WO2004049373A1 - Method for manufacturing electron-emitting device and method for manufacturing display - Google Patents

Method for manufacturing electron-emitting device and method for manufacturing display Download PDF

Info

Publication number
WO2004049373A1
WO2004049373A1 PCT/JP2003/014974 JP0314974W WO2004049373A1 WO 2004049373 A1 WO2004049373 A1 WO 2004049373A1 JP 0314974 W JP0314974 W JP 0314974W WO 2004049373 A1 WO2004049373 A1 WO 2004049373A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitter
electron
manufacturing
emitting device
layer
Prior art date
Application number
PCT/JP2003/014974
Other languages
French (fr)
Japanese (ja)
Inventor
Takao Yagi
Motohiro Toyota
Naomi Yamaguchi
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Publication of WO2004049373A1 publication Critical patent/WO2004049373A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3042Field-emissive cathodes microengineered, e.g. Spindt-type
    • H01J1/3046Edge emitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)

Definitions

  • the present invention relates to a method for manufacturing an electron-emitting device that emits electrons and a method for manufacturing a display device.
  • Carbon nanotube which has a tube structure formed by winding a carbon graphite sheet, has been discovered.
  • Force—Bon nanotube diameters are generally around 1 nm to 200 nm (more recently 0.5 nm to 300 nm).
  • Carbon nanotubes are broadly classified into single-walled carbon nanotubes composed of one layer of graphite sheet and multi-walled carbon nanotubes composed of two or more layers of graphite sheet.
  • Such a crystal having a nanometer-sized tube structure is regarded as a unique substance unlike any other.
  • methods for producing carbon nanotubes include a method using a laser ablation method, a method using an arc method, and a method using a CVD chemical vapor deposition (CVD) method.
  • the laser ablation method uses D.S.Bethune, C.H.Kiang, M.S.de Vries, G.
  • a carbon electrode is used in an atmosphere of argon 100 Torr. To perform DC arc discharge. As a result, carbon nanotubes grow together with carbon fine particles on a part of the negative electrode. This method is characterized in that the amount of carbon nanotubes produced is much larger than that of the laser abrasion method. In this method, when producing single-walled carbon nanotubes, a catalyst such as Ni, Co, or Fe is required.
  • Ni-coated substrate using Ni (nickel) as a catalyst metal As described in Emmenegger, L. Sch 1 apbach, “Appl. Phys. Lett. J, 1998, Vol. 73, p. 2113, Ni-coated substrate using Ni (nickel) as a catalyst metal. , Or Ni substrate is used, first, ammonia is introduced into the reaction vessel, plasma is generated, and Ni is pre-treated with ammonia plasma, and then carbon source gas such as acetylene is introduced. At this time, a gas such as ammonia, hydrogen, or argon may be mixed in. The film forming temperature at this time is 500 to 550.
  • the carbon nanotubes produced by such a method have semiconducting or metallic properties depending on the winding and diameter of the graphite sheet. Because of these unique properties, carbon nanotubes are expected to be applied to various electronic and electrical devices. The most Another prominent example is the application to FED (Field Emission Display), which is a field emission type flat display device (display).
  • FED Field Emission Display
  • a carbon nanotube is attached to a cathode electrode as an electron emission source and an electric field above a certain threshold is applied, the concentration of the electric field causes the energy barrier on the nanotube surface to be low and thin, and the tunnel effect causes electrons to enter the vacuum. Released. This phenomenon is called field emission.
  • carbon nanotubes are very fine particles (powder)
  • the carbon nanotubes when carbon nanotubes are used to form an emitter, the carbon nanotubes must be fixed to the substrate.
  • a highly conductive binder material such as a silver paste or an IT ⁇ (Indium Tin Oxide) solution is used for fixing the carbon nanotubes.
  • carbon nanotubes are mixed into a binder material to form a paste (or a slurry or an ink), which is applied to the surface of the substrate by a printing method, a spray method, a Daiko method, or the like. By coating, the carbon nanotubes are fixed on the substrate using the adhesive property of the binder material.
  • Japanese Patent Application Laid-Open No. 2000-63726 discloses a vehicle in which a resin is dissolved in an organic solvent and a vehicle in which the resin is dissolved.
  • a conductive paste is formed from a plurality of carbon nanotubes composed of dispersed cylindrical graphite layers. It is described that the conductive paste is used for forming an anode electrode on which a phosphor layer of a fluorescent display tube is formed.
  • Japanese Patent Application Laid-Open No. 2001-355360 discloses a process of attaching a cathode conductor to an insulating substrate, Applying a paste material containing at least one of carbon nanotubes, fullerenes, nanoparticles, nanocapsules and carbon nanohorns to a sword conductor to form a carbon layer, and applying an adhesive tape to the dried carbon layer It describes a method for manufacturing an electron emission source having a step of forming an emitter by peeling off the adhesive tape after attaching, and a step of forming a gate electrode at a position separated from the emitter.
  • Japanese Patent Application Laid-Open No. 2002-197695 discloses a process of forming a force source electrode on a support, Forming an insulating layer on the cathode electrode, forming a gate electrode having an opening on the insulating layer, and forming a second opening communicating with the opening formed on the gate electrode in the insulating layer.
  • Forming a carbon thin film selective growth region by forming a metal thin film or an organometallic compound thin film on the surface of the portion of the cathode electrode located at the bottom of the second opening; and selecting the carbon thin film.
  • a method for manufacturing a cold cathode field emission device comprising a step of forming a carbon thin film on a growth region is described.
  • Japanese Patent Publication No. 2000-143079 discloses a process of forming a cathode electrode on a support, A step of forming an insulating layer on a support including the above, a step of forming a gate electrode on the insulating layer, a step of forming at least an opening in which a force source electrode is exposed at the bottom in the insulating layer, An electron emission electrode made of a conductive composition containing particles and a binder is formed on the cathode electrode exposed at the bottom of the opening.
  • a method of manufacturing a cold-cathode field electron-emitting device comprising the steps of: exposing conductive particles to the surface of an electron-emitting electrode by removing a binder on the surface of the electron-emitting electrode; .
  • the present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide a method and a method for manufacturing an electron-emitting device capable of vertically aligning a large number of carbon nanotubes on the surface of an emission layer. An object of the present invention is to provide a method of manufacturing the device. Disclosure of the invention
  • the method for manufacturing an electron-emitting device includes the steps of: forming a cathode electrode on a support substrate; and forming an emitter layer containing a fibrous emitter material and a binder material on a force source electrode. Removing the binder material in the upper part of the emitter layer to expose the emitter material to the surface of the emitter layer, and removing the emitter material exposed on the surface of the emitter layer to the support substrate. And a step of substantially vertical alignment.
  • a step of forming a force source electrode on a supporting substrate and a step of forming an emitter layer containing a fibrous emitter material and a pinda material are performed.
  • Form on Sword electrode A step of exposing the emitter material to the surface of the emitter layer by removing the binder material in an upper layer of the emitter layer; and a step of substantially exposing the emitter material exposed to the surface of the emitter layer to the support substrate. And a step of orienting the particles.
  • an emitter including a fibrous emitter material and a binder material is formed on the cathode electrode.
  • the binder material in the upper layer of the emitter layer is removed, so that a large number of emitter materials contained in the emitter layer are exposed on the surface of the emitter layer. In this state, the emitter material is removed.
  • a large number of emitter materials are vertically oriented on the surface of the emitter layer.
  • FIG. 1 is a cross-sectional view showing an example of a panel structure of a display device to which the present invention is applied.
  • FIG. 2 is an exploded perspective view showing an example of a panel structure of a display device to which the present invention is applied.
  • 3A to 3E are process diagrams (part 1) illustrating a specific example of a method for manufacturing an electron-emitting device according to an embodiment of the present invention.
  • 4A to 4C are process diagrams (part 2) illustrating a specific example of the method for manufacturing the electron-emitting device according to the embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing an example of a panel structure of a display device to which the present invention is applied, and FIG. It is.
  • a force sword panel force sword substrate
  • an anode panel anode substrate
  • One panel structure for displaying an image is formed by integrally assembling with the frame 3.
  • a plurality of electron-emitting devices are formed on the cathode panel 1. These plurality of electron-emitting devices, electron-emitting device of c each in the effective region of the cathode panel 1 (region functioning as actual display content) are formed a large number in a two-dimensional matrix form, the cathode panel 1 based
  • An insulating support substrate for example, a glass substrate
  • a force source electrode an insulating layer 6 and a gate electrode 7, which are sequentially formed in a laminated state on the support substrate 4
  • a gate electrode 7 and an insulating layer 6 A gate hole 8 formed at the bottom of the gate hole 8 and an electron emission portion 9 formed at the bottom of the gate hole 8.
  • Force sword electrode 5 is formed in a stripe shape so as to form a plurality of cathode lines.
  • the gate electrode 7 is formed in a stripe shape so as to form a plurality of gate lines intersecting (orthogonal to) each force source line.
  • the gate hole 8 is formed by a first opening 8A formed in the gate electrode 7 and a second opening 8B formed in the insulating layer 6 so as to communicate with the first opening 8A. It is configured.
  • the electron emission portion 9 is mainly formed by an emitter layer 10 containing a fibrous emitter material and a binder material (matrix).
  • Emitter layer 1 0 carbon nanotubes 1 1 on the surface of t each plurality of carbon nanotubes 1 1 as the emitter evening fibrous material is arranged, or one end Emitta layer 1 0 surface The other end side is embedded in the binder material of the emitter layer 10.
  • the anode panel 2 includes a transparent substrate 12 serving as a base, a phosphor layer 13 and a black matrix 14 formed on the transparent substrate 12, and a phosphor layer 13 and a black matrix 14.
  • An anode electrode 15 formed on the transparent substrate 12 in a state of being covered is provided.
  • the phosphor layer 13 includes a phosphor layer 13R for emitting red light, a phosphor layer 13G for emitting green light, and a phosphor layer 13B for emitting blue light.
  • the black matrix 14 is formed between the phosphor layers 13 R, 13 G, and 13 B for each color emission.
  • the anode electrode 15 is formed in a laminated state over the entire effective area of the anode panel 2 so as to face the electron-emitting device of the force panel 1.
  • the cathode panel 1 and the anode panel 2 are joined via a frame 3 at their outer peripheral parts (peripheral parts). Further, a through hole 16 for evacuation is provided in an invalid area of the force sword panel 1 (an area outside the effective area and does not actually function as a display portion). A chip tube 17 that is sealed off after evacuation is connected to the through hole 16. However, since FIG. 1 shows a state where the display device has been assembled, the tip tube 17 has already been sealed off. Also, in FIGS. 1 and 2, the illustration of the pressure-resistant support (spacer) interposed in the gap between the panels 1 and 2 is omitted.
  • a relative negative voltage is applied to the cathode electrode 5 from the force electrode control circuit 18, and a relative positive voltage is applied to the gate electrode 7.
  • a positive voltage higher than that of the gate electrode 7 is applied to the anode electrode 15 from the anode electrode control circuit 20.
  • an image table is actually displayed.
  • a scanning signal is input to the power source electrode 5 from the power source electrode control circuit 18, and a video signal is input to the gate electrode 7 from the gate electrode control circuit 19.
  • a video signal is inputted to the force electrode 5 from the force electrode control circuit 18, and a scanning signal is inputted to the gate electrode 7 from the gate electrode control circuit 19.
  • a voltage is applied between the cathode electrode 5 and the gate electrode 7, whereby the electric field is concentrated on the sharp portion of the electron emitting portion 9 (the tip portion of the carbon nanotube 11). Due to the tunnel effect, electrons penetrate the energy barrier and are emitted from the electron emitting portion 9 into a vacuum. The emitted electrons are attracted to the anode electrode 15 and move to the anode panel 2 side, where they collide with the phosphor layer 13 (13R, 13G, 13B) on the transparent substrate 12. I do. As a result, the phosphor layer 13 is excited by the collision of the electrons to emit light, and a desired image can be displayed on the display panel by controlling the light emitting position on a pixel basis.
  • a force source electrode (conductive layer) 5 is formed on a support substrate 4 serving as a base of the power source panel 1 using a conductive material for forming a force source electrode.
  • the force source electrode 5 is formed of, for example, a chromium layer having a thickness of about 0.2 m formed by a sputtering method.
  • the thickness of the SiCN film in a state of covering the force source electrode 5 is reduced.
  • a 0.2 m resistive layer 21 is formed.
  • the resistance layer 21 reduces the effective voltage acting on the emitter due to an increase in the voltage drop due to the resistance, and conversely, the discharge current to the emitter becomes smaller. If you act on Emi Yu Increasing the effective voltage stabilizes the discharge current and plays a role.
  • the resistance layer 21 is formed as needed.
  • a process for arranging the carbon nanotubes 11 serving as an emitter material on the resistive layer 21 (on the force source electrode 5 when the resistive layer 21 is not formed) is performed. More specifically, organotin and organic indium, which are thermally decomposable organic metals, are used as the pinda material, and carbon nanotube powder is used as the emitter material. These are used as volatile solutions under the following conditions, such as butyl acetate. A mixed solution dispersed therein is obtained. At that time, ultrasonic treatment may be performed to improve the dispersibility of the carbon nanotube.
  • the diluent may be aqueous or non-aqueous, but it is assumed that the dispersant will vary depending on which one is used. It is also possible to mix other additives.
  • the carbon nanotube one having a very elongated tube structure (fibrous shape) having, for example, an average diameter of Inm and an average length of 1 m is used.
  • Dispersant for example, sodium dodecyl sulfate: 0.1 to 5% by mass Carbon nanotube: 0.001 to 20% by mass
  • carbon nanofibers can be used in addition to carbon nanotubes.
  • metal salts such as tin chloride and indium chloride can be used in addition to the above-mentioned thermally decomposable organic metals.
  • the above mixed solution is applied onto the supporting substrate 4 by a spray method or the like, so that the carbon nanotubes and the pine are coated as shown in FIG. 3C.
  • An emitter layer (composite layer) 10 containing the material is formed.
  • the emission layer 10 can be formed by a printing method.
  • the emimy layer 10 is fired under the following conditions. As a result, a solid EMI layer 10 in which carbon nanotubes are embedded in the binder material (in the matrix) due to evaporation of the organic component is obtained.
  • the emitter layer 10 is processed into a stripe shape. Specifically, a resist material (photoresist) is applied by spin coating to form a resist film covering the emitter layer 10 and patterning the resist film by photolithography. Then, a resist pattern serving as an etching mask is formed on the emitter layer 10. Next, as shown in FIG. 3D, the portion excluding the emission layer 10 covered with the resist pattern is removed by, for example, an etching process based on the following conditions, thereby forming a portion on the support substrate 4. The emitter layer 10 is formed in a stripe shape.
  • a resist material photoresist
  • Etching time 10 seconds to 30 minutes
  • the unnecessary carbon nanotubes are removed by etching using oxygen plasma or an oxidizing solution under the following conditions.
  • Plasma excitation power 500W
  • Bias power 0 to 150 W (DC or RF may be used, RF is preferred)
  • Etching time 10 seconds or more
  • Etching time 10 seconds to 20 minutes
  • the resistive layer 21 and the force source electrode 5 are patterned by a well-known lithography technique and a reactive ion etching method (RIE method), and as shown in FIG.
  • the force sword electrode 5 is formed in a strip shape. At this point, a plurality of force saw lines are formed on the support substrate 4.
  • an insulating layer 6 is formed on the support substrate 4 so as to cover the laminated portion of the force source electrode 5, the resistance layer 21 and the emitter layer 10, and furthermore, the insulating layer 6 is formed.
  • a gate electrode (conductive layer) 7 is formed on the layer 6 using a conductive material for forming a gate electrode.
  • the C VD method using T EO S (tetraethoxysilane) as a source gas an insulating layer 6 having a thickness of about 1 m to be the entire surface of the supporting substrate 4, for example, from S I_ ⁇ 2 form,
  • a gate electrode 7 made of chromium is formed on the insulating layer 6 by a sputtering method.
  • an etching mask (not shown) is formed on the gate electrode 7, and a predetermined portion of the gate electrode 7 is etched using the etching mask, thereby forming the insulating layer 6 as shown in FIG. 4C.
  • a first opening 8A penetrating through the gate electrode 7 is formed in a lip shape.
  • the striped gate electrode 7 is formed so as to intersect (orthogonally) the cathode electrode 5 almost at right angles. As a result, a plurality of gate lines orthogonal to the cathode lines are formed on the support substrate 4.
  • the insulating layer 6 is etched by, for example, RIE through the first opening 8A of the gate electrode 7 to expose the surface of the emitter layer 10 as shown in FIG. 5A.
  • the opening 8B is formed.
  • a gate hole 8 including the first and second openings 8A and 8B is obtained.
  • the gate hole 8 is formed, for example, in a circular shape having a diameter of 20 m. Further, a plurality (for example, several tens) of the gate holes 8 are formed per pixel.
  • the binder material (matrix) in the upper layer portion of the emitter layer 10 is removed through the gate holes 8, As shown in FIG. 5B, the carbon nanotubes 11 are exposed on the surface of the emitter layer 10 at the openings of the gate holes 8.
  • an etching method such as wet etching or dry etching can be preferably used.
  • conditions for applying wet etching are shown below.
  • Etching time 5 ⁇ 60 seconds
  • the method of removing the binder material is not limited to the etching method described above, but may be, for example, a method of removing the binder material by mechanical polishing using a wrapping tape, or a method of removing particles such as a sand plast. It is also possible to apply a method of removing by means of.
  • the carbon nanotubes 11 are subjected to an orientation treatment so that the carbon nanotubes 11 stand almost vertically on the surface of the emission layer 10.
  • an adhesive tape (not shown) on the support substrate 4 from above the gate electrode 7
  • the adhesive tape is peeled off, so that the carbon nanotubes 11 are attached to the support substrate 4.
  • the direction in which the carbon nanotubes 11 are oriented is a direction substantially perpendicular to the plane direction of the support substrate 4.
  • a large number of carbon nanotubes 11 are exposed on the surface of the emission layer 10. Therefore, a large number of carbon nanotubes 11 can be vertically oriented by sticking and peeling off the adhesive tape.
  • the orientation treatment of the carbon nanotube 11 may be performed, for example, by applying a voltage to the force source electrode 5 so that the cathode electrode 5 and the power It is also possible to charge the nanotubes 11 with the same polarity and to vertically orient each of the carbon nanotubes 11 in a state of being separated from each other by the repulsive force accompanying the charge.
  • the electron-emitting device By manufacturing the electron-emitting device according to the above steps, a large number of carbon nanotubes 11 can be vertically aligned on the surface of the emitter layer 10. As a result, it is possible to secure more carbon nanotubes 11 that emit electrons by field emission on the surface of the emitter layer 10. Therefore, it is possible to provide an electron-emitting device having excellent electron-emitting characteristics.
  • the piner material in the upper layer of the emitter layer is removed.
  • the removal removes a large number of emitter materials on the surface of the emitter layer, and in this state, orients each emitter material perpendicular to the support substrate, thereby forming a large number of emitter materials on the surface of the emitter layer.
  • the material can be oriented vertically. As a result, it becomes possible to provide an electron-emitting device having excellent electron-emitting characteristics.

Abstract

A method for manufacturing an electron-emitting device wherein a large number of carbon nanotubes can be perpendicularly oriented in the surface of an emitter layer is disclosed. The method comprises a step wherein a cathode electrode is formed on a supporting substrate (4), a step wherein an emitter layer (10) containing carbon nanotubes (11) and a binder material is formed on the cathode electrode, a step wherein the carbon nanotubes (11) are exposed in the surface of the emitter layer (10) by removing the binder material from the upper portion of the emitter layer (10), and a step wherein the carbon nanotubes (11) exposed in the surface of the emitter layer (10) are oriented generally perpendicular to the supporting substrate (4).

Description

明細書 電子放出素子の製造方法及び表示装置の製造方法 技術分野  Description: Method for manufacturing electron-emitting device and method for manufacturing display device
本発明は、 電子を放出する電子放出素子の製造方法及び表示装置の製 造方法に関する。 背景技術  The present invention relates to a method for manufacturing an electron-emitting device that emits electrons and a method for manufacturing a display device. Background art
近年、 カーボンナノチューブと呼ばれる力一ボンのグラフアイトシ一 トを巻いてできたチューブ構造をもつカーボンの結晶が発見された。 力 —ボンナノチューブの直径はおおむね 1 nmから 2 0 0 nm程度 (最近 では 0. 5 nmから 3 0 0 nm) まである。 また、 カーボンナノチュー ブは、 一層のグラフアイトシートからなる単層カーボンナノチューブと 二層以上のグラフアイトシートからなる多層カーボンナノチューブに大 別される。 このようにナノメータサイズのチューブ構造を有する結晶体 は他に類をみず、 特異な物質として位置付けられている。  In recent years, a carbon crystal called a carbon nanotube, which has a tube structure formed by winding a carbon graphite sheet, has been discovered. Force—Bon nanotube diameters are generally around 1 nm to 200 nm (more recently 0.5 nm to 300 nm). Carbon nanotubes are broadly classified into single-walled carbon nanotubes composed of one layer of graphite sheet and multi-walled carbon nanotubes composed of two or more layers of graphite sheet. Such a crystal having a nanometer-sized tube structure is regarded as a unique substance unlike any other.
現在、 カーボンナノチューブの製造方法としては、 レーザアブレエー シヨン法によるもの、 アーク法によるもの、 CVD Chemical Vapor Deposition)法によるものがある。 レーザアブレ一シヨン法によるも のでは、 D. S. Bethune, C. H. Kiang, M. S. de Vries, G.  At present, methods for producing carbon nanotubes include a method using a laser ablation method, a method using an arc method, and a method using a CVD chemical vapor deposition (CVD) method. The laser ablation method uses D.S.Bethune, C.H.Kiang, M.S.de Vries, G.
Gorman, R. Savoy, J . Vazque, R. Beyers 、 「Nature」 、 1993、 Vol 363、 p.605に記載されているように、 ニッケル及びコバルトを含 んだグラフアイトターゲットを、 1 0 0 0°C以上に熱した反応チャンバ —中でパルスレーザにより蒸発させる。 これにより、 チャンバ一側壁に カーボンナノチューブが成長する。 この方法は、 パルスレーザの条件を 変えることにより、 力一ボンナノチューブの長さなどのコントロールが 可能なことや、 作製されるカーボンナノチューブの純度が非常に高いこ とが特徴である。 この方法では単層カーボンナノチューブを作製する場 合に、 N i (ニッケル) 、 C o (コバルト) 、 F e (鉄) などの触媒が 必要である。 As described in Gorman, R. Savoy, J. Vazque, R. Beyers, “Nature”, 1993, Vol. 363, p. Evaporate with pulsed laser in a reaction chamber heated above ° C. As a result, carbon nanotubes grow on one side wall of the chamber. This method changes the conditions of the pulsed laser. By changing the length, it is possible to control the length of carbon nanotubes, etc., and it is characterized by the extremely high purity of the produced carbon nanotubes. This method requires a catalyst such as Ni (nickel), Co (cobalt), and Fe (iron) when producing single-walled carbon nanotubes.
ァ一ク法によるものでは、 TW Ebbesen , PM Aj ayan 、 「Nature」 、 1992、 Vol 358 、 p.220に記載されているように、 アルゴン 1 0 0 T o r rの雰囲気中で炭素製の電極を用いて直流アーク放電を行う。 これ により、 負の電極の一部分に炭素微粒子とともにカーボンナノチューブ が成長する。 この方法は、 上記レ一ザアブレーシヨン法に比較して、 作 製されるカーボンナノチューブの量が非常に多いことが特徴である。 こ の方法でも単層カーボンナノチューブを作製する場合に、 N i 、 C o、 F eなどの触媒が必要である。  As described in TW Ebbesen, PM Ajayan, “Nature”, 1992, Vol 358, p. 220, a carbon electrode is used in an atmosphere of argon 100 Torr. To perform DC arc discharge. As a result, carbon nanotubes grow together with carbon fine particles on a part of the negative electrode. This method is characterized in that the amount of carbon nanotubes produced is much larger than that of the laser abrasion method. In this method, when producing single-walled carbon nanotubes, a catalyst such as Ni, Co, or Fe is required.
C VD法によるものでは、 0. M. Kuttel, 0. Groening, C.  According to the C VD method, 0. M. Kuttel, 0. Groening, C.
Emmenegger , L. Sch 1 apbach 、 「Appl.Phys. Lett. J 、 1998、 Vol 73、 p.2113に記載されているように、 N i (ニッケル) を触媒金属と し、 N iコーティングされた基板、 もしくは N i基板を使用するもので, 先ず、 反応容器にアンモニアを導入し、 プラズマを発生させ、 N iをァ ンモニァプラズマによって前処理する。 次に、 アセチレンなどのカーボ ンの原料ガスを導入する。 このとき、 アンモニアや水素、 アルゴンなど のガスを混合しても構わない。 このときの成膜温度は 5 0 0〜 5 5 0 である。 As described in Emmenegger, L. Sch 1 apbach, “Appl. Phys. Lett. J, 1998, Vol. 73, p. 2113, Ni-coated substrate using Ni (nickel) as a catalyst metal. , Or Ni substrate is used, first, ammonia is introduced into the reaction vessel, plasma is generated, and Ni is pre-treated with ammonia plasma, and then carbon source gas such as acetylene is introduced. At this time, a gas such as ammonia, hydrogen, or argon may be mixed in. The film forming temperature at this time is 500 to 550.
このような手法で製造されるカーボンナノチューブは、 そのグラファ ィトシ一トの巻き方や直径に依存して半導体的な性質や金属的な性質を 持つものとなる。 これらの特異な性質から、 力一ボンナノチューブは、 各種の電子デバイスや電気デバイスへの応用が期待されている。 その最 も顕著な例の一つとして、 電界放出型の平面表示装置 (ディスプレイ) である FED (Field Emission Display) への応用がある。 カーボ ンナノチューブを電子放出源としてカソ一ド電極に取り付け、 ある閾値 以上の電界をかけると、 これに伴う電界の集中によってナノチューブ表 面のエネルギー障壁が低く薄くなり、 トンネル効果によって電子が真空 中に放出される。 この現象は電界放出と呼ばれる。 The carbon nanotubes produced by such a method have semiconducting or metallic properties depending on the winding and diameter of the graphite sheet. Because of these unique properties, carbon nanotubes are expected to be applied to various electronic and electrical devices. The most Another prominent example is the application to FED (Field Emission Display), which is a field emission type flat display device (display). When a carbon nanotube is attached to a cathode electrode as an electron emission source and an electric field above a certain threshold is applied, the concentration of the electric field causes the energy barrier on the nanotube surface to be low and thin, and the tunnel effect causes electrons to enter the vacuum. Released. This phenomenon is called field emission.
F EDでは、 上記電界放出現象 ¾利用して、 電気的に選択 (アドレツ シング) されたエミッタから電界の集中によって電子を放出させるとと もに、 この電子をアノード基板側の蛍光体に衝突させて、 蛍光体の励 起 ·発光により画像を表示している。 カーボンナノチューブは、 高いァ スぺクト比を有し、 先端の曲率半径も非常に小さいため、 高い発光効率 を実現するェミツ夕材料として有望視されている。  In the FED, utilizing the above-mentioned field emission phenomenon, electrons are emitted from an electrically selected (addressed) emitter by the concentration of an electric field, and the electrons collide with the phosphor on the anode substrate side. The image is displayed by the excitation and emission of the phosphor. Since carbon nanotubes have a high aspect ratio and a very small radius of curvature at the tip, they are promising as emitter materials that achieve high luminous efficiency.
また、 カーボンナノチューブは非常に細かい微粒子 (粉末) であるた め、 力一ボンナノチューブを用いてェミッタを形成する場合は、 カーボ ンナノチューブを基板に固着する必要がある。 一般に、 カーボンナノチ ユーブの固着には、 銀ペーストや I T〇(Indium Tin Oxide)溶液など のように導電性の高いバインダ材料が用いられる。 具体的には、 バイン ダ材料に力一ボンナノチューブを混入してペースト状 (又はスラリー状、 あるいはインク状) とし、 これを印刷法、 スプレー法、 ダイコー夕一法 等の手法で基板の表面に塗布することにより、 バインダ材料の接着性を 利用して基板上に力一ボンナノチューブを固着する。  In addition, since carbon nanotubes are very fine particles (powder), when carbon nanotubes are used to form an emitter, the carbon nanotubes must be fixed to the substrate. Generally, a highly conductive binder material such as a silver paste or an IT〇 (Indium Tin Oxide) solution is used for fixing the carbon nanotubes. Specifically, carbon nanotubes are mixed into a binder material to form a paste (or a slurry or an ink), which is applied to the surface of the substrate by a printing method, a spray method, a Daiko method, or the like. By coating, the carbon nanotubes are fixed on the substrate using the adhesive property of the binder material.
ここで、 力一ボンナノチューブを含むペースト材料の塗布に関して、 例えば、 特開 2 0 0 0— 6 3 72 6号公報には、 有機溶剤中に樹脂が溶 解されているビヒクルとそのビヒクル中に分散された円筒状のグラファ ィトの層からなる複数の力一ボンナノチューブとから導電性ペーストを 構成すること、 及び、 この導電性ペーストを蛍光表示管の蛍光体層が形 成されるアノード電極の形成に用いることが記載されている。 Regarding the application of the paste material containing carbon nanotubes, for example, Japanese Patent Application Laid-Open No. 2000-63726 discloses a vehicle in which a resin is dissolved in an organic solvent and a vehicle in which the resin is dissolved. A conductive paste is formed from a plurality of carbon nanotubes composed of dispersed cylindrical graphite layers. It is described that the conductive paste is used for forming an anode electrode on which a phosphor layer of a fluorescent display tube is formed.
また、 カーボンナノチューブを用いてエミッ夕を形成する手法に関し て、 例えば、 特開 2 0 0 1— 3 5 3 6 0号公報には、 絶縁基板にカソー ド導体を被着する工程と、 その力ソード導体にカーボンナノチューブ、 フラ一レン、 ナノパーティクル、 ナノカプセル及びカーボンナノホーン の中の少なくとも一つを含むペースト材料を塗布して力一ボン層を形成 する工程と、 乾燥したカーボン層に粘着テープを貼付した後、 その粘着 テープを剥離させてエミッ夕を形成する工程と、 エミッ夕から離間する 位置にゲート電極を形成する工程とを有する電子放出源の製造方法が記 載されている。  Also, regarding a method of forming an emitter using carbon nanotubes, for example, Japanese Patent Application Laid-Open No. 2001-355360 discloses a process of attaching a cathode conductor to an insulating substrate, Applying a paste material containing at least one of carbon nanotubes, fullerenes, nanoparticles, nanocapsules and carbon nanohorns to a sword conductor to form a carbon layer, and applying an adhesive tape to the dried carbon layer It describes a method for manufacturing an electron emission source having a step of forming an emitter by peeling off the adhesive tape after attaching, and a step of forming a gate electrode at a position separated from the emitter.
また、 特開 2 0 0 2— 1 9 7 9 6 5号公報 (第 2頁、 第 1 8頁、 第 5 図) には、 支持体上に力ソード電極を形成する工程と、 支持体及びカソ 一ド電極上に絶縁層を形成する工程と、 絶縁層上に開口部を有するゲー ト電極を形成する工程と、 ゲート電極に形成された開口部に連通する第 2の開口部を絶縁層に形成する工程と、 第 2の開口部の底部に位置する カソ一ド電極の部分の表面に、 金属薄膜又は有機金属化合物薄膜の形成 によって炭素薄膜選択成長領域を形成する工程と、 炭素薄膜選択成長領 域上に炭素薄膜を形成する工程とからなる冷陰極電界電子放出素子の製 造方法が記載されている。  Also, Japanese Patent Application Laid-Open No. 2002-197695 (page 2, page 18, FIG. 5) discloses a process of forming a force source electrode on a support, Forming an insulating layer on the cathode electrode, forming a gate electrode having an opening on the insulating layer, and forming a second opening communicating with the opening formed on the gate electrode in the insulating layer. Forming a carbon thin film selective growth region by forming a metal thin film or an organometallic compound thin film on the surface of the portion of the cathode electrode located at the bottom of the second opening; and selecting the carbon thin film. A method for manufacturing a cold cathode field emission device comprising a step of forming a carbon thin film on a growth region is described.
また、 2 0 0 1— 4 3 7 9 0号公報 (第 2頁、 第 7— 1 0頁、 第 1一 9図) には、 支持体上にカゾード電極を形成する工程と、 力ソード電極 上を含む支持体上に絶縁層を形成する工程と、 絶縁層上にゲート電極を 形成する工程と、 底部に力ソード電極が露出した開口部を、 少なくとも 絶縁層に形成する工程と、 導電性粒子及びバインダを含む導電性組成物 からなる電子放出電極を、 開口部の底部に露出したカソード電極上に形 成する工程と、 電子放出電極の表層部のバインダを除去することにより、 電子放出電極の表面に導電性粒子を露出させる工程とを有する冷陰極電 界電子放出素子の製造方法が記載されている。 In addition, Japanese Patent Publication No. 2000-143079 (page 2, page 7-10, FIG. 19) discloses a process of forming a cathode electrode on a support, A step of forming an insulating layer on a support including the above, a step of forming a gate electrode on the insulating layer, a step of forming at least an opening in which a force source electrode is exposed at the bottom in the insulating layer, An electron emission electrode made of a conductive composition containing particles and a binder is formed on the cathode electrode exposed at the bottom of the opening. A method of manufacturing a cold-cathode field electron-emitting device, comprising the steps of: exposing conductive particles to the surface of an electron-emitting electrode by removing a binder on the surface of the electron-emitting electrode; .
しかしながら従来においては、 カーボンナノチューブのような繊維状 のェミッタ材料を用いて電子放出素子を製造する場合、 基板にカーボン ナノチューブを固着するために、 バインダ材料と力一ボンナノチューブ を混合した複合材料を用いてエミッ夕層を形成している。 そのため、 ェ ミッタ層に含まれる殆どのカーボンナノチューブがバインダ材料 (マト リックス) 中に埋め込まれた状態となる。 したがって、 ェミッタ層の表 面で、 例えば粘着テープの貼り付け及び引き剥がしを行っても、 一部の カーボンナノチューブしか垂直に配向されないという不具合があった。 本発明は、 上記課題を解決するためになされたもので、 その目的とす るところは、 エミッ夕層の表面で多数のカーボンナノチューブを垂直に 配向させることができる電子放出素子の製造方法及び表示装置の製造方 法を提供することにある。 発明の開示  However, conventionally, when an electron-emitting device is manufactured using a fibrous emitter material such as carbon nanotubes, a composite material in which a binder material and carbon nanotubes are mixed is used to fix the carbon nanotubes to the substrate. To form the Emiyu Formation. As a result, most of the carbon nanotubes contained in the emitter layer are embedded in the binder material (matrix). Therefore, even if, for example, an adhesive tape is applied and peeled off on the surface of the emitter layer, only a part of the carbon nanotubes is vertically oriented. The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide a method and a method for manufacturing an electron-emitting device capable of vertically aligning a large number of carbon nanotubes on the surface of an emission layer. An object of the present invention is to provide a method of manufacturing the device. Disclosure of the invention
本発明に係る電子放出素子の製造方法は、 支持基板上にカソード電極 を形成する工程と、 繊維状のエミッ夕材料とバインダ材料とを含むエミ ッ夕層を力ソード電極上に形成する工程と、 ェミッタ層の上層部のバイ ンダ材料を除去することにより、 エミッ夕層の表面にエミッ夕材料を露 出させる工程と、 エミッ夕層の表面に露出させたエミッ夕材料を支持基 板に対してほぼ垂直に配向させる工程とを有するものである。  The method for manufacturing an electron-emitting device according to the present invention includes the steps of: forming a cathode electrode on a support substrate; and forming an emitter layer containing a fibrous emitter material and a binder material on a force source electrode. Removing the binder material in the upper part of the emitter layer to expose the emitter material to the surface of the emitter layer, and removing the emitter material exposed on the surface of the emitter layer to the support substrate. And a step of substantially vertical alignment.
また、 本発明に係る表示装置の製造方法は、 電子放出素子の製造工程 として、 支持基板上に力ソード電極を形成する工程と、 繊維状のエミッ 夕材料とパインダ材料とを含むエミッタ層を力ソード電極上に形成する 工程と、 エミッ夕層の上層部のバインダ材料を除去することにより、 ェ ミッタ層の表面にエミッタ材料を露出させる工程と、 ェミッタ層の表面 に露出させたェミッタ材料を支持基板に対してほぼ垂直に配向させるェ 程とを有するものである。 Further, in the method of manufacturing a display device according to the present invention, as a manufacturing process of the electron-emitting device, a step of forming a force source electrode on a supporting substrate and a step of forming an emitter layer containing a fibrous emitter material and a pinda material are performed. Form on Sword electrode A step of exposing the emitter material to the surface of the emitter layer by removing the binder material in an upper layer of the emitter layer; and a step of substantially exposing the emitter material exposed to the surface of the emitter layer to the support substrate. And a step of orienting the particles.
上記電子放出素子の製造方法及び表示装置の製造方法においては、 支 持基板上にカソ一ド電極を形成した後、 カソ一ド電極上に繊維状のエミ ッタ材料とバインダ材料とを含むェミッタ層を形成し、 その後、 ェミツ 夕層の上層部のバインダ材料を除去することにより、 ェミッタ層に含ま れる多数のエミッ夕材料がエミッタ層の表面に露出した状態となり、 こ の状態でェミッタ材料を支持基板に対してほぼ垂直に配向させることに より、 エミッ夕層の表面で多数のエミッタ材料が垂直に配向された状態 となる。 図面の簡単な説明  In the above-described method for manufacturing an electron-emitting device and a method for manufacturing a display device, after a cathode electrode is formed on a support substrate, an emitter including a fibrous emitter material and a binder material is formed on the cathode electrode. After forming the layer, the binder material in the upper layer of the emitter layer is removed, so that a large number of emitter materials contained in the emitter layer are exposed on the surface of the emitter layer. In this state, the emitter material is removed. By being oriented almost perpendicular to the supporting substrate, a large number of emitter materials are vertically oriented on the surface of the emitter layer. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明が適用される表示装置のパネル構造の一例を示す断 面図である。  FIG. 1 is a cross-sectional view showing an example of a panel structure of a display device to which the present invention is applied.
第 2図は、 本発明が適用される表示装置のパネル構造の一例を示す分 解斜視図である。  FIG. 2 is an exploded perspective view showing an example of a panel structure of a display device to which the present invention is applied.
第 3 A図乃至第 3 E図は、 本発明の実施形態に係る電子放出素子の製 造方法の具体例を示す工程図 (その 1 ) である。  3A to 3E are process diagrams (part 1) illustrating a specific example of a method for manufacturing an electron-emitting device according to an embodiment of the present invention.
第 4 A図乃至第 4 C図は、 本発明の実施形態に係る電子放出素子の製 造方法の具体例を示す工程図 (その 2 ) である。  4A to 4C are process diagrams (part 2) illustrating a specific example of the method for manufacturing the electron-emitting device according to the embodiment of the present invention.
第 5 A図乃至第 5 C図は、 本発明の実施形態に係る電子放出素子の製 造方法の具体例を示す工程図 (その 3 ) である。 発明を実施するための最良の形態 以下、 本発明の実施の形態について図面を参照しつつ詳細に説明する 第 1図は本発明が適用される表示装置のパネル構造の一例を示す断面 図であり、 第 2図はその分解斜視図である。 第 1図及び第 2図において は、 力ソードパネル (力ソード基板) 1とアノードパネル (アノード基 板) 2とを所定の間隙を介して対向状態に配置するとともに、 それらの パネル 1 , 2を枠体 3によって一体的に組み付けることにより、 画像表 示のための一つのパネル構体 (表示パネル) が構成されている。 5A to 5C are process diagrams (part 3) illustrating a specific example of the method for manufacturing the electron-emitting device according to the embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing an example of a panel structure of a display device to which the present invention is applied, and FIG. It is. In FIGS. 1 and 2, a force sword panel (force sword substrate) 1 and an anode panel (anode substrate) 2 are arranged facing each other with a predetermined gap therebetween, and the panels 1 and 2 are connected to each other. One panel structure (display panel) for displaying an image is formed by integrally assembling with the frame 3.
カソ一ドパネル 1上には複数の電子放出素子が形成されている。 これ ら複数の電子放出素子は、 カソードパネル 1の有効領域 (実際に表示部 分として機能する領域) に 2次元マトリックス状に多数形成されている c 各々の電子放出素子は、 カソードパネル 1のベースとなる絶縁性の支持 基板 (例えば、 ガラス基板) 4と、 この支持基板 4上に積層状態で順に 形成された力ソード電極 5、 絶縁層 6及びゲート電極 7と、 ゲート電極 7及び絶縁層 6に形成されたゲートホール 8と、 このゲ一トホール 8の 底部に形成された電子放出部 9とによって構成されている。 On the cathode panel 1, a plurality of electron-emitting devices are formed. These plurality of electron-emitting devices, electron-emitting device of c each in the effective region of the cathode panel 1 (region functioning as actual display content) are formed a large number in a two-dimensional matrix form, the cathode panel 1 based An insulating support substrate (for example, a glass substrate) 4, a force source electrode 5, an insulating layer 6 and a gate electrode 7, which are sequentially formed in a laminated state on the support substrate 4, a gate electrode 7 and an insulating layer 6 A gate hole 8 formed at the bottom of the gate hole 8 and an electron emission portion 9 formed at the bottom of the gate hole 8.
力ソード電極 5は、 複数のカソ一ドラインを形成するようにストライ プ状に形成されている。 ゲート電極 7は、 各々の力ソードラインと交差 (直交) する複数のゲートラインを形成するようにストライプ状に形成 されている。 ゲートホール 8は、 ゲート電極 7に形成された第 1の開口 部 8 Aと、 この第 1の開口部 8 Aに連通する状態で絶縁層 6に形成され た第 2の開口部 8 Bとから構成されている。 電子放出部 9は、 主として 繊維状のェミッタ材料とバインダ材料 (マトリックス) とを含むエミッ 夕層 1 0によって形成されている。 エミッタ層 1 0の表面には繊維状の エミッ夕材料となる複数のカーボンナノチューブ 1 1が配置されている t 各々のカーボンナノチューブ 1 1は、 一端側がェミッタ層 1 0の表面か ら垂直に突出し、 他端側はェミッタ層 1 0のバインダ材料中に埋め込ま れた状態となっている。 Force sword electrode 5 is formed in a stripe shape so as to form a plurality of cathode lines. The gate electrode 7 is formed in a stripe shape so as to form a plurality of gate lines intersecting (orthogonal to) each force source line. The gate hole 8 is formed by a first opening 8A formed in the gate electrode 7 and a second opening 8B formed in the insulating layer 6 so as to communicate with the first opening 8A. It is configured. The electron emission portion 9 is mainly formed by an emitter layer 10 containing a fibrous emitter material and a binder material (matrix). Emitter layer 1 0 carbon nanotubes 1 1 on the surface of t each plurality of carbon nanotubes 1 1 as the emitter evening fibrous material is arranged, or one end Emitta layer 1 0 surface The other end side is embedded in the binder material of the emitter layer 10.
一方、 アノードパネル 2は、 ベースとなる透明基板 1 2と、 この透明 基板 1 2上に形成された蛍光体層 1 3及びブラックマトリックス 1 4と、 これら蛍光体層 1 3及びブラックマトリックス 1 4を覆う状態で透明基 板 1 2上に形成されたアノード電極 1 5とを備えて構成されている。 蛍 光体層 1 3は、 赤色発光用の蛍光体層 1 3 Rと、 緑色発光用の蛍光体層 1 3 Gと、 青色発光用の蛍光体層 1 3 Bとから構成されている。 ブラッ クマトリックス 1 4は、 各色発光用の蛍光体層 1 3 R, 1 3 G , 1 3 B の間に形成されている。 アノード電極 1 5は、 力ソードパネル 1の電子 放出素子と対向するように、 アノードパネル 2の有効領域の全域に積層 状態で形成されている。  On the other hand, the anode panel 2 includes a transparent substrate 12 serving as a base, a phosphor layer 13 and a black matrix 14 formed on the transparent substrate 12, and a phosphor layer 13 and a black matrix 14. An anode electrode 15 formed on the transparent substrate 12 in a state of being covered is provided. The phosphor layer 13 includes a phosphor layer 13R for emitting red light, a phosphor layer 13G for emitting green light, and a phosphor layer 13B for emitting blue light. The black matrix 14 is formed between the phosphor layers 13 R, 13 G, and 13 B for each color emission. The anode electrode 15 is formed in a laminated state over the entire effective area of the anode panel 2 so as to face the electron-emitting device of the force panel 1.
これらのカソードパネル 1とアノードパネル 2とは、 それぞれの外周 部 (周縁部) で枠体 3を介して接合されている。 また、 力ソードパネル 1の無効領域 (有効領域の外側の領域で、 実際に表示部分として機能し ない領域) には真空排気用の貫通孔 1 6が設けられている。 貫通孔 1 6 には、 真空排気後に封じ切られるチップ管 1 7が接続されている。 ただ し、 第 1図は表示装置の組み立て完了状態を示しているため、 チップ管 1 7は既に封じ切られた状態となっている。 また、 第 1図及び第 2図に おいては、 各々のパネル 1 , 2間のギャップ部分に介装される耐圧用の 支持体 (スぺ一サ) の表示を省略している。  The cathode panel 1 and the anode panel 2 are joined via a frame 3 at their outer peripheral parts (peripheral parts). Further, a through hole 16 for evacuation is provided in an invalid area of the force sword panel 1 (an area outside the effective area and does not actually function as a display portion). A chip tube 17 that is sealed off after evacuation is connected to the through hole 16. However, since FIG. 1 shows a state where the display device has been assembled, the tip tube 17 has already been sealed off. Also, in FIGS. 1 and 2, the illustration of the pressure-resistant support (spacer) interposed in the gap between the panels 1 and 2 is omitted.
上記構成のパネル構造を有する表示装置においては、 カソード電極 5 に相対的な負電圧が力ソード電極制御回路 1 8から印加され、 ゲート電 極 7には相対的な正電圧がゲート電極制御回路 1 9から印加され、 ァノ ―ド電極 1 5にはゲート電極 7よりも更に高い正電圧がアノード電極制 御回路 2 0から印加される。 かかる表示装置において、 実際に画像の表 示を行う場合は、 例えば、 力ソード電極 5に力ソード電極制御回路 1 8 から走査信号を入力し、 ゲ一ト電極 7にゲート電極制御回路 1 9からビ デォ信号を入力する。 あるいは又、 力ソード電極 5に力ソード電極制御 回路 1 8からビデオ信号を入力し、 ゲート電極 7にゲート電極制御回路 1 9から走査信号を入力する。 In the display device having the above-described panel structure, a relative negative voltage is applied to the cathode electrode 5 from the force electrode control circuit 18, and a relative positive voltage is applied to the gate electrode 7. A positive voltage higher than that of the gate electrode 7 is applied to the anode electrode 15 from the anode electrode control circuit 20. In such a display device, an image table is actually displayed. For example, a scanning signal is input to the power source electrode 5 from the power source electrode control circuit 18, and a video signal is input to the gate electrode 7 from the gate electrode control circuit 19. Alternatively, a video signal is inputted to the force electrode 5 from the force electrode control circuit 18, and a scanning signal is inputted to the gate electrode 7 from the gate electrode control circuit 19.
これにより、 カソ一ド電極 5とゲート電極 7との間に電圧が印加され、 これによつて電子放出部 9の先鋭部 (カーボンナノチューブ 1 1の先端 部) に電界が集中することにより、 量子トンネル効果によって電子がェ ネルギー障壁を突き抜けて電子放出部 9から真空中へと放出される。 こ うして放出された電子はアノード電極 1 5に引き付けられてアノードパ ネル 2側に移動し、 透明基板 1 2上の蛍光体層 1 3 ( 1 3 R , 1 3 G , 1 3 B ) に衝突する。 その結果、 蛍光体層 1 3が電子の衝突により励起 されて発光するため、 この発光位置を画素単位で制御することにより、 表示パネル上に所望の画像を表示することができる。  As a result, a voltage is applied between the cathode electrode 5 and the gate electrode 7, whereby the electric field is concentrated on the sharp portion of the electron emitting portion 9 (the tip portion of the carbon nanotube 11). Due to the tunnel effect, electrons penetrate the energy barrier and are emitted from the electron emitting portion 9 into a vacuum. The emitted electrons are attracted to the anode electrode 15 and move to the anode panel 2 side, where they collide with the phosphor layer 13 (13R, 13G, 13B) on the transparent substrate 12. I do. As a result, the phosphor layer 13 is excited by the collision of the electrons to emit light, and a desired image can be displayed on the display panel by controlling the light emitting position on a pixel basis.
続いて、 本発明の実施形態に係る電子放出素子の製造方法の具体例に ついて、 第 3 A図〜第 5 C図を用いて説明する。  Subsequently, a specific example of the method for manufacturing the electron-emitting device according to the embodiment of the present invention will be described with reference to FIGS. 3A to 5C.
先ず、 第 3 A図に示すように、 力ソードパネル 1のベースとなる支持 基板 4上に力ソード電極形成用の導電材料を用いて力ソード電極 (導電 層) 5を形成する。 この力ソード電極 5は、 例えばスパッタリング法に より形成される厚さ約 0 . 2 mのクロム層によって形成される。  First, as shown in FIG. 3A, a force source electrode (conductive layer) 5 is formed on a support substrate 4 serving as a base of the power source panel 1 using a conductive material for forming a force source electrode. The force source electrode 5 is formed of, for example, a chromium layer having a thickness of about 0.2 m formed by a sputtering method.
次に、 支持基板 4の全面に例えばスパッタリング法により S i C N膜 を成膜することにより、 第 3 B図に示すように、 力ソード電極 5を覆う 状態で S i C N膜からなる厚さ約 0 . 2 mの抵抗層 2 1を形成する。 この抵抗層 2 1は、 ェミッタへの放電電流が大きぐなつた場合に、 抵抗 による電圧降下の増大によってエミッ夕に作用する実効電圧を減少させ、 逆にエミッ夕への放電電流が小さくなった場合はエミッ夕に作用する実 効電圧を増加させることにより、 放電電流を安定化させ 役目を果たす ものである。 抵抗層 2 1は必要に応じて形成される。 Next, by forming an SiCN film on the entire surface of the support substrate 4 by, for example, a sputtering method, as shown in FIG. 3B, the thickness of the SiCN film in a state of covering the force source electrode 5 is reduced. A 0.2 m resistive layer 21 is formed. When the discharge current to the emitter becomes large, the resistance layer 21 reduces the effective voltage acting on the emitter due to an increase in the voltage drop due to the resistance, and conversely, the discharge current to the emitter becomes smaller. If you act on Emi Yu Increasing the effective voltage stabilizes the discharge current and plays a role. The resistance layer 21 is formed as needed.
次に、 抵抗層 2 1の上 (抵抗層 2 1を形成しない場合は力ソード電極 5の上) に、 エミッ夕材料となるカーボンナノチューブ 1 1を配置する ための処理を行う。 具体的には、 パインダ材料として熱分解性有機金属 である有機スズ及び有機ィンジゥムを用いるとともに、 エミッ夕材料と してカーボンナノチューブの粉末を用い、 これらを以下の条件で揮発性 溶液、 例えば酢酸ブチル中に分散させた混合溶液を得る。 その際、 カー ボンナノチューブの分散性を向上させるために超音波処理を行ってもよ い。 希釈剤は水系でも非水系でもかまわないが、 どちらを使用するかに よって分散剤も変わることを前提とする。 また、 他の添加剤を混ぜるこ とも可能である。 力一ボンナノチューブは、 例えば平均直径 I n m、 平 均長さ 1 mといった非常に細長いチューブ構造 (繊維状) を有するも のを用いる。  Next, a process for arranging the carbon nanotubes 11 serving as an emitter material on the resistive layer 21 (on the force source electrode 5 when the resistive layer 21 is not formed) is performed. More specifically, organotin and organic indium, which are thermally decomposable organic metals, are used as the pinda material, and carbon nanotube powder is used as the emitter material. These are used as volatile solutions under the following conditions, such as butyl acetate. A mixed solution dispersed therein is obtained. At that time, ultrasonic treatment may be performed to improve the dispersibility of the carbon nanotube. The diluent may be aqueous or non-aqueous, but it is assumed that the dispersant will vary depending on which one is used. It is also possible to mix other additives. As the carbon nanotube, one having a very elongated tube structure (fibrous shape) having, for example, an average diameter of Inm and an average length of 1 m is used.
(混合溶液の生成条件)  (Conditions for forming a mixed solution)
- 有機スズ及び有機インジウム : 1 0〜 5 0質量%  -Organic tin and organic indium: 10-50% by mass
酢酸ブチル: 3 0〜 8 0質量%  Butyl acetate: 30 to 80% by mass
分散剤 (例えば、 ドデシル硫酸ナトリウム) : 0 . 1〜 5質量% 力一ボンナノチューブ: 0 . 0 0 1〜 2 0質量%  Dispersant (for example, sodium dodecyl sulfate): 0.1 to 5% by mass Carbon nanotube: 0.001 to 20% by mass
なお、 ェミッタ材料としては、 カーボンナノチューブ以外にも、 カー ボンナノファイバを用いることが可能である。 また、 パインダ材料とし ては、 上述した熱分解性有機金属以外にも、 例えば塩化スズ、 塩化イン ジゥムなどの金属塩を用いることが可能である。  As the emitter material, carbon nanofibers can be used in addition to carbon nanotubes. Further, as the pinda material, for example, metal salts such as tin chloride and indium chloride can be used in addition to the above-mentioned thermally decomposable organic metals.
続いて、 上記の混合溶液をスプレー法等により支持基板 4上に塗布す ることにより、 第 3 C図に示すように、 カーボンナノチューブとパイン ダ材料とを含むェミッタ層 (複合体層) 1 0を形成する。 このエミッ夕 層 1 0は印刷法を用いて形成することも可能である。 Subsequently, the above mixed solution is applied onto the supporting substrate 4 by a spray method or the like, so that the carbon nanotubes and the pine are coated as shown in FIG. 3C. An emitter layer (composite layer) 10 containing the material is formed. The emission layer 10 can be formed by a printing method.
その後、 エミッ夕層 1 0を以下の条件で焼成する。 これにより、 有機 成分の蒸発によってバインダ材料中 (マトリックス中) にカーボンナノ チューブが埋め込まれた状態の固体化したエミッ夕層 1 0が得られる。  After that, the emimy layer 10 is fired under the following conditions. As a result, a solid EMI layer 10 in which carbon nanotubes are embedded in the binder material (in the matrix) due to evaporation of the organic component is obtained.
(焼成条件)  (Firing conditions)
雰囲気:大気中  Atmosphere: in the atmosphere
焼成温度: 5 0 0 °C  Firing temperature: 500 ° C
焼成時間: 3 0分  Firing time: 30 minutes
次いで、 ェミッタ層 1 0をストライプ状に加工する。 具体的には、 レ ジスト材料 (フォトレジスト) をスピンコート法によって塗布すること により、 エミッ夕層 1 0を覆うレジスト膜を形成するとともに、 このレ ジスト膜をフォトリソグラフィ技術によってパターニングすることによ り、 エッチングマスクとなるレジストパターンをェミッタ層 1 0上に形 成する。 次に、 レジストパターンで被覆されたエミッ夕層 1 0を除く部 分を、 例えば以下の条件に基づくゥエツトエッチングで除去することに より、 第 3 D図に示すように、 支持基板 4上でェミッタ層 1 0をストラ イブ状に形成する。  Next, the emitter layer 10 is processed into a stripe shape. Specifically, a resist material (photoresist) is applied by spin coating to form a resist film covering the emitter layer 10 and patterning the resist film by photolithography. Then, a resist pattern serving as an etching mask is formed on the emitter layer 10. Next, as shown in FIG. 3D, the portion excluding the emission layer 10 covered with the resist pattern is removed by, for example, an etching process based on the following conditions, thereby forming a portion on the support substrate 4. The emitter layer 10 is formed in a stripe shape.
(ゥエツトエッチング条件)  (ゥ Etch etching conditions)
エッチング液:塩酸 (H C 1 )  Etching solution: hydrochloric acid (H C 1)
エツチング時間: 1 0秒〜 3 0分  Etching time: 10 seconds to 30 minutes
エツチング温度: 1 0〜 6 0 °C  Etching temperature: 10-60 ° C
このとき、 所望の領域以外にカーボンナノチューブが存在する場合は, この不要な力一ボンナノチューブを、 酸素プラズマ又は酸化溶液を使用 して以下の条件でエッチングにより除去する。  At this time, if carbon nanotubes are present in a region other than the desired region, the unnecessary carbon nanotubes are removed by etching using oxygen plasma or an oxidizing solution under the following conditions.
(酸素プラズマエッチングの条件) 装置: R I E (reactive ion etching)装置 (Oxygen plasma etching conditions) Equipment: RIE (reactive ion etching) equipment
導入ガス :酸素を含むガス  Introduced gas: gas containing oxygen
プラズマ励起パワー: 5 0 0W  Plasma excitation power: 500W
バイアスパヮ一: 0〜 1 5 0 W (D Cでも R Fでもよいが、 R Fが好 ましい)  Bias power: 0 to 150 W (DC or RF may be used, RF is preferred)
エッチング時間: 1 0秒以上  Etching time: 10 seconds or more
(酸化溶液エッチングの条件)  (Oxidation solution etching conditions)
溶液: KM n〇4 Solution: KM n〇 4
エツチング温度: 2 0〜 8 0  Etching temperature: 20 ~ 80
エッチング時間: 1 0秒〜 2 0分  Etching time: 10 seconds to 20 minutes
続いて、 周知のリソグラフィ技術及び反応性イオンエッチング法 (R I E法) により、 抵抗層 2 1及び力ソード電極 5をパ夕一ニングするこ とにより、 第 3 E図に示すように、 支持基板 4上で力ソード電極 5をス 卜ライプ状に形成する。 この時点で支持基板 4上に複数本の力ソードラ インが形成される。  Subsequently, the resistive layer 21 and the force source electrode 5 are patterned by a well-known lithography technique and a reactive ion etching method (RIE method), and as shown in FIG. The force sword electrode 5 is formed in a strip shape. At this point, a plurality of force saw lines are formed on the support substrate 4.
次に、 第 4 A図に示すように、 支持基板 4上において、 力ソード電極 5、 抵抗層 2 1及びェミッタ層 1 0の積層部を覆うように絶縁層 6を形 成し、 さらにその絶縁層 6の上に、 第 4 B図に示すように、 ゲ一ト電極 形成用の導電材料を用いてゲート電極 (導電層) 7を形成する。 具体的 には、 T EO S (テトラエトキシシラン) を原料ガスとして使用する C VD法により、 支持基板 4の全面に例えば S i〇2からなる厚さ約 1 mの絶縁層 6を形成し、 次いで、 絶縁層 6の上にクロムからなるゲ一ト 電極 7をスパッタリング法によって形成する。 Next, as shown in FIG. 4A, an insulating layer 6 is formed on the support substrate 4 so as to cover the laminated portion of the force source electrode 5, the resistance layer 21 and the emitter layer 10, and furthermore, the insulating layer 6 is formed. As shown in FIG. 4B, a gate electrode (conductive layer) 7 is formed on the layer 6 using a conductive material for forming a gate electrode. Specifically, the C VD method using T EO S (tetraethoxysilane) as a source gas, an insulating layer 6 having a thickness of about 1 m to be the entire surface of the supporting substrate 4, for example, from S I_〇 2 form, Next, a gate electrode 7 made of chromium is formed on the insulating layer 6 by a sputtering method.
次に、 ゲート電極 7の上に図示しないエッチングマスクを形成し、 こ のエッチングマスクを用いてゲ一ト電極 7の所定部位をエッチングする ことにより、 第 4 C図に示すように、 絶縁層 6上でゲート電極 7をスト ライプ状に形成するとともに、 このゲート電極 7を貫通する第 1の開口 部 8 Aを形成する。 このとき、 ストライプ状のゲート電極 7は、 カソ一 ド電極 5とほぼ直角に交差 (直交) する状態で形成される。 これにより、 支持基板 4上に上記カソードラインに直交する複数本のゲートラインが 形成される。 Next, an etching mask (not shown) is formed on the gate electrode 7, and a predetermined portion of the gate electrode 7 is etched using the etching mask, thereby forming the insulating layer 6 as shown in FIG. 4C. Above the gate electrode 7 A first opening 8A penetrating through the gate electrode 7 is formed in a lip shape. At this time, the striped gate electrode 7 is formed so as to intersect (orthogonally) the cathode electrode 5 almost at right angles. As a result, a plurality of gate lines orthogonal to the cathode lines are formed on the support substrate 4.
次に、 ゲート電極 7の第 1の開口部 8 Aを通して絶縁層 6を例えば R I E法でエッチングすることにより、 第 5 A図に示すように、 ェミッタ 層 1 0の表面を露出する状態で第 2の開口部 8 Bを形成する。 これによ り、 第 1, 第 2の開口部 8 A, 8 Bからなるゲートホール 8が得られる このゲートホール 8は、 例えば直径 2 0 mの円形に形成される。 また、 ゲートホール 8は、 1画素当たり複数個 (例えば、 数十個) 形成される 次に、 ゲ一トホール 8を通してエミッタ層 1 0の上層部のバインダ材 料 (マトリックス) を除去することにより、 第 5 B図に示すように、 ゲ ートホール 8の開口部分でエミッタ層 1 0の表面にカーボンナノチュー ブ 1 1を露出させる。 ェミッタ層 1 0の上層部でバインダ材料を除去す る際の手法としては、 ウエットエッチングやドライエッチングなどのェ ツチング法 (ハーフエッチング) を好ましく用いることができる。 一例 として、 ウエットエッチングを適用する場合の条件を以下に示す。 この エッチングによりェミッタ層 1 0の上層部でバインダ材料を選択的に除 去することにより、 ェミッタ層 1 0の表面に多数のカーボンナノチュー ブ 1 1を露出させることができる。  Next, the insulating layer 6 is etched by, for example, RIE through the first opening 8A of the gate electrode 7 to expose the surface of the emitter layer 10 as shown in FIG. 5A. The opening 8B is formed. As a result, a gate hole 8 including the first and second openings 8A and 8B is obtained. The gate hole 8 is formed, for example, in a circular shape having a diameter of 20 m. Further, a plurality (for example, several tens) of the gate holes 8 are formed per pixel. Next, the binder material (matrix) in the upper layer portion of the emitter layer 10 is removed through the gate holes 8, As shown in FIG. 5B, the carbon nanotubes 11 are exposed on the surface of the emitter layer 10 at the openings of the gate holes 8. As a method for removing the binder material in the upper layer portion of the emitter layer 10, an etching method (half etching) such as wet etching or dry etching can be preferably used. As an example, conditions for applying wet etching are shown below. By selectively removing the binder material in the upper layer of the emitter layer 10 by this etching, a large number of carbon nanotubes 11 can be exposed on the surface of the emitter layer 10.
(ゥエツトエッチング条件)  (ゥ Etch etching conditions)
エッチング液:塩酸 1 0 %  Etching solution: hydrochloric acid 10%
エッチング温度: 1 0〜 6 0 °C  Etching temperature: 10-60 ° C
エッチング時間: 5〜 6 0秒 なお、 バインダ材料を除去する際の手法としては、 上述したエツチン グ法に限らず、 例えば、 ラッピングテープなどを用いた機械的な研磨に よって除去する方法や、 サンドプラストなどのように粒子の衝突によつ て除去する方法などを適用することも可能である。 Etching time: 5 ~ 60 seconds The method of removing the binder material is not limited to the etching method described above, but may be, for example, a method of removing the binder material by mechanical polishing using a wrapping tape, or a method of removing particles such as a sand plast. It is also possible to apply a method of removing by means of.
その後、 第 5 C図に示すように、 エミッ夕層 1 0の表面で各々の力一 ボンナノチューブ 1 1がー様にほぼ垂直に起立するように、 カーボンナ ノチューブ 1 1の配向処理を行う。 具体的には、 例えば支持基板 4上で 図示しない粘着テ一プをゲ一ト電極 7の上から貼り付けた後、 粘着テー プを引き剥がすことにより、 支持基板 4に対してカーボンナノチューブ 1 1をほぼ垂直に配向させる。 カーボンナノチューブ 1 1を配向させる 際の方向は、 支持基板 4の面方向に対してほぼ垂直な方向とする。 この とき、 エミッ夕層 1 0の表面には多数のカーボンナノチューブ 1 1が露 出した状態となっている。 そのため、 粘着テープの貼り付け及び引き剥 がしを行うことにより、 多数のカーボンナノチューブ 1 1を垂直に配向 させることができる。  After that, as shown in FIG. 5C, the carbon nanotubes 11 are subjected to an orientation treatment so that the carbon nanotubes 11 stand almost vertically on the surface of the emission layer 10. Specifically, for example, after attaching an adhesive tape (not shown) on the support substrate 4 from above the gate electrode 7, the adhesive tape is peeled off, so that the carbon nanotubes 11 are attached to the support substrate 4. Are oriented almost vertically. The direction in which the carbon nanotubes 11 are oriented is a direction substantially perpendicular to the plane direction of the support substrate 4. At this time, a large number of carbon nanotubes 11 are exposed on the surface of the emission layer 10. Therefore, a large number of carbon nanotubes 11 can be vertically oriented by sticking and peeling off the adhesive tape.
なお、 カーボンナノチューブ 1 1の配向処理方法としては、 上述した 粘着テープの貼り付け及び引き剥がしによる方法以外にも、 例えば、 力 ソード電極 5に電圧を印加することにより、 カソード電極 5と力一ボン ナノチューブ 1 1を同じ極性で帯電させ、 これに伴う反発力により各々 のカーボンナノチューブ 1 1を互いに分離した状態で垂直に配向させる ことも可能である。  In addition to the above-mentioned method of applying and peeling the adhesive tape, the orientation treatment of the carbon nanotube 11 may be performed, for example, by applying a voltage to the force source electrode 5 so that the cathode electrode 5 and the power It is also possible to charge the nanotubes 11 with the same polarity and to vertically orient each of the carbon nanotubes 11 in a state of being separated from each other by the repulsive force accompanying the charge.
以上の工程にしたがって電子放出素子を製造することにより、 ェミツ 夕層 1 0の表面で多数の力一ボンナノチューブ 1 1を垂直に配向させる ことができる。 その結果、 ェミッタ層 1 0の表面で電界放出により電子 を放出するカーボンナノチューブ 1 1の本数をより多く確保することが できるため、 電子放出特性に優れた電子放出素子を提供することが可能 となる。 By manufacturing the electron-emitting device according to the above steps, a large number of carbon nanotubes 11 can be vertically aligned on the surface of the emitter layer 10. As a result, it is possible to secure more carbon nanotubes 11 that emit electrons by field emission on the surface of the emitter layer 10. Therefore, it is possible to provide an electron-emitting device having excellent electron-emitting characteristics.
以上説明したように本発明によれば、 電子放出素子を製造するにあた つて、 支持基板の力ソード電極上にエミッ夕層を形成した後、 このエミ ッ夕層の上層部のパインダ材料を除去することでエミッタ層の表面に多 数のエミッ夕材料を露出させ、 この状態で各々のエミッタ材料を支持基 板に対して垂直に配向させることにより、 エミッ夕層の表面で多数のェ ミッタ材料を垂直に配向させることができる。 その結果、 電子放出特性 に優れた電子放出素子を提供することが可能となる。  As described above, according to the present invention, in manufacturing an electron-emitting device, after forming an emitter layer on a force source electrode of a support substrate, the piner material in the upper layer of the emitter layer is removed. The removal removes a large number of emitter materials on the surface of the emitter layer, and in this state, orients each emitter material perpendicular to the support substrate, thereby forming a large number of emitter materials on the surface of the emitter layer. The material can be oriented vertically. As a result, it becomes possible to provide an electron-emitting device having excellent electron-emitting characteristics.

Claims

請求の範囲 The scope of the claims
1 . 支持基板上に力ソード電極を形成する工程と、 1. forming a force source electrode on the support substrate;
繊維状のェミッタ材料とバインダ材料とを含むエミッ夕層を前記カソ —ド電極上に形成する工程と、  Forming an emitter layer including a fibrous emitter material and a binder material on the cathode electrode;
前記ェミッタ層の上層部の前記バインダ材料を除去することにより、 前記ェミッタ層の表面に前記エミッタ材料を露出させる工程と、 前記エミッタ層の表面に露出させた前記ェミッタ材料を前記支持基板 に対してほぼ垂直に配向させる工程と  Removing the binder material in the upper layer of the emitter layer to expose the emitter material on the surface of the emitter layer; and removing the emitter material exposed on the surface of the emitter layer with respect to the support substrate. A step of aligning almost vertically
を有することを特徴とする電子放出素子の製造方法。  A method for manufacturing an electron-emitting device, comprising:
2 . 前記バインダ材料をエッチングによって除去することを特徴とす る請求の範囲第 1項記載の電子放出素子の製造方法。  2. The method for manufacturing an electron-emitting device according to claim 1, wherein said binder material is removed by etching.
3 . 前記バインダ材料をゥエツトエッチング又はドライエッチングに よって除去することを特徴とする請求の範囲第 1項記載の電子放出素子 の製造方法。  3. The method for manufacturing an electron-emitting device according to claim 1, wherein the binder material is removed by wet etching or dry etching.
4 . 前記バインダ材料を機械的な研磨によって除去することを特徴と する請求の範囲第 1項記載の電子放出素子の製造方法。  4. The method for manufacturing an electron-emitting device according to claim 1, wherein the binder material is removed by mechanical polishing.
5 . 前記バインダ材料を粒子の衝突によって除去することを特徴とす る請求の範囲第 1項記載の電子放出素子の製造方法。  5. The method for manufacturing an electron-emitting device according to claim 1, wherein the binder material is removed by collision of particles.
6 . 前記支持基板上での粘着テープの貼り付け及び引き剥がしによつ て前記ェミッタ材料を垂直に配向させることを特徴とする請求の範囲第 1項記載の電子放出素子の製造方法。  6. The method for manufacturing an electron-emitting device according to claim 1, wherein the emitter material is vertically oriented by attaching and detaching an adhesive tape on the supporting substrate.
7 . 前記カソ一ド電極への電圧の印加によって前記エミッタ材料を垂 直に配向させることを特徴とする請求の範囲第 1項記載の電子放出素子 の製造方法。 7. The method according to claim 1, wherein the emitter material is vertically oriented by applying a voltage to the cathode electrode.
8 . 前記エミッ夕材料に力一ボンナノチューブを用いることを特徴と する請求の範囲第 1項記載の電子放出素子の製造方法。 8. The method for manufacturing an electron-emitting device according to claim 1, wherein a carbon nanotube is used as the emitter material.
9 . 前記バインダ材料に熱分解性有機金属又は金属塩を用いることを 特徴とする請求の範囲第 1項記載の電子放出素子の製造方法。  9. The method for manufacturing an electron-emitting device according to claim 1, wherein a thermally decomposable organic metal or a metal salt is used as the binder material.
1 0 . 電子放出素子の製造工程として、  10. As a manufacturing process of the electron-emitting device,
支持基板上にカソード電極を形成する工程と、  Forming a cathode electrode on the support substrate;
繊維状のェミッタ材料とバインダ材料とを含むェミッタ層を前記カソ 一ド電極上に形成する工程と、  Forming an emitter layer containing a fibrous emitter material and a binder material on the cathode electrode;
前記ェミッタ層の上層部の前記バインダ材料を除去することにより、 前記エミッタ層の表面に前記エミッ夕材料を露出させる工程と、 前記エミッ夕層の表面に露出させた前記ェミッタ材料を前記支持基板 に対してほぼ垂直に配向させる工程と  A step of exposing the emitter material to the surface of the emitter layer by removing the binder material in an upper layer portion of the emitter layer; and a step of applying the emitter material exposed to the surface of the emitter layer to the support substrate. A process of orienting almost perpendicular to the
を有することを特徴とする表示装置の製造方法。  A method for manufacturing a display device, comprising:
PCT/JP2003/014974 2002-11-27 2003-11-25 Method for manufacturing electron-emitting device and method for manufacturing display WO2004049373A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002343662A JP2004178972A (en) 2002-11-27 2002-11-27 Manufacturing method of electron emitting element and display device
JP2002-343662 2002-11-27

Publications (1)

Publication Number Publication Date
WO2004049373A1 true WO2004049373A1 (en) 2004-06-10

Family

ID=32375926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014974 WO2004049373A1 (en) 2002-11-27 2003-11-25 Method for manufacturing electron-emitting device and method for manufacturing display

Country Status (2)

Country Link
JP (1) JP2004178972A (en)
WO (1) WO2004049373A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7449081B2 (en) 2000-06-21 2008-11-11 E. I. Du Pont De Nemours And Company Process for improving the emission of electron field emitters
US11778717B2 (en) 2020-06-30 2023-10-03 VEC Imaging GmbH & Co. KG X-ray source with multiple grids

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200564A (en) * 2006-01-23 2007-08-09 Mitsubishi Electric Corp Manufacturing method of electron emission source

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260249A (en) * 1998-03-09 1999-09-24 Ise Electronics Corp Manufacture of fluorescent character display device
JP2000036243A (en) * 1998-07-17 2000-02-02 Ise Electronics Corp Manufacture of electron emitting source
JP2000223004A (en) * 1999-01-25 2000-08-11 Lucent Technol Inc Device including carbon nano-tube, device including field emission structure, and its manufacture
JP2000249119A (en) * 1999-02-26 2000-09-12 Art Panel Consultant:Kk Structure of threading hole
JP2001035360A (en) * 1999-07-16 2001-02-09 Futaba Corp Manufacture of electron emitting source, the electron emitting source and fluorescent emission type display
JP2001035361A (en) * 1999-07-16 2001-02-09 Futaba Corp Manufacture of electron emitting source, the electron emitting source and fluorescent type display
JP2003168355A (en) * 2001-11-30 2003-06-13 Sony Corp Manufacturing method of electron emission body, manufacturing method of cold-cathode field electron emission element, and manufacturing method of cold- cathode field electron emission display device
JP2003249166A (en) * 2002-02-22 2003-09-05 Sony Corp Manufacturing method for electron emitting body, manufacturing method for cold cathode electric field electron emitting element, and manufacturing method for cold cathode electron emitting display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260249A (en) * 1998-03-09 1999-09-24 Ise Electronics Corp Manufacture of fluorescent character display device
JP2000036243A (en) * 1998-07-17 2000-02-02 Ise Electronics Corp Manufacture of electron emitting source
JP2000223004A (en) * 1999-01-25 2000-08-11 Lucent Technol Inc Device including carbon nano-tube, device including field emission structure, and its manufacture
JP2000249119A (en) * 1999-02-26 2000-09-12 Art Panel Consultant:Kk Structure of threading hole
JP2001035360A (en) * 1999-07-16 2001-02-09 Futaba Corp Manufacture of electron emitting source, the electron emitting source and fluorescent emission type display
JP2001035361A (en) * 1999-07-16 2001-02-09 Futaba Corp Manufacture of electron emitting source, the electron emitting source and fluorescent type display
JP2003168355A (en) * 2001-11-30 2003-06-13 Sony Corp Manufacturing method of electron emission body, manufacturing method of cold-cathode field electron emission element, and manufacturing method of cold- cathode field electron emission display device
JP2003249166A (en) * 2002-02-22 2003-09-05 Sony Corp Manufacturing method for electron emitting body, manufacturing method for cold cathode electric field electron emitting element, and manufacturing method for cold cathode electron emitting display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7449081B2 (en) 2000-06-21 2008-11-11 E. I. Du Pont De Nemours And Company Process for improving the emission of electron field emitters
US7449082B2 (en) 2000-06-21 2008-11-11 E.I. Du Pont De Nemours And Company Process for improving the emissions of electron field emitters
US8070906B2 (en) 2000-06-21 2011-12-06 E. I. Du Pont De Nemours And Company Process for improving the emission of electron field emitters
US8529798B2 (en) 2000-06-21 2013-09-10 E I Du Pont De Nemours And Company Process for improving the emission of electron field emitters
US11778717B2 (en) 2020-06-30 2023-10-03 VEC Imaging GmbH & Co. KG X-ray source with multiple grids

Also Published As

Publication number Publication date
JP2004178972A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
JP4802363B2 (en) Field emission cold cathode and flat image display device
EP0905737B1 (en) Electron-emitting source
KR20030059291A (en) Pattern forming method for carbon nanotube, and field emission cold cathode and method of manufacturing the cold cathode
JP2003229044A (en) Electron emission body and manufacturing method therefor, cold cathode field electron emission element and manufacturing method therefor, and cold cathode field electron emission display device and manufacturing method therefor
JP2003168355A (en) Manufacturing method of electron emission body, manufacturing method of cold-cathode field electron emission element, and manufacturing method of cold- cathode field electron emission display device
JP2008130574A (en) Surface conduction electron emitting element and electron source using it
JP2008130573A (en) Method of manufacturing surface conduction electron emitting element
JP2000036243A (en) Manufacture of electron emitting source
JP2006224296A (en) Carbon nanotube structure and method of manufacturing the same, and field emission device using the carbon nanotube structure and method of manufacturing the device
CN1433039A (en) Panchromatic great-arear flat display based on carbon nanotube field emitting array
WO2003085688A1 (en) Field electron emission film, field electron emission electrode and field electron emission display
JP2006294622A (en) Electron emission source, manufacturing method for electron emission source and electron emission element provided with the electron emission source
Lee et al. Carbon nanotube-based field-emission displays for large-area and full-color applications
US20070111628A1 (en) Method for manufacturing electron-emitting device and method for manufacturing display having electron-emitting device
JP2001126609A (en) Electron emission device and fluorescent display
US7371696B2 (en) Carbon nanotube structure and method of vertically aligning carbon nanotubes
JP2001052598A (en) Electron emission element, its manufacture, and image forming device using therewith
JP4036572B2 (en) Manufacturing method of electron emission source
JP3633598B2 (en) Method for manufacturing electron-emitting device and method for manufacturing display device
JP3581296B2 (en) Cold cathode and method of manufacturing the same
JP2004241161A (en) Electron emitting source and its manufacturing method and its display device
JP2006114265A (en) Manufacturing method of micro electron source device
JP2003249166A (en) Manufacturing method for electron emitting body, manufacturing method for cold cathode electric field electron emitting element, and manufacturing method for cold cathode electron emitting display device
WO2004049373A1 (en) Method for manufacturing electron-emitting device and method for manufacturing display
JP2002197965A (en) Electron emitting device, cold cathode field electron emitting element and its manufacturing method, and cold cathode field electron emission display device and its manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US