚性や滑り性に優れる長鎖の高フッ 素化フルォロポリエーテル構造を有するフッ素変性剤は含フッ素溶剤には溶解する が汎用溶剤への溶解性に乏しぐ合成および塗工の過程において含フッ素溶剤が 必要であるため、コストがかかるうえ、環境への負荷も大きい。
[0008] 本発明者らは、表面の滑り性を改善し、かつ非フッ素系の汎用溶剤に可溶で、薄 膜形成の容易な表面改質剤を開発するべく鋭意研究を重ね、本発明を完成するに 至った。
発明の開示
[0009] すなわち本発明は、部位 Aおよび部位 Bを同じ力または異なる側鎖の少なくとも一 部分に有する含フッ素エチレン性ポリマー(IAB)、または部位 Aを側鎖の少なくとも 一部分に有する含フッ素エチレン性ポリマー(IA)および部位 Bを側鎖の少なくとも一 部分に有する含フッ素エチレン性ポリマー(IB)からなる汎用溶剤可溶性の硬化性含 フッ素樹脂 (I)であって、
該部位 Aが式(1):
[0010] [化 1]
R f - O— ( C X ^ C F ^ F ^ -^ C F C F 2 0^~ γ
■^C F , C F ? 0 - n 4
[0011] (式中、 nl、 n2、 n3、 n4は同じかまたは異なり 0または 1以上の整数で、力つ nl +n2
+n3 + n4が 7— 40の整数; X1は同じかまたは異なり H、 Fまたは Cl ;Rfは炭素数 1一 10の含フッ素アルキル基)で示されるポリフルォロポリエーテル鎖 Pが末端に 1個また は 2個以上結合してなる部位であり、
該部位 Bが自己架橋性官能基 Yが末端に 1個または 2個以上結合してなる部位であ り、かつ
該樹脂(I)を構成する含フッ素エチレン性ポリマーから部位 Aおよび部位 Bを除レ、た エチレン性ポリマー部位 M力 フッ素原子を含まなレ、かまたはフッ素含有量が 10重 量%以下で水素原子の一部がフッ素原子に置換されているエチレン性ポリマー部位 である
硬化性含フッ素樹脂 (I)からなる硬化性表面改質剤に関する (第 1の発明)。
[0012] かかる汎用溶剤可溶性の硬化性含フッ素樹脂 (I)のフッ素含有量は、 0. 1重量% 以上で 35重量%以下であることが、表面の滑り性の向上と汎用溶剤への溶解性をバ ランスよく達成できることから好ましい。
[0013] 樹脂(I)を構成する含フッ素エチレン性ポリマーにおいて、部位 Aおよび部位 Bを除 いたエチレン性ポリマー部位 Mの構造単位は、式(2):
[0014] [化 2]
—— C H 2— ——
O
[0015] または式(3) :
[0016] [化 3]
し =リ
[0017] (式中、 X2は Hまたは結合手; X3は H、 Fまたは CH )で示される構造単位であること
3
力 汎用溶剤への溶解性が優れる点で好ましレ、。
[0018] また、部位 Bが有する自己架橋性官能基 Yとしては、 [0019] [化 4]
C X 4 4 = C H ? 、 一 CぺX 5—\ C H 9および
Figure imgf000005_0001
[0020] (X4は H、 CHまたは F ;X5は Hまたは CH )
3 3
などの 1種が、架橋による硬化反応性が良好である点で好ましくあげられる。
[0021] この第 1の発明の表面改質剤は、単独でまたは他の成分、添加剤を配合して表面 滑り性の改善に用いることができる。
[0022] また本発明によれば、この第 1の発明の硬化性表面改質剤を基材上、好ましくは反 射防止膜上に塗装したのち硬化させる基材 (反射防止膜で被覆された基材も含む) の表面改質方法を提供することができる (第 2の発明)。
[0023] さらに本発明によれば、反射防止膜および該反射防止膜直上に形成された第 1の 発明の硬化性表面改質剤の連続または不連続の硬化膜からなる表面改質された多 層構造の反射防止膜を提供することができる (第 3の発明)。
[0024] 本発明はまた、(a)前記汎用溶剤可溶性の硬化性含フッ素樹脂(I)、および
(b)活性エネルギー線硬化開始剤
力 なる活性エネルギー線硬化性の表面改質用組成物に関する(第 4の発明)。
[0025] さらにまた本発明は、(a)前記汎用溶剤可溶性の硬化性含フッ素樹脂 (I)、
(b)活性エネルギー線硬化開始剤、および
(c)ケトン系溶剤、酢酸エステル系溶剤およびアルコール系溶剤よりなる群から選ば れる少なくとも 1種の汎用溶剤または該汎用溶剤を含む混合溶剤
力 なる活性エネルギー線架橋性の表面改質用組成物にも関する(第 5の発明)。
[0026] これらの表面改質用組成物は、表面滑り性の改善に有用である。
[0027] また、この第 4または第 5の発明の活性エネルギー線架橋性表面改質用組成物を 基材上、好ましくは反射防止膜上に塗装したのち活性エネルギー線を照射して硬化 させることにより、基材 (反射防止膜)の表面特性を改質することができる。
[0028] 本発明はさらに、(d)部位 Aおよび部位 Bを同じ力または異なる側鎖の少なくとも一 部分に有する含フッ素エチレン性ポリマー(IAB)、または部位 Aを側鎖の少なくとも 一部分に有する含フッ素エチレン性ポリマー(IA)からなる汎用溶剤可溶性でフッ素 含有量が 1重量%以上で 35重量%以下である含フッ素樹脂(Π)であって、 該部位 Aが式(1):
[0029] [化 5] l^, f し ( 2しト 2し 1 2 ^-^ / 1 1 v™v X 2 ^-^ ^ 2
■^CF,CF?0 - ■ CF?0-- n 4
[0030] (式中、 nl、 n2、 n3、 n4は同じかまたは異なり 0または 1以上の整数で、力つ nl+n2
+n3 + n4が 7— 40の整数; X1は同じかまたは異なり H、 Fまたは Cl;Rfは炭素数 1一 10の含フッ素アルキル基)で示されるポリフルォロポリエーテル鎖 Pが末端に 1個また は 2個以上結合してなる部位であり、
該樹脂(Π)を構成する含フッ素エチレン性ポリマーから部位 Aおよび部位 Bを除いた ポリマー部位 MAがフッ素原子を含まなレ、かまたはフッ素含有量が 10重量%以下で 水素原子の一部がフッ素原子に置換されているエチレン性ポリマー部位である 含フッ素樹脂 (11)、および
(e)反射防止膜材料
力 なる反射防止膜形成用組成物を基材に塗布して得られる反射防止膜に関する( 第 6の発明)。
[0031] また本発明は、(1)式 (4):
-(Ν)-(Ο- (4)
[式中、構造単位 Νは式 (Ν): [0032] [化 6] 一 (CX15X16-CX17) ― (N)
(CX18X19)a(C = 0)b(0)c-R f 1 [0033] (式中、 X15および X16は同じかまたは異なり、 Hまたは F;X17は H、 F、 CHまたは CF;
X18および X19は同じかまたは異なり、 H、 Fまたは CF; Rf1は炭素数 1一 40の含フッ素 アルキル基または炭素数 2— 100のエーテル結合を有する含フッ素アルキル基に Y1 または Y2( は末端にエチレン性炭素-炭素二重結合を有する炭素数 2— 10の 1価 の有機基、 Y2は水素原子がフッ素原子に置換されていてもよい架橋性環状エーテル 構造を 1一 5個有する炭素数 2— 100の 1価の有機基)が 1一 3個結合している有機 基; aは 0— 3の整数; bおよび cは同じかまたは異なり、 0または 1)で示される含フッ素 エチレン性単量体に由来する構造単位、構造単位 Cは構造単位 Nを与える含フッ素 エチレン性単量体と共重合可能な単量体に由来する構造単位である]で示され、構 造単位 Nを 0.1— 100モル%および構造単位 Cを 0— 99.9モル%含む数平均分子 量 500— 1000000の含フッ素ポリマー (IIINC)を 100モル0/。まで含む硬化性含フッ 素樹脂 (ΠΙ)、および
(2)前記汎用溶剤可溶性の含フッ素樹脂 (Π)
力 なる硬化性樹脂組成物にも関する(第 7の発明)。
[0034] さらに本発明は、(i)前記第 6の発明で使用する反射防止膜材料 (e)または前記第
7の発明で使用する硬化性含フッ素樹脂 (111)、
(ii)前記第 6の発明で使用する汎用溶剤可溶性の含フッ素樹脂 (Π)、および
(iii)溶剤
からなる液状組成物を用いて塗布、乾燥し、膜を形成したのち硬化させる硬化物、特 に反射防止膜の形成方法にも関する(第 8の発明)。
[0035] なお、本発明において、「汎用溶剤に可溶性」とは、フッ素原子を含有しない有機 溶剤の少なくとも 1つに可溶である( 25°Cにて濃度 10重量%以上溶解する)性質を いう。フッ素原子を有しない有機溶剤としては、たとえばケトン系溶剤、エステル系溶 剤、アルコール系溶剤、プロピレングリコール系溶剤、セロソルブ系溶剤、芳香族炭 化水素類、脂肪族炭化水素類、エーテル系溶剤、ァセタール系溶剤、テレビン油、こ れらの同種または異種の混合溶剤、またはこれらの溶剤を含む非フッ素系混合溶剤 などがあげられる。より具体的な代表例としては、メチルイソブチルケトン (MIBK)、メ チルェチルケトン(MEK)、酢酸プロピル、イソプロピルアルコール(IPA)、 MIBKと ジォキサンの lZl (重量比)混合溶剤が例示できる。
発明を実施するための最良の形態
[0036] まず、第 1一 5の発明で使用する汎用溶剤可溶性の硬化性含フッ素樹脂(I)につい て説明する。
[0037] 樹脂(I)は、部位 Aおよび/または部位 Bを側鎖の少なくとも一部分に有する含フッ 素エチレン性ポリマーからなる樹脂であって、樹脂として部位 Aおよび部位 Bの両方 を含んでいること、および汎用溶剤に可溶であることを特徴とする。
[0038] 樹脂(I)が含んでいてもよい含フッ素エチレン性ポリマーとしては、部位 Aおよび部 位 Bを同じ力または異なる側鎖の少なくとも一部分に有する含フッ素エチレン性ポリ マー(IAB)、部位 Aを側鎖の少なくとも一部分に有する含フッ素エチレン性ポリマー( IA)、部位 Bを側鎖の少なくとも一部分に有する含フッ素エチレン性ポリマー(IB)であ る。
[0039] 樹脂(I)はポリマー (IAB)単独で構成されていてもょレ、が、さらにポリマー(IAB)に加 えてポリマー (IA)および/またはポリマー(IB)を含んでレ、てもよレ、。ただしポリマー (IAB)が存在しなレ、場合は、ポリマー(IA)とポリマー(IB)が共存していることが必要で ある。また、樹脂(I)は、上記の要件を満たす限り、ポリマー (IAB)、(IA)および (IB)以外 のポリマー MPを含んでいてもよレ、。
[0040] そして特定のエチレン性ポリマー部位 M、特定の部位 Aおよび部位 Bを有する含フ ッ素エチレン性ポリマーからなる硬化性含フッ素樹脂(I)は、全体として、上記の特性 のほか、耐薬品性、透明性、低屈折率を有する塗膜を与える。また、含フッ素ェチレ ン性ポリマーは、エチレン性ポリマー部位 Mに、 目的に応じて要求される特性などを 付与するために、部位 Aおよび部位 Bの他に、任意の官能基を有する部位を有する 側鎖を有していてもよい。 [0041] つぎにポリマー(IAB)、ポリマー(IA)、ポリマー(IB)、さらにポリマー MPについて説 明する。
[0042] 自己架橋性官能基含有含フッ素エチレン性ポリマー(IAB)は、部位 Aおよび部位 B を側鎖の少なくとも一部分に有し、かつポリマー(IAB)力 部位 Aと部位 Bを除いた部 位であるエチレン性ポリマー部位 Mを有するポリマーである。
[0043] 本発明で用いる自己架橋性官能基含有含フッ素エチレン性ポリマー(IAB)におい て、エチレン性ポリマー部位 Mは汎用溶剤への溶解性を高め、かつ良好な塗工'成 膜性を付与し、さらに改質すべき表面に形成される塗膜に靭性をも付与する。部位 A は改質すべき表面に滑り性を発現させ、さらに撥水撥油性、防汚性をも付与する構 造である。部位 Bはその構造中に有する自己架橋性官能基が未反応の状態におい てはポリマー(IAB)、さらには樹脂(I)の物性に大きな影響を与えるものではないが、 架橋反応後には、汎用溶剤を含め溶剤に不溶化させ、改質すべき表面に形成され る塗膜が変形したり傷ついたりしない高い硬度を与え、さらに耐擦傷性ゃ耐磨耗性を 与える。
[0044] エチレン性ポリマー部位 Mは含フッ素エチレン性ポリマー(IAB)に汎用溶剤への溶 解性を高め、かつ良好な塗工 ·成膜性を付与し、さらに改質すべき表面に形成される 塗膜に靭性をも付与する働きをもち、エチレン性の単量体を重合することによって得 られる。重合するエチレン性の単量体としては、部位 Aおよび Bに相当する部分以外 の部分 (エチレン性ポリマー部位 Mに相当)はフッ素原子を含んでいないか、または フッ素含有量が 10重量%以下である単量体を使用し、重合することにより、骨格構 造にフッ素原子を有しないまたはフッ素含有量が 10重量%以下であるエチレン性ポ リマー部位 Mを形成する。
[0045] エチレン性ポリマー部位 Mの好ましい形態の第 1としては、構造単位として式(2): [0046] [化 7] C H C H
O
[0047] の構造単位を有するものがあげられる。
[0048] なかでも、
[0049] [化 8]
Figure imgf000010_0001
または
Figure imgf000010_0002
[0050] (R1— R3は同じ力または異なり、水素原子、カルボキシノレ基または炭素数 1一 10の有 機基)の構造を有するものは、汎用溶剤への溶解性や、ポリマー同士または他の成 分との相溶性が良好であり、さらに塗工性および成膜性が良好な点から好ましい。
[0051] R1の好ましレ、具体例としては、 H CH CH CH CH CO〇H CH C H
-CH CH CN
[0052] [化 9]
Figure imgf000010_0003
[0053] _ (CH CH〇)nH (nは 1一 4の整数)
などがあげられる。 [0054] R2の好ましレ、具体例としては、— H、— CH 、— CH CH 、— CH CH CH 、— CH CI
3 2 3 2 2 3 2
、一 C H 、一 NHCHなどがあげられる。
6 5 3
[0055] R3の好 Cましレ、具体例としては、一 CH 、一 C H 、一 CH〇H、一 C〇〇H、一 CH Cl、 -
3 6 5 2 2
C H OHな Tど
6 4 Xがあげられる。
[0056] エチレン性ポリマー部位 Mの形態として好ましレ、第 2としては、構造単位として式(3
) 3
[0057] [化 10]
し = o
[0058] (式中、 X2は Hまたは結合手; X3は H、 Fまたは CH )で示される構造単位を有するも
3
のがあげられる c
[0059] なかでも、
[0060] [化 11]
C H / ―レ
Figure imgf000012_0001
X3
i
-(CHX2-C
し™-
I
NH-R5
i
■ CHX2
し = o 、
i
Re
Figure imgf000012_0002
[0061] (R4— R6は同じ力、または異なり、水素原子、水酸基または炭素数 1一 10の有機基)の 構造を有するものは、汎用溶剤への溶解性や、ポリマー同士または他の成分との相 溶性が良好であり、さらに塗工性および成膜性が良好な点から好ましい。
[0062] R4の好ましい具体例としては、 _H、 -CH、 -CH CH、 -(CH ) CH、 -(CH ) C
3 2 3 2 3 3 2 5
H、 - (CH ) OH、
3 2 2 [0063] [化 12]
CH-" CH2~OH
Figure imgf000013_0001
CH3
[0064] などがあげられる。
[0065] R5の好ましレ、具体例としては、 _H、 -CH OH、 _〇Hなどがあげられる。
[0066] R6の好ましい具体例としては、 -CH、 -CH CHなどがあげられる。
[0067] その他、上記のもの以外にも、 _〇H、 _C〇OH、 _NH、 _COCl、 _NC〇などを有 するエチレン性ポリマーは、ポリマー部位 Mとして好ましぐなかでもビニルアミン系構 造単位、ビュルイソシァネート系構造単位、イソプロぺニルイソシァネート系構造単位 をもつものが好ましい。
[0068] エチレン性ポリマー部位 Mは上記の構造単位を含むものである力 S、共単量体に由 来する他の構造単位を含んでレ、てもよレ、。
[0069] 他の任意の構造単位としては、たとえば
[0070] [化 13]
— CH2— CH2
— CH2— CH- "Cli *™- CH- " し il2 yi
Cl CN CH3
Figure imgf000013_0002
[0071] (R7は水素原子、水酸基、カルボキシノレ基または炭素数 1一 10の有機基)などがあげ られる。
[0072] これらの他の構造単位は要求される特性に応じて選べばよぐ含フッ素ポリマー(I AB)、さらには硬化性含フッ素樹脂(I)にさらなる靭性、硬度、基材への密着性、塗工 性および特定の溶剤に対する溶解性などを与える目的で使用される。
[0073] なかでもエチレン性ポリマー部位 Mは、その側鎖にエステル基、環状ァセタール構 造または水酸基のいずれか、または複数種を含んでいるもの力 汎用溶剤への溶解 性や、塗工性、成膜性などが良好な点から好ましい。特に環状ァセタール構造と水 酸基の組合せ、またはエステル基と〇H基の組み合せを有するものは特に汎用溶剤 への溶解性が優れてレ、るため好ましレ、。
[0074] 具体的には
[0075] [化 14]
CH2CH — CHCH2-CH 3CH2
-- C H 2
Figure imgf000014_0001
4CH2CH~) -CH2CH- ~-
I _ I
C = O = O
o o
CH2
OH
[0076] (R2— R4は前記と同じ)
などがあげられ、その水酸基を有する構造単位が 0— 80モル%、さらには 1一 70モ ル%、特に 5— 60モル%であるものが汎用溶剤への溶解性に優れているため好まし レ、。
[0077] エチレン性ポリマー部位 Mは汎用溶剤への溶解性の点からフッ素原子を含まない ものが好ましい。しかし、特定の他のフッ素樹脂への相溶性の向上や、屈折率を下げ るなどの目的で、水素原子の一部がフッ素原子により置換されていてもよぐその場 合、溶解性が低下しないようにエチレン性ポリマー部位 Mのフッ素含有量は 10重量 %以下、さらには 5重量%以下であることが好ましい。
[0078] 部位 Aは改質すべき表面に滑り性を発現させ、さらに撥水撥油性、防汚性をも付与 する構造であり、前記式(1)で示されるポリフルォロポリエーテル鎖 Pを末端に 1個ま たは 2個以上有する部位である。
[0079] ポリフルォロポリエーテル鎖 Pは鎖中に、
-CF CF CF O—、
-CHFCF CF〇_、
2 2
-CHC1CF CF O—、
-CH CF CF O—、
-CF (CF ) CF〇一、
-CF CF O—、
-CF O- のフルォロエーテル単位のいずれ力 1種または 2種類以上を合計 7個以上必須成分 として有している。
[0080] 式(1)の含フッ素ポリエーテル鎖 Pは上記のフルォロエーテル単位を 7個以上含ん でいることが重要であり、それによつて表面滑り性、撥水撥油性、防汚性を付与でき る。
[0081] なかでも、上記のフルォロエーテル単位を 10個以上、より好ましくは 20個以上有す ることが好ましぐそれによつて、より優れた滑り性を発現し、さらに、防汚性、特に油 成分を含む汚れに対する除去性を改善できる点で好ましい。
[0082] ポリフルォロポリエーテル鎖 P中のフルォロエーテル単位力 S40個を超える場合は、 汎用溶剤への溶解性が低下し、透明性が必要な用途においては、その透明性が低 下する点で望ましくない。好ましくは 35個以下、さらには 30個以下である。
[0083] 特に好ましいフルォロエーテル単位の連鎖は、 _CF CF CF O—を単独で 7— 40 個有するものであり、特に滑り性および防汚性の点で顕著に表面を改質できる。 [0084] 式(1)において、 Rfは炭素数 1一 10の含フッ素アルキル基である。炭素数は滑り性 が良好である点から 5以下、さらには 3以下である。
[0085] Rfの具体例としては、たとえば
[0086] [化 15]
CF3
I CH2 、 F (CF2CF CH 、
CF3- CH2CF2^CH2^
CF3
F-CF2CF2-H-CF2CFHr CH2H、
F-CF2CF2f~r-(CH2CF2)- r CH2H、
CF3 CF3
F-iCF^ C- 、 CF3~CH2CF2)~r CF2CFH CH2
CF 3
[0087] (1は 1一 10の整数; mは 1一 10の整数; nは 0— 5の整数。ただし、合計の炭素数は 1
0を超えなレ、)などが例示できる。
[0088] 部位 Aはポリフルォロポリエーテル鎖 Pを 2個以上含んでいてもよレ、。し力、し、あまり 多すぎると汎用溶剤への溶解性が低下するため、好ましくは 1一 3個、特に 1個である
[0089] 部位 Aは、好ましくは式( 1 a):
(P)一 (R8) -M (la)
(式中、 Pは式(1)のポリフルォロポリエーテル鎖; R8は 2— 4価の有機基; Mはェチレ ン性ポリマー部位 M;pは 1一 3の整数、好ましくは l;qは 0または 1)で示される(P)—
(R8) -の状態でエチレン性ポリマー部位 Mに結合して!/、る。
[0090] R8はポリフルォロポリエーテル鎖 Pとエチレン性ポリマー部位 Mとを連結する 2— 4 価の有機基であればよぐ好ましくは炭素数 1一 20のへテロ原子または塩素原子を 含んでレ、てもよレ、2— 4価の炭化水素基が例示できる。 (P) _(R8)—の好ましい具体例としては、たとえば
[0091] [化 16] し ~ p C F ) '-- -― ("し H 、
CF3
Figure imgf000017_0001
CH.
Figure imgf000017_0002
CF3
O
II
P - C F 3^T- C F ^C H 2 TO - C (CH2 、 CF3
Figure imgf000017_0003
P4C F 2 ~T~ C F HC H C = O CF3
[0092] (式中、 1、 m、 n、 tはそれぞれ同じかまたは異なり 0— 5の整数)
などがあげられる。
[0093] 部位 Bは、その構造中に有する自己架橋性官能基 Yが未反応の状態においては 硬化性含フッ素樹脂(I)全体の物性に大きな影響を与えるものではないが、架橋反 応後には、汎用溶剤を含め溶剤に不溶化させ、改質すべき表面に形成される塗膜 が変形したり傷ついたりしない高い硬度を与え、さらに耐擦傷性ゃ耐磨耗性を与える 働きを有する。 [0094] 自己架橋性官能基とは、同じ官能基同士で架橋反応を生起し得る官能基のことを レ、い、官能基を機能 ·性質の面から特定するものである。
[0095] 非自己架橋性官能基の場合は、硬化 (架橋)反応を進めるためには硬化剤が必要 であり、その場合、比較的低分子量の未反応硬化剤が塗膜表面に偏析しゃすぐ表 面改質硬化が低下してしまうことがある。その点、自己架橋性官能基は硬化反応に 硬化剤を必要としないので、表面改質効果を充分に発揮できる。
[0096] ただし本発明においては、 1つの自己架橋性官能基が他種の自己架橋性官能基 または非自己架橋性官能基と架橋反応を起こす場合を排除するものではなぐまた 架橋剤 (硬化剤)を介しての架橋反応を排除するものでもなレ、。
[0097] 自己架橋性官能基 Yとしては、たとえばラジカル重合反応性の自己架橋性官能基 、カチオン重合反応性の自己架橋性官能基および光のみで架橋する自己架橋性官 能基などがあげられる。
[0098] ラジカル重合反応性の自己架橋性官能基としては、たとえばラジカル重合反応性 C =Cなど;カチオン重合反応性の自己架橋性官能基としてはたとえばカチオン重合 反応性の c=c、エポキシ基、ォキセタニル基、その他アルコキシシリル基、シラノー ル基などの架橋性ケィ素化合物など:光のみで架橋する自己架橋性官能基としては たとえばビニルけい皮酸などの光二量ィ匕性官能基などがあげられる。本発明におけ る自己架橋性官能基 Yとして好ましいものは、ラジカル重合反応性の c = c、ェポキ シ基であり、なかでも
[0099] [化 17]
C X4 = C H7 、 一
Figure imgf000018_0001
[0100] (Xは H、 CHまたは F ;Xは Hまたは CH )
3 3
が好ましくあげられる。
[0101] 自己架橋性官能基 Yは、部位 Bの末端に結合していればよぐまた部位 Bとしてェ チレン性ポリマー部位 Mに直接結合していてもよいし、たとえば 2— 4価の有機基を 介してエチレン性ポリマー部位 Mと結合していてもよい。たとえば部位 Bは、式(lb): (Y) -(R9) -M (lb)
(式中、 Yは自己架橋性官能基; R9は 2— 4価の有機基; Mはエチレン性ポリマー部 位 M;rは 1一 3の整数、好ましくは l;sは 0または 1)で示される(Y) _(R9)—の状態で エチレン性ポリマー部位 Mに結合している。
[0102] R9は自己架橋性官能基 Yとエチレン性ポリマー部位 Mとを連結する 2— 4価の有機 基であればよぐ好ましくは炭素数 1一 20のへテロ原子または塩素原子を含んでいて もよい 2 4価の炭化水素基である。好ましい (Y) _(R9)—としては、たとえば
[0103] [化 18]
CH3
-L-C H (- C H -4 Y - -C H ^ r H— ^ H — Y
Υ
し Η ™ Ο " し Η ' ~ Ο 一
Figure imgf000019_0001
ο
R C一 Υ ο
Figure imgf000019_0002
[0104] (R11は炭素数 1一 20の 2価の炭化水素基、 mは 0— 10の整数、 nは 0— 5の整数、 s は 0または 1)
などがあげられる。
[0105] なかでも架橋反応性が高いことから、 R9と Yとの組合せとして、たとえば [0106] [化 19]
Figure imgf000020_0001
CH. O
H CH2½r-(CH -iN-C-CX = CH2 [0107] (X6は H、Fまたは CH; mは 0 10の整数; nは 0— 5の整数)
3
などが好ましく例示できる。
[0108] R9と Yのより具体的な組合せとしては、
[0109] [化 20]
— — C Xs
Figure imgf000020_0002
o o
— O— CH2— NH— C— CXS = CH2、 — CH,CH,OC CXe = CH2
Figure imgf000020_0003
[0110] (Xは H、 CHまたは F)
3
が好ましくあげられる。
[0111] なお、 自己架橋性官能基含有含フッ素ポリマー (IAB)は、 自己架橋性官能基 Yに加 えて、エチレン性ポリマー部位 Mの説明で述べたようにエチレン性ポリマー部位 Mに 任意に他の官能基を有していてもよいし、さらに部位 Aおよび/または部位 Bにも、 任意に他の官能基を有していてもよい。他の官能基としては、たとえば水酸基、カル ボキシル基、二トリル基、アミノ基、スルホン酸基、ァノレキルアミノ基、スルホン酸エス テル基、イソシァネート基、カルボン酸無水物基などがあげられる。
[0112] 自己架橋性官能基含有含フッ素ポリマー (IAB)において、エチレン性ポリマー部位 Mと部位 Aと部位 Bの組合せは、たとえば溶剤溶解性、滑り性、硬化性、保存安定性 などの特性のバランスを考慮して選択すればよい。
[0113] 好ましい組合せとしては、限定的ではないが、たとえばつぎのものがあげられる。
(組合せ 1)
[0114] [化 21]
M:
Figure imgf000021_0001
( I +m+ n + t = 100モル
A
CF3CF2CF20- CF2CF2CF20-pCF2CF2C-0-
、p = 7〜40 )
B
O
-' 11 = C X ― c― o
(X6 = H、 F、 CH J
[0115] (組合せ 2) [0116] [化 22] M:
Figure imgf000022_0001
( 1 +m+n+ t = 100モル%)
O
CF3CF2CF20- CF2CF2CF20 -pCF2CF2C-0-
(p = 7〜40)
B
O
C H - C X 6 _ c _Q_
(X6 = H, F、 CHJ
[0117] (組合せ 3)
[0118] [化 23]
M:
Figure imgf000023_0001
CH.
( 1 +m+n+ t = 100モル%)
A:
O
CF3CF2CF20- CF2CF2CF20 -pCF2CF2C™0-
(p = 7〜40)
B
O
CH? = CX6-C-0~
(X6 = H、 F、 CH J
[0119] (組合せ 4)
[0120] [化 24]
M:
Figure imgf000024_0001
O
CH
(p + Q+r = 100モル%)
A:
O
C F3CF2CF20 CF2CF2CF20-pCF2C F2C-0-
(p = 7〜40)
B:
O
CH2 = CX6— COCH2CH20— C
(X6 = H、 F、 CH,)
[0121] (組合せ 5)
[0122] [化 25]
Figure imgf000025_0001
CH.
(p + q+ r = l 00モル %)
A:
O
CF3CF2CF20 C F2CF2CF20 "pCF2CF2C~O-
(p = 7〜40)
B
O
O
C H 9 O ~ C -
[0123] 部位 Aおよび Bをエチレン性ポリマー部位 Mに導入する方法(側鎖部分の少なくと も一部が部位 Aおよび Bで置換されてレ、る含フッ素ポリマー (IAB)を製造する方法)と しては、たとえば(1)エチレン性ポリマー部位 Mを含むエチレン性ポリマー MPを形成 してから、このエチレン性ポリマー MPに部位 Aを導入し、ついで部位 Bを導入する方 法、(2)エチレン性ポリマー部位 Mを含むエチレン性ポリマー MPを形成してから、こ のエチレン性ポリマー MPに部位 Bを導入し、ついで部位 Aを導入する方法、(3)ェ チレン性ポリマー部位 Mを含むエチレン性ポリマー MPを形成してから、このエチレン 性ポリマー MPに部位 Aと部位 Bを同時に導入する方法、(4)部位 Aを有するェチレ ン性単量体と部位 Bを有するエチレン性単量体を共重合する方法などがあげられる。
[0124] エチレン性ポリマー MPを形成してから、このエチレン性ポリマー MPに部位 Aおよ び Bを導入する方法(1)一(3) (高分子反応法)としては、エチレン性ポリマー MPに 反応性官能基 T1および反応性官能基 T2を導入しておき、力かる反応性官能基 と 反応し得る反応性官能基 S1を有する部位 A導入用の化合物 (A— a):
(P)一 (R8) -S1 (A-a)
(式中、 P、 R8、 pおよび qは式(la)と同じ。 S1はエチレン性ポリマー MPの反応性官 能基 τ1と反応し得る反応性官能基)および反応性官能基 τ2と反応し得る反応性官能 基 S2を有する部位 Β導入用の化合物(Β— b):
(Y)-(R9) -S2 (B-b)
r s
(式中、 Y、 R9、 rおよび sは式(lb)と同じ。 S2はエチレン性ポリマー MPの反応性官能 基 T2と反応し得る反応性官能基)を用いて、エチレン性ポリマー MPの反応性官能基 T1および T2と反応させて導入する方法が、部位の形成が容易である点で有利である
[0125] 反応性官能基 T1および S1と T2および S2は互いに反応し得る官能基であればよぐ 同種でも異種でもよい。また T1と T2、 S1と S2も同種でも異種でもよい。
[0126] 部位 Αおよび部位 Βの導入用の反応性官能基の具体例としては、たとえば
[0127] [化 26]
-OH 、 -COOH 、 — NH2 、 -COX7 、 一 NCO 、 — S02C 1 、
O
-CH2C 1 、 - CH2B r 、 CH2 I 、 - CHO 、 CH^~^CH2 、 一 CH=CH2
[0128] (X7は F、 CIまたは Br)
で示される官能基があげられ、これらの中から互いに反応し得るものを選択すればよ レ、。
[0129] 反応性官能基 T T1および T2)と S (S1および S2)の好ましい組合せとしては、たとえ ば
T=_OHのとき S=_NC〇、 _C〇F、 _CO〇H、 _CH Cl、 _CH Br、 _NH、 _CH
2 2 2 2
I、 -CH = CH、 -SO CIまたは
2 2
[0130] [化 27]
0、
CCHH し h
[0131] ; τ=
[0132] [化 28] o
CH
[0133] のとき S=_OH、一 COOHまたは _NH ;
2
T=-NHのとき S=_S〇 Cl、一 NCOまたは一 CH〇;
2 2
T=_COClのとき S=_〇Hまたは _NH;
2
T=-CH CIのとき S=_C〇OHまたは一〇H
2
などがあげられる。
[0134] エチレン性ポリマー MPの T1が—〇Hである場合の、部位 A導入用の化合物(A— a) の具体例としては、たとえば
[0135] [化 29]
CF3CF2CF20-CF2CF2CF20 -nCF2CF2COF
O
CF3CF2CF20- CF2CF2CF2OHCF2CF2CH20-CH2-CH-CH2
[0136] (n=7 40)
などがあげられ、なかでも
[0137] [化 30]
CF3CF2CF20- CF2CF2CF2OHCF2CF2COF
[0138] (n=7— 40)
力 ポリマー反応の反応性が良好な点で好ましい。
[0139] また、エチレン性ポリマー MPの T1が— COX7である場合の、部位 A導入用の化合 物(A— a)の具体例としては、たとえば
[0140] [化 31]
CF3CF2CF2O^CF2CF2CF2OKCF2CF2CH2OH 、
CF3CF2CF20-CF2CF2CF2OKCF2CF2CH2OCH2CH2NH2
CF3CF2CF20-CF2CF2CF20-nCF2CF2CH2OCH2CH2OH
[0141] (n=7— 40)
などがあげられ、なかでも
[0142] [化 32]
CF3CF2CF20- CF2CF2CF2OHCF2CF2CH2OH
[0143] (n=7 40)
力 ポリマー反応の反応性が良好な点で好ましい。
[0144] エチレン性ポリマー MPの T2が _〇Hである場合の、部位 B導入用の化合物(B_b) の具体例としては、たとえば
[0145] [化 33]
CH2 = CF-COF 、 CH2 = CF-COC 1 、 CH2 = C— COC 1 、
0 CH3
CH. = CH-COC 1 、 CHU^^CH— CH,C 1
[0146] などがあげられ、なかでも [0147] [化 34]
O
CH2 = CF— COF CH2^~^CH CH2C 1
[0148] 1 ポリマー反応の反応性および硬化反応性が良好な点で好ましい。
[0149] また、エチレン性ポリマー MPの T2がー COC1である場合の、部位 B導入用の化合物
(B-b)の具体例としては、たとえば
[0150] [化 35]
CH2 = CHCONH2 CH2 = CX6COOCH2CH2OH
CH2 = CHCONHCH2OH CH2 = CX6COOCHCH2OH CH2 = CX6COOCH2 2C丫H"CH33 CH 2
Figure imgf000029_0001
CH - CH, 2 -OH
OH
[0151] (X6=H F CH )
3
などがあげられ、なかでも
[0152] [化 36]
O
CH2=CHCOOCH2CH,OH CH CH-CH3-OH
CH2 = CCOOCHaCH2OH
[0153] 力 硬化反応性が良好な点で好ましい。
[0154] 部位 Aおよび Bの導入のための高分子反応は、たとえばピリジン、トリェチルァミン などのァミンの存在下、または NaOHや KOHなどの強塩基の存在下に行なうことが できる。
[0155] 反応は溶媒が存在しても存在しなくても可能であるが、溶媒を用いた方がより均質 な生成物が得られるため好ましぐ溶媒を用いる場合、溶媒の種類は特に限定されな いが、フッ素を含有しない溶媒が好ましい。このとき反応性が不十分である場合には 、たとえば H_(CF CF ) -CH OH (式中、 aは 1一 3の整数)、 CF _(CF ) _CH O
2 2 a 2 3 2 b 2
H (式中、 bは 1一 5の整数)、 CH(CF )〇Hなどの含フッ素アルコール; CH CC1 F
3 2 3 2
、 CF CF CHC1、 CC1F CF CHC1Fなどのフルォロアルカン; 1, 3_ビストリフルォ
3 2 2 2 2
ロメチルベンゼン、ベンゾトリフルオライドといったフッ素系溶剤を全溶剤に対して 10 一 50%の割合で添カ卩すると反応性を向上させることができるため好ましい。
[0156] エチレン性ポリマー部位 Mの形成と同時に部位 Aと Bを導入する方法 (4) (共重合 法)では、部位 Aを有するエチレン性単量体 (M— a)と部位 Bを有するエチレン性単 量体 (M— b)を共重合する。
[0157] 部位 Aを有するエチレン性単量体(M— a)は、式(M— a):
(P) _(R8) -M1 (M-a)
P q
(式中、 P、 R8、 pおよび qは式(la)と同じ。 M1はエチレン性ポリマー部位 Mの構造単 位を与えるエチレン性の反応基)で示される。
[0158] 具体例としては、たとえば
[0159] [化 37]
CF3CF2CF20~ CF2CF2CF2OHCF = CF. 、
0
CF3CF2CF20™CF2CF2CF2OHOCF2CF2CH2OCCX6=CH2 、 CF3CF2CF20-CF2CF2CF2C¾~nOCF2CF2COOCH2CH2OCCX6=CH2、 o
CF3CF2CF20-(CF2CF2CF2OKOCF2CF2CH2OCH3CH-CH2 [0160] (X6=H、 F、 CH; n=7— 40)
3
などがあげられる。
[0161] 部位 Bを有するエチレン性単量体(M— b)は、式(M— b):
(Y)-(R9) -M2 (M-b)
r s
(式中、 Y、 R9、 rおよび sは式(lb)と同じ。 M2はエチレン性ポリマー部位 Mの構造単 位を与えるエチレン性の反応基)で示される。
[0162] 具体例としては、たとえば
[0163] [化 38]
O 0
/ \ II
CH-CH-CH2OCCX6 = CH2
Figure imgf000031_0001
[0164] (X6 = H、 F、 CH )
3
などがあげられる。
[0165] そのほか、エチレン性ポリマー部位 Mを形成するために共重合してもよい共重合モ ノマーとしては、たとえば
[0166] [化 39]
O CH, O
HOCH9CHOCCH=CH
O O
II II HOCCX6 = CH2 、 HOCHCH2OCCH = CH2
O CH3
HOCH2CH2OCCX6 = CH2 、 H2NCCH = CH2
O
[0167] (X6 = H、 F、 CH; R1Q =炭素数 1一 10のアルキル基)
3
などがあげられる。
[0168] この共重合法は、通常のラジカル重合法により行なうことができる。たとえば重合開 始剤としてァゾイソブチロニトリル (AIBN)などのァゾ系重合開始剤または過酸化べ ンゾィルなどの過酸化物系重合開始剤などを用いて共重合することにより、 自己架橋 性官能基含有含フッ素ポリマー (IAB)を得ることができる。
[0169] エチレン性単量体(M— a)および(M— b)に加えて、エチレン性ポリマー部位 Mの説 明で述べた他の共重合可能なエチレン性単量体を共重合してもよい。 [0170] 本発明の第 1の発明ほかで使用する硬化性含フッ素樹脂 (I)では、部位 Aおよび部 位 Bが存在していればよぐ前述のとおり、自己架橋性官能基含有含フッ素ポリマー (IAB)単独でもよいし、ポリマー部位 Mと部位 Aからなる含フッ素ポリマー (IA)、ポリマ 一部位 Mと部位 Bからなるポリマー (IB)の混合物でもよレ、。さらに、ポリマー (IAB)とポリ マー (IA)および Zまたはポリマー (IB)との混合物でもよレ、。さらにまた、ポリマー (IAB)、 (IA)および (IB)以外の他のポリマー MPが含まれていてもよい。
[0171] 含フッ素ポリマー (IA)は、部位 Bを有しないほかは含フッ素ポリマー (IAB)と構造、製 法も同じである。
[0172] ポリマー (IA)の好ましレ、具体例は、たとえばポリマー部位 Mとして式(2):
[0173] [化 40]
—— C H 2— ——
O
[0174] または式(3)
[0175] [化 41]
4C H X 2— Ο
[0176] (式中、 X2は Hまたは結合手; X3は Hまたは CH )で示される構造単位を含み、部位
Aが式(la):
(P) 一 ( ) -M (la)
(式中、 Pは式(1)のポリフルォロポリエーテル鎖; R8は 2価の有機基; Mはエチレン性 ポリマー部位; pは 1一 3の整数、好ましくは l ; qは 0または 1)で示される(P) _ (R8) - の状態でエチレン性ポリマー部位 Mに結合している含フッ素エチレン性ポリマーがあ げられる力 S、これのみに限定されるものではない。 [0177] 特に好ましいポリマー (IA)は、たとえば
[0178] [化 42]
Figure imgf000033_0001
( 1 +m+n= 100モル%)
A: O
CF3CF2CF20- CF,CF2CF20)-CF2CF2C-O
Figure imgf000033_0002
CH2
O n
( 1 +m+n= 100モリレ%)
A: O
CF3CF2CF20~ CF2CF2CF20 ~CF2CF20— C—
[0179] などがあげられる。このポリマー(IA)は、表面の滑り性、溶剤溶解性に加えて低屈折 率、透明性を樹脂(I)に与える点で有利である。
[0180] 含フッ素ポリマー (IB)は、部位 Aを有しないほかは含フッ素ポリマー (IAB)と構造、製 法も同じである。
[0181] ポリマー (IB)の好ましレ、具体例は、たとえばポリマー部位 Mとして式(2): [0182] [化 43] CH CH
o
[0183] または式(3):
[0184] [化 44]
し =リ
[0185] (式中、 ま Hまたは結合手 ;Χ3は Hまたは CH )で示される構造単位を含み、部位 B
3
が式(lb):
(Y)-(R9) -M (lb)
r s
(式中、 Yは自己架橋性官能基; R9は 2 4価の有機基; Mはエチレン性ポリマー部 位 M;rは 1一 3の整数、好ましくは l;sは 0または 1)で示される(Y) _(R9)—の状態で r s エチレン性ポリマー部位 Mに結合している含フッ素エチレン性ポリマーがあげられる が、これのみに限定されるものではない。
[0186] 特に好ましいポリマー (IB)は、たとえば
[0187] [化 45]
Figure imgf000035_0001
( 1 +m+n= 100モル%)
B
O
CH9 = CX6~C-0-
(X6 = H、 F、 CH
[0188] または、
[0189] [化 46]
Figure imgf000035_0002
( 1 +m+n= 100モ レ?
B
O
CH2 = CX6-COCH2CH20-C- O
(X6 = H、 F, CH J [0190] [化 47]
Figure imgf000036_0001
( 1 +m+ n = 1 0 0モル%)
B
o
O
zヽ C H O— C
[0191] などがあげられる。このポリマー(IB)は、樹脂に自己硬化性を付与する。
[0192] 他のポリマー MPは部位 Aと Bの両方を有しないエチレン性ポリマー MPであり、汎 用溶剤に可溶である必要がある。
[0193] 他のポリマー MPとしては、汎用溶剤に可溶であれば特に限定されず、たとえばポリ ビュルァセタール、部分ケン化ポリビュルアルコール、ポリ酢酸ビュル、ポリメチルメタ タリレート、ポリヒドロキシメタタリレートなどが例示できる力 これらに限定されるもので はない。
[0194] ポリマー (IAB)とポリマー (IA)、ポリマー (IB)における部位 A、部位 Bおよびポリマー部 位 Mは同じでも異なっていてもよレ、。また、他のポリマー MPも部位 Aおよび Bを有し ないほかは、ポリマー (IAB)、(IA)および(IB)とポリマー部位 Mの相当する部位は同 じでも異なっていてもよい。同じ場合は、たとえば前述のポリマー (IAB)の製造法とし て高分子反応法を採用した場合、部分反応生成物や未反応ポリマーという形で樹脂 (I)中に存在する。もちろん、部位 A、部位 Bおよびポリマー部位 Mがポリマー (IAB)と 同じ力または異なる、または相互に同じ力または異なるポリマーを特定の目的を達成 するために樹脂(I)に積極的に配合してもよい。
[0195] エチレン性ポリマー部位 Mが同じか同種である場合(たとえば透明性が要求される 用途に使用する場合など)は、ポリマー (IAB)とその他のポリマー((IA)、 (IB), MP)と の相溶性が良好であるため、均一な塗膜を形成でき、好ましい。
[0196] ただ、別異の特性を付与するために、 1つのポリマーのエチレン性ポリマー部位 Ml とは異種のポリマー部位 M2を有するポリマーを相溶性に悪影響を与えない範囲で 含んでいてもよい。異種のポリマー部位 M2の含有量は、全エチレン性ポリマー部位 M (M1 +M2)中に20重量%以下、さらには 10重量%以下、特に 5重量%以下であ ることが好ましい。
[0197] 樹脂(I)におけるポリマー (IAB)、(IA)、 (IB)、さらには MPの含有量は、樹脂(I)に対 する要求特性 (フッ素含有量、鎖 P含有量、屈折率など)と部位 A、部位 Bおよびポリ マー部位 Mの種類と量などによって適宜調整すればよい。
[0198] つぎに、樹脂 (I)の物性と特性について説明する。
[0199] 樹脂(I)の分子量は、数平均分子量として 100以上、さらには 300以上、特に 500 以上のものが、塗工性、滑り性が良好な点で好ましぐまた 1000000以下、さらには 100000以下、特に 10000以下のもの力 溶剤溶解性、保存安定性が良好な点で 好ましい。
[0200] 数平均分子量は、ゲルパーミエーシヨンクロマトグラフィ(GPC)により、東ソー(株) 製の GPC HLC—8020を用い、 Shodex社製のカラム(GPC KF-801を 1本、 GPC KF-802を 1本、 GPC KF-806Mを 2本直列に接続)を使用し、溶媒としてテトラハイド 口フラン (THF)を流速 lml/分で流して測定したデータより算出する。
[0201] 樹脂(I)のフッ素含有量は、 0. 1重量%以上、さらには 1重量%以上、特に 5重量 %以上であることが、滑り性、防汚性が良好な点で好ましぐ 35重量%以下、さらに は 25重量%以下、特に 20重量%以下であることが、溶剤溶解性が良好な点で好ま しい。
[0202] また、ポリフルォロポリエーテル鎖 Pの含有量の観点からは、樹脂(I)中に鎖 Pが 1 重量%以上、さらには 5重量%以上、特に 10重量%以上含まれていることが好まし レ、。また、上限は 60重量%、さらには 50重量%が好ましレ、。ポリフルォロエーテル鎖 Pの含有量がこの 1重量%より少ないと樹脂(I)の目的とする滑り性の向上効果が得 られず、 60重量%を超えると樹脂 (I)の相溶性が低下し、溶剤や樹脂などと混合した 場合に白濁が生じ、さらには分離したり沈殿が生じたりしてしまう。撥水性や防汚性の 改善を目的とする場合では、ポリフルォロエーテル鎖 Pの含有量は、含フッ素樹脂(I )中に 10重量%以上、 50重量%以下含まれていることが好ましい。
[0203] 自己架橋性官能基 Yの含有量は、樹脂(I) 1kgあたり 0. 02モル以上、さらには 0.
1モル以上、特に 0. 2モル以上で、また 100モル以下、さらには 50モル以下、特に 2 0モル以下であるのが好ましレ、。官能基 Yの量が少なすぎると硬化反応性および硬 化後の耐溶剤性、耐擦傷性、耐磨耗性が不足し、一方、多すぎるとポリマーや樹脂、 さらには表面処理剤の保存安定性が低下する。
[0204] 硬化性含フッ素樹脂(I)では屈折率を低くすることができ、たとえば屈折率を 1. 48 以下、組成比によっては 1. 45以下にすることもできる。
[0205] 本発明で用いる樹脂(I)は、後に詳しく述べる第 4および第 5の発明である硬化性 表面改質用組成物以外に、単独で、または他の添加剤を配合して、そのまま、あるい は溶剤に溶解させて表面改質剤とし、基材に塗布してその基材表面を改質すること ができる(第 2の発明)。
[0206] 特に、汎用溶剤に溶解し得ることが樹脂(I)の特徴であり、したがって溶剤に溶解し た溶剤型の表面改質剤が、塗工性が良好で、均一かつ均質な薄膜を形成でき、また 生産性が高ぐ低コストで生産できる点で好ましい。
[0207] 溶剤としては、樹脂(I)を均一に溶解することができるものであれば特に限定されず 、たとえばケトン系溶剤、酢酸エステル系溶剤などのエステル系溶剤、アルコール系 溶剤、プロピレングリコール系溶剤、セロソルブ系溶剤、芳香族炭化水素類、脂肪族 炭化水素類、エーテル系溶剤、ァセタール系溶剤、テレビン油、またはこれらの同種 または異種の混合溶剤、さらにはこれらを含む混合溶剤などの非フッ素系の汎用溶 剤があげられる。
[0208] ケトン系溶剤としては、たとえばアセトン、メチルェチルケトン(MEK)、メチルブチ ルケトン(MBK)、メチルイソブチルケトン(MIBK:)、 2_へキサノン、シクロへキサノン 、メチノレアミノケトン、 2_ヘプタノンなどがあげられ、特に MIBK、 MEK、 MBKが好 ましい。
[0209] 酢酸エステル系溶剤としては、たとえば酢酸ェチル、酢酸ブチル、酢酸イソブチル 、酢酸プロピル、酢酸ァミルなどがあげられ、特に酢酸プロピル、酢酸ブチル、酢酸ィ ソブチルが好ましい。
[0210] アルコール系溶剤としては、たとえばメチルアルコール、エチルアルコール、 n—プロ ピルアルコール、イソプロピルアルコール、 n—ブチルアルコール、イソブチルアルコ ール、イソペンチルアルコールなどがあげられ、特にイソプロピルアルコール、イソぺ ンチルアルコールが好ましレ、。
[0211] 酢酸エステル系溶剤以外のエステル系溶剤としては、たとえば酪酸ェチル、酪酸ブ チル、乳酸メチル、乳酸ェチル、 3—メトキシプロピオン酸メチル、 3—メトキシプロピオ ン酸ェチル、 2—ヒドロキシイソ酪酸メチル、 2—ヒドロキシイソ酪酸ェチル、ジェチルォ キサレート、ピルビン酸ェチル、ェチノレー 2—ヒドロキシブチレート、ェチルァセトァセテ ートなどがあげられる。
[0212] プロピレングリコール系溶剤としては、たとえばプロピレングリコールモノメチルエー テノレ、プロピレングリコーノレモノェチノレエーテノレ、プロピレングリコーノレモノブチノレエ 一テル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモ ノエチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、 ジプロピレングリコールジメチルエーテルなどがあげられる。
[0213] セロソルブ系溶剤としては、たとえばメチルセ口ソルブ、ェチルセ口ソルブ、メチルセ 口ソルブアセテート、ェチルセ口ソルブアセテートなどがあげられる。
[0214] 芳香族炭化水素類としては、たとえばトルエン、キシレンなどがあげられる。
[0215] 脂肪族炭化水素類としては、たとえば工業ガソリン、へキサン、オクタンなどがあげ られる。
[0216] エーテル系溶剤としては、たとえばテトラヒドロフラン (THF)、ジォキサン、メチルブ チルエーテルなどがあげられる。
[0217] ァセタール系溶剤としては、たとえばジメトキシメタン、ジエトキシメタンなどがあげら れる。
[0218] なかでも、ケトン系溶剤、酢酸エステル系溶剤およびアルコール系溶剤から選ばれ る少なくとも 1種の溶剤またはこれらの溶剤の少なくとも 1種を含む混合溶剤が、溶解 性が良好であり、人体や環境への影響が比較的少ない点から特に好ましくあげられ る。 [0219] 本発明の第 1における溶剤型表面改質剤においては、溶剤の含有量は樹脂(I)に 含まれているポリマーの種類、溶解させる他の固形分の種類、硬化剤の使用の有無 や使用割合、塗布する基材の種類や目標とする膜厚などによって適宜選択されるが 、全固形分濃度が 0. 01重量%以上、さらには 0. 1重量%以上で、 20重量%以下、 さらには 10重量%以下となるように配合するのが好ましい。
[0220] 本発明の第 1における表面改質剤には、本発明が目的とする効果を損なわない限 り、必要に応じて種々の添加剤を配合してもよい。
[0221] そうした添加剤としては、たとえば後述する活性エネルギー線硬化開始剤以外の硬 化剤 (架橋剤)、レべリング剤、粘度調整剤、光安定剤、水分吸収剤、顔料、染料、補 強剤、帯電防止剤などがあげられる。
[0222] 活性エネルギー線硬化開始剤以外の硬化剤(架橋剤)としては、たとえばラジカノレ またはカチオン反応性官能基を 1つ以上有するものが好ましぐ具体的にはアクリル 系モノマーなどのラジカル重合性の単量体、エポキシまたはグリシジル系モノマーな どのカチオン重合性の単量体があげられる。これら単量体は、単官能であっても多官 能の単量体であってもよレ、。
[0223] 塗装法としては、溶剤型の表面改質剤の場合、たとえばロールコート法、グラビアコ ート法、マイクログラビアコート法、フローコート法、バーコート法、スプレーコート法、 ダイコート法、スピンコート法、ディップコート法などが採用でき、また、粉体型 (含フッ 素樹脂 (I)単独または他の樹脂との組成物)の表面改質剤の場合は、たとえば粉体 塗装法、溶射法などが採用でき、これらの方法から基材の種類、形状、生産性などを 考慮して選択すればよい。
[0224] 硬化方法は特に限定されず、硬化剤 (架橋剤)を使用した場合は硬化剤の開始温 度または条件で硬化反応を起こさせるか、硬化剤を配合しない場合は自己架橋性官 能基による自己架橋を生ぜしめる条件(50— 150°Cに加熱または室温放置)で硬化 させればよレ、。
[0225] 基材の種類は特に限定されない。たとえばガラス、石材、コンクリート、タイルなどの 無機材料;ポリエチレンやポリスチレンなどのポリオレフイン系樹脂;ポリメチルメタタリ レートなどのアクリル系樹脂、ポリアリレートやポリエチレンテレフタレートなどのポリェ ステル系樹脂、トリァセチルセルロースなどのセルロース系樹脂、塩酸ゴムなどのゴム 系樹脂、塩化ビュル樹脂、ポリカーボネート樹脂、フエノール樹脂、キシレン樹脂、ュ リア樹脂、メラミン樹脂、ジァリルフタレート樹脂、フラン樹脂、ポリアミド樹脂、ポリイミ ド樹脂、アルキド樹脂、ポリウレタン樹脂、ビュルエステル樹脂、ポリスルホン樹脂、ィ オノマー樹脂などの合成樹脂;鉄、アルミ、銅などの金属;木、紙、印刷物、印画紙、 絵画など;またこれらの基材上にハードコート層などの保護膜や、帯電防止機能を有 する膜、反射防止膜などを形成したもの;さらには光記録媒体や磁気記録媒体また はその上にハードコート層、反射防止膜、特定波長光の吸収膜などを形成したもの などがあげられ、これらの基材の上に本発明の表面改質剤を塗布することによって、 表面の滑り性、耐擦傷性、撥水撥油性、防汚性を向上させることができる。
[0226] 基材の中でもアクリル系樹脂、ポリカーボネート樹脂、セルロース系樹脂、ポリエス テル系樹脂(たとえばポリエチレンテレフタレートなど)、ポリオレフイン系樹脂などの 樹脂基材、さらにはこれらの樹脂基材に反射防止膜が形成された基材に好ましく施 される。
[0227] 特に樹脂 (I)は屈折率が低いので、反射防止膜上に直接塗工することにより、反射 防止性能を低下させずに効果的に滑り性および防汚性を付与できる。
[0228] 反射防止膜には、たとえばフッ化マグネシウム(MgF )や酸化ケィ素(SiO )などの
2 2 無機物を蒸着してなる無機物蒸着系反射防止膜、シリコーンポリマー系反射防止膜 (特開 2000-17028号公報、特開 2000— 313709号公報など)、含フッ素ポリマー 系反射防止膜 (WO02/18457号パンフレット、特開平 6—115023号公報、特開 2 000-194503号公報、特開平 11-337706号公報など)、多孔質反射防止膜 (特 開平 11—281802号公報、特開平 4-163248号公報など)などが知られており、本 発明においてもこれらの反射防止膜上に適用できる。特に、透明性に優れ、生産性 が高ぐ反射防止効果も良好であるが、摩擦抵抗が比較的大きく耐擦り傷性や表面 硬度の向上が望まれている薄レ、(約 0. 03-0. 5 z m)含フッ素ポリマー系反射防止 膜に適用するときに有利である。
[0229] すなわち、第 1の発明の表面改質剤を用いて、反射防止膜および表面改質剤の硬 化膜力 なる多層構造の反射防止膜 (第 3の発明)を形成することができる。表面改 質剤の硬化膜は反射防止膜直上に連続した膜を形成していてもよいし、島状に形成 された不連続な膜であってもよレ、。膜厚は、単分子膜 (約 0. 2— 0. 3nm)力ら 500η m以下、さらには 50nm以下の範囲にすること力 光学特性への悪影響が少ない点 で好ましい。塗工量は、樹脂(I)の重量で、 0. 5mg/m2以上、好ましくは lmg/m2 以上で、 100mg/m2以下、好ましくは 50mg/m2以下である。少なすぎると滑り性 ゃ耐磨耗性などの効果が不充分となり、多すぎると反射防止効果に好ましくない影 響が出る傾向がある。
[0230] 本発明の表面改質剤は、薄膜にしたときの膜の滑り性に優れ、耐久性が高ぐ屈折 率が低ぐまた透明であるため、ディスプレイなどのほか、後述する多種多様な物品 などの表面改質剤として好ましレ、ものである。
[0231] 本発明の第 4は、 (a)前記汎用溶剤可溶性の硬化性含フッ素樹脂 (I)、および
(b)活性エネルギー線硬化開始剤
力 なる活性エネルギー線硬化性の表面改質用組成物に関する。
[0232] この第 4の発明の活性エネルギー線硬化性の表面改質用組成物によると、活性ェ ネルギ一線により容易に架橋 (硬化)反応が開始でき、他の架橋系のように高温での 加熱の必要がなぐ比較的低温で短時間に架橋 (硬化)反応が可能であるので、耐 熱性が低ぐ熱で変形や分解、着色が起こりやすい基材、たとえば透明樹脂基材な どにも適応できる点で好ましレ、。
[0233] 第 4の発明で (a)成分として使用する硬化性含フッ素樹脂 (I)は、第 1の発明で使用 する樹脂(I)であり、また好ましいポリマー (IAB)、(IA)、 (IB)、 MPヽさらには樹脂(I)に ついても前述の第 1の発明におけるポリマーおよび樹脂(I)の説明および具体例と同 じであり、したがってここでは説明を省略する。
[0234] (b)成分である活性エネルギー線硬化開始剤は、たとえば紫外線、 X線、 7線など の波長が 350nm以下の電磁波または電子線などの活性エネルギー線を照射するこ とにより、ラジカルまたはカチオンを発生する化合物であり、発生したラジカルまたは カチオンが架橋性官能基 Yの架橋 (硬化)反応を開始させる働きをする。
[0235] 活性エネルギー線硬化開始剤(b)は、(a)成分である硬化性含フッ素樹脂(I)中の 架橋基の種類 (ラジカル反応性か、カチオン反応性か)、使用する活性エネルギー線 の種類 (波長域など)と照射強度などによって適宜選択される。
[0236] 第 4の発明において、活性エネルギー線硬化開始剤 (b)との関係において、ポリマ 一 (IAB)および (IB)における好ましい架橋性官能基 Yとしては、第 1の発明と同じもの 力あげられ、たとえばラジカル重合反応性の自己架橋性官能基、カチオン重合反応 性の自己架橋性官能基などがあげられる。
[0237] ラジカル重合反応性の自己架橋性官能基としては、たとえばラジカル重合反応性 C =Cなど;カチオン重合反応性の自己架橋性官能基としてはたとえばカチオン重合 反応性の C = C、エポキシ基、ォキセタニル基、その他アルコキシシリル基、シラノー ル基などの架橋性ケィ素化合物などがあげられる。
[0238] 本発明における自己架橋性官能基 Yとして好ましいものは、ラジカル重合反応性の C = C、エポキシ基であり、なかでも
[0239] [化 48]
4
— C X4 = C H 2 、 — C X 5— C H 2および
Figure imgf000043_0001
[0240] (Xは H、 CHまたは F ;Xは Hまたは CH )
3 3
が好ましい。このものは、活性エネルギー線硬化開始剤(b)から発生したラジカルま たはカチオンにより容易に架橋反応を開始する。
[0241] 紫外線領域の活性エネルギー線を用いて自己架橋性官能基 Yとしてラジカル重合 反応性の炭素一炭素二重結合を有する含フッ素ポリマー (IAB)、 (IB)を架橋 (硬化)さ せる開始剤としては、たとえばつぎのものが例示できる。
[0242] ァセトフエノン系
ァセトフエノン、クロロアセトフエノン、ジェトキシァセトフエノン、ヒドロキシァセトフエノ ン、 α—アミノアセトフエノン、ヒドロキシプロピオフエノン、 2—メチルー 1_[4—(メチルチ ォ)フエ二ノレ]— 2—モルホリンプロパン一 1—オン、 1—ヒドロキシシクロへキシルフェニノレ ベンゾイン、ベンゾインメチルエーテル、ベンゾインェチルエーテル、ベンゾインイソ プロピルエーテル、ベンゾインイソブチルエーテル、ベンジルジメチルケタールなど ベンゾフエノン系
ベンゾフヱノン、ベンゾィル安息香酸、ベンゾィル安息香酸メチル、 4—フエニルベン ゾフエノン、ヒドロキシベンゾフエノン、ヒドロキシープロピルべンゾフエノン、アクリル化 ベンゾフエノン、ミヒラーズケトンなど
チォキサンソン類
チォキサンソン、クロ口チォキサンソン、メチルチオキサンソン、ジェチルチオキサン ソン、ジメチルチオキサンソンなど
その他
ベンジル、 ひ—ァシルォキシムエステル、ァシルホスフィンオキサイド、グリオキシェ ステル、 3—ケトクマリン、 2—ェチルアンスラキノン、カンファーキノン、アンスラキノンな ど
[0243] また、紫外線領域の活性エネルギー線を用いて自己架橋性官能基 Yとしてカチォ ン反応性の炭素一炭素二重結合、またはエポキシ基ゃォキサシクロプロパニル基を 有する含フッ素ポリマー (IAB)、(IB)を架橋 (硬化)させる開始剤としては、つぎのもの が例示できる。
[0244] ォニゥム塩
ョードニゥム塩、スルホニゥム塩、ホスホニゥム塩、ジァゾニゥム塩、アンモニゥム塩、 ピリジニゥム塩など 鉄アレーン錯体など
スルホン化合物
β—ケトエステル、 β一スルホニルスルホンとこれらのひ—ジァゾ化合物など スルホン酸エステル類
ァノレキノレスノレホン酸エステノレ、ノヽロアノレキノレスノレホン酸エステノレ、ァリーノレスノレホン 酸エステル、イミノスルホネートなど
そ一の他 スルホンイミド化合物類、ジァゾメタンィヒ合物類など
[0245] これらの開始剤のなかでもョードニゥム塩、スルホニゥム塩、ジァゾニゥム塩、メタ口 セン系化合物が好ましぐさらに好ましくは芳香族ジァゾニゥム塩、芳香族スルホユウ ム塩、芳香族ョードニゥム塩およびメタ口センィ匕合物よりなる群から選ばれた少なくと も 1種の芳香族化合物が好ましい。これらは光照射に対して量子効率よぐカチオン 重合を開始するカチオン種を生じるため好ましいものである。
[0246] なお含フッ素樹脂(I)を構成するポリマーの種類によって、または活性エネルギー 線硬化開始剤 (b)の種類によっては互いの相溶性がわるぐ組成物自体力 または 塗布後の被膜が白濁してしまい透明性や硬化反応性が低下する場合があるので、こ の点を考慮して組合せを選定することが望ましレ、。
[0247] 活性エネルギー線硬化開始剤(b)の配合量は、架橋性官能基 Yの 1当量に対して 0. 001当量以上、さらには 0. 005当量以上、特に 0. 01当量以上で、 1当量以下、 さらには 0. 5当量以下、特に 0. 1当量以下である。開始剤(b)の配合量が少なすぎ ると硬化性が低下し膜の強度や硬度が不足し、多すぎると滑り性が低下し、また屈折 率が高くなる傾向にある。
[0248] 本発明の第 4の発明の組成物においては、さらに必要に応じて他の硬化剤や添カロ 剤を配合してもよい。硬化剤および他の添加剤については、第 1の発明で例示したも のが使用できる。
[0249] 第 4の発明の組成物は、(a)成分と(b)成分を、他の硬化剤や添加剤と混合するか 、さらには溶剤と混合し溶解または分散させることにより調製できる。樹脂 (I)を溶解 する溶剤を使用することが好ましいが、そうした樹脂(I)可溶性の溶剤を使用する組 成物の発明はつぎの第 5の発明として説明する。
[0250] 後述する第 5の発明で使用する溶剤以外の溶剤としては、第 1の発明で例示した酢 酸エステル系溶剤以外のエステル系溶剤、プロピレングリコール系溶剤、セロソルブ 系溶剤、芳香族炭化水素類、脂肪族炭化水素類、エーテル系溶剤、ァセタール系 溶剤、テレビン油またはこれらの同種または異種の混合溶剤、さらにはこれらを含む 非フッ素系混合溶剤などがあげられる。溶剤の含有量は樹脂 (I)を構成するポリマー の種類、溶解させる他の固形分の種類、硬化剤の使用の有無や使用割合、塗布す る基材の種類や目標とする膜厚などによって適宜選択されるが、全固形分濃度が 0.
01重量%以上、さらには 0. 1重量%以上で、 20重量%以下、さらには 10重量%以 下となるように配合するのが好ましレ、。
[0251] 塗装方法については、第 1の発明と同様の塗装方法が採用できる。
[0252] 第 4の発明の組成物を塗工して形成した塗膜の架橋 (硬化)については、第 5の発 明の説明において記載する。
[0253] 本発明の第 5は、 (a)前記汎用溶剤可溶性の硬化性含フッ素樹脂 (I)、
(b)活性エネルギー線硬化開始剤、および
(c)ケトン系溶剤、酢酸エステル系溶剤およびアルコール系溶剤よりなる群から選ば れる少なくとも 1種の汎用溶剤または該汎用溶剤を含む混合溶剤
力 なる活性エネルギー線架橋性の表面改質用組成物に関する。
[0254] このように第 5の発明は、第 4の発明の組成物において、さらに特定の溶剤(c)を配 合した組成物である。
[0255] 特定の溶剤(c)は、ケトン系溶剤、酢酸エステル系溶剤およびアルコール系溶剤よ りなる群から選ばれる少なくとも 1種の汎用溶剤または該汎用溶剤を含む混合溶剤で あり、ケトン系溶剤、酢酸エステル系溶剤およびアルコール系溶剤については、第 1 の発明で説明した溶剤が使用できる。
[0256] このケトン系溶剤、酢酸エステル系溶剤またはアルコール系溶剤と混合してもよレ、 他の溶剤としては、第 1および第 4の発明で説明した酢酸エステル系溶剤以外のエス テル系溶剤、プロピレングリコール系溶剤、セロソルブ系溶剤、芳香族炭化水素類、 脂肪族炭化水素類、エーテル系溶剤、ァセタール系溶剤、テレビン油などが例示で きる。混合溶剤の場合、ケトン系溶剤、酢酸エステル系溶剤またはアルコール系溶剤 は混合溶剤全体の 10容量%以上、さらには 30容量%以上、特に 50容量%以上を 占めるようにすることが、樹脂(I)の溶解性の向上の点から好ましい。
[0257] 第 5の発明の組成物は、樹脂成分 (a)と活性エネルギー線硬化開始剤 (b)を溶剤 ( c)に加え、少なくとも樹脂(I)を溶解させることによって調製できる。他の添加剤、濃 度、塗装方法などについては、第 4の発明と同様である。
[0258] 第 4の発明および第 5の発明の硬化性表面改質用組成物を基材に塗装し乾燥して 得られた塗膜に活性エネルギー線を照射することにより硬化させることによって基材 の表面の改質を行なうことができる。
[0259] 活性エネルギー線の照射量は、たとえば高圧水銀灯による紫外線照射の場合、 10
2,
OmjZcm U以上、好ましくは約 500mJZcm Uである。
[0260] 活性エネルギー線を照射すると活性エネルギー線硬化開始剤(b)がラジカルまた はカチオンを発生し、含フッ素ポリマー (IAB)、 (IB)の自己架橋性官能基 Yがポリマー 分子間で重合し架橋する。その結果、膜硬度が高くなり、機械的強度が向上し、耐摩 耗性、耐擦傷性が向上し、さらには硬化前には溶解していた溶剤に対して不溶とな るだけでなぐ他の数多くの種類の溶剤に対しても不溶となり、耐久性が向上する。し 力、も活性エネルギー線の照射後においても、硬化性含フッ素樹脂(I)が与える優れ た滑り性は維持できる。
[0261] 各種基材に施される表面改質剤を塗装し、硬化してなる膜の好ましい膜厚は特に 制限されるものではないが、好ましくは 0. 5nm以上、さらには lnm以上、また 500η m以下、さらには 50nm以下である。膜厚が厚いと可視光の干渉による着色が見られ る場合があるが、これを防ぐためには、基材の屈折率と表面改質剤組成物の屈折率 を同等にすればよい。
[0262] 基材の種類は特に限定されず、第 1の発明で例示したものがあげられる。それらの 基材の中でもアクリル系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、ポリエス テル系樹脂(たとえばポリエチレンテレフタレートなど)、ポリオレフイン系樹脂などの 樹脂基材、さらにはこれらの樹脂基材に反射防止膜が形成された基材に好ましく施 される。
[0263] 特に樹脂 (I)は屈折率が低いので、反射防止膜上に直接塗工することにより、反射 防止性能を低下させずに効果的に滑り性および防汚性を付与できる。
[0264] 反射防止膜は、前記のシリコーンポリマー系反射防止膜材料、含フッ素ポリマー系 反射防止膜材料、多孔質系反射防止膜材料などから形成され、特に透明性に優れ 、反射防止効果も良好であるが、摩擦抵抗が比較的大きく耐擦り傷性や表面硬度の 向上が望まれている薄レ、 (約 0. 03-0. 5 x m)含フッ素ポリマー系反射防止膜に適 用するときに有利である。 [0265] すなわち、第 4の発明または第 5の発明の硬化性表面改質用組成物を用いて、反 射防止膜および表面改質剤または硬化性表面改質用組成物の塗膜力 なる多層反 射防止膜を形成することができる。表面改質剤の塗膜は反射防止膜上に連続した膜 を形成していてもよいし、島状に形成された不連続な膜であってもよい。反射防止膜 上に塗装する場合、光学特性に悪影響を与えないように、滑り性、防汚性などの効 果が充分に得られる範囲で可能な限り膜厚を薄くすることが好ましぐ具体的には硬 化した後の膜厚を 50nm以下にすることが好ましぐさらには 20nm以下にすることが 好ましレ、。下限は単分子膜(約 0. 2-0. 3nm)、さらには 0. 5nm、特に lnmである
[0266] 塗工量は、樹脂成分(a)の重量で、 0. 5mg/m2以上、好ましくは lmg/m2以上で 、 100mg/m2以下、好ましくは 50mg/m2以下である。少なすぎると滑り性ゃ耐磨 耗性などの効果が不充分となり、多すぎると反射防止効果に好ましくない影響が出る ί頃向がある。
[0267] 本発明の硬化性表面改質用組成物は、第 1の発明の表面改質剤と同じく薄膜にし たときの膜の滑り性に優れ、耐久性が高ぐ屈折率が低ぐまた透明であるため、ディ スプレイなど以下のような形態の物品上に適用した場合に効果的である。
[0268] 1ディスプレイ関連
CRT (TVやパソコンモニター)、液晶ディスプレイ、プラズマディスプレイ、有機 EL ディスプレイ、無機薄膜 ELドットマトリクスディスプレイ、背面投写型ディスプレイ、蛍 光表示管(VFD)、 FED (Field Emission Display)などのディスプレイまたはそれらの ディスプレイの保護板、またはそれらの表面に反射防止膜処理を施したもの
(2)液晶ディスプレイの構成部材
フロントライト、拡散シートなどの液晶ディスプレイの構成部材、またはそれらの表面 に反射防止膜処理を施したもの
(3)各種フィルター
パソコンモニターへ視認性向上のため後付けする光学フィルター、 PC、 PDA、 AT M装置などのタツチパネル(世界的にはタツチセンサー、タッチスクリーンなどともい われる)、またはそれらの表面に反射防止膜処理を施したもの
[0269] 2光学部品'光デバイス
メガネレンズ、プリズム、レンズシート、ペリクル膜、偏光板、光学フィルター、レンチ キュラーレンズ、フレネルレンズ、背面投写型ディスプレイのスクリーン、光ファイバ一 や光カプラーなどの光学部品'光デバイス、またはそれらの表面に反射防止膜処理 を施したもの
[0270] 3建材
ショーウインドー、ショーケース、広告用カバー、フォトスタンド用のカバー、 自動車 用フロントガラスなどに代表される透明なガラス製または透明なプラスチック製(アタリ ル系樹脂、ポリカーボネート樹脂など)建材、またはそれらの表面に反射防止膜処理 を施したもの
[0271] 4記録メディア関連
(1)光記録媒体
光磁気ディスク、 CD 'LD' DVDなどの光ディスク、 PDなどの相転移型光ディスク、 ホログラム記録などに代表される光記録媒体、またはそれらの表面に反射防止膜処 理を施したもの
(2)磁気記録媒体
磁気テープ、磁気ティスク、磁気ドラム、磁気フレキシブノレアイスクなどの磁気記録 媒体、またはそれらの表面に反射防止膜処理を施したもの
[0272] また、本発明の硬化性表面改質用組成物から形成されるシートまたはフィルムは、 上記に列挙したような各種物品の上ゃ最表面に貼り付けるためのシートまたはフィノレ ムとして、好適に用いることもできる。この場合、容易に物品の表面改質を行なうこと ができ、また物品を廃棄またはリサイクルする際の処理が容易である。
[0273] なお、該シートまたはフィルムは、たとえば、第 1の発明で説明した基材の上に前述 したような各種塗装法により、本発明の硬化性表面改質用組成物を塗装したのち硬 ィ匕させることで得られ、該基材がその表面が反射防止膜で被覆されたものであること が好ましい。
[0274] 以上にポリフルォロポリエーテル鎖 と自己架橋性官能基 Yの両方を有する樹脂(I )を基材 (反射防止膜)上に前述のような塗装法によりオーバーコートすることによつ て、高い滑り性に加え、防汚性、撥水撥油性などの性能を与えることができることを説 明した。
[0275] し力 ながら、特に廉価型の反射防止膜用では、オーバーコートを行なうことがコス ト面で困難である場合もある。そのような場合には硬化性の反射防止膜材料に表面 改質能をもつポリマーを添加し、ワンコートで反射防止膜の形成と表面改質を行なう ことが有利である。
[0276] そして硬化性の反射防止膜材料に添加する(内添する)場合、表面改質用のポリマ 一は反射防止材料が硬化することによって、反射防止膜内部にある程度閉じ込めら れるため、必ずしも架橋性反応基を必要としないことを見出し、本発明の第 6の発明 を完成した。
[0277] すなわち第 6の発明は、(d)前記含フッ素エチレン性ポリマー(IAB)または前記含 フッ素エチレン性ポリマー(IA)からなり、汎用溶剤可溶性でフッ素含有量が 1重量% 以上で 35重量%以下である含フッ素樹脂(II)、および
(e)反射防止膜材料
力 なる反射防止膜形成用組成物を基材に塗布して得られる反射防止膜に関する。
[0278] 反射防止膜材料に内添する樹脂 (II)は、部位 B (自己架橋性官能基 Y)を有してい ても有していなくてもよい点、すなわちポリマー (IB)を含んでいてもいなくてもよい点、 およびフッ素含有量が 1重量%以上で 35重量%以下であるほかは樹脂(I)と同じで める。
[0279] すなわち樹脂(Π)は、ポリマー (IAB)またはポリマー(IA)を少なくとも含んでいる樹脂 である。ポリマー(IB)および他のポリマー MPは含まれてレ、てもいなくてもょレ、。
[0280] 樹脂(Π)のフッ素含有量は 1重量%以上、さらには 5重量%以上、特に 10重量%以 上とすることが、屈折率を低くする点、滑り性を高める点、さらには防汚性を向上させ る点から好ましぐまた 35重量%以下、さらには 25重量%以下、特に 20重量%以下 とすることが、溶剤溶解性が良好な点、透明性に優れる点から好ましい。
[0281] また樹脂 (II)は、反射防止膜の光学特性に悪影響を与えないように屈折率が 1. 48 以下のものが好ましぐより好ましくは 1. 45以下である。 [0282] (e)成分である反射防止膜材料としては、液状の形態で基材 (フィルムなど)上に塗 ェできるものであればよい。具体的には、従来公知の反射防止膜材料、たとえば有 機ケィ素化合物系材料、含フッ素有機ケィ素化合物系材料、架橋性シリコーン樹脂 系材料、架橋性含フッ素シリコーン樹脂系材料、含フッ素アクリル化合物系材料、含 フッ素エポキシ化合物系材料または硬化性含フッ素ポリマー系材料からなる反射防 止膜材料があげられる。かかる反射防止膜材料 (e)には、硬化剤、レべリング剤、粘 度調整剤、光安定剤、水分吸収剤、顔料、染料、補強剤などが配合されていてもよ レ、。
[0283] 有機ケィ素化合物系材料の限定されない具体例としては、たとえば特開平 10-14
7740号公報、特開 2000—1648号公報などに記載されたシロキサン結合を含む硬 化性樹脂組成物などがあげられる。
[0284] 含フッ素有機ケィ素化合物系材料の限定されない具体例としては、たとえば特開 平 10— 147739号公報、特開 2000— 10965号公報、特開 2000— 17028号公報な どに記載されたシラン化合物からなる反射防止膜形成用組成物などがあげられる。
[0285] 含フッ素アクリル化合物系材料の限定されない具体例としては、たとえば特開平 9一
203801号公報、特開 2000-194503号公報などに記載された多官能含フッ素ァク リルからなる組成物などがあげられる。
[0286] 含フッ素エポキシィ匕合物系材料の限定されない具体例としては、たとえば特開平 5
-302058号公報、特開 2000-17099号公報などに記載された多官能含フッ素ェ ポキシ化合物からなる組成物などがあげられる。
[0287] 硬化性含フッ素ポリマー系材料の限定されない具体例としては、後述する第 7の発 明で使用する含フッ素ポリマー(IIINC)のほ力 \たとえば特開平 11一 337706号公報 などに記載されたものなどがあげられる。
[0288] 第 6の発明に使用する反射防止膜形成用組成物において、樹脂 (Π)成分 (d)の添 加量は使用する樹脂成分 (d)や反射防止膜材料の種類、要求特性などによって異な る力 固形分全体の 1重量%以上、さらには 5重量%以上、特に 10重量%以上であ る。少なすぎると表面改質効果が奏されない。
[0289] この反射防止膜形成用組成物は、各種の溶剤に溶解または分散させることによつ て種々の基材に塗工し、塗膜を形成することができ、塗膜形成後、活性エネルギー 線などの照射によって効率よく架橋 (硬化)でき、硬化被膜が得られる点で有利であ る。
[0290] 溶剤としては第 1の発明であげたものと同じ非フッ素系の溶剤のほ力、、フッ素系の 溶剤も利用でき、 目標とする塗装性、成膜性、膜厚の均一性、塗装の生産性などに 応じ、種類、使用量などを前述の例示の中から適宜選択すればよい。特に、ケトン系 溶剤、酢酸エステル系溶剤、アルコール系溶剤から選ばれる溶剤が好ましい。フッ素 系溶剤としては、たとえば H_ (CF CF ) -CH〇H (式中、 aは 1一 3の整数)、 CF—
(CF )— CH〇H (式中、 bは 1一 5の整数)、 CH (CF )〇Hなどの含フッ素アルコー ル; CH CC1 F、 CF CF CHC1、 CC1F CF CHC1Fなどのフルォロアルカン; 1 , 3_ ビストリフルォロメチルベンゼン、ベンゾトリフルオライドなどが好ましい。
[0291] 第 6の発明において溶剤を用レ、る場合、反射防止膜形成用組成物の好ましい固形 分濃度は添加される樹脂成分 (d)や反射防止膜材料の種類、要求特性などによって 異なるが、 0. 01重量%以上、さらには 0. 1重量%以上、特に 1重量%以上であり、 2 0重量%以下、さらには 10重量%以下であることが好ましい。
[0292] この反射防止膜形成用組成物を塗布後、硬化させた後の硬化物 (塗膜)の屈折率 は 1. 45以下、さらには 1. 42以下であり、特に 1. 40以下であることが好ましい。最も 好ましくは 1. 38以下であり、低い方が優れた反射防止効果が奏される点で有利であ る。
[0293] 第 6の発明の反射防止膜の好ましい膜厚は、膜の屈折率や下地の屈折率などによ つて変わる力 SO. 03 μ m以上、さらには 0· 07 μ m以上、特に 0· 08 μ m以上で、 0. 5 z m以下、さらには 0. 以下、特に 0. 12 μ m以下であることが好ましい。膜厚が 薄すぎると可視光における光干渉による反射率の低下作用が不充分となり、一方、 厚すぎると反射率はほぼ空気と膜の界面の反射のみに依存するようになるので、可 視光における光干渉による反射率の低下作用が不充分となる傾向にある。なかでも 、反射防止膜を施したのちの物品の反射率の最小値を示す波長が通常 420— 720 nm、さらには 520 620nmの範囲となるように膜厚を設定するのが好ましい。
[0294] 反射防止膜形成用組成物を塗工する基材としては、第 1の発明で説明した基材 (た だし、反射防止膜が形成されたものは除く)が第 6の発明においても使用できる。
[0295] なお、該基材が、ハードコート層、高屈折率層、帯電防止層等で被覆された基材で あり、その上 (最表面)に、該反射防止膜形成用組成物を塗工することが好ましい。
[0296] ハードコート層としては通常の光学用のアクリル系樹脂ハードコート、メラミン樹脂、 アクリルシリコーンノ、イブリツドコート等に代表される無機とのハイブリッドが使用できる 力、これらに限定されない。
[0297] 高屈折率層としてはアクリルシリコーンハイブリッドコート以外にもアクリル系樹脂に 無機物微粒子を分散させたものなどが挙げられるが、これらに限定されない。高屈折 率層は屈折率 1. 58以上なら、最低反射率 1。/0以下を実現しやすいので好ましい。
[0298] 帯電防止層としてはスパッタ等による方法のほか、ハードコート層等と組合されたも のであってもよい。
[0299] ハードコート層、高屈折率層、帯電防止層等は各々単独で基材の上を被覆するも のであってもよいし、各々を複数組み合わせて基材の上を被覆するものであってもよ レ、。またこれらの機能を一層でまかなえるものであっても、もちろんよい。
[0300] また、そのようにして形成される反射防止膜の上に、さらに 0. 05 / m以下の最外層 を設けてもよい。最外層として好ましいものは、油分の付着やホコリの付着を抑制、あ るいはそれらを拭き取り易くすることが可能な防汚層や傷付き性を低減できる滑層、 あるいはその組合せである。具体的にはパーフロロポリエーテル構造を有しかつ下 地との密着が良好な官能基を保有してレ、る材料が好ましレ、。
[0301] 第 6の発明の反射防止膜は、第 1の発明の表面改質剤と同じく薄膜にしたときの膜 の滑り性に優れ、耐久性が高ぐ屈折率が低ぐまた透明であるため、
ど以下のような形態の物品上に形成した場合に効果的である。
[0302] 1ディスプレイ関連
CRT (TVやパソコンモニター)、液晶 、プラズマディスプレイ、有機 EL ディスプレイ、無機薄膜 ELドットマト i 、背面投写型ディスプレイ、蛍 光表示管(VFD)、 FED (Field Emission または当該ディ スプレイの保護板 (2)液晶ディスプレイの構成部材
フロントライト、拡散シートなどの液晶ディスプレイの構成部材
(3)各種フィルター
パソコンモニターへ視認性向上のため後付けする光学フィルター、 PC、 PDA、 AT M装置などのタツチパネル(世界的にはタツチセンサー、タッチスクリーンなどともい われる)
[0303] 2光学部品'光デバイス
メガネレンズ、プリズム、レンズシート、ペリクル膜、偏光板、光学フィルター、レンチ キュラーレンズ、フレネルレンズ、背面投写型ディスプレイのスクリーン、光ファイバ一 や光カプラーなどの光学部品'光デバイス
[0304] 3建材
ショーウインドー、ショーケース、広告用カバー、フォトスタンド用のカバー、 自動車 用フロントガラスなどに代表される透明なガラス製または透明なプラスチック製(アタリ ノレ、ポリカーボネートなど)建材
[0305] 4記録メディア
(1)光記録媒体
光磁気ディスク、 CD 'LD' DVDなどの光ディスク、 PDなどの相転移型光ディスク、 ホログラム記録などに代表される光記録媒体
(2)磁気記録媒体
磁気テープ、磁気ティスク、磁気ドラム、磁気フレキシブノレアイスクなどの磁気記録 媒体
[0306] また、本第 6の発明で用いる反射防止膜形成用組成物から形成されるシートまたは フイノレムは、上記に列挙したような各種物品の上ゃ最表面に貼り付けるためのシート またはフィルムとして、好適に用いることもできる。この場合、反射防止膜の形成が容 易にでき、また物品を廃棄またはリサイクルする際の処理が容易である。
[0307] なお、該シートまたはフィルムは、たとえば、第 1の発明で説明した基材の上に前述 したような各種塗装法により、本第 6の発明で用いる反射防止膜形成用組成物を塗 装したのち硬化させることで得られる。 [0308] 第 6の発明の反射防止膜は、表面改質層を設ける工程が不要な点で作業性、生産 性、コストなどの点で有利である。
[0309] 本発明の第 7は、第 6の発明で用いる反射防止膜形成用組成物に好適な硬化性 樹脂組成物に関する。
[0310] すなわち第 7の発明は、(1)式 (4):
-(Ν)-(Ο- (4)
[式中、構造単位 Νは式 (Ν):
[0311] [化 49]
― (CX15Xie-CX17) ― (N)
(CX18X19)a(C = 0)b(0)c-R f 1 [0312] (式中、 X15および X16は同じかまたは異なり、 Hまたは F;X17は H、 F、 CHまたは CF;
X18および X19は同じかまたは異なり、 H、 Fまたは CF; Rf1は炭素数 1一 40の含フッ素 アルキル基または炭素数 2— 100のエーテル結合を有する含フッ素アルキル基に Y1 または Y^Y1は末端にエチレン性炭素-炭素二重結合を有する炭素数 2— 10の 1価 の有機基、 Υ2は水素原子がフッ素原子に置換されていてもよい架橋性環状エーテル 構造を 1一 5個有する炭素数 2 100の 1価の有機基)が 1一 3個結合している有機 基; aは 0— 3の整数; bおよび cは同じかまたは異なり、 0または 1)で示される含フッ素 エチレン性単量体に由来する構造単位、構造単位 Cは構造単位 Nを与える含フッ素 エチレン性単量体と共重合可能な単量体に由来する構造単位である]で示され、構 造単位 Nを 0.1 100モル%および構造単位 Cを 0— 99.9モル%含む数平均分子 量 500— 1000000の含フッ素ポリマー (IIINC)力らなる硬ィ匕十生含フッ素樹月旨(III)、 よび
(2)前記含フッ素樹脂 (II)
力 なる硬化性樹脂組成物に関する。
[0313] 含フッ素樹脂 (Π)としては、第 6の発明で説明した樹脂 (Π)が好適な具体例も含めて 第 7の発明で使用できる。 [0314] 含フッ素ポリマー (IIINC)は、式 (N)で示される構造単位 Nの側鎖末端基である有機 基 Rf1として、炭素数 1一 40の含フッ素アルキル基または炭素数 2— 100のエーテル 結合を有する含フッ素アルキル基に Y1または Y^Y1は末端にエチレン性炭素-炭素 二重結合を有する炭素数 2 10の 1価の有機基、 Υ2は水素原子がフッ素原子に置 換されていてもよい架橋性環状エーテル構造を 1一 5個有する炭素数 2— 100の 1価 の有機基)が 1一 3個結合している有機基を有している点に特徴がある。
[0315] Rf1中の有機基 Υ1が有するエチレン性炭素—炭素二重結合および Υ2が有する架橋 性環状エーテル構造はいずれも自己架橋性の官能基であり、また活性エネルギー 線架橋性の官能基である。
[0316] ポリマー (IIINC)としては、好ましくは、たとえば式(N)において構造単位 Nが式(N1 ) ··
[0317] [化 50]
- c x 1 5x i e- c x 1 7- -
Figure imgf000056_0001
[0318] (式中、 X15、 Xlu、 X17、 X1。、 X19
Figure imgf000056_0002
aおよび cは前記と同じ)で示される含フッ素ヱチ レン性単量体に由来する構造単位 N1である含フッ素ポリマー;
特に、式 (N)において構造単位 Nが式 (N2):
[0319] [化 51]
Figure imgf000056_0003
[0320] (式中、 Rf1は前記と同じ)で示さ; '素エチレン性単量体に由来する構造単位 N2である含フッ素ポリマー;または
式 (N)におレ、て構造単位 Nが式 (N3) [0321] [化 52]
(N 3 )
O - R f
[0322] (式中、 Rf1は前記と同じ)で示される含フッ素エチレン性単量体に由来する構造単位 N3である含フッ素ポリマー
が例示できる。
[0323] さらに好ましくは、前記式 (N)、(Nl)、(N2)および (N3)における Rf1中の Y1また は Υ2において、それぞれ Υ1または Υ2の少なくとも 1つ力 Rf1の末端に結合しているも のが好ましい。
[0324] 末端にエチレン性炭素一炭素二重結合をもつ有機基 Y1を有する含フッ素ポリマー( IIINC) (以下、「ポリマー (IIINC-1)」という)は、本発明者らが開発したポリマーであつ て、既に公知になっている(たとえば WO02/018457号パンフレット、 WO02/07 2706号パンフレット、 WO02/093249号パンフレットなど)。これらのパンフレットに 記載されている架橋性官能基含有含フッ素ポリマーが、第 7の発明でも使用できる。
[0325] ポリマー (IIINC-1)の好ましい具体例は、たとえば
[0326] [化 53]
CH2=CFCF2OCFCH20— Y1 、 CH2=CFCF20-<CFCF20-nCF-Y1
CF3 CF3 CF3
CH2 = CFCF20 CFCF2OHCFCH2OCH2CHCH2-Y1
CF3 CF3 Y1
Figure imgf000058_0001
CF3
CH3 = CFCF20- CF3CF -nCH2-Y1
CH2 = CFCF20 CF2CF2^-nY1
CH2 = CFCF204CH2CF2CF20)~nCH2CF2— Y1
[0327] (n=l 30の整数)
などがあげられる。
[0328] なかでも
[0329] [化 54]
CH2 = CFCF20 CFCF20)— nCFCH2OCCX = CH2
CF3 CF3 O
Figure imgf000058_0002
o
[0330] (Xは H、 F、 CHまたは CF、 n= 1— 4の整数)
3 3
力 低屈折率、硬化反応性、溶剤溶解性の点で有利なことから好ましい。
[0331] 架橋性環状エーテル構造をもつ有機基 Y2を有する含フッ素ポリマー(IIINC) (以下 、「ポリマー (IIINC-2)という」は、本願発明者らによって見出された新規なポリマーであ り、既に出願しており(特願 2002-235924)、該出願の明細書に記載されている架 橋性官能基含有含フッ素ポリマーが、第 7の発明でも使用できる。 [0332] ポリマー (IIINC-2)の好ましい具体例は、基本骨格はポリマー (IIINC-l)と同じであり 、有機基 Y2が、エーテル結合を少なくとも 1つ含む 3— 6員環の架橋性環状エーテル 構造 (水素原子はフッ素原子で置換されていてもよい)を 1一 5個有する炭素数 2— 1 00の 1価の有機基であるポリマーが例示できる。
[0333] 有機基 Y2としては、たとえば
[0334] [化 55]
Figure imgf000059_0001
[0335] (式中、 Xは同じ力または異なり、水素原子、フッ素原子、炭素数 1一 6のアルキル基 または炭素数 1一 6の含フッ素アルキル基)を 1一 5個有する炭素数 2— 100の有機 基、式:
[0336] [化 56]
Figure imgf000059_0002
[0337] (式中、 Qは炭素数 3— 100の単環構造、複環構造または複素環構造の水素原子が 上記 Xで置換されていてもよい 1価または 2価の有機基)を 1一 5個有する炭素数 3 100の有機基、
さらには [0338] [化 57]
Figure imgf000060_0001
[0339] (式中、 Xは同じ力、または異なり、水素原子、フッ素原子、炭素数 1一 6のアルキル基 または炭素数 1一 6の含フッ素アルキル基)を 1一 5個有する炭素数 3 100の有機 などが例示できる。
[0340] 具体的なポリマー (IIINC-2)としては、たとえば
[0341] [化 58] .
Figure imgf000060_0002
CF, CF, H2
C— O
CH, = CFCFsO CFC F20- 7CFCH¾OCHaC—— CH
Figure imgf000060_0003
CFS CFS
CH2=C
Figure imgf000060_0004
[0342] (n=0 30の整数)
などがあげられる。 [0343] なかでも
[0344] [化 59]
O
/ \
CH2 = CFCF20 CFCF20' CFCH,OCH, ■ H— C H■
CF.
H2
C— O
CH -C FC F O CFCF9O rCFCH,OCH9C― CH,
F '. ri:
[0345] (n=0 4の整数)
が、低屈折率、硬化反応性、溶剤溶解性の点で有利なことから好ましい。
[0346] なお、有機基 Rf1は Y1と Y2を両方有していてもよいし、ポリマー(IIINC)が Y1を有す る Rf 1と Y2を有する Rf 1の両方を有してレ、てもよレ、。
[0347] 構造単位 Cは構造単位 Nを与える含フッ素エチレン性単量体と共重合可能な単量 体に由来する構造単位であり、任意成分である。
[0348] 好ましい構造単位 Cとしては、基本骨格が構造単位 (N)と同じであり、有機基 Y1の 代わりに有機基 Z(Zは—〇H -CH OH _CO〇H、カルボン酸誘導体、 _S〇 Hま たはシァノ基)を有するものがあげられ、ポリマー (Ilia)の構造単位(N)の好ましい構 造の Y1を Zに置き換えたものが例示できる。
[0349] そのほか、
[0350] [化 60]
CF2 = CF2 、 CF? = CH? 、 CF? = CFC 1 、 CF, = CFCF-
CH? = CFCF?0-^CFCF,0^:CFHCF.
CF,
(n: 0' 0の整
'■"'("" t -" ~
Figure imgf000062_0001
o o o o
F F CF, CF5 F CF
[0351] などがあげられるが、これらのみに限定されるものではない。
[0352] 樹脂(III)はポリマー (IIINC)を単独で含んでいてもよいし、 目的に応じて他のポリマ 一を含んでいてもよい。この樹脂(III)は、屈折率が 1.45以下、さらには 1.42以下、 特に 1.40以下の透明なポリマーであり、光学材料として優れた特性をもつ。
[0353] 樹脂 (ΠΙ)と樹脂 (II)との配合割合は、樹脂 (III) 100重量部に対して表面改質能を 有する樹脂(Π)を 0. 1重量部以上、さらには 1重量部以上、特に 10重量部以上、ま た 50重量部以下、さらには 30重量部以下が好ましい。樹脂(II)の配合量が多くなり すぎると屈折率や透明性などの光学特性に悪影響を及ぼすことがあり、また少なす ぎると表面の滑り性、防汚性、撥水撥油性などの望ましい効果が奏されにくくなる。
[0354] 混合方法としては、たとえば樹脂 (II)と樹脂 (III)を溶剤に溶解し均一な溶液とする方 法;またそれぞれを水性分散液にしたのちその水性分散液同士を混合する方法;固 形状の樹脂同士を混練する方法;さらには樹脂をそれぞれ粉体にしたのち粉体を混 合する方法などが採用できる。
[0355] 第 7の発明の硬化性樹脂組成物は、第 6の発明の反射防止膜の形成用組成物とし て有用なほか、プラスチックレンズ用のハードコート用組成物;繊維表面の深色加工 用組成物;包装用フィルム、紙、樹脂、木材などの表面ハードコート用組成物、印刷 物表面の保護膜用組成物などの材料としても有用である。 [0356] 本発明はさらに、(i)前記第 6の発明で使用する反射防止膜材料 (e)または前記第 7の発明で使用する硬化性含フッ素樹脂 (111)、
(ii)前記第 6の発明で使用する汎用溶剤可溶性の含フッ素樹脂 (11)、および
(iii)溶剤
からなる液状組成物を用いて塗布、乾燥し、膜を形成したのち硬化させる硬化物、特 に反射防止膜の形成方法にも関する(第 8の発明)。
[0357] すなわち、第 8の発明においては、第 6の発明に用いる反射防止膜形成用組成物 または第 7の発明の硬化性樹脂組成物を溶剤を用いて液状組成物とする。使用する 溶剤としては第 1の発明で例示した非フッ素系の有機溶剤のほか、第 6の発明で説 明したフッ素系の有機溶剤も好ましく使用できる。液状組成物の固形分濃度は特に 限定されないが、 0. 01重量%以上、さらには 0. 1重量%以上、特に 1重量%以上で あり、 20重量%以下、さらには 10重量%以下が好ましい。
[0358] この液状組成物を目的とする基材などに塗布する。塗布方法および基材の種類に ついては前述した方法および例示が第 8の発明においても採用できる。
[0359] ついで形成された塗膜から溶剤を除くために乾燥する。乾燥は、樹脂成分や他の 配合剤が変性しない条件を適宜選定して行なう。
[0360] この乾燥した塗膜をつレ、で硬化させて硬化物を形成する。硬化方法は硬化性樹脂 の硬化反応性により従来の方法から、当業者が最適なものを採用すればよい。場合 によっては活性エネルギー線の照射で硬化させてもょレ、し、各種の硬化剤を配合し て公知の硬化方法 (パーオキサイド架橋など)により硬化させてもよい。
[0361] 力べして得られる硬化物は第 6および第 7の発明において説明した各種硬化物、た とえば反射防止膜として、さらにプラスチックレンズ用のハードコート;繊維表面の深 色物;包装用フィルム、紙、樹脂、木材などの表面ハードコート、印刷物表面の保護 膜として有用であり、特に反射防止膜として優れた機能を発揮することができる。
[0362] つぎに本発明を合成例および実施例に基づいて説明するが、本発明はこれらの実 施例のみに限定されるものではない。
[0363] なお、以下の合成例および実施例、比較例において含有率などの物性の評価に 使用した装置および測定条件は以下のとおりである。 [0364] (1) NMR : BRUKER社製
_NMR測定条件: 300MHz (テトラメチルシラン =0ppm)
19F_NMR測定条件: 282MHz (トリクロ口フルォロメタン =0ppm)
ifl—NMRのデータより、ァセターノレィ匕率(1. 1— 1. 3ppm (3H) , 4. 6— 5. lppm (1H) )および CH =CF— C ( =〇)_ Fアタリロイル)化率(5. 2-5. 8ppm (2H) ) が、 19F_NMRのデータより、 ひ Fアタリロイル基(一116^ 118ppm (1F) )と鎖 P (― 83ppm (107F)と _129ppm (54F) )の比率が定法により算出できる。
(2) IR分析: PERKIN ELMER社製フーリエ変換赤外分光光度計
1760Xで室温にて測定する。
[0365] 合成例 1 (PVAのァセタール化)
還流冷却器、温度計、攪拌装置、滴下漏斗を備えた 200ml容量の四つ口フラスコ にジォキサン 50ml、水 5ml、ポリビュルアルコール(PVA:数平均分子量 500) 10g および濃塩酸 4gを加え攪拌しながらァセトアルデヒド 3. 3gを滴下した。室温で 10時 間攪拌した後、重曹水中に反応溶液を注ぎ、析出した固体を水洗した後、真空乾燥 し、無色透明なァセタール化 PVA9. 3gを得た(ァセタール化率 66モル%)。
[0366] 合成例 2 (PVAのァセタール化)
ァセトアルデヒドを 5. 0g用いた以外は合成例 1と同様にしてァセタール化 PVAを 合成した(ァセタール化率 95モル0 /0)。
[0367] 実施例 1 (樹脂 (I)の製造)
還流冷却器、温度計、攪拌装置、滴下漏斗を備えた 100ml容量の四つ口フラスコ にジォキサン 20ml、合成例 1で得たァセタール化 PVA2.0g、ピリジン 1. 0gを入れよ く攪拌し溶解させた後、部位 B導入用の CH =CFCOF0. 5gをジェチルエーテル 5 mlに溶解したものを約 10分間かけて滴下した。滴下終了後、さらに約 3時間攪拌を 継続した後、数平均分子量 4600の部位 A導入用のパーフルォロポリエーテルカル ボン酸フロライド:
CF CF CF O (CF CF CF O) CF CF COF
(n = 26)
0. 2gを 10mlの HCFC— 225に溶解したものを約 15分間かけて滴下した。滴下終了 後さらに約 3時間攪拌を継続した。反応後のジォキサン溶液に、ジェチルエーテル 2 Omlを加え、溶液を分液漏斗に入れ、水洗、 2%塩酸水洗浄、さらに水洗を繰り返し た後、無水硫酸マグネシウムで乾燥し、次いで無水硫酸マグネシウムをろ過により取 り除いた。このエーテル溶液からエーテルを溜去して反応生成物を取り出した。
[0368] 得られた反応生成物をアセトン一 d6に溶解して19 F— NMRおよび1 H— NMRの測定 を行ない、それらの測定結果から表 1に示す組成であり、樹脂(I)であることがわかつ た。算出した物性は、部位 Aと Bの含有率(モル%)、 OH含有率(モル%)、鎖 Pの含 有量(重量%)およびフッ素含有量(重量%)である。なお、ポリマー MPが PVAなの で、ポリマー部位 Mのフッ素含有量は 0重量%である。
[0369] さらに、溶解性試験および屈折率をつぎの要領で行なった。結果を表 1に示す。
[0370] (溶解性試験)
メチルイソブチルケトン(MIBK)、メチルェチルケトン(MEK)、酢酸プロピル、イソ プロピルアルコール(IP A)および MIBKとジォキサンの 1/1 (重量比)混合溶剤の それぞれ 3gに 0. lgの反応生成物 (溶質)をそれぞれカ卩え、完全に溶解する場合を 溶解、一部でも溶解せずに残るものを不溶とする。
[0371] (屈折率)
反応生成物をシャーレ一にキャストすることによりフィルム化し、ァタゴ社製のアッベ 屈折率計 2Tを用い、 589nmでの屈折率 (nD)を測定する。
[0372] 実施例 2 (樹脂 (IA)の製造)
還流冷却器、温度計、攪拌装置、滴下漏斗を備えた 100ml容量の四つ口フラスコ にジォキサン 20ml、合成例 1で得たァセタール化 PVA2.0g、ピリジン 0. 5gを入れよ く攪拌し溶解させた後、数平均分子量 4600の部位 A導入用のパーフルォロポリエー テルカルボン酸フロライド:
CF CF CF O (CF CF CF O) CF CF COF
3 2 2 2 2 2 n 2 2
(n = 26)
1. 6gを 10mlの HCFC— 225に溶解したものを約 15分間かけて滴下した。滴下終了 後さらに約 3時間攪拌を継続した。反応後のジォキサン溶液を水中に注ぎ、析出した 固体を水洗した後、再度ジォキサンに溶解させた。このジォキサン溶液を水中に注 ぎ、析出した固体を真空乾燥し、無色透明な反応生成物を得た。
[0373] 得られた反応生成物をアセトン d6に溶解して19 F-NMRおよび1 H-NMRの測定 を行ない、それらの測定結果から表 1に示す組成であり、樹脂(IA)であることがわか つた。
[0374] また、実施例 1と同様にして溶解性試験を行ない、また屈折率を測定した。結果を 表 1に示す。
[0375] 実施例 3 (樹脂 (I)の製造)
還流冷却器、温度計、攪拌装置、滴下漏斗を備えた 50ml容量の四つ口フラスコに ジェチルエーテル 10ml、実施例 2で得られたパーフルォロポリエーテル構造を有す る含フッ素ポリマー 1. 0g、ピリジン 0. 5gを入れ良く攪拌し溶解させた後、部位 B導入 用の CH =CFCOFl . 2gをジェチルエーテル 5mlに溶解したものを約 10分間かけ
2
て滴下した。滴下終了後、さらに約 3時間攪拌を継続した。反応後のエーテル溶液を 分液漏斗に入れ、水洗、 2%塩酸水洗浄、さらに水洗を繰り返した後、無水硫酸マグ ネシゥムで乾燥し、次いでエーテル溶液をろ過により分離した。このエーテル溶液か らエーテルを溜去して反応生成物を取り出した。
[0376] 得られた反応生成物をアセトン d6に溶解して19 F-NMRおよび1 H-NMRの測定 を行ない、それらの測定結果から表 1に示す組成であり、樹脂(I)であることがわかつ た。
[0377] また、実施例 1と同様にして溶解性試験を行ない、また屈折率を測定した。結果を 表 1に示す。
[0378] 実施例 4 (樹脂 (I)の製造)
合成例 1で得たァセタール化 PVAに代えて、合成例 2で得たァセタール化 PVAを 用レ、、部位 A導入用のパーフルォロポリエーテルカルボン酸フロライド:
CF CF CF O (CF CF CF O) CF CF COF
3 2 2 2 2 2 n 2 2
(n = 26)
0. 8g用いた他は実施例 1と同様にして反応生成物(ジェチルエーテル溶液)を得た [0379] 得られた反応生成物をアセトン一 d6に溶解して19 F— NMRおよび1 H— NMRの測定 を行ない、それらの測定結果から表 1に示す組成であり、樹脂(I)であることがわかつ た。
[0380] また、実施例 1と同様にして溶解性試験を行ない、また屈折率を測定した。結果を 表 1に示す。
[0381] 合成例 3 (PVAのホルマール化)
還流冷却器、温度計、攪拌装置、滴下漏斗を備えた 200ml容量の四つ口フラスコ に水 30ml、メタノール 5ml、 PVAlOgおよび濃硫酸 4gを加え攪拌しながらホルムァ ルデヒドの 35%水溶液 29gを滴下した。室温で 48時間攪拌した後、重曹水中に反 応溶液を注ぎ、析出した固体を水洗した後、真空乾燥し、無色透明なホルマールイ匕 PVA8.9gを得た(ホルマール化率 41%)。
[0382] 合成例 4 (PVAのホルマール化)
溶媒にジォキサン 20mlと水 2mlの混合溶媒を用いた以外は合成例 3と同様にして ホルマール化 PVAを合成した(ホルマール化率 80%)。
[0383] 実施例 5 (樹脂 (I)の製造)
合成例 1で得たァセタール化 PVAに代えて、合成例 3で得たホルマール化 PVAを 用レ、、部位 B導入用の CH =CFCOFを 1. Og用いた他は実施例 1と同様にして反 応生成物(ジェチルエーテル溶液)を得た。
[0384] 得られた反応生成物をアセトン一 d6に溶解して19 F-NMRおよび1 H-NMRの測定 を行ない、それらの測定結果から表 1に示す組成であり、樹脂(I)であることがわかつ た。
[0385] また、実施例 1と同様にして溶解性試験を行ない、また屈折率を測定した。結果を 表 1に示す。
[0386] 実施例 6 (樹脂 (IA)の製造)
合成例 1で得たァセタール化 PVAに代えて、合成例 3で得たホルマール化 PVAを 用レ、た以外は実施例 2と同様にして反応生成物を得た。
[0387] 得られた反応生成物をアセトン一 d6に溶解して19 F— NMRおよび1 H— NMRの測定 を行ない、それらの測定結果から表 1に示す組成であり、樹脂(IA)であることがわか つた。 [0388] また、実施例 1と同様にして溶解性試験を行ない、また屈折率を測定した。結果を 表 1に示す。
[0389] 実施例 7 (樹脂 (I)の製造)
実施例 2で得られた樹脂 (IA)に代えて実施例 6で得られた樹脂 (IA)を用い、部位 B 導入用の CH =CFC〇Fを 1. Og用いた他は実施例 3と同様にして反応生成物(ジ
2
ェチルエーテル溶液)を得た。
[0390] 得られた反応生成物をアセトン一 d6に溶解して19 F— NMRおよび1 H— NMRの測定 を行ない、それらの測定結果から表 1に示す組成であり、樹脂(I)であることがわかつ た。
[0391] また、実施例 1と同様にして溶解性試験を行ない、また屈折率を測定した。結果を 表 1に示す。
[0392] 実施例 8 (樹脂 (I)の製造)
合成例 1で得られたァセタール化 PVAに代えて、合成例 4で得たホルマール化 PV
Aを用いた他は実施例 1と同様にして反応生成物(ジェチルエーテル溶液)を得た。
[0393] 得られた反応生成物をアセトン一 d6に溶解して19 F-NMRおよび1 H-NMRの測定 を行ない、それらの測定結果から表 1に示す組成であり、樹脂(I)であることがわかつ た。
[0394] また、実施例 1と同様にして溶解性試験を行ない、また屈折率を測定した。結果を 表 1に示す。
[0395] 比較試験例 1
架橋基を有するパーフルォロポリエーテル:
[0396] [化 61]
CH2 = CF
COOCH2CF2CF2~ (OCF2CF2CF2) n— OC3F7
(n ^ 20
[0397] について実施例 1と同様にして溶解性試験を行なった。結果を表 1に示す。
[0398] [表 1] X X X X X
議 〇 ο χ χ 〇 O
ο ο χ χ ο
O
χ ο χ χ ο
C
^
¾き律 (讕瞓% _ χ ο ο χ ο
φ- ο 〇 〇 χ 〇
¾鐘
: 〇 S ο ο 〇 ο ο ο 〇 ο ο ο 〇 ο 〇 〇 SI
Figure imgf000069_0001
Figure imgf000069_0002
施例 9一 14
(1)表面改質用コーティング組成物の調製
実施例 1、実施例 3、実施例 4、実施例 5、実施例 7、実施例 8でそれぞれ得た含フ ッ素樹脂(I) 0. 2gに活性エネルギー線硬化開始剤(b)として 2—メチルー 1 [4- (メチ ルチオ)フエニル] 2_モルフォリノプロパン 1_オン 2.0mgおよびメチルェチルケト ン 20gを加え、均一な表面改質用コーティング組成物を調製した(実施例 9一 14)。
[0400] (2)アクリル板の表面処理
上記(1)で得た表面改質用コーティング組成物を表面処理されていないアクリル板 上にスピンコーターにより室温で塗布し、室温で 30分間乾燥した。塗布は、スピンコ 一ターの回転速度を 300rpmで 3秒間保持した後、 lOOOrpmで 20秒間保持するこ とにより行なった。
[0401] ついで、乾燥後の被膜に高圧水銀灯を用い、大気中にて 1500mj/cm2の強度で 紫外線を照射して光硬化させて硬化被膜を作製した。
[0402] (3)物性評価
上記(2)で得た表面が改質されたアクリル板について以下の表面物性の評価を行 なった。結果を表 2に示す。
[0403] (摩擦係数)
往復動摩擦係数測定器 (東測精密工業 (株)製の AFT-15-1S。商品名)を用い、 接触面には綿布を使用して測定を行なう。各サンプルの摩擦係数の値は参考例 1で 作製した対照反射防止膜 (コントロール)の摩擦係数を基準(100)としたときの相対 値 (指数)で評価する。
[0404] (鉛筆硬度)
JIS K5400に準じて測定する。
[0405] (接触角)
接触角計(協和界面化学 (株)製の CA - DT)を用いて純水および n -へキサデカン の 3 μ 1の液量での接触角を測定する。これらの純水とへキサデカンの接触角から表 面自由エネルギー( γ s)を算出する。
[0406] (転落角)
硬化被膜上に η—へキサデカン (nHD)の 3 μ 1の液滴を形成し、試験台ごと傾けて いき、液滴が下方へ動き出したときに、試料台が水平面となす角度を転落角とする。 なお、 90度でも転落しな力、つたものは、「転落せず」とする。 [0407] (指紋付着性)
上記アクリル板の塗布面に指を押し付け、指紋の付きやすさを目視で判定する。評 価は、つぎの基準とする。
〇:指紋が付きにくいか、付レ、ても指紋が目立たなレ、。
△:指紋の付着が少ないが、その指紋は充分に確認できる。
X:未処理のアクリル板と同程度に明確に指紋が付着する。
[0408] (指紋拭取り性)
上記の指紋付着性試験後、付着した指紋をキムワイプ (商品名。十條キンバリー( 株)製)で 3往復拭き取り、付着した指紋の拭取りやすさを目視で判定する。評価はつ ぎの基準とする。
〇:指紋を完全に拭き取ることができる。
△:指紋の拭取り跡が残る。
X:指紋の拭取り跡が拡がり、除去することが困難である。
[0409] 参考例 1 (対照反射防止膜の作製: WO02/018457号パンフレットの実験例 24参 照)
(1)ヒドロキシル基含有含フッ素ァリルエーテルの単独重合体の調製
撹拌装置および温度計を備えた 100mlのガラス製四ッロフラスコに、パーフルォロ — (1, 1, 9, 9—テトラハイド口一 2, 5—ビストリフルォロメチルー 3, 6—ジォキサノネノー ノレ)を 20. 8gと [H (CF CF ) ] の 8· 0重量0 /0パーフルォ口へキサン溶液を 2· 2g入
2 2 3 2
れ、充分に窒素置換を行なったのち、窒素気流下 20°Cで 24時間撹拌を行なったと ころ、高粘度の固体が生成した。
[0410] 得られた固体をジェチルエーテルに溶解させたものをパーフルォ口へキサンに注 ぎ、分離、真空乾燥させ、無色透明な重合体 19. 2gを得た。
[0411] この重合体を19 F-NMR、 ^-NMR分析、 IR分析により分析したところ、上記含フ ッ素ァリルエーテルの構造単位のみからなり側鎖末端にヒドロキシル基を有する含フ ッ素重合体であった。また、 GPC分析 (溶媒 THF)により測定した数平均分子量は 7 2000、重量平均分子量は 118000であった。
[0412] (2)ひ—フルォロアクリロイル基を有する含フッ素ポリマー溶液の調製 還流冷却器、温度計、撹拌装置、滴下漏斗を備えた 200ml容量の四ッロフラスコ に、メチルェチルケトン(MEK) 50ml、上記(1)で得たヒドロキシル基含有含フッ素ァ リルエーテルの単独重合体 5. 0gと、ピリジン 2. 5gを仕込み 5°C以下に氷冷した。
[0413] 窒素気流下、撹拌を行ないながら、さらにひ—フルォロアクリル酸フルオライド: CH
2
= CFC〇Fの 2. 5gを MEKlOmlに溶解したものを約 10分間かけて滴下した。
[0414] 滴下終了後、室温まで温度を上げさらに 2. 0時間撹拌を継続した。
[0415] 反応後の MEK溶液を分液漏斗に入れ、水洗、 2%塩酸水洗浄、 5%NaCl水洗浄 、さらに水洗をくり返したのち、無水硫酸マグネシウムで乾燥し、ついで溶液を濾過に より分離し、 MEK溶液を得た。ポリマー濃度は 13重量%であった。
[0416] この MEK溶液を19 F—NMRにより分析した結果、
[0417] [数 1] = (モル。/。)
Figure imgf000072_0001
[0418] の共重合体であった。
[0419] NaCl板に塗布し、室温にてキャスト膜としたものを IR分析したところ、炭素-炭素二 重結合の吸収が 1661cm— 1に、 C =〇基の吸収が 1770cm— 1に観測された。
[0420] (3)コーティング用含フッ素樹脂組成物の調製
上記(2)で得た α—フルォロアクリロイル基を有する含フッ素ポリマー溶液に MEK をカ卩ぇ希釈し、ポリマー濃度を 5. 0重量%に調整した。
[0421] 得られたポリマー溶液 1 Ogに活性エネルギー線硬化開始剤として 2—ヒドロキシー 2— メチルプロピオフエノンを MEKに 1重量%の濃度に溶力した溶液を 1. 2g加え、均一 な溶 ί夜にした。
[0422] (4)反射防止膜の作製
上記コーティング組成物を未処理のアクリル板上にスピンコーターにより室温で 10
00— 2000回転でコートし、 50°Cで 5分間乾燥した。この際、乾燥後の膜厚が 90— 1
10nmとなるように、スピンコーターの回転数を調整した。
[0423] 乾燥後の被膜に高圧水銀灯を用い、室温にて 1500mj/cm2Uの強度で紫外線を 照射し、反射防止膜を作製した。
[0424] 比較例 1
表面未処理のアクリル板について、実施例 9と同様にして各種物性を測定した。結 果を表 2に示す。
[0425] [表 2]
Figure imgf000074_0001
実施例 15— 18 (反射防止膜表面の物性改善)
(1)表面改質用コーティング組成物の調製
実施例 1、実施例 4、実施例 7および実施例 8でそれぞれ得た含フッ素樹脂を用い た他は実施例 9と同様にして表面改質用コーティング組成物を調製した(実施例 15 一 18)。
[0427] (2)反射防止膜の表面改質
参考例 1で作製した対照反射防止膜上に上記(1)で得た表面改質用コーティング 組成物をスピンコーターにより室温でコートし、室温で 30分間乾燥した。スピンコート は、回転速度 300rpmで 3秒間保持した後、 lOOOrpmで 20秒間保持して行なった。
[0428] ついで、乾燥後の被膜に高圧水銀灯を用い、大気中にて 1500mj/cm2の強度で 紫外線を照射して光硬化させて反射防止膜を作製した。
[0429] (3)物性評価
上記(2)で得た表面改質された反射防止膜 (アクリル板上)について実施例 9と同 様にして、摩擦係数、鉛筆硬度、接触角、転落角、指紋付着性および指紋拭き取り 性の評価を行ない、加えて反射率の測定を行なった。結果を表 3に示す。
[0430] (反射率の測定)
反射率の測定は、 5° 正反射ユニットを装着した可視紫外分光器を用いて、波長 5 50nmの光について反射率を測定する。
[0431] 比較例 2
参考例 1で作製した対照反射防止膜 (コントロール)について、実施例 15と同様に して摩擦係数、鉛筆硬度、接触角、転落角、指紋付着性、指紋拭き取り性および反 射率の評価を行なった。結果を表 3に示す。
[0432] [表 3]
表 3
Figure imgf000076_0001
実施例 19一 26および比較例 3
(1)コーティング用含フッ素樹脂組成物の調製
参考例 1の(3)に記載される方法で調製したコーティング用含フッ素樹脂組成物に 、実施例 3、実施例 7、実施例 2および実施例 6でそれぞれ得られた含フッ素樹脂 50 mgをそれぞれカ卩え、均一な溶液として表面改質用コーティング組成物を調製した( 実施例 19一 22)。また同様に、参考例 1の(3)に記載される方法で調製した ティ ング用含フッ素樹脂組成物に、実施例 3、実施例 7、実施例 2および実施例 6でそれ ぞれ得られた含フッ素樹脂 lOOmgをそれぞれ加え(実施例 23— 26)均一な溶液とし て表面改質用コーティング組成物を調製した。さらに同様に、参考例 1の(3)に記載 される方法で調製したコーティング用含フッ素樹脂組成物に、実施例 1で得られた含 フッ素樹脂 lOOmgをカ卩ぇ(比較例 3)均一な溶液として表面改質用コーティング組成 物を調製した。
[0434] 得られた各表面改質用コーティング組成物について、実施例 1と同様にして屈折率 を測定した。結果を表 4に示す。
[0435] (2)反射防止膜の作製
上記(1)で得た表面改質用コーティング組成物を表面処理されていないアクリル板 上にスピンコーターにより室温でコートし、室温で 30分間乾燥した。スピンコートの回 転速度は 300rpmで 3秒間保持した後、 1000— 1500i"pmで 20秒間保持した。この 際、乾燥後の膜厚が 90— l lOnmとなるように、スピンコーターの回転数を調整した。
[0436] ついで、乾燥後の被膜に高圧水銀灯を用い、大気中にて 1500mj/cm2の強度で 紫外線を照射して光硬化させて反射防止膜を作製した。
[0437] (3)物性評価
上記(2)で得た表面処理アクリル板について実施例 15と同様にして、摩擦係数、 鉛筆硬度、接触角、転落角、指紋付着性、指紋拭き取り性および反射率の評価を行 なった。結果を表 4に示す。
[0438] [表 4]
Figure imgf000078_0001
施例 27— 28および比較例 4一 5 (表面改質剤層の耐溶剤性)
(1)コーティング用含フッ素樹脂組成物の調製
実施例 3および実施例 7でそれぞれ得た含フッ素樹脂(I)を用いた他は実施例 9と 同様にして表面改質用コーティング組成物を調製した(実施例 27— 28)。同じく実施 例 2および実施例 6でそれぞれ得た含フッ素樹脂 (IA)を用いた他は実施例 9と同様 にして表面改質用コーティング組成物を調製した(比較例 4一 5)。
[0440] (2)アクリル板の表面処理
上記(1)で得た表面改質用コーティング組成物を用レ、た他は実施例 9と同様にして アクリル板上に硬化被膜を作製した。
[0441] (3)耐溶剤性評価
上記(2)で得た表面改質アクリル板について、つぎの拭き取り処理を施し、拭き取り 前後の特性の変化を調べた。結果を表 5に示す。
[0442] (拭き取り処理)
硬化被膜全体をエタノールに浸した綿布で軽く 1往復拭き取る。
測定した項目は、摩擦係数の測定、 n -へキサデカンの接触角、指紋付着性および 指紋拭き取り性の測定であり、実施例 9と同様の方法で行なった。
[0443] [表 5]
表 5
Figure imgf000080_0001
[0444] 実施例 29
(1)コーティング用含フッ素樹脂組成物の調製
参考例 1の(2)に記載される方法で得たひ—フルォロアクリロイル基を有する含フッ 素ポリマー溶液に MEKを加え希釈し、ポリマー濃度を 5. 0重量%に調整した。この ポリマー溶液 560gに、実施例 3で得られた含フッ素樹脂 10gおよび酢酸プロピル 20 0gをカ卩え、攪拌した後、孔径 1 z mのポリプロピレン製フィルターでろ過してコーティ ング用組成物を調製した。
[0445] (2)反射防止フィルムの作成
基材は厚さ 100 x mの PETフィルムの片面に、ハードコート処理(屈折率 1. 52、厚 さ 5 μ m)を施したものを用い、上記(1)のコーティング用組成物の塗工を行なった。 塗工条件は、線数 180本/インチ、深度 40 / mのグラビアパターンを有する直径 23 0mmのマイクログラビアロールとドクターブレードを用いて、グラビアロール回転数 1 3rpm、搬送速度 5m/分の条件でハードコート処理面上に塗布し、 70°Cで乾燥の 後、窒素パージ下で 240W/cmの空冷メタルハライドランプ(アイグラフィックス(株) 製)を用いて紫外線を照射し硬化させ巻き取った。
[0446] (3)反射防止フィルムの評価
上記(2)で得た表面改質された反射防止フィルムにつレ、て実施例 9と同様にして、 摩擦係数、鉛筆硬度、接触角、指紋付着性および指紋拭き取り性の評価を行ない、 加えて下記の方法でヘイズ値、反射率の測定を行なった。結果を表 6に示す。
[0447] (ヘイズ値の測定)
フィルムのヘイズ値は、東洋精機製作所製 直読式ヘイズメーターを用いて、 JIS K6714に準じて測定する。
[0448] (反射率の測定)
フィルム裏面(コーティングしていない面)を # 240の紙やすりでよく研磨し、黒色ス プレーで塗装する。このフィルムの反射防止コーティング面の反射率を実施例 15記 載の反射率の測定法と同様にして測定する。
[0449] 比較例 6
反射防止コーティングを施していないフィルム(ハードコート処理面)について、実 施例 29の(3)と同様にして各種物性を測定した。結果を表 6に示す。
[0450] [表 6]
表 6
Figure imgf000082_0001
[0451] 合成例 5 (樹脂 (IB)の製造)
還流冷却器、温度計、攪拌装置、滴下漏斗を備えた 100ml容量の四つ口フラスコ にジォキサン 20ml、合成例 3で得たホルマール化 PVA2.0g、ピリジン 1. 0gを入れ よく攪拌し溶解させた後、部位 B導入用の CH =CFCOFl . 0gをジェチルエーテル
2
5mlに溶解したものを約 10分間かけて滴下した。滴下終了後、さらに約 3時間攪拌を 継続した。反応後のジォキサン溶液にジェチルエーテル 20mlをカ卩え、溶液を分液 漏斗に入れ、水洗、 2%塩酸水洗浄、さらに水洗を繰り返した後、無水硫酸マグネシ ゥムで乾燥し、次いで無水硫酸マグネシウムをろ過により取り除いた。このエーテル 溶液からエーテルを溜去して反応生成物を取り出した。
[0452] 得られた反応生成物をアセトン一 d6に溶解して19 F-NMRおよび1 H-NMRの測定 を行ない、それらの測定結果から表 7に示す組成であり、樹脂(IB)であることがわか つた。
[0453] [表 7] 合成例 5
樹脂組成
P VA 合成例 3
ホルマール化率 (モル ¾ 41
部位 A含有量 (モル%) 0
部位 B含有量 (モル 15. 5
OH含有量 (モル%) 43. 5
フッ素含有量 (重量%) 0
[0454] 実施例 30
(1)表面改質用コーティング組成物の調製
実施例 6で得た含フッ素樹脂 (IA) 0. lgに、合成例 5で得られた樹脂 (IB) 0. lgお よび活性エネルギー線硬化開始剤(b)として 2—メチルー 1 [4 (メチルチオ)フエニル] _2_モルフォリノプロパン 1_オン 2· 0mg、メチルェチルケトン 20gを加え、均一な 表面改質用コーティング組成物を調製した。
[0455] (2)アクリル板の表面処理
実施例 9と同様にしてアクリル板の表面処理を行った。
[0456] (3)物性評価
上記(2)で得た表面処理されたアクリル板について、実施例 9と同様にして摩擦係 数、鉛筆硬度、接触角、転落角、指紋付着性および指紋拭き取り性の評価を行った 。結果を表 8に示す。
[0457] (4)耐溶剤性評価
上記(2)で得た表面処理されたアクリル板について、実施例 27と同様にして耐溶 剤性の評価を行った。結果を表 9に示す。
[0458] 比較例 7
合成例 5で得た樹脂(IB)を用レ、た他は、実施例 9の( 1 )と同様にしてコ一ティング 組成物の調製を行い、これを用いて実施例 9の(2)と同様にしてアクリル板の表面処 理を行った。この表面処理されたアクリル板について、実施例 9の(3)と同様にして摩 擦係数、鉛筆硬度、接触角、転落角、指紋付着性および指紋拭き取り性の評価を行 つた。結果を表 8に示す。
[0459] [表 8] 表 8
Figure imgf000084_0001
[0460] [表 9] 表 9
Figure imgf000085_0001
[0461] 実施例 31
(1)反射防止膜の表面改質
実施例 30で得た表面改質用コーティング組成物を用いた他は、実施例 15の(2)と 同様にして反射防止膜の表面改質を行った。
[0462] (2)物性評価
上記(2)で得た表面改質された反射防止膜 (アクリル板上)について実施例 9と同 様にして、摩擦係数、鉛筆硬度、接触角、転落角、指紋付着性および指紋拭き取り 性の評価を行ない、加えて実施例 15と同様にして反射率の測定を行なった。結果を 表 10に示す。
[0463] 比較例 8
(1)反射防止膜の表面改質
比較例 7で得たコーティング組成物を用いた他は、実施例 15の(2)と同様にして反 射防止膜の表面改質を行った。
[0464] (2)物性評価
上記(1)で得た表面改質された反射防止膜 (アクリル板上)について実施例 9と同 様にして、摩擦係数、鉛筆硬度、接触角、転落角、指紋付着性および指紋拭き取り 性の評価を行ない、加えて実施例 15と同様にして反射率の測定を行なった。結果を 表 10に示す。
[0465] [表 10]
表 1 0
Figure imgf000087_0001
産業上の利用可能性
[0466] 本発明によれば、各種の塗膜の表面性状、特に表面滑り性 (低摩擦係数化)、表面 硬度、耐磨耗性、耐擦傷性、耐薬品性、汚染拭き取り性、撥水性、撥油性などを改 善し、本来の塗膜の表面に改質された表面性状を付与することができる。
[0467] 特に反射防止膜の透明性を損なうことなく表面滑り性を改善し、長期に亘つて反射 防止能を維持させることができる。

Claims

請求の範囲 [1] 部位 Aおよび部位 Bを同じ力、または異なる側鎖の少なくとも一部分に有する含フッ 素エチレン性ポリマー(IAB)、または部位 Aを側鎖の少なくとも一部分に有する含フ ッ素エチレン性ポリマー(IA)および部位 Bを側鎖の少なくとも一部分に有する含フッ 素エチレン性ポリマー(IB)からなる汎用溶剤可溶性の硬化性含フッ素樹脂(I)であ つて、 該部位 Aが式(1) :
[化 1]
R f — O— ( C X C F o C F , 0 --r C F C F a 0>-^ ~
C F , F 2し p O ~ n 3 し i ?20 ^ 4
(式中、 nl n2 n3 n4は同じかまたは異なり 0または 1以上の整数で、力つ nl +n2 +n3 + n4が 7— 40の整数; X1は同じかまたは異なり H Fまたは Cl ;Rfは炭素数 1 10の含フッ素アルキル基)で示されるポリフルォロポリエーテル鎖 Pが末端に 1個また は 2個以上結合してなる部位であり、
該部位 Bが自己架橋性官能基 Yが末端に 1個または 2個以上結合してなる部位であ り、かつ
該榭脂(I)を構成する含フッ素エチレン性ポリマーから部位 Aおよび部位 Bを除レ、た エチレン性ポリマー部位 M力 フッ素原子を含まないかまたはフッ素含有量が 10重 量%以下で水素原子の一部がフッ素原子に置換されているエチレン性ポリマー部位 である
硬化性含フッ素樹脂 (I)からなる硬化性表面改質剤。
[2] 汎用溶剤可溶性の硬化性含フッ素樹脂 (I)のフッ素含有量が 0. 1重量%以上で 3 5重量%以下である請求の範囲第 1項記載の硬化性表面改質剤。
[3] 前記エチレン性ポリマー部位 M力 式(2):
[化 2] CH CH
O
または式(3):
[化 3]
»(CHX2— C "
し =リ
(式中、 は Hまたは結合手; は H、 Fまたは CH )で示される構造単位を含む請求
3
の範囲第 1項または第 2項記載の硬化性表面改質剤。
[4] 前記部位 Bが有する自己架橋性官能基 Yが、
[化 4]
CX4 = CH7 、 一
Figure imgf000089_0001
(Xは H、 CHまたは F;Xは Hまたは CH )
3 3
よりなる群から選ばれる少なくとも 1種である請求の範囲第 1項一第 3項のいずれかに 記載の硬化性表面改質剤。
[5] 請求の範囲第 1項一第 4項のいずれかに記載の硬化性表面改質剤を基材上に塗 装したのち硬化させる基材の表面改質方法。
[6] 基材が、表面が反射防止膜で被覆された基材である請求の範囲第 5項記載の表面 改質方法。
[7] 反射防止膜および該反射防止膜直上に形成された請求の範囲第 1項一第 4項の いずれかに記載の硬化性表面改質剤の連続または不連続の硬化膜からなる表面改 質された多層構造の反射防止膜。
[8] (a)部位 Aおよび部位 Bを同じ力または異なる側鎖の少なくとも一部分に有する含 フッ素エチレン性ポリマー(IAB)、または部位 Aを側鎖の少なくとも一部分に有する 含フッ素エチレン性ポリマー(IA)および部位 Bを側鎖の少なくとも一部分に有する含 フッ素エチレン性ポリマー(IB)からなる汎用溶剤可溶性の硬化性含フッ素樹脂(I)で あって、
該部位 Aが式(1):
[化 5]
R f - O— (CX^CF^ F^-^ C F C F 20^~ γ
■^CF,CF?0 - n 4
(式中、 nl、 n2、 n3、 n4は同じかまたは異なり 0または 1以上の整数で、力つ nl+n2 +n3 + n4が 7— 40の整数; X1は同じかまたは異なり H、 Fまたは Cl;Rfは炭素数 1一 10の含フッ素アルキル基)で示されるポリフルォロポリエーテル鎖 Pが末端に 1個また は 2個以上結合してなる部位であり、
該部位 Bが自己架橋性官能基 Yが末端に 1個または 2個以上結合してなる部位であ り、かつ
該榭脂(I)を構成する含フッ素エチレン性ポリマーから部位 Aおよび部位 Bを除レ、た エチレン性ポリマー部位 M力 フッ素原子を含まないかまたはフッ素含有量が 10重 量%以下で水素原子の一部がフッ素原子に置換されているエチレン性ポリマー部位 である
硬化性含フッ素樹脂 (1)、および
(b)活性エネルギー線硬化開始剤
からなる活性エネルギー線架橋性の硬化性表面改質用組成物。
[9] (a)部位 Aおよび部位 Bを同じ力または異なる側鎖の少なくとも一部分に有する含 フッ素エチレン性ポリマー(IAB)、または部位 Aを側鎖の少なくとも一部分に有する 含フッ素エチレン性ポリマー(IA)および部位 Bを側鎖の少なくとも一部分に有する含 フッ素エチレン性ポリマー(IB)からなる汎用溶剤可溶性の硬化性含フッ素樹脂(I)で あってヽ
該部位 Aが式(1):
[化 6] l^, f し ( 2しト 2し 1 2 ^-^ / 1 1 v™v X 2 ^-^ ^ 2
■^C F , C F ? 0 - n 4
(式中、 nl、 n2、 n3、 n4は同じかまたは異なり 0または 1以上の整数で、力つ nl +n2 +n3 + n4が 7— 40の整数; X1は同じかまたは異なり H、 Fまたは Cl ;Rfは炭素数 1一 10の含フッ素アルキル基)で示されるポリフルォロポリエーテル鎖 Pが末端に 1個また は 2個以上結合してなる部位であり、
該部位 Bが自己架橋性官能基 Yが末端に 1個または 2個以上結合してなる部位であ り、かつ
該樹脂(I)を構成する含フッ素エチレン性ポリマーから部位 Aおよび部位 Bを除レ、た エチレン性ポリマー部位 M力 フッ素原子を含まなレ、かまたはフッ素含有量が 10重 量%以下で水素原子の一部がフッ素原子に置換されているエチレン性ポリマー部位 である
硬化性含フッ素樹脂 (1)、
(b)活性エネルギー線硬化開始剤、および
(c)ケトン系溶剤、酢酸エステル系溶剤およびアルコール系溶剤よりなる群から選ば れる少なくとも 1種の汎用溶剤または該汎用溶剤を含む混合溶剤
からなる活性エネルギー線架橋性の硬化性表面改質用組成物。
[10] (d)部位 Aおよび部位 Bを同じ力または異なる側鎖の少なくとも一部分に有する含 フッ素エチレン性ポリマー(IAB)、または部位 Aを側鎖の少なくとも一部分に有する 含フッ素エチレン性ポリマー(IA)からなる汎用溶剤可溶性でフッ素含有量が 1重量 %以上で 35重量%以下一 '素樹脂(II)であって、
該部位 Aが式(1):
[化 7]
Figure imgf000092_0001
■ Q¥ ,C¥ ?o n 4
(式中、 nl、 n2、 n3、 n4は同じかまたは異なり 0または 1以上の整数で、力つ nl+n2 +n3 + n4が 7— 40の整数; X1は同じかまたは異なり H、 Fまたは Cl;Rfは炭素数 1一 10の含フッ素アルキル基)で示されるポリフルォロポリエーテル鎖 Pが末端に 1個また は 2個以上結合してなる部位であり、
該樹脂(Π)を構成する含フッ素エチレン性ポリマーから部位 Aおよび部位 Bを除いた ポリマー部位 MAがフッ素原子を含まなレ、かまたはフッ素含有量が 10重量%以下で 水素原子の一部がフッ素原子に置換されているエチレン性ポリマー部位である 含フッ素樹脂 (11)、および
(e)反射防止膜材料
力 なる反射防止膜形成用組成物を基材に塗布して得られる反射防止膜。
[11] (1)式 (4):
-(Ν)-(Ο- (4)
[式中、構造単位 Νは式 (Ν):
[化 8]
\ C λ. ―レ ) ― (Ν)
(CX18X19)a(C = Q)h(O — R f
(式中、 X15および X16は同じかまたは異なり、 Hまたは F;X17は H、 F、 CHまたは CF;
3 3
X18および X19は同じかまたは異なり、 H、 Fまたは CF; Rf1は炭素数 1一 40の含フッ素 アルキル基または炭素数 2— 100のエーテル結合を有する含フッ素アルキル基に Y1 または Υ^Υ1は末端にエチレン性炭素-炭素二重結合を有する炭素数 2— 10の 1価 の有機基、 Υ2は水素原子がフッ素原子に置換されていてもよい架橋性環状エーテル 構造を 1一 5個有する炭素数 2 100の 1価の有機基)が 1一 3個結合している有機 基; aは 0— 3の整数; bおよび cは同じかまたは異なり、 0または 1)で示される含フッ素 エチレン性単量体に由来する構造単位、構造単位 Cは構造単位 Nを与える含フッ素 エチレン性単量体と共重合可能な単量体に由来する構造単位である]で示され、構 造単位 Nを 0.1 100モル%および構造単位 Cを 0— 99.9モル%含む数平均分子 量 500— 1000000の含フッ素ポリマー (IIINC)を 100モル0/。まで含む硬化性含フッ 素樹脂 (ΠΙ)、および
(2)部位 Aおよび部位 Bを同じ力^たは異なる側鎖の少なくとも一部分に有する含フ ッ素エチレン性ポリマー(IAB)、または部位 Aを側鎖の少なくとも一部分に有する含 フッ素エチレン性ポリマー(IA)からなる汎用溶剤可溶性でフッ素含有量が 1重量% 以上で 35重量%以下である含フッ素樹脂(II)であって、
該部位 Aが式(1):
[化 9]
R f -0 ~ CX^CF^C F^O"^ ■ CFCF20>-^- C F3
- CF CF90 - し ?
n 3 o n 4
(式中、 nl、 n2、 n3、 n4は同じかまたは異なり 0または 1以上の整数で、力つ nl+n2 +n3 + n4が 7— 40の整数; X1は同じかまたは異なり H、 Fまたは Cl;Rfは炭素数 1一 10の含フッ素アルキル基)で示されるポリフルォロポリエーテル鎖 Pが末端に 1個また は 2個以上結合してなる部位であり、
該榭脂(Π)を構成する含フッ素エチレン性ポリマーから部位 Aおよび部位 Bを除いた ポリマー部位 MAがフッ素原子を含まないかまたはフッ素含有量が 10重量%以下で 水素原子の一部がフッ素原子に置換されているエチレン性ポリマー部位である 含フッ素樹脂 (II)
力 なる硬化性樹脂組成物。
[12] (i)請求の範囲第 10項記載の反射防止膜材料 (e)または請求の範囲第 11項記載 の硬化性含フッ素樹脂 (m)、
(ii)請求の範囲第 10項記載の含フッ素樹脂 (11)、および
( )溶剤
からなる液状組成物を用いて塗布、乾燥し、膜を形成したのち硬化させる硬化物の 形成方法。
[13] 硬化物が反射防止膜である請求の範囲第 12項記載の形成方法。
PCT/JP2004/007179 2003-06-05 2004-05-26 硬化性表面改質剤およびそれを用いた硬化性表面改質用組成物 WO2004108772A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/559,657 US7842389B2 (en) 2003-06-05 2004-05-26 Curable surface modifier and curable composition for surface modification prepared from same
JP2005506744A JP4375335B2 (ja) 2003-06-05 2004-05-26 硬化性表面改質剤およびそれを用いた硬化性表面改質用組成物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-161227 2003-06-05
JP2003161227 2003-06-05
JP2003355455A JP2005015753A (ja) 2003-06-05 2003-10-15 硬化性表面改質剤およびそれを用いた硬化性表面改質用組成物
JP2003-355455 2003-10-15

Publications (1)

Publication Number Publication Date
WO2004108772A1 true WO2004108772A1 (ja) 2004-12-16

Family

ID=33513385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007179 WO2004108772A1 (ja) 2003-06-05 2004-05-26 硬化性表面改質剤およびそれを用いた硬化性表面改質用組成物

Country Status (5)

Country Link
US (1) US7842389B2 (ja)
JP (2) JP2005015753A (ja)
KR (1) KR100647159B1 (ja)
TW (1) TWI250170B (ja)
WO (1) WO2004108772A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1772918A1 (en) * 2004-07-23 2007-04-11 Shinetsu Chemical Co., Ltd. Curable resin composition for fuel cell electrolyte film and electrolyte film, process for producing the same, electrolyte film/electrode assembly, and process for producing the same
US7842389B2 (en) * 2003-06-05 2010-11-30 Daikin Industries, Ltd. Curable surface modifier and curable composition for surface modification prepared from same

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8530054B2 (en) * 2006-09-27 2013-09-10 3M Innovative Properties Company Solar control multilayer film
KR101249219B1 (ko) * 2006-09-29 2013-04-03 삼성전자주식회사 공중합체, 뱅크 형성용 조성물 및 이를 이용한 뱅크 형성방법
CN101611109B (zh) * 2007-03-08 2013-02-20 木本股份有限公司 硬涂膜及层叠体
US8192898B2 (en) * 2007-03-30 2012-06-05 Daikin Industries, Ltd. Composition for fluorine-containing volume holographic data recording material and fluorine-containing volume holographic data recording media made of same
JP5007812B2 (ja) * 2007-06-01 2012-08-22 信越化学工業株式会社 パーフルオロポリエーテル変性アミノシランを含む表面処理剤並びに該アミノシランの硬化被膜を有する物品
KR101439538B1 (ko) 2007-08-14 2014-09-12 삼성전자주식회사 보호막 형성용 조성물 및 이에 의한 보호막을 포함한유기박막 트랜지스터
TW201024088A (en) * 2008-12-31 2010-07-01 Ichia Tech Inc Coating structure, chemical composition for forming the same, and method of forming the same
GB0919014D0 (en) 2009-10-30 2009-12-16 3M Innovative Properties Co Soll and stain resistant coating composition for finished leather substrates
TW201129831A (en) * 2010-02-26 2011-09-01 Ushine Photonics Corp Transparent conductive laminate comprising visual light adjustment layers
US20130084459A1 (en) * 2011-09-30 2013-04-04 3M Innovative Properties Company Low peel adhesive
JP6032545B2 (ja) 2012-10-26 2016-11-30 株式会社リコー クリーニング装置及び画像形成装置
JP2015096877A (ja) * 2013-11-15 2015-05-21 リンテック株式会社 ハードコートフィルムおよびハードコートフィルムの製造方法
JPWO2015115492A1 (ja) * 2014-01-30 2017-03-23 旭硝子株式会社 太陽電池用防眩機能付きガラス板
JP6277819B2 (ja) * 2014-03-26 2018-02-14 富士ゼロックス株式会社 パーフルオロアルキレンエーテル含有化合物および表面保護膜
JP6402643B2 (ja) * 2014-03-31 2018-10-10 信越化学工業株式会社 含フッ素アクリル化合物及びその製造方法並びに硬化性組成物、基材
JP6451279B2 (ja) * 2014-03-31 2019-01-16 信越化学工業株式会社 フルオロポリエーテル基含有ポリマー変性シラン、表面処理剤及び物品
TW201634600A (zh) * 2015-03-02 2016-10-01 Asahi Glass Co Ltd 粉體塗料用組合物、粉體塗料及塗裝物品
US10544260B2 (en) 2017-08-30 2020-01-28 Ppg Industries Ohio, Inc. Fluoropolymers, methods of preparing fluoropolymers, and coating compositions containing fluoropolymers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212325A (ja) * 1997-01-29 1998-08-11 Daikin Ind Ltd 共重合体およびそれを含む防汚加工剤
JP2000017028A (ja) * 1998-04-30 2000-01-18 Jsr Corp 硬化性樹脂組成物および反射防止膜
JP2001200019A (ja) * 2000-01-21 2001-07-24 Shin Etsu Chem Co Ltd 高分子化合物、反射防止膜材料及びパターン形成方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0247489B1 (en) * 1986-05-28 1993-08-25 Daikin Industries, Limited Fluorine containing water and oil repellent composition
EP0333083A3 (en) * 1988-03-16 1990-05-30 Daikin Industries, Limited Water- and oil-repellent antifouling finishing agent
WO2002018457A1 (fr) 2000-08-29 2002-03-07 Daikin Industries, Ltd. Fluoropolymère durcissable, composition de résine durcissable le contenant, et film antireflet
WO2003002628A1 (en) * 2001-06-27 2003-01-09 Daikin Industries, Ltd. Surface-treating agent composition and process for producing the same
JP2005015753A (ja) * 2003-06-05 2005-01-20 Daikin Ind Ltd 硬化性表面改質剤およびそれを用いた硬化性表面改質用組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212325A (ja) * 1997-01-29 1998-08-11 Daikin Ind Ltd 共重合体およびそれを含む防汚加工剤
JP2000017028A (ja) * 1998-04-30 2000-01-18 Jsr Corp 硬化性樹脂組成物および反射防止膜
JP2001200019A (ja) * 2000-01-21 2001-07-24 Shin Etsu Chem Co Ltd 高分子化合物、反射防止膜材料及びパターン形成方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842389B2 (en) * 2003-06-05 2010-11-30 Daikin Industries, Ltd. Curable surface modifier and curable composition for surface modification prepared from same
EP1772918A1 (en) * 2004-07-23 2007-04-11 Shinetsu Chemical Co., Ltd. Curable resin composition for fuel cell electrolyte film and electrolyte film, process for producing the same, electrolyte film/electrode assembly, and process for producing the same
EP1772918A4 (en) * 2004-07-23 2011-05-04 Shinetsu Chemical Co CURABLE RESIN COMPOSITION FOR A FUEL CELL ELECTROLYTE FILM AND ELECTROLYTE FILM, PROCESS FOR ITS MANUFACTURE, ELECTROLYTE FILM / ELECTRODE ASSEMBLY AND PRODUCTION PROCESS THEREFOR

Also Published As

Publication number Publication date
KR100647159B1 (ko) 2006-11-23
JP2005015753A (ja) 2005-01-20
TW200512221A (en) 2005-04-01
KR20060018873A (ko) 2006-03-02
TWI250170B (en) 2006-03-01
US20060147722A1 (en) 2006-07-06
JPWO2004108772A1 (ja) 2006-07-20
JP4375335B2 (ja) 2009-12-02
US7842389B2 (en) 2010-11-30

Similar Documents

Publication Publication Date Title
WO2004108772A1 (ja) 硬化性表面改質剤およびそれを用いた硬化性表面改質用組成物
US9377563B2 (en) Hardcoats comprising perfluoropolyether polymers with poly(alkylene oxide) repeat units
JP3742861B2 (ja) 硬化性含フッ素ポリマー、それを用いた硬化性樹脂組成物および反射防止膜
JP3912288B2 (ja) 無機・有機複合材料からなる表面処理剤
US7413807B2 (en) Fluoroalkyl silicone composition
WO2011129426A1 (ja) 防汚性付与剤
JP2008040262A (ja) 反射防止膜形成用の硬化性組成物
JP2006037024A (ja) 反射防止膜形成用組成物
JP4285238B2 (ja) 含フッ素不飽和化合物、含フッ素重合体、およびそれらを用いた硬化性組成物
KR100874307B1 (ko) 가수분해성 금속 알콕시드 부위를 갖는 불소 함유 화합물,상기 화합물로부터 얻어지는 경화성 불소 함유 중합체 및상기 중합체를 포함하는 경화성 불소 함유 수지 조성물
US20050249956A1 (en) Stain repellent optical hard coating
JP5556665B2 (ja) 含フッ素重合体、該含フッ素重合体よりなる硬化性樹脂組成物および反射防止膜
JP5744011B2 (ja) 防汚性付与剤
JP2005336484A (ja) 硬化性含フッ素ポリマー、それを用いた硬化性樹脂組成物および反射防止膜
JP4179306B2 (ja) 硬化性含フッ素ポリマー、それを用いた硬化性樹脂組成物および反射防止膜
JP4983605B2 (ja) α,β−不飽和エステル基を含有する含フッ素ノルボルネン誘導体または含フッ素ノルボルナン誘導体を含む硬化性含フッ素ポリマー組成物
JP4442533B2 (ja) 含フッ素不飽和化合物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005506744

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057023171

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006147722

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10559657

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057023171

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10559657

Country of ref document: US