WO2010111850A1 - 适于化学钢化的玻璃及化学钢化玻璃 - Google Patents

适于化学钢化的玻璃及化学钢化玻璃 Download PDF

Info

Publication number
WO2010111850A1
WO2010111850A1 PCT/CN2009/072787 CN2009072787W WO2010111850A1 WO 2010111850 A1 WO2010111850 A1 WO 2010111850A1 CN 2009072787 W CN2009072787 W CN 2009072787W WO 2010111850 A1 WO2010111850 A1 WO 2010111850A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
cao
mgo
chemical tempering
chemically
Prior art date
Application number
PCT/CN2009/072787
Other languages
English (en)
French (fr)
Inventor
孙伟
宋纯才
陈筱丽
陈宁
肖军
李昌
Original Assignee
成都光明光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都光明光电股份有限公司 filed Critical 成都光明光电股份有限公司
Priority to US13/258,939 priority Critical patent/US8828545B2/en
Priority to KR1020117024517A priority patent/KR101314095B1/ko
Priority to EP09842507.7A priority patent/EP2415724B1/en
Priority to JP2012512178A priority patent/JP5416273B2/ja
Publication of WO2010111850A1 publication Critical patent/WO2010111850A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/007Other surface treatment of glass not in the form of fibres or filaments by thermal treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31Surface property or characteristic of web, sheet or block
    • Y10T428/315Surface modified glass [e.g., tempered, strengthened, etc.]

Definitions

  • the present invention relates to a glass suitable for chemical tempering and a chemically tempered glass thereof.
  • microcracks are generated on the surface.
  • the existence of these microcracks makes the actual strength of the glass much lower than the theoretical strength. It is usually necessary to generate compressive stress on the glass surface by using hot tempering or chemical tempering. To increase the strength of the glass to inhibit the expansion of surface microcracks.
  • the chemical tempering of glass is to immerse the heated alkali-containing glass in a molten salt bath, and the chemical composition of the glass surface is changed by ion exchange between the glass and the molten salt, so that a compressive stress layer is formed on the surface of the glass to increase the strength of the glass.
  • ion exchange tempering there are two types. The first one is a high temperature type treatment process. Above the glass transition temperature, ions with a small radius in the molten salt are replaced by ions having a small radius in the molten salt, and a thermal expansion coefficient is formed on the surface of the glass than the main glass.
  • a small thin layer that forms a compressive stress on the surface of the glass upon cooling the size of which depends on the difference in thermal expansion coefficients of the two.
  • the second type is a low-temperature treatment process, which is mainly processed under the strain point of the glass, and replaces the ions with a small radius (Na+) in the glass with a large radius of ions (K+) in the molten salt, so that the surface of the glass is pressed.
  • a compressive stress layer is produced whose magnitude depends on the volume effect of the exchanged ions.
  • the second ion exchange tempering process produces surface compression by replacing large ions in the glass with large ions from the outside.
  • glass using a lithium aluminosilicate system or a sodium aluminosilicate system is ion exchanged with a potassium nitrate molten salt.
  • the glass of the lithium aluminosilicate system can obtain a satisfactory compressive stress value after chemical tempering, but this occurs when the depth of the compressive stress layer is several micrometers, and the compressive stress value is continuously released with the thickening stress of the exchange layer.
  • Significantly reduced there is a significant disadvantage in use, that is, the too thin compressive stress layer may be worn or scratched.
  • Corning's glass 0317 is such a glass, which has excellent performance, but the melting temperature is too high ( ⁇ 1600°C) Difficult to produce.
  • CN101337770A also discloses a glass for chemical tempering, which has a tempering temperature of 490 ° C and a tempering time of 3-8 hours. Next, the glass sample is chemically tempered, and the Vickers hardness can reach 638Mpa after tempering, but a large amount of A1 2 0 3 is added to the glass component.
  • the technical problem to be solved by the present invention is to provide a silica-alumina-sodium oxide glass suitable for a low-temperature ion exchange process, which is at a lower tempering temperature and a shorter tempering time. A deeper stress layer depth can be obtained and a higher compressive stress is obtained while having a deeper stress layer.
  • the technical solution adopted by the present invention to solve the technical problem is: a glass suitable for chemical tempering, the composition of the weight percentage is: Si0 2 : 55-60%, B 2 0 3 : 0. 1-2. 5%, A1 2 0 3 : 11-16%, Na 2 0: 14-17%, K 2 0: 1-8%, Zr0 2 : 0-8%, CaO: 0-5%, MgO: 0-5%, Sb 2 0 3: 0-1%.
  • the glass melting temperature is between 1400-1550 ° C
  • the acid resistance is above level 1
  • the moisture resistance is above grade B.
  • composition by weight is: Si0 2 : 55-60%, B 2 0 3 : 0. 1-1. 7%, A1 2 0 3 : 12-15%, Na 2 0 : 15. 1- 17%, K 2 0: 2-6%, Zr0 2 : 1-4%, CaO: 0-3%, MgO: 0-3%, Sb 2 0 3 : 0-1%
  • composition by weight is: Si0 2 : 55-60%, B 2 0 3 : 0. 1-1. 7%, A1 2 0 3 :
  • the surface compressive stress reaches 610-1100Mpa and the stress layer depth reaches 31-80 ⁇ m under the conditions of tempering temperature 380-500 °C and tempering time 4-12 hours.
  • weight percentage composition is: Si0 2 : 55-60%, B 2 0 3 : 0. 1-2. 5%, A1 2 0 3 :
  • the glass melting temperature is between 1400 and 1550 ° C, and the acid resistance reaches level 1 Above, the moisture resistance is up to grade B or above.
  • composition by weight is: Si0 2 : 55-60%, B 2 0 3 : 0. 1-1. 7%, A1 2 0 3 : 12-15%, Na 2 0 : 15. 1- 17%, K 2 0: 2-6%, Zr0 2 : 1-4%, CaO: 0-3%, MgO: 0-3%, Sb 2 0 3 : 0-1%
  • composition by weight is: Si0 2 : 55-60%, B 2 0 3 : 0. 1-1. 7%, A1 2 0 3 : 12-15%, Na 2 0 : 15. 1- 17%, K 2 0: 2-6%, Zr0 2 : 1-4%, CaO: 1-3%, MgO: 1-3%, Sb 2 0 3 : 0-0. 8%.
  • the glass melting temperature is between 1400-1550 ° C
  • the acid resistance is above level 1
  • the moisture resistance is above grade B.
  • the weight percentage composition of the glass in the tensile stress region is: Si0 2 : 55-60%, B 2 0 3 : 0. 1-1. 7%, A1 2 0 3 : 12-15%, Na 2 0: 15. 1-17%, K 2 0: 2-6%, Zr0 2 : 1-4%, CaO: 0-3%, MgO: 0-3%, Sb 2 0 3 : 0-1% .
  • the weight percentage composition of the glass in the tensile stress region is: Si0 2 : 55-60%, B 2 0 3 : 0. 1-1. 7%, A1 2 0 3 : 12-15%, Na 2 0: 15. 1-17%, K 2 0: 2-6%, Zr0 2 : 1-4%, CaO: 1-3%, MgO: 1-3%, Sb 2 0 3 : 0-0. 8%.
  • the mobile phone panel made of the chemically tempered glass.
  • the PDA panel made of chemically tempered glass.
  • the invention has the beneficial effects that: the invention is a glass containing silica-alumina-sodium oxide. By reasonably setting components, the difficulty of glass manufacturing is reduced, and the glass melting temperature is obviously reduced, which is beneficial to the invention. Reduce the energy consumption and improve the yield of the product; the glass obtained by the invention has a surface pressure stress of 610-1100 MPa and a stress layer depth of 31- at a tempering temperature of 380-500 V and a tempering time of 4-12 hours. 80 ⁇ ⁇ , the glass is reinforced and has good impact resistance.
  • the glass of the invention has high abrasion resistance and is suitable for use as a protective glass material for high-end electronic display products such as mobile phones and PDAs. detailed description
  • Si0 2 is the main component of the glass skeleton. The higher the content, the higher the chemical durability and the mechanical strength of the glass. When the content is below 55%, the glass chemical stability is not good, but when the content exceeds 60%, the melting temperature Too high. Therefore, the Si0 2 ratio is limited to 55-60%.
  • B 2 0 3 is essential components for improving glass and lower the viscosity of such content is too high, the glass will reduce the ion exchange rate, and therefore the content thereof is defined to 0. 1-2. 5%, preferably limited to 0. 1-1. 7%.
  • A1 2 0 3 provides properties for the ion exchange of the glass surface in the glass composition, and is also an essential component for improving the chemical stability of the glass, reducing the tendency of the glass to devitrify and increasing the hardness and mechanical strength of the glass, if A1 2 0 3 is at 11%.
  • the exchange effect is not good, and the chemical stability of the glass is not good, but when the content exceeds 16%, the viscosity of the glass increases, and the devitrification resistance deteriorates. Therefore, the content of A1 2 0 3 is 11-16%, and more preferably the content is 12-15%.
  • Na 2 0 is an essential component for ion exchange of glass ions in the surface layer of the ion exchange treatment solution to achieve chemical tempering of the glass, and also serves as a fusible glass component, which can lower the melting temperature of the glass, if its content is below 14%. Deterioration resistance is degraded; however, when the content exceeds 17%, the chemical stability is deteriorated and the hardness is small. 1-17% ⁇ The content of Na 2 0 is therefore limited to 14-17%, more preferably 15.1-17%.
  • K 2 0 can improve the glass meltability and reduce the viscosity of the glass by mixing the alkali with Na 2 0. Therefore, the total range of Na 2 0+K 2 0 is limited to 15-25%, and the K 2 0 content is limited to 1_8. %, preferably The amount is 2-6%.
  • Zr0 2 has the effect of improving the hardness.
  • the content is less than 5%, the chemical stability can be improved. If it exceeds 5%, the devitrification resistance of the glass is low, and it is easy to be used as an undissolved substance at the bottom of the furnace, and the precipitation tendency becomes strong. Therefore, the content of Zr0 2 is limited to 0 to 8%, preferably 0 to 5%, more preferably 1 to 4%.
  • Mg0, Ca0, Sr0, and BaO which are alkaline earth glass components, can stabilize the glass, prevent crystallization from occurring in the glass, and can effectively suppress the movement of alkali in the glass.
  • MgO also has an effect of increasing the tensile modulus of the glass, which is a major source of alkaline earth metals, and is contained in an amount of 0 to 5%, preferably 1-3%.
  • CaO is the same component as MgO, and its content is 0-5%. When the CaO content is 1% or more, the glass stabilization effect occurs, so CaO is preferably 1-3%.
  • Ba0 and SrO can also stabilize the glass and inhibit the crystallization of the glass, and the total amount thereof is 0_2%.
  • the glass obtained by the invention is processed into a size of 50 X 50 X 1mm, and ion exchange treatment is carried out in a molten salt of 0 3 at a temperature of 380-500 ° ,, and the immersion time of the tempering is 4-12 hours, so that the Na ion of the glass surface layer is obtained. Ion exchange with K ions in the above treatment liquid to obtain chemically tempered glass.
  • the above chemically tempered glass has a hardened layer depth and a tensile stress region, wherein the hardened layer depth refers to a distance from a chemically tempered glass surface to a position where the internal compressive stress of the glass is zero, and the glass is referred to as "compressed area glass".
  • the tensile stress zone refers to the inner glass whose inner depth is greater than the depth of the hardened layer, that is, the portion other than the above-mentioned "compression zone glass” is called “pull stress zone glass”.
  • the "compression zone glass” and the “pull stress zone glass” have different compositions because the sodium ions in the "compression zone glass” are more than the sodium ions in the "pull stress zone glass".
  • the surface compressive stress and stress layer depth of the glass were measured on a FSM-6000 gauge stress gauge.
  • the tempered glass sample 50X50Xlmm
  • the FSM-6000 measures surface compressive stress and stress layer depth using the optical waveguide effect of the tempered sample surface layer.
  • the tempered glass sample (50X50Xlmm) was placed on the test bench, and the force was applied after a certain time with a boring drill.
  • the Vickers hardness of the glass was measured by measuring the length of the indentation with a microscope.
  • Tables 1 and 2 are 10 examples of the present invention.
  • the glass of the present invention undergoes low temperature ion exchange treatment, and the ion exchange degree is high, the surface compressive stress can reach 610-1100 MPa, and the ion exchange layer can reach 31-80 ⁇ m; the acid and moisture resistance are respectively Class 1 and above, the glass has good weatherability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Description

适于化学钢化的玻璃及化学钢化玻璃
技术领域
本发明涉及一种适于化学钢化的玻璃及其化学钢化玻璃。
背景技术
玻璃在生产、 加工和使用过程中, 表面会产生大量微裂纹, 这些微裂 纹的存在使得玻璃实际强度大大低于理论强度, 通常需要通过采用热钢化 或化学钢化的方法使玻璃表面产生压应力, 来提高玻璃强度抑制表面微裂 纹的扩展。
玻璃的化学钢化是把加热的含碱玻璃浸于熔融的盐浴中, 通过玻璃与 熔盐之间的离子交换改变玻璃表面的化学组成, 使玻璃表面形成压应力层 达到提高玻璃强度的目的。 目前有两种类型的离子交换钢化, 第一种是高 温型处理工艺, 在玻璃转变温度以上, 以熔盐中半径小的离子置换玻璃中 半径大的离子, 在玻璃表面形成热膨胀系数比主体玻璃小的薄层, 冷却时 在玻璃表面形成压应力, 其大小取决于两者的热膨胀系数之差。 第二种是 低温型处理工艺, 主要是在玻璃的应变点之下进行处理, 以熔盐中半径大 的离子 (K+) 置换玻璃中半径小的离子 (Na+), 使玻璃表面因挤压而产生 压应力层, 其应力大小取决于交换离子的体积效应。
第二种离子交换钢化的工艺, 是用来自外部的大离子取代玻璃中的较 小离子而产生表面压缩。 典型的, 采用锂铝硅酸盐***或钠铝硅***的玻 璃与硝酸钾熔盐进行离子交换。 锂铝硅酸盐***的玻璃经过化学钢化后, 能获得令人满意的压应力值, 但这出现在压应力层深度为几微米时, 随着 交换层的加厚应力不断释放, 压应力值显著降低, 在使用过程中会产生明 显缺点, 即太薄的压应力层有被磨损或划伤的可能。
用钾离子取代钠铝硅***玻璃中的钠离子来产生表面压缩的化学钢化 方法以往已有研究, 美国康宁公司的玻璃 0317就是这样一种玻璃, 其性能 优良, 但由于熔制温度太高(〉1600°C )难于生产。 CN101337770A也公开了 一种化学钢化用玻璃, 在钢化温度为 490°C、 钢化时间为 3-8小时的条件 下,对玻璃试样进行化学钢化处理,钢化后维氏硬度可达到 638Mpa, 但其玻 璃组份中加入了大量的 A1203, 由于 A1203的熔点高, 玻璃粘度增大, 气泡难 以消除, 所以熔制过程中必须加入 Sb203、 S03、 As203和氟化物, 才能够得到 充分的澄清效果, 产品制造工艺难度较大。
发明内容
本发明所要解决的技术问题是提供一种适于低温型离子交换工艺、 易 熔制的氧化硅-氧化铝-氧化钠玻璃,该玻璃在较低的钢化温度下,以及较短 的钢化时间内,可获得更深的应力层深度,并且在具有较深的应力层的同时 具有较高的压应力。
本发明解决技术问题所采用的技术方案是: 适于化学钢化的玻璃, 其 重量百分比组成为: Si02: 55-60%、 B203: 0. 1-2. 5%、 A1203 : 11-16%、 Na20: 14-17%、 K20: 1-8%、 Zr02: 0-8%、 CaO: 0-5%、 MgO: 0-5%、 Sb203 : 0-1%。
进一歩的, 所述玻璃熔制温度在 1400-1550°C之间, 耐酸达到 1级以 上, 耐潮达 B级以上。
进一歩的, 所述 A1203 : 12-15%。
进一歩的, 所述 Na20: 15. 1-17%。
进一歩的, 所述 A1203 : 12-15%、 Na20: 15. 1-17%。
进一歩的,其重量百分比组成为: Si02: 55-60%, B203: 0. 1-1. 7%、 A1203 : 12-15%, Na20: 15. 1-17%, K20: 2-6%, Zr02: 1-4%, CaO: 0-3%, MgO: 0-3%、 Sb203: 0-1%
进一歩的,其重量百分比组成为: Si02: 55-60%、 B203: 0. 1-1. 7%、 A1203 :
12-15%, Na20: 15. 1-17%, K20: 2-6%, Zr02: 1-4%, CaO: 1-3%, MgO: 1-3%、 Sb203: 0-0. 8%。
适于化学钢化的玻璃, 在钢化温度 380-500°C、 钢化时间 4-12小时的 条件下, 表面压应力达到 610-1100Mpa, 应力层深度达到 31-80 μ m。
进一歩的,其重量百分比组成为: Si02: 55-60%、 B203: 0. 1-2. 5%、 A1203 :
11-16%, Na20: 14-17%, K20: 1-8%, Zr02: 0-8%, CaO: 0-5%, MgO: 0-5%、 Sb203: 0-1%
进一歩的, 所述玻璃熔制温度在 1400-1550°C之间, 耐酸达到 1级以 上, 耐潮达 B级以上。
进一歩的, 所述 A1203 : 12-15%。
进一歩的, 所述 Na20: 15. 1-17%。
进一歩的, 所述 A1203 : 12-15%、 Na20: 15. 1-17%。
进一歩的,其重量百分比组成为: Si02: 55-60%, B203: 0. 1-1. 7%、 A1203 : 12-15%, Na20: 15. 1-17%, K20: 2-6%, Zr02: 1-4%, CaO: 0-3%, MgO: 0-3%、 Sb203: 0-1%
进一歩的,其重量百分比组成为: Si02: 55-60%, B203: 0. 1-1. 7%、 A1203 : 12-15%, Na20: 15. 1-17%, K20: 2-6%, Zr02: 1-4%, CaO: 1-3%, MgO: 1-3%、 Sb203: 0-0. 8%。
化学钢化玻璃, 具有硬化层深度和拉应力区的化学钢化玻璃, 所述拉 应力区内玻璃的重量百分比组成为: Si02: 55-60%、 B203: 0. 1-2. 5%、 A1203 : 11-16%, Na20: 14-17%, K20: 1-8%, Zr02: 0-8%, CaO: 0-5%, MgO: 0-5%、 Sb203: 0-1%
进一歩的, 所述玻璃熔制温度在 1400-1550°C之间, 耐酸达到 1级以 上, 耐潮达 B级以上。
进一歩的, 所述 A1203 : 12-15%。
进一歩的, 所述 Na20: 15. 1-17%。
进一歩的, 所述 A1203 : 12-15%、 Na20: 15. 1-17%。
进一歩的, 所述拉应力区内玻璃的重量百分比组成为: Si02 : 55-60%、 B203: 0. 1-1. 7%、 A1203: 12—15%、 Na20: 15. 1—17%、 K20: 2—6%、 Zr02: 1—4%、 CaO: 0-3%、 MgO: 0-3%、 Sb203 : 0-1%。
进一歩的, 所述拉应力区内玻璃的重量百分比组成为: Si02 : 55-60%、 B203: 0. 1-1. 7%、 A1203: 12—15%、 Na20: 15. 1—17%、 K20: 2—6%、 Zr02: 1—4%、 CaO: 1-3%、 MgO: 1-3%、 Sb203 : 0-0. 8%。
所述的化学钢化玻璃制成的手机面板。
所述的化学钢化玻璃制成的 PDA面板。
本发明的有益效果是: 本发明是含氧化硅 -氧化铝-氧化钠的玻璃, 通 过合理设定组分, 降低了玻璃制造难度, 玻璃熔制温度明显降低, 有利于 降低能耗和提高产品的成品率; 本发明所得到的玻璃在钢化温度 380-500 V、 钢化时间 4-12小时的条件下, 表面压应力可达到 610-1100Mpa, 应力 层深度可达到 31-80 μ ιη, 玻璃被增强, 抗冲击性能好。 本发明的玻璃耐磨 性较高, 适合用于手机、 PDA等高档电子显示产品的保护性玻璃材料。 具体实施方式
以下对本发明的玻璃中可含有的成分进行说明, 各成分的含有率以重 量%表示。
Si02是形成玻璃骨架的主要成份, 其含量越高, 越可以提高化学耐久 性以及玻璃的机械强度, 当含量在 55%以下, 玻璃化学稳定性不好, 但当 含量超过 60%, 熔化温度过高。 因此, Si02比例限定为 55-60%。
B203是用于提高玻璃熔融性以及降低粘度的必要成份, 如含量过高, 会降低玻璃的离子交换速度, 因此其含量限定为 0. 1-2. 5%, 优选限定为 0. 1-1. 7%。
A1203在玻璃组成中为玻璃表面的离子交换提供性能, 同时也是改善玻 璃化学稳定性、 降低玻璃析晶倾向以及提高玻璃硬度和机械强度的必要组 分, 若 A1203在 11%以下, 交换效果不好, 而且玻璃的化学稳定性不好, 但 当含量超过 16%, 玻璃粘度增加, 耐失透性能恶化。 因此, A1203的含量为 11-16%, 更优选含量为 12-15%。
作为铝硅酸盐玻璃, 玻璃当中存在大量中间体氧化物 A1203, 如果碱金 属存在较多, 玻璃中铝以四面体存在, 其体积较硅氧四面体更大, 会产生 更大空隙, 使得玻璃表面离子交换更容易, 而且交换的深度也更大, 对于 划伤和冲击破坏起到抑制作用, 明显提高机械强度。
Na20是玻璃表层与离子交换处理液中的 K离子进行离子交换从而实现 玻璃化学钢化的必须成份, 同时其还作为易熔玻璃组分, 可降低玻璃熔融 温度, 若其含量在 14%以下, 耐失透性劣化; 但当含量超过 17%, 化学稳定 性劣化, 且硬度变小。 因此 Na20的含量限定为 14-17%, 更优选含量为 15. 1-17%。
K20通过与 Na20混合碱的效果, 能够提高玻璃熔融性, 并降低玻璃的粘 度, 因此 Na20+K20合计量范围限定为 15-25%, K20含量限定为 1_8%, 优选含 量为 2-6%。
Zr02有提高硬度的效果, 当其含量在 5%以下, 可提高化学稳定性, 若 超过 5%, 玻璃的耐失透性低下, 而且易作为熔炉底部的未溶物, 沉淀趋势 变强。 因此, Zr02的含量限定为 0-8%, 优选 0-5%, 更优选 1-4%。
作为碱土类玻璃成分的 Mg0、 Ca0、 Sr0、 BaO能够使玻璃稳定化, 防止 玻璃中产生结晶, 另外, 还可以有效抑制玻璃中碱的移动。
MgO 还具有提高玻璃的拉伸弹性模量的效果, 其是碱土金属的主要来 源, 其含量为 0-5%, 优选 1-3%。
CaO是与 MgO同样的组分, 其含量是 0-5%, 当 CaO含量在 1%以上, 会 出现玻璃稳定化的效果, 因此 CaO优选含量为 1-3%。
Ba0、 SrO也可使玻璃稳定化, 抑制玻璃析晶, 其合计量为 0_2%。
本发明使用 Sb203作为澄清剂, Sb203含量为 0-1%, 优选含量为 0-0. 8%。 本发明玻璃的生产工艺如下:
1 )按重量比例称量各组份的氧化物、碳酸盐和硝酸盐等常用玻璃原料, 充分混合后加入铂金坩埚内;
2 ) 在 1450— 1550°C下熔化、 澄清、 均化后降温;
3 )将熔融玻璃液浇注入预热后的金属模, 将玻璃连同金属模一起放入 退火炉内退火冷却后即得。
将本发明所得到的玻璃加工成 50 X 50 X 1mm的规格,在温度为 380-500 °〇的 03熔盐中进行离子交换处理, 钢化浸泡时间 4-12 小时,使玻璃表层 的 Na离子与上述处理液中的 K离子进行离子交换, 得到化学钢化玻璃。
上述化学钢化玻璃具有硬化层深度和拉应力区, 其中硬化层深度是指 从化学钢化的玻璃表面到玻璃内部压应力为零的位置之间的距离, 这部分 的玻璃被称为 "压缩区玻璃"; 拉应力区是指玻璃内部深度大于硬化层深度 处的内部玻璃, 也就是上述 "压缩区玻璃" 以外的部分被称为 "拉应力区 玻璃"。 "压缩区玻璃"与 "拉应力区玻璃"具有不同的组成, 原因在于 "压 缩区玻璃" 中的钠离子多于 "拉应力区玻璃" 中的钠离子。
玻璃表面压应力及应力层深度测定在 FSM— 6000表明应力仪上进行。 钢化好的玻璃样品 (50X50Xlmm)经擦拭后, 放在涂有折射液(折射液的 折射率大于 1.64) 的玻璃测试台上。 FSM— 6000利用钢化样品表面层的光 波导效应测量表面压应力和应力层深度。
将钢化好的玻璃样品 (50X50Xlmm)放在测试台上, 用压钻施力一定 时间后取出, 采用显微镜测量压痕长度测试出玻璃维氏硬度。
转变温度、 膨胀系数测试根据 GB/T7962.16— 1987 《无色光学玻璃测 试方法 膨胀系数、 转变温度》。
根据 GB/T7962.14—1987 《无色光学玻璃测试方法 耐酸》, 测试玻璃 耐酸性能。
根据 GB/T7962.15—1987 《无色光学玻璃测试方法 耐潮》, 测试玻璃 耐潮级别。
表 1和表 2是本发明的 10个实施例。
表 1
Figure imgf000007_0001
表 2
Figure imgf000008_0001
由实施例 1-10结果可知, 本发明的玻璃经过低温离子交换处理, 离子 交换度高, 表面压应力可达到 610-1100Mpa,离子交换层可达到 31-80 μ m ; 耐酸及耐潮性能分别为 1类和 B级以上, 玻璃耐候性很好。

Claims

权利要求书
I、 适于化学钢化的玻璃, 其特征在于, 其重量百分比组成为: Si02 :
55—60%、 B203: 0. 1—2. 5%、 A1203 : 11—16%、 Na20: 14—17%、 K20: 1—8%、 Zr02: 0-8%、 CaO: 0-5%、 MgO: 0-5%、 Sb203 : 0-1%。
2、 如权利要求 1所述的适于化学钢化的玻璃, 其特征在于, 所述玻璃 熔制温度在 1400-155CTC之间, 耐酸达到 1级以上, 耐潮达 B级以上。
3、 如权利要求 1或 2所述的适于化学钢化的玻璃, 其特征在于, 所述 A1203: 12-15%。
4、 如权利要求 1或 2所述的适于化学钢化的玻璃, 其特征在于, 所述 Na20: 15. 1-17%。
5、 如权利要求 1或 2所述的适于化学钢化的玻璃, 其特征在于, 所述 A1203: 12-15%、 Na20: 15. 1-17%。
6、 如权利要求 1或 2所述的适于化学钢化的玻璃, 其特征在于, 其重 量百分比组成为: Si02: 55-60%、 B203: 0. 1-1. 7%、 A1203 : 12-15%、 Na20: 15. 1—17%、 K20: 2—6%、 Zr02: 1—4%、 CaO: 0—3%、 MgO: 0—3%、 Sb203 : 0—1%。
7、 如权利要求 1或 2所述的适于化学钢化的玻璃, 其特征在于, 其重 量百分比组成为: Si02: 55-60%、 B203: 0. 1-1. 7%、 A1203 : 12-15%、 Na20: 15. 1-17%、 K20: 2-6%、 Zr02: 1-4%、 CaO: 1-3%、 MgO: 1-3%、 Sb203 : 0-0. 8%。
8、 适于化学钢化的玻璃, 其特征在于, 在钢化温度 380-500°C、 钢化 时间 4-12小时的条件下, 表面压应力达到 610-1100Mpa, 应力层深度达到
Figure imgf000009_0001
9、 如权利要求 8所述的适于化学钢化的玻璃, 其特征在于, 其重量百 分比组成为: Si02: 55-60%、 B203: 0. 1-2. 5%、 A1203 : 11-16%、 Na20: 14-17%、 K20: 1-8%、 Zr02: 0-8%、 CaO: 0-5%、 MgO: 0-5%、 Sb203 : 0-1%。
10、 如权利要求 8所述的适于化学钢化的玻璃, 其特征在于, 所述玻 璃熔制温度在 1400-155CTC之间, 耐酸达到 1级以上, 耐潮达 B级以上。
I I、如权利要求 8-10任一权利要求所述的适于化学钢化的玻璃, 其特 征在于, 所述 A1203 : 12-15%。
12、如权利要求 8-10任一权利要求所述的适于化学钢化的玻璃, 其特 征在于, 所述 Na20: 15. 1-17%。
13、如权利要求 8-10任一权利要求所述的适于化学钢化的玻璃, 其特 征在于, 所述 A1203 : 12-15%、 Na20: 15. 1_17%。
14、如权利要求 8-10任一权利要求所述的适于化学钢化的玻璃, 其特 征在于,其重量百分比组成为: Si02: 55-60%、 B203 : 0. 1-1. 7%、A1203 : 12-15%、
Na20: 15. 1—17%、 K20: 2—6%、 Zr02: 1—4%、 CaO: 0—3%、 MgO: 0—3%、 Sb203 : 0-1%
15、如权利要求 8-10任一权利要求所述的适于化学钢化的玻璃, 其特 征在于,其重量百分比组成为: Si02: 55-60%、 B203 : 0. 1-1. 7%、A1203 : 12-15%、 Na20: 15. 1—17%、 K20: 2—6%、 Zr02: 1—4%、 CaO: 1—3%、 MgO: 1—3%、 Sb203 : 0-0. 8
16、 化学钢化玻璃, 其特征在于, 具有硬化层深度和拉应力区的化学 钢化玻璃, 所述拉应力区内玻璃的重量百分比组成为: Si02 : 55-60%、 B203: 0. 1—2. 5%、 A1203: 11—16%、 Na20: 14—17%、 K20: 1—8%、 Zr02: 0-8%、 CaO: 0-5%、 MgO: 0-5%、 Sb203: 0-1%
17、 如权利要求 16所述的化学钢化玻璃, 其特征在于, 所述玻璃熔制 温度在 1400-155CTC之间, 耐酸达到 1级以上, 耐潮达 B级以上。
18、如权利要求 16或 17所述的化学钢化玻璃,其特征在于,所述 A1203 : 12-15%。
19、如权利要求 16或 17所述的化学钢化玻璃,其特征在于,所述 Na20:
15. 1-17%。
20、如权利要求 16或 17所述的化学钢化玻璃,其特征在于,所述 A1203 : 12-15%、 Na20: 15. 1_17%。
21、 如权利要求 16或 17所述的化学钢化玻璃, 其特征在于, 所述拉 应力区内玻璃的重量百分比组成为: Si02: 55-60%、 B203: 0. 1-1. 7%、 A1203 :
12-15%, Na20: 15. 1-17%, K20: 2-6%, Zr02: 1-4%, CaO: 0-3%, MgO: 0-3%、 Sb203: 0-1%
22、 如权利要求 16或 17所述的化学钢化玻璃, 其特征在于, 所述拉 应力区内玻璃的重量百分比组成为: Si02: 55-60%、 B203: 0. 1-1. 7%、 A1203 : 12-15%, Na20: 15. 1-17%, K20: 2-6%, Zr02: 1-4%, CaO: 1-3%, MgO: 1-3%、 Sb203: 0-0. 8%。
23、 如权利要求 16或 17所述的化学钢化玻璃制成的手机面板。
24、 如权利要求 16或 17所述的化学钢化玻璃制成的 PDA面板。
PCT/CN2009/072787 2009-03-31 2009-07-16 适于化学钢化的玻璃及化学钢化玻璃 WO2010111850A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/258,939 US8828545B2 (en) 2009-03-31 2009-07-16 Glass suitable for chemical tempering and chemically tempered glass thereof
KR1020117024517A KR101314095B1 (ko) 2009-03-31 2009-07-16 화학강화에 적용되는 유리 및 화학강화유리
EP09842507.7A EP2415724B1 (en) 2009-03-31 2009-07-16 Glass suitable for chemically toughening and chemically toughened glass
JP2012512178A JP5416273B2 (ja) 2009-03-31 2009-07-16 化学的焼戻しに適したガラスおよび化学的焼戻しされたガラス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910301240.4 2009-03-31
CN2009103012404A CN101508524B (zh) 2009-03-31 2009-03-31 适于化学钢化的玻璃及其化学钢化玻璃

Publications (1)

Publication Number Publication Date
WO2010111850A1 true WO2010111850A1 (zh) 2010-10-07

Family

ID=41001082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072787 WO2010111850A1 (zh) 2009-03-31 2009-07-16 适于化学钢化的玻璃及化学钢化玻璃

Country Status (6)

Country Link
US (1) US8828545B2 (zh)
EP (1) EP2415724B1 (zh)
JP (1) JP5416273B2 (zh)
KR (1) KR101314095B1 (zh)
CN (1) CN101508524B (zh)
WO (1) WO2010111850A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129400A1 (ja) * 2012-02-28 2013-09-06 旭硝子株式会社 積層強化ガラス
JP2015512853A (ja) * 2012-02-29 2015-04-30 コーニング インコーポレイテッド 容器健全性を確保するガラス包装
JP2016074595A (ja) * 2010-12-24 2016-05-12 旭硝子株式会社 化学強化用ガラス

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102092940A (zh) 2009-12-11 2011-06-15 肖特公开股份有限公司 用于触摸屏的铝硅酸盐玻璃
CN102741187B (zh) * 2010-01-07 2015-09-09 康宁股份有限公司 抗冲击损伤玻璃片
CN102167509A (zh) * 2010-02-26 2011-08-31 肖特玻璃科技(苏州)有限公司 能进行后续切割的化学钢化玻璃
CN102249542B (zh) 2010-05-18 2015-08-19 肖特玻璃科技(苏州)有限公司 用于3d精密模压和热弯曲的碱金属铝硅酸盐玻璃
CN105110636A (zh) * 2010-09-27 2015-12-02 旭硝子株式会社 玻璃、化学强化玻璃及显示装置用玻璃板
WO2012131824A1 (ja) * 2011-03-31 2012-10-04 日本板硝子株式会社 化学強化に適したガラス組成物、および化学強化ガラス物品
KR20140074914A (ko) * 2011-10-04 2014-06-18 아사히 가라스 가부시키가이샤 커버 유리
US9359251B2 (en) 2012-02-29 2016-06-07 Corning Incorporated Ion exchanged glasses via non-error function compressive stress profiles
CN103420610B (zh) * 2012-05-21 2016-08-03 中国南玻集团股份有限公司 玻璃基板、玻璃板及其制备方法
CN103508674A (zh) * 2012-06-27 2014-01-15 成都光明光电股份有限公司 玻璃增强方法
WO2014166250A1 (en) * 2013-04-10 2014-10-16 Schott Glass Technologies (Suzhou) Co. Ltd. Chemically toughened glass
DE102013103573B4 (de) * 2013-04-10 2016-10-27 Schott Ag Chemisch vorspannbares Glaselement mit hoher Kratztoleranz, und Verfahren zur Herstellung des Glaselementes
US11079309B2 (en) 2013-07-26 2021-08-03 Corning Incorporated Strengthened glass articles having improved survivability
US10941071B2 (en) 2013-08-02 2021-03-09 Corning Incorporated Hybrid soda-lime silicate and aluminosilicate glass articles
DE102013019003A1 (de) 2013-11-13 2015-05-13 Taiwan Glass Ind. Corp. Alkali-Alumino-Silikatglas
CN104326666A (zh) * 2013-12-31 2015-02-04 东旭集团有限公司 一种显示器件用铝硅酸盐玻璃保护盖板的原料配方
US9517968B2 (en) 2014-02-24 2016-12-13 Corning Incorporated Strengthened glass with deep depth of compression
WO2015127583A1 (en) * 2014-02-25 2015-09-03 Schott Ag Chemically toughened glass article with low coefficient of thermal expansion
TWI705889B (zh) 2014-06-19 2020-10-01 美商康寧公司 無易碎應力分布曲線的玻璃
TWI705948B (zh) 2014-10-08 2020-10-01 美商康寧公司 含有金屬氧化物濃度梯度之玻璃以及玻璃陶瓷
US10150698B2 (en) 2014-10-31 2018-12-11 Corning Incorporated Strengthened glass with ultra deep depth of compression
KR102459339B1 (ko) 2014-11-04 2022-10-26 코닝 인코포레이티드 비-취약성 응력 프로파일 및 이의 제조방법
US9630873B2 (en) 2015-03-16 2017-04-25 Guardian Industries Corp. Float glass composition adapted for chemical strengthening
CN104909392B (zh) * 2015-05-26 2017-06-13 武汉理工大学 一种能够加快硝酸钾熔液澄清与除杂的方法及添加剂
JP6774614B2 (ja) * 2015-07-01 2020-10-28 日本電気硝子株式会社 強化用ガラス及び強化ガラス
US11613103B2 (en) 2015-07-21 2023-03-28 Corning Incorporated Glass articles exhibiting improved fracture performance
US10579106B2 (en) 2015-07-21 2020-03-03 Corning Incorporated Glass articles exhibiting improved fracture performance
TWI773480B (zh) 2015-12-11 2022-08-01 美商康寧公司 具有金屬氧化物濃度梯度之可熔融成形的玻璃基物件
US10043903B2 (en) 2015-12-21 2018-08-07 Samsung Electronics Co., Ltd. Semiconductor devices with source/drain stress liner
EP3429972A1 (en) 2016-04-08 2019-01-23 Corning Incorporated Glass-based articles including a metal oxide concentration gradient
KR20200091500A (ko) 2016-04-08 2020-07-30 코닝 인코포레이티드 두 영역을 포함하는 응력 프로파일을 포함하는 유리-계 물품, 및 제조 방법
JP6897270B2 (ja) * 2017-04-20 2021-06-30 Agc株式会社 化学強化ガラス
WO2020082328A1 (zh) 2018-10-26 2020-04-30 成都创客之家科技有限公司 电子设备盖板用微晶玻璃制品和微晶玻璃
CN109704564A (zh) * 2019-03-21 2019-05-03 南通向阳光学元件有限公司 一种高强度超薄玻璃的制备方法
JP7174788B2 (ja) * 2021-02-17 2022-11-17 株式会社オハラ 結晶化ガラス基板
CN114956550B (zh) * 2022-07-05 2024-01-05 四川虹科创新科技有限公司 一种高强度防静电玻璃及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB796216A (en) 1955-12-19 1958-06-04 Air Preheater Pellet type heat exchanger
GB796214A (en) 1955-11-08 1958-06-04 Hanson Van Winkle Munning Co Improvements in the electrodeposition of bright cadmium
GB796215A (en) 1955-12-13 1958-06-04 Leopold Franz Schmid A resilient, safety steering wheel for motor vehicles
US3772135A (en) * 1969-07-10 1973-11-13 Asahi Glass Co Ltd Glass strengthened by ion exchange and method of preparing the same
CN1886348A (zh) * 2003-10-24 2006-12-27 Ppg工业俄亥俄公司 含氧化锂-氧化铝-氧化硅的玻璃组合物和适于化学钢化的玻璃以及使用该化学钢化玻璃制成的制品
CN101337770A (zh) 2008-08-18 2009-01-07 苏州新吴硝子科技有限公司 高强度铝硅酸盐玻璃及其化学钢化方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US372135A (en) * 1887-10-25 Charles emmbl
JP4530618B2 (ja) * 2002-09-27 2010-08-25 コニカミノルタオプト株式会社 ガラス組成物及びガラス基板
CN1785872A (zh) * 2004-12-07 2006-06-14 刘明志 低膨胀透明黑色微晶玻璃及其制备方法
WO2007138986A1 (ja) * 2006-05-25 2007-12-06 Nippon Electric Glass Co., Ltd. 強化ガラス及びその製造方法
KR101351366B1 (ko) * 2006-10-10 2014-01-14 니폰 덴키 가라스 가부시키가이샤 강화 유리 기판
JP2008195602A (ja) * 2007-01-16 2008-08-28 Nippon Electric Glass Co Ltd 強化ガラス基板の製造方法及び強化ガラス基板
US7666511B2 (en) * 2007-05-18 2010-02-23 Corning Incorporated Down-drawable, chemically strengthened glass for cover plate
CN101679105B (zh) * 2007-06-07 2015-06-17 日本电气硝子株式会社 强化玻璃基板及其制造方法
JP5467490B2 (ja) 2007-08-03 2014-04-09 日本電気硝子株式会社 強化ガラス基板の製造方法及び強化ガラス基板
EP3392220A1 (en) * 2007-11-29 2018-10-24 Corning Incorporated Glasses having improved toughness and scratch resistance
CN101980983B (zh) * 2008-02-26 2014-04-16 康宁股份有限公司 用于硅酸盐玻璃的澄清剂

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB796214A (en) 1955-11-08 1958-06-04 Hanson Van Winkle Munning Co Improvements in the electrodeposition of bright cadmium
GB796215A (en) 1955-12-13 1958-06-04 Leopold Franz Schmid A resilient, safety steering wheel for motor vehicles
GB796216A (en) 1955-12-19 1958-06-04 Air Preheater Pellet type heat exchanger
US3772135A (en) * 1969-07-10 1973-11-13 Asahi Glass Co Ltd Glass strengthened by ion exchange and method of preparing the same
CN1886348A (zh) * 2003-10-24 2006-12-27 Ppg工业俄亥俄公司 含氧化锂-氧化铝-氧化硅的玻璃组合物和适于化学钢化的玻璃以及使用该化学钢化玻璃制成的制品
CN101337770A (zh) 2008-08-18 2009-01-07 苏州新吴硝子科技有限公司 高强度铝硅酸盐玻璃及其化学钢化方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016074595A (ja) * 2010-12-24 2016-05-12 旭硝子株式会社 化学強化用ガラス
JP2017036211A (ja) * 2010-12-24 2017-02-16 旭硝子株式会社 化学強化用ガラス
WO2013129400A1 (ja) * 2012-02-28 2013-09-06 旭硝子株式会社 積層強化ガラス
JP2015512853A (ja) * 2012-02-29 2015-04-30 コーニング インコーポレイテッド 容器健全性を確保するガラス包装

Also Published As

Publication number Publication date
EP2415724A4 (en) 2015-08-19
KR101314095B1 (ko) 2013-10-04
JP2012521961A (ja) 2012-09-20
EP2415724B1 (en) 2020-03-18
EP2415724A1 (en) 2012-02-08
JP5416273B2 (ja) 2014-02-12
CN101508524B (zh) 2010-06-30
CN101508524A (zh) 2009-08-19
EP2415724A9 (en) 2018-04-11
US20120015197A1 (en) 2012-01-19
US8828545B2 (en) 2014-09-09
KR20120009454A (ko) 2012-02-01

Similar Documents

Publication Publication Date Title
WO2010111850A1 (zh) 适于化学钢化的玻璃及化学钢化玻璃
JP7327533B2 (ja) 化学強化用ガラス、化学強化ガラスおよび化学強化ガラスの製造方法
JP5602270B2 (ja) 強化ガラス基板及びその製造方法
JP5743125B2 (ja) 強化ガラス及び強化ガラス基板
JPWO2019004124A1 (ja) 化学強化ガラス、その製造方法および化学強化用ガラス
JP2012214356A (ja) カバーガラス及びその製造方法
TWI791431B (zh) 化學強化玻璃
WO2011007785A1 (ja) ディスプレイ装置用ガラス板
WO2016104446A1 (ja) ガラス及び化学強化ガラス
WO2022166028A1 (zh) 铝硅酸盐强化玻璃及其制备方法
WO2020008901A1 (ja) 化学強化ガラスおよびその製造方法
JP5796905B2 (ja) 強化ガラス基板及びガラス並びに強化ガラス基板の製造方法
JP5413817B2 (ja) 強化ガラス基板及びガラス並びに強化ガラス基板の製造方法
JP2013173668A (ja) 強化ガラスの製造方法
JP7335557B2 (ja) 強化ガラス及び強化用ガラス
JPWO2019131528A1 (ja) カバーガラス
JP7335541B2 (ja) 強化ガラス及び強化用ガラス
CN118108409A (zh) 一种显示屏盖板用铝硅酸盐玻璃

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842507

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13258939

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012512178

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009842507

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117024517

Country of ref document: KR

Kind code of ref document: A