WO2004106253A1 - 化学強化ガラスおよびその製造方法 - Google Patents

化学強化ガラスおよびその製造方法 Download PDF

Info

Publication number
WO2004106253A1
WO2004106253A1 PCT/JP2004/007103 JP2004007103W WO2004106253A1 WO 2004106253 A1 WO2004106253 A1 WO 2004106253A1 JP 2004007103 W JP2004007103 W JP 2004007103W WO 2004106253 A1 WO2004106253 A1 WO 2004106253A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemically strengthened
strengthened glass
glass
stress
ion exchange
Prior art date
Application number
PCT/JP2004/007103
Other languages
English (en)
French (fr)
Other versions
WO2004106253A8 (ja
Inventor
Mizuki Nishi
Shinichi Aratani
Original Assignee
Central Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003150000A external-priority patent/JP4535692B2/ja
Priority claimed from JP2003150001A external-priority patent/JP4289927B2/ja
Priority claimed from JP2003160672A external-priority patent/JP4289931B2/ja
Application filed by Central Glass Company, Limited filed Critical Central Glass Company, Limited
Publication of WO2004106253A1 publication Critical patent/WO2004106253A1/ja
Publication of WO2004106253A8 publication Critical patent/WO2004106253A8/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions

Definitions

  • the present invention relates to a chemically strengthened glass, particularly to a chemically strengthened glass useful in the field of electronic materials used for touch panels and the like, for automobiles and buildings, and to a method for producing the same.
  • tempered glass is becoming thinner and its tempering degree is increasing. Since it is difficult to produce glass with a thickness of 3 mm or less, especially 2 mm or less, using the commonly used wind-cooling method, chemical strengthening is often used for glass of 2 mm or less. Chemically tempered glass also has the advantage that it can generally achieve higher strength than tempered glass produced by the air cooling method.
  • the stress pattern formed inside the glass differs greatly between the chemically strengthened glass and the air-cooled tempered (physically strengthened) glass. is there. Since the air-cooled tempered glass utilizes the temperature difference and viscous flow between the glass surface layer and the inner layer, the outline of the stress pattern is a shape approximated by a quadratic curve, for example. On the other hand, since chemically strengthened glass uses, for example, ion exchange in the surface layer, it depends strictly on Fick's diffusion rule, but is often approximated by a straight line. Attempting to obtain a given surface compressive stress value with wind-cooled tempered glass necessarily increases the tensile stress in the inner layer.
  • soda-lime glass uses many methods to replace atoms with a small ionic radius with atoms with a large ionic radius, and among them, many chemically strengthened glasses are immersed in a chemical strengthening treatment tank, a so-called immersion method. It is manufactured. That is, the glass is immersed in a high-temperature chemical strengthening treatment solution, for example, a potassium nitrate solution, and a sodium ion in the glass is replaced with a potassium ion in potassium nitrate to form a compressive stress layer on the surface. Further, as a chemical strengthening treatment liquid when glass contains lithium, sodium nitrate or a mixed salt of sodium nitrate and potassium nitrate is often used.
  • a chemical strengthening treatment liquid when glass contains lithium, sodium nitrate or a mixed salt of sodium nitrate and potassium nitrate is often used.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-160932
  • Patent Document 2 Japanese Patent Publication No. 59-37451
  • Patent Document 3 JP-A-2000-344550
  • Non-Patent Document l HMGarfinkel et al., The Glass Industry, 50 (1969), p.76. Summary of the Invention
  • An object of the present invention is to provide a cutable chemically strengthened glass having a predetermined strength.
  • Another object of the present invention is to provide a method for producing the chemically strengthened glass.
  • a chemical stressed layer in which a compression stress layer is formed on a glass surface layer by ion exchange is provided.
  • Chemically strengthened glass is characterized by having two types of compressive stress pattern A in the compressive stress layer, near the glass surface, and near the glass surface, and compressive stress pattern B on the inner layer side of the glass. Provided.
  • the temperature of the immersion liquid after the immersion treatment for ion exchange is determined.
  • the method for producing a chemically strengthened glass (first method) is also characterized in that the method is maintained in an environment at a temperature higher than 10 ° C.
  • the temperature of the immersion liquid is determined after the first immersion treatment for ion exchange. And a second immersion treatment at a high temperature of not less than 20 ° C. and not more than 50 ° C. for not less than 10 minutes and not more than 60 minutes (second method).
  • a chemically strengthened glass produced by the method of the third aspect.
  • the chemically strengthened glass according to the first feature of the present invention can be manufactured by the above first or second method.
  • FIG. 1 is a schematic diagram of a stress pattern shown in Example 1.
  • FIG. 2 is a schematic diagram of a stress pattern shown in Example 2.
  • FIG. 3 is a schematic view of a stress pattern shown in Comparative Example 1.
  • FIG. 4 is a schematic view of a stress pattern shown in Comparative Example 2.
  • FIG. 5 is a schematic diagram showing stress patterns of chemically strengthened glass and air-cooled (physical) strengthened glass.
  • FIG. 6 is a schematic view showing a special example of a stress pattern A.
  • the first feature of the present invention will be described in detail below. According to the first feature, a chemically strengthened glass capable of stably cutting is provided.
  • the stress pattern A and the stress pattern B are each approximated by a linear function
  • the stress pattern A and the stress pattern B are the above-mentioned chemically strengthened glass having different inclinations.
  • the conventional chemically strengthened glass that does not have another stress pattern that is, only one type of conventional chemically strengthened glass has a large value of breaking strength, but has a problem that it is difficult to cut. On the other hand, if it is easy to cut, the breaking strength will decrease.
  • the surface stress value obtained from the stress pattern A is obtained by setting the stress pattern B to the glass surface. This is a chemically strengthened glass whose value is smaller than the tentative surface stress value obtained from the line extended to. If the value is large, it will be cut off.
  • the ratio of the surface stress value obtained from the stress pattern A to the temporary surface stress value obtained from the line obtained by extending the compressive stress pattern B to the glass surface is 0.8 or more and 0.95 or more.
  • the chemically strengthened glass described above is as follows.
  • the ratio to the temporary surface stress value obtained from the line that extends the stress pattern B to the glass surface is 0.8 or more and 0.95 or less. If it is less than 0.8, the surface compressive stress is reduced, and the strength of the glass is practically reduced.
  • the ratio exceeds 0.95 the cutting property decreases. More preferably, it is 0.85 or more and 0.93 or less.
  • the inclination of the stress pattern A may be opposite to that of the stress pattern B as shown in FIG.
  • the surface compressive stress is always larger than the stress value of the inner layer, but in the chemically strengthened glass of the present invention, the stress value of the portion slightly entering the inner layer is larger than the surface compressive stress value. May be indicated.
  • chemically strengthened glass having such a stress pattern falls within the scope of the present invention.
  • the thickness of the compressive stress layer based on the stress pattern A is 2 ⁇ ⁇ ⁇ or more and 15 / m or less.
  • the thickness of the compressive stress layer due to the stress pattern A is smaller than 2 ⁇ m, the effect on the cuttability is reduced, and when the thickness of the compressive stress layer due to the stress pattern A exceeds 15 ⁇ m, the glass is broken due to the properties of the tempered glass. The strength is substantially reduced. 3 ⁇ m or more and 9 ⁇ m or less are more preferable.
  • the stress pattern in the chemically strengthened glass for simplifying the production control of the chemically strengthened glass has been described by first-order approximation. Strictly speaking, however, there are naturally cases where the stress pattern cannot be approximated by a linear function. This is because, as described above, ion exchange basically follows Fick's diffusion law, and the diffusion law is not a linear function, so it is strictly necessary to deviate from an approximated straight line. It is. In addition, stress generation in glass is affected by many factors such as temperature distribution, deformation, and plate thickness, in addition to ion exchange. If straight line approximation is not possible or difficult, approximation should return to the principle of whether the generated stress pattern requires more than one function that can be represented by a single function.
  • the approximation has one pole or Use a function without poles.
  • it is conventional chemically strengthened glass.
  • it becomes the chemically strengthened glass of the present invention.
  • the region where function approximation should be considered should be the compressive stress region. Since the cuttability and breaking strength of glass depend on the compressive stress value, and in the region where the tensile stress starts to be a constant value, the stress generation may become unstable, which may cause an error in the determination. is there.
  • the thickness of the compressive stress layer and the value of the compressive stress of the chemically strengthened glass are greatly influenced by the processing temperature and the processing time during the chemical strengthening, as well as by the selection of the processing solution and its activation characteristics. Absent. Further, it differs depending on the ion exchange state and the crystallization state in the glass. However, it is possible to obtain chemically strengthened glass with improved breaking strength while maintaining the breaking strength at a practical level.
  • the second feature of the present invention is described in detail below. According to this second feature, a method (first method) for producing chemically strengthened glass having strength and cuttability is provided.
  • the first method it is extremely important to perform the treatment at a temperature higher than the temperature of the immersion liquid by 10 ° C or more after the immersion treatment in order to improve the cuttability of the chemically strengthened glass. At processing temperatures below 10 ° C, it may be difficult to improve cuttability.
  • the immersion liquid is maintained at a temperature higher than the immersion liquid temperature by 10 ° C. to 50 ° C. for 10 minutes to 60 minutes. If the temperature is less than 10 ° C, the cutability of the chemically strengthened glass may decrease, and if the temperature exceeds 50 ° C, the strength of the chemically strengthened glass may decrease. Further, there may be a problem that the immersion liquid may be deteriorated. In some cases, the problem of deformation of chemically strengthened glass products also occurs. The reason why the duration is set to 10 minutes or more and 60 minutes or less is that if the duration is less than 10 minutes, the cutability of the chemically strengthened glass may decrease, and if the duration is more than 60 minutes, the strength of the chemically strengthened glass may decrease. Also, in some cases, the problem of deformation of the chemically strengthened glass product occurs.
  • the temperature of the immersion liquid may be set to 450 ° C. or more and 510 ° C. or less. If the temperature is lower than 450 ° C, it may be difficult to improve the cutability of chemically strengthened glass, and production may take a long time, resulting in extremely poor productivity. If the temperature exceeds 510 ° C, a problem may occur that the strength of the chemically strengthened glass decreases. [0025] Further, for example, after the immersion treatment, the temperature may be maintained at a temperature higher than the immersion liquid temperature by 50 ° C to 150 ° C for 1 minute to 30 minutes.
  • the cutability of the chemically strengthened glass may decrease, and if the temperature exceeds 150 ° C, the strength of the chemically strengthened glass may decrease. Further, there is a problem that the immersion liquid is deteriorated. In some cases, the problem of deformation of chemically strengthened glass products also arises. The reason why the duration is set to 1 minute or more and 30 minutes or less is that if it is less than 1 minute, the cutability of the chemically strengthened glass may decrease, and if it is 30 minutes or more, the strength of the chemically strengthened glass may decrease. Also, in some cases, the problem of deformation of chemically strengthened glass products may occur.
  • the immersion liquid temperature may be 410 ° C or more and 500 ° C or less. Good.
  • the third feature of the present invention will be described in detail below. According to the third feature, a method (second method) for stably producing a cutable chemically strengthened glass is provided.
  • the temperature of the second immersion liquid is set to be higher than the temperature of the first immersion liquid by 20 ° C or more and 50 ° C or less. This is because the cuttability of the glass decreases, and at temperatures exceeding 50 ° C, the strength of the chemically strengthened glass obtained decreases. In addition, there is a problem that the ion exchange liquid may be deteriorated.
  • the reason why the time of the second immersion treatment is set to 10 minutes or more and 60 minutes or less is that the cutability of the chemically strengthened glass obtained in less than 10 minutes is reduced, and that the glass obtained in 60 minutes or more is chemically reinforced. This is because the strength of the resin decreases.
  • the first immersion treatment temperature may be set to 450 ° C or more and 510 ° C or less. If the temperature is lower than 450 ° C, the productivity of the chemically strengthened glass obtained may be extremely poor due to the time required to improve the cutability of the resulting chemically strengthened glass. If the temperature exceeds 510 ° C, there may be a problem that the strength of the obtained chemically strengthened glass decreases.
  • the chemically strengthened glass produced by the first method and the second method is a chemically strengthened glass having both cuttability and strength.
  • These chemically strengthened glasses may have the properties of the sword-shaped tempered glass according to the first aspect of the present invention.
  • the chemically strengthened glass produced by the first method and the second method can be a chemically strengthened glass having a surface hardness of 560 to 590 kgf / cm 2 . Soda stone manufactured by conventional methods The surface hardness of ash-based chemically strengthened glass is said to be 590-610 kgf m 2 .
  • the chemically strengthened glass obtained by the method according to the second aspect of the present invention has a surface hardness of 560 to 590 kgfm 2 . If it exceeds 590 kgf m 2 , it is the same as conventional chemically strengthened glass, and if the cutability is poor, it may not be possible to cut it. Even if it can be cut, it may deviate from the desired cutting line, and glass powder tends to occur frequently on the surface.
  • the chemically strengthened glass of the present invention is characterized in that it has a strength similar to that of conventional chemically strengthened glass and also has a cutting property. This is because, unlike conventional chemically strengthened glass, the stress pattern does not depend only on Fick's law. Therefore, the surface hardness has characteristics that are slightly different from the hardness of conventional chemically strengthened glass.
  • soda lime glass having a strain point of 470 ° C or more and 530 ° C or less may be subjected to ion exchange treatment.
  • Soda-lime glass with a strain point lower than 470 ° C has low chemical durability and hardness, and thus its utility as chemically strengthened glass is greatly reduced.
  • soda-lime glass with a strain point higher than 530 ° C decreases the cuttability of the glass and the chemical strengthening. Glasses other than soda-lime glass are expensive because of poor productivity, so their practicality is small even if they have cutting properties and strength.
  • Examples 1-2, Examples 3-6, and Examples 7-9 illustrate the first, second, and third features of the present invention, respectively.
  • a 0.7 mm thick soda-lime-based float glass is immersed in potassium nitrate molten salt at 460 ° C for 10 hours, subjected to ion exchange treatment, and then transferred to a cooling bath set at 510 ° C. And held therein for an additional 60 minutes. Thereafter, cooling was carried out at a usual cooling rate (about 10 ° C./min) to obtain a predetermined chemically strengthened glass.
  • Figure 1 shows the stress pattern of this glass. In the figure, C indicates compressive stress and T indicates tensile stress. Thus, two types of compression stress pattern A, which is closer to the glass surface, and compression stress pattern B, which is closer to the glass inner layer, are used.
  • This stress pattern shows the result of cutting and polishing a chemically strengthened glass and observing it using a Babinet compensator and an optical microscope.
  • the ratio of the surface stress value obtained from the stress pattern A to the temporary surface stress value obtained from the line obtained by extending the compressive stress pattern B to the glass surface was 0.93.
  • the thickness of the compressive stress layer according to the stress pattern A was 4 zm.
  • This chemically strengthened glass was subjected to scribe (loading weight: 2 kg) and a cutting test in accordance with a general cutting operation using a commercially available carbide wheel tip.
  • scribe loading weight: 2 kg
  • cutting test in accordance with a general cutting operation using a commercially available carbide wheel tip.
  • a 0.55 mm thick soda-lime-based float glass was immersed in a molten salt of potassium nitrate at 470 ° C for 4 hours to perform the first ion exchange treatment. After the ion exchange treatment, the sample was cooled at a normal cooling rate (about 10 ° C / min) to obtain a predetermined chemically strengthened glass.
  • Figure 2 shows the stress pattern of this glass. The ratio of the surface stress value obtained from the stress pattern A to the temporary surface stress value obtained from the line extending the compressive stress pattern B to the glass surface was 0.89. The thickness of the compressive stress layer due to the stress pattern A was 5 ⁇ m.
  • This chemically strengthened glass was subjected to scribe (loading weight: 2kg) and a cutting test in accordance with ordinary cutting work using a commercially available carbide wheel tip. Was.
  • a 0.7 mm-thick soda-lime float glass was immersed in potassium nitrate molten salt at 460 ° C for 10 hours, subjected to ion exchange treatment, and then transferred to a cooling bath set at 380 ° C. Then, it was cooled at a normal cooling rate (about 10 ° C / min) to obtain a predetermined chemically strengthened glass product.
  • Figure 3 shows the stress pattern of this glass. Thus, it has one type of stress pattern.
  • the ratio of the surface stress value obtained from the stress pattern A to the temporary surface stress value obtained from the line extending the compressive stress pattern B to the glass surface was 1.0.
  • the compressive stress layer thickness (stress patterns A and B) was 33 / im.
  • the chemically strengthened glass was subjected to a scribe (loading weight: 2 kg) and a cutting test according to a general cutting operation using a commercially available carbide wheel tip. As a result, slip was remarkable. Therefore, when the cutting pressure was increased (final load weight: 7 kg) and examined, a large amount of scribed linear force and flaky glass powder was generated, and it could not be used as a chemically strengthened glass product. . In addition, there were some places that could not be cut along the scribe line, that is, some were off the cut line.
  • a 0.7 mm-thick soda-lime-based float glass is immersed for 10 hours in a molten salt of potassium nitrate at 460 ° C for 10 hours, and then chemically strengthened glass is transferred to a cooling bath set at 550 ° C. And held therein for an additional 60 minutes. Thereafter, cooling was carried out at a usual cooling rate (about 10 ° C./min) to obtain a predetermined chemically strengthened glass.
  • Figure 4 shows the stress pattern of this glass.
  • the ratio of the surface stress value obtained from the stress pattern A to the provisional surface stress value obtained from the line extending the compressive stress pattern B to the glass surface was 0.7.
  • the thickness of the compressive stress layer according to the stress pattern A was 17 / im.
  • a scribe (loading weight: 2 kg) and a breaking test were performed on the chemically strengthened glass using a commercially available carbide wheel tip in accordance with a general cutting operation. As a result, slip was remarkable. Then, when the load weight was examined at 5 kg, this chemically strengthened glass was broken.
  • Example 3_6 illustrates the second feature of the present invention.
  • a 0.7 mm thick soda-lime-based float glass was immersed in a potassium nitrate molten salt at 460 ° C for 10 hours to perform an ion exchange treatment. Immediately after that, the tempered glass was moved to a cooling bath set at 510 ° C. and kept therein for 60 minutes. After that, it was cooled at the usual cooling rate (about 10 ° C / min) to obtain a predetermined chemically strengthened glass product. The surface hardness of the chemically strengthened glass product was 570 kgf m 2 .
  • This chemically strengthened glass was prepared using a commercially available carbide wheel tip, which was suitable for general cutting work. After performing a shear scribe (load weight: 2 kg) and a cutting test, it was possible to cut without any problems.
  • a soda-lime-based float glass having a thickness of 0.55 mm was placed in a potassium nitrate molten salt at 470 ° C.
  • the chemically strengthened glass was subjected to a scribe (load weight: 2 kg) and a cutting test according to a general cutting operation using a commercially available carbide wheel tip, and as a result, the glass could be cut without any problem.
  • a 0.7 mm thick soda-lime-based float glass was immersed in a potassium nitrate molten salt at 410 ° C for 24 hours to perform an ion exchange treatment. Immediately thereafter, the tempered glass was moved to a cooling bath set at 550 ° C., and was further kept therein for 3 minutes. Thereafter, cooling was performed at a normal cooling rate (about 10 ° C / min) to obtain a predetermined chemically strengthened glass product. The surface hardness of this chemically strengthened glass product was 585 kgf / cm 2 .
  • This chemically strengthened glass was subjected to scribe (loading weight: 2 kg) and a cutting test in accordance with a general cutting operation using a commercially available carbide wheel tip.
  • scribe loading weight: 2 kg
  • cutting test in accordance with a general cutting operation using a commercially available carbide wheel tip.
  • Soda-lime float glass with a thickness of 1mm was subjected to a 2 hour chemical strengthening treatment with potassium nitrate molten salt at 490 ° C, and then kept at 540 ° C for 2 minutes to obtain a predetermined chemically strengthened glass.
  • the surface hardness of this chemically strengthened glass product was 585 kgf / cm 2 .
  • the chemically strengthened glass was subjected to scribing (loading weight: 2kg) and a cutting test in accordance with a general cutting operation using a commercially available carbide wheel tip. As a result, slip was remarkable. Therefore, when the cutting pressure was increased (final load weight: 7 kg) and examined, many glass powders with scribed line force were generated and could not be used as chemically strengthened glass products. In addition, there were some places that could not be cut along the scribe line, that is, some were off the cut line.
  • a soda-lime-based float glass having a thickness of 0.55 mm was placed in a potassium nitrate molten salt at 470 ° C.
  • the chemically strengthened glass was subjected to scribing (loading weight: 2kg) and a cutting test in accordance with a general cutting operation using a commercially available carbide wheel tip. As a result, slip was remarkable. Therefore, when the cutting pressure was increased (final load weight: 5 kg), the chemically strengthened glass was broken.
  • the chemically strengthened glass was subjected to scribing (loading weight: 2kg) and a cutting test in accordance with a general cutting operation using a commercially available carbide wheel tip. As a result, slip was remarkable. Therefore, the cutting pressure was increased (final load weight: 5 kg) and examined, but it was not possible to perform cutting along the cutting line. [0059] As shown from the results of Examples 3 to 6 above, by adding the step of the second feature of the present invention after the ion exchange step, it was possible to obtain a chemically strengthened glass that is easily cut. . The surface hardness of the glass was measured using a commercially available Vickers hardness tester (manufactured by Akashi Seisakusho) under a load of 50 g. As described above, the following Examples 7-9 illustrate the third feature of the present invention.
  • a 0.7 mm thick soda-lime-based float glass is immersed in 460 ° C molten salt of potassium nitrate for 10 hours to perform the first chemical strengthening (ion exchange) treatment, and then a 510 ° C immersion liquid is used.
  • a second ion exchange treatment immersion in molten potassium nitrate was performed at a temperature for 60 minutes.
  • the chemically strengthened glass was moved to a cooling bath set at 500 ° C, and was further kept therein for 60 minutes. Thereafter, it was cooled at a usual cooling rate (about 10 ° C / min) to obtain a predetermined chemically strengthened glass product.
  • the surface hardness of the chemically strengthened glass product was 565 kgf m 2 .
  • the chemically strengthened glass was subjected to a scribe (loading weight: 2 kg) and a cutting test according to a general cutting operation using a commercially available carbide wheel tip. As a result, the glass was successfully cut.
  • a 0.55mm thick soda-lime float glass was immersed in a potassium nitrate molten salt at 470 ° C for 4 hours to perform the first chemical strengthening (ion exchange) treatment, followed by a 510 ° C immersion liquid.
  • a second ion exchange treatment immersion in molten potassium nitrate was performed at the temperature for 20 minutes.
  • the chemically strengthened glass was moved to a cooling bath set at 500 ° C, where it was kept for 20 minutes. Thereafter, it was cooled at a usual cooling rate (about 10 ° C / min) to obtain a predetermined chemically strengthened glass product.
  • the surface hardness of this chemically strengthened glass product was 580 kgf m 2 .
  • the chemically strengthened glass was subjected to a scribe (loading weight: 2 kg) and a cutting test according to a general cutting operation using a commercially available carbide wheel tip. As a result, the glass was cut without any problem.
  • Example 9 A 1 mm thick soda-lime float glass was immersed in a molten salt of potassium nitrate at 505 ° C for 1 hour to perform the first chemical strengthening (ion exchange) treatment. For a second ion exchange treatment (immersion in molten potassium nitrate) for 10 minutes. Immediately after that, the chemically strengthened glass was moved to a cooling bath set at 500 ° C, and kept therein for 3 minutes. After that, it was cooled at the usual cooling rate (about 10 ° C / min) to obtain the specified chemically strengthened glass product. The surface hardness of the chemically strengthened glass products, was filed in the m 2 N 585kgf.
  • This chemically strengthened glass was subjected to scribing (loading weight: 2kg) and a cutting test in accordance with general cutting work using a commercially available carbide wheel tip. I felt it, but in the end I could cut it without any problems.
  • a 0.7 mm thick soda-lime float glass was immersed in 460 ° C molten salt of potassium nitrate for 10 hours to perform a chemical strengthening (ion exchange) treatment. Tempered glass was manufactured.
  • Soda-lime float glass with a thickness of 0.55mm was immersed in a molten salt of potassium nitrate at 470 ° C for 4 hours to perform chemical strengthening (ion exchange) treatment.
  • the chemically tempered glass was scribed using a commercially available cemented carbide wheel tip and subjected to a test for cutting. As a result, slip was remarkable. Therefore, when the cutting pressure was increased, the chemically strengthened glass was broken.
  • Aluminoborate glass having a thickness of 1.1 mm was immersed in a potassium nitrate molten salt at 460 ° C for 10 hours. Immediately after immersion and chemical strengthening (ion exchange) treatment, it was put into a cooling process to produce chemically strengthened glass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本発明は、イオン交換することによりガラス表層に圧縮応力層を形成させた化学強化ガラスにおいて、ガラス表面に近い方の圧縮応力パターンAとガラス内層側の圧縮応力パターンBの2種類を圧縮応力層の中に有す化学強化ガラスに関する。このガラスは第1又は第2方法によって製造可能である。第1方法においては、イオン交換のための浸漬処理後にその浸漬液温度よりも20°C以上50°C以下の高い温度で10分間以上60分間以下の第2の浸漬処理をする。第2方法においては、イオン交換のための第1の浸漬処理後にその浸漬液温度よりも20°C以上50°C以下の高い温度で10分間以上60分間以下の第2の浸漬処理する。

Description

明 細 書
化学強化ガラスおよびその製造方法
技術分野
[0001] 本発明は、化学強化ガラス、特にタツチパネル等に使用される電子材料分野、 自動 車用および建築用などの分野に有用な化学強化ガラスおよびその製造方法に関す る。
発明の背景
[0002] 省資源 ·省エネルギーの観点あるいは社会的なニーズの変化から、強化ガラスの薄 板化や強化度アップが進んでいる。一般的に用いられている風冷強化法では、 3m m以下、特に 2mm以下の板厚をもったガラスの生産が難しいことから、 2mm以下の ガラスでは、化学強化法が多く用いられている。また、化学強化ガラスは一般的に風 冷法による強化ガラスよりも高い強度を得ることができるというメリットもある。
[0003] 化学強化ガラスが市場に多く受け入れられている理由として、前述した薄板ガラス での強化性や高強度化に加え、一定の条件下では強化ガラスでも切断可能であるこ とがあげられる。風冷強化ガラスでは、切断しょうとしてクラックを導入すると、粉々割 れてしまうので、切断はできない。
[0004] これは、例えば図 5 (非特許文献 1参照)に示すように、化学強化ガラスと風冷強化( 物理強化)ガラスでは、ガラス内部に形成される応力パターンが大きく異なっているた めである。風冷強化ガラスはガラス表層と内層の温度差及び粘性流動を利用するた め、その応力パターンの概要は例えば 2次曲線で近似される形状となる。これに対し 、化学強化ガラスは例えば表層でのイオン交換を利用しているので、厳密には Fick の拡散則に依存するが、大きくは直線で近似されることが多い。風冷強化ガラスで所 定の表面圧縮応力値を得ようとすると、必然的に内層にある引張応力が大きくなる。 ガラスの破壊はこの内層の引張応力に依存するため、大きな引張応力下では細片化 現象につながる。一方、化学強化ガラスの場合、圧縮応力値を大きくしても、通常の 条件下では、内層の引張応力値はあまり大きくなることはない。化学強化ガラスの引 張応力値は、大きくは表面圧縮応力値と圧縮応力層厚の関数となる。 [0005] すなわち、風冷強化ガラスも化学強化ガラスも、ガラスとしての破壊強度は大きい。 一方、風冷強化ガラスの場合には切断が不可能であり、化学強化ガラスの場合には 切断可能性はあっても切断しにくいとレ、う問題を併せ持ってレ、た。
[0006] なお、化学強化ガラスの製造方法としては、種々の方法が考えられている。例えば 、小さなイオン半径の原子を大きなイオン半径の原子に置き換える方法、ガラスの粘 性流動を利用して大きなイオン半径の原子を小さなイオン半径の原子に置き換える 方法、熱膨張率の差を利用する方法、結晶を晶出させる方法、上述の方法を組み合 わせる方法など、多くの方法がある。一般に、ソーダ 'ライム系ガラスでは小さなイオン 半径の原子を大きなイオン半径の原子に置き換える方法が数多く用いられ、その中 でも、多くの化学強化ガラスは化学強化処理槽中に浸漬する、いわゆる浸漬法で製 造されている。すなわち、ガラスを高温の化学強化処理液、例えば硝酸カリウム溶液 中に浸積し、ガラス中のナトリウムイオンを硝酸カリウム中のカリウムイオンと置換する ことにより、表層に圧縮応力層を形成する。また、ガラス中にリチウムを含む場合の化 学強化処理液としては、硝酸ナトリウム、または硝酸ナトリウムと硝酸カリウムの混合塩 が多用される。
[0007] 公知技術をみれば、例えば、切断したガラスを化学強化として使用することが(特許 文献 1参照)が、切断条件の重要な因子である表面応力の測定技術 (特許文献 2参 照)が開示されている。また、ハードディスクドライブの化学強化に関する工程:
1)予備加熱槽での予備加熱(0. 5— 2時間程度かけて 380— 500°Cに昇温)
2)硝酸カリウム又は硝酸ナトリウムの溶融塩溶液での化学強化処理(0. 5— 6時間程 度)
3)送風冷却槽での冷却(5 25m3/分の冷却風で面内温度差が 5°C以内で溶融塩 溶液の融点以下たる室温まで強制冷却)
が詳細に述べられている例(特許文献 3参照)もある。
[0008] 特許文献 1 :特開 2002-160932号公報
特許文献 2:特公昭 59-37451号公報
特許文献 3:特開 2000-344550号公報
非特許文献 l : H.M.Garfinkel他, The Glass Industry, 50(1969), p.76. 発明の要約
[0009] 本発明の目的は、所定の強度をもつ切断可能の化学強化ガラスを提供することで ある。
本発明のもう 1つの目的は、前記化学強化ガラスの製造方法を提供することである 本発明の第 1の特徴に依れば、イオン交換することによりガラス表層に圧縮応力層 を形成させた化学強化ガラスにぉレ、て、ガラス表面に近レ、方の圧縮応力パターン A とガラス内層側の圧縮応力パターン Bの 2種類を圧縮応力層の中に有すことを特徴と する化学強化ガラスが提供される。
本発明の第 2の特徴に依れば、イオン交換処理することによりガラス表層に圧縮応 力層を形成させる化学強化ガラスの製造方法において、イオン交換のための浸漬処 理後にその浸漬液温度よりも 10°C以上高い温度の環境下で保持することを特徴とす る化学強化ガラスの製造方法 (第 1方法)が提供される。
さらに、本発明の第 2の特徴に依れば、第 2の特徴の方法で製造された化学強化ガ ラスが提供される。
本発明の第 3の特徴に依れば、イオン交換することによりガラス表層に圧縮応力層 を形成させる化学強化ガラスの製造方法において、イオン交換のための第 1の浸漬 処理後にその浸漬液温度よりも 20°C以上 50°C以下の高い温度で 10分間以上 60分 間以下の第 2の浸漬処理することを特徴とする化学強化ガラスの製造方法 (第 2方法 )が提供される。
さらに、本発明の第 3の特徴に依れば、第 3の特徴の方法で製造された化学強化ガ ラスが提供される。
本発明の第 1の特徴に依る化学強化ガラスは、上記第 1又は第 2方法によって製造 可能である。
図面の簡単な説明
[0010] [図 1]実施例 1に示す応力パターンの概略図である。
[図 2]実施例 2に示す応力パターンの概略図である。
[図 3]比較例 1に示す応力パターンの概略図である。 [図 4]比較例 2に示す応力パターンの概略図である。
[図 5]化学強化ガラスと風冷 (物理)強化ガラスの応力パターンを示す概略図である。
[図 6]応力パターン Aの特殊な例を示す概略図である。
符号の説明
[0011] 1 : 化学強化ガラスの表面
2 : 応力パターン B
3 : 応力パターン A
4 : 応力パターン Bの延長線
d: 表面圧縮応力層厚
σ: 表面圧縮応力値
σ : 応力パターン Βから推定される表面圧縮応力値
Β
C : 圧縮応力
Τ: 引張応力
詳細な説明
[0012] 本発明の上記第 1の特徴を以下に詳細に記述する。この第 1の特徴に依れば、切 断が安定してできる化学強化ガラスが提供される。
[0013] ガラスの切断性を改善するためには、ガラス中の応力パターンを 2種類もつことが有 用となる。応力パターンを 2種類もつことにより、所定の圧縮応力層厚をもちながら、 切断しやすい化学強化ガラスとすることができる。別の言い方をするならば、従来の Fickの法則に依存した応力パターンの化学強化ガラスではなぐ Fickの法則のみに は依存しない、特に表層近傍での発生応力は別の関数形で表される化学強化ガラ スである。
[0014] また、応力パターン A及び応力パターン Bをそれぞれ 1次関数で近似する場合にお いて、応力パターン Aと応力パターン Bは別の傾きをもつ上記の化学強化ガラスであ る。別の応力パターンを持たない、すなわち 1種類のみの従来の化学強化ガラスは、 破壊強度は大きな値をもつが、切断しにくいという問題点がある。一方、切断しやすく しょうとすると、破壊強度は小さくなる。
[0015] さらに、応力パターン Aから求められる表面応力値は、応力パターン Bをガラス表面 まで延長させたラインから求められる仮の表面応力値よりも小さな値となる化学強化 ガラスである。もしも、大きな値となる場合は、切断しに《なる。
[0016] さらにまた、好適には、圧縮応力パターン Bをガラス表面まで延長させたラインから 求められる仮の表面応力値に対する応力パターン Aから求められる表面応力値の比 が 0. 8以上 0. 95以下である上記の化学強化ガラスである。応力パターン Bをガラス 表面まで延長させたラインから求められる仮の表面応力値に対する比が 0. 8以上 0. 95以下である。 0. 8未満であると表面圧縮応力が小さくなり、ガラスの強度が事実上 低下する。また、 0. 95を越えると、切断性が下がる。さらに好適には、 0. 85以上 0. 93以下である。
[0017] この場合、条件によっては、図 6に示すように応力パターン Aの傾きは、応力パター ン Bと反対となることがある。すなわち、従来の化学強化ガラスでは表面圧縮応力が 内層の応力値よりも常に大きいが、本発明の化学強化ガラスでは表面圧縮応力の値 よりも少し内層に入った部分の応力値の方が大きい値を示すこともある。このような応 力パターンをもった化学強化ガラスも当然ながら、本発明の範疇に入る。
[0018] さらにまた、好適には、応力パターン Aによる圧縮応力層厚が 2 μ ΐη以上 15 / m以 下である。応力パターン Aによる圧縮応力層厚が 2 β mよりも小さいとその切断性に 対する効果が小さくなり、応力パターン Aによる圧縮応力層厚が 15 μ mを越えるとィ匕 学強化ガラスの性質上破壊強度が実質的に小さくなる。 3 μ m以上 9 μ m以下がさら に好ましい。
[0019] なお、化学強化ガラスの生産管理を簡単に行うベぐ化学強化ガラス内の応力パタ ーンを 1次近似して説明してきた。しかし厳密に述べると、応力パターンを 1次関数で 近似することができない場合も当然ながらでてくる。これは、前述したようにイオン交 換は基本的には Fickの拡散法則に従レ、、拡散法則は 1次関数ではなレ、ので、厳密 には近似した直線から外れることが必然となるためである。また、ガラス内の応力生成 は、イオン交換の他、温度分布、変形、板厚等多くの因子の影響も受ける。このように 直線近似ができない場合又は近似しにくい場合、発生した応力パターンが 1つの関 数で表すことができる力 \ 2つ以上の関数を必要とするのかの原則に戻るべきである 。ここで、近似には 3次以上の多次関数を用いない。近似には、極点を 1つ有す又は 極点を有しない関数を用いる。このような関数を用いて近似したとき、 1つの関数で表 すことができる場合は、従来の化学強化ガラスである。一方、 2つ以上の関数を用い る必要がある場合は、本発明の化学強化ガラスとなる。また、関数近似を考える領域 としては、圧縮応力領域とすべきである。ガラスの切断性及び破壊強度は圧縮応力 値に依存すること、及び引張応力が一定値となり始める領域ではその応力生成が不 安定になることがあり、その判定に誤りを発生させる恐れがあるからである。
[0020] 化学強化ガラスの圧縮応力層の厚さおよび圧縮応力の値は、化学強化時の処理 温度と処理時間、さらには処理液の選択およびその活性特性に大きく影響されるの で、単純ではない。また、ガラス内のイオン交換状況や結晶化状況によっても異なる 。しかし、破壊強度を実用レベルに保ち、かつ切断性を向上した化学強化ガラスを得 ることは可能である。
[0021] 本発明の第 2の特徴を以下に詳細に記述する。この第 2の特徴に依れば、強度と 切断性をもつ化学強化ガラスの製造方法 (第 1方法)が提供される。
[0022] 第 1方法において、浸漬処理後にその浸漬液温度よりも 10°C以上高い温度で処理 するのは、化学強化ガラスの切断性を向上させることで極めて重要である。処理温度 が 10°C未満では、切断性を向上させることは難しいこともある。
[0023] また、例えば、浸漬処理後にその浸漬液温度よりも 10°C以上 50°C以下の高い温 度で、 10分間以上 60分間以下保持する。 10°C未満では化学強化ガラスの切断性 が下がることもあり、 50°Cを越える温度では化学強化ガラスの強度が下がることもある 。さらに、浸漬液の劣化にもつながるという問題も発生する場合もある。場合によって は、化学強化ガラス製品の変形という問題も発生する。 10分間以上 60分間以下とし たのは、 10分未満では化学強化ガラスの切断性は下がることもあり、 60分以上では 化学強化ガラスの強度が下がることもあるからである。また、場合によっては、化学強 化ガラス製品の変形という問題も発生するからである。
[0024] また、例えば、浸漬液温度を 450°C以上 510°C以下としてもよい。 450°C未満では 化学強化ガラスの切断性を改善しにくいこともあり、製造に時間を要すため生産性が 極めて悪くなることもある。 510°Cを越えると化学強化ガラスの強度が小さくなるという 問題が発生することもある。 [0025] さらに、例えば、浸漬処理後に浸漬液温度よりも 50°C以上 150°C以下の高い温度 で、 1分間以上 30分間以下保持してもよい。 50°C未満では化学強化ガラスの切断性 が下がることもあり、 150°Cを越える温度では化学強化ガラスの強度が下がることもあ る。さらに、浸漬液の劣化にもつながるという問題も発生してくる。場合によっては、化 学強化ガラス製品の変形という問題も発生する。 1分間以上 30分間以下としたのは、 1分未満では化学強化ガラスの切断性は下がることもあり、 30分以上では化学強化 ガラスの強度が下がることもあるからである。また、場合によっては、化学強化ガラス 製品の変形という問題も発生するからである。
[0026] 浸漬処理後に浸漬液温度よりも 50°C以上 150°C以下の高い温度で、 1分間以上 3 0分間以下保持する場合、浸漬液温度を 410°C以上 500°C以下にしてもよい。
[0027] 本発明の上記第 3の特徴を以下に詳細に記述する。この第 3の特徴に依れば、切 断可能な化学強化ガラスを安定して製造する方法 (第 2方法)が提供される。
[0028] 第 2方法において、第 2の浸漬液温度を第 1の浸漬液温度よりも 20°C以上 50°C以下 の高い温度としたのは、 20°C未満であると得られる化学強化ガラスの切断性が下が り、 50°Cを越える温度では得られる化学強化ガラスの強度が下がるからである。さら に、イオン交換液の劣化にもつながるという問題も発生してくる。
[0029] また、第 2の浸漬処理の時間を 10分間以上 60分間以下としたのは、 10分未満で は得られる化学強化ガラスの切断性は下がり、 60分以上では得られる化学強化ガラ スの強度が下がるからである。
[0030] また、第 1の浸漬処理温度を 450°C以上 510°C以下としてもよい。 450°C未満では 得られる化学強化ガラスの切断性を改善しにくぐ製造に時間を要すため生産性が 極めて悪くなることもある。 510°Cを越えると得られる化学強化ガラスの強度が小さく なるという問題が発生することもある。
[0031] 第 1方法及び第 2方法で製造された化学強化ガラスはその切断性と強度が両立さ れた化学強化ガラスとなる。これらの化学強化ガラスは本発明の第 1の特徴によるィ匕 学強化ガラスの特性を持ち得る。
[0032] さらにまた、第 1方法及び第 2方法で製造された化学強化ガラスの表面硬度が 560 一 590kgf/cm2にある化学強化ガラスになり得る。従来の方法で製造されたソーダ石 灰系化学強化ガラスの表面硬度は、 590— 610kgfん m2にあるといわれている。しか し、本発明の第 2の特徴の方法で得られた化学強化ガラスは、その表面硬度が 560 一 590kgfん m2にある。 590kgfん m2を越えると、従来の化学強化ガラスと同様であ り、切断性は悪ぐときには切断できない場合もある。また、切断できたとしても、希望 する切断線からはずれることがあり、また表面にガラス粉が多発する傾向にある。一 方、その表面硬度が 560kgfん m2よりも小さな化学強化ガラスは、強度が小さい傾向 にある。なお、硬度測定は市販の微小硬度計で良いが、その負荷量を小さな値、例 えば 50g以下とする必要がある。一般的なソーダ石灰系ガラスの硬度測定に用いら れる 200— lOOOgの負荷は、その判断を誤る必要があるので、注意が必要である。
[0033] 本発明の化学強化ガラスが従来の化学強化ガラスに準ずる強度があり、かつ切断 性もあるという特徴をもつ。これは、従来の化学強化ガラスと異なり、 Fickの法則のみ には依存しない応力パターンになっているためである。そのため、表面硬度は従来 の化学強化ガラスの硬度と若干異なる特徴を有している。
[0034] さらにまた、第 1方法及び第 2方法において、歪点が 470°C以上 530°C以下のソー ダ石灰ガラスをイオン交換処理してもよい。歪点が 470°Cよりも低いソーダ石灰ガラス は化学的耐久性や硬度が低いので、化学強化ガラスとしての実用性が大きく下がる 。一方、歪点が 530°Cよりも高いソーダ石灰ガラスはガラスの切断性が下がり、化学 強化性も下がる。また、ソーダ石灰ガラス以外のガラスは、生産性が悪いため高価な ので、切断性と強度があっても実用性は小さい。
[0035] 以下、実施例に基づき、本発明を具体的に説明する。実施例 1 - 2、実施例 3 - 6、実 施例 7— 9はそれぞれ本発明の第 1、第 2、第 3の特徴を例証するものである。
実施例 1
[0036] 厚さ 0. 7mmのソーダ石灰系フロートガラスを 460°Cの硝酸カリウム溶融塩の中に 1 0時間浸漬してイオン交換処理後、 510°Cに設定した冷却槽に化学強化ガラスを移 動し、さらにその中で 60分間保持した。その後は、通常に行われている冷却速度(約 10°C/min)で冷却し、所定の化学強化ガラスを得た。このガラスの応力パターンを 図 1に示す。図中の Cは圧縮応力、 Tは引張応力を示している。このように、ガラス表 面に近い方の圧縮応力パターン Aとガラス内層側の圧縮応力パターン Bの 2種類を 圧縮応力層の中にもつ特徴を有す化学強化ガラスである。なお、この応力パターン は化学強化ガラスを切り出して研磨し、バビネの補償板と光学顕微鏡を用いて観察 した結果を示したものである。応力パターン Aから求められる表面応力値と、圧縮応 力パターン Bをガラス表面まで延長させたラインから求められる仮の表面応力値との 比は 0. 93であった。また、応力パターン Aによる圧縮応力層厚は 4 z mであった。
[0037] この化学強化ガラスを市販の超硬製ホイールチップを用レ、、一般の切断作業に準 ずるスクライブ (負荷重量: 2kg)および分断テストを行ったところ、問題なく切断するこ とができた。
実施例 2
[0038] 厚さ 0. 55mmのソーダ石灰系フロートガラスを 470°Cの硝酸カリウム溶融塩中で 4 時間浸漬して第 1のイオン交換処理を行った後、 510°Cで 20分間浸漬し第 2のィォ ン交換処理を行い、その後は、通常に行われている冷却速度(約 10°C/min)で冷 却し、所定の化学強化ガラスを得た。このガラスの応力パターンを図 2に示す。応力 パターン Aから求められる表面応力値と、圧縮応力パターン Bをガラス表面まで延長 させたラインから求められる仮の表面応力値との比は 0. 89であった。また、応力パタ ーン Aによる圧縮応力層厚は 5 μ mであった。
[0039] この化学強化ガラスを市販の超硬製ホイールチップを用レ、、一般の切断作業に準 ずるスクライブ (負荷重量: 2kg)および分断テストを行ったところ、問題なく切断するこ とができた。
比較例 1
[0040] 厚さ 0. 7mmのソーダ石灰系フロートガラスを 460°Cの硝酸カリウム溶融塩の中に 1 0時間浸漬してイオン交換処理後、 380°Cに設定した冷却槽に化学強化ガラスを移 動し、通常に行われている冷却速度 (約 10°C/min)で冷却し、所定の化学強化ガ ラス製品を得た。このガラスの応力パターンを図 3に示す。このように、 1種類の応力 パターンを有している。応力パターン Aから求められる表面応力値と、圧縮応力パタ ーン Bをガラス表面まで延長させたラインから求められる仮の表面応力値との比は当 然ながら 1. 0であった。また、圧縮応力層厚(応力パターン A及び B)は 33 /i mであ つた。 [0041] この化学強化ガラスを市販の超硬製ホイールチップを用い、一般の切断作業に準 ずるスクライブ (負荷重量: 2kg)および分断テストを行ったところ、スリップが顕著であ つた。そこで、切断圧を強くして (最終的な負荷重量: 7kg)検討したところ、スクライブ 線力、ら線状の多くのガラス粉が発生し、化学強化ガラス製品として使用することはで きなかった。また、スクライブ線に沿って分断できないところ、すなわち切断線からは ずれていたところもあった。
比較例 2
[0042] 厚さ 0. 7mmのソーダ石灰系フロートガラスを 460°Cの硝酸カリウム溶融塩の中に 1 0時間浸漬してイオン交換処理後、 550°Cに設定した冷却槽に化学強化ガラスを移 動し、さらにその中で 60分間保持した。その後は、通常に行われている冷却速度(約 10°C/min)で冷却し、所定の化学強化ガラスを得た。このガラスの応力パターンを 図 4に示す。応力パターン Aから求められる表面応力値と、圧縮応力パターン Bをガ ラス表面まで延長させたラインから求められる仮の表面応力値との比は 0. 7であった 。また、応力パターン Aによる圧縮応力層厚は 17 /i mであった。
[0043] この化学強化ガラスを市販の超硬製ホイールチップを用い、一般の切断作業に準 ずるスクライブ (負荷重量: 2kg)および分断テストを行ったところ、スリップが顕著であ つた。そこで、負荷重量を 5kgとして検討したところ、この化学強化ガラスは破壊して しまった。
[0044] 以上の実施例 1から 2までの結果から示されるように、本発明の上記の工程をイオン 交換工程後に付加することにより、切断しやすい化学強化ガラスを得ることができた。 上述したとおり、以下の実施例 3_6は本発明の第 2の特徴を例証するものである。 実施例 3
[0045] 厚さ 0. 7mmのソーダ石灰系フロートガラスを 460°Cの硝酸カリウム溶融塩の中に 1 0時間浸漬してイオン交換処理を行った。その直後、 510°Cに設定した冷却槽にィ匕 学強化ガラスを移動し、さらにその中で 60分間保持した。その後は、通常に行われ ている冷却速度(約 10°C/min)で冷却し、所定の化学強化ガラス製品を得た。なお 、この化学強化ガラス製品の表面硬度は、 570kgfん m2であった。
[0046] この化学強化ガラスを市販の超硬製ホイールチップを用レ、、一般の切断作業に準 ずるスクライブ (負荷重量: 2kg)および分断テストを行ったところ、問題なく切断するこ とができた。
実施例 4
[0047] 厚さ 0. 55mmのソーダ石灰系フロートガラスを 470°Cの硝酸カリウム溶融塩の中に
4時間浸漬してイオン交換処理を行った。その直後、 515°Cに設定した冷却槽にィ匕 学強化ガラスを移動し、さらにその中で 20分間保持した。その後は、通常に行われ ている冷却速度(約 10°C/min)で冷却し、所定の化学強化ガラス製品を得た。なお 、この化学強化ガラス製品の表面硬度は、 580kgfん m2であった。
[0048] この化学強化ガラスを市販の超硬製ホイールチップを用い、一般の切断作業に準 ずるスクライブ (負荷重量: 2kg)および分断テストを行ったところ、問題なく切断するこ とができた。
実施例 5
[0049] 厚さ 0. 7mmのソーダ石灰系フロートガラスを 410°Cの硝酸カリウム溶融塩の中に 2 4時間浸漬してイオン交換処理を行った。その直後、 550°Cに設定した冷却槽にィ匕 学強化ガラスを移動し、さらにその中で 3分間保持した。その後は、通常に行われて レ、る冷却速度(約 10°C/min)で冷却し、所定の化学強化ガラス製品を得た。なお、 この化学強化ガラス製品の表面硬度は、 585kgf/cm2であった。
[0050] この化学強化ガラスを市販の超硬製ホイールチップを用レ、、一般の切断作業に準 ずるスクライブ (負荷重量: 2kg)および分断テストを行ったところ、問題なく切断するこ とができた。
実施例 6
[0051] 厚さ 1. 1mmのソーダ石灰系フロートガラスを 490°Cの硝酸カリウム溶融塩 2時間化 学強化処理を行った後、 540°Cで 2分間保持し、所定の化学強化ガラスを得た。なお 、この化学強化ガラス製品の表面硬度は、 585kgf/cm2であった。
[0052] この化学強化ガラスを市販の超硬製ホイールチップを用いてスクライブし、分断する テストを行ったところ、少しガラス上ですベるような感触があった力 最終的には問題 なく切断することができた。 比較例 3
[0053] 比較例 1と同一の工程を行うことによって所定の化学強化ガラス製品を得た。なお、 この化学強化ガラス製品の表面硬度は、 600kgf/cm2であった。
[0054] この化学強化ガラスを市販の超硬製ホイールチップを用レ、、一般の切断作業に準 ずるスクライブ (負荷重量: 2kg)および分断テストを行ったところ、スリップが顕著であ つた。そこで、切断圧を強くして (最終的な負荷重量: 7kg)検討したところ、スクライブ 線力 線状の多くのガラス粉が発生し、化学強化ガラス製品として使用することはで きなかった。また、スクライブ線に沿って分断できないところ、すなわち切断線からは ずれていたところもあった。
比較例 4
[0055] 厚さ 0. 55mmのソーダ石灰系フロートガラスを 470°Cの硝酸カリウム溶融塩の中に
4時間浸漬してイオン交換処理を行った。その後は、 380°Cに設定した冷却槽に化 学強化ガラスを移動し、通常に行われている冷却速度(約 10°C/min)で冷却し、所 定の化学強化ガラス製品を得た。なお、この化学強化ガラス製品の表面硬度は、 60 5kgf/cm2であった。
[0056] この化学強化ガラスを市販の超硬製ホイールチップを用レ、、一般の切断作業に準 ずるスクライブ (負荷重量: 2kg)および分断テストを行ったところ、スリップが顕著であ つた。そこで、切断圧を強くして (最終的な負荷重量: 5kg)検討したところ、この化学 強化ガラスは破壊してしまった。
比較例 5
[0057] 厚さ 1. 1mmのアルミノホウ酸系ガラスを 460°Cの硝酸カリウム溶融塩の中に 10時 間浸漬してイオン交換処理後、 380°Cに設定した冷却槽に化学強化ガラスを移動し 、通常に行われている冷却速度 (約 10°C/min)で冷却し、所定の化学強化ガラス 製品を得た。なお、この化学強化ガラス製品の表面硬度は、 640kgfん m2であった。
[0058] この化学強化ガラスを市販の超硬製ホイールチップを用レ、、一般の切断作業に準 ずるスクライブ (負荷重量: 2kg)および分断テストを行ったところ、スリップが顕著であ つた。そこで、切断圧を強くして (最終的な負荷重量: 5kg)検討したが、切断線にそ つた切断を行うことはできな力 た。 [0059] 以上の実施例 3から 6までの結果から示されるように、本発明の第 2の特徴の工程を イオン交換工程後に付加することにより、切断しやすい化学強化ガラスを得ることが できた。なお、ガラスの表面硬度は、市販のビッカース硬度計(明石製作所製)を用 レ、、すべて 50gの負荷で測定した。上述したとおり、以下の実施例 7— 9は本発明の 第 3の特徴を例証するものである。
実施例 7
[0060] 厚さ 0. 7mmのソーダ石灰系フロートガラスを 460°Cの硝酸カリウム溶融塩に 10時 間浸漬して第 1の化学強化 (イオン交換)処理を行った後、 510°Cの浸漬液温度で 6 0分間第 2のイオン交換処理 (硝酸カリウム溶融塩に浸漬)を行った。その直後、 500 °Cに設定した冷却槽に化学強化ガラスを移動し、さらにその中で 60分間保持した。 その後は、通常に行われている冷却速度 (約 10°C/min)で冷却し、所定の化学強 化ガラス製品を得た。なお、この化学強化ガラス製品の表面硬度は、 565kgfん m2で あった。
[0061] この化学強化ガラスを市販の超硬製ホイールチップを用い、一般の切断作業に準 ずるスクライブ (負荷重量: 2kg)および分断テストを行ったところ、問題なく切断するこ とができた。
実施例 8
[0062] 厚さ 0. 55mmのソーダ石灰系フロートガラスを 470°Cの硝酸カリウム溶融塩に 4時 間浸漬して第 1の化学強化 (イオン交換)処理を行った後、 510°Cの浸漬液温度で 2 0分間第 2のイオン交換処理 (硝酸カリウム溶融塩に浸漬)を行った。その直後、 500 °Cに設定した冷却槽に化学強化ガラスを移動し、さらにその中で 20分間保持した。 その後は、通常に行われている冷却速度 (約 10°C/min)で冷却し、所定の化学強 化ガラス製品を得た。なお、この化学強化ガラス製品の表面硬度は、 580kgfん m2で あった。
[0063] この化学強化ガラスを市販の超硬製ホイールチップを用い、一般の切断作業に準 ずるスクライブ (負荷重量: 2kg)および分断テストを行ったところ、問題なく切断するこ とができた。
実施例 9 [0064] 厚さ 1. 1mmのソーダ石灰系フロートガラスを 505°Cの硝酸カリウム溶融塩に 1時間 浸漬して第 1の化学強化 (イオン交換)処理を行った後、 525°Cの浸漬液温度で 10 分間第 2のイオン交換処理 (硝酸カリウム溶融塩に浸漬)を行った。その直後、 500°C に設定した冷却槽に化学強化ガラスを移動し、さらにその中で 3分間保持した。その 後は、通常に行われている冷却速度(約 10°C/min)で冷却し、所定の化学強化ガ ラス製品を得た。なお、この化学強化ガラス製品の表面硬度は、 585kgfん m2であつ た。
[0065] この化学強化ガラスを市販の超硬製ホイールチップを用レ、、一般の切断作業に準 ずるスクライブ (負荷重量: 2kg)および分断テストを行ったところ、少しガラス上です ベるような感触があつたが、最終的には問題なく切断することができた。
比較例 6
[0066] 厚さ 0. 7mmのソーダ石灰系フロートガラスを 460°Cの硝酸カリウム溶融塩に 10時 間浸漬して化学強化 (イオン交換)処理を行なった後、すぐに冷却工程に入れて化 学強化ガラスを製造した。
[0067] この化学強化ガラスを市販の超硬製ホイールチップを用いてスクライブし、分断する テストを行ったところ、スリップが顕著であった。そこで、切断圧を強くして検討したとこ ろ、スクライブ線力、ら線状の多くのガラス粉が発生し、化学強化ガラス製品として使用 することはできなかった。また、スクライブ線に沿って分断できない場合もあった。 比較例 7
[0068] 厚さ 0. 55mmのソーダ石灰系フロートガラスを 470°Cの硝酸カリウム溶融塩に 4時 間浸漬して化学強化 (イオン交換)処理を行った後、すぐに冷却工程に入れて化学 強化ガラス
を製造した。
[0069] この化学強化ガラスを市販の超硬製ホイールチップを用いてスクライブし、分断する テストを行ったところ、スリップが顕著であった。そこで、切断圧を強くして検討したとこ ろ、この化学強化ガラスは破壊してしまった。
比較例 8
[0070] 厚さ 1. 1mmのアルミノホウ酸系ガラスを 460°Cの硝酸カリウム溶融塩に 10時間浸 漬して化学強化 (イオン交換)処理を行なった後、すぐに冷却工程に入れて化学強 化ガラスを製造した。
[0071] この化学強化ガラスを市販の超硬製ホイールチップを用いてスクライブし、分断する テストを行ったところ、スリップが顕著であった。そこで、切断圧を強くして検討したが 、この化学強化ガラスをスクライブ線に沿って切断することはできなかった。
[0072] 以上の実施例 7から 9までの結果から示されるように、本発明の第 3の特徴の工程を イオン交換工程後に付加することにより、切断しやすい化学強化ガラスを得ることが できた。

Claims

請求の範囲
[I] イオン交換することによりガラス表層に圧縮応力層を形成させた化学強化ガラスにお いて、ガラス表面に近い方の応力パターン Aとガラス内層側の応力パターン Bとの 2 種類の応力パターンを圧縮応力層の中に有すことを特徴とする化学強化ガラス。
[2] 応力パターン A及び応力パターン Bをそれぞれ 1次関数で近似する場合において、 応力パターン Aと応力パターン Bは別の傾きをもつことを特徴とする請求項 1に記載 の化学強化ガラス。
[3] 応力パターン Aから求められる表面応力値は、応力パターン Bをガラス表面まで延長 させたラインから求められる仮の表面応力値よりも小さな値となることを特徴とする請 求項 1又は請求項 2に記載の化学強化ガラス。
[4] 応力パターン Aから求められる表面応力値と、圧縮応力パターン Bをガラス表面まで 延長させたラインから求められる仮の表面応力値との比が 0. 8以上 0. 95以下である ことを特徴とする請求項 1乃至請求項 3のいずれかに記載の化学強化ガラス。
[5] 応力パターン Aによる圧縮応力層厚が 2 β m以上 15 / m以下であることを特徴とする 請求項 1乃至請求項 4のいずれかに記載の化学強化ガラス。
[6] イオン交換処理することによりガラス表層に圧縮応力層を形成させる化学強化ガラス の製造方法において、イオン交換のための浸漬処理後にその浸漬液温度よりも 10 °C以上高い温度の環境下で保持することを特徴とする化学強化ガラスの製造方法。
[7] 浸漬処理後にその浸漬液温度よりも 10°C以上 50°C以下の高い温度で、 10分間以 上 60分間以下保持することを特徴とする請求項 6に記載の化学強化ガラスの製造方 法。
[8] 浸漬液温度を 460°C以上 510°C以下とすることを特徴する請求項 7に記載の化学強 化ガラスの製造方法。
[9] 浸漬処理後に浸漬液温度よりも 50°C以上 150°C以下の高い温度で、 1分間以上 30 分間以下保持することを特徴とする請求項 6に記載の化学強化ガラスの製造方法。
[10] 浸漬液温度を 410°C以上 500°C以下とすることを特徴する請求項 9に記載の化学強 化ガラスの製造方法。
[II] 請求項 6乃至請求項 10のいずれかに記載の方法で製造されたことを特徴とするィ匕 学強化ガラス。
[12] 化学強化ガラスの表面硬度が 560— 590kgfん m2にあることを特徴とする請求項 11 に記載の化学強化ガラス。
[13] 歪点が 470°C以上 530°C以下のソーダ石灰ガラスをイオン交換処理することを特徴 とする請求項 11又は請求項 12に記載の化学強化ガラス。
[14] イオン交換することによりガラス表層に圧縮応力層を形成させる化学強化ガラスの製 造方法において、イオン交換のための第 1の浸漬処理後にその浸漬液温度よりも 20
°C以上 50°C以下の高い温度で 10分間以上 60分間以下の第 2の浸漬処理すること を特徴とする化学強化ガラスの製造方法。
[15] 第 1浸漬処理の浸漬液温度を 450°C以上 510°C以下とすることを特徴する請求項 1
4に記載の化学強化ガラスの製造方法。
[16] 請求項 14又は請求項 15の方法で製造されたことを特徴とする化学強化ガラス。
[17] 製造された化学強化ガラスの表面硬度が 560— 590kgfん m2にあることを特徴とする 請求項 16に記載の化学強化ガラス。
[18] 歪点が 470°C以上 530°C以下のソーダ石灰ガラスをイオン交換処理することを特徴 とする請求項 16又は請求項 17に記載の化学強化ガラス。
PCT/JP2004/007103 2003-05-28 2004-05-25 化学強化ガラスおよびその製造方法 WO2004106253A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003-150001 2003-05-28
JP2003150000A JP4535692B2 (ja) 2003-05-28 2003-05-28 化学強化ガラス
JP2003150001A JP4289927B2 (ja) 2003-05-28 2003-05-28 化学強化ガラスの製造方法
JP2003-150000 2003-05-28
JP2003160672A JP4289931B2 (ja) 2003-06-05 2003-06-05 化学強化ガラスの製造方法
JP2003-160672 2003-06-05

Publications (2)

Publication Number Publication Date
WO2004106253A1 true WO2004106253A1 (ja) 2004-12-09
WO2004106253A8 WO2004106253A8 (ja) 2005-09-22

Family

ID=33493921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007103 WO2004106253A1 (ja) 2003-05-28 2004-05-25 化学強化ガラスおよびその製造方法

Country Status (3)

Country Link
KR (1) KR100792771B1 (ja)
TW (1) TWI276615B (ja)
WO (1) WO2004106253A1 (ja)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110067447A1 (en) * 2010-08-18 2011-03-24 Stephen Paul Zadesky Enhanced Strengthening of Glass
GB2474929A (en) * 2009-09-30 2011-05-04 Apple Inc Techniques for strengthening glass covers for portable electronic devices
US8169587B2 (en) 2007-08-16 2012-05-01 Apple Inc. Methods and systems for strengthening LCD modules
US8168295B2 (en) 2007-08-03 2012-05-01 Nippon Electric Glass Co., Ltd. Tempered glass substrate and method of producing the same
US8549882B2 (en) 2009-09-30 2013-10-08 Apple Inc. Pre-processing techniques to produce complex edges using a glass slumping process
WO2013161651A1 (ja) * 2012-04-27 2013-10-31 旭硝子株式会社 強化ガラス基板製造方法
US8776547B2 (en) 2011-02-28 2014-07-15 Corning Incorporated Local strengthening of glass by ion exchange
US9207528B2 (en) 2010-06-04 2015-12-08 Apple Inc. Thin sheet glass processing
US9615448B2 (en) 2008-06-27 2017-04-04 Apple Inc. Method for fabricating thin sheets of glass
US9725359B2 (en) 2011-03-16 2017-08-08 Apple Inc. Electronic device having selectively strengthened glass
US9756739B2 (en) 2012-01-25 2017-09-05 Apple Inc. Glass device housing
US9778685B2 (en) 2011-05-04 2017-10-03 Apple Inc. Housing for portable electronic device with reduced border region
US9840435B2 (en) 2011-12-16 2017-12-12 Asahi Glass Company, Limited Display cover glass and display cover glass fabrication method
US9886062B2 (en) 2014-02-28 2018-02-06 Apple Inc. Exposed glass article with enhanced stiffness for portable electronic device housing
US9944554B2 (en) 2011-09-15 2018-04-17 Apple Inc. Perforated mother sheet for partial edge chemical strengthening and method therefor
US9946302B2 (en) 2012-09-19 2018-04-17 Apple Inc. Exposed glass article with inner recessed area for portable electronic device housing
US10018891B2 (en) 2012-01-10 2018-07-10 Apple Inc. Integrated camera window
US10021798B2 (en) 2010-09-17 2018-07-10 Apple Inc. Glass enclosure
US10133156B2 (en) 2012-01-10 2018-11-20 Apple Inc. Fused opaque and clear glass for camera or display window
US10144669B2 (en) 2011-11-21 2018-12-04 Apple Inc. Self-optimizing chemical strengthening bath for glass
EP2762460B1 (en) * 2011-09-29 2019-01-16 Central Glass Company, Limited Chemically strengthened glass plate and method for manufacturing same
US10185113B2 (en) 2009-03-02 2019-01-22 Apple Inc. Techniques for strengthening glass covers for portable electronic devices
US10320959B2 (en) 2011-09-29 2019-06-11 Apple Inc. Multi-layer transparent structures for electronic device housings
US10401904B2 (en) 2011-05-04 2019-09-03 Apple Inc. Housing for portable electronic device with reduced border region
US10781135B2 (en) 2011-03-16 2020-09-22 Apple Inc. Strengthening variable thickness glass

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7810355B2 (en) 2008-06-30 2010-10-12 Apple Inc. Full perimeter chemical strengthening of substrates
KR101143846B1 (ko) * 2010-01-22 2012-05-04 한국세라믹기술원 화학강화유리의 제조방법
US9213451B2 (en) 2010-06-04 2015-12-15 Apple Inc. Thin glass for touch panel sensors and methods therefor
US8923693B2 (en) 2010-07-30 2014-12-30 Apple Inc. Electronic device having selectively strengthened cover glass
US8873028B2 (en) 2010-08-26 2014-10-28 Apple Inc. Non-destructive stress profile determination in chemically tempered glass
KR101398140B1 (ko) * 2012-08-21 2014-05-20 포항공과대학교 산학협력단 2 단계 이온 교환을 통한 유리 강화 방법
US9459661B2 (en) 2013-06-19 2016-10-04 Apple Inc. Camouflaged openings in electronic device housings

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251541A (ja) * 1985-04-30 1986-11-08 Asahi Glass Co Ltd 電気光学素子
JP2001348245A (ja) * 2000-06-02 2001-12-18 Hoya Corp 強化ガラス、その製造方法およびディスプレイ用ガラス

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251541A (ja) * 1985-04-30 1986-11-08 Asahi Glass Co Ltd 電気光学素子
JP2001348245A (ja) * 2000-06-02 2001-12-18 Hoya Corp 強化ガラス、その製造方法およびディスプレイ用ガラス

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9034469B2 (en) 2007-08-03 2015-05-19 Nippon Electric Glass Co., Ltd. Tempered glass substrate and method of producing the same
US8168295B2 (en) 2007-08-03 2012-05-01 Nippon Electric Glass Co., Ltd. Tempered glass substrate and method of producing the same
US9299869B2 (en) 2007-08-03 2016-03-29 Nippon Electric Glass Co., Ltd. Tempered glass substrate and method of producing the same
US9054250B2 (en) 2007-08-03 2015-06-09 Nippon Electric Glass Co., Ltd Tempered glass substrate and method of producing the same
US8679631B2 (en) 2007-08-03 2014-03-25 Nippon Electric Glass Co., Ltd. Tempered glass substrate and method of producing the same
US8169587B2 (en) 2007-08-16 2012-05-01 Apple Inc. Methods and systems for strengthening LCD modules
US8355112B2 (en) 2007-08-16 2013-01-15 Apple Inc. Methods and systems for strengthening LCD modules
US9615448B2 (en) 2008-06-27 2017-04-04 Apple Inc. Method for fabricating thin sheets of glass
US10185113B2 (en) 2009-03-02 2019-01-22 Apple Inc. Techniques for strengthening glass covers for portable electronic devices
GB2474929B (en) * 2009-09-30 2014-05-07 Apple Inc Techniques for strengthening glass covers for portable electronic devices
US8549882B2 (en) 2009-09-30 2013-10-08 Apple Inc. Pre-processing techniques to produce complex edges using a glass slumping process
GB2474929A (en) * 2009-09-30 2011-05-04 Apple Inc Techniques for strengthening glass covers for portable electronic devices
US9207528B2 (en) 2010-06-04 2015-12-08 Apple Inc. Thin sheet glass processing
US10189743B2 (en) 2010-08-18 2019-01-29 Apple Inc. Enhanced strengthening of glass
US20110067447A1 (en) * 2010-08-18 2011-03-24 Stephen Paul Zadesky Enhanced Strengthening of Glass
US11785729B2 (en) 2010-09-17 2023-10-10 Apple Inc. Glass enclosure
US10398043B2 (en) 2010-09-17 2019-08-27 Apple Inc. Glass enclosure
US10765020B2 (en) 2010-09-17 2020-09-01 Apple Inc. Glass enclosure
US10021798B2 (en) 2010-09-17 2018-07-10 Apple Inc. Glass enclosure
US8776547B2 (en) 2011-02-28 2014-07-15 Corning Incorporated Local strengthening of glass by ion exchange
US10676393B2 (en) 2011-03-16 2020-06-09 Apple Inc. Electronic device having selectively strengthened glass
US11518708B2 (en) 2011-03-16 2022-12-06 Apple Inc. Electronic device having selectively strengthened glass
US9725359B2 (en) 2011-03-16 2017-08-08 Apple Inc. Electronic device having selectively strengthened glass
US10781135B2 (en) 2011-03-16 2020-09-22 Apple Inc. Strengthening variable thickness glass
US11681326B2 (en) 2011-05-04 2023-06-20 Apple Inc. Housing for portable electronic device with reduced border region
US10761563B2 (en) 2011-05-04 2020-09-01 Apple Inc. Housing for portable electronic device with reduced border region
US10983557B2 (en) 2011-05-04 2021-04-20 Apple Inc. Housing for portable electronic device with reduced border region
US9778685B2 (en) 2011-05-04 2017-10-03 Apple Inc. Housing for portable electronic device with reduced border region
US10401904B2 (en) 2011-05-04 2019-09-03 Apple Inc. Housing for portable electronic device with reduced border region
US10656674B2 (en) 2011-05-04 2020-05-19 Apple Inc. Housing for portable electronic device with reduced border region
US9944554B2 (en) 2011-09-15 2018-04-17 Apple Inc. Perforated mother sheet for partial edge chemical strengthening and method therefor
EP2762460B1 (en) * 2011-09-29 2019-01-16 Central Glass Company, Limited Chemically strengthened glass plate and method for manufacturing same
US11368566B2 (en) 2011-09-29 2022-06-21 Apple Inc. Multi-layer transparent structures for electronic device housings
US10320959B2 (en) 2011-09-29 2019-06-11 Apple Inc. Multi-layer transparent structures for electronic device housings
US10574800B2 (en) 2011-09-29 2020-02-25 Apple Inc. Multi-layer transparent structures for electronic device housings
US10144669B2 (en) 2011-11-21 2018-12-04 Apple Inc. Self-optimizing chemical strengthening bath for glass
US9840435B2 (en) 2011-12-16 2017-12-12 Asahi Glass Company, Limited Display cover glass and display cover glass fabrication method
US10133156B2 (en) 2012-01-10 2018-11-20 Apple Inc. Fused opaque and clear glass for camera or display window
US10551722B2 (en) 2012-01-10 2020-02-04 Apple Inc. Fused opaque and clear glass for camera or display window
US10018891B2 (en) 2012-01-10 2018-07-10 Apple Inc. Integrated camera window
US11260489B2 (en) 2012-01-25 2022-03-01 Apple Inc. Glass device housings
US10278294B2 (en) 2012-01-25 2019-04-30 Apple Inc. Glass device housings
US10842031B2 (en) 2012-01-25 2020-11-17 Apple Inc. Glass device housings
US10512176B2 (en) 2012-01-25 2019-12-17 Apple Inc. Glass device housings
US11612975B2 (en) 2012-01-25 2023-03-28 Apple Inc. Glass device housings
US9756739B2 (en) 2012-01-25 2017-09-05 Apple Inc. Glass device housing
WO2013161651A1 (ja) * 2012-04-27 2013-10-31 旭硝子株式会社 強化ガラス基板製造方法
US9946302B2 (en) 2012-09-19 2018-04-17 Apple Inc. Exposed glass article with inner recessed area for portable electronic device housing
US10496135B2 (en) 2014-02-28 2019-12-03 Apple Inc. Exposed glass article with enhanced stiffness for portable electronic device housing
US9886062B2 (en) 2014-02-28 2018-02-06 Apple Inc. Exposed glass article with enhanced stiffness for portable electronic device housing
US10579101B2 (en) 2014-02-28 2020-03-03 Apple Inc. Exposed glass article with enhanced stiffness for portable electronic device housing

Also Published As

Publication number Publication date
KR20060024338A (ko) 2006-03-16
WO2004106253A8 (ja) 2005-09-22
TWI276615B (en) 2007-03-21
TW200502187A (en) 2005-01-16
KR100792771B1 (ko) 2008-01-11

Similar Documents

Publication Publication Date Title
WO2004106253A1 (ja) 化学強化ガラスおよびその製造方法
JP2004352535A (ja) 化学強化ガラス
EP3402762B1 (en) Thin thermally and chemically strengthened glass-based articles
EP3445728B1 (en) Glass-based articles including a metal oxide concentration gradient
TWI771909B (zh) S型應力輪廓及製造方法
EP3577086B1 (en) Coated glass-based articles with engineered stress profiles
WO2017126605A1 (ja) 化学強化ガラス及び化学強化ガラスの製造方法
TWI547453B (zh) A cover glass for display device and a method for manufacturing the same
JP2004083378A (ja) 化学強化ガラス
KR102501762B1 (ko) 공학적 응력 프로파일을 갖는 코팅된 유리-계 제품 및 그 제조방법
TW201927717A (zh) 具高硬度和模數之可離子交換透明鋅尖晶石-尖晶石玻璃陶瓷
WO2010111850A1 (zh) 适于化学钢化的玻璃及化学钢化玻璃
CN114096493B (zh) 化学强化玻璃及其制造方法
WO2011007785A1 (ja) ディスプレイ装置用ガラス板
CN112592052A (zh) 化学性预加应力的高刮划容忍度玻璃元件及其制造方法
JP4289931B2 (ja) 化学強化ガラスの製造方法
EP3519368B1 (en) Glass-based articles with engineered stress profiles and methods of manufacture
JPWO2014112446A1 (ja) 白色ガラスを含む筐体、白色ガラスを含む筐体の製造方法およびポータブル電子装置
JP4289927B2 (ja) 化学強化ガラスの製造方法
KR20170118964A (ko) 화학적 강화에 적합한 플로트 유리 조성물
WO2022215717A1 (ja) 化学強化ガラス及びその製造方法
JP2023551815A (ja) ポアソン比が高いガラス組成物
WO2019235470A1 (ja) 化学強化ガラスおよび化学強化ガラスの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057013832

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048055738

Country of ref document: CN

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 50/2004 UNDER (71) REPLACE "CENTRAL GLASS COMPANY, LIMITEDO" BY "CENTRAL GLASS COMPANY, LIMITED"

WWP Wipo information: published in national office

Ref document number: 1020057013832

Country of ref document: KR

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase