WO2004057054A1 - Electroless nickel plating bath for forming anisotropically grown bump, method for forming anisotropically grown bump, article having anisotropically grown bump formed thereon and anisotropic growth accelerator for electroless nickel plating bath - Google Patents

Electroless nickel plating bath for forming anisotropically grown bump, method for forming anisotropically grown bump, article having anisotropically grown bump formed thereon and anisotropic growth accelerator for electroless nickel plating bath Download PDF

Info

Publication number
WO2004057054A1
WO2004057054A1 PCT/JP2003/016404 JP0316404W WO2004057054A1 WO 2004057054 A1 WO2004057054 A1 WO 2004057054A1 JP 0316404 W JP0316404 W JP 0316404W WO 2004057054 A1 WO2004057054 A1 WO 2004057054A1
Authority
WO
WIPO (PCT)
Prior art keywords
bump
plating bath
electroless nickel
nickel
nickel plating
Prior art date
Application number
PCT/JP2003/016404
Other languages
French (fr)
Japanese (ja)
Inventor
Yukinori Saiki
Kenichi Nemoto
Original Assignee
Japan Kanigen Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Kanigen Co.,Ltd. filed Critical Japan Kanigen Co.,Ltd.
Priority to AU2003292596A priority Critical patent/AU2003292596A1/en
Priority to JP2004562067A priority patent/JP4417259B2/en
Publication of WO2004057054A1 publication Critical patent/WO2004057054A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01011Sodium [Na]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01016Sulfur [S]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01018Argon [Ar]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01044Ruthenium [Ru]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01052Tellurium [Te]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01093Neptunium [Np]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]

Definitions

  • Electroless nickel plating bath for forming anisotropically grown bumps for forming anisotropically grown bumps, method for forming anisotropically grown bumps, articles with anisotropically grown bumps, and anisotropic growth promoter for electroless nickel plating bath
  • the present invention relates to the formation of nickel bumps having a high aspect ratio by controlling the vertical and horizontal plating growth rates.
  • LSI manufacturing technology With the rapid development of LSI manufacturing technology in recent years, it has become very important to confirm the operation reliability of small-sized and highly functional LSI products.
  • a method is employed in which an electrical needle is placed on an electrode pad provided on the chip and an electrical characteristic is inspected by setting up an inspection needle (hereinafter, referred to as a “prop”).
  • a nickel bump formed by an electroplating method is used for the probe (for example, see Japanese Patent Application Laid-Open No. Sho 62-182672).
  • Nickel bumps from 4 chip simultaneous measurement to 8, 16, 24, 32, 64, 128 chip simultaneous measurement to reduce inspection time and cost Therefore, a wide range of pins is required.
  • the electrode part pitch on the silicon wafer is becoming narrower due to the higher density, and the probe pitch needs to be reduced from a 160 m pitch to a 120, 90, and 80 m pitch. .
  • a connection method via a bump has recently attracted attention instead of the conventional jump bonding method.
  • the electroplating method is mainly used as a method of forming the bump, but the electroless plating method is also being studied.
  • the bumps formed by the electroless plating method grow isotropically, so it is necessary to regulate the lateral direction. For example, measures such as forming a resist for plating are required (for example, See Japanese Unexamined Patent Publication No. Hei 5-33535 / 15).
  • the electroless nickel plating method is widely used in industry because of isotropic growth (uniformity of film thickness).
  • isotropic growth uniformity of film thickness
  • the shape of the bump formed by electroless nickel plating is isotropic growth, so it does not become a dome-shaped bump with a high aspect ratio. There were issues such as difficulties.
  • An object of the present invention is to form an anisotropic growth bump capable of forming a dome-shaped bump having a small height variation and a high aspect ratio, which is necessary to cope with an increase in the number of pins and a narrow pitch in a wide range.
  • the present invention it is possible to control the plating growth rate in the vertical and horizontal directions by adding a specific compound or ion to an electroless nickel plating bath, and to provide a dome having a high aspect ratio. It has been completed based on the knowledge that mold nickel bumps can be formed.
  • the present invention provides an electroless nickel plating bath for forming an anisotropic growth bump, comprising an anisotropic growth promoting agent in an amount having an anisotropic growth promoting effect. Further, the present invention provides a method for forming an article having anisotropically grown bumps, which comprises a step of immersing an adherend in the electroless nickel plating bath. Further, the present invention is an article having a plurality of nickel bumps formed on a surface thereof, wherein the formed nickel bumps have an average height of 1 ⁇ ! 100 m, a standard deviation of height of 0.7 or less, an average aspect ratio of 0.6 or more, and a standard deviation of aspect ratio of 0.07 or less.
  • the present invention provides an anisotropic growth promoter for an electroless nickel plating bath containing a nitrogen-containing compound or polyethylene glycol.
  • Fig. 1 is a diagram showing the paramesh of ⁇ kerno and ⁇ mp.
  • FIG. 2 is a graph showing average values of height, width, and aspect ratio of the nickel bump of Example 1.
  • FIG. 3 shows the result of measuring the cross-sectional profile of the nickel bump of Example 1 with an ultra-deep shape measurement microscope.
  • FIG. 4 shows average values of height, width, and aspect ratio of the nickel bumps of Example 2. It is a graph.
  • FIG. 5 is a graph showing the average value of the height / width / act ratio of the nickel bump of Example 3.
  • FIG. 6 is a graph showing average values of height, width, and aspect ratio of the nickel bump of Example 5.
  • the electroless nickel plating bath of the present invention is obtained by adding an anisotropic growth promoter to a conventional electroless nickel plating bath containing a nickel salt and a reducing agent.
  • the reducing agent contained in the electroless nickel plating bath of the present invention is not particularly limited as long as it is used in a general electroless nickel plating bath.
  • sodium hypophosphite, potassium hypophosphite, sodium borohydride, potassium borohydride, alkylaminoboron such as dimethylaminoborane and decylaminoborane, and hydrazine can be exemplified. .
  • These compounds may be used alone or in combination of two or more.
  • concentration of the reducing agent in the range of 0.1 to 100 g / L from the viewpoints that the plating film can be formed normally and that the plating bath is stable.
  • the concentration of the reducing agent is in the range of 10 to 40 g / L.
  • an amount of an anisotropic growth promoter having an anisotropic growth promoting effect is added.
  • the anisotropic growth promoter include those containing one or more metal ions such as lead, bismuth, antimony, tellurium, and copper ion.
  • metal ions include, for example, lead nitrate, lead acetate, lead sulfate, lead chloride, bismuth acetate, bismuth nitrate, bismuth sulfate, antimony chloride, antimony potassium tartrate, telluric acid, tellurium chloride, tellurium dioxide, sulfate sulfate.
  • cuprous copper, cuprous chloride, cuprous carbonate, cuprous oxalate and the like can be supplied by adding cuprous copper, cuprous chloride, cuprous carbonate, cuprous oxalate and the like.
  • These metal ions have been conventionally used as stabilizers. By adjusting the amount of these metal ions in accordance with the composition of the electroless nickel plating bath, the present inventors have achieved an anisotropic growth-promoting effect of increasing the effect ratio of the formed bump. I found it to play.
  • the concentration range of these metal ions necessary for exhibiting the anisotropic growth promoting effect varies depending on the composition of the electroless nickel plating bath, but is generally 0.1 to: L 0 mg / L, preferably Is from 0.1 to 5 mg ZL.
  • the concentration of phosphorus is about 10 to about 13 wt%, it is 1 to 5 mg ZL, preferably about 1 to 3.5 mg / L, and the concentration of phosphorus is about 5 to about 9 wt%. % and is within 0.1 in phosphate type 5 ⁇ 5mg / / L, and preferably about 0. 5 ⁇ 3mg / L, 0. in low phosphorus type concentration of phosphorus is about 1 to about 4 wt% 5 About 5 to 2 mg / L, preferably about 0.5 to 2 mg / L, and 0.5 to 6 mgZL for the boron-containing Ni-P-B type, and preferably 0.5 to! ! ! About.
  • a sulfur compound may be used as an additive having an anisotropic growth promoting effect.
  • the sulfur compound may be an organic sulfur compound or an inorganic sulfur compound.
  • thioglycolic acid thiodiglycolic acid, cysteine, saccharin, thiamine nitrate, N, N-getyl-dithiocarbamate, 1,3-getyl-2-thiourea, dipyridine, N-thiazolate 1-1-2-sulfamylamide, 1,2,3-benzotriazole 2-thiazoline-2-thiol, thiazol, thiourea, thiozol, sodium thioindoxylate, o-sulfonamidobenzoic acid , Sulfanilic acid, orange-1, methyl orange, naphthonic acid, naphthylene -1- ⁇ -sulfonic acid, 2-mercaptobenzothiazole, 1-naphtho-1-ru 4-sulfonic acid, shefa-acid, sulfadiazine, Rodan Ammon, Rodan Cali, Rodin Soda, Rodinin, Ammon Sulfide,
  • Rukoto can. Conventionally, these sulfur compounds have been used as stabilizers. By adjusting the amount of these sulfur compounds according to the composition of the electroless nickel plating bath, the present inventors have found that the effect ratio of the formed bumps is increased, and the effect of promoting anisotropic growth is obtained. Was found to play.
  • the concentration range of these sulfur compounds necessary for exhibiting the anisotropic growth promoting effect varies depending on the composition of the electroless nickel plating bath, but is generally ⁇ 1 to 4 Omg / L, preferably 0.1 to 2 Omg / L.
  • the phosphorus concentration is about 10 to about 13 wt%, it is about 0.2 to 1 mg ZL, and in the medium phosphorus type where the phosphorus concentration is about 5 to about 9 wt%, it is 1 to 5 mg / L. And preferably about l to 3 mg / L, and about 1 to 1 Omg / L for a low phosphorus type in which the concentration of phosphorus is about 1 to about 4 wt%, and a boron-containing Ni—P—B type. Is 1 to 3 Omg / L, and preferably about 1 to 2 Omg / L.
  • a nitrogen compound polyethylene glycol, acetylene-based alcohol or acetylene-based sulfonic acid may be used as an additive having an anisotropic growth promoting effect.
  • azine, thiazine, oxazine, ethylene cyanohydrin, titanium yellow and the like can be mentioned.
  • Preferred examples of the nitrogen compound include a nitrogen-containing hetero compound.
  • phenazine dyes are more preferred.
  • phenazine, janus green, janus blue and the like can be mentioned.
  • the polyethylene glycol preferably has a weight average molecular weight of 600 to 20000, more preferably 1000 to 4000.
  • An acetylenic alcohol is a compound having a triple bond and an OH group in the molecule, such as propargyl alcohol, 3-butyn-1-ol, 2-butyn-1,4-diol, 4-pentyn-1-ol, 5-hexin-1-ol, 6-heptin-1-ol, 1-octin-3-ol and the like.
  • acetylenic carboxylic acid examples include propiolic acid, 2-butyric acid, 4-pentinoic acid, 5-hexynic acid, 6-heptic acid and the like.
  • the concentration range of the nitrogen compound, polyethylene glycol, acetylene-based alcohol or acetylene-based carboxylic acid required to exhibit the anisotropic growth-promoting effect differs depending on the composition of the electroless nickel plating bath. 0. It is l ⁇ 40mg / L.
  • the concentration is 0.1 to 2 Omg / L, preferably about 0.1 to 5 mg / L, and the phosphorus concentration is about 5 to 5 mg / L.
  • additives other than the above-mentioned components can be added to the electroless nickel plating bath of the present invention for various purposes to such an extent that the performance of the plating bath is not hindered.
  • metal ion complexing agents, pH buffering agents, accelerators such as formic acid, acetic acid, propionic acid, oxalic acid, succinic acid, malonic acid, maleic acid, itaconic acid, glycolic acid, lactic acid, salicylic acid, tartaric acid, quenched acid
  • Organic acids such as acid, malic acid, and glycine and salts thereof can be added.
  • concentration of the metal ion complexing agent, pH buffer, and accelerator can be, for example, in the range of 1 to 200 g / L.
  • Fine particles may be further dispersed in the electroless nickel plating bath of the present invention.
  • a plating bath in which fine particles are dispersed, a composite electroless nickel bump containing these fine particles can be formed.
  • the particle diameter of the fine particles is in the range of 0.01 to 10 ⁇ m from the viewpoint of dispersibility in the bath and incorporation into nickel bumps.
  • the particle size is in the range from 0.1 to 5 ⁇ m.
  • the content of the fine particles is preferably in the range of 0.1 to 20 g / L from the viewpoint of incorporation into nickel bumps and further from the viewpoint of hardness.
  • the content of the particulate matter is preferably in the range of 0.5 to: 10 g / L.
  • the fine particles include oxides, carbides, nitrides, borides, silicates, sulfides, synthetic resins, graphite, diamond, and mica. These may be used alone or in combination of two or more. Specific examples of these fine particles are shown below.
  • Synthetic resin '' PTFE, (CF) n phenolic resin, epoxy resin, polyamide, etc.
  • each of the fine particles can be co-deposited in a nickel bump to form a uniform bump having various physical properties.
  • Bumps with different hardness, abrasion resistance, lubricity, water repellency, etc. can be obtained depending on the characteristics of the fine particles to be co-prayed, and the contact property as a probe is stabilized.
  • the nickel bump of the present invention is formed by immersing the adherend in the electroless nickel plating bath of the present invention for a predetermined time.
  • the immersion time and temperature in the electroless nickel plating bath can be appropriately determined in consideration of the composition of the electroless nickel plating bath, the height of the nickel bumps, and the like.
  • the temperature can be, for example, 60 to 95 ° C.
  • examples of the adherend that can be used include an article that has been conventionally capable of electroless nickel plating. No restrictions.
  • the covering object may be, for example, a metal article or a non-conductive article.
  • the bumps can be formed on non-conductors such as iron, copper, aluminum and their alloys, stainless steel, plastics, glass, and ceramics. Forming a plurality of 200 Kernomps on the surface of the article
  • LSI products such as inspection probes, burn-in test probes, burn-in test sockets, flip-chip bonding wafers, IC wafers, and LSI wafers can be manufactured.
  • a probe When a probe is manufactured, it is preferable to use a laminated body in which an insulating layer and a conductive layer are stacked as a covering object.
  • the material of the insulating layer is not particularly limited as long as it has electrical insulating properties. However, a material having flexibility as well as insulating properties is preferable. Specifically, polyimide resin, polyester resin, epoxy resin Thermosetting resin such as resin, urethane resin, polystyrene resin, polyethylene resin, polyamide resin, ABS copolymer resin, polycarbonate resin, silicone resin, fluorine resin, etc., or thermoplastic Resins. These can be appropriately selected according to the purpose, and may be used alone or in combination of two or more. Among these, a polyimide resin having excellent heat resistance, chemical resistance and mechanical strength and excellent workability is particularly preferably used. Polyimide has a large absorption in the ultraviolet region and is suitable for laser ablation processing.
  • the conductive layer is not particularly limited as long as it has conductivity.
  • single metals such as copper, nickel, chromium, aluminum, gold, platinum, cobalt, silver, tin, indium, rhodium, tungsten, ruthenium, and iron, or various alloys containing these as components, for example, nickel-tin, gold-tin Cobalt and the like.
  • the conductive layer may have a single-layer structure composed of the above-described metal layers, or may have a laminated structure. For example, from the insulating film side, a base film such as Cr or Ni, a Cu film, a Niflls A A laminated structure in which u films are sequentially laminated can be employed.
  • the Cr underlayer is suitable because it improves the adhesion to an insulating film such as a polyimide film.
  • a Ni base film is preferable because it improves the adhesion to an insulating substrate such as a polyimide film.
  • the Cu film becomes a main component of the conductive layer.
  • the Ni film has a role as an intermediate layer for forming an Au layer on the outermost surface of the conductive layer, and is formed for the purpose of improving the mechanical strength of the conductive layer.
  • AuJ! Dian is formed for the purpose of preventing oxidation of the conductive layer surface and reducing the contact resistance.
  • gold-cobalt alloy, rhodium, palladium or the like can be used. In particular, a gold-cobalt alloy has high mechanical strength of the pad.
  • a film forming method such as a sputtering method or a vapor deposition method, or a plating method such as electroless plating or electrolytic plating can be used.
  • Ni and Au films on Cu film must be formed by plating (electroless plating or electrolytic plating) because mechanical strength is required and the film must be relatively thick. Is desirable. Further, it can be formed by a combination of a spa method and a plating method. For example, after a thin film is formed by a sputtering method, a thick film can be formed by plating.
  • the thickness of the conductive layer is not particularly limited and can be appropriately set, but is generally 3 to 30 m.
  • isolated electrodes such as pads
  • wiring can be formed on the insulating layer.
  • the exposed conductive layer is etched to obtain a desired isolated electrode or wiring pattern. Note that the flexibility deteriorates when wiring is formed on the insulating layer, but the flexibility is not affected when isolated electrodes are formed.
  • the isolated electrode or wiring can be formed directly on the insulating layer.
  • an isolated electrode or a wiring can be directly formed in a part which is not patterned.
  • the isolated electrode or the wiring can be directly drawn and formed by using a dispenser or by a printing method. In this case, a bump is formed using the isolated electrode or the wiring as a conductive layer (electrode).
  • a bump hole is generally formed on the insulating layer.
  • the method for forming the bump hole include laser processing, lithography (including the etching method), plasma processing, optical processing, and mechanical processing.
  • Laser processing is preferable in terms of accuracy and the like.
  • the laser first light to be irradiated, a large excimer one
  • the one radiation output, C 0 2 laser is preferably a YAG laser, First, processing method according Rezaabure one Chillon using excimer one
  • the one in name or Is particularly preferable because the polyimide film is less likely to be melted by heat, a high aspect ratio is obtained, and a fine and fine perforation process can be performed.
  • a laser beam with a narrowed spot is irradiated on the surface of the polyimide film to form a bump hole.
  • a resist pattern or the like as a mask, plasma etching in an atmosphere containing oxygen or fluoride gas, dry etching such as RIE (reactive ion etching), or sputter etching is performed, and bumps are formed. Holes can be formed. Also, a mask having holes of a desired hole shape (round, square, rhombus, etc.) is adhered to the surface of the polyimide film on the side where the conductive layer is not laminated, and etching is performed from above the mask to form a bump. Holes can also be formed.
  • the diameter of the bump hole is usually 5 to 200 m, preferably about 20 to 50 m.
  • the hole diameter of the bump hole is preferably about the same as the diameter of the solder ball (about 300 to 100 ⁇ m).
  • Various metal coatings may be formed on the surface of the formed nickel bumps as necessary. For example, improving the hardness of the nickel bump surface, burn-in test For the purpose of preventing contamination of Nikernomp due to migration in Nikko bumps, a metal coating such as Au, Au-Co, Rh, Pt, Pd, Ag, or an alloy mainly composed of these metal components is formed on the Ni bump surface. You may.
  • the metal coating may be a single layer or a multilayer.
  • the height (h) of the nickel bump is not particularly limited, but is preferably about lm to 100m. More preferably, it is 5 to 30 m. Further, the aspect ratio (hZr) of the nickel bump is preferably 0.6 or more, more preferably 0.7 to 1.0. From the viewpoint of adhesion between the nickel bump and the substrate, the ratio r / 1 between the radius (1) of the bump hole and the radius (r) of the nickel bump is preferably 0.5 to 5. More preferably, it is 1-3. However, these values are the nominal size of the bump shape, and no matter what the nominal size of the nickel bumps formed on the same substrate, the variation is zero. That is ideal.
  • the plurality of nickel bumps formed on the covering object have an average height of 1 ⁇ !
  • the average height can be adjusted to 5 to 30 m by adjusting the composition of the electroless nickel plating bath of the present invention.
  • the standard deviation of the height can be set to 0.7 or less, and the standard deviation of the height can be set to 0.5 or less by adjusting the composition of the electroless nickel plating bath of the present invention. can do.
  • the plurality of nickel bumps formed on the adherend can have an average of the aspect ratio of 0.6 or more.
  • the average aspect ratio can be adjusted to 0.7 to 1.0 by adjusting the composition of the plating bath.
  • the standard deviation of the aspect ratio can be made 0.07 or less, and the standard deviation of the aspect ratio can be made 0.04 or less by adjusting the composition of the electroless nickel plating bath of the present invention.
  • the values of nickel bump height, aspect ratio, etc. The shape of the nickel bump can be determined using a step gauge, an optical microscope, a scanning electron microscope, or the like, and the nickel bump can be determined from this shape.
  • the parameters used in this specification are defined as shown in FIG.
  • the standard deviation s ⁇ (yi -x) 2 + (y 2 -x) 2 + ⁇ ⁇ ⁇ + (y n -x) 2 / n ⁇
  • the cross-sectional shape of the nickel bump is not limited to a circle, but may be an arbitrary shape such as an ellipse, a triangle, and a rectangle.
  • the radius r is calculated as a radius of a circle having the same area as the cross-sectional area of the nickel bump.
  • the laser-processed laminated sheet was set in a jig for electroless plating, and the following pretreatment was performed to perform electroless plating.
  • electroless nickel plating solution high phosphorus type, medium phosphorus type, and Ni-P-B type were adjusted with the following composition, and various anisotropic growth promoters were added in appropriate amounts.
  • This solution was heated in a stainless steel plating tank to crush the pre-treated laser-processed laminated sheet. The plating time was adjusted so that the bump height was about 20 zm.
  • Nickel bumps were formed in 1600 via holes in the laminated sheet immersed for a predetermined time, and the shape (bump height, bump width) was measured using an ultra-depth shape measurement microscope (VK-8550: manufactured by Keyence Corporation). Was measured and evaluated. As for the measurement points, 20 points out of 1600 bumps were evenly extracted from a range of 30 x 65 mm in length and width, and the average value and standard deviation were shown.
  • the anisotropy evaluation was calculated according to the following equation.
  • Electroless nickel plating solutions having the following compositions were prepared.
  • Nickel bumps were formed by adding 0 to 2 mg / L of calories to Janus Green B, an anisotropic growth promoter, and adjusting the plating time so that the bump height was about 20 m.
  • Figure 2 shows the change in the average value of the height / width ratio of the nickel bumps.
  • the standard deviation of the bump height was 0.21 to 0.32, and the standard deviation of the aspect ratio was 0.01 to 0.03.
  • the addition amount of Janus Green B exceeded lmg / L, the plating rate was slow, and the nickel bump height was 1 / m or less even if the plating was performed for 4 hours or more. Table 1 shows the parameters measured for nickel bumps.
  • the pump shape is a dome shape and the height varies. As a result, all of the 1600 bumps exhibited stable contact characteristics.
  • Electroless nickel plating solutions having the following compositions were prepared.
  • Figure 4 shows the changes in the average value of the height, width and aspect ratio of the nickel bumps.
  • the bump apex was also flat.
  • the added amount of Pb 2+ was 1 to 3.5 mg / L, the aspect ratio was 0.62 or more and r / l was 2.2 or less.
  • the bump apex became convex, and a dome-shaped nickel bump was formed.
  • the standard deviation of the bump height was 0.21 to 0.35, and the standard deviation of the aspect ratio was 0.01 to 0.03.
  • Table 2 shows the parameters measured with nickel bumps. Table 2
  • the hardness of the nickel bump was Hv 530.
  • the bump shape is a dome shape and the height variation is small. All of the 1600 bumps exhibited stable contact characteristics.
  • Electroless nickel plating solutions having the following compositions were prepared.
  • thiourea an anisotropic growth promoter
  • the plating time was adjusted so that the bump height was about 20 m, thereby forming a Nikernomp.
  • Figure 5 shows the changes in the average values of the height, width and aspect ratio of the nickel bumps.
  • the aspect ratio was 0.58 and r / l was 2.4.
  • the bump apex was also flat.
  • the amount of thiourea added was 1 to 3 mg ZL, the small disk ratio was 0.60 or more and r / l was 2.3 or less.
  • the bump vertices became convex, and a dome-shaped nickel bump was formed.
  • the standard deviation of the bump height was 0.24 to 0.35, and the standard deviation of the aspect ratio was 0.01 to 0.03, both of which showed little variation.
  • the amount of thiourea added was 3 mg / L or more, the plating reaction did not proceed and no bump growth was observed. Table 9 shows the parameters measured for nickel bumps.
  • the hardness of the nickel bumps was Hv 570.
  • the bump shape is dome-shaped and the height variation is small. All of the bumps exhibited stable contact characteristics.
  • Example 2 To the electroless nickel plating solution of Example 1, 2 OmgZL of polyethylene glycol 1000 as an anisotropic growth promoter was added and the plating time was adjusted so that the bump height was about 20 zm. A nickel bump was formed. As a result, the height of the nickel bumps was 20.5 ⁇ m, the diameter was 57 / m, the aspect ratio was 0.72, and r / l was 2.0. Been formed. The standard deviation of the bump height was 0.26, and the standard deviation of the aspect ratio was 0.03.
  • Example 5 Ni—P—B type plating solution To the electroless nickel plating solution of Example 1, 0.1 to 8 mg / L of propagyl alcohol, an isotropic growth promoter, was added. The Nikernomp was formed by adjusting the plating time so that the height was about 20 m.
  • Figure 6 shows the changes in the average height, width and aspect ratio of the nickel bump.
  • the propargyl alcohol content was 0.1 to 8 mg / L
  • the aspect ratio was 0.6 or more
  • r 1 was 2.3 or less.
  • a dome-shaped nickel bump having a convex bump apex was formed.
  • the standard deviation of the bump height was 0.22 to 0.29
  • the standard deviation of the aspect ratio was 0.02 to 0.03.
  • Table 4 shows the parameters measured for nickel bumps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

An electroless nickel plating bath for forming an anisotropically grown bump, characterized in that it comprises an anisotropic growth accelerator in an amount necessary to exhibit the effect to accelerate anisotropic growth; a method for forming an article having an anisotropically grown nickel bump; an article having an anisotropically grown nickel bump formed thereon; and an anisotropic growth accelerator for an electroless nickel plating bath. The electroless nickel plating bath allows the formation of bumps which have the form of a dome, have a high aspect ratio and are reduced in the variation in their heights, which bumps are required for corresponding with the tendency of broader range, more pins and a narrower pitch.

Description

異方成長バンプ形成用無電解ニッケルめっき浴、 異方成長バンプの形成方法、 異 方成長バンプが形成された物品及び無電解二ヅケルめつき浴用異方成長促進剤 Electroless nickel plating bath for forming anisotropically grown bumps, method for forming anisotropically grown bumps, articles with anisotropically grown bumps, and anisotropic growth promoter for electroless nickel plating bath
(発明の背景) (Background of the Invention)
本発明は、 縦方向と横方向のめっき成長速度の制御による、 高アスペクト比を 有するニッケルバンプの形成に関する。  The present invention relates to the formation of nickel bumps having a high aspect ratio by controlling the vertical and horizontal plating growth rates.
近年の L S I製造技術の急速な発展により、 小型ィ匕 ·高機能化した L S I製品 の動作の信頼性確認は大変重要になってきている。 現在、 その動作確認にはチヅ プに設けられた電極パットに検査針 (以下、 「プロ一プ」 という。) を立てて電気 特性を検査する方法が採用されている。 通常、 そのプローブには、 電気めつき法 により形成されるニッケルバンプが用いられている (例えば、 特開昭 6 2—1 8 2 6 7 2号公報参照。)。 ニッケルバンプのプロ一プは、 4チップ同時測定のもの から検査時間 'コストを削減するために、 8、 1 6 , 2 4、 3 2、 6 4、 1 2 8 チップ同時測定が可能なものへと広範囲多ピン化が求められている。 また、 シリ コンウェハ一上の電極パヅトピッチも高密度化のため狭くなり、 プロ一ブピッチ は、 1 6 0〃mピッチから 1 2 0、 9 0、 8 0 mピッチへの狭小化が必要とさ れる。  With the rapid development of LSI manufacturing technology in recent years, it has become very important to confirm the operation reliability of small-sized and highly functional LSI products. At present, for the operation confirmation, a method is employed in which an electrical needle is placed on an electrode pad provided on the chip and an electrical characteristic is inspected by setting up an inspection needle (hereinafter, referred to as a “prop”). Usually, a nickel bump formed by an electroplating method is used for the probe (for example, see Japanese Patent Application Laid-Open No. Sho 62-182672). Nickel bumps from 4 chip simultaneous measurement to 8, 16, 24, 32, 64, 128 chip simultaneous measurement to reduce inspection time and cost Therefore, a wide range of pins is required. Also, the electrode part pitch on the silicon wafer is becoming narrower due to the higher density, and the probe pitch needs to be reduced from a 160 m pitch to a 120, 90, and 80 m pitch. .
しかし、 電気めつき法によるニッケルバンプの作製には、 広範囲多ピン化対応 の場合、 電流密度制御の困難さからニッケルバンプの高さのばらつきが発生し、 その対策に数多くの特許が出願されている (例えば、 特開昭 5 7— 1 3 1 9 3号 公報、 特開平 7 - 1 0 9 5 9 9号公報、 特開平 9— 2 4 3 6 6 1号公報及び特開 平 1 0— 1 5 4 8 7 1号公報参照。)。 また、 高密度化のためのニッケルバンプの 狭ピッチ化には、 バンプ形状の高いアスペクト比が必要であり、 電気めつき浴中 への有機添加剤の研究が報告されている (例えば、逢坂哲彌、外 5名,「高ァスぺ クト比を有する電析 N iマイクロプローブの試作」,表面技術, 2 0 0 1年,第 5 2卷, 第 1号, p . 1 3 0 - 1 3 4参照。)。 However, in the production of nickel bumps by the electroplating method, the nickel bump height varies due to the difficulty in controlling the current density in a wide range of multi-pin applications, and numerous patents have been filed for countermeasures. (For example, Japanese Patent Application Laid-Open Nos. Sho 57-131193, Hei 7-10959, Hei 9-243641 and Hei 10- Reference is made to Japanese Patent Application Publication No. Also, narrowing the pitch of nickel bumps for higher density requires a high aspect ratio of the bump shape, and it is necessary to (Eg, Tetsuya Osaka, et al., “Prototype Ni electrode microprobe with high aspect ratio”), Surface Technology, 2001, Vol. 52, No. 1, p. 130-134.)
一方、 半導体チップ分野においては微細ピッチ化の要求から、 最近、 従来のヮ ィャ一ボンディング方式に代わって、 バンプを介在した接続方法が注目されてい る。 このバンプの形成方法としては電気めつき法が主流であるが、 無電解めつき 法でも検討されている。 しかし、 無電解めつき法により形成されるバンプは等方 的に成長するため、 横方向を規制する必要があり、 例えば、 めっき用のレジスト を形成する等の処置が必要であった (例えば、 特開平 5— 3 3 5 3 1 5号公報参 照。)。 また、 この面倒なレジストを省くために、 無電解めつきを寄せ付けない疎 水性保護膜を形成して、 ストレート形状に指向性を持たせたバンプ形成方法も閧 示されている (例えば、 特開 2 0 0 2— 2 6 0 5 5号公報参照。)。  On the other hand, in the field of semiconductor chips, due to the demand for finer pitch, a connection method via a bump has recently attracted attention instead of the conventional jump bonding method. The electroplating method is mainly used as a method of forming the bump, but the electroless plating method is also being studied. However, the bumps formed by the electroless plating method grow isotropically, so it is necessary to regulate the lateral direction. For example, measures such as forming a resist for plating are required (for example, See Japanese Unexamined Patent Publication No. Hei 5-33535 / 15). Further, in order to eliminate this troublesome resist, there is also proposed a bump forming method in which a water-repellent protective film that does not attract electroless plating is formed to give directivity to a straight shape (for example, see Japanese Patent Application Laid-Open No. H11-163873). 2 0 0 2 — 2 0 6 5 5 Reference).
一般に、 無電解ニッケルめっき法は、 等方成長(膜厚の均一性) であることか ら広く産業界に利用されている。 この方法をプロ一プ用ニヅケルノ ンプゃ半導体 チヅプノ ンプの形成に応用した場合、 広範囲多ピン化での高さばらつきは非常に 小さくなるものと考えられる。 しかしながら、 無電解ニッケルめっき法により形 成したバンプの形状は、 等方成長であるがゆえに、 高アスペクト比のドーム型バ ンプにはならず、 バンプ形状が広がつてしまい狭ピヅチ化への対応が困難である 等の課題があった。  In general, the electroless nickel plating method is widely used in industry because of isotropic growth (uniformity of film thickness). When this method is applied to the formation of nickel-chip semiconductor chip pumps for bumps, it is thought that the height variation in a wide-area, multi-pin configuration will be very small. However, the shape of the bump formed by electroless nickel plating is isotropic growth, so it does not become a dome-shaped bump with a high aspect ratio. There were issues such as difficulties.
本発明の目的は、 広範囲多ピン化及び狭ピッチ化に対応するために必要な、 高 さばらつきの少ない高ァスぺクト比のドーム型バンプの形成を可能にする異方成 長バンプ形成用無電解二ッケルめつき浴、 異方成長二ッケルバンプを有する製品 の形成方法、 異方成長ニッケルバンプが形成された物品及び無電解二ッケルめつ き浴用異方成長促進剤を提供することにある。 (発明の開示) An object of the present invention is to form an anisotropic growth bump capable of forming a dome-shaped bump having a small height variation and a high aspect ratio, which is necessary to cope with an increase in the number of pins and a narrow pitch in a wide range. An electroless nickel plating bath, a method of forming a product having an anisotropically grown nickel bump, an article having an anisotropically grown nickel bump formed thereon, and an anisotropic growth promoter for an electroless nickel plating bath. . (Disclosure of the Invention)
本発明は、 無電解二ヅケルめつき浴に特定の化合物又はイオンを添加すること により、 縦方向と横方向のめっき成長速度を制御することが可能であり、 高ァス ぺクト比を有するドーム型のニッケルバンプを形成できるとの知見に基づき完成 されたものである。  According to the present invention, it is possible to control the plating growth rate in the vertical and horizontal directions by adding a specific compound or ion to an electroless nickel plating bath, and to provide a dome having a high aspect ratio. It has been completed based on the knowledge that mold nickel bumps can be formed.
すなわち、 本発明は、 異方成長促進効果を有する量の異方成長促進剤を含有す ることを特徴とする異方成長バンプ形成用無電解二ヅケルめつき浴を提供する。 また、 本発明は、 前記無電解ニッケルめっき浴に被めつき物を浸漬する工程を 含むことを特徴とする異方成長バンプを有する物品の形成方法を提供する。 さらに、 本発明は、 表面に複数のニッケルバンプが形成された物品であって、 形成されたニッケルバンプは、 高さの平均が 1〃π!〜 1 0 0 m、 高さの標準偏 差が 0 . 7以下であり、 アスペクト比の平均が 0 . 6以上、 アスペクト比の標準 偏差が 0 . 0 7以下である前記物品を提供する。  That is, the present invention provides an electroless nickel plating bath for forming an anisotropic growth bump, comprising an anisotropic growth promoting agent in an amount having an anisotropic growth promoting effect. Further, the present invention provides a method for forming an article having anisotropically grown bumps, which comprises a step of immersing an adherend in the electroless nickel plating bath. Further, the present invention is an article having a plurality of nickel bumps formed on a surface thereof, wherein the formed nickel bumps have an average height of 1〃π! 100 m, a standard deviation of height of 0.7 or less, an average aspect ratio of 0.6 or more, and a standard deviation of aspect ratio of 0.07 or less.
またさらに、 本発明は、 含窒素化合物又はポリエチレングリコールを含有する 無電解ニッケルめつき浴用異方成長促進剤を提供する。  Still further, the present invention provides an anisotropic growth promoter for an electroless nickel plating bath containing a nitrogen-containing compound or polyethylene glycol.
(図面の簡単な説明) (Brief description of drawings)
図 1は、 二ヅケルノ、'ンプのパラメ一夕を表す図である。  Fig. 1 is a diagram showing the paramesh of ヅ kerno and ン mp.
( a ) : r > lの場合 (a) : When r> l
( b ): r < lの場合  (b): When r <l
図 2は、 実施例 1のニッケルバンプの高さ ·幅 ·ァスぺクト比の平均値を示す グラフである。  FIG. 2 is a graph showing average values of height, width, and aspect ratio of the nickel bump of Example 1.
図 3は、 実施例 1の二ヅケルバンプの断面プロファイルを超深度形状測定顕微 鏡で測定した結果である。  FIG. 3 shows the result of measuring the cross-sectional profile of the nickel bump of Example 1 with an ultra-deep shape measurement microscope.
図 4は、 実施例 2のニッケルバンプの高さ ·幅 ·ァスぺクト比の平均値を示す グラフである。 FIG. 4 shows average values of height, width, and aspect ratio of the nickel bumps of Example 2. It is a graph.
図 5は、 実施例 3のニッケルバンプの高さ■幅 ·ァスぺクト比の平均値を示す グラフである。  FIG. 5 is a graph showing the average value of the height / width / act ratio of the nickel bump of Example 3.
図 6は、 実施例 5のニッケルバンプの高さ ·幅 ·ァスぺクト比の平均値を示す グラフである。  FIG. 6 is a graph showing average values of height, width, and aspect ratio of the nickel bump of Example 5.
(発明を実施するための最良の形態) (Best mode for carrying out the invention)
本発明の無電解ニッケルめっき浴は、 ニッケル塩及び還元剤を含有する、 従来 の無電解二ヅケルめつき浴に、 異方成長促進剤を添加したものである。  The electroless nickel plating bath of the present invention is obtained by adding an anisotropic growth promoter to a conventional electroless nickel plating bath containing a nickel salt and a reducing agent.
本発明の無電解ニッケルめつき浴に含有されるニッケル塩は、 通常の無電解二 ッケルめっき浴で使用されるものであれば特に限定されない。例えば、 硫酸ニヅ ケル、塩化ニッケル、炭酸ニッケル、 酢酸ニッケル、硫酸ニッケルアンモニゥム、 クェン酸ニッケル、 次亜燐酸二ヅケル等を挙げることができる。 これらの化合物 は単独で用いてもよく、 又は 2種以上を組み合わせて用いてもよい。 ニッケル塩 の濃度は、 1〜5 O g/Lの範囲とすることが、 めっき皮膜が正常に形成でき、 かつめつき浴の安定性という観点から適当である。 好ましくは、 ニッケル塩の濃 度は 5〜3 O gZLの範囲である。  The nickel salt contained in the electroless nickel plating bath of the present invention is not particularly limited as long as it is used in a usual electroless nickel plating bath. For example, nickel sulfate, nickel chloride, nickel carbonate, nickel acetate, nickel ammonium sulfate, nickel citrate, nickel hypophosphite and the like can be mentioned. These compounds may be used alone or in combination of two or more. It is appropriate that the concentration of the nickel salt is in the range of 1 to 5 Og / L from the viewpoint that the plating film can be formed normally and that the plating bath is stable. Preferably, the concentration of the nickel salt ranges from 5 to 3 OgZL.
本発明の無電解二ッケルめつき浴に含有される還元剤は、 通常の無電解二ヅケ ルめっき浴で使用されるものであれば特に限定されない。 例えば、 次亜リン酸ソ —ダ、 次亜リン酸カリウム、 水素化ホウ素ナトリウム、 水素化ホウ素カリウム、 ジメチルァミノボランゃジェチルァミノボラン等のアルキルアミノホウ素、 ヒド ラジン等を挙げることができる。 これらの化合物は単独で用いてもよく、 又は 2 種以上を組み合わせて用いてもよい。 還元剤の濃度は、 0 . l〜1 0 0 g/Lの 範囲とすることが、 めっき皮膜が正常に形成でき、 かつめつき浴の安定性という 観点から適当である。好ましくは、 還元剤の濃度は 1 0〜4 0 g/Lの範囲であ る o The reducing agent contained in the electroless nickel plating bath of the present invention is not particularly limited as long as it is used in a general electroless nickel plating bath. For example, sodium hypophosphite, potassium hypophosphite, sodium borohydride, potassium borohydride, alkylaminoboron such as dimethylaminoborane and decylaminoborane, and hydrazine can be exemplified. . These compounds may be used alone or in combination of two or more. It is appropriate to set the concentration of the reducing agent in the range of 0.1 to 100 g / L from the viewpoints that the plating film can be formed normally and that the plating bath is stable. Preferably, the concentration of the reducing agent is in the range of 10 to 40 g / L. O
本発明の無電解ニッケルめっき浴には、 異方成長促進効果を有する量の異方成 長促進剤が添加される。 異方成長促進剤としては、 鉛、 ビスマス、 アンチモン、 テルル、 銅ィォン等の 1種又は 2種以上の金属イオンを含有するものが挙げられ る。 これら金属イオンは、 例えば、 硝酸鉛、 酢酸鉛、 硫酸鉛、 塩化鉛、 酢酸ビス マス、 硝酸ビスマス、 硫酸ビスマス、 塩化アンチモン、 酒石酸アンチモニルカリ ゥム、 テルル酸、 塩化テルル、 二酸化テルル、 硫酸第一銅、 塩化第一銅、 炭酸第 一銅、 シユウ酸第一銅等を添加することで供給できる。 これらの金属イオンは、 従来、 安定剤として用いられていた。 本発明者らは、 これらの金属イオンの量を 無電解二ヅケルめっき浴の組成に応じて調整することによって、 形成されるバン プのァスぺクト比が高くなるという異方成長促進効果を奏することを見出した。 異方成長促進効果を奏するために必要なこれらの金属イオンの濃度範囲は、 無電 解ニッケルめっき浴の組成に応じて異なるが、 一般的には 0. 1〜: L 0mg/L であり、 好ましくは 0. l〜5mgZLである。 例えば、 リンの濃度が約 10〜 約 13 w t %である高リンタイプでは 1〜 5 mgZLであり、好ましくは 1〜 3. 5 m g/L程度であり、 リンの濃度が約 5〜約 9 w t %である中リンタイプでは 0. 5〜5mg//Lであり、 好ましくは 0. 5〜3mg/L程度であり、 リンの 濃度が約 1〜約 4wt %である低リンタイプでは 0. 5〜5mgZLであり、 好 ましくは 0. 5〜2mg/L程度であり、 ホウ素を含有する Ni—P— Bタイプ では 0. 5〜6mgZLであり、 好ましくは 0. 〜 !!! ^程度である。 また、 前記金属イオンに代えて、 あるいは前記金属イオンに加えて、 異方成長 促進効果を有する添加剤として、 硫黄化合物を使用してもよい。 本発明で使用し てもよい硫黄化合物としては、例えば、 -SH (メルカプト基)、 -S- (チォェ —テル基)、 >C = S (チォアルデヒド基、 チオケトン基)、 -COSH (チォ力 ルポキシル基)、 -CS SH (ジチォカルボキシル基)、 一 CSNH2 (チォアミ ド基)、 一 SCN (チオシァネート基、 イソチオシァネート基)からなる 1種又は 2種以上の硫黄化合物が挙げられる。 また、 硫黄化合物は、 有機硫黄化合物でも 無機硫黄化合物でもよい。 具体的には、 例えば、 チォグリコール酸、 チォジグリ コール酸、 システィン、 サヅカリン、 チアミン硝酸塩、 N, N—ジェチルー ジ チォカルバミン酸ソ一ダ、 1, 3—ジェチル— 2— チォ尿素、 ジピリジン、 N 一チアゾ一ル一2— スルファミルアマイド、 1, 2, 3—ベンゾトリアゾール 2—チアゾリン— 2— チオール、 チアゾ一ル、 チォ尿素、 チォゾ一ル、 チオイ ンドキシル酸ソ一ダ、 o—スルホンアミド安息香酸、 スルファニル酸、 オレンジ 一 2、 メチルオレンジ、 ナフチオン酸、 ナフ夕レン一 α— スルホン酸、 2—メ ルカプトべンゾチアゾ一ル、 1一ナフト一ルー 4— スルホン酸、シェファ一酸、 サルファダイアジン、 ロダンアンモン、 ロダンカリ、 ロダンソーダ、 ロダニン、 硫化アンモン、 硫化ソ一ダ、 硫酸アンモン等を挙げることができる。 これらの硫 黄化合物は、 従来、 安定剤として用いられていた。 本発明者らは、 これらの硫黄 化合物の量を無電解二ッケルめつき浴の組成に応じて調整することによって、 形 成されるバンプのァスぺクト比が高くなるという異方成長促進効果を奏すること を見出した。 異方成長促進効果を奏するために必要なこれらの硫黄化合物の濃度 範囲は、 無電解ニッケルめっき浴の組成に応じて異なるが、 一般的には◦. 1〜 4 Omg/Lであり、 好ましくは 0. 1〜2 Omg/Lである。 例えば、 リンの 濃度が約 10〜約 13wt %である高リンタイプでは 0. 2〜lmgZL程度で あり、 リンの濃度が約 5〜約 9 w t %である中リンタイプでは 1〜 5 m g/Lで あり、 好ましくは l〜3mg/L程度であり、 リンの濃度が約 1〜約 4wt%で ある低リンタイプでは 1〜1 Omg/L程度であり、 ホウ素を含有する Ni— P — Bタイプでは 1〜3 Omg/Lであり、 好ましくは 1〜2 Omg/L程度であ る。 To the electroless nickel plating bath of the present invention, an amount of an anisotropic growth promoter having an anisotropic growth promoting effect is added. Examples of the anisotropic growth promoter include those containing one or more metal ions such as lead, bismuth, antimony, tellurium, and copper ion. These metal ions include, for example, lead nitrate, lead acetate, lead sulfate, lead chloride, bismuth acetate, bismuth nitrate, bismuth sulfate, antimony chloride, antimony potassium tartrate, telluric acid, tellurium chloride, tellurium dioxide, sulfate sulfate. It can be supplied by adding cuprous copper, cuprous chloride, cuprous carbonate, cuprous oxalate and the like. These metal ions have been conventionally used as stabilizers. By adjusting the amount of these metal ions in accordance with the composition of the electroless nickel plating bath, the present inventors have achieved an anisotropic growth-promoting effect of increasing the effect ratio of the formed bump. I found it to play. The concentration range of these metal ions necessary for exhibiting the anisotropic growth promoting effect varies depending on the composition of the electroless nickel plating bath, but is generally 0.1 to: L 0 mg / L, preferably Is from 0.1 to 5 mg ZL. For example, in the high phosphorus type where the concentration of phosphorus is about 10 to about 13 wt%, it is 1 to 5 mg ZL, preferably about 1 to 3.5 mg / L, and the concentration of phosphorus is about 5 to about 9 wt%. % and is within 0.1 in phosphate type 5~5mg / / L, and preferably about 0. 5~3mg / L, 0. in low phosphorus type concentration of phosphorus is about 1 to about 4 wt% 5 About 5 to 2 mg / L, preferably about 0.5 to 2 mg / L, and 0.5 to 6 mgZL for the boron-containing Ni-P-B type, and preferably 0.5 to! ! ! About. Further, instead of the metal ion or in addition to the metal ion, a sulfur compound may be used as an additive having an anisotropic growth promoting effect. Examples of the sulfur compound that may be used in the present invention include -SH (mercapto group), -S- (thioether group),> C = S (thioaldehyde group, thioketone group), and -COSH (thio group). Lipoxyl group), -CS SH (dithiocarboxyl group), CSNH 2 (thioamido) And one or more sulfur compounds consisting of one SCN (thiocyanate group, isothiocyanate group). Further, the sulfur compound may be an organic sulfur compound or an inorganic sulfur compound. Specifically, for example, thioglycolic acid, thiodiglycolic acid, cysteine, saccharin, thiamine nitrate, N, N-getyl-dithiocarbamate, 1,3-getyl-2-thiourea, dipyridine, N-thiazolate 1-1-2-sulfamylamide, 1,2,3-benzotriazole 2-thiazoline-2-thiol, thiazol, thiourea, thiozol, sodium thioindoxylate, o-sulfonamidobenzoic acid , Sulfanilic acid, orange-1, methyl orange, naphthonic acid, naphthylene -1-α-sulfonic acid, 2-mercaptobenzothiazole, 1-naphtho-1-ru 4-sulfonic acid, shefa-acid, sulfadiazine, Rodan Ammon, Rodan Cali, Rodin Soda, Rodinin, Ammon Sulfide, Sodium Sulfide, Ammon Sulfate, etc. Rukoto can. Conventionally, these sulfur compounds have been used as stabilizers. By adjusting the amount of these sulfur compounds according to the composition of the electroless nickel plating bath, the present inventors have found that the effect ratio of the formed bumps is increased, and the effect of promoting anisotropic growth is obtained. Was found to play. The concentration range of these sulfur compounds necessary for exhibiting the anisotropic growth promoting effect varies depending on the composition of the electroless nickel plating bath, but is generally ◦ 1 to 4 Omg / L, preferably 0.1 to 2 Omg / L. For example, in the high phosphorus type where the phosphorus concentration is about 10 to about 13 wt%, it is about 0.2 to 1 mg ZL, and in the medium phosphorus type where the phosphorus concentration is about 5 to about 9 wt%, it is 1 to 5 mg / L. And preferably about l to 3 mg / L, and about 1 to 1 Omg / L for a low phosphorus type in which the concentration of phosphorus is about 1 to about 4 wt%, and a boron-containing Ni—P—B type. Is 1 to 3 Omg / L, and preferably about 1 to 2 Omg / L.
さらに、 前記金属イオン又は前記硫黄化合物に代えて、 あるいは前記金属ィォ ン及び前記硫黄化合物に加えて、 異方成長促進効果を有する添加剤として、 窒素 化合物、 ポリエチレングリコ一ル、 アセチレン系アルコール又はアセチレン系力 ルボン酸を使用してもよい。 本発明で使用してもよい窒素化合物としては、 例え ば、 一 N = N— (ァゾ基、 複素環基)、 >C = N— (シッフ塩基残基、 複素環基)、 C = N-OH (ォキシム基)、 >C = NH (ィミン基、 ェナミン基) からなる 1種 又は 2種以上の窒素化合物が挙げられる。 具体的には、 例えば、 ァジン、 チアジ ン、 ォキサジン、 エチレンシァノヒドリン、 チタンイェロー等を挙げることがで きる。 また、 好ましい窒素化合物として、 含窒素複素璟化合物が挙げられる。 中 でも、 フエナジン系染料がより好ましい。 具体的には、 フエナジン、 ャヌスグリ ーン、 ャヌスブルー等を挙げることができる。 Further, instead of the metal ion or the sulfur compound, or In addition to the sulfur compound and the sulfur compound, a nitrogen compound, polyethylene glycol, acetylene-based alcohol or acetylene-based sulfonic acid may be used as an additive having an anisotropic growth promoting effect. Examples of the nitrogen compound that may be used in the present invention include: N = N— (azo group, heterocyclic group),> C = N— (Schiff base residue, heterocyclic group), C = N One or more nitrogen compounds consisting of —OH (oxime group) and> C = NH (imine group, enamine group). Specifically, for example, azine, thiazine, oxazine, ethylene cyanohydrin, titanium yellow and the like can be mentioned. Preferred examples of the nitrogen compound include a nitrogen-containing hetero compound. Of these, phenazine dyes are more preferred. Specifically, phenazine, janus green, janus blue and the like can be mentioned.
また、 ポリエチレングリコールとしては、 重量平均分子量が 600〜 2000 0であるのが好ましく、 より好ましくは 1000〜4000である。  The polyethylene glycol preferably has a weight average molecular weight of 600 to 20000, more preferably 1000 to 4000.
また、 アセチレン系アルコールは、 分子内に三重結合と OH基を有する化合物 であり、 例えばプロパギルアルコール、 3—プチン一 1—オール、 2ーブチン一 1, 4ージオール、 4一ペンチン— 1—オール、 5—へキシン— 1—オール、 6 一ヘプチン一 1—ォ一ル、 1ーォクチン一 3—オール等が挙げられる。  An acetylenic alcohol is a compound having a triple bond and an OH group in the molecule, such as propargyl alcohol, 3-butyn-1-ol, 2-butyn-1,4-diol, 4-pentyn-1-ol, 5-hexin-1-ol, 6-heptin-1-ol, 1-octin-3-ol and the like.
また、 アセチレン系カルボン酸としては、 プロピオル酸、 2—ブチン酸、 4一 ペンチン酸、 5—へキシン酸、 6—ヘプチン酸等が挙げられる。  Examples of the acetylenic carboxylic acid include propiolic acid, 2-butyric acid, 4-pentinoic acid, 5-hexynic acid, 6-heptic acid and the like.
異方成長促進効果を発揮するために必要な窒素化合物、 ポリエチレングリコー ル、 アセチレン系アルコール又はアセチレン系カルボン酸の濃度範囲は、 無電解 ニッケルめっき浴の組成に応じて異なるが、 一般的には、 0. l〜40mg/L である。例えば、 リンの濃度が約 10〜約 13 wt%である高リンタイプでは 0. 1〜2 Omg/Lであり、 好ましくは 0. l〜5mg/L程度であり、 リンの濃 度が約 5〜約 9 wt%である中リンタイプでは 0.1〜2 OmgZL程度であり、 リンの濃度が約 1〜約 4 w t %である低リンタイプでは 0. 1〜 30 m g/Lで あり、 好ましくは 0 . l〜5 mg/L程度であり、 ホウ素を含有する N i— P— Bタイプでは 0 . 1 ~ 3 O m g/L程度である。 The concentration range of the nitrogen compound, polyethylene glycol, acetylene-based alcohol or acetylene-based carboxylic acid required to exhibit the anisotropic growth-promoting effect differs depending on the composition of the electroless nickel plating bath. 0. It is l ~ 40mg / L. For example, for a high phosphorus type in which the concentration of phosphorus is about 10 to about 13 wt%, the concentration is 0.1 to 2 Omg / L, preferably about 0.1 to 5 mg / L, and the phosphorus concentration is about 5 to 5 mg / L. 0.1 to 2 OmgZL for medium phosphorus type, which is about 9 wt%, and 0.1 to 30 mg / L for low phosphorus type, whose phosphorus concentration is about 1 to about 4 wt%. Yes, preferably about 0.1 to 5 mg / L, and about 0.1 to 3 O mg / L for the boron-containing Ni—P—B type.
さらに、本発明の無電解ニッケルめっき浴には、上記成分以外の添加剤を、種々 の目的で、 めっき浴の性能を阻害しない程度に添加することができる。例えば、 金属イオン錯化剤、 p H緩衝剤、 促進剤として、 蟻酸、 酢酸、 プロピオン酸、 シ ユウ酸、 コハク酸、 マロン酸、 マレイン酸、 ィタコン酸、 グリコール酸、 乳酸、 サリチル酸、 酒石酸、 クェン酸、 リンゴ酸、 グリシン等の有機酸類及びその塩類 などを添加することができる。 上記金属イオン錯化剤、 p H緩衝剤、 促進剤の濃 度は、 例えば、 1〜2 0 0 g/Lの範囲とすることができる。  Further, additives other than the above-mentioned components can be added to the electroless nickel plating bath of the present invention for various purposes to such an extent that the performance of the plating bath is not hindered. For example, metal ion complexing agents, pH buffering agents, accelerators such as formic acid, acetic acid, propionic acid, oxalic acid, succinic acid, malonic acid, maleic acid, itaconic acid, glycolic acid, lactic acid, salicylic acid, tartaric acid, quenched acid Organic acids such as acid, malic acid, and glycine and salts thereof can be added. The concentration of the metal ion complexing agent, pH buffer, and accelerator can be, for example, in the range of 1 to 200 g / L.
本発明のめっき浴の p Hは 4〜1 4の範囲、 好ましくは 6〜1 2の範囲とする ことが適当である。 めっき浴の p Hは、 浴の p Hが高い場合には、 例えば、 硫酸 を添加することで調整できる。 また、 浴の p Hが低い場合には、 例えば、 アンモ 二ァ水ゃ水酸化ナトリゥムを添加することで調整できる。  The pH of the plating bath of the present invention is suitably in the range of 4 to 14, preferably in the range of 6 to 12. If the pH of the plating bath is high, the pH can be adjusted, for example, by adding sulfuric acid. When the pH of the bath is low, it can be adjusted, for example, by adding ammonium hydroxide / sodium hydroxide.
本発明の無電解二ヅケルめつき浴には、 さらに微粒子状物を分散してもよい。 微粒子状物を分散しためっき浴を用いることで、 これらの微粒子状物を含有する 複合無電解ニッケルバンプを形成することができる。微粒子状物の粒子径は、 0 . 0 1〜1 0〃mの範囲であることが浴中の分散性とニッケルバンプへの取り込み という観点から適当である。好ましくは、粒子径は 0 . l〜5〃mの範囲である。 さらに、 微粒子状物の含有量は、 ニッケルバンプへの取り込み、 さらには硬度と いう観点から 0 . 1〜2 0 g/Lの範囲とすることが適当である。 微粒子状物の 含有量は、好ましくは、 0 . 5〜: 1 0 g/Lの範囲である。微粒子状物としては、 例えば、 酸化物、 炭化物、 窒化物、 ホウ化物、 ケィ化物、 硫化物、 合成樹脂、 グ ラフアイト、 ダイヤモンド、 雲母等を挙げることができる。 これらは単独で用い てもよく、 また、 2種以上を組み合わせて用いてもよい。 これらの微粒子状物の 具体例を以下に例示する。 酸化物- ·Α1203、 Ti02、 Ζ r 02S Th02、 Ce02、 MgO、 CaO等 炭化物 ' . SiC、 WC;、 TiC、 Z r Cs B4C、 CrC2Fine particles may be further dispersed in the electroless nickel plating bath of the present invention. By using a plating bath in which fine particles are dispersed, a composite electroless nickel bump containing these fine particles can be formed. It is appropriate that the particle diameter of the fine particles is in the range of 0.01 to 10 μm from the viewpoint of dispersibility in the bath and incorporation into nickel bumps. Preferably, the particle size is in the range from 0.1 to 5 μm. Further, the content of the fine particles is preferably in the range of 0.1 to 20 g / L from the viewpoint of incorporation into nickel bumps and further from the viewpoint of hardness. The content of the particulate matter is preferably in the range of 0.5 to: 10 g / L. Examples of the fine particles include oxides, carbides, nitrides, borides, silicates, sulfides, synthetic resins, graphite, diamond, and mica. These may be used alone or in combination of two or more. Specific examples of these fine particles are shown below. Oxide -. · Α1 2 0 3, Ti0 2, Ζ r 0 2S Th0 2, Ce0 2, MgO, CaO or the like carbides' SiC, WC ;, TiC, Z r C s B 4 C, CrC 2 , etc.
窒ィ匕物 · · BN、 S i3N4、 A1N等 窒, BN, Si 3 N 4 , A1N, etc.
ホウ化物' ' CrB2、 ZrB2、 TiB、 VB2Borides '' CrB 2 , ZrB 2 , TiB, VB 2 etc.
ケィ化物' · CrSi2、 MoSi2、 WSi2Caides' · CrSi 2 , MoSi 2 , WSi 2 etc.
硫化物 ' 'MoS2、 WS2、 NiS等 Sulfide '' MoS 2 , WS 2 , NiS etc.
硫酸塩' · BaS04、 Sr S04Sulfate salt '· BaS0 4, Sr S0 4, etc.
合成樹脂' ' PTFE、 (CF) n、 フエノール樹脂、 エポキシ樹脂、 ポリアミド 等 Synthetic resin '' PTFE, (CF) n , phenolic resin, epoxy resin, polyamide, etc.
その他' ·グラフアイト、 ダイヤモンド、 シリカファイバ一、 カオリン、 雲母、 ガラス等。 Others' · Graphite, diamond, silica fiber, kaolin, mica, glass, etc.
さらに、 微粒子状物を含有するめつき浴を用いることで、 ニッケルバンプ中に 各々の微粒子を複合共析させて、 種々の物性を付カ卩した均一なバンプを形成する こともできる。 共祈させる微粒子の特性により硬度、 耐磨耗性、 潤滑性、 撥水性 等の異なるバンプを得ることができ、 プローブとしてコンタクト性が安定する。 本発明の二ッケルバンプの形成は、 上記本発明の無電解二ッケルめっき浴に、 被めつき物を所定時間浸漬することにより行う。 無電解二ッケルめつき浴への浸 漬時間と温度は、 無電解ニッケルめっき浴の組成やニッケルバンプの高さ等を考 慮して適宜決定できる。 温度は、 例えば、 60〜95°Cとすることができる。 本発明の上記方法において、 使用できる被めつき物としては、 従来、 無電解二 ッケルめっきが可能であった物品を挙げることができ、そのような物品であれば、 物品の形状や素材には制限はない。被めつき物は、 例えば、 金属製物品でも非電 導性物品でもよい。処理可能な素材としては、 鉄、 銅、 アルミニウムやそれらの 合金材料、 ステンレス、 プラスチックス、 ガラス、 セラミックス等の非電導体に もバンプの形成が可能である。 上記物品の表面に複数の二ヅケルノ ンプを形成し て、 検査用プローブ、 バーンイン試験用プロ一ブ、 バーンイン試験用ソケット、 フリヅプチヅプ接合用ウェハ一、 I Cウェハ一、 L S Iウェハ一等の L S I製品 を作製することができる。 Further, by using a plating bath containing fine particles, each of the fine particles can be co-deposited in a nickel bump to form a uniform bump having various physical properties. Bumps with different hardness, abrasion resistance, lubricity, water repellency, etc. can be obtained depending on the characteristics of the fine particles to be co-prayed, and the contact property as a probe is stabilized. The nickel bump of the present invention is formed by immersing the adherend in the electroless nickel plating bath of the present invention for a predetermined time. The immersion time and temperature in the electroless nickel plating bath can be appropriately determined in consideration of the composition of the electroless nickel plating bath, the height of the nickel bumps, and the like. The temperature can be, for example, 60 to 95 ° C. In the above method of the present invention, examples of the adherend that can be used include an article that has been conventionally capable of electroless nickel plating. No restrictions. The covering object may be, for example, a metal article or a non-conductive article. The bumps can be formed on non-conductors such as iron, copper, aluminum and their alloys, stainless steel, plastics, glass, and ceramics. Forming a plurality of 200 Kernomps on the surface of the article Thus, LSI products such as inspection probes, burn-in test probes, burn-in test sockets, flip-chip bonding wafers, IC wafers, and LSI wafers can be manufactured.
プローブを作製する場合には、 被めつき物は絶縁層と導電層とが積層された積 層体を用いるのが好ましい。  When a probe is manufactured, it is preferable to use a laminated body in which an insulating layer and a conductive layer are stacked as a covering object.
絶縁層としては、 電気絶縁性を有するものであればその材質は特に限定されな いが、 絶縁性と共に可撓性を有するものが好ましく、 具体的にはポリイミド系樹 脂、 ポリエステル系樹脂、 エポキシ系樹脂、 ウレタン系樹脂、 ポリスチレン系樹 脂、 ポリエチレン系樹脂、 ポリアミド系樹脂、 AB S共重合体樹脂、 ポリカーボ ネート系樹脂、 シリコーン系樹脂、 フッ素系樹脂などの熱硬化性樹脂、 又は熱可 塑性樹脂が挙げられる。 これらは目的に応じて適宜選択することができ、 単独で 用いてもよく、 また、 2種以上,組み合わせて用いてもよい。これらの棚旨のうち、 耐熱性、 耐薬品性及び機械的強度に優れ、 加工性等に優れるポリイミ ド系樹脂が 特に好適に使用される。 また、 ポリイミ ドは紫外領域に大きな吸収をもっため、 レーザアブレーシヨン加工に適している。 さらに、 ポリイミドフィルムは柔軟性 が高いので、 積層体上のバンプや被検査体上の接点 (パヅドなど) の高さのバラ ヅキを吸収することもできる。 ポリイミドフィルムの厚さは任意に選択すること ができるが、 バンプホールの形成性の点からは通常 5〜2 0 0 m程度が好まし く、 1 0〜5 0〃mがより好ましい。  The material of the insulating layer is not particularly limited as long as it has electrical insulating properties. However, a material having flexibility as well as insulating properties is preferable. Specifically, polyimide resin, polyester resin, epoxy resin Thermosetting resin such as resin, urethane resin, polystyrene resin, polyethylene resin, polyamide resin, ABS copolymer resin, polycarbonate resin, silicone resin, fluorine resin, etc., or thermoplastic Resins. These can be appropriately selected according to the purpose, and may be used alone or in combination of two or more. Among these, a polyimide resin having excellent heat resistance, chemical resistance and mechanical strength and excellent workability is particularly preferably used. Polyimide has a large absorption in the ultraviolet region and is suitable for laser ablation processing. Furthermore, since the polyimide film has high flexibility, it can absorb variations in the height of bumps on the laminate and contacts (pads, etc.) on the device under test. Although the thickness of the polyimide film can be arbitrarily selected, it is usually preferably about 5 to 200 m, more preferably 10 to 50 m, from the viewpoint of forming bump holes.
導電層としては、 導電性を有するものであれば特に限定されない。 例えば銅、 ニッケル、 クロム、 アルミニウム、 金、 白金、 コバルト、 銀、 錫、 インジウム、 ロジウム、 タングステン、 ルテニウム、 鉄などの単独金属、 又はこれらを成分と する各種合金、 例えば、 ニッケル一錫、 金一コバルトなどが挙げられる。 導電層 は、上記各金属の層からなる単層構造であつてもよく、積層構造であつてもよい。 例えば、 絶縁性フィルム側から、 C rや N iなどの下地膜、 C u膜、 N iflls A u膜を順次積層した積層構造とすることができる。 この場合、 C r下地膜は、 ポ リイミドフィルムなどの絶縁性フィルムとの付着性を向上させるので、 好適であ る。 また、 N i下地膜は、 ポリイミドフィルムなどの絶縁性基材との付着性を向 上させるので、 好適である。 C u膜は導電層の主体となる。 N i膜は、 導電層の 最表面に Au層を形成するための中間層としての役割があり、 又、 導電層の機械 的強度を向上させる目的で形成される。 AuJ!奠は、 導電層表面の酸化防止及び、 接触抵抗を下げる目的で形成される。 なお、 Au膜の代わりに、 金—コバルト合 金、 ロジウム、 パラジウムなどを用いることができ、 特に金—コバルト合金はパ ヅ ドの機械的強度が大きい。 The conductive layer is not particularly limited as long as it has conductivity. For example, single metals such as copper, nickel, chromium, aluminum, gold, platinum, cobalt, silver, tin, indium, rhodium, tungsten, ruthenium, and iron, or various alloys containing these as components, for example, nickel-tin, gold-tin Cobalt and the like. The conductive layer may have a single-layer structure composed of the above-described metal layers, or may have a laminated structure. For example, from the insulating film side, a base film such as Cr or Ni, a Cu film, a Niflls A A laminated structure in which u films are sequentially laminated can be employed. In this case, the Cr underlayer is suitable because it improves the adhesion to an insulating film such as a polyimide film. In addition, a Ni base film is preferable because it improves the adhesion to an insulating substrate such as a polyimide film. The Cu film becomes a main component of the conductive layer. The Ni film has a role as an intermediate layer for forming an Au layer on the outermost surface of the conductive layer, and is formed for the purpose of improving the mechanical strength of the conductive layer. AuJ! Dian is formed for the purpose of preventing oxidation of the conductive layer surface and reducing the contact resistance. Instead of the Au film, gold-cobalt alloy, rhodium, palladium or the like can be used. In particular, a gold-cobalt alloy has high mechanical strength of the pad.
これらの導電性金属膜の形成方法としては、 スパヅ夕法や蒸着法などの成膜方 法や、無電解めつき、電解めつき等のめっき法等を利用することができる。なお、 C u膜上の N i膜や Au膜などは、 機械的強度が要求され、 比較的厚膜である必 要性から、 めっき法(無電解めつき、 電解めつき) で形成することが望ましい。 また、 スパヅ夕法とめっき法との組み合わせにより形成することができる。例え ば、スパッ夕法で薄く膜を付けた後、めっきにより厚く膜をつけることができる。 導電層の厚さは特に限定されず、 適宜設定することができるが、 一般的には、 3 〜3 0 mである。  As a method for forming these conductive metal films, a film forming method such as a sputtering method or a vapor deposition method, or a plating method such as electroless plating or electrolytic plating can be used. Ni and Au films on Cu film must be formed by plating (electroless plating or electrolytic plating) because mechanical strength is required and the film must be relatively thick. Is desirable. Further, it can be formed by a combination of a spa method and a plating method. For example, after a thin film is formed by a sputtering method, a thick film can be formed by plating. The thickness of the conductive layer is not particularly limited and can be appropriately set, but is generally 3 to 30 m.
さらに、 絶縁層の全面に形成した導電層をパ夕一ニングすることによって、 絶 縁層上に孤立電極 (パヅ ドなど) や配線を形成できる。例えば、 絶縁層の全面に 形成した導電膜上にレジストパ夕一ンを形成した後、 露出している導電層をエツ チングして、 所望の孤立電極又は配線パターンを得る。 なお、 絶縁層上に配線を 形成すると柔軟性が悪くなるが、 孤立電極を形成した場合は柔軟性に影響を与え ない。孤立電極又は配線は、 絶縁層上に直接形成することもできる。 例えば、 孤 立電極又は配線を形成する部分以外の部分をマスキングしておき、 スパッタリン グ、 各種蒸着、 各種めつきなどの成膜方法を用いて成膜を行うことで、 マスキン グされていない部分に孤立電極又は配線を直接形成することができる。 また、 孤 立電極又は配線は、 ディスペンサーを用いて、 又は印刷法などによって、 直接描 画し、 形成することもできる。 なお、 この場合には、 孤立電極又は配線を導電層 (電極) としてバンプを形成する。 Further, by conducting a conductive layer formed on the entire surface of the insulating layer, isolated electrodes (such as pads) and wiring can be formed on the insulating layer. For example, after forming a resist pattern on a conductive film formed over the entire surface of the insulating layer, the exposed conductive layer is etched to obtain a desired isolated electrode or wiring pattern. Note that the flexibility deteriorates when wiring is formed on the insulating layer, but the flexibility is not affected when isolated electrodes are formed. The isolated electrode or wiring can be formed directly on the insulating layer. For example, masking the parts other than the parts where the isolated electrodes or wirings are formed, and forming the mask by using a film forming method such as sputtering, various kinds of vapor deposition, and various kinds of plating. An isolated electrode or a wiring can be directly formed in a part which is not patterned. In addition, the isolated electrode or the wiring can be directly drawn and formed by using a dispenser or by a printing method. In this case, a bump is formed using the isolated electrode or the wiring as a conductive layer (electrode).
上記積層体にニッケルバンプを形成する場合には、 一般に、 上記絶縁層にバン プホールを形成する。バンプホ一ルの形成方法としては、例えば、 レーザ一加工、 リソグラフィ一法(エッチング法を含む)、 プラズマ加工、 光加工、機械加工等が 挙げられるが、 微細加工性、 加工形状の自由度、 加工精度などの点からレーザ一 加工が好ましい。 レーザー加工の場合、 照射するレーザ一光としては、 照射出力 の大きなエキシマレ一ザ一、 C 02レーザー、 Y A Gレーザ一等が好ましく、 な かでもエキシマレ一ザ一を用いたレーザアブレ一シヨンによる加工法は、 熱によ るポリイミドフィルムの溶融等が少なく、 高アスペクト比が得られ、 精緻微細な 穿孔加工ができるので特に好ましい。 レーザ一加工の場合、 スポットを絞ったレ —ザ一光をポリイミドフィルムの表面に照射してバンプホールを形成する。 他の 場合、 レジストパターン等をマスクとして、 酸素やフッ化物ガスを含有する雰囲 気中のプラズマエッチングや、 R I E (反応性イオンエッチング) 等のドライエ ヅチング、 あるいはスパヅ夕エッチングなどを施して、 バンプホールを形成する ことができる。 また、 所望の孔形状 (丸形、 四角形、 菱形など) の孔が形成され たマスクをポリイミドフィルムの導電層が積層されていない側の表面に密着させ、 マスクの上からエッチング処理して、 バンプホールを形成することもできる。 ノ ンプホールの孔径は、 通常の場合 5〜2 0 0〃m、 好ましくは 2 0〜 5 0〃 m程 度がよい。ハンダボ一ル対応のバンプを形成する場合は、バンプホールの孔径は、 ハンダボ一ルの径と同程度 (3 0 0〜1 0 0 0〃m程度) がよい。 When a nickel bump is formed on the laminate, a bump hole is generally formed on the insulating layer. Examples of the method for forming the bump hole include laser processing, lithography (including the etching method), plasma processing, optical processing, and mechanical processing. Laser processing is preferable in terms of accuracy and the like. For laser processing, the laser first light to be irradiated, a large excimer one The one radiation output, C 0 2 laser is preferably a YAG laser, First, processing method according Rezaabure one Chillon using excimer one The one in name or Is particularly preferable because the polyimide film is less likely to be melted by heat, a high aspect ratio is obtained, and a fine and fine perforation process can be performed. In the case of laser processing, a laser beam with a narrowed spot is irradiated on the surface of the polyimide film to form a bump hole. In other cases, using a resist pattern or the like as a mask, plasma etching in an atmosphere containing oxygen or fluoride gas, dry etching such as RIE (reactive ion etching), or sputter etching is performed, and bumps are formed. Holes can be formed. Also, a mask having holes of a desired hole shape (round, square, rhombus, etc.) is adhered to the surface of the polyimide film on the side where the conductive layer is not laminated, and etching is performed from above the mask to form a bump. Holes can also be formed. The diameter of the bump hole is usually 5 to 200 m, preferably about 20 to 50 m. When a bump corresponding to the solder ball is formed, the hole diameter of the bump hole is preferably about the same as the diameter of the solder ball (about 300 to 100 μm).
また、 形成したニッケルバンプの表面には、 必要に応じて、 種々の金属被膜を 形成してもよい。 例えば、 ニッケルバンプ表面の硬度向上や、 バーンインテスト におけるマイグレーションによるニヅケルノ ンプの汚染防止等の目的で、 ニヅケ ルバンプ表面に Au、 Au— Co、 Rh、 Pt、 Pd、 A g等またはこれらの金 属成分を主とする合金等の金属被膜を形成してもよい。 この金属被膜は単層であ つても多層であってもよい。 Various metal coatings may be formed on the surface of the formed nickel bumps as necessary. For example, improving the hardness of the nickel bump surface, burn-in test For the purpose of preventing contamination of Nikernomp due to migration in Nikko bumps, a metal coating such as Au, Au-Co, Rh, Pt, Pd, Ag, or an alloy mainly composed of these metal components is formed on the Ni bump surface. You may. The metal coating may be a single layer or a multilayer.
ニッケルバンプの高さ (h)は特に限定されるものではないが、 l〃m〜10 0〃m程度とするのが好ましい。 より好ましくは、 5~30 mである。 また、 ニッケルバンプのアスペクト比 (hZr) は、 0. 6以上であるのが好ましく、 より好ましくは 0. 7〜1. 0である。 ニッケルバンプと基板との接着性の観点 から、 バンプホールの半径 (1)とニッケルバンプの半径(r) との比 r/1は、 0. 5〜5であることが好ましい。 より好ましくは、 1〜3である。 ただし、 こ れらの値はノ ンプ形状の呼び寸法であって、 同一の基板上に形成されるニヅケル バンプのこれらの値がどのような呼び寸法であっても、 そのばらつきはゼロであ ることが理想である。 本発明の方法により、 被めつき物上に形成された複数の二 ヅケルバンプは、 その高さの平均を 1 ζπ!〜 100 m程度とすることができ、 さらに本発明の無電解ニッケルめっき浴の組成を調整することにより、 高さの平 均を 5〜30 mにすることができる。 また、 その高さの標準偏差を 0. 7以下 とすることができ、 さらに本発明の無電解二ヅケルめつき浴の組成を調整するこ とにより、 高さの標準偏差を 0. 5以下にすることができる。 さらに、 本発明の 方法により、 被めつき物上に形成された複数のニッケルバンプは、 そのァスぺク ト比の平均を 0. 6以上とすることができ、 さらに本発明の無電解ニッケルめつ き浴の組成を調整することにより、 アスペクト比の平均を 0. 7〜1. 0にする ことができる。 また、 そのアスペクト比の標準偏差を 0. 07以下とすることが でき、 さらに本発明の無電解二ヅケルめっき浴の組成を調整することにより、 ァ スぺクト比の標準偏差を 0. 04以下にすることができる。  The height (h) of the nickel bump is not particularly limited, but is preferably about lm to 100m. More preferably, it is 5 to 30 m. Further, the aspect ratio (hZr) of the nickel bump is preferably 0.6 or more, more preferably 0.7 to 1.0. From the viewpoint of adhesion between the nickel bump and the substrate, the ratio r / 1 between the radius (1) of the bump hole and the radius (r) of the nickel bump is preferably 0.5 to 5. More preferably, it is 1-3. However, these values are the nominal size of the bump shape, and no matter what the nominal size of the nickel bumps formed on the same substrate, the variation is zero. That is ideal. According to the method of the present invention, the plurality of nickel bumps formed on the covering object have an average height of 1ζπ! The average height can be adjusted to 5 to 30 m by adjusting the composition of the electroless nickel plating bath of the present invention. The standard deviation of the height can be set to 0.7 or less, and the standard deviation of the height can be set to 0.5 or less by adjusting the composition of the electroless nickel plating bath of the present invention. can do. Further, according to the method of the present invention, the plurality of nickel bumps formed on the adherend can have an average of the aspect ratio of 0.6 or more. The average aspect ratio can be adjusted to 0.7 to 1.0 by adjusting the composition of the plating bath. Further, the standard deviation of the aspect ratio can be made 0.07 or less, and the standard deviation of the aspect ratio can be made 0.04 or less by adjusting the composition of the electroless nickel plating bath of the present invention. Can be
ニッケルバンプの高さやアスペクト比等の値は、 超深度形状測定顕微鏡、 触針 段差計、 光学顕微鏡又は走査型電子顕微鏡等を用いてニッケルバンプの形状を決 定し、 この形状から求めることができる。 なお、 本明細書において使用するパラ メ一夕は、 図 1に示すように定義される。 The values of nickel bump height, aspect ratio, etc. The shape of the nickel bump can be determined using a step gauge, an optical microscope, a scanning electron microscope, or the like, and the nickel bump can be determined from this shape. The parameters used in this specification are defined as shown in FIG.
ニッケルバンプの高さの平均 Xと標準偏差 sは、 例えば、 n個のニッケルバン プを有する形成物において、 各ニッケルバンプの高さが yい y2、■ · · · ynで ある場合、 下記式で求めることができる。 If the average X and the standard deviation s of the height of the nickel bumps, for example, in formations having n nickel van flop, height have y y 2 of each nickel bump, a ■ · · · y n, It can be obtained by the following equation.
平均 x= (yx + y2+ · · · +yn) /n Average x = (y x + y 2 + ... + y n ) / n
標準偏差 s= {(yi-x) 2+ (y2-x) 2+ · · · + (yn-x) 2/n} 1/2 ニッケルバンプのァスぺクト比についても、 同様に求めることができる。 なお、 ニッケルバンプの断面形状は円形に限られず、 楕円形、 三角形、 四角形 等の任意の形状であってもよい。 ニッケルバンプの断面形状が円形でない場合、 上記半径 rは、 該ニッケルバンプの断面積と同一面積を有する円形の半径として £我される。 The standard deviation s = {(yi -x) 2 + (y 2 -x) 2 + · · · + (y n -x) 2 / n} For even § scan Bae transfected ratio of 1/2 nickel bump, similarly You can ask. The cross-sectional shape of the nickel bump is not limited to a circle, but may be an arbitrary shape such as an ellipse, a triangle, and a rectangle. When the cross-sectional shape of the nickel bump is not circular, the radius r is calculated as a radius of a circle having the same area as the cross-sectional area of the nickel bump.
[実施例]  [Example]
銅箔 (8〃m) にポリイミドフィルム (12. 5 m) が貼り合わされた積層 シートに、 ポリイミドフィルム側からバンプ接点を形成する位置にエキシマレ一 ザ一を用いて 1600個のビアホールを縦横 30 X 65 mmの範囲に形成し、 各 ビアホールの底面に銅面を露出させた。 各ビアホールの底面直径は 25〃m、 ビ ァホール上部直径 (21) は 29〃mであった。  On a laminated sheet composed of copper foil (8〃m) and polyimide film (12.5 m) bonded, 1600 via holes were formed by using an excimer laser at the positions where bump contacts were to be formed from the polyimide film side. A copper surface was exposed at the bottom of each via hole. The bottom diameter of each via hole was 25 m, and the top diameter of the via hole (21) was 29 m.
次に、 レーザー加工済みの積層シ一トを無電解めつき用冶具にセットし、 下記 の前処理を実施して、 無電解めつきを行った。  Next, the laser-processed laminated sheet was set in a jig for electroless plating, and the following pretreatment was performed to perform electroless plating.
瞧理: I  Processing: I
(1) アルカリ脱脂: 50°C、 5分  (1) Alkaline degreasing: 50 ° C, 5 minutes
( 2 )水洗  (2) Wash
(3)過マンガン酸処理: 70°C;、 4分 (4)水洗 (3) Permanganate treatment: 70 ° C; 4 minutes (4) Rinse with water
(5)還元処理: 40。C、 4分  (5) Reduction treatment: 40. C, 4 minutes
( 6 )水洗  (6) Wash
(7) 活性化処理: 25°C、 1分  (7) Activation: 25 ° C, 1 minute
( 8 )水洗  (8) Wash
[無電解ニッケルめっき]  [Electroless nickel plating]
無電解ニッケルめっき液として、 高リンタイプ、 中リンタイプ、 N i-P-B タイプを下記の組成で調整し、 各種異方成長促進剤を適量添加した。 この液をス テンレス製めつきタンク中で加熱し、 前処理の終了したレ一ザ一加工済み積層シ —トを浸潰した。 めっき時間は、 バンプ高さが、 約 20 zmになるように調整し た。  As the electroless nickel plating solution, high phosphorus type, medium phosphorus type, and Ni-P-B type were adjusted with the following composition, and various anisotropic growth promoters were added in appropriate amounts. This solution was heated in a stainless steel plating tank to crush the pre-treated laser-processed laminated sheet. The plating time was adjusted so that the bump height was about 20 zm.
[ニッケルバンプの靜価] .  [Static value of nickel bump].
所定時間浸漬された積層シ一トには 1600個のビアホールにニッケルバンプ が生成し、 その形状 (バンプ高さ、 バンプ幅) を超深度形状測定顕微鏡 (VK- 8550 :㈱キ一エンス社製) で測定して評価した。 測定箇所は 1600個のバ ンプ中の 20ケ所を縦横 30 x 65 mmの範囲の中から満遍なく抽出し、 その平 均値と標準偏差を示した。  Nickel bumps were formed in 1600 via holes in the laminated sheet immersed for a predetermined time, and the shape (bump height, bump width) was measured using an ultra-depth shape measurement microscope (VK-8550: manufactured by Keyence Corporation). Was measured and evaluated. As for the measurement points, 20 points out of 1600 bumps were evenly extracted from a range of 30 x 65 mm in length and width, and the average value and standard deviation were shown.
なお、 異方性評価は、 下記の式に従って算出した。  The anisotropy evaluation was calculated according to the following equation.
h=バンプ高さ (〃m)  h = bump height (〃m)
r =バンプ幅 (jam) /2  r = bump width (jam) / 2
ァスぺクト比 = h/r  Aspect ratio = h / r
[実施例 1] Ni— P— Bタイプめつき液  [Example 1] Ni—P—B type plating liquid
下記の各組成を有する無電解ニッケルめつき液を調整した。  Electroless nickel plating solutions having the following compositions were prepared.
硫酸二ヅケル 25 g/L Sulfuric acid sulfate 25 g / L
次亜リン酸ナトリウム 30 g/L ジメチルァミノボラン lg/L Sodium hypophosphite 30 g / L Dimethylaminoborane lg / L
プロピオン酸 25g/L Propionic acid 25g / L
クェン酸 15g/L Cuic acid 15g / L
チォグリコール酸 3 Omg/L Thioglycolic acid 3 Omg / L
硝酸鉛 lmg/L (鉛イオンとして) Lead nitrate lmg / L (as lead ion)
pH 6. 4 pH 6.4
84°C  84 ° C
このめつき液に異方成長促進剤のャヌスグリーン Bを 0〜 2 m g/ L添カロし、 バンプ高さが約 20 mになるようにめつき時間を調整してニッケルバンプを形 成した。  Nickel bumps were formed by adding 0 to 2 mg / L of calories to Janus Green B, an anisotropic growth promoter, and adjusting the plating time so that the bump height was about 20 m.
ニッケルバンプの高さ .幅■ァスぺクト比の平均値の変化を図 2に示す。 また、 図 3には、 ャヌスグリーン Bを添加しないめつき液及びャヌスグリーン Bを 0. 5 m gZ L添加しためっき液を用いて形成したバンブの断面プロフアイルを超深 度形状測定顕微鏡で測定した結果を示す。 図 2及び 3から明らかなように、 ャヌ スグリーン Bの添加量が 0. lmg/L未満では、 アスペクト比 =0. 57、 r /1=2. 4であり、 バンプ頂点も平らであった。 また、 ャヌスグリーン Bの添 加量が 0. 1〜; Lmg/Lでは、 アスペクト比 =0. 60以上、 r/l = 2. 3 以下であり、 バンプ頂点が凸状になり、 ドーム形状の二ヅケルバンプが形成され た。 また、 バンプ高さの標準偏差は 0. 21〜0. 32、 アスペクト比の標準偏 差は 0. 01〜0. 03であり、 ともにバラヅキが少なかった。 なお、 ャヌスグ リーン Bの添加量が lmg/Lを超える場合には、 めっき速度が遅くなり、 4時 間以上めつきしてもニッケルバンプ高さは 1 / m以下であつた。 ニッケルバンプ について測定したパラメ一夕を表 1に示す。  Figure 2 shows the change in the average value of the height / width ratio of the nickel bumps. Fig. 3 shows the results of measuring the cross-sectional profile of the bump formed using the plating solution without Janus Green B and the plating solution with Janus Green B added at 0.5 mg gL using an ultra-deep profilometer. Is shown. As is clear from Figs. 2 and 3, when the addition amount of tan green B is less than 0.1 mg / L, the aspect ratio = 0.57, r / 1 = 2.4, and the bump apex is flat. Was. In addition, when the addition amount of Janus Green B is 0.1 to; Lmg / L, the aspect ratio is 0.60 or more and r / l = 2.3 or less, the bump apex becomes convex, and the dome-shapedヅ kel bumps were formed. The standard deviation of the bump height was 0.21 to 0.32, and the standard deviation of the aspect ratio was 0.01 to 0.03. In addition, when the addition amount of Janus Green B exceeded lmg / L, the plating rate was slow, and the nickel bump height was 1 / m or less even if the plating was performed for 4 hours or more. Table 1 shows the parameters measured for nickel bumps.
6 ャヌスグリ一 6 Janus currant
高さ h 幅 ァスぺクト 高さの ァスぺクト比の ン Bの添加量 r/1  Height h Width Aspect Ratio of height aspect ratio B addition amount r / 1
(^m) (^m) 比 h/r 標準偏差 標準偏差 (mg/L)  (^ m) (^ m) Ratio h / r Standard deviation Standard deviation (mg / L)
0 20 35 2.4 0.57 0.20 0.01  0 20 35 2.4 0.57 0.20 0.01
0.1 20.5 34 2.3 0.60 0.25 0.01  0.1 20.5 34 2.3 0.60 0.25 0.01
0.25 20.6 31.5 2.2 0.65 0.21 0.02  0.25 20.6 31.5 2.2 0.65 0.21 0.02
0.5 21 29 2.0 0.72 0.23 0.01  0.5 21 29 2.0 0.72 0.23 0.01
0.75 20.6 27.5 1.9 0.75 0.27 0.03  0.75 20.6 27.5 1.9 0.75 0.27 0.03
1 20.3 25 1.7 0.81 0.32 0.02 なお、 ニッケルバンプの硬度は、 Hv 750であった。  1 20.3 25 1.7 0.81 0.32 0.02 The hardness of the nickel bump was Hv 750.
0. 1〜 1 m g/Lのャヌスグリーン Βを添加しためっき液から形成した異方 成長ノ ^ンプを半導体検査用プローブに使用した場合、 ) ンプ形状がドーム状であ り、 且つ、 高さバラツキが少ない為、 1600個のバンプの全てが安定したコン タクト特性を発揮した。 When an anisotropic growth pump formed from a plating solution containing 0.1 to 1 mg / L of Janus Green Β is used for a semiconductor inspection probe, the pump shape is a dome shape and the height varies. As a result, all of the 1600 bumps exhibited stable contact characteristics.
[実施例 2 ]高リンタイプめつき液  [Example 2] High phosphorus type plating liquid
下記の各組成を有する無電解ニッケルめっき液を調整した。  Electroless nickel plating solutions having the following compositions were prepared.
硫酸ニッケル 25g/L Nickel sulfate 25g / L
次亜リン酸ナトリウム 30 g/L Sodium hypophosphite 30 g / L
リンゴ酸 2 Og/L  Malic acid 2 Og / L
コハク酸ナトリウム 15 g/L Sodium succinate 15 g / L
pH 5. 8 pH 5.8
温度 80°C このめつき液に異方成長促進剤の酢酸鉛を Pb2 +として 0. 0 l〜4mgZL 添加し、 バンプ高さが約 20〃mになるようにめつき時間を調整してニッケルバ ンプを形成した。 Temperature 80 ° C Add lead liquor, an anisotropic growth promoter, as Pb 2 + from 0.01 to 4 mgZL to this plating solution, and adjust the plating time so that the bump height is about 20 m. A nickel bump was formed.
ニッケルバンプの高さ ·幅 ·ァスぺクト比の平均値の変化を図 4に示す。 図 4 から明らかなように、 ; Pb2+の添加量が lmg/L未満では、 アスペクト比 =0. 59、 r/l = 2. 4であった。 また、 バンプ頂点も平らであった。 Pb2+の添 加量が 1〜3. 5mg/Lでは、 アスペクト比 =0. 62以上、 r/l = 2. 2 以下であった。 また、 バンプ頂点が凸状になり、 ドーム形状のニッケルバンプが 形成された。 また、 バンプ高さの標準偏差は 0. 21〜0. 35であり、 ァスぺ クト比の標準偏差は 0. 0 1〜0. 03であり、 ともにバラヅキが少なかった。 なお、 Pb2+の添加量が 3. 5mgZLを超える場合には、 めっき反応が進行せ ずノ ンプの成長は見られなかった。 ニッケルバンプにっレ、て測定したパラメ一夕 を表 2に示す。 表 2 Figure 4 shows the changes in the average value of the height, width and aspect ratio of the nickel bumps. As is evident from Fig. 4, when the added amount of Pb 2+ is less than lmg / L, the aspect ratio = 0. 59, r / l = 2.4. The bump apex was also flat. When the added amount of Pb 2+ was 1 to 3.5 mg / L, the aspect ratio was 0.62 or more and r / l was 2.2 or less. Also, the bump apex became convex, and a dome-shaped nickel bump was formed. The standard deviation of the bump height was 0.21 to 0.35, and the standard deviation of the aspect ratio was 0.01 to 0.03. When the added amount of Pb 2+ exceeded 3.5 mg ZL, the plating reaction did not proceed, and no growth of the pump was observed. Table 2 shows the parameters measured with nickel bumps. Table 2
Figure imgf000020_0001
なお、 ニッケルバンプの硬度は Hv 530であった。
Figure imgf000020_0001
The hardness of the nickel bump was Hv 530.
1〜3. 5 mg/Lの Pb2 +を添加しためっき液から形成した異方成長バンプ を半導体検査用プローブに使用した場合、 バンプ形状がドーム状であり、 且つ、 高さバラヅキが少ない為、 1600個のバンプの全てが安定したコンタクト特性 を発揮した。 When an anisotropically grown bump formed from a plating solution containing 1 to 3.5 mg / L of Pb 2 + is used for a semiconductor inspection probe, the bump shape is a dome shape and the height variation is small. All of the 1600 bumps exhibited stable contact characteristics.
[実施例 3] 中リンタイプめつき液  [Example 3] Medium phosphorus type plating liquid
下記の各組成を有する無電解ニッケルめっき液を調整した。  Electroless nickel plating solutions having the following compositions were prepared.
硫酸ニッケル 25 g/L Nickel sulfate 25 g / L
次亜リン酸ナトリウム 30 g/L 25g/L Sodium hypophosphite 30 g / L 25g / L
5 /L  5 / L
2 Omg/L  2 Omg / L
0. 8mg/L (鉛イオンとして)  0.8mg / L (as lead ion)
4. 6  4.6
90°C  90 ° C
このめつき液に異方成長促進剤のチォ尿素を 0. 01〜4mg/L添加し、 バ ンプ高さが約 20〃 mになるようにめつき時間を調整してニヅケルノ ンプを形成 した。  To this plating solution, thiourea, an anisotropic growth promoter, was added in an amount of 0.01 to 4 mg / L, and the plating time was adjusted so that the bump height was about 20 m, thereby forming a Nikernomp.
ニッケルバンプの高さ ·幅 ·ァスぺクト比の平均値の変化を図 5に示す。 図 5 から明らかなように、 チォ尿素の添加量が lmg/L未満では、 アスペクト比 = 0. 58、 r/l = 2. 4であった。 また、 バンプ頂点も平らであった。 また、 チォ尿素の添加量が l〜3mgZLでは、 ァスぺク小比 =0. 60以上、 r/l =2. 3以下であった。 また、 バンプ頂点が凸状になりドーム形状のニヅケルバ ンプが形成された。 また、 バンプの高さの標準偏差は 0. 24~0. 35であり、 アスペクト比の標準偏差は 0. 01〜0. 03であり、 ともにバラヅキが少なか つた。 なお、 チォ尿素の添加量が 3m g/L以上では、 めっき反応が進行せずバ ンプの成長は見られなかった。 ニッケルバンプについて測定したパラメ一夕を表 に 9  Figure 5 shows the changes in the average values of the height, width and aspect ratio of the nickel bumps. As is evident from Fig. 5, when the amount of thiourea added was less than lmg / L, the aspect ratio was 0.58 and r / l was 2.4. The bump apex was also flat. In addition, when the amount of thiourea added was 1 to 3 mg ZL, the small disk ratio was 0.60 or more and r / l was 2.3 or less. In addition, the bump vertices became convex, and a dome-shaped nickel bump was formed. The standard deviation of the bump height was 0.24 to 0.35, and the standard deviation of the aspect ratio was 0.01 to 0.03, both of which showed little variation. When the amount of thiourea added was 3 mg / L or more, the plating reaction did not proceed and no bump growth was observed. Table 9 shows the parameters measured for nickel bumps.
9 表 3 9 Table 3
Figure imgf000022_0001
なお、 ニッケルバンプの硬度は、 Hv 570であった。
Figure imgf000022_0001
The hardness of the nickel bumps was Hv 570.
l~3mg/Lのチォ尿素を添加しためつき液から形成した異方成長ノ ンプを 半導体検査用プローブに使用した場合、 バンプ形状がドーム状であり、 且つ、 高 さバラツキが少ない為、 1600個のバンプの全てが安定したコンタクト特性を 発揮した。  When an anisotropic growth pump formed from a drip solution with l ~ 3mg / L thiourea added is used for a semiconductor inspection probe, the bump shape is dome-shaped and the height variation is small. All of the bumps exhibited stable contact characteristics.
[実施例 4] Ni— P— Bタイプめつき液  [Example 4] Ni—P—B type plating liquid
実施例 1の無電解二ヅケルめつき液に、 異方成長促進剤のポリエチレングリコ —ル 1000を 2 OmgZL添カロし、 バンプ高さが約 20 zmになるようにめつ き時間を調整してニッケルバンプを形成した。 その結果、 ニッケルバンプの高さ は 20. 5〃m、 直径 57/ m、 アスペクト比 =0. 72、 r/l = 2. 0であ り、 バンプ頂点が凸状のドーム形状のニッケルバンプが形成された。 また、 バン プ高さの標準偏差は 0. 26であり、 アスペクト比の標準偏差は 0. 03であり、 ともにバラヅキが少なかった。  To the electroless nickel plating solution of Example 1, 2 OmgZL of polyethylene glycol 1000 as an anisotropic growth promoter was added and the plating time was adjusted so that the bump height was about 20 zm. A nickel bump was formed. As a result, the height of the nickel bumps was 20.5〃m, the diameter was 57 / m, the aspect ratio was 0.72, and r / l was 2.0. Been formed. The standard deviation of the bump height was 0.26, and the standard deviation of the aspect ratio was 0.03.
比較として、 実施例 1の無電解二ヅケルめつき液にポリエチレングリコール 3 00を 2 Omg/L添カロし、 バンプ高さが約 20〃mになるようにめつき時間を 調整してニッケルバンプを形成したが、 バンプ形状のアスペクト比 =0. 58、 r/1 =2. 4であり、 頂点が平らなバンプ形状であった。  As a comparison, a nickel bump was prepared by adding 2 Omg / L of polyethylene glycol 300 to the electroless nickel plating solution of Example 1 and adjusting the plating time so that the bump height was about 20 μm. It was formed, but the aspect ratio of the bump shape was 0.58, r / 1 = 2.4, and the bump shape was a flat top.
2 Omg/Lのポリエチレングリコール 1000を添加しためっき液から形成 した異方成長バンプを半導体検査用プローブに使用した場合、 バンプ形状がドー ム状であり、 且つ、 高さパラツキが少ない為、 1600個のバンプの全てが安定 したコンタクト特性を発揮した。 なお、 実施例 1及び 4の高硬度の Ni— P— B バンプは耐久性においても非常に優れていた。 2 Formed from plating solution with Omg / L polyethylene glycol 1000 added When the anisotropically grown bump was used for a semiconductor inspection probe, the bump shape was a dome shape and the height variation was small, so that all 1600 bumps exhibited stable contact characteristics. The high hardness Ni—P—B bumps of Examples 1 and 4 were also extremely excellent in durability.
[実施例 5] Ni— P— Bタイプめつき液 実施例 1の無電解二ヅケルめつき液に、 等方成長促進剤のプロパギルアルコ一 ルを 0. l〜8mg/L添加し、 バンプ高さが約 20〃mになるようにめつき時 間を調整してニヅケルノ ンプを形成した。  [Example 5] Ni—P—B type plating solution To the electroless nickel plating solution of Example 1, 0.1 to 8 mg / L of propagyl alcohol, an isotropic growth promoter, was added. The Nikernomp was formed by adjusting the plating time so that the height was about 20 m.
二ヅケルバンプの高さ ·幅 ·ァスぺクト比の平均値の変化を図 6に示す。 図 6 から明らかなように、 プロパギルアルコールの添加量が 0. l〜8mg/Lで、 アスペクト比 =0. 6以上、 r 1 = 2. 3以下であった。 また、 バンプ頂点が 凸状のドーム形状のニッケルバンプが形成された。 また、 バンプの高さの標準偏 差は 0. 22〜0. 29であり、 アスペクト比の標準偏差は 0. 02〜0. 03 であり、 ともにパラツキが少なかった。 ニッケルバンプについて測定したパラメ —夕を表 4に示す。  Figure 6 shows the changes in the average height, width and aspect ratio of the nickel bump. As is clear from Fig. 6, the propargyl alcohol content was 0.1 to 8 mg / L, the aspect ratio was 0.6 or more, and r 1 was 2.3 or less. In addition, a dome-shaped nickel bump having a convex bump apex was formed. The standard deviation of the bump height was 0.22 to 0.29, and the standard deviation of the aspect ratio was 0.02 to 0.03. Table 4 shows the parameters measured for nickel bumps.
表 4 Table 4
プロパギルアル  Propagiral
高さ h 幅 ァスぺクト 高さの ァスぺクト比 コールの添加量 r/1  Height h Width Aspect Ratio of height Amount of coal addition r / 1
(^m) (^m) 比 h/r の標準偏差 (^ m) (^ m) Standard deviation of ratio h / r
(mg/L) (mg / L)
0.1 20.7 32.8 2.3 0.63 0.22 0.03 0.1 20.7 32.8 2.3 0.63 0.22 0.03
1.0 19.8 31.1 2.1 0.64 0.25 0.031.0 19.8 31.1 2.1 0.64 0.25 0.03
3.0 20.5 30.3 2.1 0.68 0.28 0.023.0 20.5 30.3 2.1 0.68 0.28 0.02
5.0 20.2 22.8 1.6 0.89 0.24 0.025.0 20.2 22.8 1.6 0.89 0.24 0.02
8.0 20.5 22.9 1.6 0.90 0.29 0.03 8.0 20.5 22.9 1.6 0.90 0.29 0.03

Claims

請求の範囲 The scope of the claims
1 . 異方成長促進効果を有する量の異方成長促進剤を含有することを特 徴とする異方成長バンプ形成用無電解二ヅケルめつき浴。 1. An electroless nickel plating bath for forming an anisotropic growth bump, comprising an anisotropic growth promoting agent in an amount having an anisotropic growth promoting effect.
2 . 異方成長促進剤が、 2. The anisotropic growth promoter is
1 ) 鉛、 ビスマス、 アンチモン、 テルル及び銅イオンからなる群から選択される 少なくとも 1種の金属ィォン、  1) at least one metal ion selected from the group consisting of lead, bismuth, antimony, tellurium and copper ions;
2 ) 硫黄化合物、  2) sulfur compounds,
3 ) 含窒素化合物、  3) nitrogen-containing compounds,
4 ) ポリエチレングリコール、 及び  4) polyethylene glycol, and
5 ) アセチレン系アルコール  5) Acetylene alcohol
からなる群から選択される少なくとも 1つを含有する、 請求の範囲第 1項に記載 の無電解二ヅケルめつき浴。 The electroless nickel plating bath according to claim 1, comprising at least one selected from the group consisting of:
3 . 請求の範囲第 1項又は第 2項に記載の無電解ニッケルめっき浴に被 めっき物を浸漬する工程を含む異方成長バンプを有する物品の形成方法。 3. A method for forming an article having anisotropically grown bumps, comprising a step of immersing an object to be plated in the electroless nickel plating bath according to claim 1 or 2.
4 . 請求の範囲第 3項に記載の形成方法により形成された物品。 4. An article formed by the forming method according to claim 3.
5 . 表面に複数のニッケルバンプが形成された物品であって、 形成され た二ヅケルバンプは、 高さの平均が 1 ζπ!〜 1 0 0 111、 高さの標準偏差が 0 . 7以下であり、 ァスぺクト比の平均が 0 . 6以上、ァスぺクト比の標準偏差が 0 . 0 7以下である前記物品。 5. An article with a plurality of nickel bumps formed on the surface. The formed nickel bumps have an average height of 1 1π! Up to 100 111, the height standard deviation is 0.7 or less, the average of the aspect ratio is 0.6 or more, and the standard deviation of the aspect ratio is 0.07 or less. .
6. LS I製品である請求の範囲第 5項に記載の物品。 6. The article according to claim 5, which is an LSI product.
7. 含窒素化合物又はポリエチレングリコールを含有する無電解二ヅケ ルめっき浴用異方成長促進剤。 7. An anisotropic growth promoter for electroless nickel plating baths containing a nitrogen-containing compound or polyethylene glycol.
PCT/JP2003/016404 2002-12-20 2003-12-19 Electroless nickel plating bath for forming anisotropically grown bump, method for forming anisotropically grown bump, article having anisotropically grown bump formed thereon and anisotropic growth accelerator for electroless nickel plating bath WO2004057054A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003292596A AU2003292596A1 (en) 2002-12-20 2003-12-19 Electroless nickel plating bath for forming anisotropically grown bump, method for forming anisotropically grown bump, article having anisotropically grown bump formed thereon and anisotropic growth accelerator for electroless nickel plating bath
JP2004562067A JP4417259B2 (en) 2002-12-20 2003-12-19 Electroless nickel plating bath for anisotropic growth bump formation and formation method of anisotropic growth bump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002370879 2002-12-20
JP2002-370879 2002-12-20

Publications (1)

Publication Number Publication Date
WO2004057054A1 true WO2004057054A1 (en) 2004-07-08

Family

ID=32677183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016404 WO2004057054A1 (en) 2002-12-20 2003-12-19 Electroless nickel plating bath for forming anisotropically grown bump, method for forming anisotropically grown bump, article having anisotropically grown bump formed thereon and anisotropic growth accelerator for electroless nickel plating bath

Country Status (3)

Country Link
JP (1) JP4417259B2 (en)
AU (1) AU2003292596A1 (en)
WO (1) WO2004057054A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001619A (en) * 2009-06-20 2011-01-06 Ritsuhin Ri Electroless nickel plating bath and electroless nickel plating method
JP2014001415A (en) * 2012-06-15 2014-01-09 Asahi Kasei E-Materials Corp Optical functional material
JP2017516920A (en) * 2014-06-02 2017-06-22 マクダーミッド アキューメン インコーポレーテッド Aqueous electroless nickel plating bath and method of using the same
JP2017527688A (en) * 2014-06-03 2017-09-21 マクダーミッド アキューメン インコーポレーテッド High phosphorus electroless nickel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582524A (en) * 1991-09-24 1993-04-02 Seiko Epson Corp Manufacture of electrode and its connecting method
JP2002093835A (en) * 2000-09-12 2002-03-29 Toppan Printing Co Ltd Connection member and method of forming the same
US6413404B1 (en) * 1997-03-31 2002-07-02 Shinko Electric Industries Co., Ltd. Method of forming bumps by electroplating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582524A (en) * 1991-09-24 1993-04-02 Seiko Epson Corp Manufacture of electrode and its connecting method
US6413404B1 (en) * 1997-03-31 2002-07-02 Shinko Electric Industries Co., Ltd. Method of forming bumps by electroplating
JP2002093835A (en) * 2000-09-12 2002-03-29 Toppan Printing Co Ltd Connection member and method of forming the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOKUZO KOBE: "NP Series Mudenkai Mekki", MAKISHOTEN, 30 September 1990 (1990-09-30), pages 5, 6, 21, 22, XP002979170 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001619A (en) * 2009-06-20 2011-01-06 Ritsuhin Ri Electroless nickel plating bath and electroless nickel plating method
JP2014001415A (en) * 2012-06-15 2014-01-09 Asahi Kasei E-Materials Corp Optical functional material
JP2017516920A (en) * 2014-06-02 2017-06-22 マクダーミッド アキューメン インコーポレーテッド Aqueous electroless nickel plating bath and method of using the same
JP2017527688A (en) * 2014-06-03 2017-09-21 マクダーミッド アキューメン インコーポレーテッド High phosphorus electroless nickel

Also Published As

Publication number Publication date
JPWO2004057054A1 (en) 2006-04-20
JP4417259B2 (en) 2010-02-17
AU2003292596A1 (en) 2004-07-14

Similar Documents

Publication Publication Date Title
Shacham‐Diamand Electroless copper deposition using glyoxylic acid as reducing agent for ultralarge scale integration metallization
EP2177646B1 (en) Stress-reduced Ni-P/Pd stacks for bondable wafer surfaces
JP5286893B2 (en) Connection terminal, semiconductor package using connection terminal, and method of manufacturing semiconductor package
US7473307B2 (en) Electroless copper plating solution, method of producing the same and electroless copper plating method
JP3892730B2 (en) Electroless gold plating solution
JP5725073B2 (en) Semiconductor device manufacturing method, semiconductor device
Hutt et al. Electroless nickel bumping of aluminum bondpads. I. Surface pretreatment and activation
CN100465336C (en) Wiring substrate and its making process and chemical copper plating solution therein
WO2006112215A1 (en) Plated base material
JPH11214421A (en) Method for forming electrode of semiconductor element
US7572723B2 (en) Micropad for bonding and a method therefor
WO2004057054A1 (en) Electroless nickel plating bath for forming anisotropically grown bump, method for forming anisotropically grown bump, article having anisotropically grown bump formed thereon and anisotropic growth accelerator for electroless nickel plating bath
JP2003013249A (en) Gold substitution plating solution
EP3679167B1 (en) Electroless nickel plating solution
JP5978587B2 (en) Semiconductor package and manufacturing method thereof
KR102320245B1 (en) Method for forming nickel plating film
JP2001074777A (en) Probe for probe card
KR100619345B1 (en) Method for plating on printed circuit board for semi-conductor package and printed circuit board produced therefrom
TWI249216B (en) Contacting component, method of producing the same, and test tool having the contacting component
JPH11256349A (en) Plating method with high adhesion property on resin base and copper plating liquid to be used for that
JP2005163153A (en) Electroless nickel substituted gold plating treatment layer, electroless nickel plating solution, and electroless nickel substituted gold plating treatment method
TW202000648A (en) Electroless copper or copper alloy plating bath and method for plating
JP2000244084A (en) Wiring board
JP2004149824A (en) Gold plating liquid, plating method using the gold plating liquid, method of producing electronic component, and electronic component
JP2010090402A (en) Plating deposited article

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004562067

Country of ref document: JP

122 Ep: pct application non-entry in european phase