WO2004090617A2 - Räumlich hochauflösendes abbilden - Google Patents

Räumlich hochauflösendes abbilden Download PDF

Info

Publication number
WO2004090617A2
WO2004090617A2 PCT/EP2004/003767 EP2004003767W WO2004090617A2 WO 2004090617 A2 WO2004090617 A2 WO 2004090617A2 EP 2004003767 W EP2004003767 W EP 2004003767W WO 2004090617 A2 WO2004090617 A2 WO 2004090617A2
Authority
WO
WIPO (PCT)
Prior art keywords
state
substance
signal
sample
molecule
Prior art date
Application number
PCT/EP2004/003767
Other languages
English (en)
French (fr)
Other versions
WO2004090617A3 (de
Inventor
Stefan Hell
Original Assignee
Max-Planck-Gesselschaft Zur Förderung Der Wissenschaften E.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/420,896 external-priority patent/US7064824B2/en
Priority claimed from DE10325460A external-priority patent/DE10325460A1/de
Application filed by Max-Planck-Gesselschaft Zur Förderung Der Wissenschaften E.V. filed Critical Max-Planck-Gesselschaft Zur Förderung Der Wissenschaften E.V.
Priority to EP04726457.7A priority Critical patent/EP1616216B1/de
Priority to JP2006505064A priority patent/JP5414147B2/ja
Publication of WO2004090617A2 publication Critical patent/WO2004090617A2/de
Priority to US11/249,098 priority patent/US7430045B2/en
Publication of WO2004090617A3 publication Critical patent/WO2004090617A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6445Measuring fluorescence polarisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/16Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures

Definitions

  • the invention relates to a method for spatially high-resolution imaging of a structure of a sample marked with a substance with the features of the preamble of patent claim 1.
  • the substance can of course occur in the structure of the sample to be imaged. Otherwise the structure of the sample must be artificially marked with the substance.
  • the spatial resolution. imaging optical methods is basically set by the diffraction limit (Abbe's limit) at the wavelength of the relevant optical signal.
  • a fluorescent dye with which the structure of interest of a sample is marked, is converted into one wherever an optical switching signal exceeds a characteristic limit value, which is referred to in this description as the saturation limit value Energy state offset from which there is no (no longer) fluorescence.
  • a characteristic limit value which is referred to in this description as the saturation limit value
  • Energy state offset from which there is no (no longer) fluorescence If the spatial area from which then a measurement signal is registered, is determined by a local intensity minimum of the optical switching signal, which has a zero point and is generated, for example, by interference, its dimensions and thus the spatial resolution achieved are smaller than the diffraction limit. The reason is that the spatially limited sub-area from which the measurement signal is registered is narrowed with increasing degree of saturation of the depopulation of the state involved in the fluorescence. In the same way, the edge of a focal spot or strip becomes steeper, which also leads to an increased spatial resolution.
  • a STED method with the features of the preamble of claim 1 is known from WO 95/21393 A1.
  • a sample or a fluorescent dye in the sample is excited to fluoresce by an optical excitation signal.
  • the spatial area of the excitation to which the diffraction limit applies is then reduced by superimposing it as a changeover signal with an intensity minimum of an interference pattern of an excitation light beam.
  • the changeover signal exceeds a saturation limit, the fluorescent dye is completely switched off by stimulated emission, ie is de-excited from the previously excited energy state.
  • the remaining spatial area, from which fluorescent light is then spontaneously emitted only corresponds to a reduced area around the zero of the intensity minimum, in which the switchover signal was not present or was not present with sufficient intensity.
  • a protein which is increasingly stimulable to fluorescence in the red region by green light, but which loses its fluorescence properties when irradiated with blue light. This process is reversible. Apparently, the green light switches the protein into a conformational state in which it has the fluorescent property and at the same time stimulates fluorescence, while the blue light switches the protein into a conformational state without the fluorescent properties.
  • the protein is a natural protein found in the sea anemone Anemonia sulcata, whose functions described here can be enhanced by the targeted exchange of an amino acid.
  • the invention has for its object a method for spatially high-resolution imaging of a structure of a sample with the features of the preamble of Show claim 1, which can be carried out with comparatively little equipment.
  • the use of substances that have two states with different optical properties is a central aspect of the invention.
  • the substance can be switched from the first to the second state in a targeted manner using a switchover signal. This process is reversible. This means that the substance can also be brought back to the first state.
  • the optical properties of the substance in the first state differ from those in the second state in that only they support the measurement signal. However, it is not imperative that the relevant optical properties are "binary", ie 100% in one state and 0% in the other state. Rather, it is sufficient if there are such large differences in the relevant optical properties that they allow an at least predominant assignment of the measurement signal to the first state.
  • the invention makes no use of two simple energy states of a molecule between which the molecule can be transferred by simple energetic excitation. Rather, the two states differ in at least one of the following criteria:
  • the optical switchover signal causes rearrangement of atomic groups, photoisomerization, in particular cis-trans isomerization, photocyclization, protonation or de-protonation, spin flipping, electron transfer and / or energy transfer between linked molecules or molecular subunits.
  • An advantage of the invention over the prior art in the field of fluorescence microscopy is that the states of the substances in question generally have a lifespan many times longer than the energy states involved in fluorescence.
  • the lifespan of the second state is therefore usually at least 1 ns.
  • a lifespan of at least 10 ns is preferred.
  • Thermally stable states are particularly preferred.
  • the intensities required to achieve the change in state with the switchover signal are relatively low. Numerous switching processes in which the initial and / or final state is relatively long-lived (> 10 ns) can be triggered and brought to saturation with comparatively low intensities, because there are only relatively slow processes or sometimes no processes associated with the switching process compete.
  • the different optical properties of the two states of the substance can be different spectral properties.
  • the first optical properties can have different absorptions for an optical test signal than the second optical properties, wherein the measurement signal can be observed in transmission or also in reflection.
  • Different luminescences from the group comprising fluorescence, phosphorescence, electroluminescence and chemiluminescence are preferred as different spectral properties.
  • Molecules which change their spectral properties, in particular their color, and which are also suitable as a substance for marking the structure of interest in the context of the invention are also referred to as photochromic.
  • the two states of the substance can also have different polarization properties, for example in relation to an optical test signal or a measurement signal emitted by the sample itself.
  • the substance and the switchover signal must be coordinated with one another in such a way that the transition from the first state with the switchover signal to the second state depends nonlinearly on the intensity of the switchover signal. This is achieved when the transfer of the substance to the second state takes place completely or essentially completely wherever the changeover signal exceeds a saturation limit.
  • the intensity of the switchover signal in the entire registration area outside the deliberately omitted spatial area must exceed the saturation limit, and at the same time the deliberately omitted spatial area must be a local intensity minimum of the switchover signal.
  • a local intensity minimum with zero of the intensity can be provided by an interference pattern.
  • projections can also be used for this; the switching signal can still be radiated in from the side at an acute or obtuse angle.
  • holograms for generating local intensity minima of the switchover signal are possible. With the intensity minima of simple interference patterns, it is particularly easy to define the smallest spatial areas which are omitted from the switchover signal.
  • the new methods preferably use substances which can be converted from the second to the first state with a different switching signal.
  • the other switching signal like the switching signal, can be an optical signal. However, it can also be an electrical or thermal signal, for example. It is also possible for the switch back to the first state to take place spontaneously, ie thermally driven at ambient temperature. It is known, for example, that molecules which undergo photoinduced cis-trans isomerization can return to the first state purely thermally. With the other switching signal, however, the substance can be brought specifically back into the first state, which can be advantageous in order to accelerate the process as a whole.
  • the other switching signal is preferably used before the switchover signal or after the measurement signal has been registered.
  • the other switch signal can also be applied to the sample while the switchover signal is being applied. Furthermore, it is not necessary to limit the other switching signal to the spatial area of interest, which reduces the outlay for applying optical switching signals and enables other types of other switching signals in the first place.
  • test signal is directed onto the sample to generate the measurement signal to be registered, this is applied to the sample after the switchover signal.
  • the test signal can also be applied to the sample over a larger area enclosing the deliberately omitted spatial area.
  • the spatial limitation required to increase the spatial resolution of the new method is performed by the optical switch signal.
  • a corresponding excitation signal which is used as a test signal, can also be applied to the sample at the same time as the switchover signal. In any case, however, it should be applied to the sample later or at the earliest at the same time as the other switching signal, provided that the excitation signal and the other switching signal are not identical anyway.
  • the sample is scanned with the region specifically omitted by the switchover signal, that is, scanned at all points.
  • the sample can also be measured at the same time in several points that are spaced apart, ie defined areas.
  • a plurality of optical measurement signals, which are to be assigned to the substance in the first state are registered for a plurality of registration regions, each of which, in addition to regions in which the substance is transferred to the second state, comprise a specifically omitted region, but at the same time separately from one another.
  • the rasterization can take place by spatially shifting the switching signals used, in particular the switching signal, relative to the coordinates of the sample.
  • the rasterization can be done by shifting one or more interfering minima of the switching signal. This shift can be brought about by a pure phase shift of the interfering beams.
  • a cyclic sequence of the steps results: transfer of the substance in areas of the sample with the switchover signal into the second state, a defined area being deliberately omitted; Registering the optical measurement signal, which is to be assigned to the substance in the first state, for a registration area comprising the respectively deliberately omitted area; and converting the substance to the first state.
  • the substance with the different optical properties is preferably selected from the group of proteins.
  • proteins include in particular the known proteins asCP (asF595) and T70a / A148S / S165V, which have two conformational states with suitable spectral properties, or also the green fluorescent protein (GFP) and mutants derived from it.
  • CP asF595
  • T70a / A148S / S165V which have two conformational states with suitable spectral properties
  • GFP green fluorescent protein
  • Proteins as labeling substances can also be introduced into a biological sample by genetic engineering, so that no subsequent labeling of the structure of the sample with the substance is required which can adversely affect the sample or at least change it through the labeling step. If it is not possible to label the structures of interest of the sample by genetic engineering, the structure of the sample can be labeled with the substance in a manner known per se. For example, auxiliary substances can be used that selectively bind to the structure of interest and to which the substance is or will be bound. Many procedures are known to the person skilled in the art from the area of coloring samples for fluorescence microscopy. The sample can also inherently be molecules with suitable optical conditions that meet the substance requirements for the new method.
  • the new imaging method can be carried out after marking the structures with the fluorescent substance on a conventional fluorescence microscope, the additional effort for improving the resolution below the diffraction limit is comparatively low and can be limited to additional means for providing the optical switching signal.
  • These means could include, for example, a simple laser or a conventional lamp.
  • the measurement signals from the individual areas are read out simultaneously with a (CCD) camera.
  • the overall image of the sample then results from the combination of several images with different positions of the measured areas in the sample.
  • F ⁇ g. 1 symbolically shows two conformational states of a molecule
  • Fig. 2 shows schematically an arrangement for performing the new method.
  • Flg. 1 symbolically shows a molecule or a molecular complex which can be in two different states 1 and 2.
  • the first state 1 is suitable for fluorescence, but the second state 2 is not.
  • Illumination with a changeover signal 3 with a specific wavelength can induce a targeted change from the first state 1 to the second state 2.
  • the molecule can spontaneously return from the second state 2 to the first state 1.
  • both states 1 and 2 are thermally stable and a further optical switching signal is used to switch back to the first state 1.
  • FIG. 2 schematically shows a possible arrangement for carrying out the invention with two beam splitters 11 and 12 and a lens 13.
  • a sample 7 is represented on the one hand by a
  • Excitation signal which is used as test signal 4, from a fluorescence excitation 6 to
  • Fluorescence excited, but on the other hand by the switching signal 3 from one Fluorescence prevention means 8 are prevented from fluorescence at definable locations by reversibly placing molecules in the non-fluorescent second state depending on the location. In the example shown, this is done by crossed interference-capable beams 14. In this case, fluorescence can only be generated in narrow spatial areas 9 which, under suitable conditions, such as the saturation of the switching, are narrower than the diffraction limit. By scanning the interference pattern 15 and sequentially detecting and reading out the fluorescence as a measurement signal 5 with a camera 10, the entire sample 7 can be recorded with high resolution.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

Bei einem Verfahren zum räumlich hochauflösenden Abbilden einer mit einer Substanz markierten Struktur einer Probe, mit den Schritten: Auswählen der Substanz aus einer Gruppe von Substanzen, die mit einem optischen Umschaltsignal (3) wiederholt aus einem ersten Zustand (1) mit ersten optischen Eigenschaften in einen zweiten Zustand (2) mit zweiten optischen Eigenschaften überführbar sind und die aus dem zweiten Zustand (2) in den ersten Zustand (1) zurückkehren können, Überführen der Substanz in Bereichen der Probe (7) mit dem Umschaltsignal (3) in den zweiten Zustand (2) , wobei ein definierter Bereich gezielt ausgelassen wird, und Registrieren eines optischen Messsignals (5), das der Substanz in dem ersten Zustand (1) zuzuordnen ist, für einen Registrierbereich, der neben Bereichen, in denen die Substanz in den zweiten Zustand überführt ist, den gezielt ausgelassenen Bereich umfasst, wird die Substanz aus einer Untergruppe von Substanzen ausgewählt wird, bei denen sich die beiden Zustände (1, 2) mindestens hinsichtlich eines der folgenden Kriterien unterscheiden: Konformationszustand eines Moleküls, Strukturformel eines Moleküls, räumliche Anordnung von Atomen innerhalb eines Moleküls, räumliche Anordnung von Bindungen innerhalb eines Moleküls, Anlagerung weiterer Atome oder Moleküle an ein Molekül, Gruppierung von Atomen und/oder Molekülen, räumliche Orientierung eines Moleküls, Orientierung benachbarter Moleküle zueinander und von einer Vielzahl von Molekülen und/oder Atomen ausgebildete Ordnung.

Description

RÄUMLICH HOGHAUFLÖSENDES ABBILDEN
Die Erfindung betrifft ein Verfahren zum räumlich hochauflösenden Abbilden einer mit einer Substanz markierten Struktur einer Probe mit den Merkmalen des Oberbegriffs des Patentanspruchs 1.
Die Substanz kann natürlich in der abzubildenden Struktur der Probe vorkommen. Anderenfalls muss die Struktur der Probe künstlich mit der Substanz markiert werden.
STAND DER TECHNIK
Die räumliche Auflösung . abbildender optischer Verfahren wird grundsätzlich durch die Beugungsgrenze (Abbe'sche Grenze) bei der Wellenlänge des relevanten optischen Signals gesetzt.
Es sind aber bereits Verfahren auf dem Gebiet der Fluoreszenzmikroskopie bekannt, bei denen durch Ausnutzung von nichtlinearen Zusammenhängen zwischen der Schärfe des effektiven fokalen Spots und der eingestrahlten Intensität eines optischen Anregungssignals die Beugungsgrenze bei der Abbildung einer Struktur einer Probe effektiv unterschritten wird. Beispiele sind die Multiphotonenabsorption in der Probe oder die Erzeugung höherer Harmonischer des optischen Anregungssignals. Auch eine Sättigung eines optisch induzierten Übergangs kann als nichtlinearen Zusammenhang ausgenutzt werden, wie beispielsweise bei einer Entvölkerung des fluoreszierenden Zustands durch stimulierte Emission (englisch: stimulated emission depletion = STED) oder einer Entvölkerung des Grundzustands (englisch: ground State depletion = GSD). Bei diesen beiden Verfahren, die prinzipiell molekulare Auflösungen erreichen können, wird ein Fluoreszenzfarbstoff, mit dem die interessierende Struktur einer Probe markiert ist, überall dort, wo ein optisches Umschaltsignal einen charakteristischen Grenzwert, der in dieser Beschreibung als Sättigungsgrenzwert bezeichnet wird, überschreitet, in einen Energiezustand versetzt, aus dem heraus keine Fluoreszenz (mehr) erfolgt. Wenn dabei der räumliche Bereich, aus dem dann noch ein Messsignal registriert wird, durch ein lokales Intensitätsminimum des optischen Umschaltsignals festgelegt wird, das eine Nullstelle aufweist und beispielsweise durch Interferenz erzeugt wird, sind seine Abmessungen und damit die erreichte Ortsauflösung kleiner als die Beugungsgrenze. Der Grund ist, dass der räumliche begrenzte Teilbereich, aus dem das Messsignal registriert wird, mit zunehmenden Sättigungsgrad der Entvölkerung des an der Fluoreszenz beteiligten Zustande eingeengt wird. Genauso wird die Kante eines fokalen Spots oder Streifens steiler, was ebenfalls zu einer erhöhten Ortsauflösung führt.
Ein STED-Verfahren mit den Merkmalen des Oberbegriffs des Patentanspruchs 1 ist aus der WO 95/21393 A1 bekannt. Bei diesem Verfahren wird eine Probe bzw. ein Fluoreszenzfarbstoff in der Probe durch ein optisches Anregungssignal zur Fluoreszenz angeregt. Der räumliche Bereich.der Anregung, für den die Beugungsgrenze gilt, wird dann verkleinert, indem er mit einem Intensitätsminimum eines Interferenzmusters eines Abregungslichtstrahls als Umschaltsignal überlagert wird. Überall dort, wo das Umschaltsignal einen Sättigungsgrenzwert übersteigt, wird der Fluoreszenzfarbstoff vollständig durch stimulierte Emission ausgeschaltet, d.h. aus dem zuvor angeregten Energiezustand wieder abgeregt. Der verbleibende räumliche Bereich, aus dem anschließend noch Fluoreszenzlicht spontan emittiert wird, entspricht nur noch einem verkleinerten Gebiet um die Nullstelle des Intensitätsminimums, in dem das Umschaltsignal nicht oder nicht mit ausreichender Intensität vorlag. Obwohl dieses Verfahren der Fluoreszenzmikroskopie nachvollziehbar eine Ortsauflösung unterhalb der Beugungsgrenze liefert, ist es auch mit Nachteilen verbunden. Die Lebensdauer des Energiezustands des Fluoreszenzfarbstoffs, der mit dem Anregungsstrahl angeregt wird, ist nur kurz. Damit das Umschalten effektiv innerhalb einer noch kürzeren Zeitspanne komplettiert ist, muss daher eine vergleichsweise hohe Intensität des Umschaltsignals angewandt werden. Damit bei der Abregung durch das Umschaltsignal ein nichtlinearer Zusammenhang zwischen der verbleibenden Fluoreszenz und der Intensität des Umschaltsignals hergestellt wird, d.h. Sättigung erreicht wird, muss die Intensität des Abregungsstrahls zusätzlich sehr hoch sein. So wird in der Regel ein gepulster Hochleistungslaser für den Abregungslichtstrahl benötigt, der die Durchführung des bekannten Verfahrens recht kostspielig macht. Dieselben Nachteile gelten auch für bekannte GSD-Verfahren, da auch hier Zeitbeschränkungen und Leistungsanforderungen durch kurze Lebensdauern der beteiligten Energiezustände gesetzt werden.
Aus The Journal of Biological Chemistry, Vol. 275, No. 84, Seiten 25879-25882 (2000), ist ein Protein bekannt, das durch grünes Licht in zunehmendem Maße zur Fluoreszenz im roten Bereich anregbar ist, das aber bei Bestrahlung mit blauem Licht seine Fluoreszenzeigenschaften verliert. Dieser Prozess ist umkehrbar. Offenbar schaltet das grüne Licht das Protein in einen Konformationszustand, in dem es die Fluoreszenzeigenschaft hat, und regt gleichzeitig die Fluoreszenz an, während das blaue Licht das Protein in einen Konformationszustand ohne die Fluoreszenzeigenschaften umschaltet. Das Protein ist ein in der Seeanemone Anemonia sulcata vorkommendes natürliches Protein, dessen hier beschriebenen Funktionen durch gezielten Austausch einer Aminosäure verstärkt werden können.
Weiterhin ist es aus der Zeitschrift Nature Vol. 388, Seiten 355-358, (1997) bekannt, dass das Grün-Fluoreszierende-Protein (englisch: green-fluorescent protein, GFP) und Mutanten davon zwischen zwei Zuständen geschaltet werden können, wobei der eine sich von dem anderen spektral unterscheidet. Beide Proteine können als Fluoreszenzmarker in lebenden Zellen eingesetzt werden.
Aus der Publikation Nature, Vol. 420, Seiten 759-760, (2002) sind fluoreszierende Moleküle aus der Familie der Diarylethene bekannt, die sich zwischen einem fluoreszierenden und einem nichtfluoreszierenden Zustand beliebig hin- und herschalten lassen. Beide Zustände sind thermisch stabil, so dass der Schaltprozess, bei dem es sich um eine Photoisomerisierung oder Photocyclisierung handelt, mit vergleichsweise niedrigen Intensitäten eines optischen Signals erzwungen werden kann. Moleküle, die unter Lichteinfluss ihre Farbe verändern, werden allgemein als photochromenen Moleküle bezeichnet.
AUFGABE DER ERFIMDUMG
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum räumlich hochauflösenden Abbilden einer Struktur einer Probe mit den Merkmalen des Oberbegriffs des Patentanspruchs 1 aufzuzeigen, das mit vergleichsweise geringem apparativem Aufwand durchführbar ist.
ZUSAMMENFASSUNG DER ERFINDUNG .
Die Aufgabe der Erfindung wird durch ein Verfahren mit den Merkmalen des Patentanspruchs 1 gelöst.
Vorteilhafte Ausführungsformen des neuen Verfahrens sind in den Unteransprüchen beschrieben.
BESCHREIBUNG DER ERFINDUNG
Die Verwendung von Substanzen, die zwei Zustände mit unterschiedlichen optischen Eigenschaften aufweisen, ist ein zentraler Aspekt der Erfindung. Dabei kann mit einem Umschaltsignal die Substanz gezielt von dem ersten in den zweiten Zustand geschaltet werden. Dieser Vorgang ist umkehrbar. D.h., die Substanz kann auch wieder zurück in den ersten Zustand gebracht werden. Die optischen Eigenschaften der Substanz in dem ersten Zustand unterscheiden sich von denjenigen in dem zweiten Zustand dadurch, dass nur sie das Messsignal unterstützen. Es ist jedoch nicht zwingend, dass die relevanten optischen Eigenschaften „binär" sind, d.h. in dem einen Zustand zu 100 % und in dem anderen Zustand zu 0% vorliegen. Es ist vielmehr ausreichend, wenn bei den relevanten optischen Eigenschaften so große Unterschiede gegeben sind, dass sie eine zumindest überwiegende Zuordnung des Messsignals zu dem ersten Zustand erlauben.
Im Gegensatz zum Stand der Technik auf dem Gebiet der Fluoreszenzmikroskopie macht die Erfindung keinen Gebrauch von zwei einfachen Energiezuständen eines Moleküls zwischen denen das Molekül durch einfache energetische Anregung überführbar ist. Vielmehr unterscheiden sich die beiden Zustände mindestens hinsichtlich eines der folgenden Kriterien:
Konformationszustand eines Moleküls,
Strukturformel eines Moleküls, räumliche Anordnung von Atomen innerhalb eines Moleküls, räumliche Anordnung von Bindungen innerhalb eines Moleküls, Anlagerung weiterer Atome oder Moleküle an ein Molekül,
Gruppierung von Atomen und/oder Molekülen, räumliche Orientierung eines Moleküls,
Orientierung benachbarter Moleküle zueinander, - von einer Vielzahl von Molekülen und/oder Atomen ausgebildete Ordnung.
Zum Überführen der entsprechenden Substanzen von ihrem ersten in ihren zweiten Zustand bewirkt das optische Umschaltsignal also beispielsweise eine Umlagerungen von Atomgruppen, eine Photoisomerisierung, insbesondere eine cis-trans Isomerisierung, eine Photozyklisierung, eine Protonierung oder De-Protonierungen, eine Spin-Umklappung, einen Elektronentransfer und/oder Energietransfer zwischen verbundenen Molekülen oder Moleküluntereinheiten.
Ein Vorteil der Erfindung gegenüber dem Stand der Technik auf dem Gebiet der Fluoreszenzmikroskopie besteht darin, dass die Zustände der in Frage kommenden Substanzen in der Regel eine um ein Vielfaches längere Lebensdauer als die an der Fluoreszenz beteiligten Energiezustände aufweisen. Die Lebensdauer des zweiten Zustands beträgt daher in der Regel mindestens 1 ns. Bevorzugt ist eine Lebensdauer von mindestens 10 ns. Besonders bevorzugt sind thermisch stabile Zustände. Zudem sind die Intensitäten, die zum Erreichen der Zustandsänderung mit dem Umschaltsignal erforderlich sind, relativ gering. Zahlreiche Umschaltprozesse, bei denen der Ausgangs- und/oder Endzustand relativ langlebig (> 10 ns) ist, können mit vergleichsweise niedrigen Intensitäten ausgelöst und in die Sättigung gebracht werden, weil es nur verhältnismäßig langsame oder manchmal sogar keine Prozesse gibt, die mit dem Umschaltprozess konkurrieren.
Die unterschiedlichen optischen Eigenschaften der beiden Zustände der Substanz können unterschiedliche spektrale Eigenschaften sein. Beispielsweise können die ersten optischen Eigenschaften gegenüber den zweiten optischen Eigenschaften unterschiedliche Absorptionen für ein optisches Testsignal aufweisen, wobei das Messsignal in Transmission oder auch in Reflektion beobachtet werden kann. Als unterschiedliche spektrale Eigenschaften bevorzugt sind unterschiedliche Lumineszenzen aus der Fluoreszenz, Phosphoreszenz, Elektrolumineszenz und Chemolumineszenz umfassenden Gruppe. Moleküle, die ihre spektralen Eigenschaften, insbesondere ihre Farbe verändern und die ebenfalls als Substanz zur Markierung der interessierenden Struktur im Rahmen der Erfindung geeignet sind, werden auch als photochrom bezeichnet. Statt unterschiedlicher spektraler Eigenschaften können die beiden Zustände der Substanz auch unterschiedliche Polarisationseigenschaften, beispielsweise in Bezug auf ein optisches Testsignal oder ein von der Probe selbst emittiertes Messsignal, aufweisen.
Um bei dem neuen Verfahren die Beugungsgrenze bei der Ortsauflösung zu unterschreiten, sind die Substanz und das Umschaltsignal so aufeinander abzustimmen, dass das Überführen von dem ersten Zustand mit dem Umschaltsignal in den zweiten Zustand nichtlinear von der Intensität des Umschaltsignals abhängt. Dies wird erreicht, wenn die Überführung der Substanz in den zweiten Zustand überall dort vollständig bzw. im Wesentlichen vollständig erfolgt, wo das Umschaltsignal einen Sättigungsgrenzwert überschreitet. Konkret muss die Intensität des Umschaltsignals in dem gesamten Registrierbereich außerhalb des gezielt ausgelassenen räumlichen Bereichs den Sättigungsgrenzwert überschreiten, und gleichzeitig muss der gezielt ausgelassene räumliche Bereich ein lokales Intensitätsminimum des Umschaltsignals sein. Ein solches lokales Intensitätsminimum mit Nullstelle der Intensität kann durch ein Interferenzmuster bereitgestellt werden. Grundsätzlich können hierzu aber auch Projektionen eingesetzt werden; man kann das Umschaltsignal weiterhin unter einem spitzen oder stumpfen Winkel von der Seite einstrahlen. Darüber hinaus sind Hologramme zur Erzeugung lokaler Intensitätsminima des Umschaltsignals möglich. Mit den Intensitätsminima einfacher Interferenzmustern sind aber besonders leicht kleinste räumliche Bereiche definierbar, die von dem Umschaltsignal ausgelassen werden.
Bevorzugt werden bei den neuen Verfahren Substanzen eingesetzt, die mit einem anderen Schaltsignal von dem zweiten in den ersten Zustand überführbar sind. Bei dem andern Schaltsignal kann es sich wie bei dem Umschaltsignal um ein optisches Signal handeln. Es kann beispielsweise aber auch eine elektrisches oder thermisches Signal sein. Es ist weiterhin möglich, dass die Rückschaltung in den ersten Zustand spontan, d.h. bereits bei Umgebungstemperatur thermisch getrieben, erfolgt. So ist es bekannt, dass Moleküle die eine photoinduzierte cis-trans-lnsomerisierung durchlaufen, rein thermisch in den ersten Zustand zurück kommen können. Mit dem anderen Schaltsignal kann die Substanz aber gezielt in den ersten Zustand zurück gebracht werden, was vorteilhaft sein kann, um das Verfahren insgesamt zu beschleunigen. Das andere Schaltsignal wird bevorzugt vor dem Umschaltsignal bzw. nach dem Registrieren des Messsignals angewandt. Sofern das Umschalten mit dem Umschaltsignal durch das andere Schaltsignal nicht wesentlich beeinträchtigt wird, kann das andere Schaltsignal auch noch während des Aufbringens des Umschaltsignals auf die Probe aufgebracht werden. Es ist weiterhin nicht erforderlich, das andere Schaltsignal auf den interessierenden räumlichen Bereich einzugrenzen, was den Aufwand für das Aufbringen bei optischen Schaltsignalen reduziert und andere Arten von anderen Schaltsignalen überhaupt erst ermöglicht.
Wenn ein Testsignal auf die Probe gerichtet wird, um das zu registrierende Messsignal zu erzeugen, wird dies nach dem Umschaltsignal auf die Probe aufgebracht. Dabei kann auch das Testsignal über einen den gezielt ausgelassenen räumlichen Bereich einschließenden größeren Bereich auf die Probe aufgebracht werden. Die für die Erhöhung der Ortsauflösung des neuen Verfahrens erforderliche räumliche Eingrenzung wird von dem optischen Umschaltsignal geleistet.
Wenn es sich bei dem Messsignal um von der Probe emittiertes Licht handelt, kann ein entsprechendes Anregungssignal, das als Testsignal eingesetzt wird, auch gleichzeitig mit dem Umschaltsignal auf die Probe aufgebracht werden. Es sollte aber in jedem Fall später oder frühestens gleichzeitig mit dem anderen Schaltsignal auf die Probe aufgebracht werden, soweit das Anregungssignal und das andere Schaltsignal nicht sowieso identisch sind.
Um eine Probe vollständig abzubilden, ist es erforderlich, dass die Probe mit dem von dem Umschaltsignal gezielt ausgelassenen Bereich abgerastert, d.h. an allen Punkten abgetastet, wird. Dabei kann die Probe zu einem Zeitpunkt auch in mehreren voneinander beabstandeten Punkten, d.h. definierten Bereichen, gleichzeitig gemessen werden. Dabei werden mehrere optische Messsignale, die der Substanz in dem ersten Zustand zuzuordnen sind, für mehrere Registrierbereiche, die jeweils neben Bereichen, in denen die Substanz in den zweiten Zustand überführt ist, einen gezielt ausgelassenen Bereich umfassen, zwar gleichzeitig aber getrennt voneinander registriert. Die Rasterung kann jeweils durch eine räumliche Verschiebung der verwendeten Schaltsignale, insbesondere des Umschaltsignals, gegenüber den Koordinaten der Probe erfolgen. Da alle von dem Umschaltsignal gezielt ausgelassenen räumlichen Bereiche vorzugsweise Intensitätsminima eines Interferenz- musters sind, kann die Rasterung durch die Verschiebung einer oder mehrerer Interferen∑minima des Umschaltsignals erfolgen. Dabei kann diese Verschiebung durch eine reine Phasenverschiebung der interferierenden Strahlen bewerkstelligt werden.
Beim Abrastern einer Probe nach dem neuen Verfahren ergibt sich eine zyklische Abfolge der Schritte: Überführen der Substanz in Bereichen der Probe mit dem Umschaltsignal in den zweiten Zustand, wobei ein definierter Bereich gezielt ausgelassen wird; Registrieren des optischen Messsignals, das der Substanz in dem ersten Zustand zuzuordnen ist, für einen den jeweils gezielt ausgelassenen Bereich umfassenden Registrierbereich; und Überführen der Substanz in den ersten Zustand. Dabei reicht es, wie bereits angedeutet wurde, aus, wenn nur das Umschaltsignal mit seinem Intensitätsminimum genau auf den jeweils interessierenden definierten Bereich der Probe ausgerichtet wird.
Vorzugsweise wird die Substanz mit den unterschiedlichen optischen Eigenschaften aus der Gruppe der Proteine ausgewählt. Hierzu gehören insbesondere die bekannten Proteine asCP (asF595) und T70a/A148S/S165V, welche über zwei Konformationszustände mit geeigneten spektralen Eigenschaften verfügen, oder auch das Green-Fluorescent-Protein (GFP) und davon abgeleitete Mutanten.
Proteine als markierende Substanzen können auch auf gentechnischem Wege in eine biologische Probe eingebracht werden, so dass keine nachträgliche Markierung der Struktur der Probe mit der Substanz erforderlich ist, die die Probe negativ beeinträchtigen oder zumindest durch den Schritt des Markierens verändern kann. Wenn ein gentechnisches Markieren der interessierenden Strukturen der Probe nicht möglich ist, kann die Struktur der Probe in an sich bekannter Weise mit der Substanz markiert werden. Beispielsweise können dabei Hilfssubstanzen verwendet werden, die an die interessierende Struktur selektiv anbinden und an die wiederum die Substanz angebunden ist oder wird. Aus dem Bereich des Einfärbens von Proben für die Fluoreszenzmikroskopie sind dem Fachmann hier viele Vorgehensweisen bekannt. Die Probe kann auch von Natur aus über Moleküle mit geeigneten optischen Zuständen, die die Anforderungen an die Substanz für das neue Verfahren erfüllen.
Das neue Abbildungsverfahren kann nach dem Markieren der Strukturen mit der fluoreszierenden Substanz auf einem üblichen Fluoreszenzmikroskop durchgeführt werden, wobei der zusätzliche Aufwand für die Auflösungsverbesserung unter die Beugungsgrenze vergleichsweise gering ist und sich auf zusätzliche Mittel zum Bereitstellen des optischen Umschaltsignals beschränken kann. Diese Mittel könne beispielsweise einen einfachen Laser oder auch eine konventionelle Lampe umfassen. In einer bevorzugten Ausführung, bei der zur Beschleunigung des Verfahrens in mehreren Bereichen gleichzeitig gemessen wird, werden die Messsignale aus den einzelnen Bereichen gleichzeitig mit einer (CCD-) Kamera ausgelesen. Das Gesamtbild der Probe ergibt sich dann aus der Zusammenfügung mehrerer Bilder mit unterschiedlichen Positionen der vermessenen Bereiche in der Probe.
KURZBESCHREIBUNG DER FIGUREN
Im Folgenden wird die Erfindung anhand von in den Figuren dargestellten Details weiter erläutert und beschrieben.
Fϊg. 1 zeigt symbolisch zwei Konformationszustände eines Moleküls oder
Molekülkomplexes, und
Fig.2 zeigt schematisch eine Anordnung zur Durchführung des neuen Verfahrens.
FIGURENBESCHREIBUNG
Flg. 1 zeigt symbolisch ein Molekül oder einen Molekülkomplex, das bzw. der sich in zwei verschiedenen Zuständen 1 und 2 befinden kann. Der erste Zustand 1 ist dabei fluoreszenztauglich, der zweite Zustand 2 dagegen nicht. Durch Beleuchtung mit einem Umschaltsignal 3 mit einer bestimmten Wellenlänge kann eine gezielter Wechsel von dem ersten Zustand 1 in den zweiten Zustand 2 induziert werden. Aus dem zweiten Zustand 2 kann das Molekül beispielsweise spontan in den ersten Zustand 1 zurückkehren. Bevorzugt ist es aber, wenn beide Zustände 1 und 2 thermisch stabil sind und zum Zurückschalten in den ersten Zustand 1 ein weiteres optisches Schaltsignal verwendet wird.
Flg. 2 zeigt schematisch eine mögliche Anordnung zur Durchführung der Erfindung mit zwei Strahlteilern 11 und 12 sowie einem Objektiv 13. Eine Probe 7 wird hier einerseits durch ein
Anregungssignal, das als Testsignal 4 verwendet wird, von einer Fluoreszenzanregung 6 zur
Fluoreszenz angeregt, andererseits aber durch das Umschaltsignal 3 von einem Fluoreszenzverhinderungsmittel 8 an definierbaren Orten an der Fluoreszenz gehindert, indem Moleküle reversibel ortsabhängig in den nicht fluoreszenzfähigen zweiten Zustand versetzt werden. Im gezeigten Beispiel geschieht dies durch gekreuzte interferenzfähige Strahlen 14. Fluoreszenz kann in diesem Fall nur noch in schmalen räumlichen Bereichen 9 erzeugt werden, die bei geeigneten Bedingungen, wie der Sättigung des Umschaltens, schmaler sind als die Beugungsgrenze. Durch rasterndes Verschieben des Interferenzmusters 15 und das sequentielle Erfassen und Auslesen der Fluoreszenz als Messsignal 5 mit einer Kamera 10 kann die ganze Probe 7 mit Hochauflösung erfasst werden.

Claims

PATENTANSPRÜCHE
1. Verfahren zum räumlich hochauflösenden Abbilden einer mit einer Substanz markierten Struktur einer Probe, mit den Schritten: - Auswählen der Substanz aus einer Gruppe von Substanzen, die mit einem optischen Umschaltsignal wiederholt aus einem ersten Zustand mit ersten optischen Eigenschaften in einen zweiten Zustand mit zweiten optischen Eigenschaften überführbar sind und die aus dem zweiten Zustand in den ersten Zustand zurückkehren können, - Überführen der Substanz in Bereichen der Probe mit dem Umschaltsignal in den zweiten Zustand, wobei ein definierter Bereich gezielt ausgelassen wird, und - Registrieren eines optischen Messsignals, das der Substanz in dem ersten Zustand zuzuordnen ist, für einen Registrierbereich, der neben Bereichen, in denen die Substanz in den zweiten Zustand überführt ist, den gezielt ausgelassenen Bereich umfasst, dadurch gekennzeichnet, dass die Substanz, aus einer Untergruppe von Substanzen ausgewählt wird, bei denen sich die beiden Zustände (1 , 2) mindestens hinsichtlich eines der folgenden Kriterien unterscheiden: - Konformationszustand eines Moleküls, - Strukturformel eines Moleküls, - räumliche Anordnung von Atomen innerhalb eines Moleküls, - räumliche Anordnung von Bindungen innerhalb eines Moleküls, - Anlagerung weiterer Atome oder Moleküle an ein Molekül, - Gruppierung von Atomen und/oder Molekülen, - räumliche Orientierung eines Moleküls, - Orientierung benachbarter Moleküle zueinander, - von einer Vielzahl von Molekülen und/oder Atomen ausgebildete Ordnung.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die 'Lebensdauer des zweiten Zustande (2) länger als 1 ns ist.
3. Verfahren nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass die unterschiedlichen optischen Eigenschaften der beiden Zustände (1, 2) der Substanz unterschiedliche spektrale Eigenschaften sind.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die ersten optischen Eigenschaften gegenüber den zweiten optischen Eigenschaften unterschiedliche Absorptionen für ein Testsignal aufweisen.
5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die ersten optischen Eigenschaften gegenüber den zweiten optischen Eigenschaften unterschiedliche Lumineszenzen aus der Fluoreszenz, Phosphoreszenz, Elektrolumineszenz und Chemolumineszenz umfassenden Gruppe aufweisen.
6. Verfahren nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass die unterschiedlichen optischen Eigenschaften der Zustände der Substanz unterschiedliche Polarisationseigenschaften sind.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Substanz und das Umschaltsignal (3) so aufeinander abgestimmt werden, dass sich überall dort, wo die Intensität des Umschaltsignals (3) einen Sättigungsgrenzwert überschreitet, vollständig der zweite Zustand (2) der Substanz einstellt.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Intensität des Umschaltsignals (3) in dem gesamten Registrierbereich außerhalb des gezielt ausgelassenen Bereichs (9) den Sättigungsgrenzwert überschreitet und dass der gezielt ausgelassene räumliche Bereich (9) ein lokales Intensitätsminimum des Umschaltsignals (3) ist.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das lokale Intensitätsminimum des Umschaltsignals (3) eine Intensitätsminimum mit Nullstelle eines Interferenzmusters (15) ist.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Substanz aus der Gruppe von Substanzen ausgewählt wird, die mit einem anderen Schaltsignal von dem zweiten Zustand (2) in den ersten Zustand (1 ) überführbar sind.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das andere Schaltsignal vor oder gleichzeitig mit dem Umschaltsignal (3) auf die Probe (7) aufgebracht wird.
12. Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass das andere Schaltsignal über einen den Registrierbereich einschließendes größeren Bereich auf die Probe (7) aufgebracht wird.
13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass nach dem Umschaltsignal (3) ein Testsignal auf die Probe (7) aufgebracht wird.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass das Testsignal über einen den gezielt ausgelassenen Bereich (9) einschließendes größeren Bereich auf die Probe (7) aufgebracht wird.
15. Verfahren nach Anspruch 5 und Anspruch 10, dadurch gekennzeichnet, dass die Lumineszenz durch das andere Schaltsignal angeregt wird, wobei das andere Schaltsignal während des Aufbringens des Umschaltsignals (3) auf die Probe (7) aufgebracht wird.
16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die Probe (7) mit dem gezielt ausgelassenen Bereich (9) abgerastert wird.
17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass gleichzeitig mehrere optische Messsignale, die der Substanz in dem ersten Zustand (1) zuzuordnen sind, für mehrere Registrierbereiche, die jeweils neben Bereichen, in denen die Substanz in den zweiten Zustand überführt ist, einen gezielt ausgelassenen Bereich (9) umfassen, getrennt voneinander registriert werden.
18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass in zyklischer Abfolge die Schritte - Überführen der Substanz in Bereichen der Probe (7) mit dem Umschaltsignal (3) in den zweiten Zustand (2), wobei ein definierter Bereich (9) gezielt ausgelassen wird, - Registrieren des optischen Messsignals (5), das der Substanz in dem ersten Zustand zuzuordnen ist, für einen den jeweils gezielt ausgelassenen definierten Bereich (9) umfassenden Registrierbereich, - Überführen der Substanz in den ersten Zustand, für verschiedene definierte Bereiche der Probe (7) nacheinander ausgeführt werden.
19. Verfahren nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass die Substanz aus der Untergruppe von Substanzen ausgewählt wird, die Proteine umfassen.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass die Substanz aus der Untergruppe von Substanzen ausgewählt wird, die fluoreszierende Proteine umfassen.
21. Verfahren nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass zum Markieren deren Strukturen die Substanz auf gentechnischem Wege in eine biologische Probe (7) eingebracht wird.
22. Verwendung eines Fluoreszenzmikroskops bei der Durchführung des Verfahrens nach einem der Ansprüche 1 bis 20.
PCT/EP2004/003767 2003-04-13 2004-04-08 Räumlich hochauflösendes abbilden WO2004090617A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04726457.7A EP1616216B1 (de) 2003-04-13 2004-04-08 Räumlich hochauflösendes abbilden
JP2006505064A JP5414147B2 (ja) 2003-04-13 2004-04-08 立体的高解像度結像
US11/249,098 US7430045B2 (en) 2003-04-13 2005-10-12 High spatial resolution imaging

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE10317613 2003-04-13
DE10317613.6 2003-04-13
US10/420,896 US7064824B2 (en) 2003-04-13 2003-04-22 High spatial resoulution imaging and modification of structures
US10/420,896 2003-04-22
DE10325460.9 2003-06-05
DE10325460A DE10325460A1 (de) 2003-04-13 2003-06-05 Räumlich hochauflösendes Abbilden

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/249,098 Continuation US7430045B2 (en) 2003-04-13 2005-10-12 High spatial resolution imaging
US11/249,098 Continuation-In-Part US7430045B2 (en) 2003-04-13 2005-10-12 High spatial resolution imaging

Publications (2)

Publication Number Publication Date
WO2004090617A2 true WO2004090617A2 (de) 2004-10-21
WO2004090617A3 WO2004090617A3 (de) 2007-02-08

Family

ID=33162572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/003767 WO2004090617A2 (de) 2003-04-13 2004-04-08 Räumlich hochauflösendes abbilden

Country Status (3)

Country Link
EP (1) EP1616216B1 (de)
JP (1) JP5414147B2 (de)
WO (1) WO2004090617A2 (de)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090617A3 (de) * 2003-04-13 2007-02-08 Max Planck Gesellschaft Räumlich hochauflösendes abbilden
DE102006021317B3 (de) * 2006-05-06 2007-10-11 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren und Fluoreszenzlichtmikroskop zum räumlich hochauflösenden Abbilden einer Struktur einer Probe
EP1862794A1 (de) * 2006-05-31 2007-12-05 Carl Zeiss MicroImaging GmbH Verfahren zum räumlich hochauflösenden Abbilden
EP1894010A2 (de) * 2005-05-23 2008-03-05 Harald F. Hess Optische mikroskopie mit lichtumwandelbaren optischen etiketten
JP2008083047A (ja) * 2006-09-25 2008-04-10 Leica Microsystems Cms Gmbh 検体の蛍光発生物質で標識された構造の空間的に高解像度の調査方法
EP1967887A1 (de) 2007-03-06 2008-09-10 Leica Microsystems CMS GmbH Vorrichtung und Verfahren zur Strahljustage in einem optischen Strahlengang
WO2009010506A1 (de) 2007-07-18 2009-01-22 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren zum bestimmen eines messwerts auf der basis von einzelmolekülereignissen
DE102008011993A1 (de) 2008-02-29 2009-09-10 Leica Microsystems Cms Gmbh Synchronisierte Bildgebung mittels optischer Verfahren und Rasterkraftmikroskopie
US7772569B2 (en) 2008-04-01 2010-08-10 The Jackson Laboratory 3D biplane microscopy
US8217992B2 (en) 2007-01-11 2012-07-10 The Jackson Laboratory Microscopic imaging techniques
WO2013007726A1 (en) * 2011-07-11 2013-01-17 Facultes Universitaires Notre-Dame De La Paix Method for high resolution sum-frequency generation and infrared microscopy
US8564792B2 (en) 2007-12-21 2013-10-22 President And Fellows Of Harvard College Sub-diffraction limit image resolution in three dimensions
DE102016104651A1 (de) 2015-03-24 2016-09-29 Abberior Instruments Gmbh Verfahren und Rasterfluoreszenzlichtmikroskop zum dreidimensional hochauflösenden Abbilden einer mit Fluorophoren markierten Struktur einer Probe
US9897536B2 (en) 2013-01-04 2018-02-20 University Of Limerick Differential infra red nanoscopy system and method
EP3285064A1 (de) * 2006-08-07 2018-02-21 President and Fellows of Harvard College Bildauflösung unter der diffraktionsgrenze und andere abbildungsverfahren
US10073035B2 (en) 2006-08-07 2018-09-11 President And Fellows Of Harvard College Sub-diffraction limit image resolution and other imaging techniques
EP1907826B2 (de) 2005-07-22 2020-11-25 Carl Zeiss MicroImaging GmbH Auflösungsgesteigerte lumineszenz-mikroskopie

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009015341A1 (de) 2009-03-27 2010-10-07 Carl Zeiss Ag Verfahren und Vorrichtungen zur optischen Untersuchung von Proben

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4288861A (en) * 1977-12-01 1981-09-08 Formigraphic Engine Corporation Three-dimensional systems
US5289407A (en) * 1991-07-22 1994-02-22 Cornell Research Foundation, Inc. Method for three dimensional optical data storage and retrieval
EP0801759B1 (de) * 1994-02-01 2001-08-08 Stefan Dr. Hell Vorrichtung und verfahren zum optischen messen eines probenpunktes einer probe mit hoher ortsauflösung
US6046925A (en) * 1997-04-14 2000-04-04 The Regents Of The University Of California Photochromic fluorescent proteins and optical memory storage devices based on fluorescent proteins
JPH1195120A (ja) * 1997-09-19 1999-04-09 Olympus Optical Co Ltd 顕微鏡の観察方法
JP3350442B2 (ja) * 1998-04-09 2002-11-25 科学技術振興事業団 顕微鏡システム
JP4551528B2 (ja) * 2000-03-23 2010-09-29 オリンパス株式会社 二重共鳴吸収顕微鏡
JP2001272343A (ja) * 2000-03-23 2001-10-05 Olympus Optical Co Ltd 二重共鳴吸収顕微鏡
US20030174560A1 (en) * 2002-02-26 2003-09-18 Klaus-Hermann Dahmen Photochromic compounds for molecular switches and optical memory
EP1616216B1 (de) * 2003-04-13 2018-11-07 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Räumlich hochauflösendes abbilden

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090617A3 (de) * 2003-04-13 2007-02-08 Max Planck Gesellschaft Räumlich hochauflösendes abbilden
EP1894010A4 (de) * 2005-05-23 2008-12-31 Harald F Hess Optische mikroskopie mit lichtumwandelbaren optischen etiketten
US7626695B2 (en) 2005-05-23 2009-12-01 Robert Eric Betzig Optical microscopy with phototransformable optical labels
EP2453237A1 (de) * 2005-05-23 2012-05-16 Harald F. Hess Optische Mikroskopie mit lichtumwandelbaren optischen Etiketten
US7535012B2 (en) 2005-05-23 2009-05-19 Robert Eric Betzig Optical microscopy with phototransformable optical labels
US10107753B2 (en) 2005-05-23 2018-10-23 Hestzig Llc Optical microscopy with phototransformable optical labels
US9360426B2 (en) 2005-05-23 2016-06-07 Hestzig Llc Optical microscopy with phototransformable optical labels
US8599376B2 (en) 2005-05-23 2013-12-03 Hestzig Llc Optical microscopy with phototransformable optical labels
US7782457B2 (en) 2005-05-23 2010-08-24 Hestzig Llc Optical microscopy with phototransformable optical labels
US7864314B2 (en) 2005-05-23 2011-01-04 Hestzig Llc Optical microscopy with phototransformable optical labels
US8462336B2 (en) 2005-05-23 2013-06-11 Hestzig Llc Optical microscopy with phototransformable optical labels
EP1894010A2 (de) * 2005-05-23 2008-03-05 Harald F. Hess Optische mikroskopie mit lichtumwandelbaren optischen etiketten
EP2453239A1 (de) * 2005-05-23 2012-05-16 Harald F. Hess Optische Mikroskopie mit lichtumwandelbaren optischen Etiketten
US11988604B2 (en) 2005-05-23 2024-05-21 Hestzig Llc Optical microscopy with phototransformable optical labels
US11009460B2 (en) 2005-05-23 2021-05-18 Hestzig Llc Optical microscopy with phototransformable optical labels
US7626694B2 (en) 2005-05-23 2009-12-01 Robert Eric Betzig Optical microscopy with phototransformable optical labels
US7626703B2 (en) 2005-05-23 2009-12-01 Robert Eric Betzig Optical microscopy with phototransformable optical labels
US7710563B2 (en) 2005-05-23 2010-05-04 Hestzig Llc Optical microscopy with phototransformable optical labels
EP1907826B2 (de) 2005-07-22 2020-11-25 Carl Zeiss MicroImaging GmbH Auflösungsgesteigerte lumineszenz-mikroskopie
JP2009536324A (ja) * 2006-05-06 2009-10-08 マックス−プランク−ゲゼルシヤフト・ツーア・フェルデルング・デア・ヴィッセンシャフテン・アインゲトラーゲナー・フェライン 試料の組織を3次元高分解能撮影する方法及び蛍光顕微鏡
JP2013057690A (ja) * 2006-05-06 2013-03-28 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften Ev 試料の組織を3次元高分解能投影する方法及び蛍光顕微鏡
DE102006021317B3 (de) * 2006-05-06 2007-10-11 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren und Fluoreszenzlichtmikroskop zum räumlich hochauflösenden Abbilden einer Struktur einer Probe
US7880150B2 (en) 2006-05-06 2011-02-01 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. High spatial resolution imaging of a structure of interest in a specimen
CN101484794B (zh) * 2006-05-06 2011-02-23 ***-普朗克科学促进协会 用于试样结构的空间高分辨率成像的方法和荧光显微镜
US8084754B2 (en) 2006-05-06 2011-12-27 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. High spatial resolution imaging of a structure of interest in a specimen
WO2007128434A1 (de) * 2006-05-06 2007-11-15 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren und fluoreszenzlichtmikroskop zum räumlich hochauflösenden abbilden einer struktur einer probe
EP2605003A3 (de) * 2006-05-06 2016-02-24 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren zum räumlich hochauflösenden Abbilden einer Struktur einer Probe
EP2837929A3 (de) * 2006-05-06 2015-07-08 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren und Fluoreszenzlichtmikroskop zum räumlich hochauflösenden Abbilden einer Struktur einer Probe
EP2837929A2 (de) 2006-05-06 2015-02-18 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren und Fluoreszenzlichtmikroskop zum räumlich hochauflösenden Abbilden einer Struktur einer Probe
EP2605003A2 (de) 2006-05-06 2013-06-19 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren zum räumlich hochauflösenden Abbilden einer Struktur einer Probe
EP1862794A1 (de) * 2006-05-31 2007-12-05 Carl Zeiss MicroImaging GmbH Verfahren zum räumlich hochauflösenden Abbilden
EP3285064A1 (de) * 2006-08-07 2018-02-21 President and Fellows of Harvard College Bildauflösung unter der diffraktionsgrenze und andere abbildungsverfahren
US10794828B2 (en) 2006-08-07 2020-10-06 President And Fellows Of Harvard College Sub-diffraction limit image resolution and other imaging techniques
US10073035B2 (en) 2006-08-07 2018-09-11 President And Fellows Of Harvard College Sub-diffraction limit image resolution and other imaging techniques
JP2008083047A (ja) * 2006-09-25 2008-04-10 Leica Microsystems Cms Gmbh 検体の蛍光発生物質で標識された構造の空間的に高解像度の調査方法
US8217992B2 (en) 2007-01-11 2012-07-10 The Jackson Laboratory Microscopic imaging techniques
DE102007011305A1 (de) 2007-03-06 2008-09-11 Leica Microsystems Cms Gmbh Vorrichtung und Verfahren zur Strahljustage in einem optischen Strahlengang
US8319970B2 (en) 2007-03-06 2012-11-27 Leica Microsystems Cms Gmbh Device and method for beam adjustment in an optical beam path
EP1967887A1 (de) 2007-03-06 2008-09-10 Leica Microsystems CMS GmbH Vorrichtung und Verfahren zur Strahljustage in einem optischen Strahlengang
WO2009010506A1 (de) 2007-07-18 2009-01-22 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren zum bestimmen eines messwerts auf der basis von einzelmolekülereignissen
DE102007033737A1 (de) 2007-07-18 2009-01-22 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren zum Bestimmen eines Messwerts auf der Basis von Einzelmolekülereignissen
US9077975B2 (en) 2007-12-21 2015-07-07 President And Fellows Of Harvard College Sub-diffraction limit image resolution in three dimensions
US9712805B2 (en) 2007-12-21 2017-07-18 President And Fellows Of Harvard College Sub-diffraction limit image resolution in three dimensions
US9137516B2 (en) 2007-12-21 2015-09-15 President And Fellows Of Harvard College Sub-diffraction limit image resolution in three dimensions
US10412366B2 (en) 2007-12-21 2019-09-10 President And Fellows Of Harvard College Sub-diffraction limit image resolution in three dimensions
US8564792B2 (en) 2007-12-21 2013-10-22 President And Fellows Of Harvard College Sub-diffraction limit image resolution in three dimensions
DE102008011993A1 (de) 2008-02-29 2009-09-10 Leica Microsystems Cms Gmbh Synchronisierte Bildgebung mittels optischer Verfahren und Rasterkraftmikroskopie
US7772569B2 (en) 2008-04-01 2010-08-10 The Jackson Laboratory 3D biplane microscopy
US7880149B2 (en) 2008-04-01 2011-02-01 The Jackson Laboratory 3D biplane microscopy
US9664614B2 (en) 2011-07-11 2017-05-30 University Of Limerick Method for high resolution sum-frequency generation and infrared microscopy
WO2013007726A1 (en) * 2011-07-11 2013-01-17 Facultes Universitaires Notre-Dame De La Paix Method for high resolution sum-frequency generation and infrared microscopy
US9897536B2 (en) 2013-01-04 2018-02-20 University Of Limerick Differential infra red nanoscopy system and method
DE102016104651A1 (de) 2015-03-24 2016-09-29 Abberior Instruments Gmbh Verfahren und Rasterfluoreszenzlichtmikroskop zum dreidimensional hochauflösenden Abbilden einer mit Fluorophoren markierten Struktur einer Probe

Also Published As

Publication number Publication date
JP5414147B2 (ja) 2014-02-12
EP1616216B1 (de) 2018-11-07
EP1616216A2 (de) 2006-01-18
WO2004090617A3 (de) 2007-02-08
JP2007524071A (ja) 2007-08-23

Similar Documents

Publication Publication Date Title
DE10325460A1 (de) Räumlich hochauflösendes Abbilden
WO2004090617A2 (de) Räumlich hochauflösendes abbilden
DE102016117096B4 (de) Verfahren zum hochaufgelösten lokalen Abbilden einer Struktur in einer Probe
EP3427036B1 (de) Verfahren zum hochaufgelösten lokalen abbilden einer struktur in einer probe, um reaktionen eines interessierenden objekts auf veränderte umgebungsbedingungen zu erfassen
EP2016392B1 (de) Verfahren zum räumlich hochauflösenden fluoreszenzlichtabbilden einer struktur einer probe
EP2067020B1 (de) Auflösungsgesteigerte lumineszenzmikroskopie
DE102016119263B4 (de) Verfahren zum räumlich hochauflösenden Bestimmen des Orts eines vereinzelten, mit Anregungslicht zur Emission von Lumineszenzlicht anregbaren Moleküls in einer Probe
EP1907826B2 (de) Auflösungsgesteigerte lumineszenz-mikroskopie
EP3523631B1 (de) Verfahren zum räumlich hochauflösenden bestimmen des orts eines vereinzelten, mit anregungslicht zur emission von lumineszenzlicht anregbaren moleküls in einer probe
DE102016119264B4 (de) Verfahren zum räumlich hochauflösenden Bestimmen des Orts eines vereinzelten, mit Anregungslicht zur Emission von Lumineszenzlicht anregbaren Moleküls in einer Probe
DE102008024568A1 (de) Verfahren zum räumlich hochauflösenden Abbilden einer interessierenden Struktur einer Probe
DE102016119262B4 (de) Verfahren zum räumlich hochauflösenden Bestimmen des Orts eines vereinzelten, mit Anregungslicht zur Emission von Lumineszenzlicht anregbaren Moleküls in einer Probe
DE102013208926A1 (de) Verfahren zur 3D-hochauflösenden Lokalisierungsmikroskopie
EP3278165A2 (de) Verfahren und rasterfluoreszenzlichtmikroskop zum mehrdimensional hochauflösenden abbilden einer struktur oder eines wegs eines partikels in einer probe
EP1733209A1 (de) Verfahren zur anregung der moleküle von einem ersten zustand in einen zweiten zustand mit einem optischen signal
DE102009055216A1 (de) Lumineszenzmikroskopie
EP3365662B1 (de) Verfahren und vorrichtung zum hochauflösenden abbilden einer mit fluoreszenzmarkern markierten struktur einer probe
DE102015121920A1 (de) Hochauflösendes Kurzzeit-Mikroskopieverfahren und hochauflösendes Kurzzeit-Mikroskop
EP1616344B1 (de) Räumlich hochaufgelöstes erzeugen einer dauerhaften struktur
DE102021107704B4 (de) Verfahren und Lichtmikroskop zum hochaufgelösten Untersuchen einer Probe
DE102006026203A1 (de) Verfahren zum räumlich hochauflösenden Abbilden
DE102006011176B4 (de) Verfahren und Vorrichtung zum räumlich hoch aufgelösten Abbilden einer mit einem Fluoreszenzfarbstoff markierten Struktur
EP4168778A1 (de) Verfahren zur lokalisation einzelner moleküle eines farbstoffs in einer probe und zum erzeugen hochaufgelöster bilder einer struktur in einer probe
DE102020134797B3 (de) Verfahren zum Abbilden einer interessierenden Struktur einer Probe und Mikroskop mit Array-Detektor zu dessen Durchführung
DE102022112384A1 (de) Verfahren, lichtmikroskop und computerprogramm zum einstellen einer zeitverzögerung zwischen lichtpulsen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006505064

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11249098

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004726457

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004726457

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11249098

Country of ref document: US