WO2004092082A1 - SiO2-TiO2系ガラスの製造方法、SiO2-TiO2系ガラス及び露光装置 - Google Patents

SiO2-TiO2系ガラスの製造方法、SiO2-TiO2系ガラス及び露光装置 Download PDF

Info

Publication number
WO2004092082A1
WO2004092082A1 PCT/JP2004/005204 JP2004005204W WO2004092082A1 WO 2004092082 A1 WO2004092082 A1 WO 2004092082A1 JP 2004005204 W JP2004005204 W JP 2004005204W WO 2004092082 A1 WO2004092082 A1 WO 2004092082A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
based glass
crucible
powder
hydrogen
Prior art date
Application number
PCT/JP2004/005204
Other languages
English (en)
French (fr)
Inventor
Seishi Fujiwara
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2005505391A priority Critical patent/JPWO2004092082A1/ja
Publication of WO2004092082A1 publication Critical patent/WO2004092082A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1423Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/60Substrates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03B2201/42Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/40Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03C2201/42Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn containing titanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes

Definitions

  • SiO 2 - The method of producing TiO 2 system glass, SiO 2 -TiO 2 type glass and an exposure apparatus art
  • the present invention Si0 2 - Ti0 process for producing a 2 glass (quartz glass containing Ti0 2), relates to SiO 2 -Ti0 2 glass and an exposure apparatus.
  • an exposure apparatus called a stepper is used.
  • the optical system of this stepper is composed of an illumination optical system that uniformly illuminates a reticle on which a pattern is drawn by light from a light source, and an integrated circuit pattern formed on the reticle, which is reduced to 1/5, for example, to a wafer. And a projection optical system for projecting and transferring the image onto the top.
  • the pattern line width that can be exposed and transferred by an exposure device As is well known, the pattern line width that can be exposed and transferred by an exposure device
  • 2001-515977 discloses a method for producing a fused silica glass containing titania by flame hydrolysis, wherein a mixture of a silicic acid precursor and a titania precursor in a vapor form is flamed. is supplied to, the mixture to form a Si0 2 _Ti0 2 particles was passed through a flame, the particle element is described how to deposit glass of said particles into a furnace to form a melt solid glass body ing.
  • Li 2 0- A1 2 0 3 - Si0 2 system for glass-ceramics which is for low thermal expansion to generate fine crystals in the interior
  • the surface roughness of Ken Migakugo by hardness differences in the Matorittasu microcrystalline It has been pointed out that it is difficult to obtain the surface.
  • This disadvantage can be considered essential because the heterogeneous particles are dispersed in the matrix.
  • Si0 2 -Ti0 2 based glass which can be randomly distribution of elements for glass, although there is an advantage that said hard could component distribution, Si0 2 obtained by conventional production method - Ti0 2 system in the glass, Ti0 2 concentration distribution in the glass in the glass In addition to the visualization of the striae, there was a problem that sufficient surface roughness could not be obtained due to the striae.
  • the present invention has been made in view of such circumstances, and has an optical system such as an exposure apparatus mirror using a light source in various wavelength regions, preferably in the ultraviolet region of 200 nm or less, and more preferably in the extreme ultraviolet region of 50 nm or less. suitable for use in, striae sufficiently small and the variation of the thermal expansion coefficient is extremely small, the production of Si0 2 -Ti0 2 based glass capable you to achieve a high level of surface roughness after polishing method, Si0 2 - Ti0 2 system glass, it is an object to provide an exposure apparatus using a Si0 2 -Ti0 2 system glass child.
  • the present inventors have found that suitable for use in a semiconductor exposure apparatus using extreme ultraviolet as described above, the high-quality Si0 2 - Ti0 stably produced intensively studied how to the 2-based low thermal expansion glass was done.
  • Si0 2 - Ti0 2 system glass in a method of manufacturing the flame hydrolysis method, or jetting directly to PANA Si0 2 powder and Ti0 2 powder in the synthesis of (i) glass, or (ii ) by Rukoto be strictly controlled mixing condition and the supply state of the gaseous precursor gaseous precursor and TiO 2 of Si0 2 used in synthesizing the glass, that will be able to solve the above problems
  • high-quality Si 0 2 such as may be used in the semiconductor exposure apparatus - can now be produced stably Ti0 2 based low thermal expansion glass.
  • First Si0 2 of the present invention - Ti0 2 system manufacturing method of glass, Si0 2 - Ti0 2 based glass to a method of producing a flame pressurized water solution, Si0 2 gaseous precursor and Ti0 2 gas
  • the precursors are mixed in a turbulent state and supplied in a laminar flow from the central pipe of the wrench.Oxygen or an oxygen-containing gas and hydrogen or a hydrogen-containing gas are supplied from the surrounding pipes and burned. and the said Si0 2 gaseous precursor and Ti0 2 gaseous precursor, against the plate-shaped heat-resistant base or Ranaru target, deposition 'melt allowed to Si0 2 - Ti0 glass to obtain a 2 glass
  • First Si0 2 of the present invention in the Ti0 2 based method of manufacturing a glass, mixing the Si0 2 gaseous precursor and Ti0 2 gaseous precursor in a turbulent state.
  • the gaseous precursor of SiO 2 and the gaseous precursor of TiO 2 can be sufficiently stirred and mixed.
  • this mixture is blown out from the central pipe of the wrench, it is in a laminar flow state.
  • mixtures are by connexion heated to the flame, to be uniformly deposited ⁇ melted, resulting Si0 2 when depositing and melting the target - Pai0 occurrence of striae in 2 glass is sufficiently suppressed
  • the variation in the coefficient of thermal expansion becomes extremely small, and it is possible to achieve a high level of surface roughness after polishing.
  • Second Si0 2 of the present invention a method of manufacturing Ti0 2 based glass, Si0 2 - Ti0 2 system glass to a method of producing a flame pressurized water solution, a mixture of SiO 2 powder and TiO 2 powder, oxygen or supplied to the oxygen-containing combustion flame gas and hydrogen or a hydrogen-containing gas, heated the Si0 2 powder and Ti0 2 powder and depositing and melting allowed by the Si0 2 - Ti0 glass growth to obtain a 2 glass It is a method including.
  • the manufacturing process becomes very simple, Si0 obtained 2 - Ti0 occurrence of striae in the 2 system glass It is sufficiently suppressed and the variation in the coefficient of thermal expansion is extremely small, so that a high level of surface roughness can be achieved after polishing.
  • Second Si0 2 of the present invention - Ti0 In the method for producing a 2 glass, that (i) the Si0 2 powder size is, the diameter of the circumscribed sphere is sized to the range of 1 ⁇ 500nm preferred laid, also, (ii) the Ti0 2 powder size is preferably the diameter of the circumscribed sphere is sized to the range of L ⁇ 500nm.
  • the first and second Si0 2 of the present invention - Ti0 In the method for producing a 2 glass, before Symbol glass growth step, the Si0 2 - Ti0 temperature of the growth surface of 2 based glass 1% 0 ° C ⁇ is preferably 2 200 ° C.
  • first and second Si0 2 of the present invention - method of manufacturing a Ti0 2 system glass, the Si0 2
  • the side surface of the columnar glass is placed in contact with the bottom surface of the crucible.
  • the columnar glass is taken out of the crucible, and the periphery, upper and lower surfaces are ground.
  • the manufacturing method of the first and second Si0 2 _Ti0 2 glass of the present invention after the Si0 2 _Ti0 2 based glass, and held for 1 to 20 hours at a temperature between 700 ° C ⁇ 1200 ° C
  • the method further includes an annealing step of cooling at a temperature lowering rate of 1 to 20 ° C / hr up to 500 ° C.
  • the difference A CTE PK _ PK of the maximum value and the minimum value of thermal expansion coefficient in the direction perpendicular to the optical axis and the horizontal direction either direction 23ppb / K or less Since it is very small, it does not cause local thermal deformation and is suitable for use in optical systems for extreme ultraviolet exposure equipment.
  • the second SiO 2 —TiO 2 glass of the present invention has a root mean square of surface roughness of 0.23 nm or less after polishing using colloidal silicide force as an abrasive.
  • Second Si0 2 of the present invention - in the Ti0 2 based glass a very small surface roughness Therefore, it is suitable for use in an optical system for an extreme ultraviolet exposure apparatus. Incidentally, it is not possible to reduce the Ti0 2 If is unevenly distributed surface roughness, the second S i 0 2 -T i 0 less uneven distribution of T i 0 2 in 2 glass and vein of the present invention
  • the surface roughness described above is realized due to the low level of processing.
  • the first exposure apparatus of the present invention Si0 2 produced by the production method of the first or second Si0 2 _Ti0 2 glass of the present invention - because use Iteiru the Ti0 2 based glass as an optical member, The stria in the optical member is sufficiently small, the variation in the coefficient of thermal expansion is extremely small, and a high level of surface roughness is achieved. Therefore, the first exposure apparatus of the present invention achieves good exposure accuracy even when used as an extreme ultraviolet exposure apparatus.
  • the second exposure apparatus of the present invention, the first or the second Si0 2 of the present invention - are those used as Ti0 2 based glass optical member.
  • the second exposure apparatus of the present invention since the uses the first or second Si0 2 -Ti0 2 glass of the present invention as an optical member, variation in thermal expansion coefficient in the optical member is extremely small, Also, a high level of surface roughness has been achieved. Therefore, the second exposure apparatus of the present invention achieves good exposure accuracy even when used as an extreme ultraviolet exposure apparatus.
  • FIG. 1 is a schematic diagram of an optical system of an EUV exposure apparatus which is a preferred embodiment of the exposure apparatus of the present invention.
  • Method for producing S i0 2 -Ti0 2 glass of the present invention Departure First Si0 2 of light - Ti0 2 system manufacturing method of glass, Si0 2 - Ti0 2 system glass to a method of producing a flame hydrolysis method, Si0 2 gaseous precursor and Ti0 2 gaseous The precursor is mixed in a turbulent state and supplied in a laminar state from the central pipe of the parner, and oxygen or an oxygen-containing gas and hydrogen or a hydrogen-containing gas are supplied from the surrounding pipes and burned.
  • serial and Si0 2 gaseous precursor and Ti0 2 gaseous precursor against a target composed of a flat heat-resistant substrate, depositing ⁇ melt allowed to Si0 2 - the Ti0 2 based glass growth step to obtain a glass It is a method that includes.
  • Si0 The second gaseous precursors, SiCl "H 4 - n ( n is 0 to 4 integer), SiF 4, organic Ke I-containing compounds, and among these SiCl terms of ease and flow amount and the handling 4 is preferred.
  • Ti0 Examples of the gaseous precursor, TiCl 4, organic titanium compounds, and the like.
  • combustion sustaining gas from the standpoint of ease and flow amount and handling oxygen Is most preferred, but it is also possible to use a gas containing oxygen, for example, air, etc.
  • hydrogen is most preferred as the flammable gas, but methane, propane, or the like can be used as a gas other than hydrogen. is there.
  • the PANA used in the present invention Si0 2 gaseous precursor and Ti0 2 of a gas mixture of gaseous pre-precursor from the central tube, the tube of the surrounding and oxygen or oxygen-containing gas and hydrogen or hydrogen-containing gas What is necessary is just to be able to supply from.
  • a quintuple burner having an inner pipe diameter of 3.534 mm and an outer pipe diameter of 6.540 is preferably used.
  • the target used in the present invention may be any of flat form having a heat-resistant substrate, for example, S i C, alumina (A1 2 0 3), mullite Doo (A1 2 0 3 - MgO) heat resistance such as A flat disk-shaped target made of a material is preferably used.
  • the first Si0 2 -Ti0 2 based process for producing a glass of the present invention first, mixing the Si0 2 gaseous precursor and Ti0 2 gaseous precursor in a turbulent state. At that time, the resulting Si0 2 -. Ti0 proportion of Ti0 2 in the 2 based glass 6. 0 10. 0 wt% to become such a ratio It is preferable to mix the two gaseous precursors. By doing so, there is a tendency that a SiO 2 —TiO 2 glass having a very low coefficient of thermal expansion can be obtained.
  • a Reynolds number in the mixing portion where the two gaseous precursors are merged and mixed is 2400 or more, and the force S is preferably 2400 to 7000. It is particularly preferred that there is.
  • the Reynolds number is less than 2400, the two gaseous precursors will not be uniformly mixed, Si0 2 obtained - generating striae in the Ti0 2 based glass, variations in the thermal expansion coefficient, and the surface roughness after polishing is sufficiently Tend not to be reduced.
  • direction Ke is supplied to the target in a laminar flow state from the central tube of a gas mixture of the two gaseous precursors the PANA Oxygen or an oxygen-containing gas and hydrogen or a hydrogen-containing gas are supplied from the tubes around the tube and burned.
  • I connection hits the gaseous precursor heated Si0 2 and the Ti0 2 gaseous precursor the target, deposition ⁇ been brought melt Si0 2 - ⁇ 0 2 based glass is obtained.
  • the supply amount of hydrogen is preferably 100 to 200 slm, and the supply amount of hydrogen or the hydrogen-containing gas is preferably 200 to 400 slm.
  • the conditions for supplying the mixed gas of the two gaseous precursors in a laminar state are as follows: the Reynolds number in the parner part discharged from the central tube of the parner is preferably 600 or less, Is particularly preferred. When the Reynolds number exceeds 600, the two gaseous precursor is easily separated into layers, Si0 2 obtained - generating striae in the Ti0 2 based glass, variations in the thermal expansion coefficient, and the surface roughness after polishing It does not tend to be reduced sufficiently.
  • oxygen-containing gas and hydrogen or hydrogen-containing gas are also in a laminar flow state.
  • the mixture of both the gaseous precursor is uniformity improved more when deposition is heated
  • Te cowpea flame is Si0 2 - Ti0 occurrence of striae definitive 2 based glass, Variations in the coefficient of thermal expansion and surface roughness after polishing tend to be more reliably reduced.
  • the conditions for supplying the oxygen or oxygen-containing gas and the hydrogen or hydrogen-containing gas in a laminar flow state are as follows: the Reynolds number in the parner portion discharged from the outer tube of the parner is preferably 1500 or less, and 500 to Particularly preferred is 1500.
  • the temperature of the glass growth surface on which the mixture of the two gaseous precursors is heated by the flame and deposited on the target is preferably 1950 ° C to 2200 ° C.
  • the Kokodei cormorants glass growth surface, Si0 2 - Ti0 2 particles is that the surface to grow a glass.
  • the temperature of the surface is less than 1950 ° C, it tends to Si0 2 _Ti0 2 particles becomes difficult to vitrify.
  • Si0 2 - in Ti0 tendency 2 particles are hardly ⁇ catching volatilized.
  • a second Si0 2 of the present invention - is described Ti0 2 system manufacturing method of a glass.
  • Si0 The 2 powder, a diameter of the circumscribed sphere ranges become the size of l ⁇ 500nm is preferred.
  • Si0 2 powder the diameter of the circumscribed sphere is small such that it is less than l nm, Si0 2 - in Ti0 tendency 2 particles is less likely to be captured target 1, to.
  • S i0 2 powder the diameter of the circumscribed sphere is large exceeding 500 nm, tends to Si0 2 -Ti0 2 particles reactivity deteriorates is less likely to be formed.
  • Such SiO 2 powder may be obtained by hydrolysis or use of a halogenated silicon compound. Those obtained by a combustion reaction of a mechanical silicon compound are preferred. This makes it possible to obtain a Si0 2 powder very high purity (99.9% - ". 99%).
  • Ti0 The 2 powder, a diameter of the circumscribed sphere ranges become the size of l ⁇ 500nm is preferred.
  • Ti0 2 powder the diameter of the circumscribed sphere is small such that less than I nm, tends to Si0 2 -Ti0 2 particles is less likely to be trapped in the target.
  • T i0 2 powder the diameter of the circumscribed sphere is large exceeding 500 ml, tend to Si0 2 _Ti0 2 particles reactivity deteriorates it is less likely to be formed.
  • Such Ti0 2 powder obtained by the combustion reaction of hydrolysis or organic titanium compounds titanium halide compound. This makes it possible to obtain Ti02 powder with extremely high purity (99.9% to 99.99%).
  • the PANA used in the present invention a mixture of Si0 2 powder and Ti0 2 powder, acid Motomata may be any one which can be supplied to the combustion flame of the oxygen-containing gas and hydrogen or a hydrogen-containing gas.
  • the specific configuration thereof is not particularly limited, but, for example, a quartz tube triple-paner structure is preferably used.
  • the oxygen-containing gas and a hydrogen-containing gas body, the first Si0 2 of the present invention - is of Ti0 those used in the production method of 2 glass the same way.
  • a second Si0 2 of the present invention - in the Ti0 2 based method of manufacturing a glass first, mixing the Si0 2 powder and T i0 2 powder. At that time, the resulting Si0 2 -..
  • Ti0 rate which accounts for Ti0 2 in 2 based glass 6. 0 0 wt% to become such the arbitrariness preferred to mix the two powders in the ratio. By doing so, there is a tendency that can be thermal expansion coefficient to obtain a very low Si0 2 -Ti0 2 based glass.
  • the specific method of mixing the two powders is not particularly limited.
  • a mixing method using a planetary ball mill or the like is preferably used.
  • the mixture of the two powders is supplied into a combustion flame of oxygen or an oxygen-containing gas and hydrogen or a hydrogen-containing gas. And I connection, it heated the Si0 2 powder and Ti0 2 powder and the deposition 'Shi melted Because being Si0 2 _Ti0 2 based glass obtained.
  • the supply amount of Si0 2 powder supply amount of 10 to 25 g / min, Ti0 2 supply amount of the powder is 0. 5 ⁇ 3g / min, oxygen or oxygen-containing gas 100 ⁇ 200Slm, the hydrogen or hydrogen containing gas
  • the supply amount is preferably from 200 to 400 slm.
  • the specific method of supplying the mixture of the two powders into the combustion flame is not particularly limited.
  • the mixture of the two powders is supplied by mixing with oxygen or an oxygen-containing gas or hydrogen or a hydrogen-containing gas.
  • a method and a method of supplying a mixture of the two powders together with another carrier gas (an inert gas such as nitrogen or argon) into a combustion flame are preferably used.
  • the oxygen or the oxygen-containing gas and the hydrogen or the hydrogen-containing gas be supplied in a laminar flow state.
  • the both powder mixed compound is uniformity improved more when deposition is heated by the flame, striae in Si0 2 -Ti0 2 based glass obtained occurs, the thermal expansion coefficient Variations and surface roughness after polishing tend to be reduced more reliably.
  • the conditions for supplying the oxygen or oxygen-containing gas and the hydrogen or hydrogen-containing gas in a laminar flow state are as follows: the Reynolds number in the burner section released from the burner is preferably 1500 or less, and 500 to 1500. It is particularly preferred that there is.
  • the temperature of the glass growth surface on which the mixture of the two powders is heated and deposited by the flame is preferably 1950 ° C to 2200 ° C.
  • the glass growth surface here, Si 0 2 -Ti0 2 particles is that the surface to grow a glass. If the temperature of this surface is lower than 1950 ° C., the SiO 2 -TiO 2 particles tend to be less vitrified. Further, when the temperature of the surface is more than 2200 ° C, Si0 2 - Ti0 Ru tended to 2 particles becomes difficult volatilized captured.
  • S i0 2 - the TiO 2 particles The specific method of vitrification is not particularly limited.
  • S0 2 powder and TiO 2 powder are deposited and melted by applying them to a target made of a plate-shaped heat-resistant substrate together with a flame.
  • i0 and method for obtaining the 2 -TiO 2 type glass (ii) Si0 2 powder and Ti0 2 powder and the deposition is supplied into the furnace together with the flame ⁇ by allowed to melt Si0 2 _Ti0 method suitably to obtain a 2 glass Used.
  • the first and second Si0 2 of the present invention - Ti0 method for producing 2 based glass described is preferred homogenization step further comprises. That is, in the manufacturing method of the present invention, it is preferable to remove the striae and performing the S i 0 2 -T i 0 to 2 based glass further kneading homogenization. Such kneading homogenizing treatment, Si0 2 _Ti0 also dispersed as Ti0 2 was unevenly distributed in 2-based glass, the striae can be more reliably removed, variation in the thermal expansion coefficient ⁇ Pi polishing Later surface roughness tends to be more sufficiently reduced.
  • the following method is preferable. That is, the ends of the ingot are chucked, a flame is radiated from the side of the ingot to heat and soften, and the chucking portions at both ends are twisted in opposite directions. Make a lump. Further, as a method of such a kneading and homogenizing treatment, a method as described in Japanese Patent Application Laid-Open No. H08-33125 may be employed.
  • the Si0 2 _Ti0 2 based glass in the (a) cylindrical crucible installed in contact with the bottom surface of the crucible and placed in each crucible furnace. At this time, in the case of Si0 2 -Ti0 2 based glass obtained in the step (d), the side surface of the columnar glass is placed in contact with the bottom surface of the crucible.
  • Si0 2 - Ti0 dissolving 2 glass load pressure is strong point formed in one direction, and then dissolved before perpendicular direction by repeating the step of molding under a load Even if TiO 2 is unevenly distributed in the SiO 2 -TiO 2 system glass, it is dispersed, the striae are more reliably removed, and the variation in the coefficient of thermal expansion and the surface roughness after polishing are reduced more sufficiently. Tend to be.
  • S i 0 2 is less than 1700 ° C the heating temperature in the step of (b) - tends to be insufficient dissolution of Ti 0 2 based glass, while the glass component volatilizes exceeds 2000 ° C there is a possibility. If the cooling rate in the step (c) is less than 50 ° C / hr, the glass tends to be crystallized. Further, the grinding in the step (d) is performed because the components in the crucible may be dissolved in the glass and become impurities, and therefore, the region where such impurities may be contained (preferably The area within 5 from the surface) is removed. In addition, as a component of the crucible, CWMo or the like that can withstand high temperatures is preferable.
  • an annealing step which is preferably further included in the first and second methods for producing a SiO 2 -TiO 2 based glass of the present invention, will be described.
  • the Si0 2 - Ti0 2 system glass 700 ° C 1200 After 1 20 hour hold at a temperature between C, l 20 ° C / hr to 500 ° C It is preferable to cool at a temperature lowering rate.
  • the annealing in this good UNA heat treatment, Si0 2 -Ti0 be more reliably removed even internal strain is present in the 2 system glass, Ru tended to be prevented generation of a new distortion sufficiently.
  • Si0 2 of the present invention - is described Ti0 2 based glass. That, Si0 2 first of the present invention - Ti0 2 based glass, the difference ⁇ CTE PK _ p K of the maximum value of the thermal expansion coefficient in the direction perpendicular to the optical axis ⁇ Pi horizontal any direction and the minimum value 23ppb / K or less, 20 Those having ppb / K or less are more preferable.
  • the second Si0 2 of the present invention - Ti0 2 based glass are those surface roughness root square mean of after the polishing using colloidal silica force as a polishing agent is less than 0. 23 nm, Those having a diameter of 0.20 nm or less are more preferable.
  • Si0 2 _Ti0 2 glass of the present invention as described above are those which became for the first time obtained by the production method of the first and second SiO 2 _Ti0 2 glass of the invention described above.
  • the exposure apparatus of the present invention will be described. That is, the first exposure equipment of the present invention, the first or the second Si0 2 of the present invention - used as Ti0 2 based glass optical members - Ti0 2 based glass is the production by the manufacturing method Si0 2 Things.
  • the second exposure apparatus of the present invention, the first or the second Si0 2 of the present invention - are those used as Ti0 2 based glass optical member.
  • the striae of the optical member used are sufficiently small, the variation in the coefficient of thermal expansion is extremely small, and a high level of surface roughness is achieved. Even in such a case, good exposure accuracy is achieved.
  • optical members constituting an exposure apparatus of the present invention in particular the reflector, is 50% or more of the a light faculty member consisting of Si0 2 _Ti0 2 glass of the present invention.
  • FIG. 1 shows a schematic diagram of an optical system of an EUV exposure apparatus which is a preferred embodiment of the exposure apparatus of the present invention.
  • IR 1 to IR 4 are reflecting mirrors of the illumination optical system
  • PR 1 to PR 4 Is a reflecting mirror of the projection optical system.
  • W is a wafer
  • M is a mask.
  • the laser light emitted from the laser light source is converged on the target S, and EUV light (soft X-ray) is generated from the target S by a plasma phenomenon.
  • EUV light is reflected by the reflecting mirrors C and D, and enters the illumination optical system as parallel EUV light. Then, the light is sequentially reflected by the reflection mirrors IR1 to IR4 of the illumination optical system to illuminate the illumination area of the mask M.
  • EUV light reflected by the pattern formed on the mask M is sequentially reflected by the reflecting mirrors PR1 to PR4 of the projection optical system, and forms an image of the pattern on the wafer W surface.
  • Si0 2 of the present invention obtained by the production method of the present invention - Ti0 2 based glass, various wavelength regions, preferably 200 discussions following ultraviolet, more preferably of less extreme ultraviolet region 50mn source It is suitable for use in an optical system such as a mirror of an exposure apparatus to be used.
  • Example 3 in accordance with the method described in Example 1 of JP-A-8 3 3 3 3 1 2 5 No., the Si0 2 - the Ti0 2 based glass
  • the mixture was kneaded and homogenized. That is, the Si0 to Chiyakkingu both ends of 2 _Ti0 2 based glass (Ingo' g), causing twisting from the side of the ingot in each opposite direction together Chiyakkingu portions at both ends when the heating and softened by radiating flame, so'isuto motion While gradually approaching the heating section to form a lump. What has been kneaded and homogenized
  • Table 1 shows X that was not performed.
  • the heat treatment was performed on the SiO 2 —TiO 2 -based glass through the following steps. That is, the heat treatment including the following steps (a) to (d) was repeated the number of times shown in Table 1.
  • the atmosphere in the crucible was N 2 atm.
  • the crucible is heated to the heat treatment temperature shown in Table 1, Si0 2 - Ti0 2 based glass to obtain a cylindrical glass by its own weight deformation or weighted deformed in the direction of gravity ⁇ .
  • Example 1 2400 300 35.0 2.3 175 350 2100 ⁇ C 1750 3 11
  • Example 2 5000 200 23.5 1.6 155 350 2150 ⁇ W 1800 3 ⁇
  • Example 3 4500 250 29.0 2.0 100 200 2000 ⁇ Mo 1850 3 ⁇
  • Example 4 4000 500 58.5 3.9 180 400 2200 X------Example 5 6000 150 17.5 1.2 130 300 2050 ⁇ ----Example 6 6500 600 70.0 4.7 150 300 1950 XC 1950 3-one
  • Example 1 1100 ° C 5hr hold
  • Example 1 1 6000 150 17.5 1.2 130 300 2050 ⁇ --10 ° C / hr
  • T i 0 2 content For Si0 2 -Ti0 2 glass obtained in this way in Example 1 ⁇ 1 2, T i 0 2 content, the presence or absence of striae, the difference between the maximum value and the minimum value of the thermal expansion coefficient (A CTE PK — PK ), presence of bubbles and foreign substances, and surface roughness (RMS) were measured as follows. Table 2 shows the obtained results.
  • T i 0 2 content measured by X-ray microanalyzer (EP MA).
  • Bubble-Presence / absence of foreign matter Measured by the projection method (Japan Optical Glass Industry Association Standard: 12-1994, 13-1994).
  • Example 1 7.7 No 3 directions 22 Not detected 0.23
  • Example 2 8.0 No 3 directions 9 Not detected 0.18
  • Example 3 7.7 No 3 directions 10 Not detected 0.19
  • Example 4 7.9 No three directions 17 Not detected 0.2
  • Example 5 7.5 No three directions 11 Not detected 0.19
  • Example 6 7.6 No three directions 7 Not detected 0.21
  • Example 7 7.6 No three directions 20
  • Example 8 7.6 No 3 directions 6 Not detected 0.15
  • Example 9 8.0 No 3 directions 7 Not detected 0.16
  • Example 10 7.8 No 3 directions 15 Not detected 0.18
  • Example 11 7.4 No 3 directions 8 Not detected 0.17
  • Example 12 7.6 Three directions None 5 Not detected 0.18 As shown in Table 2, in each of the examples, no striae were observed in any of the three directions, and no bubbles or foreign substances were observed.
  • the difference between the maximum value and the minimum value of the coefficient of thermal expansion ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ was 22 ppb / K or less in each of the examples. Furthermore, in each of the examples, the force S for obtaining a surface roughness of 0.23 nm (RMS) or less was obtained.
  • the amount of oxygen and hydrogen was adjusted to be supplied from each pipe as shown in Table 3, and the combustion was adjusted and burned to cause flame hydrolysis, which was applied to a flat plate made of SiC (diameter: 150 mm). to obtain a Ti0 2 system glass - the Si0 2 deposition ⁇ and brought melt Te.
  • the temperature of the growth surface was as shown in Table 3.
  • Et al is, in Examples 1 third to two 6, wherein the material of the crucible, the atmosphere in the crucible, in the same manner as in Example 7 except that the heat treatment temperature and heat treatment times were as shown in Table 3 Si0 2 - Ti0 was subjected to a heat treatment to 2-based glass.
  • Examples 20 to 26 The SiO 2 —TiO 2 -based glass was annealed in the same manner as in Example 7 except that the annealing conditions were as shown in Table 3.
  • Example 2 7 As shown in Table 4, in each of the examples, no striae was observed in any of the three directions, and no bubbles or foreign substances were observed. Further, as shown in Table 4, the difference ⁇ ⁇ — ⁇ between the maximum value and the minimum value of the thermal expansion coefficient was 23 ppb / K or less in the examples of the deviation and the deviation. Further, in each of the examples, a surface roughness of 0.22 nm (RMS) or less could be obtained.
  • RMS surface roughness
  • Example 1 The same as in Example 7, except that the Reynolds number in the mixing part, the Reynolds number in the corner part, the various supply amounts, and the growth surface temperature were set as shown in Table 5, Si0 2- with a diameter of 210 mra and a thickness of 40 mm- Ti0 obtain a 2 glass (quartz glass) (Comparative example 1 to 1 0).
  • Si0 2 gaseous precursor and Ti0 2 gaseous precursor, Comparative Example 1, 3, 5 and 7 are in are mixed in a laminar flow state
  • Si0 2 gaseous precursor and Ti0 2 gaseous precursor, Comparative Example 1, 3, and the 5 and 7 PANA portion is released in a laminar flow state, Comparative Example 4, 6 and 8 to 1
  • Comparative Example 2 unlike the method of the present invention, two cavities for SiCl 4 , two cavities for TiCl 4 and two cavities for TiCl 4 were used at the same time to blow out from the burner in a turbulent state.
  • Comparative Example 7 to 0 was subjected to kneading homogenization processing on the Si0 2 -Ti0 2 based glass in the same manner as in Example 7. Further, in Comparative Examples 9 to 1 0, crucible material, the Si0 2 in the same manner as in Example 7 except that the heat treatment temperature and heat treatment times were as shown in Table 5 - facilities to heat treatment Ti0 2 based glass did. Then, in Comparative Example 1, 2 and 1 0, except that the Aniru conditions were as shown in Table 5 was facilities annealing process on the Si0 2 -Ti0 2 based glass in the same manner as in Example 7.
  • the present invention is used for an optical system such as an exposure apparatus mirror using a light source in various wavelength regions, preferably ultraviolet light having a wavelength of 200 nm or less, more preferably an extreme ultraviolet light region having a wavelength of 50 nm or less.
  • a light source in various wavelength regions, preferably ultraviolet light having a wavelength of 200 nm or less, more preferably an extreme ultraviolet light region having a wavelength of 50 nm or less.
  • suitable for striae sufficiently small and the variation of the thermal expansion coefficient is extremely small, achieving a high level of surface roughness after polishing is possible that Si0 2 - method of making a Ti0 2 system glass, Si0 2 - Ti0 2 based glass, and an exposure apparatus using the Si0 2 -Ti 0 2 based glass can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Compositions (AREA)

Abstract

 SiO2-TiO2系ガラスを火炎加水分解法により製造する方法であって、SiO2のガス状前駆体とTiO2のガス状前駆体を乱流状態で混合してバーナの中心管から層流状態で供給し、その周りの管から酸素又は酸素含有気体と水素又は水素含有気体とを供給して燃焼させ、加熱された前記SiO2のガス状前駆体とTiO2のガス状前駆体とを、平板状の耐熱性基体からなるターゲットに当てて、堆積・溶融せしめてSiO2-TiO2系ガラスを得るガラス成長工程を含む、SiO2-TiO2系ガラスの製造方法。

Description

明細
SiO 2 - TiO 2系ガラスの製造方法、 SiO 2 -TiO 2系ガラス及び露光装置 技術分野
本発明は、 Si02- Ti02系ガラス (Ti02を含有する石英ガラス)の製造方法、 SiO 2-Ti02系ガラス及び露光装置に関するものである。
背: 1:技術
シリ コン等のウェハ上に集積回路等の微細パターンを露光■転写する露光工程 においては、 ステツパと呼ばれる露光装置が用いられる。 このステツパの光学系 は、 光源からの光によりパターンが描かれたレチクル上を均一に照明する照明光 学系と、 レチクル上に形成された集積回路パターンを、 例えば 1 / 5に縮小して ゥェハ上に投影して転写する投影光学系とで構成されている。
露光装置により露光転写が可能なパターン線幅は、 周知のように投影光学系の
N Aに比例し、 露光転写に使用される光の波長に逆比例する。 よって、 パターン の微細化に伴って、 露光装置に使用される光の波長は短くなつており、 最近では 、 g線(436nm)から i線(365nm)、 さらには KrF (248nm)や ArF (193nm)エキシマレー ザへと短波長化が進められている。 VLSIの中で DMMを例に挙げれば、 LSIから VLS Iへ展開されて、 容量が増大して行くにつれ、 より微細な最小加工線幅が露光可 能な紫外線露光装置が要求されており、 それに伴い、 現在では F2レーザ(1571m) を光源とする露光装置の開発が行われている。
一方、 F2レーザを利用した露光装置で製造された集積回路パターンよりもさら に高集積化を図るため、 波長 13nmの極端紫外線 (extreme ultraviolet) を用いた 露光装置 (EUV露光装置)の開発も盛んに行われて!/、る。 この波長領域になると、 屈折光学系ではなく反射光学系が用いられ、 そのミラー部材には熱膨張係数の極 めて低い材料が要求されている。
上述したように、 極端紫外線を用いた露光装置では熱膨張係数の極めて低い材 料が求められている。 これは、 極端紫外線は波長が短く光子エネルギーが非常に 大きいため、 光学系に用いられるミラー部材が光の照射により上昇し、 部材自身 の熱変形が起こりやすくなるためである。 このようにミラ一部材自身が熱変形し てしまうと光路がゆがみ、 所望のパターンが得られなくなる。
このような要求を満たすものとされ、 極端紫外線用ミラ一部材に使用すること が検討されている材料として一般的に知られているものには、 Li20-Al 203-Si02 系ガラスセラミックス(Schott社: Zerodur:登録商標)や Si02- Ti02系ガラス(Cor ning社: ULE:登録商標)がある。 又、 このような Si02_Ti02系ガラスの製造方法 としては、 特表 200 1— 51 7597号公報及び特開 2002— 1 21035 号公報に示すものが公知となっている。 すなわち、 特表 2001— 51 7597 号公報には、 チタニアを含有する溶融シリカガラスを火炎加水分解により製造す る方法であって、 蒸気形態にあるシリ力前駆体及びチタニア前駆体の混合物を火 炎に供給し、 その混合物を火炎に通過させて Si02_Ti02粒子を形成させ、 その粒 子が溶融して固体ガラス体を形成する炉内に前記粒子を堆積 ·ガラス化させる方 法が記載されている。 又、 特開 2002— 1 2 1035号公報には、 主要成分と して Si02粉末、 Si02- Ti02粉末又は Ti02粉末、 二次的成分としてチタン含有成分を 含む 40%を上廻る相対圧粉密度を有する成形体を製造した後にその成形体を 焼結せしめる方法が記載されている。
発明の開示
このうち、 Li20- A1203- Si02系ガラスセラミックスは内部に微結晶を発生させ て低熱膨張を実現させているため、 マトリッタスと微結晶の硬度の違いにより研 磨後の表面粗さが出にくいという欠点が指摘されている。 マトリックス中に異成 分粒子を分散させているので、 この欠点は本質的なものと考えることができる。 これに対して Si02-Ti02系ガラスは、 ガラスであるため元素の分布をランダム にでき、 成分分布ができにくいと言った利点があるものの、 従来の製法によって 得られる Si02- Ti02系ガラスにおいては、 ガラス内の Ti02の濃度分布がガラス中 の脈理となつて視覚化されると共に、 その脈理が原因となつて十分な表面粗さが 出ないという問題があった。
本発明はこのような事情に鑑みてなされたもので、 種々の波長領域、 好ましく は 200nm以下の紫外線、 さらに好ましくは 50nm以下の極端紫外線領域の光源を使 用する露光装置ミラー等の光学系等に使用するのに適した、 脈理が十分に少なく かつ熱膨張係数のばらつきが極めて小さく、 研磨後に高水準の表面粗さを達成す ることが可能な Si02-Ti02系ガラスを製造する方法、 Si02 - Ti02系ガラス、及びこ の Si02-Ti02系ガラスを使用した露光装置を提供することを課題とする。
本発明者らは、 上述のような極端紫外線を使用した半導体露光装置に使用する のに好適な、 高品質の Si02- Ti02系低熱膨張ガラスを安定的に製造する方法につ いて鋭意研究を行った。 その結果、 Si02- Ti02系ガラスを火炎加水分解法により 製造する方法において、 (i)ガラスを合成する際に Si02粉末及び Ti02粉末を直接 的にパーナから噴出させるか、 或いは(ii)ガラスを合成する際に使用する Si02の ガス状前駆体と TiO 2のガス状前駆体との混合状態及び供給状態を厳密に制御す ることによって、 上記課題を解決できるようになることを見いだし、 本発明を完 成するに至った。 この結果、 上記半導体露光装置に使用できるような高品質な Si 02 - Ti02系低熱膨張ガラスを安定的に製造することができるようになった。
本発明の第 1の Si02 - Ti02系ガラスの製造方法は、 Si02- Ti02系ガラスを火炎加 水分解法により製造する方法であって、 Si02のガス状前駆体と Ti02のガス状前駆 体を乱流状態で混合してパーナの中心管から層流状態で供給し、 その周りの管か ら酸素又は酸素含有気体と水素又は水素含有気体とを供給して燃焼させ、 加熱さ れた前記 Si02のガス状前駆体と Ti02のガス状前駆体とを、平板状の耐熱性基体か らなるターゲットに当てて、 堆積 '溶融せしめて Si02- Ti02系ガラスを得るガラ ス成長工程を含む方法である。
本発明の第 1の Si02- Ti02系ガラスの製造方法においては、 Si02のガス状前駆 体と Ti02のガス状前駆体とを乱流状態で混合する。 乱流状態で混合することによ り、 Si02のガス状前駆体と Ti02のガス状前駆体を十分に攪拌'混合することがで きる。 一方、 この混合体をパーナの中心管から吹き出すときは層流状態としてい る。 これにより、 混合体が火炎によつて加熱され、 ターゲッ トに堆積 ·溶融する ときに均一に堆積■溶融されるため、 得られる Si02 - Π02系ガラスにおいて脈理 の発生が十分に抑制されかつ熱膨張係数のばらつきが極めて小さくなり、 研磨後 に高水準の表面粗さを達成することが可能となる。
本発明の第 2の Si02- Ti02系ガラスの製造方法は、 Si02- Ti02系ガラスを火炎加 水分解法により製造する方法であって、 SiO 2粉末と TiO 2粉末を混合し、 酸素又は 酸素含有気体と水素又は水素含有気体との燃焼火炎中に供給し、 加熱された前記 Si02粉末と Ti02粉末とを堆積 ·溶融せしめて Si02 - Ti02系ガラスを得るガラス成 長工程を含む方法である。
本発明の第 2の Si02_Ti02系ガラスの製造方法においては、 単に Si02粉末と Ti 02粉末とを混合し、 酸素又は酸素含有気体と水素又は水素含有気体との燃焼火炎 中に供給することで、 火炎加水分解法により Si02-Ti02系ガラスを製造すること ができるので、 製造工程が非常に簡単になると共に、 得られる Si02 - Ti02系ガラ スにおいて脈理の発生が十分に抑制されかつ熱膨張係数のばらつきが極めて小 さくなり、 研磨後に高水準の表面粗さを達成することが可能となる。
本発明の第 2の Si02- Ti02系ガラスの製造方法においては、 (i)前記 Si02粉末の 大きさが、 その外接球の直径が 1〜500nmの範囲となる大きさであることが好ま しく、 また、 (ii)前記 Ti02粉末の大きさが、 その外接球の直径が l〜500nmの範 囲となる大きさであることが好ましい。
また、 本発明の第 1及び第 2の Si02- Ti02系ガラスの製造方法においては、 前 記ガラス成長工程において、前記 Si02- Ti02系ガラスの成長面の温度が 1%0°C〜2 200°Cであることが好ましい。
さらに、 本発明の第 1及び第 2の Si02- Ti02系ガラスの製造方法は、 前記 Si02
-TiO ,系ガラスに混練り均質化を施して脈理を除去する均質化工程を更に含むこ とが好ましい。
さらに、 本発明の第 1及び第 2の Si02 - Ti02系ガラスの製造方法は、 前記 Si02 - Ti02系ガラスに、 以下の(a)から(d)の工程:
(a)筒形坩堝の中に Si02- Ti02系ガラスを当該坩堝の底面に接するように設置し て、 坩堝ごと炉内に静置する。 このとき、 (d)の工程で得られた Si02-Ti02系ガラ スの場合は、 柱状ガラスの側面が当該坩堝の底面に接するように設置する。
(b)前記坩堝内を 1700〜2000°Cに加熱し、 Si02- Ti02系ガラスを重力方向に自重変 形又は加重変形させて柱状ガラスにする。
(c)前記柱状ガラスを結晶化温度以下まで、 50°C/hr以上の冷却速度で降温した後 、 室温まで炉冷する。
( 前記柱状ガラスを坩堝から取り出し、 周囲 ·上下面を研削する。
を順次 3〜 5回繰り返し施す熱処理工程を更に含むことが好ましい。
さらに、 本発明の第 1及び第 2の Si02_Ti02系ガラスの製造方法は、 前記 Si02 _Ti02系ガラスを、 700°C〜1200°Cの間の温度に 1〜20時間保持した後、 500°Cま で 1〜20°C/hrの降温速度で冷却するァニーリング工程を更に含むことが好まし レ、。
本発明の第 1の Si02- Ti02系ガラスは、 光軸と垂直方向及び水平方向いずれの 方向においても熱膨張係数の最大値と最小値の差 A CTEP K_P Kが 23ppb/K以下のも のである。
本発明の第 1の Si02_Ti02系ガラスにおいては、 光軸と垂直方向及び水平方向 いずれの方向においても熱膨張係数の最大値と最小値の差 A CTEP K_ P Kが 23ppb/K 以下と非常に小さいので、 局部的な熱変形が起こらず、 極端紫外線露光装置用の 光学系に使用するのに適したものである。
また、 本発明の第 2の SiO 2 -TiO 2系ガラスは、 コロイダルシリ力を研磨剤とし て用いた研磨を行った後の表面粗さの根二乗平均が 0. 23nm以下のものである。 本発明の第 2の Si02- Ti02系ガラスにおいては、 表面粗さを非常に小さくする ことができるので、 極端紫外線露光装置用の光学系に使用するのに適したもので ある。 なお、 Ti02が偏在していると表面粗さを小さくすることができないので、 本発明の第 2の S i 02 -T i 02系ガラスにおいては T i 02の偏在が少なくかつ脈理が少 な ヽため上記の表面粗さが実現される。
本発明の第 1の露光装置は、 前記本発明の第 1又は第 2の Si02- Ti02系ガラス の製造方法によって製造された Si02- TiO 2系ガラスを光学部材として用いたもの である。
本発明の第 1の露光装置においては、 前記本発明の第 1又は第 2の Si02_Ti02 系ガラスの製造方法によって製造された Si02 - Ti02系ガラスを光学部材として用 いているので、 光学部材における脈理が十分に少なくかつ熱膨張係数のばらつき が極めて小さく、 高水準の表面粗さが達成されている。 そのため、 本発明の第 1 の露光装置は、 極端紫外線露光装置として用いた場合であっても良好な露光精度 が達成される。
また、 本発明の第 2の露光装置は、 前記本発明の第 1又は第 2の Si02- Ti02系 ガラスを光学部材として用いたものである。
本発明の第 2の露光装置においては、 前記本発明の第 1又は第 2の Si02-Ti02 系ガラスを光学部材として用いているので、 光学部材における熱膨張係数のばら つきが極めて小さく、 また、 高水準の表面粗さが達成されている。 そのため、 本 発明の第 2の露光装置は、 極端紫外線露光装置として用いた場合であっても良好 な露光精度が達成される。
図面の簡単な説明
図 1は、 本発明の露光装置の好適な一実施形態である E U V露光装置の光学系 の概要図である。
発明を実施するための最良の形態
以下、 本発明をその好適な実施形態に即して詳細に説明する。
先ず、 本発明の第 ].の S i02-Ti02系ガラスの製造方法について説明する。 本発 明の第 1の Si02 - Ti02系ガラスの製造方法は、 Si02- Ti02系ガラスを火炎加水分解 法により製造する方法であって、 Si02のガス状前駆体と Ti02のガス状前駆体を乱 流状態で混合してパーナの中心管から層流状態で供給し、 その周りの管から酸素 又は酸素含有気体と水素又は水素含有気体とを供給して燃焼させ、 加熱された前 記 Si02のガス状前駆体と Ti02のガス状前駆体とを、平板状の耐熱性基体からなる ターゲットに当てて、 堆積■溶融せしめて Si02- Ti02系ガラスを得るガラス成長 工程を含む方法である。
Si02のガス状前駆体としては、 SiCl„H4n ( nは 0 4の整数) 、 SiF4、 有機ケ ィ素化合物等が挙げられ、 中でも取り扱いのし易さと流通量という観点から SiCl 4が好ましい。 また、 Ti02のガス状前駆体としては、 TiCl 4、 有機チタン化合物等 が挙げられ、.中でも取り扱いのし易さと流通量という観点から TiCl 4が好ましい 支燃性気体としては酸素が最も好ましいが、 酸素を含有する気体、 例えば空気 でも用いることが可能である。 また、 可燃性気体としては水素が最も好ましいが 、 水素以外の気体としてはメタンやプロパン等を用いることも可能である。
本発明において用いるパーナとしては、 Si02のガス状前駆体と Ti02のガス状前 駆体との混合ガスを中心管から、 酸素又は酸素含有気体と水素又は水素含有気体 とをその周りの管から供給できるものであればよい。 その具体的な構成は特に制 限されないが、 例えば、 内管径が 3. 5 34mm、 外管径が 6. 5 40 である 5重管バ ーナが好適に用いられる。
本発明において用いるターゲットとしては、 耐熱性基体からなる平板状のもの であればよく、 例えば、 S i C、 アルミナ (A1203)、 ムライ ト(A1203- MgO)等の耐熱 性材料からなる平板円盤状のターゲットが好適に用いられる。
本発明の第 1の Si02-Ti02系ガラスの製造方法においては、 先ず、 Si02のガス 状前駆体と Ti02のガス状前駆体とを乱流状態で混合する。 その際、 得られる Si02 - Ti02系ガラスにおける Ti02の占める割合が 6. 0 10. 0 wt. %となるような割合 で前記両ガス状前駆体を混合することが好ましい。 このようにすることにより、 熱膨張率が極めて低い SiO 2 -TiO 2系ガラスを得ることができる傾向にある。
また、 前記両ガス状前駆体を乱流状態で混合する条件としては、 両ガス状前駆 体が合流して混合される混合部におけるレイノルズ数が 2400以上であること力 S 好ましく、 2400〜7000であることが特に好ましい。 レイノルズ数が 2400未満では 、 前記両ガス状前駆体が均一に混合されなくなり、 得られる Si02 - Ti02系ガラス における脈理の発生、 熱膨張係数のばらつき、 及び研磨後の表面粗さが十分に低 減されない傾向にある。
次に、 本発明の第 1の Si02_Ti02系ガラスの製造方法においては、 前記両ガス 状前駆体の混合ガスが前記パーナの中心管から層流状態で前記ターゲットに向 けて供給し、 その周りの管から酸素又は酸素含有気体と水素又は水素含有気体と を供給して燃焼させる。 それによつて、 加熱された Si02のガス状前駆体と Ti02の ガス状前駆体とが前記ターゲットに当たり、 堆積■溶融せしめられて Si02 - Π02 系ガラスが得られる。
その際、 Si02のガス状前駆体の供給量は 17. 5〜70. 0g/min、 Ti02のガス状前駆 体の供給量は l〜5g/min、 酸素又は酸素含有気体の供給量は 100〜200slm、 水素又 は水素含有気体の供給量は 200〜400slmであることが好ましい。 このようにする ことにより、 得られる Si02 - Ti02系ガラスにおける脈理の発生、 熱膨張係数のば らつき、 及び研磨後の表面粗さがより十分に低減される傾向にある。
また、 前記両ガス状前駆体の混合ガスを層流状態で供給する条件としては、 前 記パーナの中心管から放出されるパーナ部におけるレイノルズ数が 600以下であ ることが好ましく、 100〜600であることが特に好ましい。 レイノルズ数が 600を 超えると、 前記両ガス状前駆体が分層し易くなり、 得られる Si02- Ti02系ガラス における脈理の発生、 熱膨張係数のばらつき、 及び研磨後の表面粗さが十分に低 減されない傾向にある。
さらに、 前記パーナの周りの管から前記ターゲットに向けて供給される酸素又 は酸素含有気体並びに水素又は水素含有気体も層流状態となっていることが好 ましい。 このようにすることにより、 前記両ガス状前駆体の混合物が火炎によつ て加熱されて堆積する際の均一性がより向上し、 られる Si02- Ti02系ガラスに おける脈理の発生、 熱膨張係数のばらつき、 及び研磨後の表面粗さがより確実に 低減される傾向にある。 前記の酸素又は酸素含有気体と水素又は水素含有気体と を層流状態で供給する条件としては、 前記パーナの外管から放出されるパーナ部 におけるレイノルズ数が 1500以下であることが好ましく、 500〜1500であること が特に好ましい。
また、 前記両ガス状前駆体の混合物が火炎によって加熱されてターゲット上に 堆積するガラス成長面の温度は 1950°C〜2200°Cであることが好ましい。 ここでい うガラス成長面とは、 Si02 - Ti02粒子がガラスとなって成長する面のことである 。 この面の温度が 1950°C未満であると、 Si02_Ti02粒子がガラス化しづらくなる 傾向にある。 又、 この面の温度が 2200°Cを超えると、 Si02 - Ti02粒子が揮発し捕 捉しづらくなる傾向にある。
次に、 本発明の第 2の Si02 - Ti02系ガラスの製造方法について説明する。 本発 明の第 2の Si02_Ti02系ガラスの製造方法は、 Si02_Ti02系ガラスを火炎加水分解 法により製造する方法であって、 Si02粉末と Ti02粉末を混合し、 酸素又は酸素含 有気体と水素又は水素含有気体との燃焼火炎中に供給し、 加熱された前記 SiO 2粉 末と Ti02粉末とを堆積■溶融せしめて Si02 - Ti02系ガラスを得るガラス成長工程 を含む方法である。
Si02粉末としては、 その外接球の直径が l〜500nmの範囲となる大きさのもの が好ましい。 Si02粉末が、 その外接球の直径が l nm未満であるような小さなもの であると、 Si02- Ti02粒子がターゲッ 1、に捕捉されにくくなる傾向にある。 又、 S i02粉末が、 その外接球の直径が 500nmを超えるような大きなものであると、 反応 性が悪くなって Si02-Ti02粒子が形成されにくくなる傾向にある。
このような SiO 2粉朱としては、 ハロゲン化ケィ素化合物の加水分解もしくは有 機ケィ素化合物の燃焼反応により得たものが好ましい。 これにより、 極めて高純 度 (99. 9%〜". 99%) の Si02粉末を得ることができる。
Ti02粉末としては、 その外接球の直径が l〜500nmの範囲となる大きさのもの が好ましい。 Ti02粉末が、 その外接球の直径が I nm未満であるような小さなもの であると、 Si02-Ti02粒子がターゲットに捕捉されにくくなる傾向にある。 又、 T i02粉末が、 その外接球の直径が 500M1を超えるような大きなものであると、 反応 性が悪くなって Si02_Ti02粒子が形成されにくくなる傾向にある。
このような Ti02粉末としては、 ハロゲン化チタン化合物の加水分解もしくは有 機チタン化合物の燃焼反応により得たものが好ましい。 これにより、 極めて高純 度 (99. 9%〜99. 99%) の Ti02粉末を得ることができる。
本発明において用いるパーナとしては、 Si02粉末と Ti02粉末との混合物を、 酸 素又は酸素含有気体と水素又は水素含有気体との燃焼火炎中に供給できるもの であればよい。 その具体的な構成は特に制限されないが、 例えば、 石英ガラス製 の 3重管構造のパーナが好適に用いられる。 なお、 酸素含有気体及び水素含有気 体は、 本発明の第 1の Si02- Ti02系ガラスの製造方法において使用するものと同 様のものである。 - 本発明の第 2の Si02- Ti02系ガラスの製造方法においては、 先ず、 Si02粉末と T i02粉末とを混合する。 その際、得られる Si02- Ti02系ガラスにおける Ti02の占め る割合が 6. 0〜10. 0 wt. %となるような割合で前記両粉末を混合することが好ま しい。 このようにすることにより、 熱膨張率が極めて低い Si02-Ti02系ガラスを 得ることができる傾向にある。
また、 前記両粉末を混合する具体的な方法は、 特に制限されないが、 例えば、 遊星型ボールミル等を用いた混合方法が好適に用いられる。
次に、 本発明の第 2の Si02_Ti02系ガラスの製造方法においては、 前記両粉末 の混合物を、 酸素又は酸素含有気体と水素又は水素含有気体との燃焼火炎中に供 給する。 それによつて、 加熱された前記 Si02粉末と Ti02粉末とが堆積'溶融せし められて Si02_Ti02系ガラスが得られる。
その際、 Si02粉末の供給量は 10〜25g/min、 Ti02粉末の供給量は 0. 5〜3g/min、 酸素又は酸素含有気体の供給量は 100〜200slm、 水素又は水素含有気体の供給量 は 200〜400slmであることが好ましい。 このようにすることにより、 得られる SiO 2-Ti02系ガラスにおける脈理の発生、 熱膨張係数のばらつき、 及び研磨後の表面 粗さがより十分に低減される傾向にある。
前記両粉末の混合物を燃焼火炎中に供給する具体的な方法は、 特に制限されな いが、 例えば、 前記両粉末の混合物を酸素又は酸素含有気体或いは水素又は水素 含有気体に混合して供給する方法や、 前記両粉末の混合物を他のキヤリャガス ( 窒素、 アルゴン等の不活性ガス) と共に燃焼火炎中に供給する方法が好適に用い ら る。
また、 前記の酸素又は酸素含有気体並びに水素又は水素含有気体が層流状態と なって供給されることが好ましい。 このようにすることにより、 前記両粉末の混 合物が火炎によって加熱されて堆積する際の均一性がより向上し、 得られる Si02 -Ti02系ガラスにおける脈理の発生、 熱膨張係数のばらつき、 及び研磨後の表面 粗さがより確実に低減される傾向にある。 前記の酸素又は酸素含有気体と水素又 は水素含有気体とを層流状態で供給する条件としては、 前記パーナから放出され るバーナ部におけるレイノルズ数が 1500以下であることが好ましく、 500〜1500 であることが特に好ましい。
また、 前記両粉末の混合物が火炎によって加熱されて堆積するガラス成長面の 温度は 1950°C〜2200°Cであることが好ましい。 ここでいうガラス成長面とは、 Si 02-Ti02粒子がガラスとなって成長する面のことである。 この面の温度が 1950°C 未満であると、 Si02 - Ti02粒子がガラス化しづらくなる傾向にある。 又、 この面 の温度が 2200°Cを超えると、 Si02- Ti02粒子が揮発し捕捉しづらくなる傾向にあ る。
なお、本発明の第 2の Si02_Ti02系ガラスの製造方法において S i02 - TiO 2粒子を ガラス化する具体的な方法は、 特に制限されないが、 例えば、 (i) Si02粉末と TiO 2粉末とを火炎と共に平板状の耐熱性基体からなるターゲットに当てて堆積■溶 融せしめることによって S i02 -TiO 2系ガラスを得る方法や、 (ii) Si02粉末と Ti02 粉末とを火炎と共に炉内に供給して堆積■溶融せしめることによって Si02_Ti02 系ガラスを得る方法が好適に用いられる。
次に、 本発明の第 1及び第 2の Si02- Ti02系ガラスの製造方法が更に含むこと が好ましい均質化工程について説明する。 すなわち、 本発明の製造方法において は、 前記 S i 02 -T i 02系ガラスに更に混練り均質化を施して脈理を除去することが 好ましい。 このような混練り均質化処理により、 Si02_Ti02系ガラス中に Ti02が 偏在していたとしても分散され、 脈理がより確実に除去されると共に、 熱膨張係 数のばらつき及ぴ研磨後の表面粗さがより十分に低減される傾向にある。
このような混練り均質化処理の方法としては、 以下のような方法が好ましい。 すなわち、 インゴットの両端をチヤッキングし、 ィンゴットの側面から火炎を放 射して加熱■軟化させると共に両端のチヤッキング部を各々逆方向にねじれさせ る、 いわゆるツイスト運動をさせながら加熱部に徐々に近づけて塊状にする。 ま た、 このような混練り均質化処理の方法として、 特開平 8— 3 3 3 1 2 5号公報 に記載のような方法を採用してもよい。
次に、 本発明の第 1及び第 2の Si02- Ti02系ガラスの製造方法が更に含むこと が好ましい熱処理工程について説明する。 すなわち、 本発明の製造方法において は、 前記 Si02-Ti02系ガラスに、 以下の(a)から(d)の工程:
(a)筒形坩堝の中に Si02_Ti02系ガラスを当該坩堝の底面に接するように設置し て、 坩堝ごと炉内に静置する。 このとき、 (d)の工程で得られた Si02-Ti02系ガラ スの場合は、 柱状ガラスの側面が当該坩堝の底面に接するように設置する。
(b)前記坩堝内を 1700〜2000°Cに加熱し、 Si02- Ti02系ガラスを重力方向に自重変 形又は加重変形させて柱状ガラス (筒状ガラス) にする。
(c)前記柱状ガラスを結晶化温度以下まで、 50°C/hr以上の冷却速度で降温した後 、 室温まで炉冷する。
(d)前記柱状ガラスを坩堝から取り出し、 周囲 ·上下面を研削する。
を順次 3 5回繰り返し施すことが好ましい。
このような熱処理において、 Si02- Ti02系ガラスを溶解して一方向に荷重を加 えて成形し、 次に溶解して前と直角な方向に荷重を加えて成形するという工程を 繰り返すことにより、 SiO 2 - TiO 2系ガラス中に TiO 2が偏在していたとしても分散 され、 脈理がより確実に除去されると共に、 熱膨張係数のばらつき及び研磨後の 表面粗さがより十分に低減される傾向にある。
なお、 (b)の工程における加熱温度を 1700°C未満では S i 02 - Ti 02系ガラスの溶解 が不十分となる傾向にあり、 他方、 2000°Cを超えるとガラス成分が揮発する可能 性がある。 また、 (c)の工程における冷却速度が 50°C/hr未満であると、 ガラスが 結晶化する恐れが生じ易くなる傾向にある。 さらに、 (d)の工程において研削を 行っているのは、 坩堝中の成分がガラス中に溶け出して不純物となることがある ので、 このような不純物が含まれる可能性がある領域 (好ましくは表面から 5 以内の領域) を除去するためである。 なお、 坩堝の成分としては、 高温に耐える ものである C W M o等が好ましい。
次に、 本発明の第 1及び第 2の Si02- Ti02系ガラスの製造方法が更に含むこと が好ましいアニーリング工程について説明する。 すなわち、 本発明の製造方法に おいては、 前記 Si02- Ti02系ガラスを、 700°C 1200 Cの間の温度に 1 20時間保 持した後、 500°Cまで l 20°C/hrの降温速度で冷却することが好ましい。 このよ うな熱処理における焼鈍により、 Si02-Ti02系ガラス中に内部歪みが存在してい たとしてもより確実に除去され、 新たな歪みの発生も十分に防止される傾向にあ る。
次に、 本発明の Si02- Ti02系ガラスについて説明する。 すなわち、 本発明の第 1の Si02- Ti02系ガラスは、 光軸と垂直方向及ぴ水平方向いずれの方向において も熱膨張係数の最大値と最小値の差 Δ CTE P K _ p Kが 23ppb/K以下のものであり、 20 ppb/K以下のものがより好ましい。 また、 本発明の第 2の Si02- Ti02系ガラスは、 コロイダルシリ力を研磨剤として用いた研磨を行った後の表面粗さの根二乗平 均が 0. 23nm以下のものであり、 0. 20nm以下のものがより好ましい。 さらに、 本発 明の Si02- Ti02系ガラスは、上記本発明の第 1及び第 2の Si02- Ti02系ガラスの特 性を両方備えていることが好ましい。 このような本発明の Si02- Ti02系ガラスに おいては、 脈理の発生、 熱膨張係数のばらつき、 及び研磨後の表面粗さがより - 1 分に低減されている。
このような本発明の Si02_Ti02系ガラスは、前述の本発明の第 1及び第 2の SiO 2_Ti02系ガラスの製造方法によって初めて得られるようになったものである。か かる本発明の Si02- Ti02系ガラスにおける Ti02の占める割合は、 6. 0〜10. 0 wt.
%であることが好ましい。 このようにすることにより、 Si02 - Ti02系ガラスの熱 膨張率が極めて低減される傾向にある。
次に、 本発明の露光装置について説明する。 すなわち、 本発明の第 1の露光装 置は、 前記本発明の第 1又は第 2の Si02- Ti02系ガラスの製造方法によって製造 された Si02- Ti02系ガラスを光学部材として用いたものである。 また、 本発明の 第 2の露光装置は、 前記本発明の第 1又は第 2の Si02- Ti02系ガラスを光学部材 として用いたものである。 このような本発明の露光装置においては、 用いる光学 部材における脈理が十分に少なくかつ熱膨張係数のばらつきが極めて小さく、 高 水準の表面粗さが達成されているため、 極端紫外線露光装置として用いた場合で あっても良好な露光精度が達成される。
このような本発明の露光装置の具体的な構成は、 特に制限されないが、 例えば 以下に説明するものが挙げられる。 なお、 本発明の露光装置を構成する光学部材 、 特に反射鏡、 のうちの 50%以上が前記本発明の Si02_Ti02系ガラスからなる光 学部材であることが好ましい。
図 1に、 本発明の露光装置の好適な一実施形態である E U V露光装置の光学系 の概要図を示す。 I R 1〜 I R 4は照明光学系の反射鏡であり、 P R 1〜P R 4 は投影光学系の反射鏡である。 また、 Wはウェハ、 Mはマスクである。
レーザ光源しから照射されたレーザ光は、 ターゲット Sに集光され、 プラズマ 現象により、 ターゲット Sから EUV光 (軟 X線) を発生させる。 この EUV光 は、 反射鏡 C、 Dにより反射され、 平行な EUV光として照明光学系に入射する 。 そして、 照明光学系の反射鏡 I R 1〜 I R 4により順次反射され、 マスク Mの 照明領域を照明する。 マスク Mに形成されたパターンによつて反射された E U V 光は、 投影光学系の反射鏡 PR 1〜PR 4によって順次反射され、 パターンの像 をウェハ W面に結像する。 この実施の形態においては、 反射鏡 I R 1〜 I R4、 PR 1〜PR4として、 本発明の Si02-Ti02系ガラスを基材とし、 その上に多層 膜を成膜したものを使用しているので、 反射鏡の熱膨張率が小さく、 熱変形の発 生も十分に防止されるため、 極端紫外線を用いているにも拘らず露光転写精度の 良いものとすることができる。 このように、 本発明の製造方法により得られた本 発明の Si02- Ti02系ガラスは、 種々の波長領域、 好ましくは 200議以下の紫外線、 さらに好ましくは 50mn以下の極端紫外線領域の光源を使用する露光装置のミラ 一等の光学系に使用するのに適している。
[実施例]
以下、 実施例及び比較例に基づいて本発明をより具体的に説明するが、 本発明 は以下の実施例に限定されるものではない。
実施例 1〜 1 2
以下に示す石英ガラス製の 5重管パーナを用いて、 表 1に示すような条件で、 径 210隱厚さ 40瞧の Si02- Ti02系ガラス (石英ガラス) を得た (実施例 1〜 1 2 ) 。 すなわち、 Si02のガス状前駆体として SiCl4を、 Ti02のガス状前駆体として Ti Cl4を使用し、 これらを表 1に示すようにレイノルズ数が 2400以上の乱流状態で 混合した後、 5重管パーナの最内管 (1重管) より、 レイノルズ数が 600以下の 層流状態で表 1に示す供給量となるように放出させた。 また、 その外側の管 (2 重管) より 02を、 更に外側の管 (3重管) より H2を、 更に外側の管 (4重管) より 0 2を、 更に外側の管 (5重管) より H 2を、 それぞれ放出させた。 その際、 酸素と水素が表 1に示す供給量となるように各管からの放出量を調整して燃焼 させ、 その熱により、 Si02のガス状前駆体と Ti02のガス状前駆体に火炎加水分解 を起こさせ、 Si Cからなる平板 (直径: 150mm) に当てて堆積 '溶融せしめて前 記 Si02- Ti02系ガラスを得た。 なお、 成長面の温度は、 表 1に示すような温度と した。
( 5重管パーナ)
内径 外径 (mm)
4. 5 7. 5 原料
9. 6 11. 6 o 2
14. 4 16. 4 H 2
4重管 19. 6 21. 3 o 2
24. 5 26. 9 Hゥ _
その後、 実施例 3、 5、 7 9及び 1 1においては、 特開平 8— 3 3 3 1 2 5号公報の実施例 1に記載の方法に準拠して、 前記 Si02- Ti02系ガラスに混練 り均質化処理を施した。 すなわち、 前記 Si02_Ti02系ガラス (インゴッ ト) の両 端をチヤッキングし、 インゴットの側面から火炎を放射して加熱 ·軟化させると 共に両端のチヤッキング部を各々逆方向にねじれさせる、 いわゆるッイスト運動 をさせながら加熱部に徐々に近づけて塊状にした。 混練り均質化を行つたものを
〇、 行わなかったものを Xとして表 1に示す。
さらに、 実施例 1〜3、 6〜9及び 1 2においては、 以下に示すような工程に より、 前記 Si02_Ti02系ガラスに熱処理を施した。 すなわち、 以下の(a)から(d) の工程からなる熱処理を表 1に示す回数繰り返した。 なお、 坩堝中の雰囲気は、 N 2 l atmとした。
(a)表 1に示す材質からなる筒形坩堝 (内径: 200 の中に Si02- Ti02系ガラス を当該坩堝の底面に接するように設置して、 坩堝に蓋をした上で、 坩堝ごと炉内 に静置した。 このとき、 (d)の工程で得られた Si02 - Ti02系ガラスの場合は、 円柱 状ガラスの側面が当該坩堝の底面に接するように設置した。
(b)前記坩堝内を表 1に示す熱処理温度に加熱し、 Si02- Ti02系ガラスを重力方向 ■ に自重変形又は加重変形させて円柱状ガラスを得た。
(c)前記円柱状ガラスを結晶化温度以下の温度まで、 50°C/hr以上の冷却速度で降 温した後、 室温まで炉冷した。
(d)前記円柱状ガラスを坩堝から取り出し、 周囲及び上下面を研削した。
その後、 実施例 7〜1 2においては、 以下に示す方法によって前記 Si02- Ti02 系ガラスにアニーリング処理を施した。 すなわち、 前記 Si02- Ti02系ガラスを表 1に示す温度に同表に示す時間保持した後、 5 0 0 °Cまで同表に示す降温速度で 冷却した。
レイノルズ数 レイノルズ数 SiCI4供給量 TiGI4供給量酸素供給量水素供給量 成長面 混練り 熱処理 熱処理
坩堝 ァニール条件
(混合部) (パーナ部) [ g/min ] [ g/min ] [ slm ] [ slm ] Cコ均質化 概度 [。し] 回数
実施例 1 2400 300 35.0 2.3 175 350 2100 〇 C 1750 3 一一 実施例 2 5000 200 23.5 1.6 155 350 2150 〇 W 1800 3 ― 実施例 3 4500 250 29.0 2.0 100 200 2000 〇 Mo 1850 3 ― 実施例 4 4000 500 58.5 3.9 180 400 2200 X —― ― —― ― 実施例 5 6000 150 17.5 1.2 130 300 2050 〇 一— 一 —一 一 実施例 6 6500 600 70.0 4.7 150 300 1950 X C 1950 3 —一
1000°C 10hr保持 実施例 7 2400 300 35.0 2.3 175 350 2100 〇 C 1750 3
→-10°C/hr
1200。C 2hr保持 実施例 8 5000 200 23.5 1.6 155 350 2150 〇 W 1800 3
00 →-20°C/hr
' 1100。C 5hr保持 実施例 9 4500 250 29.0 2.0 100 200 2000 〇 Mo 1850 3
— 15°C/hr
900°C 5hr保持 実施例 10 4000 500 58.5 3.9 200 400 2200 X
—- 5°C/hr
1100°C 5hr保持 実施例 1 1 6000 150 17.5 1.2 130 300 2050 〇 —- 10°C/hr
1000°C 5hr保持 実施例 12 6500 600 70.0 4.7 150 300 1950 X C 1950 3
このようにして実施例 1〜1 2において得られた Si02-Ti02系ガラスについて 、 T i 0 2含有量、 脈理の有無、 熱膨張係数の最大値と最小値の差 (A CTEP KP K ) 、 泡 ·異物の有無、 及び表面粗さ (RM S ) を以下のようにして測定した。 得 られた結果を表 2に示す。
(i) T i 0 2含有量: X線マイクロアナライザー (E P MA) により測定した。
(ii)脈理の有無:投影法 (0本光学ガラス工業会規格: 11- 1975) により測定し た。
(ii i) Δ ϋΤΕΡ Κ_ Ρ Κ:超音波伝搬速度を測定することにより求めた。
(iv)泡■異物の有無:投影法 (日本光学ガラス工業会規格: 12-1994、 13-1994) により測定した。
(v) RM S: Si02 _Ti02系ガラスの表面をコロイダルシリカを研磨剤として用いて 研磨した。 得られた研磨面の表面粗さを原子間力顕微鏡を用いて測定し、 その根 二乗平均を求めた。
表 2
Ti02含有量 A CTEPK- 表面粗さ
脈理の有無 泡 ·異物
[wt.%] PK(ppb/lO RMStnm] 実施例 1 7.7 三方向無 22 検出されず 0.23 実施例 2 8.0 三方向無 9 検出されず 0.18 実施例 3 7.7 三方向無 10 検出されず 0.19 実施例 4 7.9 三方向無 17 検出されず 0.2 実施例 5 7.5 三方向無 11 検出されず 0.19 実施例 6 7.6 三方向無 7 検出されず 0.21 実施例 7 7.6 三方向無 20 検出されず 0.2 実施例 8 7.6 三方向無 6 検出されず 0.15 実施例 9 8.0 三方向無 7 検出されず 0.16 実施例 10 7.8 三方向無 15 検出されず 0.18 実施例 11 7.4 三方向無 8 検出されず 0.17 実施例 12 7.6 三方向無 5 検出されず 0.18 表 2に示すように、 いずれの実施例においても、 3方向とも脈理は観測されず 、 泡や異物も観測されなかった。 又、 熱膨張係数の最大値と最小値の差 Δ ΠΈΡ ΚΡ Κは、 表 2に示すように、 いずれの実施例においても 22ppb/K以下であった。 さ らに、 いずれの実施例においても、 0. 23nm (RMS) 以下の表面粗さを得ること力 S できた。
実施例 1 3 〜 2 6
以下に示す石英ガラス製の 3重管パーナを用いて、 表 3に示すような条件で、 径 210瞧厚さ 40mmの Si02- Ti02系ガラス (石英ガラス) を得た(実施例 1 3 〜 2 6 ) 。 すなわち、 粒径及び粉末生成法がそれぞれ表 3に示されるような Si02粉末と Ti 02粉末を、 得られる Si02- Ti02系ガラス中に占める Ti02の比率が表 3に示す値に なるような比率で混合して 3重管パーナの最内管 (1重管) より放出させた。 ま た、 その外側の管 (2重管) より 0 2を、 更に外側の管 (3重管) より H 2を、 そ れぞれ放出させた。 その際、 酸素と水素が表 3に示す供給量となるように各管か らの放出量を調整して燃焼させ、 火炎加水分解を起こさせ、 Si Cからなる平板 ( 直径: 150mm) に当てて堆積■溶融せしめて前記 Si02- Ti02系ガラスを得た。 なお 、 成長面の温度は、 表 3に示すような温度とした。
( 3重管パーナ)
内径 (mm) 外径 (mm)
1重管 4. 5 7. 5 原料
2重管 9. 6 11. 6 〇2
14. 4 16. 4 _
その後、 実施例 1 3 1 5 、 1 8 、 2 0 〜 2 2及び 2 5においては、 実施例 7 と同様の方法によつて前記 Si02-Ti02系ガラスに混練り均質化処理を施した。 さ らに、 実施例 1 3 〜 2 6においては、 坩堝の材質、 坩堝中の雰囲気、 熱処理温度 及び熱処理回数を表 3に示すようにした以外は実施例 7と同様の方法によって 前記 Si02- Ti02系ガラスに熱処理を施した。 その後、 実施例 2 0 〜 2 6において は、 ァニール条件を表 3に示すようにした以外は実施例 7と同様の方法によって 前記 SiO 2- Ti02系ガラスにァニーリング処理を施した。
Figure imgf000023_0001
このようにして実施例 1 3〜26において得られた Si02 - Ti02系ガラスについ て、 T i〇2含有量、 脈理の有無、 熱膨張係数の最大値と最小値の差 (ΔΟΈΡΚ— ΡΚ) 、 泡 ·異物の有無、 及び表面粗さ (RMS) を実施例 7と同様の方法によつ て測定した。 得られた結果を表 4に示す。
表 4
Figure imgf000024_0001
表 4に示すように、 いずれの実施例においても、 3方向とも脈理は観測されず 、 泡や異物も観測されなかった。 又、 熱膨張係数の最大値と最小値の差 ΔΠΈΡΚΡΚは、 表 4に示すように、 レ、ずれの実施例においても 23ppb/K以下であった。 さ らに、 いずれの実施例においても、 0.22nm (RMS) 以下の表面粗さを得ることが できた。 実施例 2 7
これらの実施例 1〜 2 6により得られた S i 02 - T i02系ガラス (石英ガラス) を 用いて、 以下のようにして EUV露光装置用のミラーを製作した。 すなわち、 所定 の形状 (凹面形状) のミラーとなるように石英ガラスを研削、 研磨した後、 表面 に周知の技術により多層膜 (Mo- Si多層膜) を成膜し反射ミラ一とした。 その結 果、 熱変形が小さく、 かつ、 表面粗さ精度が高いものが得られ、 EUV露光装置用 のミラーとして使用できることが確認できた。
比較例 1〜: L 0
混合部におけるレイノルズ数、 パーナ部におけるレイノルズ数、 諸供給量、 及 び成長面温度を表 5に示すような条件とした以外は実施例 7と同様にして径 210 mra厚さ 40mmの Si02-Ti02系ガラス (石英ガラス) を得た(比較例 1〜 1 0 )。 なお 、 Si02のガス状前駆体及び Ti02のガス状前駆体は、 比較例 1、 3、 5及び 7では 層流状態で混合されており、 比較例 4、 6及び 8〜 1◦では乱流状態で混合され ていた。 また、 Si02のガス状前駆体及び Ti02のガス状前駆体は、 比較例 1、 3、 5及び 7ではパーナ部から層流状態で放出されており、 比較例 4、 6及び 8〜1
0ではパーナ部から乱流状態で放出されていた。 さらに、 比較例 2では、 本発明 の方法と異なり、 SiCl 4用ハ、' -ナと TiCl 4用ハ、 ' ナ 2本を同時に使用して乱流状態でバ ーナから吹き出すようにした。
その後、 比較例 7〜1 0においては、 実施例 7と同様の方法によって前記 Si02 -Ti02系ガラスに混練り均質化処理を施した。 さらに、 比較例 9 ~ 1 0において は、 坩堝の材質、 熱処理温度及び熱処理回数を表 5に示すようにした以外は実施 例 7と同様の方法によって前記 Si02- Ti02系ガラスに熱処理を施した。 その後、 比較例 1、 2及び 1 0においては、 ァニール条件を表 5に示すようにした以外は 実施例 7と同様の方法によって前記 Si02-Ti02系ガラスにアニーリング処理を施 した。
Figure imgf000026_0001
このようにして比較例 1 1 0において得られた SiO 2 - TiO 2系ガラスについて T i 0 2含有量、 脈理の有無、 熱膨張係数の最大値と最小値の差 (A CTEP KP K ) 、 泡 ·異物の有無、 及び表面粗さ ( R M S ) を実施例 7と同様の方法によって 測定した。 得られた結果を表 6に示す。
表 6
Figure imgf000027_0001
表 6に示すように、 いずれの比較例においても、 脈理ゃ泡 ·異物が多少観測さ れ、かつ、熱膨張係数の最大値と最小値の差 A CTEP K_ P Kも実施例に比べて大きく なっていた。 さらに、 コロイダルシリカを研磨剤として用いて研磨した場合にお いても、 いずれの比較例も表面粗さは実施例に比べて粗くなっていた。
産業上の利用可能性
以上説明したように、 本発明によれば、 種々の波長領域、 好ましくは 200mn以 下の紫外線、 さらに好ましくは 50mn以下の極端紫外線領域の光源を使用する露光 装置ミラー等の光学系等に使用するのに適した、 脈理が十分に少なくかつ熱膨張 係数のばらつきが極めて小さく、 研磨後に高水準の表面粗さを達成することが可 能な Si02- Ti02系ガラスを製造する方法、 Si02- Ti02系ガラス、 及びこの Si02-Ti 02系ガラスを使用した露光装置を提供することができる。

Claims

言青求の範囲
1 . SiO 2 -TiO 2系ガラスを火炎加水分解法により製造する方法であって、 SiO
2のガス状前駆体と TiO 2のガス状前駆体を乱流状態で混合してパーナの中心管か ら層流状態で供給し、 その周りの管から酸素又は酸素含有気体と水素又は水素含 有気体とを供給して燃焼させ、加熱された前記 Si02のガス状前駆体と Ti02のガス 状前駆体とを、 平板状の耐熱性基体からなるターゲットに当てて、 堆積 ·溶融せ しめて Si02- Ti02系ガラスを得るガラス成長工程を含む、 Si02- Ti02系ガラスの製 造方法。
2 . 前記ガラス成長工程において、 前記 Si02_Ti02系ガラスの成長面の温度 が 1950°C〜2200°Cである、 請求項 1に記載の方法。
3 . 前記 Si02_Ti02系ガラスに混練り均質化を施して脈理を除去する均質化 工程を更に含む、 請求項 1に記載の方法。
4 . 前記 Si02-Ti02系ガラスに、 以下の(a)から(d)の工程:
(a)筒形坩堝の中に Si02_Ti02系ガラスを当該坩堝の底面に接するように設置し て、 坩堝ごと炉内に静置する。 このとき、 (d)の工程で得られた Si02_Ti02系ガラ スの場合は、 柱状ガラスの側面が当該坩堝の底面に接するように設置する。
(b)前記坩堝内を 1700〜2000°Cに加熱し、 Si02- Ti02系ガラスを重力方向に自重変 形又は加重変形させて柱状ガラスにする。
(c)前記柱状ガラスを結晶化温度以下まで、 50°C/hr以上の冷却速度で降温した後 、 室温まで炉冷する。
(d)前記柱状ガラスを坩堝から取り出し、 周囲■上下面を研削する。
を順次 3〜 5回繰り返し施す熱処理工程を更に含む、 請求項 1に記載の方法。
5 . 前記 Si02_Ti02系ガラスを、 700°C〜1200°Cの間の温度に 1 〜20時間保持 した後、 500°Cまで 1 〜20°C/hrの降温速度で冷却するァニーリング工程を更に含 む、 請求項 1に記載の方法。
6 . Si 02 -Ti 02系ガラスを火炎加水分解法により製造する方法であって、 SiO 2粉末と Ti02粉末を混合し、 酸素又は酸素含有気体と水素又は水素含有気体との 燃焼火炎中に供給し、加熱された前記 Si02粉末と Ti02粉末とを堆積.溶融せしめ て S i 02 -T i 02系ガラスを得るガラス成長工程を含む、 S i 02 - Ti 02系ガラスの製造方 法。
7 . 前記 Si02粉末の大きさが、 その外接球の直径が 1〜500nmの範囲となる 大きさである、 請求項 6に記載の方法。
8 . 前記 Ti02粉末の大きさが、 その外接球の直径が 1〜500nmの範囲となる 大きさである、 請求項 6に記載の方法。
9 . 前記ガラス成長工程において、 前記 Si02- Ti02系ガラスの成長面の温度 が 1950°C〜2200°Cである、 請求項 6に記載の方法。
1 0 . 前記 Si02- Ti02系ガラスに混練り均質化を施して脈理を除去する均質 化工程を更に含む、 請求項 6に記載の方法。
1 1 . 前記 Si02- Ti02系ガラスに、 以下の(a)から(d)の工程:
(a)筒形坩堝の中に Si02- Ti02系ガラスを当該坩堝の底面に接するように設置し て、 坩堝ごと炉内に静置する。 このとき、 (d)の工程で得られた Si02_Ti02系ガラ スの場合は、 柱状ガラスの側面が当該坩堝の底面に接するように設置する。
(b)前記坩堝内を 1700〜2000°Cに加熱し、 Si02_Ti02系ガラスを重力方向に自重変 形又は加重変形させて柱状ガラスにする。
(c)前記柱状ガラスを結晶化温度以下まで、 50°C/hr以上の冷却速度で降温した後 、 室温まで炉冷する。
(d)前記柱状ガラスを坩堝から取り出し、 周囲 ·上下面を研削する。
を順次 3〜 5回繰り返し施す熱処理工程を更に含む、 請求項 6に記載の方法。
1 2 . 前記 Si02-Ti02系ガラスを、 700°C〜1200°Cの間の温度に 1〜20時間保 持した後、 500°Cまで 1〜20°C/hrの降温速度で冷却するァニーリング工程を更に 含む、 請求項 6に記載の方法。
1 3 . 光軸と垂直方向及び水平方向いずれの方向においても熱膨張係数の最 大値と最小値の差 Δ CTEP K p κが 23ppb/K以下である、 SiO 2- TiO 2系ガラス。
1 4 . コロイダルシリカを研磨剤として用いた研磨を行った後の表面粗さの 根二乗平均が 0. 23nm以下である、 Si02- Ti02系ガラス。
1 5 . 請求項 1から請求項 1 2のうちいずれか 1項に記載の Si02- Ti02系ガ ラスの製造方法によつて製造された Si02_Ti02系ガラスを光学部材として用いた
、 露光装置。
1 6 . 請求項 1 3又は請求項 1 4に記載の Si02- Ti02系ガラスを光学部材と して用いた、 露光装置。
PCT/JP2004/005204 2003-04-11 2004-04-12 SiO2-TiO2系ガラスの製造方法、SiO2-TiO2系ガラス及び露光装置 WO2004092082A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005505391A JPWO2004092082A1 (ja) 2003-04-11 2004-04-12 SiO2−TiO2系ガラスの製造方法、SiO2−TiO2系ガラス及び露光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-107490 2003-04-11
JP2003107490 2003-04-11

Publications (1)

Publication Number Publication Date
WO2004092082A1 true WO2004092082A1 (ja) 2004-10-28

Family

ID=33295860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005204 WO2004092082A1 (ja) 2003-04-11 2004-04-12 SiO2-TiO2系ガラスの製造方法、SiO2-TiO2系ガラス及び露光装置

Country Status (2)

Country Link
JP (1) JPWO2004092082A1 (ja)
WO (1) WO2004092082A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240978A (ja) * 2005-02-01 2006-09-14 Shinetsu Quartz Prod Co Ltd 均質なシリカ・チタニアガラスの製造方法
JP2006240979A (ja) * 2005-02-01 2006-09-14 Shinetsu Quartz Prod Co Ltd 均質なシリカ・チタニアガラスの製造方法
JP2007131472A (ja) * 2005-11-09 2007-05-31 Asahi Glass Co Ltd TiO2を含有するシリカガラスの成型方法
JP2007186347A (ja) * 2004-12-24 2007-07-26 Shinetsu Quartz Prod Co Ltd 脈理のないシリカ・チタニアガラスの製造方法
JP2007186348A (ja) * 2004-12-28 2007-07-26 Shinetsu Quartz Prod Co Ltd 脈理のないシリカ・チタニアガラスの製造方法
JP2010013335A (ja) * 2008-07-07 2010-01-21 Shin-Etsu Chemical Co Ltd チタニアドープ石英ガラス部材及びその製造方法
WO2014003129A1 (ja) * 2012-06-27 2014-01-03 株式会社ニコン SiO2-TiO2系ガラスの製造方法、SiO2-TiO2系ガラスからなる板状部材の製造方法、製造装置およびSiO2-TiO2系ガラスの製造装置
KR20140095422A (ko) * 2013-01-24 2014-08-01 신에쯔 세끼에이 가부시키가이샤 실리카티타니아 유리, 실리카티타니아 유리의 제조방법 및 실리카티타니아 유리의 선별방법
WO2023171751A1 (ja) * 2022-03-11 2023-09-14 三菱ケミカル株式会社 石英部材の製造方法、及びシリカ粉の溶射コーティング方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333125A (ja) * 1995-05-31 1996-12-17 Heraeus Quarzglas Gmbh 高均質な光学用石英ガラス成形体の製造方法
JP2001517597A (ja) * 1997-09-24 2001-10-09 コーニング インコーポレイテッド 溶融SiO2−TiO2ガラスの製造法
JP2002087840A (ja) * 2001-07-10 2002-03-27 Shinetsu Quartz Prod Co Ltd 真空紫外線リソグラフィーに用いられる投影レンズ用シリカガラス光学材料および投影レンズ
WO2002032622A1 (en) * 2000-10-13 2002-04-25 Corning Incorporated A method to avoid striae in euv lithography mirrors
JP2002220251A (ja) * 2001-01-16 2002-08-09 Shinetsu Quartz Prod Co Ltd 石英ガラス及びその製造方法
JP2003508337A (ja) * 1999-09-10 2003-03-04 コーニング インコーポレイテッド 純粋な溶融シリカ、炉および方法
JP2003104746A (ja) * 2001-09-28 2003-04-09 Shinetsu Quartz Prod Co Ltd 合成石英ガラス材料の製造方法及び合成石英ガラス材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333125A (ja) * 1995-05-31 1996-12-17 Heraeus Quarzglas Gmbh 高均質な光学用石英ガラス成形体の製造方法
JP2001517597A (ja) * 1997-09-24 2001-10-09 コーニング インコーポレイテッド 溶融SiO2−TiO2ガラスの製造法
JP2003508337A (ja) * 1999-09-10 2003-03-04 コーニング インコーポレイテッド 純粋な溶融シリカ、炉および方法
WO2002032622A1 (en) * 2000-10-13 2002-04-25 Corning Incorporated A method to avoid striae in euv lithography mirrors
JP2002220251A (ja) * 2001-01-16 2002-08-09 Shinetsu Quartz Prod Co Ltd 石英ガラス及びその製造方法
JP2002087840A (ja) * 2001-07-10 2002-03-27 Shinetsu Quartz Prod Co Ltd 真空紫外線リソグラフィーに用いられる投影レンズ用シリカガラス光学材料および投影レンズ
JP2003104746A (ja) * 2001-09-28 2003-04-09 Shinetsu Quartz Prod Co Ltd 合成石英ガラス材料の製造方法及び合成石英ガラス材料

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186347A (ja) * 2004-12-24 2007-07-26 Shinetsu Quartz Prod Co Ltd 脈理のないシリカ・チタニアガラスの製造方法
JP4568225B2 (ja) * 2004-12-24 2010-10-27 信越石英株式会社 脈理のないシリカ・チタニアガラスの製造方法
JP2007186348A (ja) * 2004-12-28 2007-07-26 Shinetsu Quartz Prod Co Ltd 脈理のないシリカ・チタニアガラスの製造方法
JP4646314B2 (ja) * 2005-02-01 2011-03-09 信越石英株式会社 均質なシリカ・チタニアガラスの製造方法
JP2006240979A (ja) * 2005-02-01 2006-09-14 Shinetsu Quartz Prod Co Ltd 均質なシリカ・チタニアガラスの製造方法
JP2006240978A (ja) * 2005-02-01 2006-09-14 Shinetsu Quartz Prod Co Ltd 均質なシリカ・チタニアガラスの製造方法
JP4568219B2 (ja) * 2005-02-01 2010-10-27 信越石英株式会社 均質なシリカ・チタニアガラスの製造方法
JP2007131472A (ja) * 2005-11-09 2007-05-31 Asahi Glass Co Ltd TiO2を含有するシリカガラスの成型方法
JP4534957B2 (ja) * 2005-11-09 2010-09-01 旭硝子株式会社 TiO2を含有するシリカガラスの成型方法
US8377612B2 (en) 2008-07-07 2013-02-19 Shin-Etsu Chemical Co., Ltd. Titania-doped quartz glass member and making method
JP2010013335A (ja) * 2008-07-07 2010-01-21 Shin-Etsu Chemical Co Ltd チタニアドープ石英ガラス部材及びその製造方法
WO2014003129A1 (ja) * 2012-06-27 2014-01-03 株式会社ニコン SiO2-TiO2系ガラスの製造方法、SiO2-TiO2系ガラスからなる板状部材の製造方法、製造装置およびSiO2-TiO2系ガラスの製造装置
CN104395248A (zh) * 2012-06-27 2015-03-04 株式会社尼康 SiO2-TiO2系玻璃的制造方法、含有SiO2-TiO2系玻璃的板状构件的制造方法、制造装置以及SiO2-TiO2系玻璃的制造装置
JPWO2014003129A1 (ja) * 2012-06-27 2016-06-02 株式会社ニコン SiO2−TiO2系ガラスの製造方法、SiO2−TiO2系ガラスからなる板状部材の製造方法、製造装置およびSiO2−TiO2系ガラスの製造装置
US9802852B2 (en) 2012-06-27 2017-10-31 Nikon Corporation Manufacturing method for SiO2—TiO2 based glass, manufacturing method for plate-shaped member made of SiO2—TiO2 based glass, manufacturing device, and manufacturing device for SiO2—TiO2 based glass
US10266443B2 (en) 2012-06-27 2019-04-23 Nikon Corporation Device for manufacturing SiO2-TiO2 based glass
KR20140095422A (ko) * 2013-01-24 2014-08-01 신에쯔 세끼에이 가부시키가이샤 실리카티타니아 유리, 실리카티타니아 유리의 제조방법 및 실리카티타니아 유리의 선별방법
JP2014141377A (ja) * 2013-01-24 2014-08-07 Shinetsu Quartz Prod Co Ltd シリカチタニアガラス、シリカチタニアガラスの製造方法及びシリカチタニアガラスの選別方法
TWI583639B (zh) * 2013-01-24 2017-05-21 信越石英股份有限公司 氧化矽-鈦玻璃,氧化矽-鈦玻璃之製造方法,以及氧化矽-鈦玻璃之分類方法
KR101952404B1 (ko) * 2013-01-24 2019-02-26 신에쯔 세끼에이 가부시키가이샤 실리카티타니아 유리, 실리카티타니아 유리의 제조방법 및 실리카티타니아 유리의 선별방법
WO2023171751A1 (ja) * 2022-03-11 2023-09-14 三菱ケミカル株式会社 石英部材の製造方法、及びシリカ粉の溶射コーティング方法

Also Published As

Publication number Publication date
JPWO2004092082A1 (ja) 2006-07-06

Similar Documents

Publication Publication Date Title
EP2003098B1 (en) Nanoimprint molds made from titania-doped quartz glass
JP4792705B2 (ja) TiO2を含有するシリカガラスおよびその製造法
US7849711B2 (en) Titania-doped quartz glass and making method, EUV lithographic member and photomask substrate
TWI471281B (zh) 摻雜二氧化鈦石英玻璃構件及其製造方法
JP5365247B2 (ja) TiO2を含有するシリカガラスおよびそれを用いたリソグラフィ用光学部材
JP2010163347A (ja) TiO2を含有するシリカガラス
JP5365248B2 (ja) TiO2を含有するシリカガラスおよびEUVリソグラフィ用光学部材
WO2004092082A1 (ja) SiO2-TiO2系ガラスの製造方法、SiO2-TiO2系ガラス及び露光装置
JP3865039B2 (ja) 合成石英ガラスの製造方法および合成石英ガラス並びに合成石英ガラス基板
CN102067036B (zh) 光掩模用光学构件及其制造方法
JP5578167B2 (ja) 多孔質石英ガラス体の製造方法およびeuvリソグラフィ用光学部材
JP2004307263A (ja) 石英ガラスの成形方法及び成形装置
JPH1053432A (ja) 石英ガラス光学部材、その製造方法、及び投影露光装置
WO2012105513A1 (ja) チタニアを含有するシリカガラス体の製造方法およびチタニアを含有するシリカガラス体
JP2019172563A (ja) TiO2を含有するシリカガラスの製造方法
JP2000143258A (ja) ArFエキシマレ―ザ―リソグラフィ―用合成石英ガラスの製造方法
WO2002085808A1 (fr) Element en verre de silice et aligneur de projection
JP2004315247A (ja) SiO2−TiO2系ガラスの製造方法、SiO2−TiO2系ガラス及び露光装置
JP3897188B2 (ja) 合成石英ガラスの製造方法および装置
JP5733350B2 (ja) TiO2を含有するシリカガラスおよびその製造法
JP5391923B2 (ja) 多孔質ガラス体の製造方法
JP2007223845A (ja) SiO2−TiO2系ガラスの製造方法
JP2010163289A (ja) TiO2を含有するシリカガラスの成型方法およびそれによって成型されたEUVリソグラフィ用光学部材
JP2000281366A (ja) 紫外用合成石英ガラスの製造方法とそれにより得られた部材
JP2002308630A (ja) 合成石英ガラスの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505391

Country of ref document: JP

122 Ep: pct application non-entry in european phase