WO2004053411A1 - Wärmeübertrager - Google Patents

Wärmeübertrager Download PDF

Info

Publication number
WO2004053411A1
WO2004053411A1 PCT/EP2003/012224 EP0312224W WO2004053411A1 WO 2004053411 A1 WO2004053411 A1 WO 2004053411A1 EP 0312224 W EP0312224 W EP 0312224W WO 2004053411 A1 WO2004053411 A1 WO 2004053411A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
exchanger according
flow
planes
segment
Prior art date
Application number
PCT/EP2003/012224
Other languages
English (en)
French (fr)
Inventor
Martin Kaspar
Gerrit WÖLK
Original Assignee
Behr Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr Gmbh & Co. Kg filed Critical Behr Gmbh & Co. Kg
Priority to EP03779838A priority Critical patent/EP1573259A1/de
Priority to AU2003287988A priority patent/AU2003287988A1/en
Priority to US10/519,984 priority patent/US20050205244A1/en
Priority to MXPA04010517A priority patent/MXPA04010517A/es
Priority to BR0309404-9A priority patent/BR0309404A/pt
Priority to JP2004557881A priority patent/JP2006509182A/ja
Publication of WO2004053411A1 publication Critical patent/WO2004053411A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • F28F9/262Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers

Definitions

  • the invention relates to a heat exchanger, in particular a condenser or gas cooler for air conditioning systems, in particular for motor vehicles, preferably according to the preamble of patent claim 1.
  • Capacitors have become known from EP-B 0 414 433, in which two capacitors are arranged one behind the other on the air side and are mechanically connected to one another by additional fastening elements.
  • the two condensers On the refrigerant side, the two condensers are flowed through either in series or in parallel. When connected in series, the heat exchange takes place in cross-counterflow, ie the leeward condenser is first flowed through, the refrigerant then passes through a connecting line into the windward condenser and flows through it to the refrigerant outlet located on the windward side. Both condensers are flowed through with multiple flows with a decreasing flow cross-section (degressive circuit).
  • Duplex condenser is that two condensers must be connected to each other both mechanically and on the refrigerant side, which requires additional components and assembly time. This means increased manufacturing costs.
  • the known capacitor also has thermodynamic potential, since it is not optimally flowed through. It is an object of the present invention to improve a heat exchanger, in particular gas cooler or condenser, of the type mentioned at the outset in such a way that the power is increased with the same end face and / or the weight and / or the production costs are reduced.
  • the heat exchanger according to the invention such as, in particular, a condenser or gas cooler, is preferably produced as an integral block which is preferably soldered “in one shot”. This eliminates mechanical connecting parts and reduces the manufacturing costs.
  • the condenser is in the plane or in the levels of the flow channels, i.e. in the width, in blocks and / or perpendicular to the levels, i.e. in the depth, divided into segments which are flowed through in succession, both a deflection in the depth or in the width and both in the This division of the two-row condenser network results in optimal flow-through possibilities on the refrigerant side, which results in an increase in the performance of the condenser.
  • each block consists of two segments with the same number of flow channels.
  • the number of segments can also be odd, namely when one segment (or more than one) is divided into sub-segments through which refrigerant flows in succession. This increases the flow through the condenser, which enables additional performance increases.
  • the refrigerant inlet is arranged on a leeward or windward side segment and the refrigerant outlet on a windward or leeward side segment.
  • the individual segments are flowed through one after the other in such a way that the refrigerant is alternately deflected in depth and in width. This results in a cross-countercurrent flow for the heat exchange between air and refrigerant.
  • a deflection in depth results in a simultaneous deflection in depth and in width. This results in a cross-countercurrent for the heat exchange between air and refrigerant, which brings further thermodynamic advantages.
  • the flow channels are designed as flat tubes, either in two, three or more rows or in a row, with the “continuous” flat tube being flowed through in two-flow, three-flow or multiple flow.
  • the flat tubes may have inner ones arranged in parallel Channels through which flow flows in parallel. These channels can also have connecting openings to one another. These flat tubes can also have turbulence inserts which are introduced into the flat tube.
  • the flat tube ends are fastened in a manifold common to more than one flat tube, in which the deflection takes place at depth.
  • An advantageous solution is also when the flat tube ends on the other side open into two header tubes, in which the deflection takes place in the width.
  • the two header pipes are either formed in one piece and thus hold the block together or are designed as separate header pipes which are held together by the "continuous" flat tubes.
  • continuous corrugated fins are arranged between the flat tubes, which due to their soldering to the Flat tubes ensure a compact, stable condenser block.
  • FIG. 9 shows a performance diagram for a heat exchanger according to the invention, such as a condenser, in comparison with the prior art.
  • FIG. 1 shows a two-row heat exchanger 1, such as a condenser or gas cooler, with a first row 2 and a second row 3 of flat tube ren 4, 4 known corrugated fins, not shown, are arranged between the flat tubes.
  • a two-row heat exchanger such as a condenser or gas cooler
  • the fin height of the corrugated fins is advantageously 4 mm to 12 mm.
  • the rib density that is to say the number of ribs per decimeter, is advantageously in the range from 45 to 95 ribs / dm, which corresponds to a rib spacing or a rib pitch of 1.05 to 2.33 mm.
  • the fin or corrugated fin can advantageously be used from a band in which the band is inserted in waves or zigzag form between the flat tubes.
  • the fin designed in this way will expediently have a thermal separation between different regions, so that the regions which are arranged between different flat tubes or flat tube regions are at least partially insulated thermally.
  • the rib can also consist of several individual strips which are inserted between the respective adjacent flat tubes. It is advantageous that the individual ribs of different rows have no thermal connection.
  • the flat tubes are advantageously designed in such a way that the tube width, that is to say the extension of the tubes in the direction of an adjacent tube of the same planes, is in the range from 1 mm to 5 mm, in particular advantageously from 1.2 mm to 3 mm.
  • the expansion of the tubes in the direction perpendicular to the planes, the tube depth is expediently in the range from 3 mm to 20 mm, advantageously in the range from 5 mm to 10 mm.
  • the pipe depth can be substantially the same for the blocks of the heat exchanger. In another exemplary embodiment of the invention, however, the tube depth can also be selected differently from block to block. It is particularly expedient if the pipe depth in the windward plane is less than the pipe depth in the leeward plane.
  • the tubes of different levels viewed in the direction of air flow, are arranged one behind the other, that is to say they are arranged one behind the other at the same height.
  • the tubes of one level can be arranged offset with respect to the tubes of a further level. This staggered arrangement can preferably take place up to half the height of the ribs plus half the width of the tube. Intermediate values can also be assumed. In such an embodiment, different or identical fins can be used between the tubes of different levels, which are advantageously designed as independent bands.
  • the flat tubes 4 of both rows 2, 3 have flat tube ends 4a which open into a common header tube 5.
  • the flat tubes 4 of both rows 2, 3 have flat tube ends 4b, which open into two separate header tubes 6, 7.
  • the header pipe 7 has a refrigerant inlet 8.
  • Both manifolds 6, 7 are divided into manifold sections by partitions, of which a partition 9 is shown only in manifold 6, which is shown open.
  • the air flows through the condenser in the direction of arrow L, the air flow direction.
  • the flow of the refrigerant in the condenser 1 is shown by a multi-angled line, starting with the refrigerant inlet KME and ending with the refrigerant outlet KMA.
  • the two rows 2, 3 of the flat tubes 4 are divided into three blocks 1, II, III, each block being divided into two segments 1 a, 1 a, 1 b; lla, llb and purple, lllb is divided.
  • the refrigerant therefore first flows through the leeward segment la of the rear tube row 3, then reaches the header tube 5, where it is deflected in depth, represented by the arrow UT1, then reaches the windward segment Ib and the windward header tube 6, where it is redirected in width, represented by the arrow UB1.
  • the refrigerant then flows through the next segment 11a back into the collecting tube 5, where it is again deflected in depth, but in the opposite direction as before, according to the arrow UT2.
  • FIG. 2 shows a further exemplary embodiment of a capacitor 10 which is constructed essentially the same as the capacitor 1 according to FIG. 1, the same reference numbers being used for the same parts.
  • the condenser 10 has an additional partition 11 in the windward-side manifold 6 and two tubular deflection members 12, 13, which each connect sections of the windward-side manifold 6 to sections of the leeward-side manifold 7.
  • the refrigerant flow path is again represented by a continuous, multi-angled line, starting at the refrigerant inlet KME and ending at the refrigerant outlet KMA.
  • the refrigerant thus first flows through the leeward-side segment la, is deflected in depth in the collecting tube 5 in accordance with the arrow UT1 in the direction of the wind-side segment Ib and flows through it until the wind-up side collecting tube 6 is reached. Due to the position of the partition 11, the segments la and lb of the block I six flat tubes 4. Via the deflecting element 12, the refrigerant is then deflected into a section of the leeward collecting tube 7, i. H. there is a simultaneous deflection both in width and in depth, which is shown by the arrow UBT1. After this deflection, the refrigerant flows. through the leeward segment llb in
  • Fig. 3 shows the formation of the two manifolds 6, 7, here 6 ', T, to form a glasses-shaped double tube 14.
  • the two manifolds 6', 7 ' are formed from a continuous sheet metal strip 15 with end edges 16, 17, which in a web 18 connecting both manifolds 6 ', 7' is inserted and soldered to it. This results in a firm connection between the two manifolds 6 ', 7', which receive the flat tubes 4 with their flat tube ends 4b. This enables the production of the two-row capacitor in a soldered block.
  • Fig. 4 shows a further embodiment for the formation of the manifolds 6, 7, here called 6 ", 7", which are designed as separate manifolds.
  • Flat tubes here are not arranged in two separate rows - as in the previous exemplary embodiments - but are formed by a "continuous" flat tube 19 which is flowed through in two passages, ie in a front (windward side) area 19a and a rear (leeward side) area 19b.
  • the two areas 19a, 19b are separated from each other in terms of flow by a central separating area 19c.
  • the continuous flat tube 19 has separate flat tube ends 19a 'and 19b' which are inserted into passages 20 of the two header tubes 6 ", 7" and soldered to them This also results in a coherent, compact, soldered capacitor block.
  • FIG. 5 shows a schematic representation of the flow pattern of the exemplary embodiment according to FIG. 1, ie a cross countercurrent.
  • the entire network of capacitor 1 according to FIG. 1 is divided into three blocks I, II, III, each block consisting of two segments Ia and Ib, Ila and IIb and llla and lllb exists.
  • the segments of a block each have the same number of tubes and are located one behind the other in the air flow direction L.
  • the segments 1a, 1b each have nine flat tubes 4, the segments 11a, 11b each have seven flat tubes and the segments purple, 11bb each have five flat tubes 4.
  • Embodiment of FIG. 1, d. H. the flow course has three deflections in depth UT1, UT2 and UT3 and two deflections in width UB1 and UB2.
  • Fig.2 is based, with the same alphanumeric names are adopted.
  • the network of the capacitor 10 (FIG. 2) is again divided into three blocks I, II and III in width, and each block is divided into two equal segments la, Ib; lla, ilb and lilac, lllb divided.
  • the number of tubes of block I is 2x nine, of block II 2x seven and of block III 2x five, so as in the previous embodiment.
  • the deflection in the depth takes place with the same segments in the same direction, i. H. against the air flow direction L in the direction of arrows UT1, UT2 and UT3.
  • FIG. 7 shows a further flow pattern in which the network of the capacitor is divided in width into two blocks I, II.
  • the block I is divided into two equal segments la and Ib in depth, each of which has nine flat tubes 4.
  • Block II is in a segment 11b with nine flat tubes 4 and two subsegments Ilaa with five flat tubes 4 and a subsegment Hab with four flat tubes.
  • the refrigerant flows through the leeward side segment la, then there is a deflection in depth, according to the arrow UT1, then the windward segment Ib is flowed through, then there is a deflection in the width, according to the arrow UB1, into the adjacent sub-segment llaa, then a redirection in depth UT2 to the leeward segment Ilb and from there another redirection in depth, according to arrow UT3, to the windward subsegment Hab.
  • the division of a segment into two subsegments results in five flow paths, that is, an odd number.
  • Such a variant with sub-segments can be particularly advantageous for subcooling the refrigerant in the last sub-segment Hab.
  • a partition in the manifold is advantageously used.
  • This partition can expediently be designed as a partition plate.
  • FIG. 8 shows a further variant of the division of the capacitor network into seven flow paths.
  • the width of the network is divided into three blocks I, II, III; block I- is divided into two identical segments 1 a, 1 b with nine flat tubes 4 each.
  • Block II is divided into two identical segments Ha, Ilb, each with seven flat tubes
  • block III is divided into a segment purple with seven flat tubes and two subsegments lllba with four flat tubes, and a further subsegment lllbb with three flat tubes.
  • the refrigerant is routed between the segments mentioned in the order of the following arrows: UT1, UB1, UT2, UB2, UT3 and UB3.
  • FIG. 9 shows a performance comparison of the capacitors according to the invention with the prior art with variable air inflow velocity in m / s on the abscissa. The power of the capacitor in kW is plotted on the ordinate.
  • the solid line S represents the performance of a conventional, multi-flow serpentine condenser with a degressive circuit.
  • the first variant of the invention according to FIG. 1 is shown as a narrowly dotted line and is marked with KGG, which stands for cross-countercurrent.
  • the second variant of the invention according to FIG. 2 is shown as a wide-dotted line and labeled KG, which stands for cross-countercurrent. It can be seen that the two inventive variants are significantly more powerful than the prior art, variant 2 being superior to variant 1 at higher air velocities. This results in a clear advantage in favor of the inventive division of the capacitor network into blocks and segments with deflection in depth.
  • the curves S, KGG, KG shown result from calculations for capacitors with the same end face and the same fin density.
  • the heat exchanger can be flowed through from top to bottom or from bottom to top. Bottom and top are defined by the installation position of the heat exchanger. For example, one level of the heat exchanger can also be flowed through from bottom to top and another level from top to bottom.
  • the flow channels are preferably arranged horizontally.
  • the flow channels are expediently aligned vertically and the header tubes are aligned horizontally.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

Die Erfindung betrifft einen Wärmeüberträger, insbesondere einen Kondensator oder Gaskühler für Klimaanlagen, insbesondere für Kraftfahrzeuge, mit mindestens zwei Reihen (2,3) von Strömungskanälen, die von Kältemittel durchtrömbar und endseitig in Sammelrohren (5,6,7) aufgenommen sind, mit zwischen den Strömungskanälen angeordneten, von Luft Überströmbahren Rippen, wobei einzelne Strömungskanale in einer Reihe angeordnet sind, wobei zumindest zwei Reihen (2,3) von Strömungskanälen (4) in der Ebene in mindestens zwei Blöcke (1,11) aufgeteilt sind und jeder Block senkrecht zu den Ebenen in mindestens zwei Segmente (1a, 1b; 11a,11b) von Strömungskanälen (4) aufgeteilt sind, wobei die Segmenten eine Umlenkung senkrecht zu den Ebenen (UT1, UT2) oder eine Umlenkung in der Ebene (UB1, UB2) oder eine Umlenkung sowohl in der Ebene als auch senkrecht zur Ebene (UBT1, UBT2) erfolgt.

Description

BEHR GmbH & Co. KG Mauserstraße 3, 70469 Stuttgart
Wärmeübertrager
Die Erfindung betrifft einen Wärmeübertrager, insbesondere einen Kondensator oder Gaskühler für Klimaanlagen, insbesondere für Kraftfahrzeuge, vorzugsweise nach dem Oberbegriff des Patentanspruches 1.
Aus der EP-B 0 414 433 sind Kondensatoren bekannt geworden, bei welchem zwei Kondensatoren luftseitig hintereinander angeordnet und durch zusätzliche Befestigungselemente mechanisch miteinander verbunden sind. Kältemittelseitig werden die beiden Kondensatoren entweder hintereinander oder parallel zueinander durchströmt. Bei der Hintereinanderschaltung erfolgt der Wärmeaustausch im Kreuzgegenstrom, d. h. der leeseitige Kondensator wird zuerst durchströmt, das Kältemittel tritt dann über eine Verbindungsleitung in .den luvseitigen Kondensator über und durchströmt diesen bis zum luvseitig gelegenen Kältemittelauslass. Beide Kondensatoren werden mehrflutig mit abnehmendem Strömungsquerschnitt (degressive Schaltung) durchströmt. Eine Umlenkung des Kältemittels erfolgt somit nur innerhalb der Ebene eines jeden Kondensators, d. h. nur in der Breite. Nachteilig bei diesem bekannten. Duplex-Kondensator ist, dass zwei Kondensatoren sowohl mechanisch als- auch kältemittelseitig miteinander verbunden werden müssen, was zusätzliche Bauteile und Montagezeit erfordert. Dies bedeutet erhöhte Herstellungskosten. Darüber hinaus weist der bekannte Kondensator auch- thermodynamische Potenziale auf, da er nicht optimal durchströmt ist. Es ist Aufgabe der vorliegenden Erfindung, einen Wärmeübertrager, insbesondere Gaskühler oder Kondensator, der eingangs genannten Art dahingehend zu verbessern, dass die Leistung bei gleicher Stirnfläche gesteigert und/oder das Gewicht und/oder die Herstellungskosten reduziert werden.
Die Lösung dieser Aufgabe ergibt sich aus den Merkmalen des Patentanspruches 1.
Der erfindungsgemäße Wärmeübertrager, wie insbesondere Kondensator oder Gaskühler, wird vorzugsweise als ein stoffschlüssiger Block hergestellt, der vorzugsweise „in einem Schuss" gelötet wird. Damit entfallen mechanische Verbindungsteile, und die Herstellkosten werden gesenkt. Darüber hinaus ist der Kondensator in der Ebene bzw. in den Ebenen der Strömungskanäle, also in der Breite, in Blöcke und/oder senkrecht zu den Ebenen, also in der Tiefe, in Segmente aufgeteilt, die nacheinander durchströmt werden, wobei sowohl eine Umlenkung in der Tiefe oder in der Breite und sowohl auch in der Tiefe und in der Breite erfolgt. Durch diese Aufteilung des zweireihigen Kondensatornetzes ergeben sich optimale Durchstr-ömungsmöglich- keiten auf der Kältemittelseite, was eine Erhöhung der Leistung des Kon- densators zur Folge hat.
Vorteilhafte Ausgestaltungen der Erfindungen ergeben sich aus den Unteransprüchen.
Vorteilhaft ist die Zahl der Segmente gerade, da jeder Block aus zwei Segmenten mit gleicher Anzahl von Strömungskanälen besteht. Vorteilhafterweise kann die Zahl der Segmente jedoch auch ungerade sein, nämlich dann, wenn ein Segment (oder auch mehrere) in Subsegmente unterteilt wird, welche nacheinander von Kältemittel durchströmt werden. Damit werden die Durchströmungsmöglichkeiten des Kondensators noch erweitert, was zusätzliche Leistungssteigerungen ermöglicht. Es ist ferner vorteilhaft, wenn der Kältemitteleinlass an einem leeseitigen oder luvseitigen Segment angeordnet ist und der Kältemittelauslass an einem luvseitigen oder leeseitigen Segment. Nach einer vorteilhaften Ausgestaltung der Erfindung werden die einzelnen Segmente nacheinander so durchströmt, dass abwechselnd eine Umlenkung des Kältemittels in der Tiefe und in der Breite erfolgt. Damit ergibt sich für den Wärmeaustausch zwischen Luft und Kältemittel ein Kreuzgegengleich- ström.
Nach einer weiteren vorteilhaften Variante der Erfindung erfolgt nach einer Umlenkung in der Tiefe eine gleichzeitige Umlenkung in der Tiefe und in der Breite. Damit ergibt sich für den Wärmeaustausch zwischen Luft und Käl- temittel ein Kreuzgegenstrom, der weitere thermodynamische Vorteile mit sich bringt.
Nach einer vorteilhaften Ausgestaltung der Erfindung sind die Strömungskanäle als Flachrohre ausgebildet, und zwar entweder in zwei, drei oder mehr Reihen oder in einer Reihe, wobei das „durchgehende" Flachrohr zweiflutig, dreiflutig oder mehrflutig durchströmt wird. Die Flachrohre weisen dabei gegebenenfalls parallel angeordnete innere Kanäle auf, die parallel durchströmt werden. Auch können diese Kanäle untereinander Verbindungsöffnungen aufweisen. Auch können diese Flachrohre Turbulenzeinlagen auf- weisen, die in das Flachrohr eingebracht werden.
Ferner ist es vorteilhaft, wenn die Flachrohrenden in einem für mehr als ein Flachrohr gemeinsamen Sammelrohr befestigt sind, in welchem die Umlenkung in der Tiefe erfolgt. Eine vorteilhafte Lösung besteht ferner darin, wenn die Flachrohrenden auf der anderen Seite in zwei Sammelrohre münden, in welchen die Umlenkung in der Breite erfolgt. Hierbei ist es vorteilhaft, wenn die beiden Sammelrohre entweder einstückig ausgebildet sind und damit den Block zusammenhalten oder als separate Sammelrohre ausgebildet sind, die über die „durchgehenden" Flachrohre zusammengehalten werden. Vorteilhafterweise sind zwischen den Flachrohren durchgehende Wellrippen angeordnet, die aufgrund ihrer Verlötung mit den Flachrohren einen kompakten in sich stabilen Kondensatorblock gewährleisten.
Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung sind zusätzii- ehe Umlenkorgane zwischen den 'Sammelrohren vorgesehen, durch die eine gleichzeitige Umlenkung des Kältemittels sowohl in der Tiefe als auch in der Breite ermöglicht wird. Durch diese Umlenkorgane, z. B. Rohrbögen werden hintereinander durchströmbare Segmente kältemittelseitig miteinander verbunden. Diese Umlenkorgane können in die Sammelrohre eingelötet werden, sodass auch diese Variante des erfindungsgemäßen Kondensators in einem Arbeitsgang im Lötofen gelötet werden kann.
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im Folgenden näher beschrieben. Es zeigen
Fig. 1 einen zweireihigen Wärmeübertrager mit Umlenkung in der Tiefe und in der Breite,
Fig. 2 einen zweireihigen Wärmeübertrager mit Umlenkung in der Tiefe und Umlenkung sowohl in der Breite als auch in der Tiefe,
Fig. 3 zwei einstückig ausgebildete Sammelrohre für zwei Flachrohrreihen,
Fig. 4 zwei separate Sammelrohre für eine Reihe von zweiflutigen Flachroh- ren,
Fig. 5 eine erste Strömungsvariante,
Fig. 6 eine zweite Strömungsvariante,
Fig. 7 eine dritte Strömungsvariante,
Fig. 8 eine vierte Strömungsvariante und
Fig. 9 ein Leistungsdiagramm für einen erfindungsgemäßen Wärmeübertrager, wie Kondensator, im Vergleich zum Stand der Technik.
Fig. 1 zeigt einen zweireihigen Wärmeübertrager 1 , wie Kondensator oder Gaskühler, mit einer ersten Reihe 2 und einer zweiten Reihe 3 von Flachroh- ren 4, wobei zwischen den Flachrohren 4 bekannte nicht dargestellte Wellrippen angeordnet sind.
Die Rippenhöhe der Wellrippen, also der Abstand zweier Flachrohre in einer Reihe beträgt vorteilhaft 4 mm bis 12 mm. Die Rippendichte, also die Anzahl der Rippen pro Dezimeter liegt vorteilhaft im Bereich von 45 bis 95 Rippen/dm, was einem Rippenabstand bzw. einer Rippenteilung von 1 ,05 bis 2,33 mm entspricht. Die Rippe oder Wellrippe kann vorteilhaft aus einem Band eingesetzt werden, bei welchem das Band in Wellen oder Zick-Zack- Form zwischen die Flachrohre eingesetzt wird. Zweckmäßiger Weise wird die so ausgestaltete Rippe eine thermische Trennung zwischen unterschiedlichen Bereichen aufweisen, so daß die Bereiche, die zwischen unterschiedlichen Flachrohren oder Flachrohrbereichen angeordnet sind thermisch zumindest teilweise isoliert sind.
In einer weiteren vorteilhaften Ausführungsform kann die Rippe auch aus mehreren Einzelbändern bestehen, die zwischen die jeweiligen benachbarten Flachrohre eingesetzt werden. Vorteilhaft ist dabei, daß die einzelnen Rippen unterschiedlicher Reihen keine thermische Verbindung aufweisen.
Die Flachrohre sind vorteilhaft derart ausgestaltet, daß die Rohrbreite, also die Ausdehnung der Rohre in Richtung auf ein benachbartes Rohre der gleichen Ebenen im Bereich von 1 mm bis 5 mm, insbesondere vorteilhaft von 1 ,2 mm bis 3 mm liegt. Die Ausdehnung der Rohre in Richtung senk- recht zu den Ebenen, die Rohrtiefe, ist zweckmäßiger Weise im Bereich von 3 mm bis 20 mm, vorteilhaft im Bereich von 5 mm bis 10 mm.
Bei einem Ausführungsbeispiel der Erfindung kann die Rohrtiefe bei den Blöcken des Wärmeübertragers im Wesentlichen gleich sein. Bei einem an- deren Ausführungsbeispiel der Erfindung kann jedoch auch die Rohrtiefe von Block zu Block unterschiedlich gewählt sein. Besonders zweckmäßig ist es, wenn die Rohrtiefe bei in der luvseitigen Ebene geringer ist als die Rohrtiefe in der leeseitigen Ebene. Bei den in den Figuren dargestellten Wärmeübertragern sind die Rohre verschiedener Ebenen in Luftströmungsrichtung betrachtet fluchtend hintereinander angeordnet, das heißt, sie sind auf gleicher Höhe hintereinander angeordnet.
Bei nicht dargestellten Wärmeübertragern können die Rohre einer Ebene gegenüber den Rohren einer weiteren Ebene versetzt angeordnet sein. Diese versetzte Anordnung kann vorzugsweise bis zur Höhe der halben Rippenhöhe plus der halben Rohrbreite erfolgen. Auch können Zwischenwerte angenommen werden. Bei einem solchen Ausführungsbeispiel können zwischen den Rohren verschiedener Ebenen unterschiedliche oder gleiche Rippen verwendet werden, die vorteilhaft als unabhängige Bänder ausgebildet sind.
Die Flachrohre 4 beider Reihen 2, 3 weisen Flachrohrenden 4a auf, die in ein gemeinsames Sammelrohr 5 münden. Andererseits weisen die Flachrohre 4 beider Reihen 2, 3 Flachrohrenden 4b auf, die in zwei separate Sammelrohre 6, 7 münden. Das Sammelrohr 7 weist einen Kältemitteleintritt 8 auf. Beide Sammelrohre 6, 7 sind in Sammelrohrabschnitte durch Trenn- wände unterteilt, von denen nur im Sammelrohr 6, weiches offen dargestellt ist, eine Trennwand 9 dargestellt ist. Die Luft durchströmt den Kondensator in Richtung des Pfeils L, der Luftströmungsrichtung. Der Strömungsverlauf des Kältemittels im Kondensator 1 ist durch eine mehrfach abgewinkelte Linie, beginnend mit dem Kältemitteleintritt KME und endend mit dem Käl- temittelaustritt KMA, dargestellt. Wie später noch ausführlicher erläutert wird, sind die beide Reihen 2, 3 der Flachrohre 4 in drei Blöcke l, II, III unterteilt, wobei jeder Block in je zwei Segmente la, Ib; lla, llb und lila, lllb unterteilt ist. Das Kältemittel durchströmt also zuerst das leeseitige Segment la der hinteren Rohrreihe 3, gelangt dann in das Sammelrohr 5, wo es in der Tiefe, dargestellt durch den Pfeil UT1 , umgelenkt wird, gelangt dann in das luvseitige Segment Ib und in das luvseitige Sammelrohr 6, wo es in der Breite, dargestellt durch den Pfeil UB1 , umgelenkt wird. Das Kältemittel strömt dann durch das nächste Segment lla wieder zurück in das Sammelrohr 5, wo es wiederum in der Tiefe, allerdings in entgegengesetzter Richtung wie zu vor, entsprechend dem Pfeil UT2, umgelenkt wird. Danach strömt es durch das leeseitige Segment Ilb in das leeseitige Sammelrohr 7, wird dort nochmals in der Breite, dargestellt durch den Pfeil UB2, umgelenkt, strömt durch ein weiteres Segment lila wieder in das Sammelrohr 5, wird dort wiederum in der Tiefe, dargestellt durch den Pfeil UT3, umgelenkt und strömt schließlich durch ein letztes, luvseitiges Segment lllb zum Kältemittelaustritt KMA. Infolge dieser Durchströmung von Kältemittel einerseits und Luft andererseits ergibt sich ein Kreuzgegengleichstrom, und zwar deswegen, weil einerseits das Kältemittel und die Luft im Kreuzstrom verlaufen und andererseits die Umlenkungen in der Tiefe, UT1 , UT3 entgegen der Luftströmungsrichtung L- und UT2 in Luftströmungsrichtung verlaufen.
Fig. 2 zeigt ein weiteres Ausführungsbeispiel eines Kondensators 10, der im Wesentlichen gleich wie der Kondensator 1 gemäß Fig. 1 aufgebaut ist, wobei für gleiche Teile gleiche Bezugszahlen verwendet sind. Im Unterschied zum Ausführungsbeispiel gemäß Fig. 1 weist der Kondensator 10 eine zusätzliche Trennwand 11 in dem luvseitigen Sammelrohr 6 und zwei rohrför- mige Umlenkorgane 12, 13 auf, die jeweils Abschnitte des luvseitigen Sammelrohres 6 mit Abschnitten des leeseitigen .Sammelrohres 7 verbinden. Der Kältemittelströmungsweg ist wiederum durch eine durchgehende, mehrfach abgewinkelte Linie, beginnend beim Kältemitteleintritt KME und endend beim Kältemittelaustritt KMA, dargestellt. Das Kältemittel durchströmt somit zunächst das leeseitige Segment la, wird im Sammelrohr 5 entsprechend dem Pfeil UT1 in der Tiefe in Richtung auf das luvseitige Segment Ib umgelenkt und durchströmt dieses bis zum Erreichen des luvseitigen Sammelrohres 6. Aufgrund der Position der Trennwand 11 ergeben sich somit für die Segmente la und lb des Blockes I sechs Flachrohre 4. Über das Umlenkorgan 12 wird das Kältemittel dann in einen Abschnitt des leeseitigen Sammelrohres 7 umgelenkt, d. h. es erfolgt eine gleichzeitige Umlenkung sowohl in der Breite als auch in der Tiefe, was durch den Pfeil UBT1 dargestellt ist. Nach dieser Umlenkung strömt das Kältemittel. durch das leeseitige Segment llb in
Richtung des Sammelrohres 5, wird dort entsprechend dem Pfeil UT2 entgegen der Luftströmungsrichtung umgelenkt und tritt in das luvseitige Segment lla ein. Nach Erreichen des luvseitigen Sammelrohres 6, d. h. des Abschnittes zwischen den beiden Trennwänden 9, 11 erfolgt eine erneute Um- lenkung in der Breite und in der Tiefe durch das Umlenkorgan 13, was durch den Pfeil UBT2 dargestellt ist. Schließlich durchströmt das Kältemittel ein weiteres leeseitiges Segment lila, wird nochmals im Sammelrohr 5 entsprechend dem Pfeil UT3 umgelenkt und durchströmt schließlich das letzte luvseitige Segment lllb bis zum Kältemittelaustritt KMA. Bei diesem Strö- mungsmuster handelt es sich um einen Kreuzgegenstrom, weil die Umlenkung in der Tiefe UT1 , UT2, UT3 jeweils entgegen der Luftströmungsrichtung L erfolgt. Diese Variante hat gegenüber der Variante gemäß Fig. 1 thermodynamische Vorteile.
Fig. 3 zeigt die Ausbildung der beiden Sammelrohre 6, 7, hier 6', T genannt, zu einem brillenförmig geformten Doppelrohr 14. Die beiden Sammelrohre 6', 7' sind aus einem durchgehenden Blechstreifen 15 mit Endkanten 16, 17 geformt, die in einen beide Sammelrohre 6', 7' verbindenden Steg 18 gesteckt und mit diesem verlötet sind. Dadurch ergibt sich eine feste Verbin- düng zwischen beiden Sammelrohren 6', 7', die die Flachrohre 4 mit ihren Flachrohrenden 4b aufnehmen. Dies ermöglicht die Herstellung des zweireihigen Kondensators in einem gelöteten Block.
Fig. 4 zeigt eine weitere Ausführung für die Ausbildung der Sammelrohre 6, 7, hier 6", 7" genannt, die als separate Sammelrohre ausgebildet sind. Die
Flachrohre sind hier nicht in zwei separaten Reihen - wie in den vorherigen Ausführungsbeispielen - angeordnet, sondern durch ein „durchgehendes" Flachrohr 19 gebildet, welches zweiflutig durchströmt wird, d. h. in einem vorderen (luvseitigen) Bereich 19a und einem hinteren (leeseitigen) Bereich 19b. Beide Bereiche 19a, 19b sind durch einen mittleren Trennbereich 19c strömungsmäßig voneinander getrennt. Das durchgehende Flachrohr 19 weist separate Flachrohrenden 19a' und 19b' auf, die in Durchzüge 20 der beiden Sammelrohre 6", 7" eingesetzt und mit diesen verlötet sind. Auf diese Weise ergibt sich ebenfalls ein zusammenhängender, kompakter gelöte- ter Kondensatorblock.
Fig. 5 zeigt in schematischer Darstellung das Strömungsmuster des Ausführungsbeispieles gemäß Fig. 1 , d. h. einen Kreuzgegengleichstrom. Das gesamte Netz des Kondensators 1 gemäß Fig. 1 ist in drei Blöcke I, II, III un- terteilt, wobei jeder Block aus zwei Segmenten la und Ib, lla und llb sowie llla und lllb besteht. Die Segmente eines Blockes haben jeweils die gleiche Rohrzahl und liegen in Luftströmungsrichtung L gesehen hintereinander. Im Ausführungsbeispiel gemäß Fig. 5 haben die Segmente la, Ib jeweils neun Flachrohre 4, die Segmente lla, Ilb jeweils sieben Flachrohre und die Seg- mente lila, lllb jeweils fünf Flachrohre 4. Somit ergibt sich kältemittelseitig eine degressive Schaltung, d. h. der kältemittelseitige Austrittsquerschnitt ist kleiner als der Kältemitteleintrittqüerschnitt, er beträgt 5/9 bzw. 56 Prozent vom Eintrittsquerschnitt. Dies ist ein günstiger Wert für die Abstufung der kältemittelseitigen Strömungskanäle bei drei Blöcken und sechs Segmenten. Die übrigen alphanumerischen Bezeichnungen entsprechen denen des
Ausführungsbeispieles gemäß Fig. 1 , d. h. der Strömungsverlauf weist drei Umlenkungen in der Tiefe UT1 , UT2 und UT3 und zwei Umlenkungen in der Breite UB1 und UB2 auf.
Fig. 6 zeigt das Strömungsmuster, welches dem Ausführungsbeispiel gemäß
Fig.2 zugrunde liegt, wobei wiederum die gleichen alphanumerischen Bezeichnungen übernommen sind. Das Netz des Kondensators 10 (Fig. 2) ist wiederum in drei Blöcke I, II und III in der Breite unterteilt, und jeder Block ist in der Tiefe in zwei gleiche Segmente la, Ib; lla, Ilb und lila, lllb unterteilt. Die Anzahl der Rohre des Blockes I beträgt 2x neun, des Blockes II 2x sieben und des Blockes III 2x fünf, also wie im vorherigen Ausführungsbeispiel. Die Umlenkung in der Tiefe erfolgt jeweils bei gleichen Segmenten in derselben Richtung, d. h. entgegen der Luftströmungsrichtung L in Richtung der Pfeile UT1 , UT2 und UT3. Im Übrigen erfolgt von den Segmenten Ib zu dem Segment Ilb eine Umlenkung sowohl in der Breite als auch in der Tiefe, dargestellt durch den Pfeil UBT1 , und vom Segment lla zum Segment lila ebenfalls eine Umlenkung sowohl in der Breite als auch in der Tiefe, dargestellt durch den Pfeil UBT2. Insofern handelt es sich bei diesem Strömungstyp um einen Kreuzgegenstrom, der leistungsmäßig Vorteile gegen- über dem Kreuzgegengleichstrom bringt.
Fig. 7 zeigt ein weiteres Strömungsmuster, bei dem das Netz des Kondensators in der Breite in zwei Blöcke I, II aufgeteilt ist. Der Block I ist in zwei gleiche Segmente la und Ib in der Tiefe unterteilt, die jeweils neun Flachroh- re 4 aufweisen. Der Block II ist in ein Segment Ilb mit neun Flachrohren 4 und zwei Subsegmente llaa mit fünf Flachrohren 4 und ein Subsegment Hab mit vier Flachrohren unterteilt. Zunächst wird das leeseitige Segment la vom Kältemittel durchströmt, dann erfolgt eine Umlenkung in der Tiefe, entsprechend dem Pfeil UT1 , anschließend wird das luvseitige Segment Ib durch- strömt, danach erfolgt eine Umlenkung in der Breite, entsprechend dem Pfeil UB1 , in das benachbarte Subsegment llaa, danach eine Umlenkung in der Tiefe UT2 zum leeseitigen Segment Ilb und von dort nochmals eine Umlenkung in der Tiefe, entsprechend dem Pfeil UT3, zum luvseitigen Subsegment Hab. Aufgrund der Unterteilung eines Segments in zwei Subsegmente erge- ben sich hier fünf Strömungswege, also eine ungerade Anzahl. Eine solche Variante mit Subsegmenten kann insbesondere für die Unterkühlung des Kältemittels im letzten Subsegment Hab vorteilhaft sein.
Bei der Verwendung der Aufteilung eines Segments in Subsegmente wird vorteilhaft eine Trennwand in dem Sammelrohr verwendet. Diese Trennwand kann zweckmäßig als Trennblech ausgebildet sein.
Fig. 8 zeigt eine weitere Variante der Aufteilung des Kondensatornetzes in sieben Strömungswege. Das Netz ist in der Breite in drei Blöcke I, II, III un- terteilt; der Block I- ist in zwei gleiche Segmente la, Ib mit je neun Flachrohren 4 unterteilt. Der Block II ist in zwei gleiche Segmente Ha, Ilb mit je sieben Flachrohren unterteilt, der Block III ist in ein Segment lila mit sieben Flachrohren und zwei Subsegmente lllba mit vier Flachrohren und ein weiteres Subsegment lllbb mit drei Flachrohren unterteilt. Die Kältemittelführung zwi- sehen den genannten Segmenten erfolgt in der Reihenfolge der nachfolgend genannten Pfeile: UT1 , UB1 , UT2, UB2, UT3 und UB3.
Alle • zuvor beschriebenen Varianten (Strömungsmuster mit degressiver Schaltung) erzielen die größte Leistung, wenn das Verhältnis von Kältemit- telaustrittsquerschnitt zu Kältemitteleintrittsquerschnitt im Bereich von 0,25 bis 0,40 liegt. Dieses Verhältnis entspricht der Anzahl ni der Flachrohre vom letzten durchströmten Segment zur Anzahl n1 der Flachrόhre vom ersten durchströmten Segment (gleiche Flachrohrquerschnitte vorausgesetzt). Fig. 9 zeigt einen leistungsmäßigen Vergleich der erfindungsgemäßen Kondensatoren mit dem Stand der Technik bei veränderlicher Luftanströmgeschwindigkeit in m/s auf der Abszisse. Die Leistung des Kondensators in kW ist auf der Ordinate aufgetragen. Die durchgezogene Linie S stellt die Lei- stung eines herkömmlichen, mehrflutig durchströmten Serpentinenkondensators mit degressiver Schaltung dar. Die erste Variante der Erfindung gemäß Fig. 1 ist als eng punktierte Linie dargestellt und mit KGG gekennzeichnet, was für Kreuzgegengleichstrom steht. Die zweite Variante der Erfindung gemäß Fig. 2 ist als weit punktierte Linie dargestellt und mit KG bezeichnet, was für Kreuzgegenstrom steht. Man erkennt, dass beide erfinderischen Varianten leistungsmäßig deutlich über dem Stand der Technik liegen, wobei die Variante 2 bei höheren Luftgeschwindigkeiten der Variante 1 überlegen ist. Somit ergibt sich ein deutlicher Vorteil zu Gunsten der erfinderischen Aufteilung des Kondensatornetzes in Blöcke und Segmente mit Umlenkung in der Tiefe. Die dargestellten Kurven S, KGG, KG ergeben sich aus Berechnungen für Kondensatoren mit gleicher Stirnfläche und gleicher Rippendichte.
Gemäß eines weiteren erfindungsgemäßen Gedankens kann der Wärme- tauscher von oben nach unten oder von unten nach oben durchströmbar sein. Unten bzw. Oben sind durch die Einbaulage des Wärmeübertragers definiert. Auch kann beispielsweise eine Ebene des Wärmeübertragers von unten nach oben durchströmbar sein und eine andere Ebene von oben nach unten. Dabei sind die Strömungskanäle vorzugsweise horizontal angeordnet.
Bei einem weiteren vorteilhaften Ausführungsbeispiel sind die Strömungskanäle zweckmäßiger Weise vertikal ausgerichtet und die Sammelrohre sind horizontal ausgerichtet.

Claims

P a t e n t a n s p r ü c h e
1. Wärmeübertrager, insbesondere Kondensator oder Gaskühler für Klimaanlagen, insbesondere für Kraftfahrzeuge, mit mindestens zwei Reihen von Strömungskanälen, die von Kältemittel durchströmbar und endseitig in Sammelrohren aufgenommen sind, mit zwischen den
Strömungskanälen angeordneten, von Luft überströmbaren Rippen, wobei einzelne Strömungskanäle in einer Reihe angeordnet sind und eine Ebene definieren, wobei die Hauptluftströmungsrichtung senkrecht auf der Ebene steht und und die zumindest zwei Reihen in Luft- Strömungsrichtung hintereinander angeordnet sind, dadurch gekennzeichnet, dass zumindest zwei Reihen (2,
3) von Strömungskanälen (4) in der Ebene in mindestens zwei Blöcke (I, II) aufgeteilt sind und jeder Block (I, II) senkrecht zu den Ebenen in mindestens zwei Segmente (la, Ib; lla, Ilb) von Strömungskanälen
(4) aufgeteilt sind, wobei die Segmente (la, lb, lla, Ilb) kältemittelseitig hintereinander in der
Weise durchströmbar sind, dass zwischen einzelnen Segmenten eine Umlenkung senkrecht zu den Ebenen (UT1 , UT2) oder eine Umlenkung in der Ebene (UB1 , UB2) oder eine Umlenkung sowohl in der Ebene als auch senkrecht zur Ebene (UBT1 , UBT2) erfolgt.
Wärmeübertrager nach Anspruch 1 , dadurch gekennzeichnet, dass ein Teil der Segmente (lla, lllb), insbesondere das kältemittelseitig stromabwärts angeordnete, in der Ebene in Subsegmente (llaa, Hab; lllba, lllbb) aufgeteilt ist.
Wärmeübertrager nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Kältemitteleinlass (8, KME) an einem leeseitigen Segment (la) angeordnet ist.'
. Wärmeübertrager nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Kältemitteleinlass (8, KME) an einem luvseitigen Segment (la) angeordnet ist.
5. Wärmeübertrager nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass ein Kältemittelauslass an einem luvseitigen Segment (lllb) angeordnet ist.
6. Wärmeübertrager nach einem der Ansprüche 1 bis 4, dadurch ge- kennzeichnet, dass ein Kältemittelauslass an einem leeseitigen Segment (lllb) angeordnet ist.
7. Wärmeübertrager nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Zahl der Blöcke (I, II, III) drei, vier, fünf oder mehr beträgt.
8. Wärmeübertrager nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Umlenkungen von Segment zu Segment abwechselnd senkrecht zu den Ebenen (UT1) und in den Ebenen (UB1) erfolgen.
9. Wärmeübertrager nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Umlenkungen von Segment zu Segment abwechselnd senkrecht zu den Ebenen (UT1 ) und sowohl in den Ebe- nen als auch senkrecht zu den Ebenen (UBT1) erfolgen.
10. Wärmeübertrager nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Strömungskanäle als Flachrohre (4) ausgebildet sind.
11. Wärmeübertrager nach einem der Ansprüche' 1 bis 9, dadurch gekennzeichnet, dass die zumindest zwei Reihen (2, 3) von Strömungskanälen durch eine Reihe von durchgehenden Flachrohren ( 9) gebildet werden, die zweiflutig oder mehrflutig (19a, 19b) durchströmbar sind.
12. Wärmeübertrager nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass die Umlenkung senkrecht zu den Ebenen (UT1 , UT2) in einem gemeinsamen Sammelrohr (5) erfolgt, welches die En- den (4a) beider Reihen (2, 3) von Strömungskanälen bzw. Flachrohren (4) aufnimmt.
13. Wärmeübertrager nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Umlenkung in den Ebenen (UB1 , UB2) in je einem Sammelrohr (6, 7) mittels Trennwänden (9, 11 ) erfolgt, wobei jeder Reihe (2, 3) von Strömungskanälen bzw. Flachrohren (4) ein Sammelrohr (6, 7) zugeordnet ist.
14. Wärmeübertrager nach einem der Ansprüche 1 bis 12, dadurch ge- kennzeichnet, dass die gleichzeitige Umlenkung sowohl in den Ebenen als auch senkrecht zu den Ebenen (UBT1 , UBT2) über Umlenkorgane (12, 13) erfolgt, die nacheinander durchströmbare Segmente (Ib, Ilb; lla, lila) miteinander verbinden.
15. Wärmeübertrager nach Anspruch 10 und 13, dadurch gekennzeichnet, dass die Sammeirohre (6', T) zur Umlenkung in den Ebenen durch einen Steg (18) miteinander zu einem Doppelrohr (14) verbunden sind.
16. Wärmeübertrager nach Anspruch 11 und 13, dadurch gekennzeichnet, dass die Sammelrohre (6", 7") zur Umlenkung in den Ebenen als separate Sammelrohre (6", 7") ausgebildet sind, die auf die Enden (19a1, 19b') der durchgehenden Flachrohre (19) aufgesteckt sind.
17. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Wärmeübertrager ein Gaskühler oder Kondensator (1 , 10) ist, der als ein gelöteter Rohr/Rippenblock mit beiderseits angeordneten Sammelrohren ausgebildet ist,
PCT/EP2003/012224 2002-12-10 2003-11-03 Wärmeübertrager WO2004053411A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP03779838A EP1573259A1 (de) 2002-12-10 2003-11-03 Wärmeübertrager
AU2003287988A AU2003287988A1 (en) 2002-12-10 2003-11-03 Heat exchanger
US10/519,984 US20050205244A1 (en) 2002-12-10 2003-11-03 Heat exchanger
MXPA04010517A MXPA04010517A (es) 2002-12-10 2003-11-03 Transferidor de calor.
BR0309404-9A BR0309404A (pt) 2002-12-10 2003-11-03 Transmissor térmico
JP2004557881A JP2006509182A (ja) 2002-12-10 2003-11-03 熱交換器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10257767A DE10257767A1 (de) 2002-12-10 2002-12-10 Wärmeübertrager
DE10257767.6 2002-12-10

Publications (1)

Publication Number Publication Date
WO2004053411A1 true WO2004053411A1 (de) 2004-06-24

Family

ID=32336192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/012224 WO2004053411A1 (de) 2002-12-10 2003-11-03 Wärmeübertrager

Country Status (10)

Country Link
US (1) US20050205244A1 (de)
EP (1) EP1573259A1 (de)
JP (1) JP2006509182A (de)
KR (1) KR20050084778A (de)
CN (1) CN1723378A (de)
AU (1) AU2003287988A1 (de)
BR (1) BR0309404A (de)
DE (1) DE10257767A1 (de)
MX (1) MXPA04010517A (de)
WO (1) WO2004053411A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10255487A1 (de) * 2002-11-27 2004-06-09 Behr Gmbh & Co. Kg Wärmeübertrager
DE102004049809A1 (de) * 2004-10-12 2006-04-13 Behr Gmbh & Co. Kg Flachrohr für Wärmetauscher
TWM280091U (en) * 2005-03-24 2005-11-01 Cooler Master Co Ltd Erect cooling device
US20090151918A1 (en) * 2006-05-09 2009-06-18 Kon Hur Heat Exchanger for Automobile and Fabricating Method Thereof
DE102007009923A1 (de) * 2007-02-27 2008-08-28 Behr Gmbh & Co. Kg Kondensator für eine Klimaanlage, insbesondere eines Kraftfahrzeuges
DE102008055624A1 (de) * 2007-12-10 2009-06-18 Behr Gmbh & Co. Kg Wärmeträger, insbesondere Heizkörper für Kraftfahrzeuge
CN101788213B (zh) * 2009-01-22 2011-09-28 三花丹佛斯(杭州)微通道换热器有限公司 换热器
CN101936670B (zh) * 2009-06-30 2013-05-15 王磊 一种微通道、平行流、全铝扁管焊接式结构换热器及应用
JP2011230655A (ja) * 2010-04-28 2011-11-17 Sanden Corp 車室内熱交換器
FR2986316B1 (fr) * 2012-01-30 2014-01-10 Valeo Systemes Thermiques Ensemble comprenant un echangeur de chaleur et un support sur lequel ledit echangeur est monte
US9671176B2 (en) 2012-05-18 2017-06-06 Modine Manufacturing Company Heat exchanger, and method for transferring heat
CN103216975B (zh) * 2013-03-05 2015-03-25 广东美的制冷设备有限公司 双向相平衡换热器、空调器及热泵热水器
JP6106546B2 (ja) * 2013-07-10 2017-04-05 カルソニックカンセイ株式会社 熱交換装置
CN104043956B (zh) * 2014-05-23 2016-08-24 上海和科设备制造有限公司 换热器的集流管在芯体组立部上的定位检测装置及方法
CN105821632B (zh) * 2015-01-28 2018-12-11 东芝生活电器株式会社 衣物干燥机
CN110260566A (zh) * 2018-03-12 2019-09-20 郑州宇通客车股份有限公司 一种车用空调冷凝器总成及车辆
DE102019000723A1 (de) * 2019-01-31 2020-08-06 Hydac Cooling Gmbh Kühler
CN111829364A (zh) * 2019-10-08 2020-10-27 浙江三花智能控制股份有限公司 换热器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0414433A2 (de) * 1989-08-23 1991-02-27 Showa Aluminum Kabushiki Kaisha Duplex-Wärmetauscher
EP0869325A2 (de) * 1997-03-31 1998-10-07 Zexel Corporation In Reihen integrierte Wärmetauscher
US6189604B1 (en) * 1999-01-19 2001-02-20 Denso Corporation Heat exchanger for inside/outside air two-passage unit

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1049267A (en) * 1965-05-04 1966-11-23 Mcquay Inc Heat exchanger
JPS635293U (de) * 1986-06-24 1988-01-14
US5529116A (en) * 1989-08-23 1996-06-25 Showa Aluminum Corporation Duplex heat exchanger
JP2586753Y2 (ja) * 1990-09-28 1998-12-09 サンデン株式会社 熱交換器
US5205347A (en) * 1992-03-31 1993-04-27 Modine Manufacturing Co. High efficiency evaporator
JPH09280755A (ja) * 1996-04-18 1997-10-31 Sanden Corp 多管式熱交換器
EP0905467B1 (de) * 1997-09-24 2003-06-18 Showa Denko K.K. Verdampfer
JPH11287587A (ja) * 1998-04-03 1999-10-19 Denso Corp 冷媒蒸発器
JP2001066018A (ja) * 1999-08-25 2001-03-16 Showa Alum Corp 蒸発器
FR2803378B1 (fr) * 1999-12-29 2004-03-19 Valeo Climatisation Echangeur de chaleur a tubes a plusieurs canaux, en particulier pour vehicule automobile
JP3866905B2 (ja) * 2000-05-30 2007-01-10 松下電器産業株式会社 熱交換器および冷凍サイクル装置
US6745827B2 (en) * 2001-09-29 2004-06-08 Halla Climate Control Corporation Heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0414433A2 (de) * 1989-08-23 1991-02-27 Showa Aluminum Kabushiki Kaisha Duplex-Wärmetauscher
EP0869325A2 (de) * 1997-03-31 1998-10-07 Zexel Corporation In Reihen integrierte Wärmetauscher
US6189604B1 (en) * 1999-01-19 2001-02-20 Denso Corporation Heat exchanger for inside/outside air two-passage unit

Also Published As

Publication number Publication date
JP2006509182A (ja) 2006-03-16
KR20050084778A (ko) 2005-08-29
DE10257767A1 (de) 2004-06-24
AU2003287988A1 (en) 2004-06-30
EP1573259A1 (de) 2005-09-14
BR0309404A (pt) 2005-02-01
MXPA04010517A (es) 2004-12-13
US20050205244A1 (en) 2005-09-22
CN1723378A (zh) 2006-01-18

Similar Documents

Publication Publication Date Title
EP0401752B1 (de) Verflüssiger für ein Kältemittel einer Fahrzeugklimaanlage
EP1036296B1 (de) Flachrohr mit querversatz-umkehrbogenabschnitt und damit aufgebauter wärmeübertrager
WO2004053411A1 (de) Wärmeübertrager
EP0845647B1 (de) Flachrohr-Wärmeübertrager mit tordiertem Flachrohrendabschnitt
DE60310992T2 (de) Hochdruckwärmetauscher
WO2005038375A1 (de) Wärmeübertrager, insbesondere für kraftfahrzeuge
WO2009074196A2 (de) Wärmeübertrager, insbesondere heizkörper für kraftfahrzeuge
EP1460363B1 (de) Verdampfer
DE10054158A1 (de) Mehrkammerrohr mit kreisförmigen Strömungskanälen
EP1411310B1 (de) Wärmeübertrager in Serpentinenbauweise
EP1597529B1 (de) Flachrohr mit umkehrbogenabschnitt und damit aufgebauter w r me bertrager
EP1588115B1 (de) Wärmeübertrager, insbesondere gaskühler
WO2005100895A1 (de) Wärmeübertrager für kraftfahrzeuge
WO2005028987A1 (de) Wärmetauscher
WO2004048875A1 (de) Wärmeübertrager
DE102004001786A1 (de) Wärmeübertrager, insbesondere für überkritischen Kältekreislauf
DE102007001430A1 (de) Wärmetauscher
DE3918455A1 (de) Verfluessiger fuer ein kaeltemittel einer fahrzeugklimaanlage
EP0910778B1 (de) Flachrohrverdampfer mit vertikaler längserstreckungsrichtung der flachrohre bei kraftfahrzeugen
EP1248063B1 (de) Wärmeübertrager
EP2049859B1 (de) Kraftfahrzeugklimaanlage
DE202010000951U1 (de) Wärmeübertrager, insbesondere Gaskühler für Klimaanlagen in Kraftfahrzeugen
EP1310760A1 (de) Kältemittelkondensator
EP1794528B1 (de) Wärmeübertrager, insbesondere für ein kraftfahrzeug
DE102005041724A1 (de) Wärmeübertrager, insbesondere für ein Kraftfahrzeug

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2003779838

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020047015143

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004557881

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: PA/A/2004/010517

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 10519984

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038A55603

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047015143

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003779838

Country of ref document: EP