WO2004103521A1 - 凝集沈殿装置 - Google Patents

凝集沈殿装置 Download PDF

Info

Publication number
WO2004103521A1
WO2004103521A1 PCT/JP2004/006954 JP2004006954W WO2004103521A1 WO 2004103521 A1 WO2004103521 A1 WO 2004103521A1 JP 2004006954 W JP2004006954 W JP 2004006954W WO 2004103521 A1 WO2004103521 A1 WO 2004103521A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
treated
coagulant
meter
treated water
Prior art date
Application number
PCT/JP2004/006954
Other languages
English (en)
French (fr)
Inventor
Sakae Kosanda
Ryosuke Hata
Hirotoshi Hinuma
Ken Suzuki
Tomoichi Fujihashi
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003144891A external-priority patent/JP3888984B2/ja
Priority claimed from JP2003157786A external-priority patent/JP3856314B2/ja
Priority claimed from JP2003198447A external-priority patent/JP2005034712A/ja
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to EP04745265A priority Critical patent/EP1637205A1/en
Priority to CA002526524A priority patent/CA2526524A1/en
Priority to US10/558,315 priority patent/US20070175804A1/en
Publication of WO2004103521A1 publication Critical patent/WO2004103521A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5209Regulation methods for flocculation or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0012Settling tanks making use of filters, e.g. by floating layers of particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0039Settling tanks provided with contact surfaces, e.g. baffles, particles
    • B01D21/0042Baffles or guide plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0087Settling tanks provided with means for ensuring a special flow pattern, e.g. even inflow or outflow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/02Settling tanks with single outlets for the separated liquid
    • B01D21/04Settling tanks with single outlets for the separated liquid with moving scrapers
    • B01D21/06Settling tanks with single outlets for the separated liquid with moving scrapers with rotating scrapers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/02Settling tanks with single outlets for the separated liquid
    • B01D21/08Settling tanks with single outlets for the separated liquid provided with flocculating compartments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/10Settling tanks with multiple outlets for the separated liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/10Settling tanks with multiple outlets for the separated liquids
    • B01D21/16Settling tanks with multiple outlets for the separated liquids provided with flocculating compartments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/2405Feed mechanisms for settling tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/2427The feed or discharge opening located at a distant position from the side walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/2444Discharge mechanisms for the classified liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/30Control equipment
    • B01D21/305Control of chemical properties of a component, e.g. control of pH
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/30Control equipment
    • B01D21/32Density control of clear liquid or sediment, e.g. optical control ; Control of physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/30Control equipment
    • B01D21/34Controlling the feed distribution; Controlling the liquid level ; Control of process parameters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions

Definitions

  • the present invention relates to sewage treatment, and more particularly to a coagulation sedimentation technique in which a coagulant is added to water to be treated, that is, sewage, to coagulate and precipitate suspended substances in the sewage.
  • Patent Document 1 Japanese Patent Publication No. 42-25986
  • Non-Patent Document 1 Water Treatment Engineering (Second Edition), edited by Tetsuo Ide (1995), P59-P67
  • Non-Patent Document 2 Water Treatment Management Handbook (Maruzen Co., Ltd., 1998), P124-130 Non-Patent Document 3: 39th Annual Sewerage Workshop Presentation (2002), Session No. 2-6-2,
  • a sewer system has a split flow system and a merged system.
  • sewage combined with sewage and rainwater discharged from homes or the like is treated.
  • the primary treatment mainly removing suspended solids
  • secondary treatment mainly biological
  • secondary treatment that cannot increase the processing speed is omitted, and only the primary treatment is discharged to general rivers, etc., and measures are taken to reduce the amount of untreated discharge. . Therefore, in order to reduce the untreated discharge as much as possible, it is desired to speed up the simple processing (the processing of releasing only the temporary processing).
  • the apparatus for simple processing includes a first stirring tank 10 for adding and stirring an inorganic coagulant to sewage S, and a second stirring tank 12 for adding and stirring an organic polymer coagulant.
  • the floc formed by flocculating the flocculant by stirring and mixing the flocculent is flocculated and separated from the sewage, and the floc is flocculated; discharged as sludge F and the solid substance is separated.
  • It has a solid-liquid separation tank 16 for discharging water W, and in order to carry out simple processing efficiently and at high speed in this device, it is necessary to supply an appropriate amount of flocculant and appropriately mix the flocculant with sewage. In addition, efficient coagulation and sedimentation of the suspended substance is required. Disclosure of the invention
  • the present invention provides:
  • a dividing member that is set in the separation tank body and divides the inside of the separation tank body into an upper chamber and a lower chamber;
  • the upper chamber is provided with a first treated water discharge port for discharging treated water to the outside at an upper part thereof,
  • the lower chamber has a second treated water discharge port for discharging treated water to the outside at a position above the lower opening of the treated water flow passage, and a lower opening than the lower opening of the treated water flow passage. In the lower position, there is a block outlet for discharging the block separated from the water to be treated,
  • the upward flow velocity of the water to be treated toward the first treated water discharge port in the upper chamber, and the upward flow velocity of the treated water toward the second treated water discharge port in the lower chamber, Have flocculation sedimentation tanks so that the floc in the upward flow can reach a speed at which it can descend.
  • a coagulation settling device is provided.
  • / 2nd treated water discharge locus By adjusting the discharge amount of treated water discharged, the upward flow of treated water toward the first treated water discharge port in the upper chamber And the upward flow velocity of the water to be treated toward the second treated water discharge port in the lower chamber is set to a velocity at which the flocs in the upward flow can descend. It can be so By doing so, the treatment speed of the water to be treated as the whole coagulation and sedimentation apparatus can be made higher than the sedimentation speed of the floc, and the treatment of the water to be treated can be performed at a high speed.
  • the separation tank main body has a bottom wall portion and a peripheral wall portion extending upward from the bottom wall portion, and the dividing member is spaced from the inner surface of the peripheral wall portion of the separation tank main body.
  • a funnel-shaped member, wherein the water flow passage to be treated is set at a position below the dividing member and is inclined downward from the inner surface of the peripheral wall of the separation tank body toward the center of the separation tank body; It can be formed between the dividing member.
  • the dividing member is formed in a bowl shape that is recessed downward toward a central portion, and the treated water introduction pipe directs treated water toward the central portion of the dividing member. Can be discharged downward.
  • a floating filter medium, a filter medium outflow prevention screen above the floating filter medium, and a filter medium receiving screen below the floating filter medium are provided in an upper portion of the first chamber, and the first treated water drainage is provided.
  • the force S can be such that the outlet is provided above the filter medium outflow prevention screen.
  • a coagulant adding device for adding a coagulant to the water to be treated introduced into the separation tank main body by the water to be treated introduction pipe;
  • the present invention provides a coagulation sedimentation apparatus in which a coagulant is added to the water, and the water to be treated is supplied to the water introduction pipe through the upward flow path and the downward flow path.
  • the coagulant can be mixed efficiently and reliably by passing the water to be treated through the vertical detour channel.
  • the coagulant adding device includes two coagulant addition tanks sequentially arranged along the flow path of the water to be treated, and the upstream coagulant addition tank has an inorganic coagulant.
  • the coagulant addition tank on the downstream side is configured to add an organic coagulant, so that the water to be treated to which the inorganic coagulant and the organic coagulant have been added is supplied to the water introduction pipe. To That can be S.
  • An SS meter or turbidity meter that measures the concentration of suspended solids in the water to be treated
  • a controller for calculating an appropriate amount of coagulant to be added to the water to be treated based on data measured by the flow meter, the M alkalinity meter, the SS meter or the turbidity meter. Can be provided.
  • the water is added to the suspended solids of the water to be treated during no rainfall.
  • the present invention provides
  • An SS meter or turbidity meter that measures the concentration of suspended solids in the water to be treated
  • a coagulation sedimentation device comprising:
  • control for calculating an appropriate amount of coagulant to be added to the water to be treated can be equipped with a vessel.
  • the treatment speed is higher than the sedimentation speed of the floc formed and formed by the coagulant. It is possible to perform a coagulation sedimentation process.
  • the coagulant can be efficiently and reliably mixed with the water to be treated, and the coagulant can be used effectively.
  • FIG. 1 is a conceptual diagram of a conventional coagulation-sedimentation apparatus.
  • FIG. 2 is a conceptual diagram of the coagulation / sedimentation apparatus according to the present invention.
  • FIG. 3 is a diagram showing a schematic configuration of a bypass mixing tank used in the present invention.
  • FIG. 4 is a view showing a detour type mixing tank similar to FIG. 3, which is provided with a stirrer.
  • FIG. 5 is a sectional view showing an example of the solid-liquid separation tank of the present invention.
  • FIG. 6 is a sectional configuration diagram showing another example of the solid-liquid separation tank of the present invention.
  • FIG. 7 is a graph showing the results of treated water treated by the solid-liquid separation tank in FIG. 5.
  • FIG. 8 is a graph showing the relationship between the water to be treated and the turbidity of the treated water, to which the degree of M water pressure has been adjusted by adding sulfuric acid.
  • FIG. 9 is a graph showing the relationship between the degree of inflow water at rainfall and the turbidity of treated water.
  • FIG. 10 is a graph showing a change in M alkalinity when sewage during no rainfall is diluted with rainwater.
  • FIG. 11 is a graph showing the relationship between the percentage (%) of sewage in a mixed solution, electrical conductivity, and M alkalinity.
  • FIG. 12 is a graph showing the change over time in suspended solids concentration (SS) and M alkalinity of inflow water during rainfall.
  • SS suspended solids concentration
  • FIG. 13 is a graph showing a relationship between electric conductivity and M alkalinity.
  • FIG. 2 shows an outline of the coagulation sedimentation apparatus 20 according to the present invention.
  • the coagulation and sedimentation apparatus 20 includes an inorganic coagulant mixing tank 22, an organic coagulant mixing tank 24, and a solid-liquid separation tank 26. It is mixed with the inorganic coagulant in the inorganic coagulant mixing tank 22, and then mixed with the organic polymer coagulant in the organic coagulant mixing tank 24 and sent to the solid-liquid separation tank 26, where The suspended solids in the water to be treated are aggregated into flocs F in the liquid separation tank, and the flocs are settled and concentrated at the bottom of the solid-liquid separation tank 26 to be discharged as sludge, and the suspended solids are removed. The treated water W discharged from the upper part of the solid-liquid separation tank 26 is discharged.
  • a to-be-treated water conduit for introducing the to-be-treated water S into the inorganic coagulant mixing tank 22 has a flow meter 30 for measuring a flow rate of the to-be-treated water S, An alkalinity meter 32 and an SS meter 34 for measuring the SS (suspended matter concentration) of the water to be treated are provided.
  • the controller 36 controls the inorganic system based on the data measured by these measuring instruments.
  • the pumps 42 and 44 of the coagulant tank 38 and the organic coagulant tank 40 the inorganic coagulant and the organic polymer coagulant are supplied to the inorganic coagulant mixing tank 22 and the organic coagulant mixing tank 24. Is controlled.
  • FIG. 3 shows a coagulant mixing tank 50 in which the inorganic coagulant mixing tank 22 and the organic coagulant mixing tank 24 used in the present invention are integrated and formed into a bypass type.
  • the mixing tank 50 is a vertical detour, which is provided with a total of eight sections that generate a downward flow and a section that generates an upward flow in order from the upstream side to the downstream side of the flow of the water to be treated. From the upstream side, the first section to the fourth section correspond to the inorganic coagulant mixing tank 22 described above, and the fifth section to the eighth section correspond to the organic coagulant mixing tank 24 described above. It has become equivalent to.
  • the water to be treated S is added with an inorganic coagulant at the inlet of the water to be treated at the upstream end of the inorganic coagulant mixing tank 22, and the downward flow ⁇ the upward flow ⁇ the downward flow ⁇ the upward flow
  • the mixture is made to flow countercurrently, mixed with the coagulant, and supplied to the upstream end (downstream end of the fourth section) of the organic polymer coagulant mixing tank 24, where the organic coagulant is added at the upstream end.
  • the mixture with the organic coagulant is made by using the flow of the bypass mixing tank, and is sent to the solid-liquid separation tank 26 while forming a floc of the suspended substance. I'm familiar.
  • the flow rate is maintained at 0.15 m / sec or more, preferably 0.17 m / sec or more until the organic polymer coagulant is added.
  • the retention time is set to 100 seconds or more, and the solid-liquid separation is maintained at a flow rate of 0.15 m / sec or more, preferably 0.17 m / sec or more, even after the addition of the organic polymer flocculant. It is desirable to be able to maintain a residence time of 130 seconds or more before being introduced into the tank.
  • FIG. 4 shows a bypass mixing tank according to another embodiment of the present invention, which has basically the same structure as that of FIG. 3.
  • small stirrers 52 and 54 are installed to assist the dispersion of the flocculant.
  • the diffusion operation can also be performed by adding fine holes to the addition nozzle in addition to the stirrer.
  • the detour type mixing tank 50 according to the present invention shown in FIG. 3 is a vertical detour type with dimensions of 370 mm X 750 mm X effective depth 4550 mm and eight sections in a row, forming an inorganic coagulant mixing tank 22.
  • ferric chloride is added to form the upstream end of the organic coagulant mixing tank.
  • an anionic polymer flocculant was added.
  • solid-liquid separation was performed by connecting a conventional solid-liquid separator.
  • Table 1 shows the processing conditions and results of the flocculant mixing tests (a) and (b) using the apparatus of Fig. 3 and Fig. 4 and the flocculant mixing test using the conventional apparatus of Fig. 1. Show.
  • the addition amount of the coagulant was the same, the addition amount of ferric chloride was 40 mg / L, and the anion-based polymer coagulant was 3. Omg / L.
  • the stirring rotation speed of the stirrer in the apparatus of FIG. 4 and the conventional apparatus of FIG. 1 was 180 rpm.
  • the effective capacity of both mixing tanks in the conventional equipment is 2.7m3, and the residence time of water is 54 seconds for both tanks.
  • the time from the addition of ferric chloride to the addition of the anionic polymer flocculant is 105 seconds, and the time from the addition of the anion polymer flocculant to the inlet of the solid-liquid separation tank is 132 seconds. Seconds.
  • the flow velocity in the bypass mixing tank was 0.18 mZ seconds under all conditions.
  • the SS of the treated water treated by the solid-liquid separator was 19-72mg / L, whereas in the apparatus of Fig. 3, it was 15-54mg / L, and in the apparatus of Fig. 4, it was 15-42mg / L. / L.
  • FIG. 5 shows an embodiment of the solid-liquid separation tank 26 according to the present invention.
  • the solid-liquid separation soda is basically; a floc of suspended substance generated by adding a flocculant is precipitated, and the liquid to be treated from which the suspended substance is removed is provided in the upper part of the solid-liquid separation tank.
  • the flow rate (flow velocity) of the upward treated water toward the discharge port is greater than the sedimentation speed of the floc, the floc is discharged.
  • the solid-liquid separation tank 26 according to the present invention enables the processing speed of the water to be treated to be higher than the floc sedimentation speed without causing such a floc outflow.
  • the solid-liquid separation tank 26 shown in FIG. 5 includes a separation tank main body 60 and a dividing member 64 which is set in the separation tank main body and divides the separation tank main body into an upper chamber 61 and a lower chamber 62.
  • the treated water introduction pipe 66 for introducing the treated water S to which the coagulant was added into the upper chamber (as described above), the upper opening 70 opened to the upper chamber 61, and the opened lower chamber 62 It has a lower opening 72 and a treated water flow passage 74 for guiding a part of the treated water from the upper chamber 61 to the lower chamber 62.
  • the upper chamber 61 has a first treated water discharge port 76 for discharging treated water to the outside at an upper portion thereof, and the lower chamber 62 has a lower opening 72 of the treated water flow passage.
  • a sludge discharge port 80 for discharging concentrated flocs, that is, sludge F, is provided below the lower opening 72 of the water flow passage 74.
  • the dividing member 64 is set at an interval from the inner surface of the peripheral wall of the separation tank main body 60, and is formed in a bowl shape that is concave toward the central portion.
  • a funnel-shaped member 81 that is inclined downward from the inner surface of the peripheral wall of the separation tank main body 60 toward the center of the separation tank main body is set, and the water flow passage 74 to be treated is formed by the funnel-shaped member 81 And the dividing member 64.
  • the water passage 74 to be treated is made to have substantially the same horizontal cross-sectional area in order to prevent the floc from breaking, so that the flow velocity does not change greatly over the entire area.
  • the to-be-treated water introduction pipe 66 discharges the to-be-treated water S downward toward the central portion of the divided member 64.
  • a floating filter medium 82, a filter medium outflow prevention screen 84 above the floating filter medium 82, and a filter medium receiving screen 86 below the floating filter medium 82 are provided above the upper chamber 61. Has been.
  • a separator 88 is provided, and the separator 88 is slowly rotated by a motor 90 provided at the top of the separation tank main body 60, and flocs settled on the bottom of the separation tank main body. And is discharged from the sludge outlet 80 as concentrated floc, that is, sludge F.
  • the second treated water discharge port 78 is provided with a flow control device 94 such as a pump, a valve, or a movable weir for controlling the flow rate of the treated water discharged from the discharge location.
  • a flow control device 94 such as a pump, a valve, or a movable weir for controlling the flow rate of the treated water discharged from the discharge location.
  • the turbidity of the separated water in the lower chamber was continuously measured by a turbidimeter, and based on the measured turbidity, The flow rate can be automatically controlled.
  • the indicator of clarification is not limited to turbidity, but may be SS.
  • reference numeral 96 denotes a rectifying plate for rectifying the upward flow in the lower chamber.
  • the water to be treated S to which an inorganic coagulant such as ferric chloride and an organic coagulant such as anion-based polymer coagulant are sequentially added in advance is treated.
  • the treated water is supplied downward from the inlet pipe 66 toward the dividing member 64.
  • the supplied water to be treated is reversed in the dividing member 64 to become an upward flow, and the water to be treated is agitated so that suspended substances in the water to be treated are agglomerated to form flocs and further rise in the upper chamber 61. During that time, the flocks collide and coalesce.
  • a flocking blanket layer in which flocs gather and stay is formed above the dividing member 64, and remains in the upward flow toward the first treated water discharge port 76 together with the floating filter medium 82. It performs the function of filtering suspended solids.
  • the floc that has descended to the lower chamber 62 sinks downward in the lower chamber 62, is collected by the concentrator 88, becomes concentrated floc, ie, sludge, and is discharged from the sludge discharge unit 80.
  • the water from which the flocks settled and was removed is discharged upward as a clear treated water W in the second chamber from the second treated water outlet 78.
  • the flocs accumulated in the lower chamber are wound up. To prevent this, adjust the descending flow velocity to 5 mZ or less, preferably 2 mZ or less.
  • FIG. 6 is a sectional view showing another example of the solid-liquid separation tank of the present invention. The difference from FIG. 5 is that the water to be treated flows into the upper chamber 61 through the draft tube 98. Is a point. The following is a processing test performed using the solid-liquid separation tank 26 of FIG.
  • Separation soda body 60 having an inner diameter of 2,000 mm and a height of 6,500 mm was used.
  • the processing conditions are as follows.
  • Applicable flocculant Ferric chloride, anionic polymer flocculant
  • Filter media unused
  • FIG. 7 is a graph showing a change in water quality after treatment when the inflow water of the first sedimentation basin at the time of rainfall is treated water.
  • the coagulation agent is added to the water to be treated, and the coagulation and sedimentation of the suspended substance in the water to be treated is performed. It is necessary to add an appropriate amount of flocculant according to the water quality in the water to generate an optimal flocculation reaction.
  • the quality of the water to be treated includes particle concentration, pH, alkalinity of M, temperature, coexisting ions, and the like.
  • the conventional control of the amount of the coagulant added is generally based on the particle concentration. That is, when the concentration of the suspended solids in the water to be treated is low, the addition amount of the flocculant is also reduced, and when the concentration of the suspended solids is high, the addition amount of the coagulant is increased.
  • the M alkalinity of the water to be treated decreases due to the contamination of rainwater. If the M alkalinity decreases, the appropriate amount of flocculant added will decrease, even if the suspended solids concentration is the same. Therefore, if the amount of the flocculant to be added is controlled based on the concentration of the suspended substance, the flocculant will be excessively added, and the running cost will increase.
  • the composition of suspended matter in the water to be treated changes due to the mixing of rainwater.
  • the suspended solids contained in the treated water during rainfall are roughly classified into two types. One is that the suspended solids contained in the treated water during no rainfall are diluted by rainwater, and the other is the suspended solids that are mixed only during rainfall. These two types of suspended solids have different components, so the effectiveness of the flocculant is different, and even with the same suspended solids concentration, the appropriate amount of flocculant added is different. Therefore, it is inappropriate to set the amount of flocculant to be added to a mixture of these two types of suspended substances based on the concentration of the suspended substance in the whole liquid to be treated after mixing.
  • the amount of the coagulant to be added can be controlled to an appropriate amount according to the quality of the water to be treated.
  • this point will be described.
  • the addition amount of the flocculant is controlled based on the M alkalinity or the electric conductivity of the water to be treated.
  • the present invention relates to a combined sewer system,
  • M alkalinity and electrical conductivity of sewage during rainfall are lower than sewage during no rainfall.
  • the relationship between the alkalinity and the coagulation characteristics of the present invention will be described by taking the sewage during rainfall of a combined sewer system as an example.
  • the present invention is not limited to the combined sewerage system, and is applicable to a coagulation process in which water whose M alkalinity or electric conductivity changes due to inflow of rainwater during rainfall is treated water.
  • FIG. 8 shows the results of a jar test with water of the same chemical addition amount using water treated with sulfuric acid added to sewage during no rainfall and adjusted for M alkalinity as water to be treated. It is clear that the turbidity of the treated water decreases as the alkalinity of M decreases, even if the concentration of suspended solids in the treated water is the same.
  • Fig. 9 shows the results of a jar test performed with the same amount of chemicals added, using sewage inflow at rainfall in a sewage treatment plant as treated water.
  • the M alkalinity of the water to be treated decreases as the amount of rainwater mixed increases, and the turbidity of the treated water decreases as the M alkalinity decreases.
  • Fig. 10 shows the M alkalinity when sewage during no rainfall is diluted with rainwater, and the M alkalinity decreases according to the ratio of sewage in the mixture of rainwater and sewage. are doing.
  • the M alkalinity of the sewage during no rainfall is confirmed in advance, and the dilution factor with rainwater can be calculated by measuring the M alkalinity of the sewage during rainfall.
  • the M alkalinity of sewage during no rainfall is generally 150 200 mg / Las CaC ⁇ 3, which varies depending on the time and day of the week, so it is desirable to confirm the value according to them.
  • FIG. 11 shows the electrical conductivity and M alkalinity when sewage during no rainfall is diluted with rainwater.
  • the electrical conductivity decreases according to the ratio of sewage in the mixture of rainwater and sewage.
  • FIG. 13 is a diagram showing the relationship between the electrical conductivity and the M alkalinity in FIG. 11, and the correlation between the two is extremely good. Therefore, similarly to the M alkalinity, it is possible to calculate the dilution ratio by rainwater by measuring the electric conductivity of sewage during rainfall, and furthermore, it is possible to estimate the M alkali.
  • Fig. 12 is an actual measurement example of the change over time in the suspended solids concentration (SS) and the M alkalinity in the sewage treatment plant during rainfall.
  • SS suspended solids concentration
  • M alkalinity M alkalinity in the sewage treatment plant during rainfall.
  • Rainfall occurs from 15:00 to 19:00, and sewage is diluted by rainwater flowing into the sewer, and the alkalinity of M decreases rapidly.
  • the reason why M alkalinity has continued to decrease since 19:00, when rainfall ended, is that there is a time until rainwater flows into the sewer and a time during which rainwater flows into the sewer to the treatment plant. is there .
  • the dilution ratio with rainwater can be determined.
  • the M alkalinity of sewage in no rainfall is about 180 mg ZL as CaC ⁇ 3, whereas the value in rainfall is about 80 mg / Las CaC03. Therefore, the sewage during no rainfall is diluted about 2.3 times by the rainwater.
  • SS in FIG. 12 is also a larger value than when SS is diluted at the same magnification as the dilution magnification calculated from the force M alkalinity that changes over time.
  • the SS of non-rainfall sewage is about 200 mg / L, and when SS is calculated based on the dilution factor 2.3 times calculated from M alkalinity, it is reduced to about 87 mg / L.
  • the actual SS is about 300 mg / L, which is about 210 mg / L larger than the value calculated from the dilution ratio with rainwater.
  • the pollutant that had accumulated on the road surface before rainfall flowed in along with the rainwater, and the pollutant that accumulated in the sewer sewer was washed away by the increase in water volume due to the inflow of rainwater.
  • the suspended matter contained in the water to be treated during rainfall is a mixture of the suspended matter contained in the water to be treated during no rainfall diluted with rainwater and the suspended matter that increases during rainfall. Yes, based on M alkalinity, it is possible to calculate each concentration.
  • SS1 is converted into non-rainfall sewage based on M alkalinity (A1).
  • the suspension material is divided into a diluted component (SS2) and a component increased during rainfall (SS3), and the amount of coagulant added (M2, M3) for each component is calculated, and the total is M2 + M3
  • M2 + M3 Can be the amount of flocculant added (Ml) corresponding to SS1.
  • the flow rate is measured by the flow meter 30, the M alkalinity is measured by the M alkalinity meter 32, and the SS Is measured.
  • the appropriate amount of inorganic coagulant (N1) and the amount of organic is calculated, and the addition flow amount to the total amount of the water to be treated is calculated based on the addition amount and the flow amount Q1, and the inorganic coagulant injection pump 42 and the organic polymer coagulant injection pump 44 Control.
  • the dilution ratio (D-fold dilution) with rainwater is determined by comparing the M alkalinity (A1) with a value measured in advance without rainfall. At this time, if the value at the time of no rainfall differs depending on the day of the week and the time, the value corresponding to the day of the week and the time are confirmed and the comparison is performed.
  • SS1 (suspended matter concentration during rainfall) is calculated based on the suspended solids concentration SS2 of the diluted SS and the suspended solids concentration SS2 of the diluted SS. Divide into suspended solids concentration SS3.
  • electric conductivity can be measured, and calculation can be performed based on the electric conductivity.
  • turbidity may be measured instead of SS, and SS may be converted from turbidity.
  • Table 2 shows the results of the control based on the present invention and the control based on the conventional method.
  • the average removal rate of suspended matter is 90%, and the proportional control based on the water SS to be treated, which is a conventional control method, is performed. It was equivalent to the expected average removal rate of SS.
  • the amount of the added flocculant in the present invention could be reduced by 24% for the inorganic flocculant and 33% for the organic polymer flocculant.
  • the concentration of suspended solids in the water to be treated changes due to the inflow of rainwater during rainfall, the concentration of suspended solids in the water to be treated, the M alkalinity, or the electric conductivity
  • the appropriate coagulant addition amount based on these values, excessive addition of the coagulant can be prevented, and low-cost operation and high-quality treated water can be stably provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

被処理水処理速度を、フロックの沈降速度以上とすることができ、被処理水の高速での処理を可能とする。  分割部材64により上部室61及び下部室62とに分割された分離槽本体60と、上部室内に被処理水を導入する被処理水導入管66と、上部室から下部室へ被処理水の一部を導入する被処理水分流通路とを備える。上部室は第1被処理水排出口76を、下部室は第2被処理水排出口78を備え、上部室内での第1被処理水排出口76へ向う被処理水の上向流の流速、及び、下部室内での第2被処理水排出口78へ向う被処理水の上向流の流速を、それら上向流内でのフロックが下降しうる速度となるようにすることができるようにした凝集沈殿槽を有することを特徴とする凝集沈殿装置を提供する。

Description

明 細 書
凝集沈殿装置
技術分野
[0001] 本発明は、下水処理に係り、特に、被処理水すなわち下水に凝集剤を添加して下 水中の懸濁物質を凝集沈殿して分離する凝集沈殿技術に関する。
背景技術
[0002] 懸濁物質の凝集沈殿技術に関しては、以下のような先行技術がある。
特許文献 1:特公昭 42-25986号
非特許文献 1:水処理工学 (第二版)、井出哲夫編(1995)、 P59 - P67
非特許文献 2:水処理管理便覧 (丸善株式会社発行: 1998年)、 P124-130 非特許文献 3:第 39回下水道研究会発表会講演集 (2002年)、セッション番号 2-6-2、
P380-382
[0003] 下水道には一般的に分流式と合流式とがある力 合流式では、家庭等から排出さ れる汚水と雨水とを一緒にした下水を処理するようになっている。合流式下水の場合 、非降雨時に比べて降雨時には下水量が急激に増加するために、非降雨時に通常 行われている一次処理(主に懸濁物質除去)及び二次処理(主に生物学的処理)の うち、処理速度の上げられない二次処理を省き、一次処理しただけのものを一般河 川等に放流し、未処理で放流される量を少なくする手段がとられることがある。従って 、未処理での放流をできるだけ少なくするためには、簡易処理(一時処理のみで放 流する処理)を高速化することが望まれる。
簡易処理のための装置は、図 1に示す如ぐ下水 Sに無機系凝集剤を添加し攪拌 する第 1攪拌槽 10と、有機系高分子凝集剤を添加し攪拌する第 2攪拌槽 12と、凝集 剤が攪拌混合されて懸濁物質が凝集されて形成されるフロックを凝集沈殿させて下 水から分離し、フロックを;凝集して汚泥 Fとして排出するとともに、固形物質を分離し た処理水 Wを排出する固液分離槽 16とを有しており、この装置における簡易処理を 効率的に且つ高速に行うためには、凝集剤の適正量供給、凝集剤の下水との適切 な攪拌、懸濁物質の効率的な凝集沈殿等が必要となる。 発明の開示
発明が解決しょうとする課題
[0004] 本発明は、このような要件の改善を図り、下水の簡易処理をより効率的且つ高速 で行えるようにした凝集沈殿装置を提供することを目的とする。
課題を解決するための手段
[0005] すなわち、本発明は、
分離槽本体と、
該分離槽本体内に設定され、当該分離槽本体内を上部室と下部室とに分割する 分割部材と、
上部室内に被処理水を導入する被処理水導入管と、
上部室に開口した上部開口、及び、下部室に開口した下部開口を有し、上部室か ら下部室へ被処理水の一部を下部室に案内する被処理水分流通路と、
を備え、
上部室は、その上方部分に被処理水を外部に排出するための第 1被処理水排出 口を備え、
下部室は、前記被処理水分流通路の下部開口よりも上方位置において被処理水 を外部に排出するための第 2被処理水排出口、及び、前記被処理水分流通路の下 部開口よりも下方位置において被処理水から分離されたフロックを排出するためのフ ロック排出口を備え、
上部室内での前記第 1被処理水排出口へ向う被処理水の上向流の流速、及び、 下部室内での前記第 2被処理水排出口へ向う被処理水の上向流の流速を、それら 上向流内でのフロックが下降しうる速度となるようにすることができるようにした凝集沈 殿槽を有する
ことを特徴とする凝集沈殿装置を提供する。
具体的には、 /第 2被処理水排出ロカ 排出される被処理水の排出量を調整するこ とにより、上部室内での前記第 1被処理水排出口へ向う被処理水の上向流の流速、 及び、下部室内での前記第 2被処理水排出口へ向う被処理水の上向流の流速を、 それら上向流内でのフロックが下降しうる速度となるようにすることができるようにする このようにすることにより、凝集沈殿装置全体としての被処理水処理速度を、フロッ クの沈降速度以上とすることができ、被処理水の高速での処理を可能とする。
具体的構造としては、前記分離槽本体が底壁部、及び、該底壁部から上方に延び る周壁部を有し、前記分割部材が、前記分離槽本体の周壁部内面から間隔をあけて 設定されており、前記被処理水分流通路が、前記分割部材の下方位置に設定され て前記分離槽本体の周壁部内面から同分離槽本体の中央に向かって下方に傾斜 する漏斗状部材と、前記分割部材との間に形成されるようにすることができる。
[0006] より具体的には、前記分割部材が、中央部分に向けて下方に凹んだ椀状に形成さ れ、前記被処理水導入管は、被処理水を該分割部材の中央部分に向けて下向きに 排出するようにしたものとすることができる。
また、前記第 1室の上方部分に、浮上濾材と、該浮上濾材の上方位置に濾材流出 防止スクリーンと、該浮上濾材の下方位置に濾材受けスクリーンとが設けられ、前記 第 1被処理水排出口が前記濾材流出防止スクリーンよりも上方位置に設けられてい るちのとすること力 Sできる。
[0007] さらに、本発明では、以上のような凝集沈殿装置において、
被処理水導入管によって分離槽本体に導入される被処理水に凝集剤を添加する 凝集剤添加装置を備え、該凝集剤添加装置が
被処理水を通すための少なくとも 1つの下向流路と、少なくとも 1つの上向流路とを 連続させた上下迂流路構造を有し、該上下迂流路構造の上流側で被処理水に凝集 剤を添加して、該被処理水を上向流路及び下向流路を通して前記被処理水導入管 へ供給するようにした凝集沈殿装置を提供する。
この凝集沈殿装置においては、被処理水を上下迂流路を通すことにより凝集剤を 効率的且つ確実に混合することを可能とする。
[0008] 具体的には、前記凝集剤添加装置が、被処理水の流路に沿って順次配置された 前記凝集剤添加槽を 2つ備え、上流側の凝集剤添加槽は無機系凝集剤を、下流側 の凝集剤添加槽は有機系凝集剤を添加するようになされており、無機系凝集剤及び 有機系凝集剤が添加された被処理水を前記被処理水導入管に供給するようにする こと力 Sできる。
[0009] さらに、本発明では以上のような凝集沈殿装置において、
前記被処理水導入管によって前記分離槽に導入される被処理水の量を測定する 流量計と、
同被処理水の Mアルカリ度を測定する Mアルカリ度計と、
同被処理水の懸濁物質濃度を測定する SS計又は濁度計と、
を備えることを特徴とする凝集沈殿装置を提供する。
具体的には、前記流量計、 Mアルカリ度計、及び、 SS計又は濁度計によって測定 されたデータに基づき、被処理水に添加すべき凝集剤の適切な量を算定するための 制御器を備えたものとすることができる。
より具体的には、前記流量計、 Mアルカリ度計、及び、 SS計又は濁度計によって測 定されたデータに基づき、降雨時において、無降雨時における被処理水の懸濁物質 に対する添加すべき凝集剤の適切な量を算定するとともに、降雨によって被処理水 に加わった懸濁物質に対する添加すべき;凝集剤の適切な量を算定するための制御 器を備えたものとすることもできる。
この凝集沈殿装置では、同じ凝集剤の量を添加してもその凝集効果が、当該被処 理水の Mアルカリ度に応じて変化することに着目して、懸濁物質濃度及び Mアルカリ 度を考慮して;凝集剤の添加量を決めることを可能とする。
[0010] また、本発明は、
前記被処理水導入管によって前記分離槽に導入される被処理水の量を測定する 流量計と、
同被処理水の電気伝導率を測定する電気伝導率計と、
同被処理水の懸濁物質濃度を測定する SS計又は濁度計と、
を備える凝集沈殿装置を提供する。
具体的には、前記流量計、電気伝導率計、及び、 SS計又は濁度計によって測定さ れたデータに基づき、被処理水に添加すべき凝集剤の適切な量を算定するための 制御器を備えたものとすることができる。
より具体的には、前記流量計、電気伝導率計、及び、 SS計又は濁度計によって測 定されたデータに基づき、降雨時において、無降雨時における被処理水の懸濁物質 に対する添加すべき凝集剤の適切な量を算定するとともに、降雨によって被処理水 に加わった懸濁物質に対する添加すべき;凝集剤の適切な量を算定するための制御 器を備えたものとすることができる。
発明の効果
[0011] 以上に説明したように、本発明に係る凝集沈殿装置においては、下水である被処 理水の処理にあたって、凝集剤により凝集され形成されるフロックの沈降速度よりも 速い処理速度での凝集沈殿処理を行うことを可能とする。
また、凝集剤混合槽を迂流式とすることに、凝集剤を被処理水に効率的に且つ確 実に混合することができ、凝集剤を効果的に使用することができる。
更に、降雨時においては、流入する雨水のために変化する被処理水の水質に応じ て適切な量の凝集剤の量を添加することを可能とし、この点でも凝集剤を効果的に 使用することを可能とする。
図面の簡単な説明
[0012] [図 1]従来の凝集沈殿装置の概念図である。
[図 2]本発明に係る凝集沈殿装置の概念図である。
[図 3]本発明で用いる迂流式混合槽の概略構成を示す図である。
[図 4]図 3と同様の迂流式混合槽であって、攪拌機を備えるものを示す図である。
[図 5]本発明の固液分離槽の一例を示す断面構成図である。
[図 6]本発明の固液分離槽の他の例を示す断面構成図である。
[図 7]図 5の固液分離槽により処理した処理水の結果を示すグラフである。
[図 8]硫酸を添加して Mアル力リ度を調整した被処理水と処理水濁度との関係を示す グラフである。
[図 9]降雨時流入水アル力リ度と処理水濁度との関係を示すグラフである。
[図 10]無降雨時汚水を雨水で希釈した場合の Mアルカリ度の変化を示すグラフであ る。
[図 11]混合液中の汚水の割合(%)と電気伝導率及び Mアルカリ度の関係を示すグ ラフである。 [図 12]降雨時流入水の懸濁物質濃度(SS)と Mアルカリ度の経時変化を示すグラフ である。
[図 13]電気伝導率と Mアルカリ度の関係を示すグラフである。
符号の説明
20 凝集沈殿装置
22 無機系凝集剤混合槽
24 有機系高分子凝集剤混合槽
26 固液分離槽
30 流量計
32 Mアルカリ度計
34 SS計
36 制御器
38 無機系凝集剤槽
40 有機系凝集剤槽
42, 44 ポンプ
60 分離槽本体
61 上部室
62 下部室
64 分割部材
66 被処理水導入管
70 上部開口
72 下部開口
74 被処理水分流通路
76 第 1被処理水排出口
78 第 2被処理水排出口
80 汚泥排出口
81 漏斗状部材
82 浮上濾材 84 流出防止スクリーン
86 濾材受けスクリーン
88
90 モータ
94
96 整流板
98 ドラフトチューブ
S 被処理水(処理前)
W 被処理水(処理後)
F 亏泥)
発明を実施するための最良の形態
[0014] 以下、本発明を添付図面に示した実施例に基づき説明する。
図 2は、本発明に係る凝集沈殿装置 20の概要を示す。
すなわち、この凝集沈殿装置 20は、無機系凝集剤混合槽 22と、有機系凝集剤混 合槽 24と、固液分離槽 26とを有しており、下水である被処理水 Sは、先ず無機系凝 集剤混合槽 22において無機系凝集剤と混合され、次に有機系凝集剤混合槽 24に おいて有機系高分子凝集剤と混合されて固液分離槽 26に送られ、該固液分離槽に おいて被処理水中の懸濁物質が凝集されてフロック Fとされ、該フロックが固液分離 槽 26の底部において沈殿濃縮され汚泥とされて排出されると共に、懸濁物質が除去 された処理水 Wが固液分離槽 26の上部から排出されるようになっている。
[0015] 被処理水 Sを無機系凝集剤混合槽 22に導入する被処理水導管には被処理水 Sの 流量を測定するための流量計 30、被処理水の Mアルカリ度を測定する Mアルカリ度 計 32、被処理水の SS (懸濁物質濃度)を測定する SS計 34が設けられており、後述 するとおり、制御器 36がそれらの測定器によって計測されたデータに基づき、無機系 凝集剤槽 38及び有機系凝集剤槽 40のポンプ 42、 44を制御して、無機系凝集剤混 合槽 22及び有機系凝集剤混合槽 24への無機系凝集剤及び有機系高分子凝集剤 の供給量を制御するようになっている。 SS計 34を使用する代わりに、濁度計を使用 して所要の測定を行うことができる。 [0016] 図 3は、本発明で用いる無機系凝集剤混合槽 22及び有機系凝集剤混合槽 24を一 体化し、且つ、迂流式とした凝集剤混合槽 50を示す。すなわち、この混合槽 50は、 被処理水の流れの上流側から下流側へ順に、下向流を生じる区画及び上向流を生 じる区画を全部で 8区画連続して設けた上下迂流式の構造となっており、上流側から 第 1区画一第 4区画が前述した無機系凝集剤混合槽 22に相当し、第 5区画一第 8区 画が前述した有機系凝集剤混合槽 24に相当するものとなっている。
[0017] すなわち、被処理水 Sは無機系凝集剤混合槽 22の上流端にある被処理水入口部 分において無機系凝集剤が添加され、下向流→上向流→下向流→上向流とされて 、凝集剤との混合がなされ、有機系高分子凝集剤混合槽 24の上流端 (第 4区画の下 流端)に供給され、同上流端部分で有機系凝集剤が添加され、無機系凝集剤と同様 に迂流式混合槽の流れを利用して該有機系凝集剤との混合が行われ、懸濁物質の フロックを作りながら固液分離槽 26に送られるようになつている。
[0018] 迂流式混合槽では、無機系凝集剤を添加した後、流速 0. 15m/秒以上、好ましく は 0. 17m/秒以上に維持されて、有機系高分子凝集剤を添加するまでの滞留時 間を 100秒以上とされ、また有機系高分子凝集剤を添加してからも同じぐ流速 0. 1 5m/秒以上、好ましくは 0. 17m/秒以上に維持されて固液分離槽に導入されるま でに 130秒以上の滞留時間を維持できることが望ましい。
[0019] また、図 4には、図 3のものと基本的には同じ構造を有する、本発明の他の実施例 に係る迂流式混合槽が示されているが、該槽では、無機系凝集剤及び有機系高分 子凝集剤を添加する地点において、凝集剤の分散を補助するために小型の撹拌機 52, 54を設置している。なお、拡散操作は、撹拌機以外に、添加ノズルに細かい孔 を開けて添加することによつてもできる。
[0020] 図 1に示す従来装置及び図 3、図 4に示す本発明に係る装置について雨天時に流 入する下水を被処理水 Sとして、無機系凝集剤として塩化第二鉄を、有機系高分子 凝集剤としてァニオン系高分子凝集剤を用いて試験を行った。
図 3に示す本発明に係る迂流式混合槽 50は、寸法が一区画 370mm X 750mm X有効深さ 4550mmで、 8区画連続した上下迂流式とし、無機系凝集剤混合槽 22 をなす第 1区画では塩化第二鉄を添加して、有機系凝集剤混合槽の上流端をなす 第 4区画の下流端ではァニオン系高分子凝集剤を添加した。後段には、従来例の固 液分離装置を接続しで固液分離を行った。
図 4に示す本発明に係る迂流式混合槽では、凝集剤添加時に撹拌機 52, 54によ る撹拌操作を行った。ここで撹拌部分の水の滞留時間は 10秒である。
[0021] 図 3の装置及び図 4の装置を用いた凝集剤混合試験 (a), (b)と、図 1の従来装置 を用いた凝集剤混合試験による処理条件と処理成績を表 1に示す。
[表 1]
Figure imgf000011_0001
[0022] 本発明にかかる装置による試験(a), (b)、従来装置による試験共に 180m3/hで 各々 7時間の連続通水実験を行い、その間に装置に導入される処理水の SS (懸濁 物質濃度)と固液分離装置で処理された処理水 Wの SSをモニタリングした。導入さ れた処理水 Sの懸濁物質濃度 SSは、図 3の装置に関しては 120-320mg/L、図 4 の装置に関しては 110-300mg/L、図 1の従来装置に関しては 90_320mg/ あり、ほぼ同等であった。凝集剤添加量はすべて同じで、塩化第二鉄添加量は 40m g/Lで、ァニオン系高分子凝集剤は 3. Omg/Lとした。図 4の装置及び図 1の従来 装置での撹拌機の撹拌回転数は 180rpmとした。従来装置での混合槽は 2槽共に 有効容量が 2. 7m3であり、水の滞留時間は 2槽共に各々 54秒となる。
[0023] 本発明に係る装置での塩化第二鉄添加後からァニオン系高分子凝集剤添加まで の時間は 105秒、ァニオン系高分子凝集剤添加後から固液分離槽入口までの時間 は 132秒であった。迂流式混合槽での流速は、全ての条件で 0. 18mZ秒とした。 図 1の従来装置では固液分離装置で処理された処理水の SSが 19 - 72mg/Lで あつたのに対し、図 3の装置では 15— 54mg/L、図 4の装置では 15— 42mg/Lまで 低減した。これは、本発明に係る装置では、迂流式混合槽を用いることで、従来装置 の凝集槽で生じると考えられる水流の短絡 (実質的攪拌が行われず下流に流れる) が起きず、十分に凝集剤の混和が行われフロック形成が行われたためと考えられる。
[0024] 図 5は、本発明に係る固液分離槽 26の一実施例を示す。
固液分離ネ曹は、基本的には;凝集剤を添加することにより生じる懸濁物質のフロック を沈殿させ、懸濁物質が除去された被処理液を当該固液分離槽の上方部分に設け られている排出口から排出する構造となっているが、従来の固液分離槽では、排出 口に向う上向きの処理水の流量 (流速)を、フロックの沈殿速度よりも大きくすると、該 フロックが排出口から外部へ排出されてしまうという問題を有している。本発明に係る 固液分離槽 26は、以下に述べるように、そのようなフロックの流出を生ぜずに、被処 理水の処理速度をフロック沈殿速度よりも大きくすることができるようにする。
[0025] 図 5の固液分離槽 26は、分離槽本体 60と、該分離槽本体内に設定され、当該分 離槽本体内を上部室 61と下部室 62とに分割する分割部材 64と、上部室内に (前述 の如くして)凝集剤が添加された被処理水 Sを導入する被処理水導入管 66と、上部 室 61に開口した上部開口 70、及び、下部室 62に開口した下部開口 72を有し、被処 理水の一部を上部室 61から下部室 62へ案内する被処理水分流通路 74とを備える。
[0026] 上部室 61は、その上方部分に、被処理水を外部に排出するための第 1被処理水 排出口 76を備え、下部室 62は、前記被処理水分流通路の下部開口 72よりも上方位 置において被処理水を排出するための第 2被処理水排出口 78、及び、前記被処理 水分流通路 74の下部開口 72よりも下方位置において濃縮したフロックすなわち汚 泥 Fを排出するための汚泥排出口 80を備える。
[0027] 図示の例では、分割部材 64は、分離槽本体 60の周壁内面から間隔をあけて設定 されており、中央部分に向けて凹んだ椀状に形成されており、該分割部材 64の下方 位置には、分離槽本体 60の周壁内面から同分離槽本体の中央に向かって下方に 傾斜する漏斗状部材 81が設定されて、上記被処理水分流通路 74は、該漏斗状部 材 81と分割部材 64との間に形成されている。被処理水分流通路 74は、フロックの破 壊を防止するために、全域に渡って流下速度が大きく変化しないように、水平断面積 がほぼ等しくなるようにしている。被処理水導入管 66は、被処理水 Sを該分割部材 6 4の中央部分に向けて下向きに排出するようになっている。
[0028] また、上部室 61の上方部分には、浮上濾材 82と、該浮上濾材 82の上方位置の濾 材流出防止スクリーン 84と、該浮上濾材 82の下方位置の濾材受けスクリーン 86とが 設けられている。
下部室 62内には搔寄機 88が設けられており、該搔寄機 88が当該分離槽本体 60 の頂部に設けられたモータ 90によりゆっくり回転されて該分離槽本体底部に沈殿し たフロックを搔き寄せて、汚泥排出口 80から濃縮フロックすなわち汚泥 Fとして排出さ れる。
また、第 2被処理水排出口 78には、該排出ロカ 排出される被処理水の流量を制 御するためのポンプ、弁、或いは可動堰などの流量制御装置 94が設けられており、 該流量制御装置による流量制御を行うことにより、上部室内での第 1被処理水排出 口 76へ向う被処理水の上向流の流速、及び、下部室内での第 2被処理水排出口 78 へ向う被処理水の上向流の流速を、それら上向流内でのフロックが下降しうる速度と なるようにすることができるようにしてレ、る。下部室での固液分離作用を良好に維持し 、分離水 Wの清澄化を行うために、下部室分離水の濁度を濁度計により連続測定し 、それに基づいて第 2室分離水の流量を自動制御するようにすることができる。清澄 化の指標は、濁度に限定されるものではなぐ SSでもよレ、。図中 96は、下部室内で の上向流を整流するための整流板である。
[0029] 次に、図 5の凝集沈殿装置の運転操作について説明する。 図 3及び図 4に基づき説明したように、予め塩化第 2鉄等の無機系凝集剤及びァニ オン系高分子凝集剤等の有機系凝集剤が順次添加された被処理水 Sは、被処理水 導入管 66から分割部材 64に向けて下向に供給される。供給された被処理水は分割 部材 64において反転して上向流となり、該被処理水は撹拌されて被処理水中の懸 濁物質が凝集されてフロックとなり、更に、上部室 61内を上昇する間にフロック同士 の衝突、合体が進行する。第 2被処理水流出口 78を通じて下部室 62の上部の水を 排出することにより、上部室 61における被処理水の一部は、上部開口 70、被処理水 分流通路 74を通り、下部開口 72から下部室 62内に入る。このため、分割部材 64の 上端縁よりも上方部分での被処理水の上向流速は、処理速度(すなわち、被処理水 の水量を槽断面積で除した流速)よりも遅くなる。第 2被処理水排出口 78からの流出 量を調整して、上部室内での上向流の流速を、フロックが沈降し得る流速にまで低減 する。上部室 61では、分割部材 64の上方位置に、フロックが集合して滞留するフロ ックブランケット層も形成され、浮上濾材 82とともに、第 1被処理水排出口 76に向かう 上向流中に残存する懸濁物質をろ過する機能を果たす。
[0030] 装置稼動の初期の段階では、フロックとフロックブランケット層の形成が不十分であ り、沈降速度の遅いフロックは、処理水と共に上部室 61内を上昇する。 このように上 昇するフロックは、浮上濾材 82によって分離、除去され、清澄となった被処理水 Wが 、第 1被処理水流出管 76から排出される。
[0031] 一方、下部室 62へ降下したフロックは、下部室 62内を下方に沈降し、搔寄機 88に より集められて濃縮フロックすなわち汚泥とされ、汚泥排出部 80から排出される。フロ ックが沈降、除去された水は、上向流となって第 2被処理水流出部 78から清澄な第 2 室処理水 Wとして排出される。
[0032] 被処理水分流通路 74を通って上部室 61から下部室 62へ導入される被処理水の 流速が速いと、下部室に堆積したフロックを巻き上げてしまうため、堆積フロックの卷 き上げ防止のためは、下降流速は 5mZ分以下、望ましくは 2mZ分以下となるように 調整する。
[0033] 図 6は、本発明の固液分離槽の他の例を示す断面構成図であり、図 5との相違点 は、被処理水がドラフトチューブ 98を通って上部室 61に流入する点である。 [0034] 以下は、図 5の固液分離槽 26を使用して行った処理試験である。
分離ネ曹本体 60の内径 2, 000mm,高さ 6, 500mmのものを用いた。
処理条件は次のとおりである。
被処理水流入水量 :176m3Zh
上部室処理水量 :97m3/h
下部室処理水量 :61m3/h
排泥量 :18m3/h
上部室水分離面積: 2. 93m2
適用凝集剤 :塩化第 2鉄、ァニオン系高分子凝集剤
濾材 :未使用
[0035] 図 7は、降雨時の合流式下水の最初沈殿池流入水を被処理水とした場合の処理 後の水質の変化を示すグラフである。
従来の固液分離槽においては、処理速度が 35m/hを超えるような超高速処理で は、フロックは沈降せずに上向流に随伴して処理水と共に溢流してしまっていたが、 本発明の固液分離槽では、処理速度が 60m/hの場合であっても、上部室上部の 上向流速を 33m/h、下部室上部の上向流速を 35m/hに調整することにより、上 部室と下部室の両方において良好な固液分離を行うことができた。 6時間の SSの平 均値は、被処理水が 364mg/Lであるのに対して、上部室分離水では 47mg/L、 下部室分離水では 41mg/L、全体の懸濁物質除去率の平均値は 88%であった。
[0036] 以上に述べたとおり、本発明に係る凝集沈殿装置においては、被処理水に凝集剤 を添カ卩して、被処理水中の懸濁物質の凝集沈殿を行うものである力 被処理水中の 水質に応じて適切な量の凝集剤を添加し、最適な凝集反応を生じさせることが必要 である。凝集反応の影響因子のうちで、被処理水の水質としては、粒子濃度、 pH、 Mアルカリ度、温度、共存イオン等がある。これら影響因子のうち、従来の凝集剤添 加量制御は、粒子濃度に基づく制御が一般的である。即ち、被処理水中の懸濁物 質濃度が低い場合には、凝集剤添加量も低くし、懸濁物質濃度が高い場合には、凝 集剤添加量も高くするという制御である。
[0037] 降雨時に被処理水に雨水が混入する場合、例えば合流式下水道の場合には、雨 水によって汚水が希釈される一方で、路面等の汚濁物質が雨水に流されて下水に 混入する。更に、雨水の混入によって、下水流量が増加し、管渠堆積物が押し流さ れる。これらの作用によって降雨時下水の懸濁物質濃度は、晴天時とは異なる変動 をする。よって、降雨時下水を従来の方法により凝集処理する場合には、適切な凝 集剤添力卩量をその時の被処理水の懸濁物質濃度に基づいて決定することになる。
[0038] 降雨時に雨水が混入する被処理水の凝集処理において、凝集剤添加量を懸濁物 質濃度に基づいて制御することには、次の問題がある。
(1)雨水の混入によって、被処理水の Mアルカリ度は低下する。 Mアルカリ度が低 下した場合には、懸濁物質濃度が同じであっても、適切な凝集剤添加量は少なくな る。よって、懸濁物質濃度に基づいて凝集剤添加量を制御すると、凝集剤を過剰添 加することになり、ランニングコストの増加を招く。
(2)雨水の混入によって、被処理水の懸濁物質の組成は変化する。降雨時の被処 理水に含まれる懸濁物質は、大きく 2種類に区分される。一方は、無降雨時の被処 理水に含まれる懸濁物質が雨水によって希釈されるものであり、他方は、降雨時にの み混入する懸濁物質である。これら 2種類の懸濁物質は、成分が異なっているために 凝集剤の効き具合が異なり、同じ懸濁物質濃度であっても、適正凝集剤添加量は異 なる。よって、これら 2種類の懸濁物質の混合液に対して、混合後の被処理液全体と しての懸濁物質濃度に基づいて凝集剤添加量を設定することは、不適切である。凝 集剤添加量が過剰の場合は、ランニングコストの増加を招き、添加量不足の場合に は、処理水水質の悪化を招くことになる。よって、凝集剤の過剰添加や添加不足を防 止するためには、各懸濁物質濃度に基づいて凝集剤添加量を制御することが望まし レ、。
[0039] 本発明では、このような点に鑑み、被処理水の水質に応じて適切な凝集剤添加量 に制御できるようにしている。以下、この点につき説明する。
本発明では、被処理水の Mアルカリ度又は電気伝導率に基づいて凝集剤添加量 の制御を行う。本発明は、合流式下水道においては、
(1)降雨時下水の Mアルカリ度及び電気伝導率は、無降雨時下水よりも低下する、
(2)凝集性は Mアルカリ度の低下によって向上する、 (3)無降雨時下水を雨水で希釈すると希釈倍率に応じて Mアルカリ度が低下し、 M アルカリ度の低下から雨水による希釈倍率を求めることができる、
(4)電気伝導率を用いることでも、 Mアルカリ度と同様に雨水による希釈倍率を求め ること力 Sできる、
(6) Mアルカリ度の低下を電気伝導率の低下から推定可能である、という実験的知 見に基づいてなされたものである。
[0040] 以下に、合流式下水道の降雨時下水を例として、本発明のアルカリ度と凝集特性と の関係を説明する。ただし、本発明は、合流式下水道に限るものではなぐ降雨時に 雨水の流入によって、 Mアルカリ度又は電気伝導率が変化する水を被処理水とする 凝集処理について適用可能である。
[0041] 図 8は、無降雨時の下水に硫酸を添カ卩して Mアルカリ度を調整した水を被処理水と して、同一薬品添加量でジャーテストを行った結果である。被処理水の懸濁物質濃 度は同一であっても、 Mアルカリ度の低下に伴って処理水濁度は低下していることが 明らかである。
[0042] 図 9は、下水処理場における降雨時流入下水を被処理水として、同一薬品添加量 でジャーテストを行った結果である。被処理水の Mアルカリ度は、雨水の混入量が多 くなるに従って低下しており、 Mアルカリ度の低下に伴って処理水濁度は低下してい る。
[0043] 図 8と図 9に示される通り、凝集剤添加量が同じであれば、被処理水の Mアルカリ度 の低下に伴って処理水濁度が低下する。このことは、同一の処理水濁度を得るため には、 Mアルカリ度の低下に伴って凝集剤添力卩量を低減できることを意味している。
[0044] 図 10は、無降雨時の汚水を雨水で希釈した場合の Mアルカリ度を示したものであ り、雨水と汚水との混合液中の汚水の割合に応じて Mアルカリ度が低下している。よ つて無降雨時下水の Mアルカリ度を予め確認しておき、降雨時下水の Mアルカリ度 を測定することによって、雨水による希釈倍率を算出することができる。無降雨時下 水の Mアルカリ度は、一般的に 150 200mg/Las CaC〇3であり、時刻ゃ曜日に よって異なるので、それらに応じた値を予め確認しておくことが望ましい。
[0045] 図 11は、無降雨時の汚水を雨水で希釈した場合の電気伝導率と Mアルカリ度を示 したものであり、雨水と汚水との混合液中の汚水の割合に応じて電気伝導率が低下 してレ、る。図 13は、図 11の電気伝導率と Mアルカリ度との関係を示した図であり、両 者の相関は極めてよい。よって、 Mアルカリ度同様に、降雨時下水の電気伝導率を 測定することによって雨水による希釈倍率を算出することができ、更に Mアルカリを推 定すること力 Sできる。
[0046] 図 12は、下水処理場における降雨時流入下水の懸濁物質濃度(SS)と Mアルカリ 度の経時変化の実測例である。降雨は 15 : 00から 19 : 00に発生しており、雨水が下 水道へ流入することで汚水が希釈され、 Mアルカリ度は急激に低下している。降雨が 終了した 19 : 00以降も Mアルカリ度が低下し続けているのは、雨水が管渠へ流入す るまでの時間と管渠へ流入した雨水が処理場まで流れる時間が存在するからである 。無降雨時の Mアルカリ度を、この Mアルカリ度で除することにより、雨水による希釈 倍率が求まる。例えば、 20 : 00では、無降雨時下水の Mアルカリ度が約 180mgZL as CaC〇3であるのに対して、降雨時の値は約 80mg/Las CaC03である。よつ て、無降雨時下水が、雨水によって約 2. 3倍に希釈されていることになる。
[0047] 一方、図 12の SSも経時的に変化している力 Mアルカリ度から算出される希釈倍 率と同一の倍率で SSが希釈された場合よりも大きい値である。例えば、 20 : 00では、 無降雨時下水の SSが約 200mg/Lであり、 Mアルカリ度から算出される希釈倍率 2 . 3倍に基づいて SSを計算すると、約 87mg/Lに低減しているはずである。実際の SSは、約 300mg/Lであり、雨水による希釈倍率から算出される値よりも、約 210m g/L大きい。この増加した懸濁物質としては、降雨前に路面に堆積していた汚濁物 質が、雨水と共に流入したもの、下水管渠に堆積していた汚濁物質が、雨水流入に よる水量増加で押し流されたものが挙げられる。即ち、降雨時の被処理水に含まれる 懸濁物質は、無降雨時の被処理水に含まれる懸濁物質が雨水によって希釈されるも のと、降雨時に増加する懸濁物質との混合物であり、 Mアルカリ度に基づくことによつ て、それぞれの濃度を算出することが可能となる。
[0048] 図 12に示す降雨時下水を対象に凝集処理を行う場合、従来は、被処理水の懸濁 物質濃度(SS1)に基づいて、適正凝集添加量を算出することが一般的である。 即ち、図 12の 20 : 00であれば、 SS1 =約 300mg/Lに基づレ、て、適正凝集剤添 加量を算出する。これに対して、本発明では、図 8及び図 9に示した様に、被処理水 の Mアルカリ度が低下すると、処理水濁度が低下するということに基づき、被処理水 の懸濁物質濃度(SS1)に基づいて算出する凝集剤添加量 (M4)に対して、 Mァノレ カリ度 (A1)に基づく補正を行うことによって、適正凝集剤添加量 (Ml)を演算する。 更に、本発明では、被処理水の懸濁物質濃度(SS1)に基づいて、凝集剤添加量( M4)を算出する際に、 Mアルカリ度 (A1)に基づいて SS1を無降雨時下水の懸濁物 質が希釈された成分 (SS2)と、降雨時に増加した成分 (SS3)とに分割し、それぞれ の成分に対する凝集剤添加量 (M2, M3)を算出して、その合計 M2 + M3を SS1に 対応する凝集剤添加量 (Ml)とすることもできる。
[0049] 図 2に示す本発明に係る凝集沈殿装置においては、前述のように、流量計 30によ る流量測定と、 Mアルカリ度計 32による Mアルカリ度の測定と、 SS計 34による SSの 測定が行われる。
測定した Mアルカリ度 (A1)と SS (SS1)に基づいて、以下の(1)_ (7)によって被 処水の単位量当たりの適正な無機系凝集剤添加量 (N1)と有機系高分子凝集剤添 加量 (P1)を演算し、それら添加量と流量 Q1とに基づいて被処理水全量に対する添 加流量を算出し、無機凝集剤注入ポンプ 42と有機高分子凝集剤注入ポンプ 44の制 御を行う。
[0050] (1) Mアルカリ度 (A1)を予め測定してある無降雨時の値と比較して、雨水による希 釈倍率(D倍希釈)を求める。この際、無降雨時の値が曜日や時刻によって異なる場 合には、曜日や時刻に応じた値を確認しておいて、比較を行う。
(2)希釈倍率 Dに基づいて、 SS1 (降雨時の懸濁物質濃度)を無降雨時の懸濁物 質濃度 SSが希釈された成分の懸濁物質濃度 SS2と、降雨によって増加した成分の 懸濁物質濃度 SS3とに分割する。
(3) SS2に対応する無機凝集剤添加量 N2と有機高分子凝集剤添加量 P2を演算 する。
(4) SS3に対応する無機凝集剤添加量 N3と有機高分子凝集剤添加量 P3を演算 する。
(5) SS1に対応する添カロ量として N4 = N2 + N3、 P4 = P2 + P3を算出する。 (6) N4に対して Mアルカリ度の低減効果を補正して被処理水の単量当たりの適正 な無機凝集剤添加量 N1を演算する。
(7) P4に対して Mアルカリ度の低減効果を補正して被処理水の単量当たりの適正 な有機高分子凝集剤添加量 P1を演算する。
Mアルカリ度の代わりに電気伝導率を測定し、電気伝導率に基づいて演算を行うこ ともできる。また、 SSの代わりに濁度を測定し、濁度から SSを換算してもよい。
以下に、図 2で示す凝集沈殿装置において行った具体的試験につき説明する。 合流式下水道の降雨時下水を被処理水とし、無機凝集剤として塩化第二鉄、有機 高分子凝集剤としてァニオン系高分子凝集剤を用い、処理水量 180m3Z時、水面 積負荷 50m3Z (m2 '時)の条件で、 7時間の凝集沈殿処理を行った。被処理水の性 状は、図 12で示したものであり、降雨前の Mアルカリ度は 178mg/Las CaC〇3、 SSは 328mg/L、試験終了時の Mアルカリ度は 63mg/Las CaC〇3、 SSは 200 mgZLであった。
[0051] 本発明に基づく制御と、従来方法に基づく制御の結果を表 2に示す。
[表 2]
Figure imgf000020_0001
[0052] 本発明に基づいて添カ卩量制御を行った場合、懸濁物質の平均除去率は 90%であ り、従来の制御方法である被処理水 SSに基づく比例制御を行った場合に予想される SSの平均除去率と同等であった。一方、凝集剤添加量は表 2に示すとおり、本発明 では、無機凝集剤を 24%、有機高分子凝集剤を 33%それぞれ低減することが可能 であった。
[0053] 本発明のこの制御方法によれば、降雨時に雨水の流入によって被処理水の Mアル カリ度が変化する場合、被処理水の懸濁物質濃度と、 Mアルカリ度あるいは電気伝 導率とを測定し、それらの値に基づいて適正凝集剤添加量を演算することによって、 凝集剤の過剰添加を防止し、低コスト運転と良質の処理水を安定して提供できる。

Claims

請求の範囲
[1] 分離槽本体と、
該分離槽本体内に設定され、当該分離槽本体内を上部室と下部室とに分割する 分割部材と、
上部室内に被処理水を導入する被処理水導入管と、
上部室に開口した上部開口、及び、下部室に開口した下部開口を有し、上部室か ら下部室へ被処理水の一部を下部室に案内する被処理水分流通路と、
を備え、
上部室は、その上方部分に被処理水を外部に排出するための第 1被処理水排出 口を備え、
下部室は、前記被処理水分流通路の下部開口よりも上方位置において被処理水 を外部に排出するための第 2被処理水排出口、及び、前記被処理水分流通路の下 部開口よりも下方位置において被処理水から分離されたフロックを排出するためのフ ロック排出口を備え、
上部室内での前記第 1被処理水排出口へ向う被処理水の上向流の流速、及び、 下部室内での前記第 2被処理水排出口へ向う被処理水の上向流の流速を、それら 上向流内でのフロックが下降しうる速度となるようにすることができるようにした凝集沈 殿槽を有する
ことを特徴とする凝集沈殿装置。
[2] 第 2被処理水排出ロカ 排出される被処理水の排出量を調整することにより、上部 室内での前記第 1被処理水排出口へ向う被処理水の上向流の流速、及び、下部室 内での前記第 2被処理水排出口へ向う被処理水の上向流の流速を、それら上向流 内でのフロックが下降しうる速度となるようにすることができるようにしたことを特徴とす る請求項 1に記載の凝集沈殿装置。
[3] 前記分離槽本体が底壁部、及び、該底壁部から上方に延びる周壁部を有し、 前記分割部材が、前記分離槽本体の周壁部内面から間隔をあけて設定されており 前記被処理水分流通路が、前記分割部材の下方位置に設定されて前記分離槽本 体の周壁部内面から同分離槽本体の中央に向かって下方に傾斜する漏斗状部材と
、前記分割部材との間に形成されていることを特徴とする請求項 2に記載の凝集沈
[4] 前記分割部材が、中央部分に向けて下方に凹んだ椀状に形成され、
前記被処理水導入管は、被処理水を該分割部材の中央部分に向けて下向きに排 出するようにしたことを特徴とする請求項 3に記載の凝集沈殿装置。
[5] 前記第 1室の上方部分に、浮上濾材と、該浮上濾材の上方位置に濾材流出防止ス クリーンと、該浮上濾材の下方位置に濾材受けスクリーンとが設けられ、
前記第 1被処理水排出口が前記濾材流出防止スクリーンよりも上方位置に設けら れている
ことを特徴とする請求項 4に記載の凝集沈殿装置。
[6] 被処理水導入管によって分離槽本体に導入される被処理水に凝集剤を添加する凝 集剤添加装置を備え、該凝集剤添加装置が
被処理水を通すための少なくとも 1つの下向流路と、少なくとも 1つの上向流路とを 連続させた上下迂流路構造を有し、該上下迂流路構造の上流側で被処理水に凝集 剤を添加して、該被処理水を上向流路及び下向流路を通して前記被処理水導入管 へ供給するようにされていることを特徴とする請求項 1に記載の凝集沈殿装置。
[7] 前記凝集剤添加装置が、被処理水の流路に沿って順次配置された前記凝集剤添 加槽を 2つ備え、上流側の凝集剤添加槽は無機系凝集剤を、下流側の凝集剤添カロ 槽は有機系凝集剤を添加するようになされており、無機系凝集剤及び有機系凝集剤 が添加された被処理水を前記被処理水導入管に供給するようにしたことを特徴とす る請求項 6に記載の凝集沈殿装置。
[8] 前記被処理水導入管によって前記分離槽に導入される被処理水の量を測定する 流量計と、
同被処理水の Mアルカリ度を測定する Mアルカリ度計と、
同被処理水の懸濁物質濃度を測定する SS計又は濁度計と、
を備えることを特徴とする請求項 6若しくは 7に記載の凝集沈殿装置。
[9] 前記流量計、 Mアルカリ度計、及び、 SS計又は濁度計によって測定されたデータ に基づき、被処理水に添加すべき凝集剤の適切な量を算定するための制御器を備 えることを特徴とする請求項 8に記載の凝集沈殿装置。
[10] 前記流量計、 Mアルカリ度計、及び、 SS計又は濁度計によって測定されたデータ に基づき、降雨時において、無降雨時における被処理水の懸濁物質に対する添カロ すべき凝集剤の適切な量を算定するとともに、降雨によって被処理水に加わった懸 濁物質に対する添加すべき凝集剤の適切な量を算定するための制御器を備えること を特徴とする請求項 8に記載の凝集沈殿装置。
[11] 前記被処理水導入管によって前記分離槽に導入される被処理水の量を測定する 流量計と、
同被処理水の電気伝導率を測定する電気伝導率計と、
同被処理水の懸濁物質濃度を測定する SS計又は濁度計と、
を備えることを特徴とする請求項 6若しくは 7に記載の凝集沈殿装置。
[12] 前記流量計、電気伝導率計、及び、 SS計又は濁度計によって測定されたデータに 基づき、被処理水に添加すべき凝集剤の適切な量を算定するための制御器を備え ることを特徴とする請求項 11に記載の凝集沈殿装置。
[13] 前記流量計、電気伝導率計、及び、 SS計又は濁度計によって測定されたデータに 基づき、降雨時において、無降雨時における被処理水の懸濁物質に対する添加す べき凝集剤の適切な量を算定するとともに、降雨によって被処理水に加わった懸濁 物質に対する添加すべき凝集剤の適切な量を算定するための制御器を備えることを 特徴とする請求項 11に記載の凝集沈殿装置。
PCT/JP2004/006954 2003-05-22 2004-05-21 凝集沈殿装置 WO2004103521A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04745265A EP1637205A1 (en) 2003-05-22 2004-05-21 Flocculaing settling device
CA002526524A CA2526524A1 (en) 2003-05-22 2004-05-21 Coagulation-sedimentation apparatus
US10/558,315 US20070175804A1 (en) 2003-05-22 2004-05-21 Coagulation-sedimentation apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003144891A JP3888984B2 (ja) 2003-05-22 2003-05-22 合流式下水道の下水の処理方法と装置
JP2003-144891 2003-05-22
JP2003157786A JP3856314B2 (ja) 2003-06-03 2003-06-03 凝集沈殿方法及び装置
JP2003-157786 2003-06-03
JP2003198447A JP2005034712A (ja) 2003-07-17 2003-07-17 雨水混入水の処理方法と装置
JP2003-198447 2003-07-17

Publications (1)

Publication Number Publication Date
WO2004103521A1 true WO2004103521A1 (ja) 2004-12-02

Family

ID=33479643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006954 WO2004103521A1 (ja) 2003-05-22 2004-05-21 凝集沈殿装置

Country Status (3)

Country Link
EP (1) EP1637205A1 (ja)
CA (1) CA2526524A1 (ja)
WO (1) WO2004103521A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213664A (zh) * 2021-05-26 2021-08-06 南宁兴科净医疗科技有限公司 一种废水处理用高效沉淀器
CN114314926A (zh) * 2021-12-31 2022-04-12 新沂市新南环保产业技术研究院有限公司 一种工业废水沉降装置及其工作方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE530104C2 (sv) * 2006-07-17 2008-03-04 B G Consulting Hb Sätt och anordning för kemisk rening av avfallsvatten
GB2502670B (en) * 2012-03-21 2015-01-14 Innovative Ind Ltd Water recycling unit
EP2828204A2 (en) * 2012-03-21 2015-01-28 Innovative Industries Limited Water recycling unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178069U (ja) * 1985-04-26 1986-11-06
JPH06226011A (ja) * 1993-02-03 1994-08-16 Hitachi Ltd 水処理凝集プロセスにおける凝集剤注入制御方法、及び、凝集剤注入制御装置
JPH09290273A (ja) * 1996-04-26 1997-11-11 Kurita Water Ind Ltd 凝集剤添加量調整方法及び装置
JP2002166152A (ja) * 2000-11-29 2002-06-11 Araco Corp 撹拌水槽
JP2004008909A (ja) * 2002-06-06 2004-01-15 Ebara Corp 凝集沈殿方法及び装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178069U (ja) * 1985-04-26 1986-11-06
JPH06226011A (ja) * 1993-02-03 1994-08-16 Hitachi Ltd 水処理凝集プロセスにおける凝集剤注入制御方法、及び、凝集剤注入制御装置
JPH09290273A (ja) * 1996-04-26 1997-11-11 Kurita Water Ind Ltd 凝集剤添加量調整方法及び装置
JP2002166152A (ja) * 2000-11-29 2002-06-11 Araco Corp 撹拌水槽
JP2004008909A (ja) * 2002-06-06 2004-01-15 Ebara Corp 凝集沈殿方法及び装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213664A (zh) * 2021-05-26 2021-08-06 南宁兴科净医疗科技有限公司 一种废水处理用高效沉淀器
CN114314926A (zh) * 2021-12-31 2022-04-12 新沂市新南环保产业技术研究院有限公司 一种工业废水沉降装置及其工作方法

Also Published As

Publication number Publication date
CA2526524A1 (en) 2004-12-02
EP1637205A1 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
EP0932436B1 (en) Water and wastewater treatment system with internal recirculation
KR101563561B1 (ko) 밸러스트 처리된 응집 및 침전에 의한 수처리 방법 및 장치
RU2282592C2 (ru) Способ и устройство для осветления жидкостей, в частности воды, насыщенных материалом в виде суспензии
US20070175804A1 (en) Coagulation-sedimentation apparatus
JP2008534258A (ja) Bodおよび浮遊固形物を除去するための安定化凝集プロセスに活性汚泥を使用する方法およびそのシステム
WO2008053066A1 (en) Thickener and method for thickening
JP5401087B2 (ja) 凝集剤注入制御方法
JP4202207B2 (ja) 凝集分離装置
US4330407A (en) Process for clarifying algae-laden waste water stream
JP2004358313A (ja) 凝集沈殿方法及び装置
WO2004103521A1 (ja) 凝集沈殿装置
WO2011030485A1 (ja) 凝集沈澱処理方法
US7090777B2 (en) Aggregation precipitation method
US6344142B1 (en) Waste water treatment method and apparatus
JP3905663B2 (ja) 固液分離装置及び凝集条件決定方法
KR20010090404A (ko) 오폐수처리장치
JP3274577B2 (ja) 濁水処理装置
JP2019155282A (ja) 固液分離装置
CN111170546A (zh) 一种高密度澄清池
CN219972088U (zh) 一种雨水处理设备
JP2005034712A (ja) 雨水混入水の処理方法と装置
CN221093848U (zh) 一种隔油与反应沉淀集成化设备
JP2002355504A (ja) 凝集沈澱装置およびその運転方法
KR100775644B1 (ko) 정수 슬러지의 농축탈수 방법 및 그 장치
WO2023058339A1 (ja) 混和除濁装置及び混和除濁装置におけるフロック形成方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2526524

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004745265

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048186005

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004745265

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10558315

Country of ref document: US

Ref document number: 2007175804

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2004745265

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10558315

Country of ref document: US