WO2004077140A1 - 画像表示用パネル及び画像表示装置 - Google Patents

画像表示用パネル及び画像表示装置 Download PDF

Info

Publication number
WO2004077140A1
WO2004077140A1 PCT/JP2004/002159 JP2004002159W WO2004077140A1 WO 2004077140 A1 WO2004077140 A1 WO 2004077140A1 JP 2004002159 W JP2004002159 W JP 2004002159W WO 2004077140 A1 WO2004077140 A1 WO 2004077140A1
Authority
WO
WIPO (PCT)
Prior art keywords
image display
display panel
powder fluid
particle group
particles
Prior art date
Application number
PCT/JP2004/002159
Other languages
English (en)
French (fr)
Inventor
Ryo Sakurai
Hidetoshi Hiraoka
Taichi Kobayashi
Hirotaka Yamazaki
Hajime Kitano
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to EP04714447A priority Critical patent/EP1598694A4/en
Priority to JP2005502888A priority patent/JP4579822B2/ja
Priority to US10/546,773 priority patent/US7369299B2/en
Publication of WO2004077140A1 publication Critical patent/WO2004077140A1/ja
Priority to US12/053,359 priority patent/US7483202B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/1671Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect involving dry toners
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1679Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • G02F1/1681Gaskets; Spacers; Sealing of cells; Filling or closing of cells having two or more microcells partitioned by walls, e.g. of microcup type

Definitions

  • Image display panel and image display device are Image display panel and image display device
  • the present invention relates to an image display panel, and in particular, to an image display used in an irreversible image display device capable of repeatedly displaying an image by utilizing the flying movement of particles or the movement of powder fluid due to Coulomb force or the like.
  • the present invention relates to a display panel and an image display device.
  • an image display device that replaces liquid crystal (LCD)
  • a technique such as an electrophoresis method, an electrochromic method, a thermal method, or a two-color particle rotation method has been proposed.
  • the surface of the substrate that comes in contact with the encapsulated particles with excellent mobility or the powder fluid is in a state where the substrate constituent material is exposed as it is, it can be used repeatedly as an image display panel. It was insufficient in terms of sex. In other words, when used repeatedly, a phenomenon occurs in which particles and powder fluid remain stuck on the surface of the substrate, regardless of whether they are a particle group or a powdery fluid, and image contrast is impaired. (The problem of the first invention).
  • At least one type of particles is enclosed in a plurality of cells provided by partition walls between two substrates, at least one of which is transparent.
  • An image display device including an image display panel for displaying an image by applying an electric field to the particles and causing the particles to fly and move by Coulomb force or the like is known.
  • a partition is formed by a photoresist on a glass substrate, and when forming a plurality of cells between two substrates, the partition is formed in any shape. Therefore, if the ratio of the height Lh to the width Lw of the partition wall is set to a value outside the appropriate range, the aperture ratio and the productivity are reduced. Will be.
  • the humidity in the apparatus can be suitably controlled without using a desiccant.
  • this problem is caused by the high fluidity in the aerosol state in which a solid substance is stably suspended as a dispersoid in a gas in a plurality of cells formed by partition walls between at least one of two transparent substrates.
  • an image display device that includes an image display panel that displays an image by enclosing a powdered fluid that shows the following, applying an electric field to the powdered fluid, and moving the powdered fluid. Disclosure of the invention
  • the objects of the first to fourth inventions of the present invention solve the above-described problems, even when using a particle group excellent in mobility, even when using a powder fluid, To provide an inexpensive image display panel and an image display device having excellent durability in repeated use. Is to try.
  • an object of the fifth invention of the present invention is to solve the above-mentioned problem, and to make the partition shape such that the ratio of the height Lh to the width Lw of the partition falls within an appropriate range, thereby reducing the aperture ratio. It is an object of the present invention to provide an image display device in which security and manufacturability are compatible. Further, an object of the sixth invention of the present invention is to solve the above-mentioned problem, and to add a predetermined drying function to the partition walls to make the atmosphere in the apparatus uniform without using a desiccant. It is intended to provide.
  • the first invention of the image display panel according to the present invention is characterized in that at least one of the transparent substrates opposes at least one kind of particle group or powder fluid, and applies an electric field to the particle group or powder fluid to produce particles or
  • a substrate whose surface in contact with a particle group or a powder fluid is subjected to a hydrophobic treatment and a substrate whose surface is treated with hexamethyldisilazane is used.
  • the measured water absorption is 3% or less, and the volume occupancy of the particles or the powder fluid filled between the substrates is in the range H of 3 to 70 V o 1%.
  • the present invention can be implemented more effectively.
  • the surface of the substrate in contact with the particle group or the powder fluid is made hydrophobic, so that the particle group and the powder fluid hardly aggregate and adhere to the substrate surface.
  • a substrate surface state that does not impair the mobility of the powder fluid can be obtained.
  • one or two or more cells surrounded by a partition wall are formed between two substrates at least one of which is opposed to each other at a predetermined interval and is transparent at least.
  • an electric field is applied to the particle group or the powder fluid, and an image is displayed by moving the particles or the powder fluid, at least the particle group or the powder
  • the surface of the partition wall in contact with the fluid is subjected to a hydrophobic treatment.
  • the surface of the partition wall in contact with the particle group or the powder fluid is subjected to a hydrophobic treatment, so that the particle group and the powder liquid are less likely to aggregate and adhere to the partition wall surface.
  • the surface state of the partition walls does not impair the mobility of the powder fluid.
  • the surface of the partition wall in contact with the particle group or the powder fluid is subjected to a hydrophobic treatment with hexamethyldisilazane;
  • An OH group addition step may be provided as a step prior to the hydrophobization treatment with silazane.
  • the present invention can be implemented more effectively.
  • the third invention of the image display panel of the present invention is characterized in that at least one of two or more substrates facing each other at a predetermined interval is surrounded by a partition wall between at least one of two transparent substrates.
  • An image display panel that forms particles, stores particles or powder in each cell, applies an electric field to the particles or powder, and moves the particles or powder to display an image.
  • At least the surface of the partition in contact with the particle group or the powder fluid is coated with a material having a small charge decay property.
  • at least the surface of the partition wall in contact with the particle group or the powder fluid is coated with a material having a small charge decay property, so that the particle group and the powder fluid aggregate and adhere to the partition wall surface. It is difficult to transfer particles and powder fluid The partition wall surface state that does not impair the mobility can be obtained. As a result, an inexpensive image display panel with excellent durability in repeated use can be obtained.
  • a material having a small charge decay property is a resin containing a fluororesin
  • the fluororesin is a tetrafluoroethylene-perfluoroalkyl Vinyl ether copolymer, tetrafluoroethylene monohexafluoropropylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene monoethylene copolymer, polychlorotrifluoroethylene, black trifluorene
  • the present invention can be implemented more effectively.
  • the fourth invention of the image display panel according to the present invention is characterized in that at least one of the cells opposing at a predetermined interval is disposed between at least one of two transparent substrates and one or more cells surrounded by a partition wall.
  • a particle group or a powder fluid is stored in each cell, an electric field is applied to the particle group or the powder fluid, and an image is displayed by moving the particles or the powder fluid.
  • the universal hardness of the binder resin used as a constituent material of the partition wall is such that the binder resin forming the partition wall is In Interview two Universal Measurement method of hardness monkey hardness performed by forming three thick on a glass plate of 2000 N / mm 2, by at 400 N / mm 2 or more, the particles and the liquid powders partition wall surface Aggregation and adhesion are less likely to occur, and a partition wall surface state that does not impair the mobility of the particle group and the powder fluid can be obtained. As a result, an inexpensive image display panel with excellent durability in repeated use can be obtained.
  • a particle group or a powder fluid contained in a cell is measured under a measurement condition of 23 ° C. according to ASTM D570.
  • the water absorption rate measured within 24 hours is 3% or less
  • the volume occupancy of the particles or powder fluid stored in the cell is in the range of 3 to 70 V o 1%
  • the stored particles or powder fluids have different charging characteristics and different colors, and are stored in the cell while charged to different charging potentials.
  • An image is displayed by applying an electric field to move a group of particles or a powder fluid. In any case, the present invention can be implemented more effectively.
  • At least one kind of particle group or powder fluid is enclosed in a plurality of cells provided by partition walls between two transparent substrates.
  • the ratio LhZLw of the height Lh and the width Lw of the partition wall was set to 0.5 ⁇ Lh / Lw ⁇ 20, which is clear from the examples described later.
  • partition shapes that do not provide the minimum necessary aperture ratio for practical use and partition shapes that are difficult to manufacture are excluded, and image display panels that ensure both an aperture ratio and productivity are achieved.
  • the ratio LhZLw between the height Lh and the width L of the partition wall is l ⁇ LhZLw ⁇ l0, which will be described later.
  • At least one kind of particle group or powder fluid is sealed in a plurality of cells provided by partition walls between at least one of two transparent substrates.
  • the drying function enables the humidity to be controlled without enclosing a desiccant in the device. Become. Therefore, it is possible to provide an image display device in which the atmosphere inside the device is made uniform without using a desiccant.
  • the water absorption rate S of the partition wall is 0.1% ⁇ S ⁇ 10%, as is clear from the examples described later, and the water absorption effect is small. This excludes cases in which the partition walls become insufficient and cases in which excessive absorption of water during the assembly process adversely affects display performance, which is preferable in that the partition walls exhibit a predetermined drying function.
  • an image display device of the present invention is provided with the image display panel having the above-described configuration.
  • FIG. 1 is a diagram showing an example of a display system using particle groups in the image display panel of the present invention.
  • FIG. 2 is a diagram showing another example of a display method using particle groups in the image display panel of the present invention.
  • FIG. 3 is a diagram showing an example of a panel structure using a particle group in the image display panel of the present invention.
  • FIG. 4 is a diagram showing an example of a display system using a powder fluid in the image display panel of the present invention.
  • FIG. 5 is a diagram showing another example of a display system using a powder fluid in the image display panel of the present invention.
  • FIG. 6 is a diagram showing an example of a panel structure using a powder fluid in the image display panel of the present invention.
  • FIG. 7 is a diagram schematically showing an apparatus for measuring a surface potential.
  • FIG. 8 is a diagram for explaining the requirements for the sectional shape of the partition wall in the image display panel according to the fifth invention of the present invention.
  • FIGS. 9A and 9B are a detailed sectional view and a plan view, respectively, of a partition wall in the image display panel according to the sixth invention of the present invention.
  • FIG. 10 is a diagram showing an example of a display cell formed by partition walls.
  • an electric field is applied to the particle group or the powder fluid by some means on the display panel in which the particle group or the powder fluid is sealed between the opposing substrates.
  • Particles or powder fluid charged to low potential are attracted by Coulomb force toward the high potential side
  • particles or powder fluid charged to high potential are attracted to Coulomb force toward the low potential side
  • the image display panels according to the first to sixth inventions of the present invention have two or more different colors.
  • Examples of the panel structure for display are shown in Fig. 3 (using particle group 3A) and Fig. 6 (using powder fluid 3B).
  • reference numeral 4 denotes a partition provided as needed
  • reference numerals 5 and 6 denote electrodes provided as necessary to apply an electric field to the particle group 3A or the powder fluid 3B.
  • a feature of the first invention of the present invention is that, in the image display panel having the above-described configuration, preferably, the surface of the substrate 1 facing the substrate 2 and the surface of the Z or the substrate 2 facing the substrate 1 are preferably hexamethyldimethyl.
  • a hydrophobizing treatment using silazane was performed.
  • at least the surface of the substrate on the side in contact with the particle group or the powder fluid of the display panel is made hydrophobic, and the water content of the particle substance constituting the particle group or the powder fluid is adjusted appropriately.
  • a suitable example of a method for hydrophobizing the surface of a substrate is to improve the durability in repeated use by making the particle group or the filling amount of the powder fluid appropriate.
  • Hexamethyldisilazane treatment is performed on the substrate surface.
  • the particles and the powder fluid are less likely to aggregate and adhere to the substrate surface, and the substrate surface state does not impair the mobility of the particles and the powder fluid. be able to.
  • the functional group on the substrate surface and hexamethyldisilazane are chemically bonded as shown in the following formula, so that the substrate surface is made hydrophobic and the influence on the particle group and the powder fluid is reduced. good.
  • Treatment method is to impregnate the substrate in a solution of hexamethyldisilazane and then separate by centrifugation or other means. Then, a wet method in which heating and drying are performed, or a dry method in which hexanemethyldisilazane or a solution thereof is introduced into a dried substrate by dropping or spraying, and then heated and dried, is used.
  • the treatment amount of hexamethyldisilazane on the substrate surface is not particularly limited in the present invention, but a sufficient effect can be usually obtained by using a solution of 0.1 to 10% by weight.
  • silane coupling agent As another method for making the substrate surface hydrophobic, there is a method using another silane coupling agent. This can be performed in the same manner as in the above-mentioned hexamethyldisilazane.
  • silane coupling agents include methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, dimethylethoxysilane, isobutyltrimethoxysilane, Examples include decyltrimethoxysilane, ter-butyldimethylchlorosilane, vinyltrichlorosilane, vinyltrimethoxysilane, and vinyltriethoxysilane.
  • the present invention has been made as a result of intensive studies on the partition walls 4 formed on the substrate.
  • the particles and the powder fluid aggregate and adhere to the surface of the partition walls.
  • the durability of the image display panel is improved (second invention).
  • the particles and the powder fluid can be separated from the ribs. Hardly aggregates on the surface
  • the durability of the image display panel is improved (third invention).
  • the universal hardness of the binder resin used for forming the partition walls (ribs) is 40 ON / mm 2. With the above, particles and powder fluid hardly aggregate and adhere to the surface of the partition wall.
  • hexamethyldisilazane treatment is performed on the surface of the partition wall.
  • the partition wall surface is hydrophobized, and the influence on the particle group and the powder fluid is reduced. It is good because it becomes smaller.
  • the treatment method includes impregnating the substrate with the partition walls formed therein with a solution of hexamethyldisilazane, separating the substrate by means such as centrifugation, and heating and drying the substrate.
  • a dry method is used in which disilazane or a solution thereof is introduced by dropping, spraying, etc., and then heated and dried.
  • the treatment amount of hexamethyldisilazane on the surface of the partition wall is not particularly limited in the present invention, but a sufficient effect can usually be obtained by using a 0.1 to 100% by weight solution. Further, it is preferable to perform an O H group addition step as a step before the treatment with hexamethyldisilazane.
  • This OH group addition step can be performed by a method such as a plasma treatment or a NaOH treatment.
  • a method for hydrophobizing the partition wall surface there is a method using another silane coupling agent. This can be performed in the same manner as in the above-mentioned hexamethyldisilazane.
  • silane coupling agents include methyltrichlorosilane
  • the material for coating the partition wall surface is made into a film with a thickness of 5 to 100 m, and a voltage of 8 KV is applied to a corona discharger arranged at a distance of 1 mm from the film surface.
  • the surface is charged by generating corona discharge, and the change in the surface potential is measured and determined.
  • it is important to coat a material whose maximum value of the surface potential after 0.3 seconds is higher than 300 V, preferably higher than 400 V.
  • Resin materials containing a fluororesin are examples of such a coating material having a small charge decay property.
  • the fluororesin include a tetrafluoroethylene-perfluoroalkylvinylether copolymer, and tetrafluoroethylene.
  • One or more fluororesins selected from ethylene, polyfluoride, and polyvinylfluoride.
  • the measurement of the surface potential can be performed, for example, using an apparatus (CRT 2000 manufactured by QEA) disclosed in the specification and drawings of Japanese Patent No. 22,003.
  • Figure 7 shows the outline of the device. In the apparatus shown in FIG.
  • a roll-shaped member 11 on which a coating resin is disposed on the surface is held by a chuck 13 at a shaft portion 12 thereof, while a small scorotron discharger 14 and a surface electrometer 15 are provided.
  • the measurement unit 16 is installed at a predetermined distance from the surface of the member 11 so as to be opposed to each other at an interval of 1 mm.
  • the measurement unit 16 is moved along the rail 17 from one end of the member 11 to a constant speed to charge the surface of the member 11 The surface potential is measured.
  • the measurement environment at this time is a temperature of 25 ⁇ 3 ° C and a humidity of 5 & ⁇ 5%.
  • the thickness of the material to be coated is 0.01 to 100 m, preferably 0.1 to 30; m.
  • the coating method includes, but is not limited to, a printing method, a dive method, an electrostatic coating method, and a sputtering method. Further, the substrate may be coated together with the partition walls.
  • the solvent insolubility of the resin represented by is 50% or more, particularly 70% or more.
  • solvent insolubility is less than 50%, bleeding occurs on the partition wall surface during long-term storage.
  • the solvent insolubility rate As the solvent used for measuring the resin, different solvents are used, depending on the resin, such as methyl ethyl ketone for fluorine resin, methanol, etc. for polyamide resin, methyl ethyl ketone, toluene, etc. for acrylic urethane resin, and melamine resin for melamine resin. Acetone, isopropanol, etc., and silicone resin are preferably toluene.
  • FIG. 8 is a diagram for explaining the requirements for the sectional shape of the partition wall in the image display panel according to the fifth invention of the present invention.
  • the ratio LhZLw of the two values is within a proper range represented by the equation (1).
  • a value within a suitable range represented by the equation (2) is within a proper range represented by the equation (1).
  • FIGS. 9 (a) and 9 (b) are a detailed sectional view and a plan view of a partition wall in the image display panel according to the sixth invention of the present invention, respectively.
  • a plurality of partition walls 4 are formed on the substrate 1 or 2 shown in FIG. 9 (a).
  • the plurality of partition walls 4 are arranged in a grid of squares, or are arranged in a honeycomb shape in various shapes as shown in FIG.
  • the partition wall 4 having a predetermined drying function is used.
  • the partition wall 4 has a water absorption S within an appropriate range by the following equation (3). Shall be used.
  • the atmosphere in the image display device can be made uniform without using a drying agent.
  • the particles that compose the particle group are prepared by kneading and pulverizing the required resin, charge control agent, colorant, and other additives, polymerizing from monomers, or converting existing particles into resin and charge. It may be coated with a control agent, a coloring agent, and other additives.
  • a control agent e.g., a coloring agent
  • the following are examples of resins, charge control agents, colorants, and other additives.
  • resins include urethane resin, acrylic resin, polyester resin, urethane-modified acrylic resin, silicone resin, nylon resin, epoxy resin, styrene resin, petital resin, vinylidene chloride resin, melamine resin, phenolic resin, fluorine resin, etc. It is also possible to mix two or more types, and in particular, from the viewpoint of controlling the adhesion to the substrate, a polyester resin, an acrylic urethane resin, an acrylic urethane silicone resin, an acrylic urethane fluororesin, a urethane resin, and a fluororesin are preferable. It is.
  • Examples of the charge control agent include a quaternary ammonium salt-based compound, a Nigguchi syn-dye, a triphenyl methane-based compound, and an imidazole derivative in the case of imparting a positive charge.
  • Examples include metal-containing azo dyes, salicylic acid metal complexes, and nitroimidazole derivatives.
  • coloring agent examples include dyes such as basic and acidic dyes, and examples thereof include Niguchi Shin, Methylene Blue, Quinoline Yellow, and Rose Bengal.
  • inorganic additives include titanium oxide, zinc oxide, zinc sulfide, antimony oxide, calcium carbonate, lead white, talc, silica, calcium silicate, alumina white, cadmium yellow, cadmium red, cadmium orange, and titanium yellow. , Navy blue, ultramarine, cobalt blue, cobalt green, cobalt violet, iron oxide, carbon black, manganese ferrite black, cobalt ferrite black, copper powder, aluminum powder and the like.
  • the water absorption of the resin constituting the particles sealed between the substrates is preferably 3% by weight or less, particularly preferably 2% by weight or less.
  • the water absorption is measured according to ASTM D570, and the measurement conditions are 23 to 24 hours.
  • the solvent insolubility of the resin constituting the particles is preferably 50% or more, particularly preferably 70% or more.
  • the solvent insolubility is less than 50%, bleeding occurs on the surface of the particles during long-term storage, which affects the adhesion to the particles, hinders the movement of the particles, and may hinder image display durability. .
  • Solvents (good solvents) used for measuring the solvent insolubility include methyl ethyl ketone and the like for fluororesins, methanol and the like for polyamide resins, methyl ethyl ketone and toluene for acrylic urethane resins, and melamine resin.
  • methyl ethyl ketone and the like for fluororesins methanol and the like for polyamide resins
  • methyl ethyl ketone and toluene for acrylic urethane resins
  • melamine resin melamine resin.
  • acetone, isopanol, and toluene are preferred for silicone resin.
  • the particles are preferably spherical.
  • the particle size distribution represented by the following formula Span should be less than 5, preferably less than 3.
  • ⁇ , d (0.5) is the particle size expressed as ⁇ m, where 50% of the particles are larger and 50% is smaller, and d (0.1) is the ratio of particles smaller than 10%.
  • the value of a certain particle diameter expressed as zm, and d (0.9) is the value of the particle diameter at which 90% of the particles are 90% or less.
  • the average particle diameter d (0.5) of each particle in the particle group is preferably set to 0.1 to 50 m. If it is larger than this range, the sharpness of the display will be poor, and if it is smaller than this range, the cohesion between the particles will be too large and the movement of the particles will be hindered.
  • the ratio of d (0.5) of the particle having the minimum diameter to d (0.5) of the particle having the maximum diameter is 50 or less, preferably 10 or less. It is important.
  • the particle size distribution and the particle size can be determined by a laser diffraction / scattering method or the like. Irradiation of a laser beam onto the particles to be measured results in a spatially distributed light intensity distribution pattern of the diffracted Z scattered light, and since this light intensity pattern has a corresponding relationship with the particle size, the particle size distribution and the particle size distribution are reduced. Can be measured.
  • the particle size and the particle size distribution in the present invention are obtained from a volume-based distribution. Specifically, using a Mastersizer2000 (Malvern Instruments Ltd.) measuring machine Then, the particles are put into a nitrogen stream, and the particle size and particle size distribution can be measured with the attached analysis software (software based on volume-based distribution using Mie theory).
  • the “powder fluid” in the present invention is a substance in an intermediate state between a fluid and a particle, which exhibits fluidity by itself without using the power of gas or liquid.
  • a liquid crystal is defined as an intermediate phase between a liquid and a solid, and has fluidity, which is a characteristic of liquid, and anisotropy (optical properties), which is a characteristic of solid (Heibonsha: Encyclopedia) ).
  • anisotropy optical properties
  • the definition of a particle is an object having a finite mass, even if it is negligible, and is said to be affected by gravity (Maruzen: Encyclopedia of Physics).
  • the particles also have a special state of gas-solid fluidized bed or liquid-solid fluid, and when gas flows from the bottom plate to the particles, an upward force acts on the particles corresponding to the velocity of the gas, When this force balances with gravity, a material that can easily flow like a fluid is called a gas-solid fluidized bed, and a fluidized fluid is also called a liquid-solid fluid. Yes (Heijinsha: Encyclopedia).
  • a gas-solid fluidized bed or a liquid-solid fluid is in a state utilizing gas or liquid flow.
  • the powder fluid in the present invention is an intermediate state having both the characteristics of particles and liquid, as in the definition of liquid crystal (intermediate phase between liquid and solid), and is the gravity of the particles described above. It is a substance that is extremely hard to be affected by water and shows a unique state of high fluidity. Such a substance can be obtained in an aerosol state, that is, a dispersion system in which a solid or liquid substance is stably suspended as a dispersoid in a gas, and the solid substance is regarded as a dispersoid by the image display device of the present invention. Is what you do.
  • At least one of the image display panels to which the present invention is applied is transparent, facing A liquid powder that exhibits high fluidity in an aerosol state in which solid particles are stably suspended as a dispersoid in a gas is sealed between the substrates, and such a powder fluid is subjected to Coulomb force or the like when a low voltage is applied. It can be easily and stably moved.
  • powder fluid is a substance in the middle of both fluids and particles that exhibits fluidity without using the power of gas or liquid.
  • the powder can be in an aerosol state, and the image display device of the present invention is used in a state where a solid substance is relatively stably suspended as a dispersoid in a gas.
  • the range of the aerosol state is preferably such that the apparent volume at the time of maximum suspension of the powdered fluid is at least twice as large as that at the time of non-floating, more preferably at least 2.5 times, particularly preferably at least 3 times.
  • the upper limit is not particularly limited, but is preferably 12 times or more Byeon.
  • the apparent volume at the time of the maximum suspension of the powder fluid is smaller than twice that of the non-floating state, it will be difficult to control the display.If it is larger than 12 times, the powder fluid will be missed when it is sealed in the device. Inconvenience in handling such as occurs.
  • the apparent volume at maximum suspension is measured as follows. That is, a powder fluid is placed in a closed container through which the powder fluid can be seen, and the container itself is vibrated or dropped to create a maximum floating state, and the apparent volume at that time is measured from the outside of the container.
  • a polypropylene container with a lid (product name: i-boy: Az-One Co., Ltd.) with a diameter (inner diameter) of 6 cm and a height of 10 cm (equivalent to a volume of 1 Z5 as powder fluid when not floating) And set the container on a shaker and shake it for 3 hours at 7 3 ec (3 reciprocations over a distance of 111.
  • the apparent volume immediately after shaking is stopped is the apparent volume at the time of maximum suspension. .
  • the image display panel of the present invention has a temporal change in the apparent volume of the powder fluid that satisfies the following expression.
  • V 5 indicates the apparent volume of 5 minutes after the maximum floating (cm 3)
  • V 1 0 is the apparent volume of 1 0 minutes after the maximum floating (cm 3).
  • the image display panel of the present invention Le is preferably larger than the time variation V 1Q / V 5 is 0.85 of the apparent volume of the liquid powder, greater than 0.9 is particularly preferred. . If Bruno V 5 is 0.8 or less, it becomes similar to the case of using a conventional so-called particles, fast response, such as in the present invention, the effect of durability can not be secured.
  • the average particle diameter (d (0.5)) of the particulate material constituting the powder fluid is preferably 0.1 to 20 m, more preferably 0.5 to 15, and particularly preferably 0.9 to 1. 8 m. If it is less than 0.1 m, it will be difficult to control the display. If it is more than 20 m, it will be possible to display, but the concealment rate will decrease and it will be difficult to make the device thinner.
  • the average particle diameter (d (0.5)) of the particulate matter composing the powder fluid is the same as d (0.5) in the following particle diameter distribution Span. '
  • the particle material constituting the powder fluid preferably has a particle size distribution Span represented by the following formula of less than 5, and more preferably less than 3.
  • d (0.5) is the particle diameter in m where 50% of the particulate matter constituting the powder fluid is larger and 50% is smaller, and d (0.1) is less than this
  • the particle diameter at which the ratio of the powder fluid is 10% is expressed in m
  • d (0.9) is the particle diameter at which the powder fluid below 90% is expressed as m.
  • the above-described particle size distribution and particle size can be obtained by a laser single diffraction Z scattering method or the like.
  • a laser beam is irradiated to the powder fluid to be measured, a light intensity distribution pattern of the diffracted and scattered light is generated spatially, and since this light intensity pattern has a correspondence with the particle size, the particle size and the particle size distribution can be measured.
  • the particle size and the particle size distribution are obtained from a volume-based distribution. Specifically, Mastersizer2000 (Malvern
  • Powders can be made by mixing the necessary resin, charge control agent, colorant, and other additives, kneading and milling, or polymerizing from monomers, and converting existing particles into resin, charge control agent, colorant, etc. It may be coated with an additive.
  • the resin, charge control agent, colorant, and other additives constituting the powder fluid will be exemplified.
  • resins include urethane resin, acrylic resin, polyester resin, urethane-modified acrylic resin, silicone resin, nylon resin, epoxy resin, styrene resin, butyral resin, vinylidene chloride resin, melamine resin, phenolic resin, and fluororesin. It is also possible to mix two or more kinds, and in particular, acrylic urethane resin, acrylic urethane silicone resin, acrylic urethane fluororesin, urethane resin, and fluororesin are suitable for controlling the adhesion to the substrate. .
  • Examples of the charge control agent include a quaternary ammonium salt-based compound, a Nigguchi syn-dye, a triphenyl methane-based compound, and an imidazole derivative in the case of imparting a positive charge.
  • Examples include metal-containing azo dyes, salicylic acid metal complexes, and ditromidazole derivatives.
  • coloring agent examples include dyes such as basic and acidic dyes, and examples thereof include Niguchi Shin, Methyl Remble I, Quinoline Yellow, Rose Bengal and the like.
  • inorganic additives include titanium oxide, zinc oxide, zinc sulfide, antimony oxide, calcium carbonate, lead white, talc, silica, calcium silicate, alumina white, cadmium yellow, cadmium red, cadmium orange, and titanium yellow. , Navy blue, ultramarine, cobalt blue, cobalt green, cobalt violet, iron oxide, carbon black, copper powder, aluminum powder and the like.
  • Aerosol state It is not clear how the powdered fluids shown are determined, but the following is an example.
  • inorganic fine particles having an average particle diameter of 20 to 100 nm, preferably 20 to 80 nm, on the surface of the particle material constituting the powder fluid. Further, it is appropriate that the inorganic fine particles are treated with silicone oil.
  • examples of the inorganic fine particles include silicon dioxide (silica), zinc oxide, aluminum oxide, magnesium oxide, cerium oxide, iron oxide, copper oxide, and the like. The method of fixing the inorganic fine particles is important.
  • a powder fluid showing an aerosol state can be produced.
  • the resin constituting the powder fluid sealed between the substrates preferably has a water absorption of 3% by weight or less, particularly preferably 2% by weight or less.
  • the water absorption is measured according to ASTM D-570, and the measurement conditions are 24 hours at 23 ° C.
  • the solvent insolubility of the resin constituting the powder fluid represented by the following relational expression is preferably 50% or more, and more preferably 70% or more.
  • the solvent (good solvent) is, for example, methyl ethyl ketone for a fluororesin, methanol or the like for a polyamide resin, methyl ethyl ketone for an acrylic urethane resin, or the like.
  • Preferred are toluene and the like, acetone and isopropanol for the melamine resin, and toluene and the like for the silicone resin.
  • the volume occupancy of the particle group and the powder fluid is 3 to 7 Ovol%, preferably 5 to 6 Ovol%, and more preferably the space between the opposing substrates. It is preferable to adjust so as to be 5 to 55 vol%. If the volume occupancy of the particle group and the powder fluid is less than 3 vol%, clear image display cannot be performed, and if it is greater than 70 vol%, the particle group and the powder fluid are difficult to move.
  • the space volume refers to a volume that can be filled with a so-called particle group and powder fluid, excluding a portion sandwiched between the opposing substrates 1 and 2 and excluding a portion occupied by the partition 4 and a device sealing portion. I do.
  • At least one of the substrate 1 and the substrate 2 is a transparent substrate from which the color of the particles or powder fluid can be confirmed from the outside of the apparatus, and a material having high visible light transmittance and good heat resistance is preferable.
  • the presence or absence of flexibility is appropriately selected depending on the application.For example, it is flexible for applications such as electronic paper, and flexible for applications such as mobile phones, PDAs, and notebook PCs. The material without the is used.
  • the substrate material examples include polymer sheets such as polyethylene terephthalate, polyethersulfone, polyethylene, and polycarbonate, and inorganic sheets such as glass and quartz.
  • the thickness of the substrate is preferably 2 to 5,000 m, and more preferably 5 to 1,000 m. If the thickness is too small, it is difficult to maintain strength and uniformity between the substrates, and if the thickness is too large, the display function is sharp. In this case, the contrast is reduced, and the flexibility is poor especially for electronic paper.
  • An electrode may be provided on the substrate as needed.
  • an electrostatic latent image is given to the external surface of the substrate and the electrostatic latent image
  • the electrostatic latent image By attracting or repelling colored particles or powder charged to predetermined characteristics to the substrate with an electric field generated in accordance with the conditions, the particles or powder arranged in correspondence with the electrostatic latent image are separated. It can be seen from outside the display through a transparent substrate.
  • the formation of the electrostatic latent image is performed by transferring an electrostatic latent image, which is performed by a normal electrophotographic system using an electrophotographic photosensitive member, onto a substrate of the image display device of the present invention.
  • an electrode is provided on a substrate, an external voltage is applied to the electrode part, and an electric field is generated at each electrode position on the substrate.
  • the electrodes provided on the substrate side requiring transparency are formed of a transparent and patternable conductive material, for example, metals such as indium oxide and aluminum, and conductive polymers such as polyaniline, polypyrrole, and polythiophene. And forming methods such as vacuum deposition and coating.
  • the electrode provided on the substrate side that does not require transparency need not be transparent.
  • the thickness of the electrode is not particularly limited as long as the electrode provided on the substrate side which requires conductivity and can maintain transparency does not impair light transmittance.
  • the electrode is exposed on the outermost surface on the side in contact with the particle group or the powder fluid on the substrate surface, it is preferable to perform a hydrophobic treatment including the electrode surface. .
  • the shape of the partition wall of the present invention is appropriately set as appropriate according to the size of the particle group involved in the display or the size of the powdery fluid, and is not particularly limited, but the width of the partition wall is 2 to 100 m.
  • height of partition wall is 10 to 5000; ⁇ m, preferably 10 to 500 Adjusted to m.
  • a two-rib method in which a rib is formed on each of the opposing substrates and then bonding, and a one-rib method in which the rib is formed only on one substrate are conceivable. Is also applicable.
  • the display cells formed by these rib-shaped partitions have hexagonal, square, triangular, line, and circular shapes when viewed from the substrate plane direction.
  • a honeycomb shape and a lattice shape are exemplified.
  • the part (area of the frame of the display cell) corresponding to the cross-section of the partition seen from the display side should be made as small as possible, so that the sharpness of the image display increases.
  • examples of the method for forming the partition include a screen printing method, a sand blast method, a photolithographic method, and an additive method.
  • the photolithographic method using a resist film is suitably used.
  • the particle groups and powder fluids obtained in the examples and comparative examples, and the display panel were evaluated according to the following criteria.
  • a black to white display was repeated by applying a voltage of 250 V to the display device incorporating the manufactured display panel to invert the potential. Evaluation of display function
  • the retention ratio was defined as the contrast ratio after 10,000 repetitions of the initial contrast ratio and after standing for 5 days.
  • An image display panel was manufactured as follows.
  • a substrate with electrodes (7 cm x 7 cm opening) was prepared, and ribs with a height of 400 m were formed on the substrate to form striped partition walls.
  • the ribs were formed as follows. First paste, an inorganic powder as S i 0 2, A 1 2 ⁇ 3, B 2 ⁇ 3, B i 2 0 3 Oyobi 21 0 mixture, melt, cooled, crushed glass powder, resin A thermosetting epoxy resin was prepared, and a paste prepared with a solvent so as to have a viscosity of 12000 cps was prepared. Next, the paste was applied to the prepared substrate, cured by heating at 150 ° C, and the application and curing were repeated to adjust the thickness to 400 xm (corresponding to the height of the partition).
  • a dry photoresist was attached, and a mask was formed by exposure to etching so that a partition pattern having a line of 50 m, a space of 400 m, and a pitch of 450 m was formed.
  • an extra portion was removed by sandblasting so as to have a predetermined partition shape, thereby forming a desired striped partition.
  • cells were formed between the partition walls on the substrate.
  • An OH group is added to the surface in contact with the rib-formed particle group by plasma treatment as a pretreatment, then 2 g of hexamethyldisilazane is dropped, and then dried to dry the counter substrate.
  • An OH group is added by plasma treatment as a pretreatment to one surface of a glass substrate provided with an indium oxide electrode having a thickness of about 500 A, and then 2 g of hexamethyldisilazane is dropped and dried.
  • a transparent substrate having been subjected to a surface treatment was produced.
  • Particle group A is composed of acrylic urethane resin EAU53B (manufactured by Asia Kogyo Co., Ltd.) / ⁇ PD I-based crosslinker Exelha Donor HX (manufactured by Asia Kogyo Co., Ltd.), CB4phr, charge control agent Pontrone NO 7 (manufactured by Orient Chemical Co., Ltd.), 2 phr was added, kneaded, and then pulverized and classified by a jet mill to prepare a mixture. Particles made group A, moisture content 2.9%, solvent insoluble rate is 9 1%, an average particle diameter of 9. lm, surface charge density was + 2 5 / CZm 2 black particles .
  • Particle group B is composed of acrylic urethane resin EAU53B (manufactured by Asia Kogyo Co., Ltd.) No. 1 PD I-based cross-linker Exelhadna-1 HX (manufactured by Asia Kogyo Co., Ltd.), titanium oxide 10 phr, charge control agent 2 phr of Pontrone E89 (manufactured by Orient Chemical Co., Ltd.) was added, kneaded, and then pulverized and classified by a jet mill to produce a mixture. Particles made group B, moisture content 2.9%, solvent insoluble rate is 9 1%, an average particle diameter of 7. 0 um, there in the front surface charge density one 6 0 beta white particles of CZM 2 Was.
  • the substrate with ribs (opposed substrate) surface-treated with hexamethyldisilazane is transferred to a dry container having a humidity of 40% RH or less, and the particle group A is provided as a first particle group at the upper part of the container.
  • the particle group A was filled by dispersing into the container from the provided nozzle and spraying it into cells on the substrate placed at the bottom of the container.
  • the particle group B is dispersed as a second particle group into the container from another nozzle provided at the upper part of the container, and is dispersed in the cell on the substrate placed at the lower part of the container (particle group A is already filled).
  • the mixing ratio of particle group A and particle group B should be the same volume, and adjusted so that the volume occupancy of both particle groups combined between substrates formed by bonding two substrates is 22 V o 1% did.
  • the other substrate (a transparent substrate whose surface has been treated with hexamethyldisilazane) is superimposed on the substrate filled with the particle groups A and B, and the periphery of the substrate is bonded with an epoxy-based adhesive.
  • a particle panel was encapsulated to produce a display panel.
  • a display panel was produced in the same manner as in Example 1, except that the powder fluid X and the powder fluid Y described below were used instead of the particle group A and the particle group B.
  • the evaluation results are shown in Table 1 below.
  • powder fluids used were as follows.
  • Liquid powder X is first Mechirume evening chestnut rates monomers, T i 0 2 (20 phr ), charge control agent Pontoron E 89 (Orient Chemical Co., Ltd., 5 phr), initiator AI BN (0. 5 phr) After the suspension polymerization was carried out using a mixer, the particle diameters were adjusted using a classifier.
  • the external additive A (silica H 2000Z4, manufactured by Puliki Ichi) and the external additive B (silica SS 20, (Manufactured by Nippon Silica Co., Ltd.) and treated at 4800 rpm for 5 minutes to immobilize the external additive on the polymerized particle surface and adjust it to a powdery fluid.
  • Powdered fluid Y was prepared using styrene monomer, azo compound (5 phr), charge control agent Pontron N07 (5 phr, manufactured by Orient Chemical Co., Ltd.), and initiator AIBN (0.5 phr). After suspension polymerization, the particle diameters were adjusted using a classifier. Next, an external additive C (Silica H2050, manufactured by Picker) and an external additive B (Silica SS20, Nippon Silica Co., Ltd.) were added to these particles using a hybridizer (Nara Machinery Co., Ltd.). ) And treated at 4800 rpm for 5 minutes to immobilize the external additive on the polymerized particle surface and adjust it to a powdery fluid.
  • an external additive C Silica H2050, manufactured by Picker
  • an external additive B Silica SS20, Nippon Silica Co., Ltd.
  • the water content of the particulate matter constituting powder fluid X is 3.0%, the solvent defect rate is 92%, the average particle size is 3.3 m, and the surface charge density is +23 ⁇ C / m It was 2 .
  • the water content of the particulate material constituting the liquid powder Y is 2. 8%, the solvent insoluble rate is 92%, the average particle size is 3. a 1 m, the surface charge density, one 58 CZ m 2 there were.
  • a display panel was produced in the same manner as in Example 1 except that the transparent substrate and the counter substrate which were surface-treated with hexamethyldisilazane were not used.
  • the evaluation results are shown in Table 1 below.
  • a display panel was produced in the same manner as in Example 2 except that the transparent substrate and the counter substrate which were surface-treated with hexamethyldisilazane were not used.
  • the evaluation results are shown in Table 1 below.
  • Example 1 particle group
  • Example 2 particle fluid in which the substrate surface was hydrophobized with hexamethyldisilazane
  • the substrate surface was hydrophobized with hexamethyldisilazane.
  • the initial contrast ratio was the same, but the contrast ratio after repeated use was better. From these results, it is understood that the image display panel of the present invention has excellent durability in repeated use.
  • the measurement was carried out by the following procedure using a universal hardness tester H 100 VP-HCU manufactured by Fisher's Instrument.
  • a glass plate having a universal hardness of 2000 N / mm 2 was prepared, and a material to be measured having a thickness of 3 xm was prepared on the glass plate as a sample for measurement and measured.
  • An image display panel manufactured by enclosing particles or powder fluids with different colors and charging characteristics in a cell between the substrates is incorporated into a display device, and a voltage of 250 V is applied to invert the potential, resulting in black to black.
  • the display was repeated 100,000 times and the display image was enlarged by an optical microscope and visually observed.
  • An image display panel was manufactured as follows.
  • a substrate with electrodes (7 cm x 7 cm opening) was prepared, and ribs with a height of 400 m were formed on the substrate to form striped partition walls.
  • the ribs were formed as follows. First, the paste is made of inorganic powder, S i 0 2
  • the A 1 2 0 3, B 2 0 3, B i 2 ⁇ 3 and mixtures Z N_ ⁇ , melting, cooling, the glass powder was Kona ⁇ , preparing a thermosetting epoxy resin as a resin, Viscosity with solvent
  • a paste prepared to be 12000 cps was prepared. Next, the paste was applied on the prepared substrate, heated and cured at 150 ° C, and the application and curing were repeated to adjust the thickness to 400 m (corresponding to the height of the partition). Next, paste dry photoresist, and expose to etch to make a 50m line
  • a mask was formed such that a partition pattern having a space of 400 m and a pitch of 450 m was formed. Next, extra sandblasting is performed to obtain the desired partition shape. Then, a desired portion was removed to form a desired striped partition wall.
  • particle group A and particle group B were prepared.
  • Particle group A consists of acrylic urethane resin EAU53 B (manufactured by Asia Kogyo Co., Ltd.) / IPD I-type cross-linking agent Exel Hardna-1 HX (manufactured by Asia Kogyo Co., Ltd.), power pump rack 4 phr, charge control agent Pontrone NO 7 (manufactured by Orient Chemical Co., Ltd.) 2 phr was added, kneaded, and then pulverized and classified using a jet mill.
  • the prepared particle group A was a black particle group having a water content of 2.9%, a solvent insolubility of 91%, and an average particle diameter of 9.1 rn.
  • Particle group B is composed of acrylic urethane resin EAU53 B (manufactured by Asia Kogyo Co., Ltd.) ZIPD I crosslinker Exelha Donor HX (manufactured by Asia Kogyo Co., Ltd.), titanium oxide 10 phr, charge control agent Pontrone E 89 (Orient Chemical Co., Ltd.) 2 phr was added, kneaded, and then pulverized and classified by a jet mill to prepare a mixture.
  • the prepared particle group B was a white particle group having a water content of 2.9%, a solvent insolubility of 91%, and an average particle diameter of 7.Om.
  • the ribbed substrate (opposed substrate) whose partition wall surface has been treated with hexamethyldisilazane is transferred into a dry container having a humidity of 40% RH or less, and the particle group A is set as the first particle group at the upper part of the container.
  • Particle group A was filled by dispersing into a container from the provided nozzle and dispersing it into cells on a substrate placed at the bottom of the container.
  • the particle group B is dispersed as a second particle group into the container from another nozzle provided at the upper portion of the container, and is dispersed in the cell on the substrate placed at the lower portion of the container (particle group A is already filled).
  • the particle group A was filled up by spraying.
  • the filling amount of the particle group A and the particle group B is set to the same volume, and the volume occupancy of both particle groups combined between substrates formed by bonding two substrates is 22 V o 1%. It was adjusted to be.
  • a substrate (transparent substrate) without the other rib is superimposed on the substrate filled with particles in the cell, and the periphery of the substrate is bonded with an epoxy-based adhesive, and the particles are encapsulated.
  • An image display panel was manufactured.
  • Example 11 An image display panel was produced in the same manner as in Example 11, except that the powder fluid X and the powder fluid Y described below were used instead of the particle group A and the particle group B. The evaluation results are shown in Table 2 below.
  • powder fluids used were as follows.
  • Liquid powder X is first methyl methacrylate monomer, T I_ ⁇ 2 (20 phr), charge control agent Pontoron E 89 (Orient Chemical Co., Ltd., 5 phr), initiator AI BN a (0. 5 ph r) After suspension polymerization was performed, the particle diameter was adjusted by a classifier. Next, using a hybridizer (Nara Machinery Co., Ltd.), the external additive A (silica H2000 / 4, manufactured by Picker) and the external additive B (silica SS20, Nippon Silica Co., Ltd.) were added to these particles. Was added and treated at 4800 rpm for 5 minutes to immobilize the external additive on the polymerized particle surface and adjusted to a powdery fluid. The water content of the particles constituting the powder fluid X was 3.0%, the solvent insolubility was 92%, and the average particle diameter was 3.3 m.
  • Powdered fluid Y is composed of styrene monomer, azo compound (5 phr), charge control agent Pontrone NO7 (Orient Chemical Co., Ltd., 5 phr), initiator A IBN (
  • the particle diameter was adjusted using a classifier.
  • the external additive C (silica H 2050, manufactured by Picker) and the external additive B (silica S S20, manufactured by Nippon Silica) were added to these particles using a hybridizer.
  • Example 11 An image was prepared in the same manner as in Example 11 except that the partition wall surface was not coated with hexamethyldisilazane, and the partition wall surface was coated with a fluororesin (LF71ON, manufactured by Asahi Glass Co., Ltd.) with low charge decay. A display panel was manufactured. Table 3 shows the evaluation results.
  • An image display panel was produced in the same manner as in Example 13, except that the partition wall surface was not coated with a fluororesin having a small charge decay property (LF71 ON, manufactured by Asahi Glass Co., Ltd.). Table 3 shows the evaluation results.
  • An image display panel was produced in the same manner as in Example 14, except that the partition wall surface was not coated with a fluororesin having a small charge decay property (LF71 ON, manufactured by Asahi Glass Co., Ltd.). Table 3 shows the evaluation results.
  • An image display panel was manufactured as follows.
  • a substrate with electrodes (7 cm x 7 cm opening) was prepared, and ribs with a height of 400 m were formed on the substrate to form striped partition walls.
  • the ribs were formed as follows. First paste, S I_ ⁇ 2 as the inorganic powder The A 1 2 0 3, B 2 0 3, B i 2 0 3 , and mixtures Z n O, melting, cooling, the glass powder was Konawaku, a thermosetting epoxy resin Yasushi ⁇ as resin Thus, a paste prepared with a solvent so as to have a viscosity of 1200 cps was produced. Next, the paste is applied to the prepared substrate, cured by heating at 150 ° C, and the coating and curing are repeated to adjust the thickness (corresponding to the height of the partition) to 400 m. did.
  • a dry photoresist was pasted, and a mask was formed by exposure to etching so that a partition pattern having a line of 50 m, a space of 400 m, and a pitch of 450 m was formed.
  • extra portions were removed by sandblasting so as to have a predetermined partition shape, thereby forming a desired striped partition.
  • Example 11 Next, the same two kinds of particle groups (particle group A and particle group B) as in Example 11 were prepared, and an image display panel was produced in the same manner as in Example 11.
  • a partition wall was produced in the same manner as in Example 15, and an image display panel was produced in the same manner as in Example 15 except that two types of powdered fluids X and Y were used as in Example 12. .
  • the universal hardness of the binder resin (thermosetting epoxy resin) used for forming the partition walls was measured in the same manner as in Example 15.
  • An image display panel was prepared in the same manner as in Example 15 except that the temperature at which the binder resin (thermosetting epoxy resin) used for the partition wall paste was cured was set to 120 ° C. Produced.
  • thermosetting epoxy resin used for the above partition wall preparation was coated on a glass plate having a universal hardness of 2000 N / mm 2 with a thickness of 3 and heated at 120 ° C. After curing, the universal hardness of the binder resin (thermosetting epoxy resin) was measured.
  • An image display panel was produced in the same manner as in Example 16 except that the temperature at which the binder resin (thermosetting epoxy resin) used for the partition wall paste was cured was set to 120 ° C.
  • the nippers hardness of the binder resin (thermosetting epoxy resin) used for forming the partition walls was measured in the same manner as in Comparative Example 15.
  • An image display panel was manufactured as follows.
  • a glass substrate with an ITO electrode (7 cm x 7 cmd) was prepared, and a rib having a height of 5 ⁇ was formed on the substrate to form a striped partition wall.
  • the ribs were formed as follows. Mazube one strike, a mixture of S I_ ⁇ 2, A l 2 0 3, B 2 0 3, B i 2 0 3 and Z N_ ⁇ as inorganic powder, melting, cooling, the glass powder and flour frame A thermosetting epoxy resin was prepared as a resin, and a paste was prepared with a solvent so as to have a viscosity of 12000 cps. Next, the paste is coated on the prepared substrate, and cured by heating at 150 ° C. By repeating this coating and curing, the thickness (corresponding to the height Lh of the partition wall) becomes 50 ⁇ . Was adjusted as follows.
  • a dry photoresist was attached, and a mask was formed by exposure to etching to form a partition pattern having a line (corresponding to a partition width Lw) of 50 ⁇ , a space of 300 ⁇ , and a pitch of 350 ⁇ m.
  • an extra portion was removed by sand blasting 1 so as to obtain a predetermined partition shape, and a desired strip-shaped partition was formed.
  • cells were formed between the partition walls on the substrate.
  • particle group A and particle group B were prepared.
  • Particle group A (black particle group) is composed of acrylic urethane resin EAU53 B (manufactured by Asia Kogyo Co., Ltd.) / IPD I crosslinker Exel Hardener HX (manufactured by Asia Kogyo Co., Ltd.) and carbon Ml 00 (Mitsubishi Chemical Corporation). 4 phr) and 2 phr of the charge control agent Pontrone N07 (manufactured by Orient Chemical Co., Ltd.) were added, kneaded, and then pulverized and classified with a jet mill.
  • Particle group B (white particle group) is composed of acrylic urethane resin EAU53 B (manufactured by Asia Kogyo Co., Ltd.) / IPD I crosslinker Exelha donor HX (manufactured by Asia Kogyo Co., Ltd.), and titanium oxide 10 phr Then, 2 phr of a charge control agent Pontron E89 (manufactured by Orient Chemical Co., Ltd.) was added, and the mixture was kneaded, followed by pulverization and classification using a jet mill.
  • EAU53 B manufactured by Asia Kogyo Co., Ltd.
  • IPD I crosslinker Exelha donor HX manufactured by Asia Kogyo Co., Ltd.
  • titanium oxide 10 phr titanium oxide
  • particle A is dispersed as a first particle in the gas from the upper nozzle in the container, and is dispersed in the cell on substrate 1 placed in the lower part of the container, whereby particle A is converted into the cell.
  • particle B is dispersed as a second particle into the gas from the nozzle at the top of the container, and is placed in a cell on substrate 1 placed at the bottom of the container (particle A is already filled).
  • the particles B were superimposed on the particles A and filled.
  • the mixing ratio of particles A and B was the same in volume, and the filling ratio (volume occupancy) of the particles between the glass substrates was adjusted to 25 V o 1%.
  • a glass substrate 2 provided with an indium oxide electrode having a thickness of about 50 OA is superimposed on a substrate 1 in which particles A and B are filled in a cell, and the periphery of the substrate is bonded with an epoxy-based adhesive, and the particles are adhered.
  • the panel was sealed to produce an image display panel.
  • the gas used to fill the voids was dry nitrogen gas with a dew point of _40 ° C.
  • the image display panel manufactured as described above had the aperture ratio, white reflectance, and contrast ratio shown in Table 5.
  • Example 23 (Particle group)>
  • Example 24 (particle group)>
  • An image display panel was produced in the same manner as in Example 21.
  • the manufactured image display panel had the aperture ratio, white reflectance, and contrast ratio shown in Table 5.
  • An image display panel was manufactured as follows.
  • a substrate with an ITO electrode (7 cm x 7 cm opening) was prepared, and ribs having a height of 5 ⁇ were formed on the substrate to form striped partition walls.
  • the ribs were formed as follows. First, the paste is used as inorganic powder S i 0 2
  • thermosetting epoxy resin as a resin
  • a paste prepared with a solvent to have a viscosity of 12000 cps was prepared.
  • the paste is applied on the prepared substrate, and cured by heating with 15 O, and the application and curing are repeated to adjust the thickness to 50 ⁇ (corresponding to the height Lh of the partition wall). did.
  • a dry photoresist was attached, and a mask was formed by exposure to etching so as to form a partition pattern having a line (corresponding to the partition wall width Lw) of 50 ⁇ , a space of 300 ⁇ , and a pitch of 350 ⁇ m.
  • an extra portion was removed by sandblasting so as to have a predetermined partition shape, thereby forming a desired strip-shaped partition.
  • cells were formed between the partition walls on the substrate.
  • White liquid powder (liquid powder X), first, methyl methacrylate monomers, T I_ ⁇ 2 (20 phr), charge control agent Pontoron E 89 (Orient Chemical Co., Ltd., 5 phr), initiator AI BN (0. After suspension polymerization using 5 phr), the particle diameter was adjusted using a classifier. Next, using a hybridizer (manufactured by Nara Machinery Co., Ltd.), external additives A (Silica H 2000Z4, manufactured by Pully Corporation) and external additives B (Silica SS 20, Nippon Silica Co., Ltd.) were added to these particles. Was added, and the mixture was treated at 4800 rpm for 5 minutes to fix the external additive on the surface of the polymerized particles and to adjust to a powdery fluid.
  • black powder fluid (fluid fluid Y) is composed of styrene monomer, azo compound (5 phr), charge control agent Pontron NO7 (Orient Chemical Co., Ltd., 5 phr), initiator AIBN (0 .5 phr), and the particle diameter was adjusted using a classifier.
  • external additive C sica power H2050, manufactured by Picker
  • external additive B sica SS20, manufactured by Nippon Silica
  • the powder fluid X is dispersed as gas into the gas from the upper nozzle in the container as the first powder fluid, and is dispersed in the cells on the substrate 1 placed in the lower portion of the container. Fluid X was filled in the cell. Then, use powder fluid Y as the second powder fluid, and By dispersing into the gas from the nozzle of the part and dispersing it into the cell on the substrate 1 placed at the bottom of the container (which is already filled with the powder fluid X), the powder fluid Y is dispersed into the powder fluid X And filled.
  • the mixing ratio of powder fluid X and powder fluid Y was the same volume, and the filling rate (volume occupancy) of these particles between glass substrates was adjusted to 25 V o 1%.
  • a glass substrate 2 provided with an indium oxide electrode is placed on a substrate 1 filled with a powder fluid X and a powder fluid Y in a cell, and the periphery of the substrate is bonded with an epoxy-based adhesive. And powder fluid Y were enclosed to produce a panel for image display.
  • a container filled with dry nitrogen at a dew point of 40 ° C the voids between the substrates of the assembled display panel are filled with dry nitrogen gas (dew point (40 ° C).
  • the image display panel manufactured as described above had the aperture ratio, white reflectance, and contrast ratio shown in Table 6.
  • An image display panel was produced in the same manner as in Example 26. The manufactured image display panel had the aperture ratio, white reflectance, and contrast ratio shown in Table 6.
  • an image display panel was manufactured in the same manner as in Example 21.
  • the manufactured image display panel had the aperture ratio, white reflectance, and contrast ratio shown in Table 5.
  • the partition wall having a sectional shape was poor in productivity and could not be formed.
  • the aperture ratio of the image display panel of Comparative Example 21 (the same applies to Comparative Example 23) was 41.3, and a practically necessary minimum aperture ratio could not be secured. Further, the image display panel of Comparative Example 22 (the same applies to Comparative Example 24) could not be produced.
  • the evaluation of the display function is as follows. For white-black and black-white solid display images, the image density when displaying a white solid image (white reflectance: unit%) and the image density when displaying a solid white image ( The contrast ratio (white reflectivity Z black reflectivity) is shown by the ratio of the white reflectivity (unit%) and the image density (black reflectivity: unit%) when displaying a solid black image.
  • the reflectance was measured using a portable reflection densitometer RD 19 (Dale Macbeth).
  • An image display panel was manufactured as follows.
  • a glass substrate with an IT electrode (7 cm x 7 cm opening) was prepared, and ribs having a height of 40 ⁇ were formed on the substrate to form striped partition walls.
  • a material having a water absorption of 0.1% was used as a material for the partition walls.
  • the ribs were formed as follows. First paste, the S I_ ⁇ 2, A 1 2 0 3, B 2 ⁇ 3, B i 2 0 3 and mixtures Z Itashita as inorganic powder, melting, cooling, glass powders and powder ⁇ , as the resin A thermosetting epoxy resin was prepared, and a paste was prepared using a solvent to have a viscosity of 12000 cps. Next, the paste is applied on the prepared substrate, heated and cured at 150 ° C, and the coating and curing are repeated to adjust the thickness (corresponding to the height of the partition) to 40 ⁇ . And Was.
  • a dry photoresist was attached, and a mask was formed by exposure to etching to form a partition pattern having a line of 50 ⁇ , a space of 400 ⁇ , and a pitch of 450 ⁇ .
  • an extra portion was removed by sandblasting so as to have a predetermined partition shape, thereby forming a desired striped partition.
  • cells were formed between the partition walls on the substrate.
  • particle group ⁇ and particle group ⁇ were prepared.
  • Particle group ⁇ (black particle group) is composed of acryl urethane resin EAU53 B (manufactured by Asia Kogyo Co., Ltd.) / IPD I crosslinker Exel Hardener HX (manufactured by Asia Kogyo Co., Ltd.) and carbon Ml 00 (Mitsubishi Chemical) 4 phr and 2 phr of a charge control agent Bontron N07 (manufactured by Orient Chemical Co., Ltd.) were added, kneaded, and crushed and classified by a jet mill.
  • EAU53 B manufactured by Asia Kogyo Co., Ltd.
  • IPD I crosslinker Exel Hardener HX manufactured by Asia Kogyo Co., Ltd.
  • carbon Ml 00 Mitsubishi Chemical 4 phr and 2 phr of a charge control agent Bontron N07 (manufactured by Orient Chemical Co., Ltd.) were added, kneaded, and crushed and classified by a jet
  • Particle group B (white particle group) is composed of acrylic urethane resin EAU53 B (manufactured by Asia Kogyo Co., Ltd.) / IPD I crosslinker EXCEL HARDNA-HX (manufactured by Asia Kogyo Co., Ltd.), titanium oxide 10 phr, charge control 2 phr of Pontron E 89 (manufactured by Orient Chemical Co., Ltd.) was added, kneaded, and then pulverized and classified by a jet mill to produce the mixture.
  • particle A is dispersed as a first particle in the gas from the upper nozzle in the container, and is dispersed in the cell on substrate 1 placed in the lower part of the container, whereby particle A is converted into the cell.
  • particle B is dispersed as a second particle into the gas from the nozzle at the top of the container, and is placed in a cell on substrate 1 placed at the bottom of the container (particle A is already filled).
  • the particles B were superimposed on the particles A and filled.
  • the mixing ratio of particles A and B was the same in volume, and the filling ratio (volume occupancy) of the particles between the glass substrates was adjusted to 25 V o 1%.
  • a and particle B were superimposed on the substrate 1 filled in the cell, and the periphery of the substrate was bonded with an epoxy-based adhesive, and the particles were encapsulated to produce an image display panel.
  • the gas used to fill the gap was dry nitrogen gas with a dew point of 40 ° C.
  • the image display panel manufactured as described above had the water absorption, the initial contrast ratio, and the contrast ratio after endurance shown in Table 7.
  • An image display panel was produced in the same manner as in Example 41 except that a material having a water absorption of 5% was used as a material for the partition walls.
  • the manufactured image display panel had the water absorption, initial contrast ratio, and post-durability contrast ratio shown in Table 7.
  • An image display panel was produced in the same manner as in Example 41 except that a material having a water absorption of 10% was used as a material for the partition walls.
  • the manufactured image display panel had the water absorption, the initial contrast ratio, and the contrast ratio after endurance shown in Table 7.
  • An image display panel was manufactured as follows.
  • a glass substrate with an ITO electrode (7 cm ⁇ 7 cm opening) was prepared, and ribs having a height of 40 ⁇ m were formed on the substrate to form striped partition walls.
  • a material having a water absorption of 0.1% was used as a material for the partition walls.
  • the ribs were formed as follows. First, the paste is made of Sio 2
  • thermosetting epoxy resin as a resin
  • a paste prepared with a solvent so as to have a viscosity of 1200 cps was prepared.
  • the paste is applied on the prepared substrate, and cured by heating at 150 ° C. By repeating this application and curing, the thickness (corresponding to the height of the partition) is reduced to 40 ⁇ m.
  • a dry photoresist is applied, and exposure to etching
  • a mask was formed so as to form a partition pattern having a thickness of 50 ⁇ , a space of 400 ⁇ m, and a pitch of 45 ⁇ .
  • an extra portion was removed by sandblasting so as to have a predetermined partition shape, thereby forming a desired striped partition. Then, cells were formed between the partition walls on the substrate.
  • White liquid powder (liquid powder X), first, methyl methacrylate monomers, T i 0 2 (20 phr ), charge control agent Pontoron E 89 (Orient Chemical Co., Ltd., 5 phr), initiator AI BN (0. After suspension polymerization using 5 phr), the particle diameter was adjusted by a classifier. Next, using a hybridizer (manufactured by Nara Machinery Co., Ltd.), external additives A (Silica H 2000Z4, manufactured by Pully Corporation) and external additives B (Silica SS 20, Nippon Silica Was added, and the mixture was treated at 4800 rpm for 5 minutes to fix the external additive on the polymerized particle surface and to adjust to a powdery fluid.
  • a hybridizer manufactured by Nara Machinery Co., Ltd.
  • external additives A Silica H 2000Z4, manufactured by Pully Corporation
  • external additives B Silica SS 20, Nippon Silica Was added
  • Black powder fluid (Powder fluid Y) is composed of styrene monomer, azo compound (5 phr), charge control agent Pontron NO7 (Orient Chemical Co., Ltd., 5 phr), initiator AIBN ( After performing suspension polymerization using 0.5 phr), the particle diameter was adjusted using a classifier. Next, using a hybridizer, external additive C (silica power H2050, manufactured by Picker) and external additive B (silica SS20, manufactured by Nippon Silica) were added to these particles, and the particles were added at 4800 rpm. After treatment for a minute, the external additive was immobilized on the surface of the polymerized particles and adjusted to a powdery fluid.
  • external additive C sica power H2050, manufactured by Picker
  • external additive B sica SS20, manufactured by Nippon Silica
  • the powder fluid X is dispersed as gas into the gas from the upper nozzle in the container as the first powder fluid, and is dispersed in the cells on the substrate 1 placed in the lower portion of the container. Fluid X was filled in the cell.
  • the powder fluid Y is dispersed as a second powder fluid into the gas from the upper nozzle in the container, and the powder fluid Y is dispersed in the cell on the substrate 1 placed at the bottom of the container (the powder fluid X has already been removed). Powder fluid Y to powder fluid X by spraying Overfilled.
  • the mixing ratio of the powder fluid X and the powder fluid Y was the same volume, and the filling rate (volume occupancy) of the particles between the glass substrates was adjusted to 25 V ⁇ 1%.
  • a glass substrate 2 provided with an indium oxide electrode having a thickness of OA is superimposed on a substrate 1 filled with a powder fluid X and a powder fluid Y in a cell, and the periphery of the substrate is adhered with an epoxy-based adhesive.
  • the fluid X and the powder fluid Y were enclosed to produce an image display panel.
  • the voids between the substrates of the assembled display panel are filled with dry nitrogen gas ( Dew point-40 ° C).
  • the image display panel manufactured as described above had the water absorption, the initial contrast ratio, and the contrast ratio after the durability test shown in Table 8.
  • An image display panel was produced in the same manner as in Example 44 except that a material having a water absorption of 5% was used as a material for the partition walls.
  • the produced image display panel had the water absorption, initial contrast ratio, and post-durability contrast ratio shown in Table 8.
  • An image display panel was produced in the same manner as in Example 44, except that a material having a water absorption of 10% was used as a material for the partition walls.
  • the manufactured image display panel had the water absorption, the initial contrast ratio, and the post-durability contrast ratio shown in Table 8.
  • An image display panel was produced in the same manner as in Example 1 except that a material having a water absorption of 0.01% was used as a material for the partition walls.
  • the fabricated image display panel has the water absorption, initial contrast ratio, and post-durability contrast ratio shown in Table 8. The display performance deteriorated after durability.
  • An image display panel was produced in the same manner as in Example 41, except that a material having a water absorption of 20% was used as a material for the partition walls.
  • the produced image display panel had the initial contrast ratio and the contrast ratio after durability shown in Table 7, and the display performance was not good from the beginning.
  • An image display panel was produced in the same manner as in Example 44 above, except that a material having a water absorption of 0.01% was used as a material for the partition walls.
  • the manufactured image display panel had the water absorption, the initial contrast ratio, and the contrast ratio after endurance shown in Table 8, and the display performance deteriorated after endurance.
  • An image display panel was produced in the same manner as in Example 4 except that a material having a water absorption of 20% was used as a material for the partition walls.
  • the manufactured image display panel had the initial contrast ratio and the contrast ratio after durability shown in Table 8, and the display performance was not good from the beginning.
  • Examples 4 1 to 4 3 (Examples 4 to 4) using a partition having a water absorption S satisfying the requirement of 0.1% ⁇ S ⁇ 10% of the above equation (3)
  • the changes in the initial contrast ratio and the contrast ratio after durability were small, and the desired display performance could be secured.
  • the evaluation of the display function is based on the image density (white reflectance: unit%) when displaying a white and white image and the image density when displaying a solid white image (white to black and black to white).
  • the contrast ratio (white reflectance / black reflectance) was expressed by the ratio between the white reflectance (unit:%) and the image density (black reflectance: unit%) when displaying a black and white image.
  • a portable reflection densitometer RD 19 (Dale Macbeth) was used.
  • the water absorption of the partition wall was measured according to ASTM-D570 for the partition wall formed on the substrate, and the measurement was performed at 23 ° C. for 24 hours.
  • the above-described image display panel of the present invention includes a display section of a mopile device such as a notebook computer, a PDA, a mobile phone, a handy terminal, an electronic book such as an electronic book and an electronic newspaper, a signboard, a poster, a bulletin board such as a blackboard, a calculator, Home appliances, automotive Display unit such as goods, the card display unit such as a point force one de, IC card, electronic advertising, electronic POP, electronic price tags, electronic music score, is used in the display section of RF_ ID equipment (

Description

明 細 書
画像表示用パネル及び画像表示装置
技術分野
本発明は、 画像表示用パネルに関し、 特に、 クーロン力等による粒子の飛翔移 動または粉流体の移動を利用することで画像表示を繰り返し行うことができる可 逆性画像表示装置に用いられる画像表示用パネル及び画像表示装置に関するもの である。
背景技術
従来より、 液晶 (L C D ) に代わる画像表示装置として、 電気泳動方式、 エレ クトロクロミック方式、 サーマル方式、 2色粒子回転方式等の技術を用いた画像 表示装置が提案されている。
これら従来技術は、 L C Dと比較すると、 通常の印刷物に近い広い視野角が得 られる、 消費電力が小さい、 メモリ機能を有している等のメリットがあることか ら、 次世代の安価な画像表示装置に使用可能な技術として考えられており、 携帯 端末用画像表示、 電子ペーパー等への展開が期待されている。 特に、 最近では、 分散粒子と着色溶液とから成る分散液をマイクロカプセル化し、 これを対向する 基板間に配置して成る電気泳動方式が提案され、 期待が寄せられている。
しかしながら、 電気泳動方式では、 液中を粒子が泳動するために液の粘性抵抗 により応答速度が遅くなるという問題がある。 さらに、 低比重の溶液中に酸化チ タン等の高比重の粒子を分散させているため沈降しやすくなつており、 分散状態 の安定性維持が難しく、 画像繰り返し安定性に欠けるという問題を抱えている。 また、 マイクロカプセル化にしても、 セルサイズをマイクロカプセルレベルにし て、 見かけ上、 上述した欠点が現れにくくしているだけであって、 本質的な問題 は何ら解決されていない。 一方、 溶液中での挙動を利用する電気泳動方式に対し、 溶液を使わず、 導電性 粒子と電荷輸送層とを基板の一部に組み入れる方式も提案され始めている (例え ば、 趙 国来、 外 3名、 "新しいトナーディスプレイデバイス ( 1 ) "、 1 9 9 9 年 7月 2 1 日、 日本画像学会年次大会 (通算 8 3回) "J apan Hardcopy'99'\ P. 249- 252 参照) 。 しかし、 この方式は、 電荷輸送層、 さらには電荷発生層を配 置するために構造が複雑化するとともに、 導電性粒子に電荷を一定に注入するこ とは難しいため、 安定性に欠けるという問題もある。
しかし、 封入した易移動性に優れた粒子群もしくは粉流体の接する基板表面が 、 基板構成材料がそのまま露出している状態の場合には、 画像表示用パネルとし て使用する際,の繰り返し使用耐久性の点で不十分であった。 すなわち、 繰り返し 使用していくと、 粒子群であっても粉流体であっても、 粒子群や粉流体が基板表 面に付着したまま動かなくなってしまう現象が起こり、 画像コントラストが損な われるようになるという問題があった (第 1発明の課題) 。
また、 封入した易移動性に優れた粒子群もしくは粉流体の接する基板や隔壁の 表面が、 基板や隔壁の構成材料がそのまま露出している状態の場合には、 画像表 示用パネルとして使用する際の繰り返し使用耐久性の点で不十分であった。 すな わち、 繰り返し使用していくと、 粒子群であっても粉流体であっても、 粒子群や 粉流体が基板や隔壁の表面に付着したまま動かなくなってしまう現象が起こり、 画像コントラストが損なわれるようになるという問題があって、 繰り返し使用耐 久性の点で不十分であった (第 2発明〜第 4発明の課題) 。
さらに、 上述した種々の問題を解決するための一方法として、 少なくとも一方 が透明な 2枚の基板の間の、 隔壁によって設けられた複数のセル内に、 少なくと も 1種類以上の粒子を封入し、 前記粒子に電界を与えて、 クーロン力等により前 記粒子を飛翔移動させて画像を表示する画像表示用パネルを備える画像表示装置 が知られている。 このような画像表示装置においては、 例えば、 ガラス基板の上にフォトレジス トにより隔壁を形成して、 2枚の基板の間に複数のセルを構成する際に、 隔壁を どのような形状にするかによつて開口率が変化するので、 隔壁の高さ L hと幅 L wとの比が適正範囲外の値に設定されている場合には、 開口率の低下や製造性の 低下を招くことになる。 なお、 この問題は、 少なくとも一方が透明な 2枚の基板 間の、 隔壁によって設けられた複数のセル内に、 気体中に固体状物質が分散質と して安定に浮遊するエアロゾル状態で高流動性を示す少なくとも 1種の粉流体を 封入し、 基板間に電界を与えて、 前記粉流体を移動させて画像を表示する画像表 示用パネルを備える画像表示装置においても同様に生じる (第 5発明の課題) 。 また、 このような画像表示装置においては、 例えば、 ガラス基板の上にフォト レジストにより隔壁を形成して、 2枚の基板の間に複数のセルを構成する際に、 例えば隔壁に乾燥機能を付加することにより、 乾燥剤を用いることなく、 装置内 の湿度を好適に制御することができる。 しかし、 上記乾燥機能を実現するために 吸水性を有する材料によって隔壁を構成する際に、 隔壁の吸水率をどのような値 に設定するかが重要であり、 隔壁の吸水率が適正範囲外の値に設定されている場 合には、 吸水効果が不十分になったり組立工程で吸水し過ぎて表示性能に好まし くない影響を与えたりすることになる。 なお、 この問題は、 少なくとも一方が透 明な 2枚の基板間の、 隔壁によって設けられた複数のセル内に、 気体中に固体状 物質が分散質として安定に浮遊するエアロゾル状態で高流動性を示す粉流体を封 入し、 粉流体に電界を与えて、 前記粉流体を移動させて画像を表示する画像表示 用パネルを備える画像表示装置においても同様に生じる (第 6発明の課題) 。 発明の開示
本発明の第 1発明〜第 4発明の目的は上述した課題を解消して、 易移動性に優 れた粒子群を用いた場合であっても、 粉流体を用いた場合であっても、 繰り返し 使用において耐久性に優れた安価な画像表示用パネル及び画像表示装置を提供し ようとするものである。
また、 本発明の第 5発明の目的は上述した課題を解消して、 隔壁の高さ L hと 幅 L wとの比が適正範囲内に収まるような隔壁形状とすることにより、 開口率の 確保と製造性の確保とが両立した画像表示装置を提供しょうとするものである。 さらに、 本発明の第 6発明の目的は上述した課題を解消して、 隔壁に所定の乾 燥機能を付加することにより乾燥剤を用いることなく装置内雰囲気を均一化する ようにした画像表示装置を提供しょうとするものである。
本発明の画像表示用パネルの第 1発明は、 少なくとも一方が透明な対向する基板 間に少なくとも 1種以上の粒子群または粉流体を封入し、 粒子群または粉流体に 電界を与えて、 粒子または粉流体を移動させて画像を表示する画像表示用パネル において、 少なくとも粒子群または粉流体と接する側の表面を疎水化処理した基 板を用いることを特徴とするものである。
本発明の第 1発明に係る画像表示用パネルの好適例として、 粒子群または粉流 体と接する側の表面を疎水化処理した基板として、 表面をへキサメチルジシラザ ンで処理した基板を用いること、 へキサメチルジシラザン処理の前工程として、 O H基付加工程を行うこと、 基板間に充填される粒子群または粉流体の、 A S T M D 5 7 0に準じて測定条件 2 3 、 2 4時間で測定した吸水率が、 3 %以下 であること、 及び、 基板間に充填される粒子群または粉流体の体積占有率が 3〜 7 0 V o 1 %の範 Hであること、 がある。 いずれの場合も本発明をさらに効果的 に実施することができる。
本発明の画像表示用パネルの第 1発明では、 少なくとも粒子群または粉流体と 接する側の基板表面を疎水化することにより、 粒子群及び粉流体が基板表面に凝 集付着しにくくなり、 粒子群及び粉流体の易移動性を損なわない基板表面状態と することができる。 その結果、 繰り返し使用において耐久性に優れた安価な画像 表示用パネル及び画像表示装置を得ることができる。 本発明の画像表示用パネルの第 2発明は、 所定の間隔で対向する、 少なくとも 一方が透明な 2枚の基板の間に、 周囲を隔壁で囲まれた 1又は 2以上のセルを形 成し、 各セルに粒子群または粉流体を収納し、 粒子群または粉流体に対して電界 を与えて、 粒子または粉流体を移動させることによって画像表示を行う画像表示 用パネルにおいて、 少なくとも粒子群または粉流体と接する隔壁の表面を、 疎水 化処理したことを特徴とするものである。
本発明の画像表示用パネルの第 2発明では、 少なくとも粒子群または粉流体と 接する隔壁の表面を疎水化処理することにより、 粒子群及び粉流体が隔壁表面に 凝集付着しにくくなり、 粒子群及び粉流体の易移動性を損なわない隔壁表面状態 とすることができる。 その結果、 繰り返し使用において耐久性に優れた安価な画 像表示用パネルを得ることができる。
本発明の第 2発明に係る画像表示用パネルの好適例として、 粒子群または粉流 体と接する隔壁の表面を、 へキサメチルジシラザンで疎水化処理すること、 およ び、 へキサメチルジシラザンでの疎水化処理の前工程として、 O H基付加工程を 設けること、 がある。 いずれの場合も本発明をさらに効果的に実施することがで さる。
また、 本発明の画像表示用パネルの第 3発明は、 所定の間隔で対向する、 少な くとも一方が透明な 2枚の基板の間に、 周囲を隔壁で囲まれた 1又は 2以上のセ ルを形成し、 各セルに粒子群または粉流体を収納し、 粒子群または粉流体に対し て電界を与えて、 粒子または粉流体を移動させることによって画像表示を行う画 像表示用パネルにおいて、 少なくとも粒子群または粉流体と接する隔壁の表面を 、 電荷減衰性の小さい材料でコーティングしたことを特徴とするものである。 本発明の画像表示用パネルの第 3発明では、 少なくとも粒子群または粉流体と 接する隔壁の表面を、 電荷減衰性の小さい材料でコーティングしたことにより、 粒子群及び粉流体が隔壁表面に凝集付着しにくくなり、 粒子群及び粉流体の易移 動性を損なわない隔壁表面状態とすることができる。 その結果、 繰り返し使用に おいて耐久性に優れた安価な画像表示用パネルを得ることができる。
本発明の第 3発明に係る画像表示用パネルの好適例として、 電荷減衰性の小さ い材料がフッ素樹脂を含む樹脂であり、 そのフッ素樹脂が、 テトラフルォロエヂ レン一パーフルォロアルキルビニルエーテル共重合体、 テトラフルォロエチレン 一へキサフルォロプロピレンーパ一フルォ口アルキルビニルエーテル共重合体、 テトラフルォロエチレン一エチレン共重合体、 ポリクロ口トリフルォロエチレン 、 クロ口トリフルォロエチレン一エチレン共重合体、 ポリテトラフルォロェチレ ン、 ポリフルオラィドおよびポリビエルフルォライドから選ばれる 1種または 2 種以上のフッ素樹脂であること、 および、 隔壁の表面にコ一ティングする電荷減 衰性の小さい材料が、 コーティング材料をフィルムとして測定する電荷減衰性測 定法において、 フィルム表面から 1 mmの間隔をもって配置されたコロナ放電器 に 8 K Vの電圧を印加してコロナ放電を発生させて表面を帯電させた場合に、 0 . 3秒後における表面電位の最大値が 3 0 0 Vより大きいものであること、 があ る。 いずれの場合も本発明をさらに効果的に実施することができる。
さらに、 本発明の画像表示用パネルの第 4発明は、 所定の間隔で対向する、 少 なくとも一方が透明な 2枚の基板の間に、 周囲を隔壁で囲まれた 1又は 2以上の セルを形成し、 各セルに粒子群または粉流体を収納し、 粒子群または粉流体に対 して電界を与えて、 粒子または粉流体を移動させることによって画像表示を行う 画像表示用パネルにおいて、 隔壁の構成材料として用いるバインダー樹脂のュニ バーサル硬度が、 隔壁を形成するバインダー樹脂を、 ユニバーサル硬度が 2 0 0 0 NZmm 2のガラス板上に 3 mの厚みで形成させて行うユニバーサル硬度の 測定方法において、 4 0 0 NZmm2以上であることを特徴とするものである。 本発明の画像表示用パネルの第 4発明では、 隔壁の構成材料として用いるバイ ンダ一樹脂のユニバーサル硬度が、 隔壁を形成するバインダー樹脂を、 ュニバー サル硬度が 2000 N/mm2のガラス板上に 3 の厚みで形成させて行うュ 二バーサル硬度の測定方法において、 400 N/mm2以上であることにより、 粒子群及び粉流体が隔壁表面に凝集付着しにくくなり、 粒子群及び粉流体の易移 動性を損なわない隔壁表面状態とすることができる。 その結果、 繰り返し使用に おいて耐久性に優れた安価な画像表示用パネルを得ることができる。
上述した本発明の第 2発明〜第 4発明に係る画像表示用パネルの共通の好適例 として、 セル内に収納される粒子群または粉流体の、 ASTM D 570に準じ て測定条件 23°C、 24時間で測定した吸水率が、 3%以下であること、 セル内 に収納される粒子群または粉流体の体積占有率が 3〜 70 V o 1 %の範囲である こと、 および、 セル内に収納される粒子群または粉流体を、 互いに帯電特性の異 なる、 且つ、 互いに色の異なるものとし、 互いに異なる帯電電位に帯電している 状態でセル内に収納し、 粒子群または粉流体に対して電界を与えて、 粒子群また は粉流体を移動させることによって画像表示を行うこと、 がある。 いずれの場合 も本発明をさらに効果的に実施することができる。
本発明の画像表示用パネルの第 5発明は、 少なくとも一方が透明な 2枚の基板 の間の、 隔壁によって設けられた複数のセル内に、 少なくとも 1種類以上の粒子 群または粉流体を封入し、 前記粒子群または粉流体に電界を与えて、 前記粒子ま たは粉流体を移動させて画像を表示する画像表示用パネルであって、 前記隔壁の 高さ L hと幅 Lwとの比 L hZLwが、 0. 5≤ L h ZL w≤ 20であることを 特徴とするものである。
本発明の画像表示用パネルの第 5発明では、 隔壁の高さ Lhと幅 Lwとの比 L hZLwを、 0. 5≤Lh/Lw≤20としたため、 後に説明する実施例から明 らかなように、 実用上必要最低限の開口率が得られない隔壁形状および製造が困 難な隔壁形状が除外されることになり、 開口率の確保と製造性の確保とが両立し た画像表示用パネルを提供することができる。 本発明の第 5発明に係る画像表示用パネルでは、 隔壁の高さ L hと幅 L との 比 L h Z L wが、 l≤L h Z L w≤ l 0であることが、 後に説明する実施例から 明らかなように、 良好な開口率を有するとともに製造性の良好な画像表示装置を 提供する上で好ましい。
本発明の画像表示用パネルの第 6発明は、 少なくとも一方が透明な 2枚の基板 の間の、 隔壁によって設けられた複数のセル内に、 少なくとも 1種類以上の粒子 群または粉流体を封入し、 前記粒子群または粉流体に電界を与えて、 前記粒子ま たは粉流体を移動させて画像を表示する画像表示用パネルであって、 前記隔壁は 、 所定の乾燥機能を有していることを特徴とするものである。
本発明の画像表示用パネルの第 6発明では、 隔壁が所定の乾燥機能を有してい るため、 この乾燥機能によって装置内に乾燥剤を封入しなくても湿度を制御する ことができるようになる。 したがって、 乾燥剤を用いることなく装置内雰囲気を 均一化するようにした画像表示装置を提供することができる。
本発明の第 6発明に係る画像表示用パネルでは、 隔壁の吸水率 Sが、 0 . 1 % ≤S≤ 1 0 %であることが、 後に説明する実施例から明らかなように、 吸水効果 が不十分になる場合および組立工程で吸水し過ぎて表示性能に好ましくない影響 を与える場合が除外されることになり、 前記隔壁が所定の乾燥機能を発揮するよ うにする上で好ましい。
また、 本発明の画像表示装置は、 上述した構成の画像表示用パネルを搭載した ことを特徴とするものである。
図面の簡単な説明
図 1は本発明の画像表示用パネルにおける粒子群を用いる表示方式の一例を示す 図である。
図 2は本発明の画像表示用パネルにおける粒子群を用いる表示方式の他の例を示 す図である。 図 3は本発明の画像表示用パネルにおける粒子群を用いるパネル構造の一例を示 す図である。
図 4は本発明の画像表示用パネルにおける粉流体を用いる表示方式の一例を示す 図である。
図 5は本発明の画像表示用パネルにおける粉流体を用いる表示方式の他の例を示 す図である。
図 6は本発明の画像表示用パネルにおける粉流体を用いるパネル構造の一例を示 す図である。
図 7は表面電位の測定を行う装置の概略を示す図である。
図 8は本発明の第 5発明に係る画像表示用パネルにおける隔壁の断面形状の要件 を説明するための図である。
図 9 ( a ) , ( b ) はそれぞれ本発明の第 6発明に係る画像表示用パネルにおけ る隔壁の詳細断面図および平面図である。
図 1 0は隔壁により形成される表示セルの一例を示す図である。
発明を実施するための最良の形態
本発明の第 1発明〜第 6発明に係る画像表示用パネルでは、 対向する基板間に 粒子群または粉流体を封入した表示用パネルに何らかの手段で粒子群または粉流 体に電界が付与される。 高電位側に向かっては低電位に帯電した粒子群または粉 流体がクーロン力などによって引き寄せられ、 また低電位側に向かっては高電位 に帯電した粒子群または粉流体がクーロン力などによって引き寄せられ、 電位の 切り替えによって電界方向を変えることによって、 それら粒子群または粉流体が 往復運動することにより、 画像表示がなされる。 従って、 粒子群または粉流体が
、 均一に移動し、 かつ、 繰り返し時あるいは保存時の安定性を維持できるように
、 表示用パネルを設計する必要がある。
本発明の第 1発明〜第 6発明に係る画像表示用パネルは、 2種以上の色の異な る粒子群 3 A (図 1参照) または粉流体 3 B (図 4参照) を基板 1、 2と垂直方 向に移動させることによる表示方式に用いるパネルと、 1種の色の粒子群 3 A ( 図 2参照) または粉流体 (図 5参照) を基板 1、 2と平行方向に移動させること による表示方式に用いるパネルとのいずれへも適用できる。 表示のためのパネル 構造例を図 3 (粒子群 3 Aを使用) および図 6 (粉流体 3 Bを使用) に示す。 な お、 図 1〜図 6において、 4は必要に応じて設ける隔壁、 5、 6は粒子群 3 Aま たは粉流体 3 Bに電界を与えるため必要に応じて設ける電極である。
以下、 第 1発明〜第 6発明の特徴部分を順に説明し、 次いで、 画像表示用パネ ルの共通部分について説明し、 その後、 各発明の実施例について説明する。
(第 1発明の特徴部分について)
本発明の第 1発明の特徴は、 上述した構成の画像表示用パネルにおいて、 基板 1の基板 2に対向する表面および Zまたは基板 2の基板 1に対向する表面に対し 、 好ましくはへキサメチルジシラザンを使用した疎水化処理を行った点である。 本発明の第 1発明では、 表示用パネルの少なくとも粒子群または粉流体と接す る側の基板表面を疎水性にすること、 粒子群または粉流体を構成する粒子物質の 含水量を適正なものとすること、 及び、 粒子群または粉流体の充填量を適正なも のとすること、 によって、 繰り返し使用における耐久性を向上させるものである 基板表面を疎水化するための方法の好適例として、 基板表面に対しへキサメチ ルジシラザン処理を行う。 基板表面をへキサメチルジシラザンで処理して疎水化 することにより、 粒子群及び粉流体が基板表面に凝集付着しにくくなり、 粒子群 及び粉流体の易移動性を損なわない基板表面状態とすることができる。 この場合 は、 基板表面にある官能基とへキサメチルジシラザンとが以下の式のように化学 的に結合することによって基板表面が疎水化され、 粒子群及び粉流体への影響が 小さくなるので良い。 2 R O H + M e 3 S i N H S i M e 3→2 R O S i M e 3 + N H 3 処理方法は、 へキサメチルジシラザンの溶液中に基板を含浸処理した後、 遠心 分離等の手段により分離し、 加熱乾燥する湿式法や、 乾燥状態の基板にへキサメ チルジシラザンもしくはその溶液を滴化、 スプレー等により導入処理し、 加熱乾 燥する乾式法が用いられる。 へキサメチルジシラザンの基板表面に対する処理量 は、 この発明では特に制限されないが、 通常は 0 . 1〜 1 0重量%の溶液とした もので十分な効果が得られる。 また、 へキサメチルジシラザンでの処理の前工程 として、 O H基付加工程を行うことが好ましい。 この O H基付加工程は、 プラズ マ処理、 N a O H処理等の方法で実施することができる。
基板表面を疎水化する他の方法として、 他のシランカツプリング剤を用いる方 法がある。 これも上記へキサメチルジシラザンと同様な方法にて行うことができ る。 これらのシランカップリング剤として具体的には、 メチルトリクロロシラン 、 ジメチルジクロロシラン、 トリメチルクロロシラン、 メチルトリメトキシシラ ン、 ジメチルジメトキシシラン、 メチルトリエトキシシラン、 ジメチルジェトキ シシラン、 ィソブチルトリメトキシシラン、 デシルトリメトキシシラン、 t e r 一プチルジメチルクロロシラン、 ビニルトリクロロシラン、 ビニルトリメトキシ シラン、 ビニルトリエトキシシランなどを挙げることができる。
(第 2発明〜第 4発明の特徴部分について)
本発明は、 基板に形成する隔壁 4について鋭意検討した結果なされたものであ り、 隔壁 (リブ) の表面を処理して疎水化することにより、 粒子および粉流体が 隔壁の表面に凝集付着しにくくなり、 画像表示パネルとして耐久性が向上するこ と (第 2発明) 、 隔壁 (リブ) の表面を電荷減衰性の小さい材料を用いてコ一テ ィングすることにより、 粒子および粉流体が隔壁の表面に凝集付着しにくくなり
、 画像表示パネルとして耐久性が向上すること (第 3発明) 、 隔壁 (リブ) を形 成するに際して用いるバインダー樹脂のユニバーサル硬度を、 4 0 O N/mm 2 以上とすることにより、 粒子および粉流体が隔壁の表面に凝集付着しにくくなり
、 画像表示用パネルとして耐久性が向上すること (第 4発明) 、 をそれぞれ特徴 とするものである。
本発明の第 2発明に係る画像表示用パネルにおいては、 隔壁表面を疎水化する ための方法の好適例として、 隔壁表面に対しへキサメチルジシラザン処理を行う 。 隔壁表面をへキサメチルジシラザンで処理して疎水化することにより、 粒子群 及び粉流体が隔壁表面に凝集付着しにくくなり、 粒子群及び粉流体の易移動性を 損なわない隔壁表面状態とすることができる。 この場合は、 隔壁表面にある官能 基とへキサメチルジシラザンとが以下の式のように化学的に結合することによつ て隔壁表面が疎水化され、 粒子群及び粉流体への影響が小さくなるので良い。
2 R O H + M e 3 S i N H S i M e 3→2 R〇S i M e 3 + N H 3
処理方法は、 へキサメチルジシラザンの溶液中に隔壁が形成された基板を含浸 処理した後、 遠心分離等の手段により分離し、 加熱乾燥する湿式法や、 乾燥状態 の隔壁表面にへキサメチルジシラザンもしくはその溶液を滴化、 スプレー等によ り導入処理し、 加熱乾燥する乾式法が用いられる。 へキサメチルジシラザンの隔 壁表面に対する処理量は、 この発明では特に制限されないが、 通常は 0 . 1〜1 0 0重量%の溶液としたもので十分な効果が得られる。 また、 へキサメチルジシ ラザンでの処理の前工程として、 O H基付加工程を行うことが好ましい。 この O H基付加工程は、 プラズマ処理、 N a O H処理等の方法で実施することができる 隔壁表面を疎水化する他の方法として、 他のシランカツプリング剤を用いる方 法がある。 これも上記へキサメチルジシラザンと同様な方法にて行うことができ る。 これらのシランカップリング剤として具体的には、 メチルトリクロロシラン
、 ジメチルジクロロシラン、 トリメチルクロロシラン、 メチルトリメトキシシラ ン、 ジメチルジメ卜キシシラン、 メチルトリエトキシシラン、 ジメチルジェトキ シシラン、 イソプチルトリメトキシシラン、 デシルトリメトキシシラン、 t e r 一プチルジメチルクロロシラン、 ビニルトリクロロシラン、 ビニルトリメトキシ シラン、 ビニルトリエトキシシランなどを挙げることができる。 次に、 本発明の第 3発明に係る画像表示用パネルにおいて、 隔壁表面にコ一テ ィングする電荷減衰性の小さい材料について述べる。
電荷減衰性の小さい材料として、 具体的には、 次の測定結果に合致する材料を 選択することが肝要である。 すなわち、 隔壁表面をコ一ティングする材料を厚み 5〜 1 0 0 mの範囲のフィルム状にして、 そのフィルム表面から 1 mmの間隔 をもって配置されたコロナ放電器に 8 K Vの電圧を印加してコロナ放電を発生さ せて表面を帯電させ、 その表面電位の変化を測定し判定する。 この場合、 0 . 3 秒後における表面電位の最大値が 3 0 0 Vより大きく、 好ましくは 4 0 0 Vより 大きくなる材料をコーティングすることが肝要である。
このような電荷減衰性の小さいコーティング材料としてフッ素樹脂を含む樹脂 材料が挙げられ、 さらにフッ素樹脂を例示すると、 テトラフルォロエチレン—パ —フルォロアルキルビニルエーテル共重合体、 テトラフルォロエチレン—へキサ フルォロプロピレン—パーフルォロアルキルビニルエーテル共重合体、 テトラフ ルォロエチレン一エチレン共重合体、 ポリクロ口トリフルォロエチレン、 クロ口 トリフルォロエチレン—エチレン共重合体、 ポリテトラフルォロエチレン、 ポリ フルオラィド、 およびポリビニルフルオラィドから選ばれる 1種または 2種以上 のフッ素樹脂が挙げられる。
隔壁にコ一ティングする電荷減衰性の小さい材料として、 上記フッ素樹脂に加 えて、 他の樹脂をブレンドすることも好適であるが、 少なくとも、 上記フッ素材 脂の割合を 6 0重量%以上、 好ましくは 8 0重量%以上とすることが適当である 上記において、 表面電位の測定は、 例えば、 特許第 22, 003号の明細書お よび図面に開示されている装置 (QEA社製 CRT 2000) を用いて行うこと かできる。 図 7は、 同装置の概略を示している。 図 7に示す装置は、 コーティン グ樹脂を表面に配置したロール形状の部材 1 1をそのシャフト部分 12でチヤッ ク 1 3にて保持し、 一方、 小型のスコロトロン放電器 14と表面電位計 15とを 所定間隔離して設置した計測ュニット 16を部材 1 1の表面から 1mmの間隔を おいて対向配置するように構成されている。
測定にあたっては、 部材 1 1を静止した状態のまま、 レール 1 7に沿って計測 ユニット 16を部材 1 1の一端から他瑞まで一定速度で移動させることにより、 部材 1 1の表面を帯電させながらその表面電位を測定する。 なお、 このときの測 定環境は温度 25±3 ° C、 湿度 5 & ± 5 %とする。
コ一ティングする材料の厚みは、 0. 01〜 100 m、 好ましくは 0. 1〜 30; mが好適である。
また、 コーティングの方法は、 印刷方式、 デイツビング方式、 静電塗装方式、 あるいはスパッタ方式などが挙げられるが、 これらに限定されるものではない。 さらに、 隔壁とともに基板がコーティングされてもかまわない。
コーティングする材料樹脂の溶剤不溶率に関して、 下記関係式
溶剤不溶率 (%) = (BZA) X 100
(ただし、 Aは樹脂の溶剤浸漬前の重量を示し、 8は25° Cの溶剤中に樹脂を 24時間浸漬後の重量を示す)
で表される樹脂の溶剤不溶率を 50%以上、 特に 70 %以上とすることか好まし い。
この溶剤不溶率が 50%未満では、 長期保存時に隔壁表面にブリードが発生し
、 粒子群あるいは粉流体との付着力に影響を及ぼし粒子群あるいは粉流体の移動 の妨げとなり、 画像表示の耐久性に支障をきたす場合がある。 なお、 溶剤不溶率 を測定する際の溶剤としては、 樹脂によって異なるものを使用するが、 フッ素樹 脂ではメチルェチルケトン等、 ポリアミド榭脂ではメタノール等、 アクリルウレ タン樹脂ではメチルェチルケトン、 トルエン等、 メラミン樹脂ではアセトン、 ィ ソプロパノール等、 および、 シリコーン樹脂ではトルエン等が好ましい。
(第 5発明の特徴部分について)
次に、 本発明の第 5発明に係る画像表示装置の特徴部分である隔壁 4の形状に ついて図 8に基づい T説明する。 図 8は本発明の第 5発明に係る画像表示用パネ ルにおける隔壁の断面形状の要件を説明するための図である。 図 8において、 基 板 1または 2上に形成した隔壁 4の高さを Lhとし、 隔壁 4の幅を Lwとしたと き、 両者の比 LhZLwは、 式 (1) で示す適正範囲内の値に設定するものとし 、 さらに好ましくは、 式 (2) で示す好適範囲内の値に設定するものとする。
0. 5≤L h/Lw≤ 20 ( 1 )
1≤L h/Lw≤ 10 (2)
隔壁 4の高さと幅との比 LhZLwを式 (1) で示す適正範囲内の値に設定す ることにより、 開口率の確保と製造性の確保とが両立した画像表示用パネルを提 供することができるようになる。
(第 6発明の特徴部分について)
次に、 本発明の第 6発明に係る画像表示用パネルの特徴部分である隔壁 4につ いて図 9 (a) , (b) に基づいて説明する。 図 9 (a) , (b) はそれぞれ本 発明の第 6発明に係る画像表示用パネルにおける隔壁の詳細断面図および平面図 である。 図 9 (a) に示す基板 1または 2上には、 複数の隔壁 4が形成されてい る。 これら複数の隔壁 4は、 図 9 (b) に示すように、 四角形を格子状に配列さ れていたり、 図 10に示すように様々な形状をハニカム状に配置されている。 本 発明においては、 隔壁 4として、 所定の乾燥機能を有するものを用いるものとす る。 具体的には、 隔壁 4として、 以下の式 (3) で適正範囲内の吸水率 Sを有す るものを用いるものとする。
0 . 1 %≤S≤ 1 0 % ( 3 )
隔壁 4の吸水率 Sを式 (3 ) で示す適正範囲内の値に設定することにより、 乾 燥剤を用いることなく画像表示装置内雰囲気を均一化することができるようにな る。
以下、 本発明の画像表示用パネルの各構成部分について、 粒子群、 粉流体、 第 1発明〜第 6発明に共通の構成部分の順に、 詳細に説明する。
先ず、 本発明の第 1発明〜第 6発明に用いる粒子群について述べる。
粒子群を構成する粒子の作製は、 必要な樹脂、 荷電制御剤、 着色剤、 その他添 加剤を混練り粉砕しても、 あるいはモノマーから重合しても、 あるいは既存の粒 子を樹脂、 荷電制御剤、 着色剤、 その他添加剤でコーティングしても良い。 以下に、 樹脂、 荷電制御剤、 着色剤、 その他添加剤を例示する。
樹脂の例としては、 ウレタン樹脂、 アクリル樹脂、 ポリエステル樹脂、 ウレ夕 ン変性アクリル樹脂、 シリコーン樹脂、 ナイロン樹脂、 エポキシ樹脂、 スチレン 樹脂、 プチラール樹脂、 塩化ビニリデン樹脂、 メラミン樹脂、 フエノール樹脂、 フッ素樹脂などが挙げられ、 2種以上混合することもでき、 特に、 基板との付着 力を制御する上から、 ボリエステル樹脂、 アクリルウレタン樹脂、 アクリルウレ タンシリコーン樹脂、 アクリルウレタンフッ素樹脂、 ウレタン樹脂、 フッ素樹脂 が好適である。
荷電制御剤の例としては、 正電荷付与の場合には、 4級アンモニゥム塩系化合 物、 ニグ口シン染料、 トリフエニルメタン系化合物、 イミダゾール誘導体などが 挙げられ、 負電荷付与の場合には、 含金属ァゾ染料、 サリチル酸金属錯体、 ニト ロイミダゾール誘導体などが挙げられる。
着色剤の例としては、 塩基性、 酸性などの染料が挙げられ、 ニグ口シン、 メチ レンブルー、 キノリンイェロー、 ローズベンガルなどが例示される。 無機系添加剤の例としては、 酸化チタン、 亜鉛華、 硫化亜鉛、 酸化アンチモン 、 炭酸カルシウム、 鉛白、 タルク、 シリカ、 ケィ酸カルシウム、 アルミナホワイ ト、 カドミウムイェロー、 カドミウムレッド、 カドミウムオレンジ、 チタンイエ ロー、 紺青、 群青、 コバルトブル一、 コバルトグリーン、 コバルトバイオレット 、 酸化鉄、 カーボンブラック、 マンガンフェライトブラック、 コバルトフェライ トブラック、 銅粉、 アルミニウム粉などが挙げられる。
また、 ここで繰り返し耐久性を更に向上させるためには、 該粒子を構成する樹 脂の安定性、 特に、 吸水率と溶剤不溶率を管理することが効果的である。
基板間に封入する粒子を構成する樹脂の吸水率は、 3重量%以下、 特に 2重量 %以下とすることが好ましい。 なお、 吸水率の測定は、 A S T M D 5 7 0に準 じて行い、 測定条件は 2 3 で2 4時間とする。
該粒子を構成する樹脂の溶剤不溶率に関しては、 下記関係式で表される樹脂の 溶剤不溶率を 5 0 %以上、 特に 7 0 %以上とすることが好ましい。
溶剤不溶率 ( % ) = ( B /A) X 100
(但し、 Aは樹脂の溶剤浸漬前重量、 Bは良溶媒中に樹脂を 2 5 °Cで 2 4時間浸 漬した後の重量を示す)
この溶剤不溶率が 5 0 %未満では、 長期保存時に粒子表面にブリードが発生し 、 粒子との付着力に影響を及ぼし粒子の移動の妨げとなり、 画像表示耐久性に支 障をきたす場合がある。
なお、 溶剤不溶率を測定する際に用いる溶剤 (良溶媒) としては、 フッ素樹脂 ではメチルェチルケトン等、 ポリアミド樹脂ではメタノール等、 アクリルウレタ ン樹脂ではメチルェチルケトン、 トルエン等、 メラミン榭脂ではアセトン、 イソ プ口パノール等、 シリコ一ン樹脂ではトルェン等が好ましい。
また、 粒子は球形であることが好ましい。
本発明では、 各粒子の粒子径分布に関して、 下記式に示される粒子径分布 Spanを 5未満、 好ましくは 3未満とする。
Span= (d (0.9) - d (0.1)) /ά (0.5) .
(伹し、 d (0.5)は粒子の 50%がこれより大きく、 50%がこれより小さいという 粒子径を^ mで表した数値、 d (0.1)はこれ以下の粒子の比率が 10%である粒子 径を zmで表した数値、 d (0.9)はこれ以下の粒子が 90%である粒子径を mで 表した数値である。 )
Span を 5以下の範囲に納めることにより、 各粒子のサイズが揃い、 均一な粒 子移動が可能となる。
さらに、 粒子群中の各粒子の平均粒子径 d (0.5)を、 0. 1〜 50 mとする ことが好ましい。 この範囲より大きいと表示上の鮮明さに欠け、 この範囲より小 さいと粒子同士の凝集力が大きすぎるために粒子の移動に支障をきたすようにな る。
さらにまた、 各粒子の相関について、 使用した粒子の内、 最大径を有する粒子 の d(0.5)に対する最小径を有する粒子の d(0.5)の比を 5 0以下、 好ましくは 1 0以下とすることが肝要である。
たとえ粒子径分布 Span を小さくしたとしても、 互いに帯電特性の異なる粒子 が互いに反対方向に動くので、 互いの粒子サイズが近く、 互いの粒子が当量づっ 反対方向に容易に移動できるようにするのが好適であり、 それがこの範囲となる なお、 上記の粒子径分布および粒子径は、 レーザ一回折 散乱法などから求め ることができる。 測定対象となる粒子にレーザ一光を照射すると空間的に回折 Z 散乱光の光強度分布パターンが生じ、 この光強度パターンは粒子径と対応関係が あることから、 粒子径ぉよび粒子径分布が測定できる。
本発明における粒子径および粒子径分布は、 体積基準分布から得られたもので ある。 具体的には、 Mastersizer2000 (Malvern Instruments Ltd.)測定機を用い て、 窒素気流中に粒子を投入し、 付属の解析ソフト (Mi e 理論を用いた体積基準 分布を基本としたソフト) にて、 粒子径および粒子径分布の測定を行なうことが できる。
次に、 本発明の第 1発明〜第 6発明で用いる粉流体について説明する。
本発明における 「粉流体」 は、 気体の力も液体の力も借りずに、 自ら流動性を 示 t、 流体と粒子の特性を兼ね備えた両者の中間状態の物質である。 例えば、 液 晶は液体と固体の中間的な相と定義され、 液体の特徴である流動性と固体の特徴 である異方性 (光学的性質) を有するものである (平凡社:大百科事典) 。 一方 、 粒子の定義は、 無視できるほどの大きさであっても有限の質量をもった物体で あり、 重力の影響を受けるとされている (丸善:物理学事典) 。 ここで、 粒子で も、 気固流動層体、 液固流動体という特殊状態があり、 粒子に底板から気体を流 すと、 粒子には気体の速度に対応して上向きの力が作用し、 この力が重力とつり あう際に、 流体のように容易に流動できる状態になるものを気固流動層体と呼び 、 同じく、 流体により流動化させた状態を液固流動体と呼ぶとされている (平凡 社:大百科事典) 。 このように気固流動層体や液固流動体は、 気体や液体の流れ を利用した状態である。 本発明では、 このような気体の力も、 液体の力も借りず に、 自ら流動性を示す状態の物質を、 特異的に作り出せることが判明し、 これを 粉流体と定義した。
すなわち、 本発明における粉流体は、 液晶 (液体と固体の中間相) の定義と同 様に、 粒子と液体の両特性を兼ね備えた中間的な状態で、 先に述べた粒子の特徴 である重力の影響を極めて受け難く、 高流動性を示す特異な状態を示す物質であ る。 このような物質はエアロゾル状態、 すなわち気体中に固体状もしくは液体状 の物質が分散質として安定に浮遊する分散系で得ることができ、 本発明の画像表 示装置で固体状物質を分散質とするものである。
本発明の対象となる画像表示用パネルは、 少なくとも一方が透明な、 対向する 基板間に、 気体中に固体粒子が分散質として安定に浮遊するエアロゾル状態で高 流動性を示す粉流体を封入するものであり、 このような粉流体は、 低電圧の印加 でクーロン力などにより容易に安定して移動させることができる。
粉流体とは、 先に述べたように、 気体の力も液体の力も借りずに、 自ら流動性 を示す、 流体と粒子の特性を兼ね備えた両者の中間状態の物質である。 この粉流 体は、 特にエアロゾル状態とすることができ、 本発明の画像表示装置では、 気体 中に固体状の物質が分散質として比較的安定に浮遊する状態で用いられる。 エアロゾル状態の範囲は、 粉流体の最大浮遊時の見かけ体積が未浮遊時の 2倍 以上であるこ.とが好ましく、 更に好ましくは 2 . 5倍以上、 特に好ましくは 3倍 以上である。 上限は特に限定されないが、 1 2倍以卞であることが好ましい。 粉流体の最大浮遊時の見かけ体積が未浮遊時の 2倍より小さいと表示上の制御 が難しくなり、 また、 1 2倍より大きいと粉流体を装置内に封入する際に舞い過 ぎてしまうなどの取扱い上の不便さが生じる。 なお、 最大浮遊時の見かけ体積は 次のようにして測定される。 すなわち、 粉流体が透過して見える密閉容器に粉流 体を入れ、 容器自体を振動或いは落下させて、 最大浮遊状態を作り、 その時の見 かけ体積を容器外側から測定する。 具体的には、 直径 (内径) 6 c m、 高さ 1 0 c mのポリプロピレン製の蓋付き容器 (商品名アイボーイ :ァズワン (株) 製) に、 未浮遊時の粉流体として 1 Z 5の体積相当の粉流体を入れ、 振とう機に容器 をセットし、 6 (:111の距離を3往復7 3 e cで 3時間振とうさせる。 振とう停止 直後の見かけ体積を最大浮遊時の見かけ体積とする。
また、 本発明の画像表示用パネルは、 粉流体の見かけ体積の時間変化が次式を 満たすものが好ましい。
V 1 0/V 5 > 0 . 8
ここで、 V 5は最大浮遊時から 5分後の見かけ体積 (c m 3 ) 、 V 1 0は最大浮遊 時から 1 0分後の見かけ体積 (c m 3) を示す。 なお、 本発明の画像表示用パネ ルは、 粉流体の見かけ体積の時間変化 V1Q/V5が 0. 85よりも大きいものが 好ましく、 0. 9よりも大きいものが特に好ましい。 。ノ V5が 0. 8以下の 場合は、 通常のいわゆる粒子を用いた場合と同様となり、 本発明のような高速応 答、 耐久性の効果が確保できなくなる。
また、 粉流体を構成する粒子物質の平均粒子径 (d (0·. 5) ) は、 好ましく は 0. 1 _ 20 m、 更に好ましくは 0. 5— 1 5 、 特に好ましくは 0. 9 一 8 mである。 0. 1 mより小さいと表示上の制御が難しくなり、 20 m より大きいと、 表示はできるものの隠蔽率が下がり装置の薄型化が困難となる。 なお、 粉流体を構成する粒子物質の平均粒子径 (d (0. 5) ) は、 次の粒子径 分布 Spanにおける d (0. 5) と同様である。'
粉流体を構成する粒子物質は、 下記式に示される粒子径分布 Span が 5未満で あることが好ましく、 更に好ましくは 3未満である。
粒子径分布 Span= (d (0. 9) 一 d (0. 1) ) /ά (0. 5)
ここで、 d (0. 5) は粉流体を構成する粒子物質の 50%がこれより大きく、 50%がこれより小さいという粒子径を mで表した数値、 d (0. 1) はこれ 以下の粉流体の比率が 1 0 %である粒子径を mで表した数値、 d (0. 9) は これ以下の粉流体が 90 %である粒子径を mで表した数値である。 粉流体を構 成する粒子物質の粒子径分布 Span を 5以下とすることにより、 サイズが揃い、 均一な粉流体移動が可能となる。
なお、 以上の粒子径分布および粒子径は、 レーザ一回折 Z散乱法などから求め ることができる。 測定対象となる粉流体にレーザー光を照射すると空間的に回折 散乱光の光強度分布パターンが生じ、 この光強度パターンは粒子径と対応関係 があることから、 粒子径および粒子径分布が測定できる。 この粒子径および粒子 径分布は、 体積基準分布から得られる。 具体的には、 Mastersizer2000 (Malvern
Instruments Ltd. )測定機を用いて、 窒素気流中に粉流体を投入し、 付属の解析 ソフト (Mi e 理論を用いた体積基準分布を基本としたソフト) にて、 測定を行う ことができる。
粉流体の作製は、 必要な樹脂、 荷電制御剤、 着色剤、 その他添加剤を混練り粉 砕しても、 モノマーから重合しても、 既存の粒子を樹脂、 荷電制御剤、 着色剤、 その他添加剤でコーティングしても良い。 以下、 粉流体を構成する樹脂、 荷電制 御剤、 着色剤、 その他添加剤を例示する。
樹脂の例としては、 ウレタン樹脂、 アクリル樹脂、 ポリエステル樹脂、 ウレタ ン変性アクリル樹脂、 シリコーン樹脂、 ナイロン樹脂、 エポキシ樹脂、 スチレン 樹脂、 ブチラ一ル樹脂、 塩化ビニリデン樹脂、 メラミン樹脂、 フエノール樹脂、 フッ素樹脂などが挙げられ、 2種以上混合することもでき、 特に、 基板との付着 力を制御する上から、 アクリルウレタン樹脂、 アクリルウレタンシリコーン樹脂 、 アクリルウレタンフッ素樹脂、 ウレタン樹脂、 フッ素樹脂が好適である。 荷電制御剤の例としては、 正電荷付与の場合には、 4級アンモニゥム塩系化合 物、 ニグ口シン染料、 トリフエニルメタン系化合物、 イミダゾール誘導体などが 挙げられ、 負電荷付与の場合には、 含金属ァゾ染料、 サリチル酸金属錯体、 二卜 ロイミダゾール誘導体などが挙げられる。
着色剤の例としては、 塩基性、 酸性などの染料が挙げられ、 ニグ口シン、 メチ レンブル一、 キノリンイェロー、 ローズベンガルなどが例示される。
無機系添加剤の例としては、 酸化チタン、 亜鉛華、 硫化亜鉛、 酸化アンチモン 、 炭酸カルシウム、 鉛白、 タルク、 シリカ、 ケィ酸カルシウム、 アルミナホワイ ト、 カドミウムイェロー、 カドミウムレッド、 カドミウムオレンジ、 チタンイエ ロー、 紺青、 群青、 コバルトブルー、 コバルトグリーン、 コバルトバイオレット 、 酸化鉄、 カーボンブラック、 銅粉、 アルミニウム粉などが挙げられる。
しかしながら、 このような材料を工夫無く混練り、 コーティングなどを施して も、 エアロゾル状態を示す粉流体を作製することはできない。 エアロゾル状態を 示す粉流体の決まった製法は定かではないが、 例示すると次のようになる。 まず、 粉流体を構成する粒子物質の表面に、 平均粒子径が 2 0〜 1 0 0 n m、 好ましくは 2 0〜 8 0 n mの無機微粒子を固着させることが適当である。 更に、 その無機微粒子がシリコーンオイルで処理されていることが適当である。 ここで 、 無機微粒子としては、 二酸化珪素 (シリカ) 、 酸化亜鉛、 酸化アルミニウム、 酸化マグネシウム、 酸化セリウム、 酸化鉄、 酸化銅等が挙げられる。 この無機微 粒子を固着させる方法が重要であり、 例えば、 八イブリダィザー (奈良機械製作 所 (株) 製) ゃメカノフュージョン (ホソカワミクロン (株) 製) などを用いて 、 ある限定された条件下 (例えば処理時間) で、 エアロゾル状態を示す粉流体を 作製することができる。
ここで繰り返し耐久性を更に向上させるためには、 粉流体を構成する樹脂の安 定性、 特に、 吸水率と溶剤不溶率を管理することが効果的である。 基板間に封入 する粉流体を構成する樹脂の吸水率は、 3重量%以下、 特に 2重量%以下とする ことが好ましい。 なお、 吸水率の測定は、 A S T M— D 5 7 0に準じて行い、 測 定条件は 2 3 °Cで 2 4時間とする。 粉流体を構成する樹脂の溶剤不溶率に関して は、 下記関係式で表される粉流体の溶剤不溶率を 5 0 %以上、 特に 7 0 %以上と することが好ましい。
溶剤不溶率 (%) = ( B /A) X 1 0 0
(但し、 Aは樹脂の溶剤浸漬前重量、 Bは良溶媒中に樹脂を 2 5 °Cで 2 4時間浸 漬した後の重量を示す)
この溶剤不溶率が 5 0 %未満では、 長期保存時に粉流体を構成する粒子物質の 表面にブリードが発生し、 粉流体との付着力に影響を及ぼし粉流体の移動の妨げ となり、 画像表示耐久性に支障をきたす場合がある。 なお、 溶剤不溶率を測定す る際の溶剤 (良溶媒) としては、 フッ素樹脂ではメチルェチルケトン等、 ポリア ミド樹脂ではメタノール等、 アクリルウレタン樹脂では、 メチルェチルケトン、 トルエン等、 メラミン樹脂ではアセトン、 イソプロパノール等、 シリコーン樹脂 ではトルエン等が好ましい。
また、 粒子群及び粉流体の充填量については、 粒子群及び粉流体の体積占有率 が、 対向する基板間の空間部分の 3〜7 Ovol%、 好ましくは 5〜6 Ovol%、 更 に好ましくは 5〜55vol%になるように調整することが好ましい。 粒子群及び 粉流体の体積占有率が、 3 vol %より小さいと鮮明な画像表示が行えなくなり、 7 Ovol%より大きいと粒子群及び粉流体が移動しにくくなる。 ここで、 空間体 積とは、 対向する基板 1、 基板 2に挟まれる部分から、 隔壁 4の占有部分、 装置 シール部分を除いた、 いわゆる粒子群及び粉流体を充填可能な体積を指すものと する。
次に、 基板について述べる。
基板 1、 基板 2の少なくとも一方は装置外側から粒子群または粉流体の色が確 認できる透明基板であり、 可視光の透過率が高くかつ耐熱性の良い材料が好適で ある。 可とう性の有無は用途により適宜選択され、 例えば、 電子ペーパー等の用 途には可とう性のある材料、 携帯電話、 PDA、 ノートパソコン類の携帯機器表 示等の用途には可とう性のない材料が用いられる。
基板材料を例示すると、 ボリエチレンテレフタレー卜、 ポリエーテルサルフォ ン、 ポリエチレン、 ポリカーボネートなどのポリマーシートや、 ガラス、 石英な どの無機シートが挙げられる。
基板厚みは、 2〜5 0 00 m、 好ましくは 5〜 1 000 mが好適であり、 薄すぎると、 強度、 基板間の間隔均一性を保ちにくくなり、 厚すぎると、 表示機 能としての鮮明さ、 コントラストの低下が発生し、 特に、 電子ペーパー用途の場 合には可とう性に欠ける。
基板には、 必要に応じて電極を設けても良い。
基板に電極を設けない場合は、 基板外部表面に静電潜像を与え、 その静電潜像 に応じて発生する電界にて、 所定の特性に帯電した色のついた粒子群あるいは粉 流体を基板に引き寄せあるいは反発させることにより、 静電潜像に対応して配列 した粒子群あるいは粉流体を透明な基板を通して表示装朦外側から視認する。 な お、 この静電潜像の形成は、 電子写真感光体を用い通常の電子写真システムで行 われる静電潜像を本発明の画像表示装置の基板上に転写形成する、 あるいは、 ィ オンフローにより静電潜像を基板上に直接形成する等の方法で行うことができる 基板に電極を設ける場合は、 電極部位への外部電圧入力により、 基板上の各電 極位置に生じた電界により、 所定の特性に帯電した色の粒子群あるいは粉流体が 引き寄せあるいは反発させることにより、 静電潜像に対応して配列した粒子群あ るいは粉流体を透明な基板を通して表示装置外側から視認する方法である。 透明性を要する基板側に設ける電極は、 透明かつパターン形成可能である導電 性材料で形成され、 例示すると、 酸化インジウム、 アルミニウムなどの金属類、 ポリア二リン、 ポリピロール、 ポリチォフェンなどの導電性高分子類が挙げられ 、 真空蒸着、 塗布などの形成手法が例示できる。 透明性を要しない基板側に設け る電極は透明とする必要はない。 なお、 電極厚みは、 導電性が確保でき透明性を 要する基板側に設ける電極においてはさらに加えて光透過性に支障なければ良く
、 3〜 1 0 0 0 n m、 好ましくは 5〜4 0 0 n mが好適である。 この場合の外部 電圧入力は、 直流あるいは交流を重畳しても良い。 電極が基板表面の粒子群また は粉流体と接する側の最表面に露出する場合には、 この電極表面を含めて疎水化 処理することが好ましい。 .
次に、 隔壁について説明する。
本発明の隔壁の形状は、 表示にかかわる粒子群のサイズあるいは粉流体のサイ ズにより適宜最適設定され、 一概には限定されないが、 隔壁の幅は 2〜100 m
、 好ましくは 3〜50 mに、 隔壁の高さは 10〜5000 ;^ m、 好ましくは 10〜500 mに調整される。
また、 隔壁を形成するにあたり、 対向する両基板の各々にリブを形成した後に 接合する両リブ法と、 片側の基板上にのみリブを形成する片リブ法が考えられる が、 本発明はどちらにも適用できる。
これらリブからなる隔壁により形成される表示セルは、 図 1 0に示すごとく、 基板平面方向から見た形状としては六角状、 四角状、 三角状、 ライン状、 円形状 が例示され、 配置としてはハニカム状、 格子状が例示される。
表示側から見える隔壁断面部分に相当する部分 (表示セルの枠部の面積) はで きるだけ小さくした方が良く、 画像表示の鮮明さが増す。
ここで、 隔壁の形成方法を例示すると、 スクリーン印刷法、 サンドブラスト法 、 フォトリソ法、 アディティブ法が挙げられ、 このうちでもレジストフイルムを 用いるフォトリソ法が好適に用いられる。
次に、 第 1発明〜第 6発明についてそれぞれ実施例、 比較例を示して、 本発明 を更に具体的に説明する。 但し本発明は以下の実施例により限定されるものでは ない。
( 1 ) 第 1発明についての実施例
実施例及び比較例で得られた粒子群及び粉流体、 さらには表示用パネルにつ いて、 以下の基準に従い評価を行った。
「粒子の含水量」
カールフィッシヤー装置を用いて、 粒子群及び粉流体の含水量を測定した。 「表示機能の評価」
作製した表示用パネルを組み込んだ表示装置に、 2 5 0 Vの電圧を印加して電 位を反転させることにより、 黒色〜白色の表示を繰り返した。 表示機能の評価は
、 コントラスト比について、 初期、 1 0 0 0 0回繰り返し後、 更に 5日放置後を
、 反射画像濃度計を用いて測定した。 ここで、 コントラスト比とは、 コントラス ト比 =黒色表示時反射濃度/白色表示時反射濃度とした。 なお、 初期のコントラ スト比に対する 1 0000回繰り返し後および 5日放置後のコントラスト比を保 持率とした。
ぐ実施例 1 (粒子群) >
画像表示用パネルを以下のように作製した。
まず、 電極付き基板 (7 cmx 7 cm口) を準備し、 基板上に、 高さ 400 mのリブを作り、 ストライプ状の隔壁を形成した。
リブの形成は次のように行なった。 先ずペーストは、 無機粉体として S i 02 、 A 123 、 B23 、 B i 203ぉょび21 0の混合物を、 溶融、 冷却、 粉砕 したガラス粉体を、 樹脂として熱硬化性のエポキシ樹脂を準備して、 溶剤にて粘 度 12000 c p sになるように調製したペーストを作製した。 次に、 ペースト を準備した基板上に塗布し、 150°Cで加熱硬化させ、 この塗布〜硬化を繰り返 す事により、 厚み (隔壁の高さに相当) 400 xmになるように調整した。 次に 、 ドライフォトレジストを貼り付けて、 露光〜エッチングにより、 ライン 50 m、 スペース 400 m、 ピッチ 450 mの隔壁パターンが形成されるような マスクを作製した。 次に、 サンドブラストにより、 所定の隔壁形状になるように 余分な部分を除去し、 所望とするストライプ状隔壁を形成した。 そして、 基板上 の隔壁間にセルを形成した。
リブが形成された粒子群と接する面に、 前処理としてプラズマ処理により OH 基付加を行い、 その後へキサメチルジシラザン 2 gを滴化した後、 乾燥すること によって、 表面処理を行った対向基板を作製した。 また、 約 500 A厚みの酸化 インジウム電極が設けられたガラス基板の片側表面に、 前処理としてプラズマ処 理により OH基付加を行い、 その後へキサメチルジシラザン 2 gを滴化した後、 乾燥することによって、 表面処理を行った透明基板を作製した。
次に、 2種類の粒子群 (粒子群 A、 粒子群 B) を準備した。 粒子群 Aは、 アクリルウレタン樹脂 EAU 5 3 B (亜細亜工業 (株) 製) /\ PD I系架橋剤ェクセルハ一ドナー HX (亜細亜工業 (株) 製) に、 CB 4 p h r、 荷電制御剤ポントロン NO 7 (オリエント化学 (株) 製) 2 p h rを添加し 、 混練り後、 ジェットミルにて粉碎分級して作製した。 作製された粒子群 Aは、 含水率が 2. 9 %、 溶剤不溶率が 9 1 %、 平均粒子径が 9. l m、 表面電荷密 度が + 2 5 / CZm 2の黒色粒子群であった。
粒子群 Bは、 アクリルウレタン樹脂 EAU5 3 B (亜細亜工業 (株) 製) ノ1 PD I系架橋剤ェクセルハ一ドナ一 HX (亜細亜工業 (株) 製) に、 酸化チタン 1 0 p h r、 荷電制御剤ポントロン E 8 9 (オリエント化学 (株) 製) 2 p h r を添加し、 混練り後、 ジェットミルにて粉碎分級して作製した。 作製された粒子 群 Bは、 含水率が 2. 9 %、 溶剤不溶率が 9 1 %、 平均粒子径が 7. 0 um, 表 面電荷密度が一 6 0 β CZm 2の白色粒子群であった。
へキサメチルジシラザンによつて表面処理されたリブ付き基板 (対向基板) を 、 湿度 40 %RH以下の乾燥した容器内に移し、 粒子群 Aを第 1の粒子群として 、 容器内上部に設けられたノズルから容器内に分散して、 容器下部に置かれた基 板上のセル内に散布することにより粒子群 Aを充填した。 続いて、 粒子群 Bを第 2の粒子群として、 容器内上部に設けられた別のノズルから容器内に分散して、 容器下部に置かれた基板上のセル内 (すでに粒子群 Aが充填されている) に散布 することにより粒子群 Aに重ねて充填した。 粒子群 Aと粒子群 Bの混合率は同体 積量ずっとし、 2枚の基板を貼り合わせてできる基板間に対する双方の粒子群が 合わさった体積占有率が 22 V o 1 %となるように調整した。
次に、 粒子群 Aと粒子群 Bが充填された基板に、 もう一方の基板 (へキサメチ ルジシラザンによって表面処理された透明基板) を重ね合わせ、 基板周辺をェポ キシ系接着剤にて接着すると共に、 粒子群を封入して、 表示用パネルを作製した
。 その後、 作製した表示用パネルの表示機能の評価を行った。 評価結果を以下の 表 1に示す。
<実施例 2 (粉流体) >
実施例 1において、 粒子群 Aと粒子群 Bの代わりに、 以下に説明する粉流体 X と粉流体 Yを用いた以外は、 同様にして、 表示用パネルを作製した。 評価結果を 以下の表 1に示す。
用いた粉流体 (粉流体 X、 粉流体 Y) は以下の通りであった。
粉流体 Xは、 まず、 メチルメ夕クリレートモノマー、 T i 02 (20 p h r ) 、 荷電制御剤ポントロン E 89 (オリエント化学 (株) 製、 5 p h r) 、 開始剤 A I BN (0. 5 p h r) を用いて懸濁重合した後、 分級装置にて粒子径をそろ えた。 次に、 ハイブリダィザ一装置 (奈良機械製作所 (株) 製) を用いて、 これ らの粒子に外添剤 A (シリカ H 2000Z4、 ヮッ力一社製) と外添剤 B (シリ 力 S S 20、 日本シリカ (株) 製) を投入し、 4800回転で 5分間処理して、 外添剤を、 重合した粒子表面に固定化し、 粉流体になるように調整した。
粉流体 Yは、 まず、 スチレンモノマ一、 ァゾ系化合物 (5 p h r) 、 荷電制御 剤ポントロン N 07 (オリエント化学 (株) 製、 5 p h r) 、 開始剤 A I BN ( 0. 5 p h r) を用いて懸濁重合した後、 分級装置にて粒子径をそろえた。 次に 、 ハイブリダィザ一装置 (奈良機械製作所 (株) 製) を用いて、 これら粒子に外 添剤 C (シリカ H 2050、 ヮッカー社製) と外添剤 B (シリカ S S 20、 日本 シリカ (株) 製) を投入し、 4800回転で 5分間処理して、 外添剤を、 重合し た粒子表面に固定化し、 粉流体になるように調整した。
粉流体 Xを構成する粒子物質の含水率は 3. 0%であり、 溶剤不良率は 92% であり、 平均粒子径は 3. 3 mであり、 表面電荷密度は、 + 23 ^C/m2で あった。 粉流体 Yを構成する粒子物質の含水率は 2. 8 %であり、 溶剤不溶率は 92%であり、 平均粒子径は 3. 1 mであり、 表面電荷密度は、 一 58 CZ m2であった。 <比較例 1 (粒子群) >
へキサメチルジシラザンによって表面処理された透明基板及び対向基板を用い なかった以外は、 実施例 1と同様にして表示用パネルを作製した。 評価結果を以 下の表 1に示す。
ぐ比較例 2 (粉流体) >
へキサメチルジシラザンによって表面処理された透明基板及び対向基板を用い なかった以外は、 実施例 2と同様にして表示用パネルを作製した。 評価結果を以 下の表 1に示す。
Figure imgf000032_0001
表 1の結果から、 基板表面をへキサメチルジシラザンで疎水化処理した実施例 1 (粒子群) 及び実施例 2 (粉流体) は、 基板表面に対してへキサメチルジシラ ザンによる疎水化処理を行わなかった比較例 1 (粒子群) 及び比較例 2 (粉流体 ) と比べて、 初期のコントラスト比は同じだが、 繰り返し使用時のコントラスト 比が良好になることがわかる。 この結果から、 本発明の画像表示用パネルは、 繰 り返し使用において耐久性に優れることがわかる。
( 2 ) 第 2発明〜第 4発明についての実施例
第 2発明〜第 4発明に係る実施例及び比較例で得られた画像表示用パネルに ついて、 以下の基準に従い評価を行った。
「ユニバーサル硬度」
(株) フィッシャー 'インストルメンッ製のユニバーサル硬度測定機 H 100 VP— HCUを用いて、 以下の手順で測定した。 ユニバーサル硬度が 2000 N /mm2のガラス板を準備し、 このガラス板上に、 測定したい材料を厚さ 3 xm で形成したものを測定用試料として準備し、 測定した。 ' 「表示機能の評価」
色と帯電特性の異なる粒子群あるいは粉流体を基板間のセル内に封入して作製 した画像表示用パネルを表示装置に組み込み、 250 Vの電圧を印加して電位を 反転させることにより、 黒色〜白色の表示を 1 00, 000回繰り返した後の表 示画像を光学顕微鏡にて拡大して目視観察することによって行った。
第 ·2発明について:
<実施例 1 1 (粒子群) >
画像表示用パネルを以下のように作製した。
まず、 電極付き基板 (7 cmX 7 cm口) を準備し、 基板上に、 高さ 400 mのリブを作り、 ストライプ状の隔壁を形成した。
リブの形成は次のように行なった。 先ずペース卜は、 無機粉体として S i 02
、 A 1203、 B203、 B i 23および Z n〇の混合物を、 溶融、 冷却、 粉碎し たガラス粉体を、 樹脂として熱硬化性のエポキシ樹脂を準備して、 溶剤にて粘度
12000 c p sになるように調製したペーストを作製した。 次に、 ペーストを 準備した基板上に塗布し、 1 50°Cで加熱硬化させ、 この塗布〜硬化を繰り返す 事により、 厚み (隔壁の高さに相当) 400 mになるように調整した。 次に、 ドライフォトレジストを貼り付けて、 露光〜エッチングにより、 ライン 50 m
、 スペース 400 m、 ピッチ 450 mの隔壁パターンが形成されるようなマ スクを作製した。 次に、 サンドブラストにより、 所定の隔壁形状になるように余 分な部分を除去し、 所望とするストライプ状隔壁を形成した。
形成された隔壁表面にへキサメチルジシラザン 2 gを滴下した後、 乾燥するこ とによって隔壁の表面処理を行った対向基板を作製した。
次に、 2種類の粒子群 (粒子群 A、 粒子群 B) を準備した。
粒子群 Aは、 アクリルウレタン樹脂 EAU53 B (亜細亜工業 (株) 製) / I PD I系架橋剤ェクセルハードナ一 HX (亜細亜工業 (株) 製) に、 力一ポンプ ラック 4 p h r、 荷電制御剤ポントロン NO 7 (オリエント化学 (株) 製) 2 p h rを添加し、 混練り後、 ジェットミルにて粉碎分級して作製した。 作製された 粒子群 Aは、 含水率が 2. 9 %、 溶剤不溶率が 91 %、 平均粒子径が 9. 1 rn 、 の黒色粒子群であった。
粒子群 Bは、 アクリルウレタン樹脂 EAU53 B (亜細亜工業 (株) 製) ZI PD I系架橋剤ェクセルハ一ドナー HX (亜細亜工業 (株) 製) に、 酸化チタン 1 0 p h r、 荷電制御剤ポントロン E 89 (オリエント化学 (株) 製) 2 p h r を添加し、 混練り後、 ジエツトミルにて粉砕分級して作製した。 作製された粒子 群 Bは、 含水率が 2. 9%、 溶剤不溶率が 91 %、 平均粒子径が 7. O m、 の 白色粒子群であった。
へキサメチルジシラザンによって隔壁表面が処理されたリブ付き基板 (対向基 板) を、 湿度 40 %RH以下の乾燥した容器内に移し、 粒子群 Aを第 1の粒子群 として、 容器内上部に設けられたノズルから容器内に分散して、 容器下部に置か れた基板上のセル内に散布することにより粒子群 Aを充填した。
続いて、 粒子群 Bを第 2の粒子群として、 容器内上部に設けられた別のノズル から容器内に分散して、 容器下部に置かれた基板上のセル内 (すでに粒子群 Aが 充填されている) に散布することにより粒子群 Aに重ねて充填した。
粒子群 Aと粒子群 Bの充填配置量は同体積量ずつとし、 2枚の基板を貼り合わ せてできる基板間に対する双方の粒子群が合わさった体積占有率が 22 V o 1 % となるように調整した。
次に、 粒子群がセル内に充填配置された基板にもう一方のリブがない基板 (透 明基板) を重ね合わせ、 基板周辺をエポキシ系接着剤にて接着すると共に、 粒子 群を封入し、 画像表示用パネルを作製した。
評価結果を以下の表 2に示す。
<実施例 12 (粉流体) >
実施例 1 1において、 粒子群 Aと粒子群 Bの代わりに以下に説明する粉流体 X と粉流体 Yを用いた以外は、 同様にして、 画像表示用パネルを作製した。 評価結 果を以下の表 2に示す。
用いた粉流体 (粉流体 X、 粉流体 Y) は以下の通りであった。
粉流体 Xは、 まず、 メチルメタクリレートモノマー、 T i〇2 (20 p h r) 、 荷電制御剤ポントロン E 89 (オリエント化学 (株) 製、 5 p h r) 、 開始剤 A I BN (0. 5 ph r) を用いて懸濁重合した後、 分級装置にて粒子径をそろ えた。 次に、 ハイブリダィザー装置 (奈良機械製作所 (株) 製) を用いて、 これ らの粒子に外添剤 A (シリカ H2000/4、 ヮッカー社製) と外添剤 B (シリ 力 S S 20、 日本シリカ社製) を投入し、 4800回転で 5分間処理して、 外添 剤を、 重合した粒子表面に固定化し、 粉流体になるように調整した。 粉流体 Xを 構成する粒子の含水率は 3. 0%であり、 溶剤不溶率は 92%であり、 平均粒子 径は 3. 3 mであった。
粉流体 Yは、 まず、 スチレンモノマー、 ァゾ系化合物 (5 ph r) 、 荷電制御 剤ポントロン NO 7 (オリエント化学 (株) 製、 5 ph r) 、 開始剤 A I BN (
0. 5 p h r) を用いて懸濁重合した後、 分級装置にて粒子径をそろえた。 次に
、 ハイブリダィザ一装置を用いて、 これら粒子に外添剤 C (シリカ H 2050、 ヮッカー社製) と外添剤 B (シリカ S S 20、 日本シリカ社製) を投入し、 48
00回転で 5分間処理して、 外添剤を、 重合した粒子表面に固定化し、 粉流体に なるように調整した。 粉流体 Yを構成する粒子の含水率は 2. 8 %であり、 溶剤 不溶率は 9 2 %であり、 平均粒子径は 3. l /zmであった。
<比較例 1 1 (粒子群) >
へキサメチルジシラザンによって隔壁表面を処理しなかった以外は、 実施例 1 1と同様にして画像表示用パネルを作製した。 評価結果を以下の表 2に示す。 <比較例 1 2 (粉流体) >
へキサメチルジシラザンによって隔壁表面を処理しなかった以外は、 実施例 1 2と同様にして画像表示用パネルを作製した。 評価結果を以下の表 2に示す。 表 2
Figure imgf000036_0001
第 3発明について:
<実施例 1 3 (粒子群) >
へキサメチルジシラザンによって隔壁表面を処理せずに、 隔壁表面を電荷減衰 性の小さいフッ素樹脂 (LF 7 1 ON旭硝子 (株) 製) でコーティングした以外 は、 実施例 1 1と同様にして画像表示用パネルを作製した。 評価結果を以下の表 3に示す。
<実施例 14 (粉流体) >
へキサメチルジシラザンによって隔壁表面を処理せずに、 隔壁表面を電荷減衰 性の小さいフッ素樹脂 (LF 7 1 0N 旭硝子 (株) 製) でコーティングした以 外は、 実施例 12と同様にして画像表示用パネルを作製した。 評価結果を以下の 表 3に示す。
<比較例 13 (粒子群) >
隔壁表面を電荷減衰性の小さいフッ素樹脂 (LF71 ON 旭硝子 (株) 製) でコ一ティングしなかった以外は、 実施例 13と同様にして画像表示用パネルを 作製した。 評価結果を以下の表 3に示す。
<比較例 14 (粉流体) >
隔壁表面を電荷減衰性の小さいフッ素樹脂 (LF71 ON 旭硝子 (株) 製) でコーティングしなかった以外は、 実施例 14と同様にして画像表示用パネルを 作製した。 評価結果を以下の表 3に示す。
表 3
Figure imgf000037_0001
第 4発明について:
<実施例 15 (粒子群) > ,
画像表示用パネルを以下のように作製した。
まず、 電極付き基板 (7 cmx 7 cm口) を準備し、 基板上に、 高さ 400 mのリブを作り、 ストライプ状の隔壁を形成した。
リブの形成は次のように行なった。 先ずペーストは、 無機粉体として S i〇2 、 A 1 2 0 3、 B 2 0 3、 B i 2 0 3および Z n Oの混合物を、 溶融、 冷却、 粉枠し たガラス粉体を、 樹脂として熱硬化性のエポキシ樹脂を寧備して、 溶剤にて粘度 1 2 0 0 0 c p sになるように調製したペーストを作製した。 次に、 ペーストを 準備した基板上に塗布し、 1 5 0 °Cで加熱硬化させ、 この塗布〜硬化を繰り返す 事により、 厚み (隔壁の高さに相当) 4 0 0 mになるように調整した。 次に、 ドライフォトレジストを貼り付けて、 露光〜エッチングにより、 ライン 5 0 m 、 スペース 4 0 0 ΠΙ、 ピッチ 4 5 0 mの隔壁パターンが形成されるようなマ スクを作製した。 次に、 サンドブラストにより、 所定の隔壁形状になるように余 分な部分を除去し、 所望とするストライプ状隔壁を形成した。
次に、 実施例 1 1と同様の 2種類の粒子群 (粒子群 A、 粒子群 B ) を準備し、 実施例 1 1と同様の方法にて画像表示用パネルを作製した。
また、 上記の隔壁作製に用いたバインダー樹脂 (熱硬化性のエポキシ樹脂) だ けをユニバーサル硬度が 2 0 0 0 NZmm 2のガラス板に 3 m厚でコ一ティン グし、 1 5 0 °Cで加熱硬化させて、 バインダー樹脂 (熱硬化性のエポキシ樹脂) のユニバーサル硬度を測定した。
評価結果を以下の表 4に示す。
<実施例 1 6 (粉流体) >
実施例 1 5と同様に隔壁を作製し、 実施例 1 2と同様の 2種類の粉流体 Xと粉 流体 Yを用いた以外は、 実施例 1 5と同様にして画像表示用パネルを作製した。 また、 隔壁作製に用いたバインダー樹脂 (熱硬化性のエポキシ樹脂) のュニバ ーサル硬度は、 実施例 1 5と同様にして測定した。
評価結果を以下の表 4に示す。
<比較例 1 5 (粒子群) >
隔壁用ペーストに用いるバインダー樹脂 (熱硬化性のエポキシ樹脂) を硬化さ せる温度を 1 2 0 °Cにした以外は、 実施例 1 5と同様にして画像表示用パネルを 作製した。
また、 上記隔壁作製に用いたバインダー樹脂 (熱硬化性のエポキシ樹脂) だけ をユニバーサル硬度が 2 0 0 0 N/mm2のガラス板に 3 厚でコ一ティング し、 1 2 0 °Cで加熱硬化させて、 バインダー樹脂 (熱硬化性のエポキシ樹脂) の ユニバーサル硬度を測定した。
評価結果を以下の表 4に示す。
<比較例 1 6 (粉流体) >
隔壁用ペーストに用いるバインダー樹脂 (熱硬化性のエポキシ樹脂) を硬化さ せる温度を 1 2 0 °Cにした以外は、 実施例 1 6と同様にして画像表示用パネルを 作製した。
また、 隔壁作製に用いたバインダー樹脂 (熱硬化性のエポキシ樹脂) のュニパ —サル硬度は、 比較例 1 5と同様にして測定した。
評価結果を以下の表 4に示す。
表 4
Figure imgf000039_0001
以上の表 2〜表 4の結果から、 本発明の第 2発明〜第 4発明に係る各実施例の 画像表示用パネルは、 従来の各比較例と比べて、 耐久性が良好になることがわか つた。 (3) 第 5発明についての実施例
作製した画像表示用パネルについて、 後記の基準に従い、 表示板としての機能 の測定および評価を行った。 その結果を以下の表 5、 表 6に示す。
<実施例 2 1 (粒子群) >
画像表示用パネルを以下のように作製した。
まず、 I TO電極付きガラス基板 (7 cmx7 cmd) を準備し、 基板上に、 高さ 5 Ομηιのリブを作り、 ストライプ状の隔壁を形成した。
リブの形成は次のように行なった。 まずべ一ストは、 無機粉体として S i〇2 、 A l 2 03 、 B 2 03 、 B i 203および Z n〇の混合物を、 溶融、 冷却、 粉 枠したガラス粉体を、 樹脂として熱硬化性のエポキシ樹脂を準備して、 溶剤にて 粘度 12000 c p sになるように調製したペーストを作製した。 次に、 ぺ一ス トを準備した基板上に塗布し、 1 50°Cで加熱硬化させ、 この塗布〜硬化を繰り 返すことにより、 厚み (隔壁の高さ L hに相当する) 50μπιになるように調整 した。 次に、 ドライフォトレジストを貼り付けて、 露光〜エッチングにより、 ラ イン (隔壁の幅 Lwに相当する) 50μπι、 スペース 300μπΐ、 ピッチ 350μ mの隔壁パターンが形成されるようなマスクを作製した。 次に、 サンドブラス 1、 により、 所定の隔壁形状になるように余分な部分を除去し、 所望とするストライ プ状隔壁を形成した。 そして、 基板上の隔壁間にセルを形成した。 この場合、 隔 壁 4の高さと幅との比 L hZLwは、 50Z50 = 1である。
次に、 2種類の粒子群 (粒子群 A、 粒子群 B) を準備した。
粒子群 A (黒色粒子群) は、 アクリルウレタン樹脂 EAU53 B (亜細亜工業 (株) 製) /I PD I系架橋剤ェクセルハードナー HX (亜細亜工業 (株) 製) に、 カーボン Ml 00 (三菱化学 (株) 製) 4 p h r、 荷電制御剤ポントロン N 07 (オリエント化学 (株) 製) 2 p h rを添加し、 混練り後、 ジェットミルに て粉碎分級して作製した。 粒子群 B (白色粒子群) は、 アクリルウレタン樹脂 EAU53 B (亜細亜工業 (株) 製) / I PD I系架橋剤ェクセルハ一ドナー HX (亜細亜工業 (株) 製) に、 酸化チタン 1 0 ph r、 荷電制御剤ポントロン E 89 (オリエント化学 (株 ) 製) 2 ph rを添加し、 混練り後、 ジェットミルにて粉碎分級して作製した。 次に、 粒子 Aを第 1の粒子として、 容器内の上部のノズルから気体中に分散し て、 容器内の下部に置かれた基板 1上のセル内に散布することにより、 粒子 Aを セル内に充填した。 続いて、 粒子 Bを第 2の粒子として、 容器内の上部のノズル から気体中に分散して、 容器の下部に置かれた基板 1上のセル内 (すでに粒子 A が充填されている) に散布することにより、 粒子 Bを粒子 Aに重ねて充填した。 粒子 Aと粒子 Bの混合率は同体積量ずっとし、 それら粒子のガラス基板間への充 填率 (体積占有率) は 2 5 V o 1 %となるように調整した。
その後、 約 50 OA厚みの酸化インジウム電極を設けたガラス基板 2を、 粒子 A, 粒子 Bがセル内に充填配置された基板 1に重ね、 基板周辺をエポキシ系接着 剤で接着するともに、 粒子を封入し、 画像表示用パネルを作製した。 ここで、 空 隙を埋める気体は、 露点 _40°Cの乾燥窒素ガスとした。
以上により作製された画像表示用パネルは、 表 5に示す開口率、 白反射率、 コ ントラスト比を有するものとなった。
<実施例 22 (粒子群) >
隔壁 4の高さ L hを 5 Ομπιとし、 隔壁 4の幅 Lwを 1 Ομπιとしたことによ り隔壁 4の高さと幅との比を L hZLw= 50/1 0 = 5としたこと以外は、 上 記実施例 21と同様にして画像表示用パネルを作製した。 作製された画像表示用 パネルは、 表 5に示す開口率、 白反射率、 コントラスト比を有するものとなった ぐ実施例 23 (粒子群) >
隔壁 4の高さ Lhを 5 Ομηιとし、 隔壁 4の幅 Lwを 5 μπιとしたことにより 隔壁 4の高さと幅との比を LhZLw=50/5 = 10としたこと以外は、 上記 実施例 21と同様にして画像表示用パネルを作製した。 作製された画像表示用パ ネルは、 表 5に示す開口率、 白反射率、 コントラスト比を有するものとなった。 <実施例 24 (粒子群) >
隔壁 4の高さ L hを 5 Ομπΐとし、 隔壁 4の幅 Lwを 10 Ομπΐとしたことに より隔壁 4の高さと幅との比を LhZLw= 50/ 100 = 0. 5としたこと以 外は、 上記実施例 21と同様にして画像表示用パネルを作製した。 作製された画 像表示用パネルは、 表 5に示す開口率、 白反射率、 コントラスト比を有するもの となった。
<実施例 25 (粒子群) >
隔壁 4の高さ L hを 10 Ομπιとし、 隔壁 4の幅 L wを 5 μπιとしたことによ り隔壁 4の高さと幅との比を L hZLw= 100X5 = 20としたこと以外は、 上記実施例 21と同様にして画像表示用パネルを作製した。 作製された画像表示 用パネルは、 表 5に示す開口率、 白反射率、 コントラスト比を有するものとなつ た。
<実施例 26 (粉流体) >
画像表示用パネルを以下のように作製した。
まず、 I TO電極付き基板 (7 cmx7 cm口) を準備し、 基板上に、 高さ 5 Ομπιのリブを作り、 ストライプ状の隔壁を形成した。
リブの形成は次のように行なった。 まずペーストは、 無機粉体として S i 02
、 A 12 03 、 B 2 03 、 B i 203および Z n〇の混合物を、 溶融、 冷却、 粉 碎したガラス粉体を、 樹脂として熱硬化性のエポキシ樹脂を準備して、 溶剤にて 粘度 12000 c p sになるように調製したペーストを作製した。 次に、 ペース トを準備した基板上に塗布し、 15 O で加熱硬化させ、 この塗布〜硬化を繰り 返すことにより、 厚み (隔壁の高さ L hに相当する) 50μπιになるように調整 した。 次に、 ドライフォトレジストを貼り付けて、 露光〜エッチングにより、 ラ イン (隔壁の幅 Lwに相当する) 50μπΐ、 スペース 300μπΐ、 ピッチ 3 50μ mの隔壁パターンが形成されるようなマスクを作製した。 次に、 サンドブラスト により、 所定の隔壁形状になるように余分な部分を除去し、 所望とするストライ プ状隔壁を形成した。 そして、 基板上の隔壁間にセルを形成した。 この場合、 隔 壁 4の高さと幅との比 L h/Lwは、 50Z50 = 1である。
次に 2種類の粉流体 (白色粉流体、 黒色粉流体) を準備した。
白色粉流体 (粉流体 X) は、 まず、 メチルメタクリレートモノマー、 T i〇2 (20 p h r) 、 荷電制御剤ポントロン E 89 (オリエント化学 (株) 製、 5 p h r) 、 開始剤 A I BN (0. 5 ph r) を用いて懸濁重合した後、 分級装置に て粒子径をそろえた。 次に、 ハイブリダィザー装置 (奈良機械製作所 (株) 製) を用いて、 これらの粒子に外添剤 A (シリカ H 2000Z4、 ヮッ力一社製) と 外添剤 B (シリカ S S 20、 日本シリカ社製) を投入し、 4800回転で 5分間 処理して、 外添剤を、 重合した粒子表面に固定化し、 粉流体になるように調整し た。
黒色粉流体 (粉流体 Y) は、 まず、 スチレンモノマ一、 ァゾ系化合物 (5 p h r) 、 荷電制御剤ポントロン NO 7 (オリエント化学 (株) 製、 5 p h r) 、 開 始剤 A I BN (0. 5 p h r) を用いて懸濁重合した後、 分級装置にて粒子径を そろえた。 次に、 ハイブリダィザ一装置を用いて、 これら粒子に外添剤 C (シリ 力 H 2050、 ヮッカー社製) と外添剤 B (シリカ S S 20、 日本シリカ社製) を投入し、 4800回転で 5分間処理して、 外添剤を、 重合した粒子表面に固定 化し、 粉流体になるように調整した。 ·
次に、 粉流体 Xを第 1の粉流体として、 容器内の上部のノズルから気体中に分 散して、 容器内の下部に置かれた基板 1上のセル内に散布することにより、 粉流 体 Xをセル内に充填した。 続いて、 粉流体 Yを第 2の粉流体として、 容器内の上 部のノズルから気体中に分散して、 容器の下部に置かれた基板 1上のセル内 (す でに粉流体 Xが充填されている) に散布することにより、 粉流体 Yを粉流体 Xに 重ねて充填した。 粉流体 Xと粉流体 Yの混合率は同体積量ずっとし、 それら粒子 のガラス基板間への充填率 (体積占有率) は 25 V o 1 %となるように調整した その後、 約 50 OA厚みの酸化インジウム電極を設けたガラス基板 2を、 粉流 体 Xおよび粉流体 Yがセル内に充填配置された基板 1に重ね、 基板周辺をェポキ シ系接着剤にて接着するとともに、 粉流体 Xと粉流体 Yを封入し、 画像表示用パ ネルを作製した。 露点一 40°Cの乾燥した窒素で満たされた容器内で、 2枚の基 板を貼り合わせ、 密閉することで、 組み立てられた表示板の基板間の空隙は、 乾 燥した窒素ガス (露点一 40°C) で満たされる。
以上により作製された画像表示用パネルは、 表 6に示す開口率、 白反射率、 コ ントラスト比を有するものとなった。
<実施例 27 (粉流体) >
隔壁 4の高さ Lhを 5 Ομπιとし、 隔壁 4の幅 Lwを 1 Ομΐηとしたことによ り隔壁 4の高さと幅との比を Lh/Lw=50/10 = 5としたこと以外は、 上 記実施例 26と同様にして画像表示用パネルを作製した。 作製された画像表示用 パネルは、 表 6に示す開口率、 白反射率、 コントラスト比を有するものとなった
<実施例 28 (粉流体) >
隔壁 4の高さ L hを 5 Ομπιとし、 隔壁 4の幅 Lwを 5 μπιとしたことにより 隔壁 4の高さと幅との比を Lh/Lw= 50Ζ5 = 10としたこと以外は、 上記 実施例 26と同様にして画像表示用パネルを作製した。 作製された画像表示用パ ネルは、 表 6に示す開口率、 白反射率、 コントラスト比を有するものとなった。 <実施例 29 (粉流体) > 隔壁 4の高さ L hを 5 Ομπιとし、 隔壁 4の幅 Lwを 1 0 Ομηιとしたことに より隔壁 4の高さと幅との比を Lh/Lw 50/ 100 = 0. 5としたこと以 外は、 上記実施例 26と同様にして画像表示用パネルを作製した。 作製された画 像表示用パネルは、 表 6に示す開口率、 白反射率、 コントラスト比を有するもの となった。
<実施例 30 (粉流体) >
隔壁 4の高さ L hを 10 Ομπιとし、 隔壁 4の幅 Lwを 5μπιとしたことによ り隔壁 4の高さと幅との比を LhZLw= 100/5 = 20としたこと以外は、 上記実施例 26と同様にして画像表示用パネルを作製した。 作製された画像表示 用パネルは、 表 6に示す開口率、 白反射率、 コントラスト比を有するものとなつ た。
<比較例 2 1 (粒子群) 〉
隔壁 4の高さ L hを 4 Ομΐηとし、 隔壁 4の幅 Lwを 1 0 Ομΐηとしたことに より隔壁 4の高さと幅との比を Lh/Lw=40/ 100 = 0. 4としたこと以 外は、 上記実施例 2 1と同様にして画像表示用パネルを作製した。 作製された画 像表示用パネルは、 表 5に示す開口率、 白反射率、 コントラスト比を有するもの となった。
ぐ比較例 22 (粒子群) >
隔壁 4の高さと幅との比が LhZLw= 30となるように、 上記実施例 2 1と 同様にして画像表示用パネルを作製しょうとしたが、 上記比が実現されるような 極めて細長い断面形状の隔壁は製造性が悪く、 形成することができなかった。 <比較例 23 (粉流体) >
隔壁 4の高さ L hを 4 Ομπιとし、 隔壁 4の幅 Lwを 1 0 Ομπιとしたことに より隔壁 4の高さと幅との比を Lh/Lw=40/ 100 = 0. 4としたこと以 外は、 上記実施例 26と同様にして画像表示用パネルを作製した。 作製された画 像表示用パネルは、 表 6に示す開口率、 白反射率、 コントラスト比を有するもの となった。
<比較例 24 (粉流体) >
隔壁 4の高さと幅との比が L h/Lw= 30となるように、 上記実施例 26と 同様にして画像表示用パネルを作製しょうとしたが、 上記比が実現されるような 極めて細長い断面形状の隔壁は製造性が悪く、 形成することができなかった。 以上をまとめると、 上記 (1) 式の要件 0. S^LhZLw S 0を満たす、 実施例 21〜実施例 25 (実施例 26〜実施例 30も同様) の画像表示用パネル における開口率はそれぞれ、 73. 5, 94. 4, 97. 2, 5 1. 0, 98. 6となり、 所望の開口率を確保することができた。
一方、 比較例 2 1 (比較例 23も同様) の画像表示用パネルにおける開口率は 41. 3となり、 実用上必要最低限の開口率を確保することがでなかった。 また 、 比較例 22 (比較例 24も同様) の画像表示用パネルは、 作製すること自体が できなかった。
[表示機能の評価]
表示機能の評価は、. 白→黒および黒→白のベタ表示画像にて、 白べ夕画像表示 時の画像濃度 (白反射率:単位%) 、 および、 白ベタ画像表示時の画像濃度 (白 反射率:単位%) と黒ベタ画像表示時め画像濃度 (黒反射率:単位%) との比で 示されるコントラスト比 (白反射率 Z黒反射率) にて行った。
反射率の測定には、 ポータブル反射濃度計 RD 19 (ダレ夕マクベス社製) を用いた。
[開口率の測定]
光学顕微鏡で隔壁 (リブ) 幅を測定し、 計算により求めた。 表 5
Figure imgf000047_0001
表 6
Figure imgf000047_0002
(4) 第 6発明についての実施例
作製した画像表示用パネルについて、 後記の基準に従い、 パネルとしての機能 の測定および評価を行った。 その結果を以下の表 7、 表 8に示す。
<実施例 41 (粒子群) >
画像表示用パネルを以下のように作製した。
まず、 I T〇電極付きガラス基板 (7 cmx7 cm口) を準備し、 基板上に、 高さ 40 Ομΐτιのリブを作り、 ストライプ状の隔壁を形成した。 その際、 隔壁の 材料として 0. 1 %の吸水率を有する材料を使用した。
リブの形成は次のように行なった。 まずペーストは、 無機粉体として S i〇2 、 A 12 03 、 B 23 、 B i 203および Z ηθの混合物を、 溶融、 冷却、 粉 碎したガラス粉体を、 樹脂として熱硬化性のエポキシ樹脂を準備して、 溶剤にて 粘度 12000 c p sになるように調製したペーストを作製した。 次に、 ペース トを準備した基板上に塗布し、 1 50°Cで加熱硬化させ、 この塗布〜硬化を繰り 返すことにより、 厚み (隔壁の高さに相当する) 40 Ομπιになるように調整し た。 次に、 ドライフォトレジストを貼り付けて、 露光〜エッチングにより、 ライ ン 50μπΐ、 スペース 400μηι、 ピッチ 450 μπΐの隔壁パターンが形成される ようなマスクを作製した。 次に、 サンドブラストにより、 所定の隔壁形状になる ように余分な部分を除去し、 所望とするストライプ状隔壁を形成した。 そして、 基板上の隔壁間にセルを形成した。
次に、 2種類の粒子群 (粒子群 Α、 粒子群 Β) を準備した。
粒子群 Α (黒色粒子群) は、 アクリルウレタン樹脂 EAU53 B (亜細亜工業 (株) 製) / I PD I系架橋剤ェクセルハードナー HX (亜細亜工業 (株) 製) に、 カーボン Ml 00 (三菱化学 (株) 製) 4 ph r、 荷電制御剤ボン卜ロン N 07 (オリエント化学 (株) 製) 2 p h rを添加し、 混練り後、 ジェットミルに て粉砕分級して作製した。
粒子群 B (白色粒子群) は、 アクリルウレタン樹脂 EAU53 B (亜細亜工業 (株) 製) / I PD I系架橋剤ェクセルハードナ一 HX (亜細亜工業 (株) 製) に、 酸化チタン 10 p h r、 荷電制御剤ポントロン E 89 (オリエント化学 (株 ) 製) 2 p h rを添加し、 混練り後、 ジェットミルにて粉砕分級して作製した。 次に、 粒子 Aを第 1の粒子として、 容器内の上部のノズルから気体中に分散し て、 容器内の下部に置かれた基板 1上のセル内に散布することにより、 粒子 Aを セル内に充填した。 続いて、 粒子 Bを第 2の粒子として、 容器内の上部のノズル から気体中に分散して、 容器の下部に置かれた基板 1上のセル内 (すでに粒子 A が充填されている) に散布することにより、 粒子 Bを粒子 Aに重ねて充填した。 粒子 Aと粒子 Bの混合率は同体積量ずっとし、 それら粒子のガラス基板間への充 填率 (体積占有率) は 25 V o 1 %となるように調整した。
その後、 約 50 OA厚みの酸化インジウム電極を設けたガラス基板 2を、 粒子
A, 粒子 Bがセル内に充填配置された基板 1に重ね、 基板周辺をエポキシ系接着 剤で接着するともに、 粒子を封入し、 画像表示用パネルを作製した。 ここで、 空 隙を埋める気体は、 露点一 4 0 °Cの乾燥窒素ガスとした。
以上により作製された画像表示用パネルは、 表 7に示す吸水率、 初期コントラ スト比、 耐久後コントラスト比を有するものとなった。
<実施例 4 2 (粒子群) >
隔壁の材料として 5 %の吸水率を有する材料を使用したこと以外は、 上記実施 例 4 1と同様にして画像表示用パネルを作製した。 作製された画像表示用パネル は、 表 7に示す吸水率、 初期コントラスト比、 耐久後コントラスト比を有するも のとなつた。
ぐ実施例 4 3 (粒子群) >
隔壁の材料として 1 0 %の吸水率を有する材料を使用したこと以外は、 上記実 施例 4 1と同様にして画像表示用パネルを作製した。 作製された画像表示用パネ ルは、 表 7に示す吸水率、 初期コントラスト比、 耐久後コントラスト比を有する ものとなった。
<実施例 4 4 (粉流体) >
画像表示用パネルを以下のように作製した。
まず、 I T O電極付きガラス基板 (7 c mx 7 c m口) を準備し、 基板上に、 高さ 4 0 Ο μπιのリブを作り、 ストライプ状の隔壁を形成した。 その際、 隔壁の 材料として 0 . 1 %の吸水率を有する材料を使用した。
リブの形成は次のように行なった。 まずペーストは、 無機粉体として S i O 2
、 A l 23 、 B 2 0 3 、 B i 2 0 3および Z n Oの混合物を、 溶融、 冷却、 粉 碎したガラス粉体を、 樹脂として熱硬化性のエポキシ樹脂を準備して、 溶剤にて 粘度 1 2 0 0 0 c p sになるように調製したぺ一ストを作製した。 次に、 ペース' トを準備した基板上に塗布し、 1 5 0 °Cで加熱硬化させ、 この塗布〜硬化を繰り 返すことにより、 厚み (隔壁の高さに相当する) 4 0 Ο μπιになるように調整し た。 次に、 ドライフォトレジストを貼り付けて、 露光〜エッチングにより、 ライ ン 50μηι、 スペース 40 0μΐΏ、 ピッチ 45 Ομπιの隔壁パターンが形成される ようなマスクを作製した。 次に、 サンドブラストにより、 所定の隔壁形状になる ように余分な部分を除去し、 所望とするストライプ状隔壁を形成した。 そして、 基板上の隔壁間にセルを形成した。
次に 2種類の粉流体 (白色粉流体、 黒色粉流体) を準備した。
白色粉流体 (粉流体 X) は、 まず、 メチルメタクリレートモノマー、 T i 02 (20 p h r) 、 荷電制御剤ポントロン E 89 (オリエント化学 (株) 製、 5 p h r) 、 開始剤 A I BN (0. 5 p h r) を用いて懸濁重合した後、 分級装置に て粒子径をそろえた。 次に、 ハイブリダィザー装置 (奈良機械製作所 (株) 製) を用いて、 これらの粒子に外添剤 A (シリカ H 2000Z4、 ヮッ力一社製) と 外添剤 B (シリカ S S 20、 日本シリカ社製) を投入し、 4800回転で 5分間 処理して、 外添剤を、 重合した粒子表面に固定化し、 粉流体になるように調整し た。
黒色粉流体 (粉流体 Y) は、 まず、 スチレンモノマ一、 ァゾ系化合物 (5 p h r) 、 荷電制御剤ポントロン NO 7 (オリエント化学 (株) 製、 5 ph r) 、 開 始剤 A I BN (0. 5 p h r) を用いて懸濁重合した後、 分級装置にて粒子径を そろえた。 次に、 ハイブリダィザ一装置を用いて、 これら粒子に外添剤 C (シリ 力 H 2050、 ヮッカー社製) と外添剤 B (シリカ S S 20、 日本シリカ社製) を投入し、 4800回転で 5分間処理して、 外添剤を、 重合した粒子表面に固定 化し、 粉流体になるように調整した。
次に、 粉流体 Xを第 1の粉流体として、 容器内の上部のノズルから気体中に分 散して、 容器内の下部に置かれた基板 1上のセル内に散布することにより、 粉流 体 Xをセル内に充填した。 続いて、 粉流体 Yを第 2の粉流体として、 容器内の上 部のノズルから気体中に分散して、 容器の下部に置かれた基板 1上のセル内 (す でに粉流体 Xが充填されている) に散布することにより、 粉流体 Yを粉流体 Xに 重ねて充填した。 粉流体 Xと粉流体 Yの混合率は同体積量ずっとし、 それら粒子 のガラス基板間への充填率 (体積占有率) は 2 5 V ο 1 %となるように調整した その後、 約 5 0 O A厚みの酸化インジウム電極を設けたガラス基板 2を、 粉流 体 Xおよび粉流体 Yがセル内に充填配置された基板 1に重ね、 基板周辺をェポキ シ系接着剤にて接着するとともに、 粉流体 Xと粉流体 Yを封入し、 画像表示用パ ネルを作製した。 露点一 4 0 °Cの乾燥した窒素で満たされた容器内で、 2枚の基 板を貼り合わせ、 密閉することで、 組み立てられた表示板の基板間の空隙は、 乾 燥した窒素ガス (露点一 4 0 °C) で満たされる。
以上により作製された画像表示用パネルは、 表 8に示す吸水率、 初期コントラ スト比、 耐久後コントラスト比を有するものとなった。
く実施例 4 5 (粉流体) >
隔壁の材料として 5 %の吸水率を有する材料を使用したこと以外は、 上記実施 例 4 4と同様にして画像表示用パネルを作製した。 作製された画像表示用パネル は、 表 8に示す吸水率、 初期コントラスト比、 耐久後コントラスト比を有するも のとなつた。
<実施例 4 6 (粉流体) >
隔壁の材料として 1 0 %の吸水率を有する材料を使用したこと以外は、 上記実 施例 4 4と同様にして画像表示用 Λネルを作製した。 作製された画像表示用パネ ルは、 表 8に示す吸水率、 初期コントラスト比、 耐久後コントラスト比を有する ものとなった。
<比較例 4 1 (粒子群) >
隔壁の材料として 0 . 0 1 %の吸水率を有する材料を使用したこと以外は、 上 記実施例 1と同様にして画像表示用パネルを作製した。 作製された画像表示用パ ネルは、 表 8に示す吸水率、 初期コントラスト比、 耐久後コントラスト比を有す るものとなり、 耐久後に表示性能が悪化した。
<比較例 4 2 (粒子群) >
隔壁の材料として 2 0 %の吸水率を有する材料を使用したこと以外は、 上記実 施例 4 1と同様にして画像表示用パネルを作製した。 作製された画像表示用パネ ルは、 表 7に示す初期コントラスト比および耐久後コントラスト比を有するもの となり、 初期から表示性能が良くなかった。
ぐ比較例 4 3 (粉流体) >
隔壁の材料として 0 . 0 1 %の吸水率を有する材料を使用したこと以外は、 上 記実施例 4 4と同様にして画像表示用パネルを作製した。 作製された画像表示用 パネルは、 表 8に示す吸水率、 初期コントラスト比、 耐久後コントラスト比を有 するものとなり、 耐久後に表示性能が悪化した。
<比較例 4 4 (粉流体) >
隔壁の材料として 2 0 %の吸水率を有する材料を使用したこと以外は、 上記実 施例 4と同様にして画像表示用パネルを作製した。 作製された画像表示用パネル は、 表 8に示す初期コントラスト比および耐久後コントラスト比を有するものと なり、 初期から表示性能が良くなかった。
以上をまとめると、 上記 ( 3 ) 式の要件 0 . 1 %≤S≤ 1 0 %を満たす吸水率 Sを有する隔壁を用いた、 実施例 4 1〜実施例 4 3 (実施例 4 4〜実施例 4 6も 同様) の画像表示用パネルにおいては、 初期コントラスト比および耐久後コント ラスト比の変化が少なく、 所望の表示性能を確保することができた。
一方、 比較例 4 1 (比較例 4 3も同様) の画像表示用パネルにおいては、 隔壁 の吸水性能が不十分であるため、 系内に含まれる水分の影響により反転特性が悪 化し、 初期コントラスト比および耐久後コントラスト比の変化 (低下) が著しく なった。 また、 比較例 4 2 (比較例 4 4も同様) の画像表示用パネルにおいては
、 隔壁の吸水率が高過ぎたため、 組立工程で吸水し過ぎてしまい、 初期から表示 性能に好ましくない影響を与えることとなつた。
[表示機能の評価]
表示機能の評価は、 白→黒および黒→白のべ夕表示画像にて、 白べ夕画像表示 時の画像濃度 (白反射率:単位%) 、 および、 白ベタ画像表示時の画像濃度 (白 反射率:単位%) と黒べ夕画像表示時の画像濃度 (黒反射率:単位%) との比で 示されるコントラスト比 (白反射率/黒反射率) にて行った。
反射率の測定には、 ポータブル反射濃度計 R D 1 9 (ダレ夕マクベス社製) を用いた。
[隔壁の吸水率の測定]
隔壁の吸水率の測定は、 基板に形成された隔壁について A S T M— D 5 7 0に 準じて行い、 測定条件は 2 3 ° Cで 2 4時間で行った。
表 7
Figure imgf000053_0001
表 8
Figure imgf000053_0002
産業上の利用可能性
以上の本発明の画像表示用パネルは、 ノートパソコン、 P D A、 携帯電話、 ハンディターミナルなどのモパイル機器の表示部、 電子ブック、 電子新聞などの 電子ペーパー、 看板、 ポスター、 黒板などの掲示板、 電卓、 家電製品、 自動車用 品などの表示部、 ポイント力一ド、 I Cカードなどのカード表示部、 電子広告、 電子 POP、 電子値札、 電子楽譜、 RF_ I D機器の表示部などに用いられる (

Claims

請 求 の 範 囲
1 . 少なくとも一方が透明な対向する基板間に少なくとも 1種以上の粒子群ま たは粉流体を封入し、 粒子群または粉流体に電界を与えて、 粒子または粉流体を 移動させて画像を表示する画像表示用パネルにおいて、 少なくとも粒子群または 粉流体と接する側の表面を疎水化処理した基板を用いることを特徴とする画像表 示用パネル。
2 . 粒子群または粉流体と接する側の表面を疎水化処理した基板として、 表面 をへキサメチルジシラザンで処理した基板を用いる請求項 1に記載の画像表示用 パネル。
3 . へキサメチルジシラザン処理の前工程として、 O H基付加工程を行う請求 項 2に記載の画像表示用パネル。
4 . 基板間に充填される粒子群または粉流体の、 A S T M D 5 7 0に準じて 測定条件 2 3 °C、 2 4時間で測定した吸水率が、 3 %以下である請求項 1〜3の いずれか 1項に記載の画像表示用パネル。
5 . 基板間に充填される粒子群または粉流体の体積占有率が 3〜7 0 V 0 1 % の範囲である請求項 1〜 4のいずれか 1項に記載の画像表示用パネル。
6 . 所定の間隔で対向する、 少なくとも一方が透明な 2枚の基板の間に、 周囲 を隔壁で囲まれた 1又は 2以上のセルを形成し、 各セルに粒子群または粉流体を 収納し、 粒子群または粉流体に対して電界を与えて、 粒子または粉流体を移動さ せることによって画像表示を行う画像表示用パネルにおいて、 少なくとも粒子群 または粉流体と接する隔壁の表面を、 疎水化処理したことを特徴とする画像表示 用パネル。
7 . 粒子群または粉流体と接する隔壁の表面を、 へキサメチルジシラザンで疎 水化処理した請求項 6に記載の画像表示用パネル。
8 . へキサメチルジシラザンでの疎水化処理の前工程として、 〇H基付加工程 を設けた請求項 7に記載の画像表示用パネル。
9 . 所定の間隔で対向する、 少なくとも一方が透明な 2枚の基板の間に、 周囲 を隔壁で囲まれた 1又は 2以上のセルを形成し、 各セルに粒子群または粉流体を 収納し、 粒子群または粉流体に対して電界を与えて、 粒子または粉流体を移動さ せることによって画像表示を行う画像表示用パネルにおいて、 '少なくとも粒子群 または粉流体と接する隔壁の表面を、 電荷減衰性の小さい材料でコーティングし たことを特徴とする画像表示用パネル。
1 0 . 電荷減衰性の小さい材料がフッ素樹脂を含む樹脂であり、 そのフッ素樹 脂が、 テトラフルォロエチレン一パーフルォロアルキルピニルエーテル共重合体 、 テ卜ラフルォロェチレン一へキサフルォロプロピレン一パーフルォ口アルキル ビニルエーテル共重合体、 テトラフルォロエチレン一エチレン共重合体、 ポリク ロロトリフルォロエチレン、 クロ口トリフルォロェチレン—ェチレン共重合体、 ポリテトラフルォロエチレン、 ポリフルオラィドおよびポリビニルフルオラィド から選ばれる 1種または 2種以上のフッ素樹脂である請求項 9に記載の画像表示 用パネル。
1 1 . 隔壁の表面にコーティングする電荷減衰性の小さい材料が、 コーティン グ材料をフィルムとして測定する電荷減衰性測定法において、 フィルム表面から l mmの間隔をもって配置されたコロナ放電器に 8 K Vの電圧を印加してコロナ 放電を発生させて表面を帯電させた場合に、 0 . 3秒後における表面電位の最大 値が 3 0 0 Vより大きいものである請求項 9又は 1 0に記載の画像表示用パネル
1 2 . 所定の間隔で対向する、 少なくとも一方が透明な 2枚の基板の間に、 周 囲を隔壁で囲まれた 1又は 2以上のセルを形成し、 各セルに粒子群または粉流体 を収納し、 粒子群または粉流体に対して電界を与えて、 粒子または粉流体を移動 させることによって画像表示を行う画像表示用パネルにおいて、 隔壁の構成材料 として用いるバインダ一樹脂のユニバーサル硬度が、 隔壁を形成するバインダー 樹脂を、 ユニバーサル硬度が 2000 N/mm2のガラス板上に 3 xmの厚みで 形成させて行うユニバーサル硬度の測定方法において、 40 ONZmm2以上で あることを特徴とする画像表示用パネル。
13. セル内に収納される粒子群または粉流体の、 ASTM D 570に準じ て測定条件 23° (:、 24時間で測定した吸水率が、 3 %以下である請求項 6〜 1 2のいずれか 1項に記載の画像表示用パネル。
14. セル内に収納される粒子群または粉流体の体積占有率が 3〜 70 V o 1 %の範囲である請求項 6〜 13のいずれか 1項に記載の画像表示用パネル。
15. セル内に収納される粒子群または粉流体を、 互いに帯電特性の異なる、 且つ、 互いに色の異なるものとし、 互いに異なる帯電電位に帯電している状態で セル内に収納し、 粒子群または粉流体に対して電界を与えて、 粒子または粉流体 を移動させることによって画像表示を行う請求項 6〜 14のいずれか 1項に記載 の画像表示用パネル。
16. 少なくとも一方が透明な 2枚の基板の間の、 隔壁によって設けられた複 数のセル内に、 少なくとも 1種類以上の粒子群または粉流体を封入し、 前記粒子 群または粉流体に電界を与えて、 前記粒子または粉流体を移動させて画像を表示 する画像表示用パネルであって、
前記隔壁の高さ L hと幅 Lwとの比 L hZLwが、 0. S LhZLw S O であることを特徴とする画像表示用パネル。
17. 前記隔壁の高さ L hと幅 Lwとの比 L hZLwが、 l≤LhZLw≤l 0であることを特徴とする請求項 16記載の画像表示用パネル。
18. 少なくとも一方が透明な 2枚の基板の間の、 隔壁によって設けられた複 数のセル内に、 少なくとも 1種類以上の粒子群または粉流体を封入し、 前記粒子 群または粉流体に電界を与えて、 前記粒子または粉流体を移動させて画像を表示 する画像表示用パネルであって、
前記隔壁は、 所定の乾燥機能を有していることを特徴とする画像表示用パネル
1 9 . 前記隔壁の吸水率 Sが、 0 . 1 %≤S≤ 1 0 %であることを特徴とする 請求項 1 8記載の画像表示用パネル。
2 0 . 請求項 1〜1 9のいずれか 1項に記載の画像表示用パネルを搭載したこ とを特徴とする画像表示装置。
PCT/JP2004/002159 2003-02-25 2004-02-25 画像表示用パネル及び画像表示装置 WO2004077140A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04714447A EP1598694A4 (en) 2003-02-25 2004-02-25 PICTURE DISPLAY PANEL AND PICTURE DISPLAY UNIT
JP2005502888A JP4579822B2 (ja) 2003-02-25 2004-02-25 画像表示用パネル及び画像表示装置
US10/546,773 US7369299B2 (en) 2003-02-25 2004-02-25 Image display panel and image display device
US12/053,359 US7483202B2 (en) 2003-02-25 2008-03-21 Image display panel and image display device

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2003047377 2003-02-25
JP2003-047377 2003-02-25
JP2003-167898 2003-06-12
JP2003167914 2003-06-12
JP2003167898 2003-06-12
JP2003-167914 2003-06-12
JP2003-176733 2003-06-20
JP2003176733 2003-06-20
JP2003344499 2003-10-02
JP2003-344499 2003-10-02
JP2004034806 2004-02-12
JP2004-034806 2004-02-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10546773 A-371-Of-International 2004-02-25
US12/053,359 Division US7483202B2 (en) 2003-02-25 2008-03-21 Image display panel and image display device

Publications (1)

Publication Number Publication Date
WO2004077140A1 true WO2004077140A1 (ja) 2004-09-10

Family

ID=32931720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002159 WO2004077140A1 (ja) 2003-02-25 2004-02-25 画像表示用パネル及び画像表示装置

Country Status (4)

Country Link
US (2) US7369299B2 (ja)
EP (2) EP1598694A4 (ja)
JP (1) JP4579822B2 (ja)
WO (1) WO2004077140A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054933A2 (en) 2003-11-26 2005-06-16 E Ink Corporation Electro-optic displays with reduced remnant voltage
WO2006081305A2 (en) 2005-01-26 2006-08-03 E Ink Corporation Electrophoretic displays using gaseous fluids
JP2009251084A (ja) * 2008-04-02 2009-10-29 Konica Minolta Business Technologies Inc 画像表示装置
JP2010190964A (ja) * 2009-02-16 2010-09-02 Konica Minolta Business Technologies Inc 画像表示装置
WO2012081334A1 (ja) * 2010-12-13 2012-06-21 大日本印刷株式会社 反射型表示装置用カラーフィルタ
EP2487674A2 (en) 2003-11-05 2012-08-15 E-Ink Corporation Electro-optic displays
US8331015B2 (en) 2010-09-22 2012-12-11 Fuji Xerox Co., Ltd. Display medium and display device
US8477404B2 (en) 2008-09-25 2013-07-02 Fuji Xerox Co., Ltd. Display medium and display device
US8928562B2 (en) 2003-11-25 2015-01-06 E Ink Corporation Electro-optic displays, and methods for driving same
EP3067744A2 (en) 2004-03-23 2016-09-14 E Ink Corporation Light modulators
WO2017049020A1 (en) 2015-09-16 2017-03-23 E Ink Corporation Apparatus and methods for driving displays
WO2020005676A1 (en) 2018-06-28 2020-01-02 E Ink Corporation Driving methods for variable transmission electro-phoretic media

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7411719B2 (en) 1995-07-20 2008-08-12 E Ink Corporation Electrophoretic medium and process for the production thereof
US7848006B2 (en) 1995-07-20 2010-12-07 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US7583251B2 (en) 1995-07-20 2009-09-01 E Ink Corporation Dielectrophoretic displays
US7999787B2 (en) 1995-07-20 2011-08-16 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US8040594B2 (en) 1997-08-28 2011-10-18 E Ink Corporation Multi-color electrophoretic displays
EP1093600B1 (en) 1998-07-08 2004-09-15 E Ink Corporation Methods for achieving improved color in microencapsulated electrophoretic devices
US8115729B2 (en) 1999-05-03 2012-02-14 E Ink Corporation Electrophoretic display element with filler particles
US7030854B2 (en) 2001-03-13 2006-04-18 E Ink Corporation Apparatus for displaying drawings
US8390918B2 (en) 2001-04-02 2013-03-05 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US7679814B2 (en) 2001-04-02 2010-03-16 E Ink Corporation Materials for use in electrophoretic displays
US7535624B2 (en) 2001-07-09 2009-05-19 E Ink Corporation Electro-optic display and materials for use therein
US8125501B2 (en) 2001-11-20 2012-02-28 E Ink Corporation Voltage modulated driver circuits for electro-optic displays
US8593396B2 (en) 2001-11-20 2013-11-26 E Ink Corporation Methods and apparatus for driving electro-optic displays
US9530363B2 (en) 2001-11-20 2016-12-27 E Ink Corporation Methods and apparatus for driving electro-optic displays
US8558783B2 (en) 2001-11-20 2013-10-15 E Ink Corporation Electro-optic displays with reduced remnant voltage
US7952557B2 (en) 2001-11-20 2011-05-31 E Ink Corporation Methods and apparatus for driving electro-optic displays
AU2003213409A1 (en) * 2002-03-06 2003-09-16 Bridgestone Corporation Image displaying apparatus and method
US7223672B2 (en) 2002-04-24 2007-05-29 E Ink Corporation Processes for forming backplanes for electro-optic displays
US8363299B2 (en) 2002-06-10 2013-01-29 E Ink Corporation Electro-optic displays, and processes for the production thereof
US7554712B2 (en) 2005-06-23 2009-06-30 E Ink Corporation Edge seals for, and processes for assembly of, electro-optic displays
US7649674B2 (en) 2002-06-10 2010-01-19 E Ink Corporation Electro-optic display with edge seal
US8049947B2 (en) 2002-06-10 2011-11-01 E Ink Corporation Components and methods for use in electro-optic displays
US7843621B2 (en) 2002-06-10 2010-11-30 E Ink Corporation Components and testing methods for use in the production of electro-optic displays
US20080024482A1 (en) 2002-06-13 2008-01-31 E Ink Corporation Methods for driving electro-optic displays
US7839564B2 (en) 2002-09-03 2010-11-23 E Ink Corporation Components and methods for use in electro-optic displays
EP1552337B1 (en) 2002-09-03 2016-04-27 E Ink Corporation Electro-optic displays
US20130063333A1 (en) 2002-10-16 2013-03-14 E Ink Corporation Electrophoretic displays
US7910175B2 (en) 2003-03-25 2011-03-22 E Ink Corporation Processes for the production of electrophoretic displays
US10726798B2 (en) 2003-03-31 2020-07-28 E Ink Corporation Methods for operating electro-optic displays
US8174490B2 (en) 2003-06-30 2012-05-08 E Ink Corporation Methods for driving electrophoretic displays
US7535539B2 (en) * 2003-08-07 2009-05-19 Bridgestone Corporation Image display device, method of manufacturing image display panel and image display panel
US8177942B2 (en) 2003-11-05 2012-05-15 E Ink Corporation Electro-optic displays, and materials for use therein
US7672040B2 (en) 2003-11-05 2010-03-02 E Ink Corporation Electro-optic displays, and materials for use therein
US20110164301A1 (en) 2003-11-05 2011-07-07 E Ink Corporation Electro-optic displays, and materials for use therein
US8289250B2 (en) 2004-03-31 2012-10-16 E Ink Corporation Methods for driving electro-optic displays
US11250794B2 (en) 2004-07-27 2022-02-15 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US20080136774A1 (en) 2004-07-27 2008-06-12 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
KR101269304B1 (ko) 2005-10-18 2013-05-29 이 잉크 코포레이션 전기-광학 디스플레이용 컴포넌트
US20080043318A1 (en) 2005-10-18 2008-02-21 E Ink Corporation Color electro-optic displays, and processes for the production thereof
US7843624B2 (en) 2006-03-08 2010-11-30 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8390301B2 (en) 2006-03-08 2013-03-05 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
TWI350793B (en) 2006-03-08 2011-10-21 E Ink Corp Methods for production of electro-optic displays
US8610988B2 (en) 2006-03-09 2013-12-17 E Ink Corporation Electro-optic display with edge seal
US7952790B2 (en) 2006-03-22 2011-05-31 E Ink Corporation Electro-optic media produced using ink jet printing
US7903319B2 (en) 2006-07-11 2011-03-08 E Ink Corporation Electrophoretic medium and display with improved image stability
US8018640B2 (en) 2006-07-13 2011-09-13 E Ink Corporation Particles for use in electrophoretic displays
KR101237262B1 (ko) 2006-09-18 2013-02-27 이 잉크 코포레이션 컬러 전기-광학 디스플레이
US7986450B2 (en) * 2006-09-22 2011-07-26 E Ink Corporation Electro-optic display and materials for use therein
US7477444B2 (en) 2006-09-22 2009-01-13 E Ink Corporation & Air Products And Chemical, Inc. Electro-optic display and materials for use therein
TW200835995A (en) * 2006-10-10 2008-09-01 Cbrite Inc Electro-optic display
US7649666B2 (en) 2006-12-07 2010-01-19 E Ink Corporation Components and methods for use in electro-optic displays
US20100035377A1 (en) * 2006-12-22 2010-02-11 Cbrite Inc. Transfer Coating Method
TW200842401A (en) 2006-12-22 2008-11-01 Cbrite Inc Hemispherical coating method for micro-elements
TWI386313B (zh) 2007-01-22 2013-02-21 E Ink Corp 用於光電顯示器之多層薄片
US7688497B2 (en) 2007-01-22 2010-03-30 E Ink Corporation Multi-layer sheet for use in electro-optic displays
US7826129B2 (en) 2007-03-06 2010-11-02 E Ink Corporation Materials for use in electrophoretic displays
CN101681211A (zh) 2007-05-21 2010-03-24 伊英克公司 用于驱动视频电光显示器的方法
US9199441B2 (en) 2007-06-28 2015-12-01 E Ink Corporation Processes for the production of electro-optic displays, and color filters for use therein
US8034209B2 (en) 2007-06-29 2011-10-11 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8902153B2 (en) 2007-08-03 2014-12-02 E Ink Corporation Electro-optic displays, and processes for their production
US20090122389A1 (en) 2007-11-14 2009-05-14 E Ink Corporation Electro-optic assemblies, and adhesives and binders for use therein
KR101237263B1 (ko) 2008-03-21 2013-02-27 이 잉크 코포레이션 전기 광학 디스플레이 및 컬러 필터
JP5904791B2 (ja) 2008-04-11 2016-04-20 イー インク コーポレイション 電気光学ディスプレイを駆動する方法
JP2011520137A (ja) 2008-04-14 2011-07-14 イー インク コーポレイション 電気光学ディスプレイを駆動する方法
US8068271B2 (en) * 2008-10-22 2011-11-29 Cospheric Llc Rotating element transmissive displays
US8478067B2 (en) * 2009-01-27 2013-07-02 Harris Corporation Processing of remotely acquired imaging data including moving objects
TWI484273B (zh) 2009-02-09 2015-05-11 E Ink Corp 電泳粒子
US8098418B2 (en) 2009-03-03 2012-01-17 E. Ink Corporation Electro-optic displays, and color filters for use therein
US8260086B2 (en) * 2009-03-06 2012-09-04 Harris Corporation System and method for fusion of image pairs utilizing atmospheric and solar illumination modeling
US8049954B2 (en) * 2009-06-05 2011-11-01 Cospheric Llc Color rotating element displays
US8654436B1 (en) 2009-10-30 2014-02-18 E Ink Corporation Particles for use in electrophoretic displays
WO2011053017A2 (ko) * 2009-11-02 2011-05-05 전자부품연구원 전자종이용 기판 유닛
US9620066B2 (en) 2010-02-02 2017-04-11 E Ink Corporation Method for driving electro-optic displays
KR101485234B1 (ko) 2010-04-02 2015-01-22 이 잉크 코포레이션 전기영동 매질
CN105654889B (zh) 2010-04-09 2022-01-11 伊英克公司 用于驱动电光显示器的方法
TWI484275B (zh) 2010-05-21 2015-05-11 E Ink Corp 光電顯示器及其驅動方法、微型空腔電泳顯示器
US8797634B2 (en) 2010-11-30 2014-08-05 E Ink Corporation Multi-color electrophoretic displays
CA3066614C (en) 2012-02-01 2022-03-15 E Ink Corporation Methods for driving electro-optic displays
JP5935064B2 (ja) 2012-05-31 2016-06-15 イー インク コーポレイション 画像表示媒体の駆動装置、画像表示装置、及び駆動プログラム
KR102197976B1 (ko) 2013-07-31 2021-01-04 이 잉크 코포레이션 전기 광학 디스플레이들을 구동하기 위한 방법들
US10475396B2 (en) 2015-02-04 2019-11-12 E Ink Corporation Electro-optic displays with reduced remnant voltage, and related apparatus and methods
US11657774B2 (en) 2015-09-16 2023-05-23 E Ink Corporation Apparatus and methods for driving displays
US10803813B2 (en) 2015-09-16 2020-10-13 E Ink Corporation Apparatus and methods for driving displays
TWI631542B (zh) 2015-11-18 2018-08-01 美商電子墨水股份有限公司 電光顯示器
US11579510B2 (en) 2019-05-07 2023-02-14 E Ink Corporation Driving methods for a variable light transmission device
GB2593150A (en) 2020-03-05 2021-09-22 Vlyte Ltd A light modulator having bonded structures embedded in its viewing area
WO2023164078A1 (en) 2022-02-25 2023-08-31 E Ink Corporation Electro-optic displays with edge seal components and methods of making the same
US20230333437A1 (en) 2022-04-13 2023-10-19 E Ink Corporation Display material including patterned areas of encapsulated electrophoretic media
WO2023211699A1 (en) 2022-04-27 2023-11-02 E Ink Corporation Electro-optic display stacks with segmented electrodes and methods of making the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014381A (ja) * 2000-04-25 2002-01-18 Fuji Xerox Co Ltd 画像表示媒体
JP2002202532A (ja) * 2000-04-18 2002-07-19 Fuji Xerox Co Ltd 画像表示媒体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171931A (ja) * 1983-03-18 1984-09-28 Matsushita Electric Ind Co Ltd 電気泳動表示素子
JPS61248431A (ja) * 1985-04-26 1986-11-05 Hitachi Ltd 半導体装置
JPH10222003A (ja) 1997-02-05 1998-08-21 Canon Inc 画像形成装置
US6245690B1 (en) * 1998-11-04 2001-06-12 Applied Materials, Inc. Method of improving moisture resistance of low dielectric constant films
JP3919145B2 (ja) * 1999-07-19 2007-05-23 株式会社リコー 画像表示媒体
US6862016B2 (en) * 2000-11-16 2005-03-01 Minolta Co., Ltd. Image displaying method and image forming apparatus utilizing a reversible image display medium having a high resolution image display
JP4092903B2 (ja) * 2001-11-05 2008-05-28 セイコーエプソン株式会社 電気泳動装置、電気泳動装置の製造方法、電子機器
JPWO2004008239A1 (ja) * 2002-07-17 2005-11-10 株式会社ブリヂストン 画像表示装置
US7230751B2 (en) * 2005-01-26 2007-06-12 E Ink Corporation Electrophoretic displays using gaseous fluids

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202532A (ja) * 2000-04-18 2002-07-19 Fuji Xerox Co Ltd 画像表示媒体
JP2002014381A (ja) * 2000-04-25 2002-01-18 Fuji Xerox Co Ltd 画像表示媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1598694A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2487674A2 (en) 2003-11-05 2012-08-15 E-Ink Corporation Electro-optic displays
US9542895B2 (en) 2003-11-25 2017-01-10 E Ink Corporation Electro-optic displays, and methods for driving same
US8928562B2 (en) 2003-11-25 2015-01-06 E Ink Corporation Electro-optic displays, and methods for driving same
WO2005054933A2 (en) 2003-11-26 2005-06-16 E Ink Corporation Electro-optic displays with reduced remnant voltage
EP3067744A2 (en) 2004-03-23 2016-09-14 E Ink Corporation Light modulators
WO2006081305A2 (en) 2005-01-26 2006-08-03 E Ink Corporation Electrophoretic displays using gaseous fluids
EP1842093A2 (en) * 2005-01-26 2007-10-10 E-Ink Corporation Electrophoretic displays using gaseous fluids
JP2008521065A (ja) * 2005-01-26 2008-06-19 イー インク コーポレイション ガス状流体を用いる電気泳動ディスプレイ
EP1842093A4 (en) * 2005-01-26 2010-11-24 E Ink Corp ELECTROPHORETIC SCREENS USING GASEOUS FLUIDS
JP2009251084A (ja) * 2008-04-02 2009-10-29 Konica Minolta Business Technologies Inc 画像表示装置
US7830593B2 (en) 2008-04-02 2010-11-09 Konica Minolta Business Technologies, Inc. Image display device
US8477404B2 (en) 2008-09-25 2013-07-02 Fuji Xerox Co., Ltd. Display medium and display device
US7903323B2 (en) 2009-02-16 2011-03-08 Konica Minolta Business Technologies, Inc. Image display apparatus
JP2010190964A (ja) * 2009-02-16 2010-09-02 Konica Minolta Business Technologies Inc 画像表示装置
US8331015B2 (en) 2010-09-22 2012-12-11 Fuji Xerox Co., Ltd. Display medium and display device
JP2012128003A (ja) * 2010-12-13 2012-07-05 Dainippon Printing Co Ltd 反射型表示装置用カラーフィルタ
WO2012081334A1 (ja) * 2010-12-13 2012-06-21 大日本印刷株式会社 反射型表示装置用カラーフィルタ
WO2017049020A1 (en) 2015-09-16 2017-03-23 E Ink Corporation Apparatus and methods for driving displays
WO2020005676A1 (en) 2018-06-28 2020-01-02 E Ink Corporation Driving methods for variable transmission electro-phoretic media

Also Published As

Publication number Publication date
US7483202B2 (en) 2009-01-27
US20060263927A1 (en) 2006-11-23
EP1598694A4 (en) 2008-10-15
JPWO2004077140A1 (ja) 2006-06-08
JP4579822B2 (ja) 2010-11-10
EP2423740A3 (en) 2012-05-30
US20080174854A1 (en) 2008-07-24
US7369299B2 (en) 2008-05-06
EP1598694A1 (en) 2005-11-23
EP2423740A2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
WO2004077140A1 (ja) 画像表示用パネル及び画像表示装置
US7236291B2 (en) Particle use for image display media, image display panel using the particles, and image display device
JP4657727B2 (ja) 画像表示パネルの製造方法、画像表示装置の製造方法、及び、画像表示装置
JP4202266B2 (ja) 画像表示装置および方法
WO2004079442A1 (ja) 画像表示装置の製造方法及び画像表示装置
US20090242847A1 (en) Display particles for image display apparatus and image display apparatus
JP2007304409A (ja) 表示媒体用粒子および情報表示用パネル
US7830593B2 (en) Image display device
JP2004029699A (ja) 画像表示用粒子及びそれを用いた画像表示装置
JP2005241779A (ja) 画像表示装置に用いる粒子、粉流体及びそれを用いた画像表示装置
JP2005128501A (ja) 画像表示用パネル及び画像表示装置
WO2005076064A1 (ja) 情報表示装置
JP2004317526A (ja) 画像表示用パネル及び画像表示装置
JP4190799B2 (ja) 静電表示装置
CN100354743C (zh) 图像显示面板
JP2006072345A (ja) 表示媒体用粒子及びそれを利用した情報表示用パネル
JP4484446B2 (ja) 画像表示装置
JP2004246136A (ja) 画像表示用パネル、その製造方法および画像表示装置
JP4737921B2 (ja) 画像表示装置の前処理方法
JP2004258483A (ja) 画像表示用パネル及び画像表示装置
JP4393754B2 (ja) 画像表示用粒子および装置
JP2004184632A (ja) 画像表示パネルの製造方法及び画像表示装置
JP4597569B2 (ja) 画像表示用パネルおよびそれを用いた画像表示装置
JP2004199002A (ja) 画像表示パネルの製造方法及び画像表示装置
JP4863762B2 (ja) 表示媒体用粒子および情報表示用パネル

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005502888

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006263927

Country of ref document: US

Ref document number: 10546773

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004714447

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048084393

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004714447

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10546773

Country of ref document: US