WO2004098760A1 - Reacteur-separateur, et procede d'esterification en continue au moyen de cet appareil - Google Patents

Reacteur-separateur, et procede d'esterification en continue au moyen de cet appareil Download PDF

Info

Publication number
WO2004098760A1
WO2004098760A1 PCT/CN2004/000006 CN2004000006W WO2004098760A1 WO 2004098760 A1 WO2004098760 A1 WO 2004098760A1 CN 2004000006 W CN2004000006 W CN 2004000006W WO 2004098760 A1 WO2004098760 A1 WO 2004098760A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
reaction
chamber
space
wall
Prior art date
Application number
PCT/CN2004/000006
Other languages
English (en)
French (fr)
Other versions
WO2004098760A8 (fr
Inventor
Zhenxin Chen
Mingkang Yu
Shaopeng Wang
Original Assignee
China Petroleum & Chemical Corporation
Sinopec Shanghai Petrochemical Company Limited
China Textile Academy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum & Chemical Corporation, Sinopec Shanghai Petrochemical Company Limited, China Textile Academy filed Critical China Petroleum & Chemical Corporation
Priority to US10/556,042 priority Critical patent/US7708952B2/en
Publication of WO2004098760A1 publication Critical patent/WO2004098760A1/zh
Publication of WO2004098760A8 publication Critical patent/WO2004098760A8/zh
Priority to EGNA2005000700 priority patent/EG24495A/xx

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/38Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it
    • B01J8/384Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only
    • B01J8/388Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only externally, i.e. the particles leaving the vessel and subsequently re-entering it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/435Mixing tubes composed of concentric tubular members

Definitions

  • the invention relates to a device for reaction or separation, in particular to a reaction or separation device for circulating materials in containers and pipes, and the use of the device as a continuous esterification reaction device.
  • the invention also relates to a method for continuous esterification using the device, which method comprises supplying a liquid reaction material to the device, and performing the reaction under the conditions of the esterification reaction.
  • thermosiphon In chemical production, there are a large number of container devices that use external circulation heating for reaction or separation, such as a device for producing polyester.
  • the container in the device can be a kettle or a tower.
  • the material to be heated is usually heated by the bottom of the container through a pipe into an external heat exchanger, and then through the pipe into the container through the container wall at the bottom of the container.
  • Polyester mainly includes polyethylene terephthalate, polybutylene terephthalate, and polytrimethylene terephthalate. At present, most of its manufacturing processes are direct esterification, that is, terephthalic acid and corresponding The diol is directly esterified. Most of the existing polyester production is continuous. Although there are multiple process routes, they are basically composed of three continuous processes: esterification, pre-polycondensation and polycondensation. The esterification process is at the forefront. Therefore, it is the most critical part of the entire process route, and it will have a great impact on the operability in subsequent processes and the quality of the final product.
  • the esterification reaction equipment must meet a large heating load, and the material must be heated uniformly; excess glycol and water generated by the esterification should be removed in time to facilitate the further reaction of the material; the material flow in the system should be as far as possible Close to the plug flow to make the reaction residence time distribution of each part of the material uniform.
  • the importance of the esterification reaction and the high requirements for the reaction equipment make the research of the esterification reaction equipment the most concerned department in the research of polyester technology.
  • This external circulation heating esterification reaction equipment mainly includes an external column heater and a reaction kettle.
  • the solid-liquid two-phase mixed slurry of terephthalic acid and glycol is first injected into the circulating oligomer. Then, it enters the tubular heater to complete the heating and the initial esterification reaction, and then enters the reaction kettle for further esterification.
  • the product is discharged from the bottom of the kettle, and a part of it is returned to the heater for circulation.
  • Various flow-removing members are provided in the reactor to promote the flow in the kettle as close to the plug flow as possible.
  • the advantages of the external circulation heating esterification reaction equipment are that it can well meet the larger heating load; no stirring device is used; the distribution of the reaction residence time of each part of the material is more uniform.
  • the purpose of the present invention is to solve the technical problems of only using the power generated by the thermosiphon that is too small and the flow rate is insufficient, and the molar ratio of the glycol to terephthalic acid is too high. question.
  • the present invention provides a new device for reaction or separation.
  • the device is applied to the situation where the gaseous material escapes from the material in the device due to evaporation or reaction. It is provided by a static equipment component in the container. Increase the power of the material to circulate the flow force between the container and the external heat exchanger, so as to solve the problem that the power generated by using only the thermosiphon is too small and the flow is insufficient, and the molar ratio of glycol to terephthalic acid is too high Defects.
  • the invention provides a reaction or separation device for circulating materials in a container and a pipeline.
  • the device includes a container (1) and an external circulation pipeline (2).
  • the container has a dual-chamber structure, and an inner chamber is provided in the container.
  • the continuous space outside the middle and inner chambers forms the outer chamber, and the top of the inner chamber is located in the continuous space downward from the top of the container;
  • the inner chamber is composed of an outer cylinder and an inner cylinder, the outer cylinder and the inner cylinder are sleeved and the outer cylinder and the inner cylinder
  • There is space between the walls; the lower end of the outer cylinder is open, and a communication pipe with a throttle valve is set between the upper end and the upper part of the outer chamber in order to adjust the pressure difference between the inner and outer chambers.
  • the outer cylinder is fixed to the container wall or bottom, and its lower end is higher than The bottom of the container; the upper end of the inner tube is open, and the lower end is connected to the outer circulation pipeline through a discharge port.
  • the inner tube is fixed to the bottom of the container, and its upper end is higher than the lower end of the outer tube and lower than the top cover of the outer tube; the outer tube wall and the container.
  • the top of the inner chamber of the reaction or separation device is located below 1/2 of the height inside the container, and preferably 1/5-1/2.
  • the space between the outer cylinder wall and the container wall, the lower end of the outer cylinder and the bottom of the container, the outer cylinder wall and the inner cylinder wall, and the space inside the inner cylinder of the reaction or separation device are sequentially formed A continuous annular channel with a U-shaped cross section.
  • a heat exchanger may be installed in the outer circulation pipeline for energy exchange.
  • the inner chamber may be constituted by an outer cylinder and an inner cylinder, an outer cylinder and an inner cylinder concentrically with the outer cylindrical sleeve 5 there is a space between the two walls and the inner cylindrical tube to form a channel.
  • the lower end of the outer cylinder is open, and a band is provided between the upper end and the upper part of the outer chamber.
  • the communication pipe of the flow valve is used to adjust the pressure difference between the inner and outer chambers.
  • the outer cylinder is fixed to the container wall or the bottom of the container through a bracket, and its lower end is higher than the bottom of the container.
  • the upper end of the inner cylinder is open 5 and the lower end is connected to the outer circulation pipeline through a discharge port and fixed to the bottom of the container.
  • the upper end of the inner cylinder is higher than the lower end of the outer cylinder and lower than the top cover of the outer cylinder.
  • the space between the outer cylinder wall and the container wall between the lower end of the outer cylinder and the bottom of the container, between the outer cylinder wall and the inner cylinder wall, and the interior of the inner cylinder in turn forms a continuous annular channel with a U-shaped cross section.
  • the annular channel is a U-shaped tube that connects the inner chamber with the outer chamber.
  • the ratio of the diameter of the inner cylinder to the diameter of the container is 1: 1. 8-2.5.
  • the container is preferably a container selected from a packed column, a tray column, or a reactor.
  • the present invention also relates to the use of the above-mentioned reaction or separation device as a continuous esterification reaction device, wherein the esterification reaction is an esterification reaction of phthalic acid and a diol.
  • the present invention also provides a continuous esterification method, which comprises supplying a liquid reaction material to the above device and performing the reaction under the conditions of the esterification reaction, wherein the device includes a container and an external circulation pipeline, wherein the container has a dual-chamber structure, An inner chamber is provided in the container. The continuous space outside the inner chamber in the container forms the outer chamber. The top of the inner chamber is located in the continuous space downward from the top of the container.
  • the inner chamber is composed of an outer cylinder and an inner cylinder.
  • the outer cylinder is fixed to the container.
  • the lower end of the wall or bottom is higher than the bottom of the container; the upper end of the inner tube is open, and the lower end is connected to the outer circulation pipeline through a discharge port.
  • the inner tube is fixed to the bottom of the container, and its upper end is higher than the lower end of the outer tube and lower than the outer tube.
  • the outer circulation pipeline is connected to the bottom of the container, communicates with the inner chamber, and connects with the lower side wall of the container, and communicates with the outer chamber; and when the liquid reaction material circulates in the device, a liquid seal is generated in the continuous channel, so that the inner chamber and The gas phase space of the outer chamber is isolated, and the volume of the inner chamber space is adjusted so that a sufficient pressure difference is generated between the inner and outer chambers, thereby forming a motive force for circulating materials.
  • the liquid reaction material is preferably phthalic acid and a diol, wherein the phthalic acid is selected from terephthalic acid, isophthalic acid, and phthalic acid.
  • the glycol is selected from ethylene glycol, propylene glycol and butanediol. 5-1. 9: 1 ⁇
  • the molar ratio of the feed of diol and phthalic acid is 1. 5-1. 9: 1.
  • the reaction temperature is preferably 258-290 ° C s a reaction pressure of 40-120 KPa.
  • the container is a dual chamber structure through the inner and outer chambers communicating ⁇ -shaped pipe 3 to the liquid passage pipe is a ⁇ -shaped material. Therefore, during work, the material existing in the U-shaped tube forms a liquid seal, and the throttling effect of the wide throttling in the communication tube makes the inner chamber and the outer chamber in a relatively isolated state from each other.
  • the pressure of the space above the liquid surface of the outer or inner chamber mainly depends on the volume of the space and the amount of gaseous material that escapes due to evaporation or reaction. The pressure is inversely proportional to the volume of the space, and the The amount of escape is directly proportional.
  • the escape amount of the gas phase material is known.
  • the top of the inner chamber can be located below 1/2 of the continuous space height from the bottom of the container, and the lower the top of the inner chamber, the more space above the liquid level in the outer chamber is above the liquid level in the inner chamber. Space. Therefore, no matter whether the escape amount of gaseous materials in the outer chamber and the inner chamber is equal to, greater than, or less than, the design height of the inner chamber top and the projected design area of the inner chamber are adjusted so that the space above the liquid surface of the outer chamber is sufficiently larger than the inner chamber.
  • the space above the liquid surface of the chamber can make the pressure in the inner chamber space greater than the pressure in the outer chamber space, and there is a sufficient pressure difference. Because the inlet and outlet connections of the container and the external displacement heat exchanger are located in the inner and outer chambers respectively, this pressure difference becomes another driving force for the material to circulate between the container and the external heat exchanger, thereby increasing The circulating flow of the material.
  • the communication pipe communicates the space above the liquid surface of the outer chamber with the space above the liquid surface of the inner chamber.
  • the pressure difference between the inner and outer chambers can be adjusted to an appropriate value by adjusting the throttle valve on the communication pipe.
  • the present invention only adds static equipment components to the container, so as to promote material circulation.
  • a motive force which makes up for the shortcomings that the power of automatic material flow generated by thermosyphon is too small to meet the general process requirements and the high molar ratio of glycol to terephthalic acid.
  • FIG. 1 shows an embodiment of the present invention applied to a batch reaction kettle, and the diagram is a schematic cross-sectional structure of the device;
  • Fig. 2 shows an embodiment in which the present invention is applied to a packed-type separation tower, and the figure shows a schematic cross-sectional structure of the device.
  • the device includes a container 1 that is a reaction kettle and an external heat exchanger 2.
  • the inlet and outlet of the heat exchanger are connected to the reaction kettle through pipes 3 and 4, respectively.
  • the reactor is a two-chamber structure with inner and outer chambers.
  • the inner chamber 5 is located at the bottom of the kettle.
  • the continuous space outside the inner chamber in the kettle is the outer chamber 6.
  • the top of the inner chamber is located at approximately 1/2 of the height of the kettle.
  • the pipe connection port 7 of the inlet of the reactor is located at the bottom of the inner chamber and communicates with the inner chamber; the pipe connection port 8 of the reactor connected to the heat exchanger outlet is located on the side wall of the kettle at the lower part of the kettle and communicates with the outer chamber.
  • the inner chamber is composed of an outer cylinder 9 and an inner cylinder 10, the outer cylinder and the inner cylinder are concentrically nested, and there is a space between the cylinder walls of the outer cylinder and the inner cylinder to form a channel.
  • the lower end of the outer cylinder is open and the upper end is closed by a cap. It is fixed to the wall of the reaction vessel by a bracket 11 and its lower end is higher than the bottom of the vessel.
  • the upper end of the inner cylinder is open and the lower end is closed and fixed to the bottom of the kettle.
  • the upper end of the inner cylinder is higher than the lower end of the outer cylinder and lower than the cover of the outer cylinder.
  • the space between the outer cylinder wall and the reactor wall and the reactor wall, the space between the outer cylinder and the bottom of the reactor, and the space between the outer cylinder wall and the inner cylinder wall in turn form a ring-shaped channel 12 in cross section.
  • the inner chamber and the outer chamber communicate with each other through the annular passage.
  • a communication pipe 13 is provided between the top of the inner chamber and the upper part of the outer chamber, and the communication pipe is provided with a throttle 14. 15 is the inlet of the reaction kettle, and 16 is the outlet of the reactor.
  • the device includes a container 1, that is, a packed tower and an external heat exchanger 1.
  • the inlet and outlet of the heat exchanger are connected to the packed tower through pipes 3 and 4, respectively.
  • the lower part of the packing of the packed tower is a dual-chamber structure with inner and outer chambers.
  • the inner chamber 5 is located at the bottom of the tower.
  • the continuous space below the packing of the packed tower and outside the inner chamber is the outer chamber 6.
  • the top of the inner chamber is located approximately 1/2 of the distance from the bottom of the tower to the bottom of the packing.
  • the pipe connection port 7 of the heat exchanger inlet is located at the bottom of the inner chamber and communicates with the inner chamber; the pipe connection port 8 of the packed tower connected to the heat exchanger outlet is located at the wall of the lower part of the tower and communicates with the outer chamber.
  • the construction of the inner chamber of this embodiment is the same as that of the embodiment shown in FIG.
  • 15 is the inlet of the packed tower, and 16 is the outlet of the packed tower.
  • the esterification reactor is composed of an esterification heater heated by a gas-phase heating medium and a reactor with a ⁇ -type tube in series.
  • the heater is a tube-type and the reactor is a cylindrical structure with a jacket.
  • the raw material slurry composed of PTA and EG enters the system through the material nozzle, mixes with the liquid-phase circulating material from the inner chamber of the reactor, and enters the external circulation tube for heating. Control the molar ratio of EG and PTA to 1.8: 1.
  • the material is heated to 282 ° F by a heater, and the reaction produces water and other by-products (such as diethylene glycol, etc.). Sufficient gas-phase space is provided above the liquid phase in the reactor to avoid mist entrainment.
  • the gas-liquid mixture sprayed from the heater was separated by flash evaporation above the kettle. The water and glycol vapor were removed, and the gas-phase tube entered the separation tower for separation.
  • the esterification reaction temperature was set to 282 ° C, the reaction pressure was 160KPa (A), the total residence time of the materials in the reactor was about 90min, the esterification rate at the outlet was about 86.9%, and the degree of oligomer polymerization was 6 to 12.
  • An oligomer having 6 to 12 polymerization degrees flows out from an esterification reactor and enters a pre-polycondensation heater at the lower part of the pre-polycondensation tower.
  • the separation tower has 12 guided sieve trays.
  • the temperature at the top of the tower is 111-116 ° C.
  • the evaporated low-boiling materials and water enter the condenser at the top of the separation tower through the gas phase pipeline.
  • the condensed water is collected in the water reflux tank. Part of the condensed water is returned to the first tray by the water return pump to control the temperature at the top of the tower, and the remaining wastewater overflows from the return tank to the plant wastewater treatment system.
  • the EG flowing from the bottom of the tower was injected into the PTA slurry preparation tank through the liquid level regulating valve.
  • the PTA slurry entering the esterification heater is composed of PTA and EG.
  • the purified terephthalic acid (PTA) used was purchased from Xiamen Xianglu Chemical Co., Ltd., and the ethylene glycol (EG) was purchased from Beijing Yanshan Petrochemical Co., Ltd.
  • the content of terminal carboxyl groups in the obtained polyethylene terephthalate was determined by a potentiometric titration method to be ⁇ 25 mol / t.
  • the present invention employs a double-chamber double-pressure external circulation reactor without mechanical stirring and a circulation pump in a continuous esterification reaction device. Therefore, a beneficial effect is obtained in polyester production, specifically:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

一种用于反应或分离的装置以及
使用该装置进行连续酯化的方法 技术领域
本发明涉及一种用于反应或分离的装置, 特别是涉及物料在容 器与管道中循环流动的反应或分离装置, 以及所述装置用作连续 酯化反应装置的用途。 本发明还涉及采用所述装置进行连续酯化 的方法, 该方法包括将液体反应物料供给所述装置, 在酯化反应 条件下进行反应。
背景技术
在化工生产中, 存在大量采用外循环加热用于反应或分离的 容器装置, 例如生产聚酯的装置, 装置中的容器可以是釜或塔。 通常被加热的物料由容器底部通过管道进入外置的换热器加热, 然后通过管道由容器下部的容器壁进入容器内。 物料在加热前后 存在密度差, 从而产生使出自容器底部的物料自动地经由换热器 返回容器的动力, 这被称为热虹吸。
聚酯主要包括聚对苯二甲酸乙二酯、 聚对苯二甲酸丁二酯和聚 对苯二甲酸丙二酯, 目前其制造工艺大多为直接酯化法, 即由对 苯二甲酸和相应的二元醇进行直接酯化。 现有的聚酯生产绝大部 分为连续化的, 其中尽管存在着多种工艺路线, 但基本上都是由 酯化、 预缩聚和缩聚三个连续的过程组成, 酯化过程处于最前端, 因此是整个工艺路线中最为关键的部分, 它将对后续工艺过程中 的可操作性以及最终产品的质量产生很大的影响。 而酯化反应设 备必须满足较大的加热负荷, 且物料必须加热均匀; 过量的二元 醇以及酯化生成的水份应及时被脱除以利于物料的进一步反应; ***中物料流动应尽可能接近活塞流, 以使物料各部分的反应停 留时间分布均匀。 酯化反应的重要性以及对反应设备的高要求, 使得酯化反应设备的研究成为聚酯工艺研究中一直最受关注的部
- 1 - 确认本 在现有技术中, 较早的酯化反应设备为全混型搅拌釜, 采用夹 套或内置列管换热器加热, 并施以激烈的搅拌。 另外, 采用多釜 串联的办法来改善物料停留时间的分布状况。 全混型搅拌釜的缺 点是明显的 5 即设备大型化使内部物料存在温度场和浓度场 5 影 响了物料的均勾性„ 设备数量多和大功率的搅拌装置也导致设备 的投资较高, 搅拌装置的运行成本也相当可观。 以后推出的外循 环加热的酯化反应设备有了较大的进步, 如日本公开特许特开平
10-87805、 特开平 11-116536 所介绍的。 这种外循环加热的酯化 反应设备主要包括一个外置的列管式加热器和一个反应釜, 对苯 二甲酸和二元醇固液两相混合浆料先注入到循环的齐聚物中, 然 后进入列管式加热器完成加热和进行初期的酯化反应, 然后进入 反应釜进一步酯化, 产物由釜底出料, 其中的一部分则返回加热 器进行循环。 反应釜中设置各种拆流构件, 以促使釜中的物流尽 可能地接近活塞流。 外循环加热酯化反应设备的优点是能很好地 满足较大的加热负荷; 不使用搅拌装置; 物料各部分反应停留时 间的分布更为均匀。
然而, 这种现有的外循环加热的化工反应设备存在着明显的缺 陷。 这是因为在***中物流的动力仅仅来自热虹吸所产生的动力, 但一般说来仅利用热虹吸产生的动力使得物料自动循环流动, 其 流量是很难满足工艺要求的。 在容器底部至换热器之间的管道中 安装泵是常用的弥补方法, 然而在化工设备中, 使用泵不仅增加 能耗, 而且增加曰常的维护费用, 此外的另一种解决方案就是提 高反应物料中二元醇的投料量, 将大量过量的二元醇作为反应物 流动的载体。 以由对苯二曱酸 (PTA ) 和乙二醇 (EG ) 制备对苯二 甲酸乙二醇酯 (BHET ) 为例, 通常投料摩尔比 EG: PTA 为 (2. 0 ~ 2. 2 ) : 1 , 过量的二元醇从蒸发到冷凝回收则增加了不必要的能 耗。
发明内容
本发明的目的在于解决仅利用热虹吸所产生的动力过小而导致 流量不足, 以及二元醇与对苯二甲酸的投料摩尔比过高的技术问 题。
为此, 本发明提供了一种新的用于反应或分离的装置, 该装置 应用在装置中的物料因蒸发或反应而存在气相物料逸出的场合, 它通过在容器中设置静设备构件来增加物料在容器与外置的换热 器间进行循环流动力的动力, 从而解决仅利用热虹吸所产生的动 力过小而导致流量不足以及二元醇与对苯二甲酸的投料摩尔比过 高的缺陷。
本发明提供了一种物料在容器与管道中循环流动的反应或分离 装置, 该装置包括容器 ( 1 ) 和外循环管道 ( 2 ) , 其中容器为双 室结构, 在容器内设置内室, 容器中内室外部的连续空间形成外 室, 内室顶部位于容器顶部向下的连续空间内; 内室由一外筒和 一内筒构成, 外筒和内筒相套并且外筒与内筒筒壁之间存在空间; 外筒下端敞开, 上端与外室的上部之间设置一带有节流阀的连通 管道, 以便调节内外室的压力差, 外筒固定于容器壁或底部, 其 下端高于容器底部; 内筒的上端敞开, 下端通过出料口与外循环 管道连接, 内筒固定于容器底部, 其上端高于外筒的下端, 而低 于外筒的顶盖; 外筒壁与容器壁之间、 外筒下端与容器底部之间、 外筒壁与内筒壁之间以及内筒内部的空间依次形成连续通道, 外 循环管道分别与容器底部连接而与内室相通和与容器下部侧壁连 接而与外室相通。
在一个优选实施方案中, 所述反应或分离装置的内室顶部位于 容器内高度的 1 /2以下, 并且优选为 1 /5-1/2。
在另一个优选实施方案中, 所述反应或分离装置的外筒壁与容 器壁之间、 外筒下端与容器底部之间、 外筒壁与内筒壁之间以及 内筒内部的空间依次形成一个截面为正倒 U形的连续环形通道。
在另一个优选实施方案中, 可以在外循环管道中安装有换热 器, 以进行能量交换。
优选地, 上述内室可以由一外圆筒和一内圆筒构成, 外圓筒和 内圆筒同心地相套5 外圆筒和内圆筒两者的筒壁间存在空间以形 成通道。 外圆筒下端敞开, 上端与外室的上部之间设置一带有节 流阀的连通管道, 以便调节内外室的压力差, 外圆筒通过支架固 定于容器壁或容器底部, 且其下端高于容器底部。 内圆筒的上端 敞开 5 下端通过出料口与外循环管道连接, 并固定于容器的底部, 内圆筒的上端高于外圆筒的下端, 而低于外圆筒的顶盖。 其中外 筒壁与容器壁之间 外圆筒下端与容器底部之间、 外筒壁与内筒 壁之间以及内圆筒内部的空间依次形成一个截面为正倒 U 形的连 续环形通道, 该环形通道为连通内室与外室的 ϋ 形管。 在一个优 选实施方案中, 内筒直径与容器直径之比为 1 : 1. 8- 2. 5。
在本发明的装置中, 所述容器优选为选自填料塔、 塔板塔或反 应釜的容器。
本发明还涉及上述反应或分离装置用作连续酯化反应装置的用 途, 其中所述酯化反应为苯二甲酸和二元醇的酯化反应。
本发明还提供了一种连续酯化方法, 该方法包括将液体反应物 料供给上述装置, 在酯化反应条件下进行反应, 其中所述装置包 括容器和外循环管道, 其中容器为双室结构, 在容器内设置内室, 容器中内室外部的连续空间形成外室, 内室顶部位于容器顶部向 下的连续空间内; 内室由一外筒和一内筒构成, 外筒和内筒相套 并且外筒与内筒筒壁之间存在空间; 外筒下端敞开, 上端与外室 的上部之间设置一带有节流阀的连通管道, 以便调节内外室的压 力差, 外筒固定于容器壁或底部, 其下端高于容器底部; 内筒的 上端敞开, 下端通过出料口与外循环管道连接, 内筒固定于容器 底部, 其上端高于外筒的下端, 而低于外筒的顶盖; 外筒壁与容 器壁之间、 外筒下端与容器底部之间、 外筒壁与内筒壁之间以及 内筒内部的空间依次形成连续通道, 外循环管道分别与容器底部 连接而与内室相通和与容器下部侧壁连接而与外室相通; 并且液 体反应物料在装置中循环流动时在连续通道中产生液封, 而使内 室与外室的气相空间隔离, 调整内室空间体积, 使内外室产生足 够的压力差, 从而形成物料循环流动的动力。
在本发明的方法中, 液体反应物料优选为苯二甲酸和二元醇, 其中所述苯二甲酸选自对苯二甲酸、 间苯二甲酸、 邻苯二甲酸, 并且其中所迷二元醇选自乙二醇、 丙二醇和丁二醇。 在一个优选 实施方案中, 二元醇与苯二甲酸的进料摩尔比例为 1. 5-1. 9: 1。 并 且优选反应温度为 258-290 °C s 反应压力为 40—120 KPa。
不希望受任何理论的限制, 发明人认为在本发明的装置中, 容 器为双室结构 内室和外室通过 ϋ 形管来连通 3 该 ϋ 形管为液相 物料的通道。 因此工作时, 存在于 U 形管中的物料形成了液封, 加上连通管中节流阔的节流作用, 使得内室与外室相互之间处于 一种相对隔离的状态。 一般说来, 外室或内室液面上方空间的压 力主要取决于空间体积、 物料因蒸发或反应而产生的气相物料的 逸出量, 其中压力与空间体积成反比的关系, 与气相物料的逸出 量成正比的关系。 当装置中的物料、 温度、 反应特性等因素确定 后, 气相物料的逸出量是可知的。 如前所述, 内室顶部可以位于 从容器底向上连续空间高度的 1 /2 以下部位, 而内室的顶部愈往 下, 则外室中液面上方的空间愈大于内室中液面上方的空间。 因 此无论外室和内室中气相物料的逸出量存在等于、 大于或小于的 关系, 只要调整内室顶部的设计高度和内室的投影设计面积, 使 外室液面上方的空间足够大于内室液面上方的空间, 便可使内室 空间的压力大于外室空间的压力, 并存在足够的压力差。 由于容 器与外置换热器的进口和出口的连接口分别处于内室和外室, 这 种压力差便成为物料在容器与外置的换热器间进行循环流动的又 一个动力, 从而增加了物料的循环流量。
连通管连通了外室液面上方的空间与内室液面上方的空间, 通 过调节连通管上的节流阀可以将内外室之间的压力差调整到合适 的数值。
与现有技术相比, 本发明只在容器中增加了静设备构件, 从而 来作为推动物料循
Figure imgf000007_0001
的 一个动力, 弥补了仅利用热虹吸所 产生的使物料自动流动的动力过小而很难满足一般的工艺要求以 及二元醇与对苯二甲酸的投料摩尔比过高的缺陷。
附图说明 附图 1展示了本发明应用于一种间歇式反应釜的实施方案, 图 为装置的剖面结构示意图;
附图 2展示了本发明应用于一种填料式分离塔的实施方案, 图 为装置的剖面结构示意围。
具体实施方式 ,
下面将结合附图, 通过具体的实施方案对本发明作进一步的描 述。 应该理解的是本发明的范围并不局限于具体实施方案所描述 的特征。
由附图 1展示的实施方案可见, 该装置包括容器 1即反应釜和 外置的换热器 2, 换热器的进口和出口分别通过管道 3和 4与反应 釜连接。 反应釜为具有内外室的双室结构, 内室 5 位于釜底, 釜 中内室外部的连续空间为外室 6 , 内室顶部位于釜内高度的近 1 /2 处, 反应釜连接换热器进口的管道连接口 7 位于内室的底部, 与 内室相通; 反应釜连接换热器出口的管道连接口 8 位于釜下部的 釜侧壁, 与外室相通。
内室由一外筒 9和一内筒 10构成, 外筒和内筒同心地相套, 外筒和内筒两者的筒壁间存在空间以形成通道。 外筒下端敞开而 上端由封盖封闭, 它通过支架 11 固定于反应釜壁, 其下端高于釜 底。 内筒的上端敞开而下端封闭并固定于釜底, 内筒的上端高于 外筒的下端, 而低于外筒的封盖。 外筒壁与反应釜壁与反应釜壁 之间的空间、 外筒与反应釜底部之间的空间、 外筒壁与内筒壁之 间的空间依次构成一个截面为 ϋ 形的环形通道 12, 内室与外室通 过该环形通道相互连通。
内室的顶部与外室的上部之间有一连通管 13 , 连通管中带有 节流岡 14。 15是反应釜的进料口, 16是反应釜的出料口。
由附图 2展示的实施方案可见, 该装置包括容器 1即填料塔和 外置的换热器 1, 换热器的进口和出口分别通过管道 3和 4与填料 塔连接。 填料塔的填料以下部分为具有内外室的双室结构, 内室 5 位于塔底, 填料塔的填料以下及内室外部的连续空间为外室 6。 内 室的顶部位于塔底至填料底之间距离的近 1 /2 处。 填料塔连接换 热器进口的管道连接口 7 位于内室的底部, 与内室相通; 填料塔 连接换热器出口的管道连接口 8位于塔下部的塔壁, 与外室相通。
该实施方案内室的构造与附图 1展示的实施方案是相同的。 内 室的顶部与外室的上部之间有一连通管 1 3 , 连通管中带有节流阀 14。 15是填料塔的进料口, 16是填料塔的出料口。
实施例
酯化反应器由气相热媒加热的酯化加热器和反应釜用 ϋ型管串 接而成, 其中加热器为列管式, 反应釜为带夹套的圆柱形结构。 ΡΤΑ 和 EG 组成的原料浆料由物料喷嘴进入***, 与来自反应釜内室的 液相循环物料混合后进入外循环列管加热。 控制 EG和 PTA的摩尔 比为 1. 8 : 1。 物料经过加热器加热到 282 Ό, 反应生成水及其他 副产物 (如二甘醇等) 。 反应釜内液相上方设有足够的气相空间, 以避免雾沫夹带。 从加热器喷出的气液混合物在釜上方闪蒸分离 脱去水与乙二醇蒸汽, 并由气相管进入分离塔进行分离。
酯化反应温度设定为 282 °C, 反应压力为 160KPa (A), 物料在 反应器内的总停留时间约为 90min , 出口酯化率为 86. 9%左右, 齐 聚物聚合度 6 ~ 12。 具有 6 ~ 12个聚合度的齐聚物由酯化反应器流 出, 进入预缩聚塔下部的预缩聚加热器。
分离塔有 12 块导向筛板塔盘, 塔顶温度 111-116 °C , 蒸发出 的低沸物和水从分离塔顶部经气相管路进入塔顶冷凝器, 冷凝水 收集在水回流罐。 部分冷凝水经水回流泵返回第一块塔盘以控制 塔顶温度, 其余废水从回流罐溢出到工厂废水处理***。 塔底流 出的 EG经液位调节阀注入 PTA浆料调制罐。
进入酯化加热器的 PTA浆料由 PTA和 EG组成, 其中所用的精 对苯二甲酸 (PTA ) 购自厦门翔鹭化工有限公司, 乙二醇 (EG ) 购 自北京燕山石油化工有限公司。
酯化反应的工艺参数见表 1 : 表 1 酯化反应工艺参数
Figure imgf000010_0001
通过电位滴定法测定, 所得到的聚对苯二甲酸乙二醇酯中端羧 基含量为 < 25mo l / t。
与现有技术相比, 本发明在连续酯化反应装置中采用了无机械 搅拌、 无循环泵的双室双压外循环反应器, 因此在聚酯生产中获 得了有益效果, 具体是:
1. 产品质量高: 与现有技术相比, 具有反应温度低、 反应物 无返混、 反应停留时间短以及副产物少等优点。
2. 能耗显著降低: 与现有技术相比, 由于反应温度和原料摩 尔比均下降, 以及乙二醇循环回收处理量下降, 使能耗降低。
3. 生产成本低: 与现有技术相比, 由于原料单耗低、 能耗低、 投资成本低、 使综合生产成本显著下降。

Claims

权 利 要 求
1. 一种物料在容器与管道中循环流动的反应或分离装置, 该 装置包括容器 ( 1 ) 和外循环管道 (2 ) 3 其中容器为默室结构 5 在容器内设置内室, 容器中内室外部的连续空间形成外室, 内室 顶部位于容器顶部向下的连续空间内; 内室由一外筒和一内筒构 成, 外筒和内筒相套并且外筒与内筒筒壁之间存在空间; 外筒下 端敞开, 上端与外室的上部之间设置一带有节流阀的连通管道, 以便调节内外室的压力差, 外筒固定于容器壁或底部, 其下端高 于容器底部; 内筒的上端敞开, 下端通过出料口与外循环管道连 接, 内筒固定于容器底部, 其上端高于外筒的下端, 而低于外筒 的顶盖; 外筒壁与容器壁之间、 外筒下端与容器底部之间、 外筒 壁与内筒壁之间以及内筒内部的空间依次形成连续通道, 外循环 管道分别与容器底部连接而与内室相通和与容器下部侧壁连接而 与外室相通。
2. 根据权利要求 1 的反应或分离装置, 其中内室顶部位于容 器内高度的 1 /2以下。
3. 根据权利要求 2 的反应或分离装置, 其中内室顶部位于容 器内高度的 1 /5-1 /2。
4. 根据权利要求 1-3 之一的反应或分离装置, 其中外筒壁与 容器壁之间、 外筒下端与容器底部之间、 外筒壁与内筒壁之间以 及内筒内部的空间依次形成一个截面为正倒 ϋ形的连续环形通道。
5. 根据权利要求 4 的反应或分离装置, 其中在外循环管道中 安装有换热器。
6. 根据权利要求 4 的反应或分离装置, 其中容器、 外筒和内 筒的横截面均为圆形。
7. 根据权利要求 6 的反应或分离装置, 其中内筒直径与容器 直径之比为 1 : 1. 8-2. 5。
8. 根椐权利要求 1-3 之一的反应或分离装置, 其中所述容器 为选自填料塔、 塔板塔或反应釜的容器。
9. 根据权利要求 4 的反应或分离装置, 其中所述容器为选自 填料塔、 塔板塔或反应釜的容器。
10. 权利要求 1-4之一的反应或分离装置用作连续酯化反应装 置的用途。
11. 根据权利要求 10 的用途 5 其中所述酯化反庳为苯二甲酸 和二元醇的酯化反应。
12. 一种连续酯化方法, 该方法包括将液体反应物料供给权利 要求 1-4 之一的反应或分离装置, 在酯化反应条件下进行反应, 其中液体反应物料在装置中循环流动时在连续通道中产生液封, 而使内室与外室的气相空间隔离, 调整内室空间体积, 使内外室 产生足够的压力差, 从而形成物料循环流动的动力。
13. 根据权利要求 12 的方法, 其中所述液体反应物料为苯二 甲酸和二元醇。
14. 根据权利要求 13 的方法, 其中所述苯二甲酸选自对苯二 甲酸、 间苯二曱酸、 邻苯二曱酸。
15. 才艮据权利要求 13 的方法, 其中所述二元醇选自乙二醇、 丙二醇和丁二醇。
16. 根据权利要求 13 的方法, 其中二元醇与苯二甲酸的进料 摩尔比例为 1. 5-1. 9: 1。
17. 根据权利要求 12 的方法, 其中反应温度为 258- 290°C, 反应压力为 40-120 KPa。
PCT/CN2004/000006 2003-05-08 2004-01-02 Reacteur-separateur, et procede d'esterification en continue au moyen de cet appareil WO2004098760A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/556,042 US7708952B2 (en) 2003-05-08 2004-01-02 Device for reaction or separation and a continuous esterification process using the device
EGNA2005000700 EG24495A (en) 2003-05-08 2005-11-06 An apparatus for reaction or separation and continuous esterification method using the apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB031168116A CN1248777C (zh) 2003-05-08 2003-05-08 一种采用外循环加热的用于反应或分离的容器装置
CN03116811.6 2003-05-08

Publications (2)

Publication Number Publication Date
WO2004098760A1 true WO2004098760A1 (fr) 2004-11-18
WO2004098760A8 WO2004098760A8 (fr) 2005-01-06

Family

ID=33426289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2004/000006 WO2004098760A1 (fr) 2003-05-08 2004-01-02 Reacteur-separateur, et procede d'esterification en continue au moyen de cet appareil

Country Status (4)

Country Link
US (1) US7708952B2 (zh)
CN (1) CN1248777C (zh)
EG (1) EG24495A (zh)
WO (1) WO2004098760A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102093213A (zh) * 2010-12-13 2011-06-15 武汉工业学院 基于固体催化剂的酯化反应装置及酯化反应方法
CN105344263A (zh) * 2015-12-05 2016-02-24 重庆百齐居建材有限公司 泵送式分散机
CN111848395A (zh) * 2020-08-01 2020-10-30 山东齐鲁增塑剂股份有限公司 Doa和dbp加压生产工艺和设备

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8003059B2 (en) * 2009-05-18 2011-08-23 R3 Fusion, Inc. Continuous processing reactors and methods of using same
BRPI1013027A2 (pt) * 2009-05-18 2018-08-07 R3 Fusion Inc "reatores para processamento contínuo e métodos de utilizar os mesmos"
CN101665502B (zh) * 2009-09-24 2013-12-18 仙桃市格瑞化学工业有限公司 以液体卤代烃或卤代芳烃工业生产格氏试剂的设备***
CN102030769B (zh) * 2009-09-24 2014-12-17 仙桃市格瑞化学工业有限公司 以气态卤代烃工业生产格氏试剂的设备***
FR2960452B1 (fr) * 2010-05-31 2017-01-06 Corning Inc Dispositif formant microreacteur equipe de moyens de collecte et d'evacuation in situ du gaz forme et procede associe
CN106621513A (zh) * 2016-09-21 2017-05-10 北京化工大学 一种滤芯式分散过滤装置及用于制备无机材料的方法
CN108786668A (zh) * 2018-05-25 2018-11-13 广东省石油与精细化工研究院 一种醋酸丁酸纤维素的多功能合成反应釜及合成方法
US10937155B2 (en) * 2018-12-10 2021-03-02 General Electric Company Imaging system and method for generating a medical image
CN110449097A (zh) * 2019-08-16 2019-11-15 泰兴金江化学工业有限公司 一种用于醋酸丁酯反应釜的插管装置
CN113457186B (zh) * 2020-03-30 2022-10-04 中石油吉林化工工程有限公司 提高粗mma分离塔分离效果的方法
CN113735706A (zh) * 2020-05-29 2021-12-03 中国石油化工股份有限公司 一种用于固体二元酸单酯化的连续生产装置及其使用方法
CN113477166B (zh) * 2021-06-30 2022-08-30 桐昆集团股份有限公司 一种不停车更换浆料搅拌器减速箱的装置及工艺
CN115463566B (zh) * 2022-09-29 2023-09-26 上海蕙黔新材料科技有限公司 一种用于气相法羰基合成碳酸二甲酯的氧气混合器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487805A (en) * 1987-08-12 1989-03-31 Snecma Manufacture of vane row of stator guide vane of compressor or turbine and vane and vane row formed by said method
CN2254447Y (zh) * 1996-03-29 1997-05-21 山东淄博新华化工股份有限公司 体外循环式硫酸酯类酯化用反应装置
JPH11116536A (ja) * 1997-10-07 1999-04-27 Nippon Ester Co Ltd 連続エステル化反応装置
CN1255487A (zh) * 1998-09-22 2000-06-07 株式会社日本触媒 酯化产物的制备方法及其设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3884854A (en) * 1969-06-16 1975-05-20 M & T Chemicals Inc Process for preparing polyethylene terephthalate of improved color
SU360976A1 (ru) * 1970-09-28 1972-12-07 Библиотека
DE2314512C3 (de) * 1973-03-23 1980-10-09 Bayer Ag, 5090 Leverkusen Thermoplastische, nichtionische, in Wasser despergierbare im wesentlichen lineare Polyurethanelastomere
JPH1087805A (ja) 1996-09-13 1998-04-07 Nippon Ester Co Ltd 連続エステル化反応装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487805A (en) * 1987-08-12 1989-03-31 Snecma Manufacture of vane row of stator guide vane of compressor or turbine and vane and vane row formed by said method
CN2254447Y (zh) * 1996-03-29 1997-05-21 山东淄博新华化工股份有限公司 体外循环式硫酸酯类酯化用反应装置
JPH11116536A (ja) * 1997-10-07 1999-04-27 Nippon Ester Co Ltd 連続エステル化反応装置
CN1255487A (zh) * 1998-09-22 2000-06-07 株式会社日本触媒 酯化产物的制备方法及其设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102093213A (zh) * 2010-12-13 2011-06-15 武汉工业学院 基于固体催化剂的酯化反应装置及酯化反应方法
CN102093213B (zh) * 2010-12-13 2013-06-12 武汉工业学院 基于固体催化剂的酯化反应装置及酯化反应方法
CN105344263A (zh) * 2015-12-05 2016-02-24 重庆百齐居建材有限公司 泵送式分散机
CN111848395A (zh) * 2020-08-01 2020-10-30 山东齐鲁增塑剂股份有限公司 Doa和dbp加压生产工艺和设备

Also Published As

Publication number Publication date
CN1248777C (zh) 2006-04-05
US20070100126A1 (en) 2007-05-03
US7708952B2 (en) 2010-05-04
WO2004098760A8 (fr) 2005-01-06
EG24495A (en) 2009-08-16
CN1548223A (zh) 2004-11-24

Similar Documents

Publication Publication Date Title
US7431893B1 (en) Process and apparatus for continuous polycondensation
WO2004098760A1 (fr) Reacteur-separateur, et procede d&#39;esterification en continue au moyen de cet appareil
US7179433B2 (en) Production process and production apparatus for polybutylene terephthalate
US7259227B2 (en) Method for continuous production of high-molecular weight polyesters and device for implementation of the method
RU2465045C2 (ru) Система для производства сложного полиэфира, использующая реактор эстерификации без перемешивания
US4269805A (en) Reactor for the oxidation of alkyl aromatics with oxygen-containing gases in the liquid phase
US20070116615A1 (en) Tower reactor and use thereof for the continuous production of high molecular weight polyesters
CN101575284B (zh) 一种新的精间苯二甲酸的制造方法
US7649109B2 (en) Polyester production system employing recirculation of hot alcohol to esterification zone
US20080139780A1 (en) Polyester production system employing short residence time esterification
WO2007098638A1 (fr) Réacteur d&#39;estérification à circulation de puissance externe
JP2018513125A5 (zh)
CN101077907B (zh) 连续缩聚方法及设备
US20160010851A1 (en) Thermosiphon esterifier steam reuse
TWI526469B (zh) 使用熱膏狀物至酯化區之聚酯製造系統
JPH1192555A (ja) ポリエステルの製造方法及び製造装置
CN114984888B (zh) 一种生产增塑剂的连续酯化的循环反应器***
CN212524113U (zh) 一种外循环多级酯化反应器
JP3722138B2 (ja) 連続重縮合装置及び連続重縮合方法
KR0140015Y1 (ko) 폴리에스테르 중합장치
RU2397016C2 (ru) Реактор эстерификации циркуляционного типа
CN1491934A (zh) 由对苯二甲酸和乙二醇制备对苯二甲酸乙二醇酯的方法
JPH11116536A (ja) 連続エステル化反応装置
JPH08311207A (ja) 重縮合系高分子の連続製造装置及び方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

CFP Corrected version of a pamphlet front page

Free format text: UNDER (72, 75) REPLACE "WANG, SHAOPENG" BY"WANG, SHAOPENG" IN CHINESE/ ENGLISH CORRECT

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 4796/DELNP/2005

Country of ref document: IN

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 2007100126

Country of ref document: US

Ref document number: 10556042

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10556042

Country of ref document: US