WO2004048471A1 - Biodegradable resin composition - Google Patents

Biodegradable resin composition Download PDF

Info

Publication number
WO2004048471A1
WO2004048471A1 PCT/JP2003/015004 JP0315004W WO2004048471A1 WO 2004048471 A1 WO2004048471 A1 WO 2004048471A1 JP 0315004 W JP0315004 W JP 0315004W WO 2004048471 A1 WO2004048471 A1 WO 2004048471A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
biodegradable resin
aliphatic polyester
acid
resin composition
Prior art date
Application number
PCT/JP2003/015004
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshimichi Okano
Hiroshi Katayama
Junichi Narita
Ichiro Takeishi
Original Assignee
Daicel Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries, Ltd. filed Critical Daicel Chemical Industries, Ltd.
Priority to JP2004555030A priority Critical patent/JPWO2004048471A1/en
Priority to AU2003302415A priority patent/AU2003302415A1/en
Publication of WO2004048471A1 publication Critical patent/WO2004048471A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters

Definitions

  • the present invention relates to a specific aliphatic polyester copolymer having an ester bond based on an aliphatic dicarboxylic acid residue, an aliphatic diol residue, and an optionally added aliphatic hydroxycarboxylic acid residue, and other biodegradable products.
  • the present invention relates to a biodegradable resin composition comprising a hydrophilic resin.
  • the composition has practicable physical properties and is excellent in biodegradability, and also suppresses powder blowing to the molded product surface due to bleeding out of the oligomer and the accompanying deterioration in appearance.
  • PBS polyethylene succinate
  • PCL polycaprolactone
  • biodegradable aliphatic polyesters include plate materials, containers, housings, films, yarns, and the like, and high strength, heat resistance, and biodegradability according to the application are required as basic performance.
  • PLA is a molded product that has been stretched or highly crystallized and has a high melting point near 170 ° C and high heat resistance, but it is hard or brittle. Composting equipment is required because the product has low elongation and is hard to decompose in the soil.
  • PBS and PES have sufficient heat resistance at a melting point of around 100 ° C, but have a low biodegradation rate, are not practically sufficient, and have poor mechanical properties. Lack of flexibility.
  • PCL has excellent flexibility, its application is limited due to its low melting point of 60T: its heat resistance, but its biodegradation rate is very fast.
  • an aliphatic polyester such as polybutylene succinate polypolyprolactone copolymer (PBSC) described in Japanese Patent No. 2997756 can be used.
  • PBSC polybutylene succinate polypolyprolactone copolymer
  • force-prolactone units By introducing force-prolactone units into the polyester copolymer, practical flexibility and appropriate biodegradability can be achieved, and by controlling the content of force-prolactone units, however, it has been found that it is possible to maintain sufficient heat resistance by setting the melting point to 80 ° C. or higher and to control biodegradability (Patent Document 1). Also, there have been many proposals for improving biodegradable high molecular weight aliphatic polyesters.
  • Japanese Patent Application Laid-Open No. 8-311181 discloses that an aliphatic dicarboxylic acid or an ester thereof, an aliphatic diol, an oxycarboxylic acid, an oxycarboxylic acid ester or a lactone are subjected to a polycondensation reaction in the presence of a catalyst to obtain a number average molecular weight.
  • a biodegradable high molecular weight aliphatic polyester copolymer having a molecular weight of 15,000 to 80,000 is disclosed (Patent Document 2).
  • JP-A-9-1272789 discloses an aliphatic polyester having a number average molecular weight of 1 to 300,000 by copolymerizing an aliphatic diol, an aliphatic dicarboxylic acid, and an aliphatic hydroxycarboxylic acid, and a number average molecular weight of 3
  • a resin composition in which 10,000 or more polylactic acids are melt-blended is disclosed (Patent Document 3).
  • WO 02-44249 discloses a weight-average molecular weight of 40 synthesized by a polycondensation reaction of a mixture of three components of an aliphatic diol, an aliphatic dicarboxylic acid, and an aliphatic hydroxycarboxylic acid or an anhydrous cyclic compound thereof (lactones). It is disclosed that by using a high molecular weight aliphatic polyester copolymer of 2,000 or more and other biodegradable resin, the molecular weight stability at the time of forming a film or the like is good and the molding is good. (Patent Document 4).
  • Patent No. 29977756 (Claims 1-3, Examples 1-5)
  • An object of the present invention is to use a high-molecular-weight aliphatic polyester copolymer containing oligomers to provide excellent mechanical properties and biodegradability, as well as powder blowing to the surface and accompanying deterioration in appearance.
  • An object of the present invention is to provide a biodegradable resin composition used for a biodegradable resin molded article having no problem. Disclosure of the invention
  • the inventors of the present invention added a specific amount of another biodegradable resin such as polylactic acid containing a specific amount of D-form with low crystallinity to a high-molecular-weight aliphatic polyester copolymer containing oligosaccharide.
  • a treatment such as annealing, a biodegradable resin molded product with excellent mechanical properties and biodegradability is obtained, with no powder blowing over the surface over time, with little accompanying deterioration in appearance.
  • the present invention was completed. That is, the first aspect of the present invention is that a molecular chain is a repeating unit represented by the following general formulas (1) and (2):
  • R 1 represents a divalent aliphatic group having 1 to 12 carbon atoms.
  • R 2 represents a divalent aliphatic group having 2 to 12 carbon atoms.
  • R 3 represents a divalent aliphatic group having 1 to 10 carbon atoms.
  • the present invention provides an aliphatic polyester-based biodegradable resin composition comprising:
  • the second aspect of the present invention is that the aliphatic polyester copolymer (a) is a low molecular weight aliphatic polyester copolymer having a weight average molecular weight of 5,000 or more, which is a polymer intermediate of the aliphatic polyester copolymer (a). 0.1 to 5 parts by weight of the general formula (7) per 100 parts by weight of the combined (a ')
  • X 1 and X 2 each represent a reactive group capable of forming a covalent bond by acting with a hydroxyl group or a hydroxyl group
  • R 7 represents a single bond, an aliphatic group or an aromatic group having 1 to 20 carbon atoms
  • X 1 and X 2 may have the same chemical structure or may have different chemical structures
  • biodegradable resin composition which has a low molecular weight obtained by reacting a bifunctional linking agent (e) represented by the following formula:
  • a third aspect of the present invention provides the first or second biodegradable resin composition of the present invention, wherein the general formula (1) is a succinic acid residue and / or an adipic acid residue.
  • a fourth aspect of the present invention provides the biodegradable resin composition according to any one of the first to third aspects of the present invention, wherein the general formula (2) is an ethylene glycol residue and / or a 1,4-butanediol residue. I do.
  • a fifth aspect of the present invention is that, when the general formula (3) is ⁇ -force prolactone, 4-methylcaprolactone, 3,5,5-trimethylcaprolactone, 3,3,5-trimethylcaprolactone,) 3-propiolactone
  • the present invention provides the biodegradable resin composition according to any one of the first to fourth aspects of the present invention, which is a group based on at least one selected from the group consisting of acetylbutyrolactone, ⁇ -valerolactone, and enantholactone.
  • a sixth feature of the present invention is that the reactive group of the bifunctional linking agent (e) represented by the general formula (7) is an isocyanate group, an isothiocyanate group, an epoxy group, an oxazoline group, an oxazolone group or an oxazinone.
  • a biodegradable resin composition according to the second aspect of the present invention which is a group, an aziridine group, or a mixed group thereof.
  • a seventh aspect of the present invention is that the mole fraction of the repeating unit (3) contained in the aliphatic polyester copolymer (a) or the low molecular weight aliphatic polyester copolymer (a ′) is 0.25 or less. And a biodegradable resin composition according to any one of the first to sixth aspects of the present invention.
  • An eighth aspect of the present invention is the first to seventh aspects of the present invention, wherein the weight composition ratio of the aliphatic polyester copolymer (a) and the other biodegradable resin (b) is 99.9 / 0.1 to 70Z30. Provided is a biodegradable resin composition.
  • a ninth aspect of the present invention provides the biodegradable resin composition according to any one of the first to eighth aspects of the present invention, wherein the other biodegradable resin (b) is an aliphatic polyester (bl).
  • a tenth aspect of the present invention is the biodegradable composition according to the ninth aspect of the present invention, wherein the aliphatic polyester (bl) is polylactic acid (PLA), poly ( ⁇ -force prolactone) (PCL), or a mixture thereof.
  • the aliphatic polyester (bl) is polylactic acid (PLA), poly ( ⁇ -force prolactone) (PCL), or a mixture thereof.
  • PLA polylactic acid
  • PCL poly ( ⁇ -force prolactone)
  • An eleventh aspect of the present invention provides the tenth biodegradable resin composition of the present invention, wherein the polylactic acid (PLA) is a polylactic acid copolymer containing 5 to 50% of a D-form.
  • a twelfth aspect of the present invention is the method according to the present invention, wherein the molded product after 60 days from the film formation is immersed and stirred in hexane for 60 seconds, and the extraction amount of the oligomer having a molecular weight of 500 or less is 1 Omg / 2500 cm 2 or less.
  • a biodegradable resin composition according to any one of items 1 to 11 is provided. BEST MODE FOR CARRYING OUT THE INVENTION
  • the molecular chain is a repeating unit represented by the following general formulas (1) and (2):
  • R 1 represents a divalent aliphatic group having 1 to 12 carbon atoms.
  • R 2 represents a divalent aliphatic group having 2 to 12 carbon atoms.
  • R 3 represents a divalent aliphatic group having 1 to 10 carbon atoms.
  • the high molecular weight aliphatic polyester copolymer (a) according to the present invention has the above composition, and has a low molecular weight aliphatic polyester copolymer (a ′) having a weight average molecular weight of 5,000 or more.
  • a ' General formula of 0.1 to 5 parts by weight per 100 parts by weight (7):
  • X 1 and X 2 each represent a reactive group capable of forming a covalent bond by acting with a hydroxyl group or a hydroxyl group
  • R 7 represents a single bond, an aliphatic group or an aromatic group having 1 to 20 carbon atoms
  • X 1 and X 2 may have the same chemical structure or may have different chemical structures
  • Linked by a bifunctional linking agent represented by It may be set to be 000 or more.
  • the component (A) which gives the aliphatic dicarboxylic acid residue of the formula (1) includes aliphatic dicarboxylic acid, an anhydride thereof, or a mono- or diester thereof, and is represented by the following general formula (4). .
  • R 1 represents a divalent aliphatic group having 1 to 12 carbon atoms
  • R 4 and R 5 represent a hydrogen atom, or an aliphatic group or an aromatic group having 1 to 6 carbon atoms.
  • R 4 and R 5 May be the same or different.
  • the divalent aliphatic group represented by R 1 is preferably a 2 to 8 chain or cyclic alkylene group, and includes one (CH 2 ) 2 —, one (CH 2 ) 4 —, one (CH 2 ) 6- and the like, and a linear lower alkylene group having 2 to 6 carbon atoms.
  • R 1 can have a substituent inert to the reaction, for example, an alkoxy group or a keto group, and R 1 can contain a hetero atom such as oxygen or zeo in the main chain. It may contain a structure separated by an ether bond, a thioether bond or the like.
  • R 4 and R 5 are hydrogen atoms, they represent aliphatic dicarboxylic acids.
  • Aliphatic dicarboxylic acids include, for example, succinic acid, daltaric acid, adipic acid, pimelic acid, azelaic acid, suberic acid, decanedicarboxylic acid, dodecanedicarboxylic acid, sebacic acid, diglycolic acid, ketopimelic acid, malonic acid, methyl Malonic acid and the like.
  • aliphatic group represented by R 4 and R 5 in addition to a linear or branched alkyl group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, such as a cyclohexyl group having 5 to 5 carbon atoms 12 cycloalkyl groups.
  • R 4 and R 5 are lower alkyl groups having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms.
  • dialkyl esters include, for example, dimethyl succinate, getyl succinate, dimethyl dartrate, getyl dallate, dimethyl adipate, getyl adipate, dimethyl pimerate, dimethyl azelate, dimethyl suberate, getyl suberate Dimethyl sebacate, dimethyl sebacate, dimethyl decane dicarboxylate, dimethyl dodecane dicarbonate, dimethyl diglycolate, dimethyl ketopimelate, dimethyl malonate, dimethyl methyl malonate, and the like. These may be used alone or in combination of two or more.
  • the component (B) which gives the aliphatic diol residue of the formula (2) includes aliphatic diol.
  • the aliphatic diol is represented by the following general formula (4 ′).
  • R 2 represents a divalent aliphatic group having 2 to 12 carbon atoms.
  • divalent aliphatic group examples include a linear or cyclic alkylene group having 2 to 12 carbon atoms, preferably 2 to 8 carbon atoms.
  • Preferred alkylene groups are straight-chain lower alkylene groups having 2 to 6 carbon atoms, such as-(CH 2 ) 2 —, 1 (CH 2 ) 3 —, and — (CH 2 ) 4 _.
  • the divalent aliphatic group R 2 can have a substituent inert to the reaction, for example, an alkoxy group or a keto group.
  • R 2 can contain a hetero atom such as oxygen or zeolite in the main chain, and can also have a structure separated by, for example, an ether bond or a thioether bond.
  • Examples of the aliphatic diol include ethylene glycol, 1,3-propanediol, 1,2-propanediol, 1,3-butanediol, 2-methylbutanepandiol, 1,4-butanediol, neopentyl glycol, Pentame Tylene glycol, hexamethylene glycol, octamethylene glycol, decamethylene glycol, dodecamethylene glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, diethylene glycol, dipropylene glycol, triethylene glycol, Tetraethylene glycol, pentaethylene glycol, polyethylene glycol having a molecular weight of 1,000 or less can be used. These may be used alone or in combination of two or more. A small amount of trifunctional alcohol such as 1,1,1-tris (hydroxymethyl) propane may be used in combination.
  • 1,1,1-tris (hydroxymethyl) propane may be used in combination.
  • the component (C) that gives the aliphatic hydroxycarboxylic acid residue of the formula (3) includes a hydroxycarboxylic acid or a hydroxycarboxylic acid ester represented by the following general formula (5), or a compound represented by the following general formula (6). Lactones.
  • R 3 represents a divalent aliphatic group having 1 to 10 carbon atoms
  • R 6 represents a hydrogen atom or an aliphatic group or an aromatic group having 1 to 6 carbon atoms.
  • R 3 represents a divalent aliphatic group having 1 to 10 carbon atoms.
  • examples of the divalent aliphatic group R 3 include a chain or cyclic alkylene group having 2 to 10, preferably 2 to 8 carbon atoms.
  • R 3 can have a substituent inert to the reaction, for example, an alkoxy group or a keto group.
  • R 3 can contain a hetero atom such as oxygen or zeolite in the main chain, and can also have a structure separated by, for example, an ether bond or a thioether bond.
  • R 6 is hydrogen, or an aliphatic group or an aromatic group.
  • an aliphatic group As a linear or branched lower alkyl group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms such as a cyclohexyl group, and an aromatic group, Phenyl, benzyl and the like.
  • hydroxycarboxylic acid examples include glycolic acid, L-lactic acid, D-lactic acid, D, L-lactic acid, 2-methyllactic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxy-n-butyric acid, and 2-hydroxy-1-carboxylic acid. Examples thereof include 3,3-dimethylbutyric acid, 2-hydroxy-1-methylbutyric acid, 2-hydroxy-3-methylbutyric acid, hydroxybivalic acid, hydroxyisocabronic acid, and hydroxycabronic acid.
  • the hydroxycarboxylic acid may be a cyclic dimer ester (lactide) having two molecules bonded thereto. Specific examples thereof include those obtained from glycolic acid and those obtained from lactic acid.
  • hydroxycarboxylic acid ester examples include a methyl ester and an ethyl ester of the above-mentioned hydroxycarboxylic acid, and an acetic acid ester.
  • Examples of the lactones include those represented by the general formula (6).
  • examples of the divalent aliphatic group R 3 include a linear or branched alkylene group having 4 to 10 carbon atoms, preferably 4 to 8 carbon atoms.
  • R 3 can have a substituent inert to the reaction, for example, an alkoxy group or a keto group.
  • R 3 can contain a hetero atom such as oxygen or zeolite in the main chain, and can also have a structure separated by, for example, an ether bond or a thioether bond.
  • lactones include, for example, / 3-propiolactone; 3-butyrolactone, a-ptyrolactone,] 3-valerolactone, ⁇ -valerolactone, ⁇ 5-forceprolactone, ⁇ -forceprolactone , 4-methylcaprolactone, 3,5,5-trimethylcaprolactone, 3,3,5-trimethylcaprolactone, and other various methylating prolactones; / 3-methyl-1- ⁇ -valerolactone, enanthlactone, laurolactone, etc. Cyclic monomeric ester of hydroxycarboxylic acid; cyclic dimer of hydroxycarboxylic acid such as glycolide, L-lactide, D-lactide, etc.
  • the aliphatic polyester copolymer (a) obtained by the polymerization reaction of the above-mentioned component (A), the component (B), and the component (C) optionally added, or a low-molecular-weight aliphatic polyester described later.
  • the polymer (a ') may be random or block.
  • the monomers may be charged at once (random), dividedly (blocked), polymerized dicarboxylic acid-diol polymer with lactones, or polylactone mixed with dicarboxylic acid and diol.
  • the synthesis step depends on the type of raw materials used. Thus, for example, it can be divided into an esterification step in which the first half of the dehydration reaction mainly proceeds and a polycondensation step in which the second half of the ester exchange reaction mainly proceeds.
  • the esterification step is carried out at a reaction temperature of 80 °: ⁇ 250 ° C, preferably 100 ° C to 240 ° C, more preferably 145 ° C to 230, for 0.5 to 5 hours, preferably 1 to 4 hours, 760 It is desirable to carry out under conditions of ⁇ 100 To rr.
  • the catalyst does not require necessarily for aliphatic dicarboxylic acid or diester to 1 mole is used as a starting material, 10- 7 to 10- 3 mol, preferably in an amount of 10 6 to 5 X 10- 4 mole May be used.
  • the latter half polycondensation step is desirably completed in 2 to 10 hours, preferably 3 to 6 hours by raising the reaction temperature while depressurizing the reaction system, and finally 180 ° C to 270 ° C. It is desirable that the degree of reduced pressure be 3 Torr or less, preferably 1 Torr or less, at a reaction temperature of 190 ° C., preferably 190 ° to 240 ° C.
  • this step preferably better to use a general ester exchange reaction catalyst, with respect to the aliphatic dicarboxylic acid or diester to 1 mole used as a starting material, 1 0 7 to 1 0 3 mol, preferably 1 0 - 6 ⁇ 5 X 1 0 used in an amount of one 4 mol.
  • the amount of catalyst is less than this range, the reaction does not proceed well, and the reaction takes a long time. On the other hand, if it exceeds this range, it causes thermal decomposition, cross-linking and coloring of the polymer at the time of polymerization, and also causes thermal decomposition and the like in the molding process of the polymer.
  • the catalyst examples include various compounds of metals, for example, carboxylate, carbonate, borate, oxide, hydroxide, hydride, alcoholate, acetyl acetonate chelate and the like.
  • the metals include alkali metals such as lithium and potassium; alkaline earth metals such as magnesium, calcium and barium; typical metals such as tin, antimony and germanium; lead, zinc, cadmium, manganese, cobalt, nickel, Transition metals such as zirconium, titanium, and iron; and lanthanoid metals such as bismuth, niobium, lanthanum, samarium, europium, palladium, erbium, and ytterbium.
  • a nitrogen-containing basic compound, boric acid, boric acid ester, or the like is also used.
  • the alkali metal compounds include sodium hydroxide, potassium hydroxide, lithium hydroxide, potassium hydrogen carbonate, lithium hydrogen carbonate, sodium carbonate, potassium carbonate, lithium carbonate, sodium acetate, potassium acetate, lithium acetate, Sodium stearate, lithium stearate, sodium borohydride, sodium borohydride, lithium benzoate, sodium dihydrogen phosphate, potassium dihydrogen phosphate And lithium dihydrogen phosphate.
  • Alkaline earth metal compounds include calcium hydroxide, barium hydroxide, magnesium hydroxide, strontium hydroxide, calcium hydrogen carbonate, barium hydrogen carbonate, magnesium hydrogen carbonate, strontium hydrogen carbonate, calcium carbonate, barium carbonate, magnesium carbonate, carbonate
  • Examples include strontium, calcium acetate, barium acetate, magnesium acetate, strontium acetate, calcium stearate, barium stearate, magnesium stearate, and strontium stearate.
  • Typical metal compounds include dibutyltin hydroxide, dibutyltin dilaurate, antimony trioxide, germanium oxide, bismuth hydroxide carbonate, bismuth acetate acetate and the like.
  • Transition metal compounds include lead acetate, zinc acetate, zinc acetyl acetate, cadmium acetate, manganese acetate, manganese acetyl acetate, cobalt acetate, cobalt acetylacetonate, nickel acetate, nickel acetyl acetate, Examples include zirconium acetate, zirconium acetyl acetate, titanium acetate, tetrabutoxy titanate, tetraisopropoxy titanate, titanium hydroxyacetyl acetate, iron acetate, iron acetyl acetate, and niobium acetate.
  • the rare earth compound include lanthanum acetate, samarium acetate, palladium europium acetate, erpium acetate, ytterbium acetate, and the like.
  • nitrogen-containing basic compound examples include aliphatic ethers such as tetraethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, and trimethylbenzylammonium hydroxide.
  • borate ester examples include trimethyl borate, trihexyl borate, triheptyl borate, triphenyl borate, tritolyl borate, and trinaphthyl borate.
  • the above-mentioned raw materials of the trifunctional or higher functional polycarboxylic acid, polyhydric alcohol, and polyhydroxycarboxylic acid can be used.
  • the feed ratio of the raw materials (A) and (B) is selected so as to satisfy the following conditional expression (1). It is desirable.
  • [A] represents the number of moles of the component (A)
  • [B] represents the number of moles of the component (B).
  • a bifunctional linking agent (e) represented by the above formula (7) is added to the low-molecular-weight aliphatic polyester copolymer (a ') in a molten state, so that the weight average molecular weight is 4 You may make it raise to 000 or more.
  • the copolymer (a ') obtained in the polymerization step has a weight average molecular weight of 5,000 or more, preferably 10,000 or more, and the sum of the acid value and the hydroxyl value is between 1.0 and 45.
  • the acid value is 30 or less.
  • the sum of the acid value and the hydroxyl value of the copolymer (a ') is proportional to the concentration of the terminal group of the copolymer (a'), and when the weight average molecular weight is 5,000 or more, Virtually, the sum of the acid value and the hydroxyl value is 45 or less.
  • the molecular weight of the copolymer (a ') is low, and a large amount of the coupling agent is required to increase the molecular weight to the desired molecular weight by adding the coupling agent. Required.
  • problems such as gelation are likely to occur.
  • the sum of the acid value and the hydroxyl value is 1.0 or less, the viscosity of the molten state becomes high because the molecular weight of the copolymer (a ') is high.
  • the amount of the linking agent used is extremely small, it is difficult to make the reaction uniform, and problems such as gelation are liable to occur.
  • the melting temperature is raised for the purpose of causing a uniform reaction, problems such as thermal decomposition, cross-linking and coloring of the polymer occur.
  • the linking agent (e) used in the present invention is represented by the above formula (7).
  • formulas (9) to (11) capable of forming a covalent bond by reacting substantially only with a hydroxyl group are represented by the above formula (7).
  • R 8 to R 1Q represent a divalent aliphatic group or an aromatic group, and the hydrogen directly bonded to the ring may be substituted with an aliphatic group and Z or an aromatic group.
  • It can be selected from a group of cyclic reaction groups having up to 8 members.
  • X 1 and X 2 may have the same chemical structure or may have different chemical structures.
  • linking agent (e) various linking agents described in WO 02-44249, such as a series of diisocyanate compounds, can be used.
  • the acid value of the low molecular weight aliphatic polyester copolymer (a ′) as a precursor is 2.0 or less, preferably 1.0 or less. If the acid value is greater than 2.0, the concentration of the hydroxyl terminal of the copolymer (a ') is low and the ligation reaction cannot be carried out efficiently, or after the ligation reaction, that is, the acid value of the final product. And the molecular weight tends to decrease during molding.
  • the reactive groups X 1 and X 2 of the linking agent (e) can react with substantially only a lipoxyl group to form a covalent bond, thereby forming a 3- to 8-membered ring represented by the above formulas (12) to (15).
  • the acid value of the copolymer (a ') is preferably from 0.5 to 30.
  • the acid value is smaller than 0.5, the amount of the linking agent used is extremely small, so that it is difficult to perform a uniform reaction. If the acid value is larger than 30, problems such as the inability to lower the acid value of the final product and the risk of gelation due to the use of a large amount of the linking agent arise.
  • the diisocyanate 1 and the compound are preferably aliphatic diisocyanate compounds, and specifically, hexamethylene diisocyanate, lysine diisocyanate methyl ester (OCN- (CH 2 ) 4-CH (-NCO ) (-COOCH 3 ) ⁇ , uniquelyosinate.
  • the aliphatic polyester resin containing a urethane bond has a weight average molecular weight of 40,000 or more, and usually 70,000 to 350,000, preferably Is in the range of 70,000 to 250,000.
  • the reaction between the linking agent (e) and the low molecular weight aliphatic polyester copolymer (a ′) can be easily stirred in a state where the copolymer (a ′) is in a uniform molten state or contains a small amount of solvent. It is desirable to be carried out under conditions.
  • the amount of the coupling agent (e) used is desirably 0.1 to 5 parts by weight based on 100 parts by weight of the copolymer (a '). If the amount of the linking agent (e) is smaller than this, it is difficult to obtain a final product having a desired molecular weight, and if it is larger, problems such as gelation are likely to occur.
  • the reaction for increasing the molecular weight using the linking agent (e) is carried out at a temperature equal to or higher than the melting point of the copolymer (a '), and is lower than 270 ° C, preferably lower than 250 ° C, more preferably lower than 23 ° C. It can be performed below 0 ° C.
  • This reaction can be carried out in the same reactor as the polycondensation reaction by adding the linking agent (e) to the reactor in which the low molecular weight aliphatic polyester was produced. In addition, it can be carried out by mixing the low-molecular-weight aliphatic polyester and the linking agent using an ordinary extruder or a static mixer.
  • the molecular chain is represented by the following general formula: one (one CO—R 1 —COO—R 2 —O —) —
  • R 1 represents a divalent aliphatic group having 1 to 12 carbon atoms
  • R 2 represents a divalent aliphatic group having 2 to 12 carbon atoms.
  • R 3 represents a divalent aliphatic group having 1 to 10 carbon atoms.
  • the feed ratio of the raw materials (A) and (C) be selected so as to satisfy the following conditional expression (ii), including the case where the repeating unit (Q) is represented by .
  • [C] ([A] + [C]) in the above formula represents the mole fraction of the component (C) contained in the aliphatic polyester copolymer (a) or (a ′), and the repeating unit ( When it consists of P) and a repeating unit (Q), it indicates the mole fraction of the repeating unit Q.
  • the above range is preferably from 0.0002 to 0.30, more preferably from 0.0002 to 0.20, more preferably from 0.0002 to 0.18. When this value is smaller than 0.0002, the obtained polymer has high crystallinity and is inflexible and hard, and the biodegradability is slow and insufficient.
  • the obtained polymer has a low melting point and extremely low crystallinity, so that it has no heat resistance and is not suitable for practical use.
  • the charging ratios of the raw materials (A), (B) and (C) are selected so as to satisfy the following conditional expression (ii ').
  • [C] / ([A] + [B] + [C]) in the above formula represents the mole fraction of the component (C) contained in the aliphatic polyester copolymer (a) or (a ′). If this value is less than 0.0002, the resulting polymer is hard with high crystallinity and inflexibility, and the biodegradability is slow and insufficient in terms of biodegradability. (Depending on the type of (C), etc.) On the other hand, if it is larger than 0.25, the obtained polymer has a low melting point and extremely low crystallinity, so that it has no heat resistance and is not suitable for practical use (in some cases, depending on the type of component (C), etc.). Is).
  • the molar fraction of component (C) is 0.25 or less, preferably 0.0002 to 0.14, particularly preferably 0.0002 to 0.18.
  • the high molecular weight aliphatic polyester copolymer (a) according to the present invention has a weight average molecular weight of 40,000 or more, usually 70,000 to 350,000, preferably 70,0. The range is from 00 to 250,000.
  • the melting point is usually as high as 80 ° C or more, and the difference between the melting point and the decomposition temperature is as large as 100 ° C or more, and thermoforming is easy.
  • R 1 and R 2 in the general formula (1) are (CH 2 ) 2 or (CH 2 ) 4 , and R 3 is (CH 2 ) 5 Those have high melting points and high crystallinity.
  • R 1 and R 2 in the general formula (1) are (CH 2 ) 2 or (CH 2 ) 4 , and R 3 is (CH 2 ) Those with 5 have a high melting point and high crystallinity.
  • the high molecular weight aliphatic polyester copolymer (a) according to the present invention has an oligomer content of 1,000 to 20,000 m, preferably 1,000 to 15, having a molecular weight of 500 or less, as measured by the method described below. , 00 Oppm, particularly preferably from 1,000 to 10,000 Oppm.
  • another biodegradable resin (b) is added to the aliphatic polyester copolymer (a) in order to suppress the bleed-out.
  • the other biodegradable resin (b) synthetic and / or natural polymers are used.
  • Examples of the synthetic polymer include aliphatic polyesters, polyamides, polyamide esters, biodegradable cellulose esters, polypeptides, polyvinyl alcohol, and mixtures thereof.
  • an aliphatic polyester resin as the other biodegradable resin (b), preferably a poly (hydroxyalkylene (1 to 10 carbon atoms) carboxylic acid), particularly a polylactic acid (PLA), It is also used for the purpose of controlling the rate of biodegradability and controlling the physical properties.
  • the weight ratio of the aliphatic polyester copolymer (a) to the polylactic acid is 99.9 / 0.1 to 0.1. 7030, preferably 9575 to 80/20, more preferably 90/10 to 80/20.
  • the weight ratio of polylactic acid is less than 0.1, no inhibition of pre-adhesion and no effect of delaying biodegradation are observed, and if it exceeds 30, the aliphatic polyester copolymer (a) loses its original characteristic flexibility. This may result in brittle molded products.
  • the polylactic acid has an MFR (according to ASTM D-1238; load of 2160 g, at a temperature of 190) of from 0.1 to; L00 gZl for 0 minutes, preferably 1 to 50 g / 10 minutes, particularly preferably 2 ⁇ 10 gZl 0 min is used.
  • the type of polylactic acid is a D, L-polylactic acid copolymer, preferably a D-form content of 5 to 50%, particularly preferably 10 to 20%. is there.
  • a copolymer in such a range as the polylactic acid a molded article having a high toughness obtained from the composition with the aliphatic polyester copolymer (a) can be obtained.
  • the melting point of polylactic acid is 160 ° C or less, preferably amorphous.
  • Poly force prolactone (PCL) is 160 ° C or less, preferably amorphous.
  • the other biodegradable resin (b) poly (hydroxyalkylene (C 1-10) carboxylic acid), more preferably polylactone, particularly preferably polyprolactone (PCL) is used. In addition to suppression, it is also used for the purpose of controlling the biodegradation rate and controlling the physical properties.
  • the weight ratio of the aliphatic polyester copolymer (a) to the polyprolactone is 99.9X0. 1-70 / 30, preferably 95 / 5-80Z20, more preferably 9 0Z10 to 8020. If the weight ratio of the polyfunctional prolactone is too small, the effect of suppressing pre-adhesion and the effect of delaying biodegradation are not recognized. If it is too large, the heat resistance may be impaired.
  • polyforce prolactone those having a weight average molecular weight of 60,000 to 400,000, preferably 100,000 to 300,000, particularly preferably 140,000 to 200,000 are used.
  • polyprolactone examples include water; divalent or higher valent glycols such as ethylene dalicol, propylene glycol, and glycerin; and divalent or higher valent dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, and butanetetracarboxylic acid.
  • Acids Polycaprolactone using dicarboxylic or higher hydroxycarboxylic acids as initiators such as glycolic acid, lactic acid, and malic acid can be used.
  • the above polylactic acid alone may be used as the other biodegradable resin (b), but polylactic acid and the above polyprolactone can be used in combination.
  • the weight ratio of polylactic acid to polyprolactone is such that polylactic acid: polyprolactone is 100: 0 to 0: 100, preferably 90:10 to 50:50, and more preferably 80:20 to 60: 40.
  • the biodegradable cellulose ester that can be used as the other biodegradable resin (b) include organic acid esters such as cellulose acetate, cellulose butylate, and cellulose propionate; and cellulose nitrate, cellulose sulfate, and cellulose phosphate.
  • Inorganic acid esters; hybrid esters such as cellulose acetate butyrate, cellulose acetate phthalate and cellulose nitrate acetate can be exemplified.
  • cellulose esters can be used alone or in combination of two or more.
  • organic acid esters, cellulose acetate propionate, and cellulose acetate butyrate are preferred, and cellulose acetate containing a plasticizer is more preferred.
  • a cellulose acetate having a degree of acetylation of 40.03 to 62.5% that is, a cellulose acetate having a degree of acetyl substitution of 1.5 to 3.0 per repeating unit is considered to be useful.
  • cellulose acetate containing a plasticizer cellulose acetate having an acetylation degree of 48.8 to 62.5, particularly 50 to 62.5%, is useful. is there.
  • polypeptide examples include polyamino acids such as polymethylglutamic acid and polyamide esters.
  • polyamide ester examples include resins synthesized from ⁇ -force prolacton and ⁇ -force prolactam.
  • Examples of the natural polymer include starch, cellulose, paper, pulp, cotton, hemp, wool, silk, leather, carrageenan, chitin / chitosan, natural linear polyester resin, and a mixture thereof.
  • starch derived from a natural product, processed (modified) starch or a mixture of both can be used. More specifically, natural starches such as potato starch, corn starch, sweet potato starch, wheat starch, rice starch, tapio starch, sago starch, cassava starch, legume starch, kuzu starch, bracken starch, lotus starch, and heshi starch. These degradation products, amylose-degraded starch, and amylobectin-degraded starch are exemplified.
  • Starch can be used after solubilization if necessary.
  • starch can be heated by adding water to a viscous liquid for use.
  • a liquid that has been plasticized with ethylene glycol or glycerin instead of water and used as a liquid can also be used.
  • the processed starch include those obtained by subjecting natural starch to various physical denaturation, such as ⁇ -starch, fractionated amylose, and moisture-heat-treated starch.
  • Acetylated starch other chemically modified starch derivatives, such as esterification Ester starch that has been processed, etherified starch that has been etherified, cross-linked starch that has been processed with a cross-linking agent, and starch that has been aminated with 2-dimethylaminoethyl chloride.
  • Preferred starches are granular starch, plasticized starch plasticized with water and Z or a plasticizer, a mixture of granular starch and plasticized starch plasticized with water and Z or a plasticizer.
  • the weight composition ratio of the aliphatic polyester copolymer (a) and the starch is 95/5 to 20/80, preferably 90 to 10/40/60.
  • Resin additives include plasticizers, heat stabilizers, lubricants, anti-blocking agents, nucleating agents, photolytic agents, biodegradation accelerators, antioxidants, UV stabilizers, antistatic agents, flame retardants, droplet agents, and antibacterial agents Agents, deodorants, fillers, coloring agents, or mixtures thereof.
  • plasticizer examples include an aliphatic dibasic acid ester, a fluoric acid ester, a hydroxy polycarboxylic acid ester, a polyester plasticizer, a fatty acid ester, an epoxy plasticizer, and a mixture thereof.
  • phthalic acid esters such as di-2-ethylhexyl phthalate (DOP), dibutyl phthalate (DBP), diisodecyl phthalate (DIDP), and di-2-ethyl ethyl adipate
  • DOP di-2-ethylhexyl phthalate
  • DBP dibutyl phthalate
  • DIDP diisodecyl phthalate
  • Adipates such as xyl (DOA) and diisodecyl adipate (DI DA); azelates such as azelaic acid-di-2-ethylhexyl (DOZ); tri-l-ethylhexyl acetyl citrate; tributyl acetyl citrate
  • polyester-based plasticizers such as polypropylene glycol adipate, etc., and these are used alone or
  • the amount of the plasticizer to be added varies depending on the application, but is generally 3 to 30 parts by weight based on 100 parts by weight of the aliphatic polyester copolymer (a). Is preferable. When it is a molded product, the content is preferably in the range of 5 to 15 parts by weight. If the amount is less than 3 parts by weight, the elongation at break and the impact strength may decrease, and if it exceeds 30 parts by weight, the strength at break and the impact strength may decrease.
  • Heat stabilizers include aliphatic carboxylate salts. As the aliphatic carboxylic acid, an aliphatic hydroxycarboxylic acid is particularly preferred. As the aliphatic hydroxycarboxylic acid, naturally occurring ones such as lactic acid and hydroxybutyric acid are preferable.
  • the salt examples include salts of sodium, calcium, aluminum, barium, magnesium, manganese, iron, zinc, lead, silver, copper and the like. These can be used as one kind or as a mixture of two or more kinds.
  • the amount of addition is in the range of 0.5 to 10 parts by weight based on 100 parts by weight of the copolymer.
  • the impact strength (Izod impact value) is improved, and the effects of elongation at break, breaking strength and impact strength are reduced.
  • lubricant those generally used as an internal lubricant and an external lubricant can be used.
  • fatty acid esters, hydrocarbon resins and the like are used.
  • a lubricant When selecting a lubricant, it is necessary to select a lubricant whose melting point is lower than the melting point of lactone resin and other biodegradable resins. For example, in consideration of the melting point of the aliphatic polyester resin, a fatty acid amide of 16 Ot: or less is selected as the fatty acid amide. W 200
  • 0.05 to 5 parts by weight of a lubricant is added to 100 parts by weight of the resin. If the amount is less than 0.05 part by weight, the effect is not sufficient, and if it exceeds 5 parts by weight, it is not wound around a roll or the like, and the physical properties are deteriorated.
  • ethylene bisstearic acid amide, stearic acid amide, oleic acid amide, and erlic acid amide which are highly safe and registered with the FDA (US Food and Drug Administration), preferable.
  • photodegradation accelerator examples include benzophenones such as benzoins, benzoin alkyl ethers, benzophenone, and 4,4-bis (dimethylamino) benzophenone, and derivatives thereof; Acetophenone and its derivatives; quinones; thioxanthones; photoexciting materials such as phthalocyanine, analytic titanium oxide, ethylene carbon monoxide copolymer, and sensitizers of aromatic ketones and metal salts. Is exemplified. These photolysis accelerators can be used alone or in combination of two or more.
  • biodegradation accelerator examples include oxo acids (eg, oxo acids having about 2 to 6 carbon atoms such as glycolic acid, lactic acid, citric acid, tartaric acid, and malic acid), saturated dicarboxylic acids (eg, oxalic acid, malonic acid, etc.).
  • Organic acids such as acids, succinic acid, succinic anhydride, and dartaric acid, etc .; lower saturated dicarboxylic acids having about 2 to 6 carbon atoms); lower alkyls of these organic acids and alcohols having about 1 to 4 carbon atoms. Esters are included.
  • biodegradation promoters include organic acids having about 2 to 6 carbon atoms, such as citric acid, tartaric acid, and malic acid, and coconut shell activated carbon. These biodegradation accelerators can be used alone or in combination of two or more.
  • Examples of the filler include various fillers, such as calcium carbonate and talc, myrgic acid, and silica silicate.
  • Inorganic fillers such as lucidum, finely divided silica (anhydride), white carbon (hydrated), asbestos, porcelain clay (fired), maltstone, various titanium oxides, glass fibers, etc., and organic materials such as particles of natural materials Fillers can be mentioned.
  • the particle diameter is preferably from 0.1 to 7 m.
  • the finely divided silica as the inorganic filler may be silica produced by a wet method or silica produced by high-temperature hydrolysis of silicon tetrachloride in oxyhydrogen, but the particle size is 50 nm or less. Is preferable, and when low haze is required, a further 10 nm level is preferable.
  • the biodegradability is further improved and the melt strength (viscosity) is increased, so that drawdown during melt molding is prevented, and moldability such as vacuum molding, blow molding, and inflation molding is possible. Is improved.
  • the amount of the filler added is not particularly limited, but the weight ratio of the filler Z copolymer (a) to the aliphatic polyester copolymer (a) is preferably 5 to 50/95 to 50. More preferably, it is 10 to 45Z90 to 55, more preferably 20 to 40/80 to 60, particularly preferably 25 to 35Z75 to 65.
  • the resin will blow powder, while if it is too small, drawdown, necking, uneven thickness, and noticeable irregularities will occur during molding.
  • Organic fillers include finely divided particles of paper having a diameter of 50 microns or less and made from paper.
  • the addition amount and particle size of the organic filler are the same as in the case of the inorganic filler.
  • Examples of the bulking agent include wood flour and glass balloon.
  • the amount of filler added is the same as for inorganic fillers.
  • a general method can be preferably used as a method for kneading the aliphatic polyester copolymer (a) with the other biodegradable resin (b) and / or other additives.
  • the raw material resin pellet powder is used.
  • the body and solid flakes are dry-mixed with a Henschel mixer or a Ripon mixer, and then mixed with a single-screw or twin-screw extruder, Banbury mixer, kneader, mixing roll, etc. It can be supplied to a known melt mixer and melt-kneaded.
  • the biodegradable molded article of the present invention in which bleeding is suppressed is obtained by molding the kneaded product obtained above by an injection molding method, an extrusion molding method, a cast molding method, an inflation film molding method, or the like.
  • the bleed out of the oligomer can be further effectively suppressed.
  • the annealing temperature is usually from 30 to 60 T, preferably from 35 to 50, and more preferably from 35 to 45 ° C, depending on the composition ratio. If the annealing temperature is less than 30, the effect of further suppressing the bleed-out of the oligomer may not be observed. If the temperature is higher than 60 ° C, the molded article becomes too soft and may be blocked.
  • the annealing time depends on the temperature, but is usually 10 hours or more, preferably 24 to 480 hours, more preferably 72 to 360 hours. If the anneal treatment time is less than 10 hours, the effect of further suppressing the premide out of the oligomer may not be exhibited.
  • the upper limit is not particularly limited, but if it exceeds 480 hours, the expression of the suppressing effect is saturated.
  • the oligomer extraction amount in 60 seconds when immersed stirred in hexane is 1 Smg / ⁇ 500 cm 2 or less, preferably 12mgZ molded article surface one 2500 cm 2 or less, more preferably 1 OmgZ molded article surface one 2500 cm 2 or less, particularly preferably those of 8 MGZ molded article surface one 2500 cm 2 or less.
  • the molded article of the present invention is a molded article for use in which biodegradability is preferred, and includes plate materials, bottles' tanks (beverage bottles, food bottles, industrial large containers, detergent containers, pharmaceutical and agricultural chemical containers), trays, Cup (general purpose cup / food cup Z retort food cup / Other cups), Blister molded products, PTP packaged products, Packaging related materials (tapes, ropes, packing bands), hoses, tubes, containers (beer containers, fresh food containers), cushioning materials, insulation materials ( These are applied products such as fish boxes, others), coating materials, various films, accessories (zippers / pots), water-absorbing polymers, fibers (threads, woven fabrics, non-woven fabrics, nets, and ropes).
  • Products refrigerators, air conditioners, lighting equipment, heating equipment
  • electronic products TV, video and other video-related equipment, radio, stereo, CD, MD audio equipment, telephones, faxes, mobile phones, personal computers, word processors, Printers (copiers, various components of projectors), heavy electrical materials (insulation materials for light electricity (condenser films), magnetic tape films, circuit boards)
  • Plate materials IC sealing materials, bonded magnets, magnetic cards, conductive materials, battery materials (electrode materials, electrolyte materials, separators, battery batteries), resist materials, sensor materials (light, gas , Smell, humidity, temperature, ion), toys and stationery 'sporting goods (golf supplies, ski supplies, fishing supplies, shoes, helmets), mechanical parts (sliding parts (bearing)
  • Plumbing materials board materials (sheets and flat corrugated sheets Z decorative plywood), heat insulation materials, heat insulation, cold insulation materials (foam plastic), adhesives' sealing materials, tiles, medical supplies (separation membranes, sutures, Artificial organs, bioabsorbable materials, contact lenses, syringes 'injection needles, blood collection tubes and specimen testing instruments, infusions' blood transfusion instruments, catheters and tubes), etc.
  • Butanediol-Succinic acid prolactone terpolymer manufactured by Daicel Chemical Industries, Ltd., CBS-051 (Mw20.80,000 in terms of polystyrene, MFR (190 ° C) 1.8, Tml 08 ° C, oligomer Content 560 Oppm)
  • Polylactic acid copolymer (D 2) D-lactic acid content 2.2%, MFR (190 ° C) 9.4 g / 10 min, melting point 164)
  • Polylactic acid copolymer (D13) D-lactic acid content 12.6%, MFR (190 ° C) 2.6 g / 10min, amorphous
  • Polylactic acid copolymer (D3) D-lactic acid content 1.6%, MFR (190) 2.6 g / 10min, melting point 168 ° C
  • PCL Polycaprolactone
  • Weight average molecular weight Measured by GPC and determined in terms of standard polystyrene.
  • Bleed-out amount (mg): Immerse the molded article (2 pieces of A4 size, total area 2 500 cm 2 ) in 500m1 of hexane solvent, stir for 60 seconds, take out the molded article, The hexane solvent was concentrated and dried, and the solid content was dried under reduced pressure at 80 ° C and 400 Torr for 12 hours and weighed.
  • the amount of the additive erlic acid amide in the above extract was analyzed by gas chromatography as necessary.
  • the elongation (%) was the change in the distance between the chucks.
  • the measurement conditions are as follows.
  • Cross head speed 30 Omm / min (However, Young's modulus is measured at 5 mm / min. went. )
  • the measured values are the average of five measurements.
  • 3 days anneal A molded product that has been annealed for 3 days after molding is left at room temperature for 17 days, and 20 days after molding.
  • 10 days anneal A molded product that was annealed for 10 days after molding was left at room temperature for 10 days, and 20 days after molding.
  • the aliphatic polyester copolymer (a) and the other aliphatic polyester (b) were previously melt-kneaded at the ratios shown in Table 1 to obtain a kneaded composition.
  • a molded article was obtained using the kneading composition obtained above.
  • the base point of the elapsed days was set to 0 day for the film formation date (the same applies hereinafter).
  • Table 1 shows the results.
  • the aliphatic polyester copolymer (a) alone was used, and the bleed out of the oligomer occurred over time, and the haze and the parallel light transmittance deteriorated.
  • a polylactic acid copolymer is added as another aliphatic polyester (b)
  • bleeding is suppressed, and deterioration of appearance is suppressed.
  • Copolymer (a) CBS101 CBS101 CBS051 CBS051 CBS101 CBS051
  • the kneading composition was added in the same manner as in Example 1 by adding the aliphatic polyester copolymer (a), the aliphatic polyester (b) of Jo and other o- and the resin additive in the proportions shown in Table 2. Using a kneading composition, a molded product having a thickness of 30 m was obtained using a molding machine.
  • Table 2 shows the results. As can be seen from these results, in Comparative Example 3, although the aliphatic polyester copolymer (a) was used alone and the amount of bleed-out of the oligomer was large over time, the addition of polylactic acid was observed as shown in Examples 5 to 8. Bleed-out is suppressed along with the rate. The addition of the polylactic acid copolymer dilutes and lowers the oligomer content in the resin composition, but the bleed-out amount clearly exceeds the decrease due to the dilution.
  • Copolymer (a) CBS101 CBS101 CBS101 CBS101 CBS101
  • a molded product was obtained in the same manner as in Example 5 except that CBS051 was used instead of CBS101 as the aliphatic polyester copolymer (a). Comparative Example 4 was performed without the addition of the polylactic acid copolymer.
  • bleed-out can be further suppressed, and the amount of other aliphatic polyester (b) necessary for suppressing the bleed-out can be reduced.
  • the molded article obtained from the composition containing D13 having a high D-lactic acid content (D-lactic acid content of 12.6%) has a mixed amount of 15%.
  • the TD has a large elongation even in weight%.
  • molded articles obtained from a composition containing D2 (D-lactic acid content: 2.2%) or D3 (D-lactic acid content: 1.6%), which has a low D-lactic acid content have a lower mixing amount.
  • the content is 15% by weight, a molded article having a small elongation of TD can be obtained.
  • EA Awake 1000 1000 1000 1000 1000 1000 1000 2 days after molding Preed 0 0 0 0 0 0 20 days after molding Pread X X X X 0 0
  • a molded product having a thickness of 30 m and a thickness of 40 was obtained using a molding machine.
  • the obtained molded article was subjected to an annealing treatment at 40 ° C. for 10 days, then left at room temperature for 10 days, and then subjected to measurement.
  • Table 5
  • the biodegradability is excellent in mechanical properties and biodegradability, and has no problems such as powder blowing and further deterioration of appearance.
  • a resin molded product is obtained.

Abstract

An aliphatic-polyester-based biodegradable resin composition comprising: an aliphatic polyester copolymer (a) in which the molecular chain is made up of repeating units represented by the following general formulae (1) and (2): -CO-R1-CO- (1) (wherein R1 represents a C1-12 divalent aliphatic group) -O-R2-O- (2) (wherein R2 represents a C2-12 divalent aliphatic group) and optionally contains repeating units represented by the formula (3): -CO-R3-O- (3) (wherein R3 represents a C1-10 divalent aliphatic group) and in which the weight-average molecular weight is 40,000 or higher and the content of oligomers having a molecular weight of 500 or lower is 1,000 to 20,000 ppm; and other biodegradable resin (b). By using the oligomer-containing high-molecular aliphatic polyester copolymer, biodegradable resin moldings are obtained which are excellent in mechanical properties and biodegradability, are inhibited from suffering surface powdering, and are free from problems such as the appearance deterioration caused by the powdering.

Description

明 細 書 生分解性樹脂組成物 技術分野  Description Biodegradable resin composition Technical field
本発明は、 脂肪族ジカルボン酸残基、 脂肪族ジオール残基及び必要に応じて加 えられる脂肪族ヒドロキシカルボン酸残基に基づくエステル結合を有する特定の 脂肪族ポリエステル共重合体と他の生分解性樹脂とからなる生分解性樹脂組成物 に関する。  The present invention relates to a specific aliphatic polyester copolymer having an ester bond based on an aliphatic dicarboxylic acid residue, an aliphatic diol residue, and an optionally added aliphatic hydroxycarboxylic acid residue, and other biodegradable products. The present invention relates to a biodegradable resin composition comprising a hydrophilic resin.
該組成物は実用可能な物性を有し、 生分解性において優れていると共に、 オリ ゴマーのブリードアウトによる成形品表面への粉吹きやそれに伴う外観の低下が 抑制される。 背景技術  The composition has practicable physical properties and is excellent in biodegradability, and also suppresses powder blowing to the molded product surface due to bleeding out of the oligomer and the accompanying deterioration in appearance. Background art
近年、 自然環境中で生分解可能なプラスチックとして、 汎用性の高い脂肪族ポ リエステルが注目されており、 ポリ乳酸 (P L A) 、 ポリプチレンサクシネート In recent years, versatile aliphatic polyesters have attracted attention as plastics that can be biodegraded in the natural environment. Polylactic acid (PLA), polybutylene succinate
( P B S ) 、 ポリエチレンサクシネート (P E S ) 、 ポリ力プロラクトン (P C L ) などが上巿されている。 (PBS), polyethylene succinate (PES), polycaprolactone (PCL), etc. are listed.
これら生分解性脂肪族ポリエステルの用途として、 板材、 容器、 筐体、 フィル ム、 糸等があり、 用途に応じた高強度、 耐熱性および生分解性が、 基本性能とし て要求されている。  Applications of these biodegradable aliphatic polyesters include plate materials, containers, housings, films, yarns, and the like, and high strength, heat resistance, and biodegradability according to the application are required as basic performance.
上記脂肪族ポリエステルの中で、 P L Aは、 延伸あるいは高結晶化させた成形 品では、 高いものでは 1 7 0 °C付近に融点を持ち高耐熱性であるが、 硬くあるい は脆いために成形品の伸度は低く、 また土中で分解しにくいためコンポスト化設 備が必要である。 P B Sおよび P E Sは融点が 1 0 0 °C付近で十分な耐熱性を有 するが、 生分解速度が小さく、 実用的には不充分であり、 また機械的性質では柔 軟性に欠ける。 PCLは柔軟性に優れるものの、 融点 60T:と耐熱性が低いため に用途が限定されているが、 生分解速度は非常に速い。 Among the above aliphatic polyesters, PLA is a molded product that has been stretched or highly crystallized and has a high melting point near 170 ° C and high heat resistance, but it is hard or brittle. Composting equipment is required because the product has low elongation and is hard to decompose in the soil. PBS and PES have sufficient heat resistance at a melting point of around 100 ° C, but have a low biodegradation rate, are not practically sufficient, and have poor mechanical properties. Lack of flexibility. Although PCL has excellent flexibility, its application is limited due to its low melting point of 60T: its heat resistance, but its biodegradation rate is very fast.
このように、 脂肪族ポリエステルのホモポリマーでは上記課題を解決するのは 困難であるが、 例えば特許 2997756号公報記載のポリブチレンサクシネー トーポリ力プロラクトン共重合体 (PBSC) のように、 脂肪族ポリエステル共 重合体中に力プロラクトンュニットを導入することにより、 実用的な柔軟性と適 度な生分解性を実現することができ、 また、 力プロラクトンユニットの含有量を 制御することにより、 融点を 80°C以上として十分な耐熱性を保持することと、 生分解性を制御することが可能であることが見出されている (特許文献 1) 。 また、 生分解性高分子量脂肪族ポリエステルの改良については、 数多くの提案 がある。 例えば、 特開平 8— 311181号公報には、 脂肪族ジカルボン酸又は そのエステルと、 脂肪族ジオールと、 ォキシカルボン酸、 ォキシカルボン酸エス テル又はラクトンを触媒の存在下で重縮合反応させることにより数平均分子量が 15, 000〜 80, 000である生分解性高分子量脂肪族ポリエステル共重合 体が開示されている (特許文献 2) 。  As described above, it is difficult to solve the above-mentioned problems with the homopolymer of the aliphatic polyester. However, for example, an aliphatic polyester such as polybutylene succinate polypolyprolactone copolymer (PBSC) described in Japanese Patent No. 2997756 can be used. By introducing force-prolactone units into the polyester copolymer, practical flexibility and appropriate biodegradability can be achieved, and by controlling the content of force-prolactone units, However, it has been found that it is possible to maintain sufficient heat resistance by setting the melting point to 80 ° C. or higher and to control biodegradability (Patent Document 1). Also, there have been many proposals for improving biodegradable high molecular weight aliphatic polyesters. For example, Japanese Patent Application Laid-Open No. 8-311181 discloses that an aliphatic dicarboxylic acid or an ester thereof, an aliphatic diol, an oxycarboxylic acid, an oxycarboxylic acid ester or a lactone are subjected to a polycondensation reaction in the presence of a catalyst to obtain a number average molecular weight. A biodegradable high molecular weight aliphatic polyester copolymer having a molecular weight of 15,000 to 80,000 is disclosed (Patent Document 2).
特開平 9一 272789号公報には、 脂肪族ジオール、 脂肪族ジカルボン酸、 及び脂肪族ヒドロキシカルボン酸を共重合して数平均分子量が 1〜30万である 脂肪族ポリエステルと、 数平均分子量が 3万以上のポリ乳酸を溶融ブレンドした 樹脂組成物が開示されている (特許文献 3) 。  JP-A-9-1272789 discloses an aliphatic polyester having a number average molecular weight of 1 to 300,000 by copolymerizing an aliphatic diol, an aliphatic dicarboxylic acid, and an aliphatic hydroxycarboxylic acid, and a number average molecular weight of 3 A resin composition in which 10,000 or more polylactic acids are melt-blended is disclosed (Patent Document 3).
WO 02-44249号公報には、 脂肪族ジオール、 脂肪族ジカルボン酸、 及び脂肪族ヒドロキシカルボン酸またはその無水環状化合物 (ラクトン類) の 3 成分からなる混合物の重縮合反応により合成した重量平均分子量 40, 000以 上の高分子量脂肪族ポリエステル共重合体と他の生分解性樹脂を使用することに より、 フィルム等の成形時の分子量安定性が良く、 成形が良好であることが開示 されている (特許文献 4) 。  WO 02-44249 discloses a weight-average molecular weight of 40 synthesized by a polycondensation reaction of a mixture of three components of an aliphatic diol, an aliphatic dicarboxylic acid, and an aliphatic hydroxycarboxylic acid or an anhydrous cyclic compound thereof (lactones). It is disclosed that by using a high molecular weight aliphatic polyester copolymer of 2,000 or more and other biodegradable resin, the molecular weight stability at the time of forming a film or the like is good and the molding is good. (Patent Document 4).
しかしながら、 上記各技術では、 成形後のオリゴマー成分のブリードアウトに よる表面への粉吹きやそれに伴う外観低下等の問題は解決されていない。 However, in each of the above technologies, the bleed out of the oligomer component after molding However, the problems such as powder blowing to the surface and the resulting deterioration in appearance have not been solved.
通常、 脂肪族ジオール、 脂肪族ジカルボン酸、 及び脂肪族ヒドロキシカルボン 酸またはその無水環状化合物 (ラクトン類) の 3成分からなる高分子量脂肪族ポ リエステル共重合体に含まれるオリゴマーを減少させるには、 後処理が必要であ るが、 このような後処理は製品の経済性を著しく低下させる。  In general, to reduce oligomers contained in a high molecular weight aliphatic polyester copolymer composed of three components, aliphatic diol, aliphatic dicarboxylic acid, and aliphatic hydroxycarboxylic acid or its anhydride cyclic compound (lactones), Work-up is required, but such work-up significantly reduces the economics of the product.
[特許文献 1 ]  [Patent Document 1]
特許 2 9 9 7 7 5 6号公報 (請求項 1〜 3、 実施例 1〜 5 )  Patent No. 29977756 (Claims 1-3, Examples 1-5)
[特許文献 2 ]  [Patent Document 2]
特開平 8— 3 1 1 1 8 1号公報 (請求項、 実施例)  Japanese Patent Application Laid-Open No. Hei 8-3-1111 (claims, examples)
[特許文献 33  [Patent Document 33
特開平 9一 2 7 2 7 8 9号公報 (請求項、 実施例)  Japanese Unexamined Patent Publication No. Hei 9-271272 (claims, examples)
[特許文献 4 ]  [Patent Document 4]
WO 0 2— 4 4 2 4 9号公報(請求項、 発明の開示の項の最終段落、 表 VII- WO 0 2—4 4 249 Gazette (Claims, Last Paragraph of Disclosure of the Invention, Table VII-
1) 本発明の目的は、 ォリゴマーを含有する高分子量脂肪族ポリエステル共重合体 を使用して、 機械的物性及び生分解性において優れ、 且つ表面への粉吹きやそれ に伴う外観の低下等の問題のない生分解性樹脂成形品に使用される生分解性樹脂 組成物を提供することである。 発明の開示 1) An object of the present invention is to use a high-molecular-weight aliphatic polyester copolymer containing oligomers to provide excellent mechanical properties and biodegradability, as well as powder blowing to the surface and accompanying deterioration in appearance. An object of the present invention is to provide a biodegradable resin composition used for a biodegradable resin molded article having no problem. Disclosure of the invention
本発明者らは、 ォリゴマ一を含有する高分子量脂肪族ポリエステル共重合体に、 結晶性の低い特定量の D体を含むポリ乳酸のような他の生分解性樹脂を特定量加 えて、 さらにはァニールなどの処理を施すことにより、 経時的にも表面への粉吹 きがなく、 それに伴う外観の低下が少なく、 機械的物性及び生分解性において優 れた生分解性樹脂成形品が得られることを見い出し、 本発明を完成するに至った。 すなわち本発明の第 1は、 分子鎖が、 下記一般式 (1) と (2) で示される繰 返し単位: The inventors of the present invention added a specific amount of another biodegradable resin such as polylactic acid containing a specific amount of D-form with low crystallinity to a high-molecular-weight aliphatic polyester copolymer containing oligosaccharide. By applying a treatment such as annealing, a biodegradable resin molded product with excellent mechanical properties and biodegradability is obtained, with no powder blowing over the surface over time, with little accompanying deterioration in appearance. And found that the present invention was completed. That is, the first aspect of the present invention is that a molecular chain is a repeating unit represented by the following general formulas (1) and (2):
— CO— R1— CO— (1) — CO— R 1 — CO— (1)
(式中、 R1は炭素数 1〜12の二価脂肪族基を表す。 ) (In the formula, R 1 represents a divalent aliphatic group having 1 to 12 carbon atoms.)
_0_R2— O— (2) _0_R 2 — O— (2)
(式中、 R 2は炭素数 2〜12の二価脂肪族基を表す。 ) (In the formula, R 2 represents a divalent aliphatic group having 2 to 12 carbon atoms.)
及び必要に応じて加えられる (3) で示される繰返し単位: And the repeating unit shown in (3), which is added as necessary:
一 CO— R3—〇— (3) One CO—R 3 —〇— (3)
(式中、 R 3は炭素数 1〜10の二価脂肪族基を表す。 ) (Wherein, R 3 represents a divalent aliphatic group having 1 to 10 carbon atoms.)
からなり、 重量平均分子量が 40, 000以上であり、 分子量 500以下のォリ ゴマー含有率が 1, 000〜 20, 000 ppmである脂肪族ポリエステル共重合体An aliphatic polyester copolymer having a weight average molecular weight of 40,000 or more and a oligomer having a molecular weight of 500 or less and having a content of 1,000 to 20,000 ppm
(a) 、 及び (a), and
他の生分解性樹脂 (b) Other biodegradable resins (b)
からなる脂肪族ポリエステル系生分解性樹脂組成物を提供する。 The present invention provides an aliphatic polyester-based biodegradable resin composition comprising:
本発明の第 2は、 脂肪族ポリエステル共重合体 (a) が、 該脂肪族ポリエステ ル共重合体 (a) の重合中間体である重量平均分子量 5, 000以上の低分子量 脂肪族ポリエステル共重合体 (a' ) 100重量部に対し、 0. 1〜5重量部の 一般式 (7) :  The second aspect of the present invention is that the aliphatic polyester copolymer (a) is a low molecular weight aliphatic polyester copolymer having a weight average molecular weight of 5,000 or more, which is a polymer intermediate of the aliphatic polyester copolymer (a). 0.1 to 5 parts by weight of the general formula (7) per 100 parts by weight of the combined (a ')
X1— R7— X2 (7) X 1 — R 7 — X 2 (7)
(式中、 X1、 X2は水酸基または力ルポキシル基と作用して共有結合を形成可能 な反応基、 R7は単結合、 炭素数 1〜20の脂肪族基又は芳香族基を表し、 X1、 X2は同一の化学構造であってもよいし、 異なってもよい) (In the formula, X 1 and X 2 each represent a reactive group capable of forming a covalent bond by acting with a hydroxyl group or a hydroxyl group, R 7 represents a single bond, an aliphatic group or an aromatic group having 1 to 20 carbon atoms, X 1 and X 2 may have the same chemical structure or may have different chemical structures)
で表される 2官能性の連結剤 (e) を反応させて髙分子量化されたものである本 発明の第 1に記載の生分解性樹脂組成物を提供する。 The biodegradable resin composition according to the first aspect of the present invention, which has a low molecular weight obtained by reacting a bifunctional linking agent (e) represented by the following formula:
本発明の第 3は、 一般式 (1) が、 コハク酸残基及び/又はアジピン酸残基で ある本発明の第 1又は 2の生分解性樹脂組成物を提供する。 本発明の第 4は、 一般式 (2) が、 エチレングリコール残基及び 又は 1, 4 ーブ夕ンジオール残基である本発明の第 1〜 3のいずれかの生分解性樹脂組成物 を提供する。 A third aspect of the present invention provides the first or second biodegradable resin composition of the present invention, wherein the general formula (1) is a succinic acid residue and / or an adipic acid residue. A fourth aspect of the present invention provides the biodegradable resin composition according to any one of the first to third aspects of the present invention, wherein the general formula (2) is an ethylene glycol residue and / or a 1,4-butanediol residue. I do.
本発明の第 5は、 一般式 (3) が、 ε—力プロラクトン、 4—メチルカプロラ クトン、 3, 5, 5—トリメチルカプロラクトン、 3, 3, 5—トリメチルカプ ロラクトン、 )3—プロピオラクトン、 ァ一プチロラクトン、 δ—バレロラクトン、 ェナントラクトンからなる群から選ばれた少なくとも 1種に基づく基である本発 明の第 1〜 4のいずれかの生分解性樹脂組成物を提供する。  A fifth aspect of the present invention is that, when the general formula (3) is ε-force prolactone, 4-methylcaprolactone, 3,5,5-trimethylcaprolactone, 3,3,5-trimethylcaprolactone,) 3-propiolactone The present invention provides the biodegradable resin composition according to any one of the first to fourth aspects of the present invention, which is a group based on at least one selected from the group consisting of acetylbutyrolactone, δ-valerolactone, and enantholactone.
本発明の第 6は、 一般式 (7) で表される 2官能性の連結剤 (e) の反応基が イソシァネート基、 イソチオシァネート基、 エポキシ基、 ォキサゾリン基、 ォキ サゾロン基もしくはォキサジノン基、 アジリジン基、 又はこれらの混合基である ことを特徴とする本発明の第 2に記載の生分解性樹脂組成物を提供する。  A sixth feature of the present invention is that the reactive group of the bifunctional linking agent (e) represented by the general formula (7) is an isocyanate group, an isothiocyanate group, an epoxy group, an oxazoline group, an oxazolone group or an oxazinone. A biodegradable resin composition according to the second aspect of the present invention, which is a group, an aziridine group, or a mixed group thereof.
本発明の第 7は、 脂肪族ポリエステル共重合体 (a) 又は低分子量脂肪族ポリ エステル共重合体 (a' ) 中に含まれる繰返し単位 (3) のモル分率が、 0. 2 5以下である本発明の第 1〜 6のいずれかに記載の生分解性樹脂組成物を提供す る。  A seventh aspect of the present invention is that the mole fraction of the repeating unit (3) contained in the aliphatic polyester copolymer (a) or the low molecular weight aliphatic polyester copolymer (a ′) is 0.25 or less. And a biodegradable resin composition according to any one of the first to sixth aspects of the present invention.
本発明の第 8は、 脂肪族ポリエステル共重合体 (a) と他の生分解性樹脂 (b) の重量組成比が 99. 9/0. 1〜70Z30である本発明の第 1〜7の 生分解性樹脂組成物を提供する。  An eighth aspect of the present invention is the first to seventh aspects of the present invention, wherein the weight composition ratio of the aliphatic polyester copolymer (a) and the other biodegradable resin (b) is 99.9 / 0.1 to 70Z30. Provided is a biodegradable resin composition.
本発明の第 9は、 他の生分解性樹脂 (b) が脂肪族ポリエステル (b l) であ る本発明の第 1〜 8のいずれかに記載の生分解性樹脂組成物を提供する。  A ninth aspect of the present invention provides the biodegradable resin composition according to any one of the first to eighth aspects of the present invention, wherein the other biodegradable resin (b) is an aliphatic polyester (bl).
本発明の第 10は、 脂肪族ポリエステル (b l) が、 ポリ乳酸 (PLA) 、 ポリ (ε—力プロラクトン) (PCL) 、 又はこれらの混合物である本発明の第 9に記載 の生分解性樹脂組成物を提供する。  A tenth aspect of the present invention is the biodegradable composition according to the ninth aspect of the present invention, wherein the aliphatic polyester (bl) is polylactic acid (PLA), poly (ε-force prolactone) (PCL), or a mixture thereof. A resin composition is provided.
本発明の第 11は、 ポリ乳酸 (PLA) が、 D体を 5〜 50%含むポリ乳酸共重合 体である本発明の第 10の生分解性樹脂組成物を提供する。 本発明の第 12は、 製膜 60日後の成形品をへキサン中で 60秒間浸漬撹拌し た場合に、 分子量 500以下のオリゴマーの抽出量が 1 Omg/2500 cm2以 下である本発明の第 1〜 1 1に記載の生分解性樹脂組成物を提供する。 発明を実施するための最良の形態 An eleventh aspect of the present invention provides the tenth biodegradable resin composition of the present invention, wherein the polylactic acid (PLA) is a polylactic acid copolymer containing 5 to 50% of a D-form. A twelfth aspect of the present invention is the method according to the present invention, wherein the molded product after 60 days from the film formation is immersed and stirred in hexane for 60 seconds, and the extraction amount of the oligomer having a molecular weight of 500 or less is 1 Omg / 2500 cm 2 or less. A biodegradable resin composition according to any one of items 1 to 11 is provided. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の実施の形態を説明する。  Hereinafter, embodiments of the present invention will be described.
本発明に係る高分子量脂肪族ポリエステル共重合体 (a) は、 分子鎖が、 下記 一般式 (1) と (2) で示される繰返し単位:  In the high molecular weight aliphatic polyester copolymer (a) according to the present invention, the molecular chain is a repeating unit represented by the following general formulas (1) and (2):
一 CO— R1— C〇一 (1) One CO— R 1 — C〇 一 (1)
(式中、 R1は炭素数 1〜12の二価脂肪族基を表す。 ) (Wherein, R 1 represents a divalent aliphatic group having 1 to 12 carbon atoms.)
一〇— R2— O— (2) Ichi—R 2 — O— (2)
(式中、 R 2は炭素数 2〜12の二価脂肪族基を表す。 ) (In the formula, R 2 represents a divalent aliphatic group having 2 to 12 carbon atoms.)
及び必要に応じて加えられる (3) で示される繰返し単位: And the repeating unit shown in (3), which is added as necessary:
一 CO— R3—〇一 (3) One CO—R 3 —〇-1 (3)
(式中、 R 3は炭素数 1〜10の二価脂肪族基を表す。 ) (Wherein, R 3 represents a divalent aliphatic group having 1 to 10 carbon atoms.)
からなり、 重量平均分子量が 40, 000以上であり、 分子量 500以下のオリ ゴマー含有率が 1000〜 2000 Oppmであることを特徴とする。 And having a weight average molecular weight of 40,000 or more and an oligomer having a molecular weight of 500 or less having a content of 1000 to 2,000 Oppm.
本発明に係る高分子量脂肪族ポリエステル共重合体 (a) は、 また、 上記組成 からなり、 重量平均分子量 5, 000以上の低分子量脂肪族ポリエステル共重合 体 (a' ) が、 該共重合体 (a' ) 100重量部に対し、 0. 1〜5重量部の一 般式 (7) :  The high molecular weight aliphatic polyester copolymer (a) according to the present invention has the above composition, and has a low molecular weight aliphatic polyester copolymer (a ′) having a weight average molecular weight of 5,000 or more. (A ') General formula of 0.1 to 5 parts by weight per 100 parts by weight (7):
X1 - R7— X2 (7) X 1 -R 7 — X 2 (7)
(式中、 X1、 X2は水酸基または力ルポキシル基と作用して共有結合を形成可能 な反応基、 R7は単結合、 炭素数 1〜20の脂肪族基又は芳香族基を表し、 X1、 X2は同一の化学構造であってもよいし、 異なってもよい) (In the formula, X 1 and X 2 each represent a reactive group capable of forming a covalent bond by acting with a hydroxyl group or a hydroxyl group, R 7 represents a single bond, an aliphatic group or an aromatic group having 1 to 20 carbon atoms, X 1 and X 2 may have the same chemical structure or may have different chemical structures)
で表される 2官能性の連結剤 (e) により連結されて、 重量平均分子量が 40, 000以上となるようにしたものであってもよい。 (A) 成分 Linked by a bifunctional linking agent (e) represented by It may be set to be 000 or more. (A) Ingredient
式 (1) の脂肪族ジカルボン酸残基を与える (A) 成分としては、 脂肪族ジカ ルボン酸、 その無水物、 又はそのモノまたはジエステル体が挙げられ、 下記一般 式 (4) で表される。  The component (A) which gives the aliphatic dicarboxylic acid residue of the formula (1) includes aliphatic dicarboxylic acid, an anhydride thereof, or a mono- or diester thereof, and is represented by the following general formula (4). .
R4— OCO— IT— COO - R5 (4) R 4 — OCO— IT— COO-R 5 (4)
(式中、 R1は炭素数 1〜12の二価脂肪族基、 R4および R5は水素原子、 又は炭素 数 1〜6の脂肪族基もしくは芳香族基を表す。 R 4および R 5は同一でも異なってい てもよい。 ) (Wherein, R 1 represents a divalent aliphatic group having 1 to 12 carbon atoms, R 4 and R 5 represent a hydrogen atom, or an aliphatic group or an aromatic group having 1 to 6 carbon atoms. R 4 and R 5 May be the same or different.)
R 1で示される二価脂肪族基としては、 好ましくは 2 ~ 8の鎖状又は環状のアル キレン基であり、 一(CH2)2—、 一(CH2)4—、 一(CH2) 6—等の炭素数 2〜 6の直鎖状低級アルキレン基が挙げられる。 また、 R1は反応に不活性な置換基、 たとえば、 アルコキシ基やケト基等を有することができるし、 R1は酸素やィォゥ 等のへテロ原子を主鎖に含有することができ、 例えばエーテル結合、 チォエーテ ル結合等で隔てられた構造を含有することもできる。 The divalent aliphatic group represented by R 1 is preferably a 2 to 8 chain or cyclic alkylene group, and includes one (CH 2 ) 2 —, one (CH 2 ) 4 —, one (CH 2 ) 6- and the like, and a linear lower alkylene group having 2 to 6 carbon atoms. Further, R 1 can have a substituent inert to the reaction, for example, an alkoxy group or a keto group, and R 1 can contain a hetero atom such as oxygen or zeo in the main chain. It may contain a structure separated by an ether bond, a thioether bond or the like.
R4および R 5が水素原子であるときには脂肪族ジカルボン酸を表わす。 脂肪族 ジカルボン酸としては、 例えば、 コハク酸、 ダルタル酸、 アジピン酸、 ピメリン 酸、 ァゼライン酸、 スベリン酸、 デカンジカルボン酸、 ドデカンジカルボン酸、 セバシン酸、 ジグリコ一ル酸、 ケトピメリン酸、 マロン酸、 メチルマロン酸など が挙げられる。 When R 4 and R 5 are hydrogen atoms, they represent aliphatic dicarboxylic acids. Aliphatic dicarboxylic acids include, for example, succinic acid, daltaric acid, adipic acid, pimelic acid, azelaic acid, suberic acid, decanedicarboxylic acid, dodecanedicarboxylic acid, sebacic acid, diglycolic acid, ketopimelic acid, malonic acid, methyl Malonic acid and the like.
R4および R5で示される脂肪族基としては、 炭素数 1〜6、 好ましくは 1〜4 の直鎖状又は分岐鎖状のアルキル基の他、 シク口へキシル基等の炭素数 5〜 12 のシクロアルキル基が挙げられる。 As the aliphatic group represented by R 4 and R 5 , in addition to a linear or branched alkyl group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, such as a cyclohexyl group having 5 to 5 carbon atoms 12 cycloalkyl groups.
R4および R5で示される芳香族基としては、 フエニル基、 ベンジル基等が挙げ られる。 中でも、 R 4および R 5は炭素数 1〜6、 好ましくは炭素数 1〜3の低級アルキ ル基である。 このようなジアルキルエステルとしては、 例えば、 コハク酸ジメチ ル、 コハク酸ジェチル、 ダルタル酸ジメチル、 ダルタル酸ジェチル、 アジピン酸 ジメチル、 アジピン酸ジェチル、 ピメリン酸ジメチル、 ァゼライン酸ジメチル、 スベリン酸ジメチル、 スベリン酸ジェチル、 セバシン酸ジメチル、 セバシン酸ジ ェチル、 デカンジカルボン酸ジメチル、 ドデカンジカルポン酸ジメチル、 ジグリ コール酸ジメチル、 ケトピメリン酸ジメチル、 マロン酸ジメチル、 メチルマロン 酸ジメチル等が挙げられる。 これらのものは単独で用いてもよいし 2種以上組合 わせて用いてもよい。 The aromatic group represented by R 4 and R 5, phenyl group and a benzyl group. Among them, R 4 and R 5 are lower alkyl groups having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms. Such dialkyl esters include, for example, dimethyl succinate, getyl succinate, dimethyl dartrate, getyl dallate, dimethyl adipate, getyl adipate, dimethyl pimerate, dimethyl azelate, dimethyl suberate, getyl suberate Dimethyl sebacate, dimethyl sebacate, dimethyl decane dicarboxylate, dimethyl dodecane dicarbonate, dimethyl diglycolate, dimethyl ketopimelate, dimethyl malonate, dimethyl methyl malonate, and the like. These may be used alone or in combination of two or more.
(B ) 成分 (B) component
式 (2 ) の脂肪族ジオール残基を与える (B ) 成分としては、 脂肪族ジオール が挙げられる。  The component (B) which gives the aliphatic diol residue of the formula (2) includes aliphatic diol.
脂肪族ジオールは下記一般式 (4 ' ) で表わされる。  The aliphatic diol is represented by the following general formula (4 ′).
HO - R 2 - OH ( 4, ) HO-R 2 -OH (4,)
(式中、 R 2は炭素数 2〜1 2の二価脂肪族基を表す。 ) (In the formula, R 2 represents a divalent aliphatic group having 2 to 12 carbon atoms.)
二価の脂肪族基としては、 炭素数 2〜1 2、 好ましくは 2〜 8の鎖状又は環状 のアルキレン基が挙げられる。 好ましいアルキレン基は、 - (C H 2) 2—、 一(C H2) 3—、 —(C H 2) 4 _等の炭素数 2〜 6の直鎖状低級アルキレン基である。 ま た、 二価脂肪族基 R 2は反応に不活性な置換基、 たとえば、 アルコキシ基やケト基 等を有することができる。 R 2は酸素やィォゥ等のへテロ原子を主鎖に含有するこ とができ、 例えばエーテル結合、 チォエーテル結合等で隔てられた構造を含有す ることもできる。 Examples of the divalent aliphatic group include a linear or cyclic alkylene group having 2 to 12 carbon atoms, preferably 2 to 8 carbon atoms. Preferred alkylene groups are straight-chain lower alkylene groups having 2 to 6 carbon atoms, such as-(CH 2 ) 2 —, 1 (CH 2 ) 3 —, and — (CH 2 ) 4 _. Further, the divalent aliphatic group R 2 can have a substituent inert to the reaction, for example, an alkoxy group or a keto group. R 2 can contain a hetero atom such as oxygen or zeolite in the main chain, and can also have a structure separated by, for example, an ether bond or a thioether bond.
脂肪族ジオールとしては、 例えば、 エチレングリコール、 1, 3 -プロパンジ オール、 1 , 2 -プロパンジオール、 1, 3—ブタンジオール、 2—メチループ 口パンジオール、 1, 4一ブタンジオール、 ネオペンチルグリコール、 ペンタメ チレングリコール、 へキサメチレングリコール、 ォクタメチレングリコール、 デ カメチレングリコール、 ドデカメチレングリコール、 1, 4—シクロへキサンジ オール、 1, 4ーシクロへキサンジメタノール、 ジエチレングリコール、 ジプロ ピレングリコール、 トリエチレングリコール、 テトラエチレングリコール、 ペン 夕エチレングリコール、 分子量 1000以下のポリエチレングリコール等を用い ることができる。 これらのものは単独でも、 2種以上組合せて用いてもよい。 さ らに 1, 1, 1—トリス (ヒドロキシメチル) プロパン等の三官能アルコールを 少量併用してもよい。 Examples of the aliphatic diol include ethylene glycol, 1,3-propanediol, 1,2-propanediol, 1,3-butanediol, 2-methylbutanepandiol, 1,4-butanediol, neopentyl glycol, Pentame Tylene glycol, hexamethylene glycol, octamethylene glycol, decamethylene glycol, dodecamethylene glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, diethylene glycol, dipropylene glycol, triethylene glycol, Tetraethylene glycol, pentaethylene glycol, polyethylene glycol having a molecular weight of 1,000 or less can be used. These may be used alone or in combination of two or more. A small amount of trifunctional alcohol such as 1,1,1-tris (hydroxymethyl) propane may be used in combination.
(C) 成分 (C) Ingredient
式 (3) の脂肪族ヒドロキシカルボン酸残基を与える (C) 成分としては、 下 記一般式 (5) で表されるヒドロキシカルボン酸もしくはヒドロキシカルボン酸 エステル、 又は下記一般式 (6) で表されるラクトン類が挙げられる。  The component (C) that gives the aliphatic hydroxycarboxylic acid residue of the formula (3) includes a hydroxycarboxylic acid or a hydroxycarboxylic acid ester represented by the following general formula (5), or a compound represented by the following general formula (6). Lactones.
R6OCO- 3-OH (5) R 6 OCO- 3 -OH (5)
(式中、 R3は炭素数 1〜10の二価脂肪族基、 R 6は水素原子または炭素数 1〜6 の脂肪族基又は芳香族基を表す。 )
Figure imgf000010_0001
(In the formula, R 3 represents a divalent aliphatic group having 1 to 10 carbon atoms, and R 6 represents a hydrogen atom or an aliphatic group or an aromatic group having 1 to 6 carbon atoms.)
Figure imgf000010_0001
(式中、 R 3は炭素数 1〜10の二価脂肪族基を表す。 ) (In the formula, R 3 represents a divalent aliphatic group having 1 to 10 carbon atoms.)
式 (5) で、 二価脂肪族基 R3としては、 炭素数 2〜10、 好ましくは 2〜8の 鎖状又は環状のアルキレン基が挙げられる。 また、 R3は反応に不活性な置換基、 たとえば、 アルコキシ基やケト基等を有することができる。 R3は酸素やィォゥ等 のへテロ原子を主鎖に含有することができ、 例えばエーテル結合、 チォエーテル 結合等で隔てられた構造を含有することもできる。 In the formula (5), examples of the divalent aliphatic group R 3 include a chain or cyclic alkylene group having 2 to 10, preferably 2 to 8 carbon atoms. R 3 can have a substituent inert to the reaction, for example, an alkoxy group or a keto group. R 3 can contain a hetero atom such as oxygen or zeolite in the main chain, and can also have a structure separated by, for example, an ether bond or a thioether bond.
式 (5) で、 R6は水素、 又は脂肪族基もしくは芳香族基である。 脂肪族基とし ては、 炭素数 1〜6、 好ましくは 1〜4の直鎖状又は分岐鎖状の低級アルキル基 や、 シクロへキシル基等の炭素数 5〜1 2のシクロアルキル基、 芳香族基として は、 フエニル基、 ベンジル基等が挙げられる。 In the formula (5), R 6 is hydrogen, or an aliphatic group or an aromatic group. As an aliphatic group As a linear or branched lower alkyl group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms such as a cyclohexyl group, and an aromatic group, Phenyl, benzyl and the like.
ヒドロキシカルボン酸としては、 例えば、 グリコール酸、 L—乳酸、 D—乳酸、 D , L—乳酸、 2—メチル乳酸、 3—ヒドロキシ酪酸、 4ーヒドロキシ酪酸、 2 ーヒドロキシ— n—酪酸、 2—ヒドロキシ一 3 , 3—ジメチル酪酸、 2—ヒドロ キシ一 2—メチル酪酸、 2—ヒドロキシ— 3—メチル酪酸、 ヒドロキシビバリン 酸、 ヒドロキシイソカブロン酸、 ヒドロキシカブロン酸等を挙げることができる。 前記ヒドロキシカルボン酸はその 2分子が結合した環状二量体エステル (ラク チド) であることができる。 その具体例としては、 グリコール酸から得られるグ リコリ ドゃ、 乳酸から得られるもの等が挙げられる。  Examples of the hydroxycarboxylic acid include glycolic acid, L-lactic acid, D-lactic acid, D, L-lactic acid, 2-methyllactic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxy-n-butyric acid, and 2-hydroxy-1-carboxylic acid. Examples thereof include 3,3-dimethylbutyric acid, 2-hydroxy-1-methylbutyric acid, 2-hydroxy-3-methylbutyric acid, hydroxybivalic acid, hydroxyisocabronic acid, and hydroxycabronic acid. The hydroxycarboxylic acid may be a cyclic dimer ester (lactide) having two molecules bonded thereto. Specific examples thereof include those obtained from glycolic acid and those obtained from lactic acid.
ヒドロキシカルボン酸エステルとしては、 例えば、 上記ヒドロキシカルボン酸 のメチルエステル、 ェチルエステル等や、 酢酸エステル等が挙げられる。  Examples of the hydroxycarboxylic acid ester include a methyl ester and an ethyl ester of the above-mentioned hydroxycarboxylic acid, and an acetic acid ester.
ラクトン類としては、 前記一般式 (6 ) で表されるものを挙げることができる。 式 (6 ) で、 二価脂肪族基 R 3としては、 炭素数 4〜1 0、 好ましくは 4〜8の 直鎖状又は分岐鎖状のアルキレン基が挙げられる。 また、 R 3は反応に不活性な置 換基、 たとえば、 アルコキシ基やケト基等を有することができる。 また、 R 3は酸 素やィォゥ等のへテロ原子を主鎖に含有することができ、 例えばエーテル結合、 チォェ一テル結合等で隔てられた構造を含有することもできる。 Examples of the lactones include those represented by the general formula (6). In the formula (6), examples of the divalent aliphatic group R 3 include a linear or branched alkylene group having 4 to 10 carbon atoms, preferably 4 to 8 carbon atoms. R 3 can have a substituent inert to the reaction, for example, an alkoxy group or a keto group. Further, R 3 can contain a hetero atom such as oxygen or zeolite in the main chain, and can also have a structure separated by, for example, an ether bond or a thioether bond.
ラクトン類の具体例としては、 例えば、 /3—プロピオラクトン、 ;3—プチロラ クトン、 ァ一プチロラクトン、 ]3—バレロラクトン、 δ—バレロラクトン、 《5— 力プロラクトン、 ε—力プロラクトン、 4—メチルカプロラクトン、 3 , 5 , 5 一トリメチルカプロラクトン、 3 , 3 , 5 _トリメチルカプロラクトンなどの各 種メチル化力プロラクトン; /3—メチル一 δ—バレロラクトン、 ェナントラクト ン、 ラウロラクトン等のヒドロキシカルボン酸の環状 1量体エステル;グリコリ ド、 Lーラクチド、 D—ラクチド等の上記ヒドロキシカルボン酸の環状 2量体ェ ステル;その他、 1, 3—ジォキゾラン一 4一オン、 1, 4一ジォキサン一 3 _ オン、 1, 5—ジォキセパン— 2一オン等の環状エステル—エーテル等を挙げる ことができる。 これらは 2種以上のモノマーを混合して使用してもよい。 脂肪族ポリエステル共重合体 Specific examples of the lactones include, for example, / 3-propiolactone; 3-butyrolactone, a-ptyrolactone,] 3-valerolactone, δ-valerolactone, << 5-forceprolactone, ε-forceprolactone , 4-methylcaprolactone, 3,5,5-trimethylcaprolactone, 3,3,5-trimethylcaprolactone, and other various methylating prolactones; / 3-methyl-1-δ-valerolactone, enanthlactone, laurolactone, etc. Cyclic monomeric ester of hydroxycarboxylic acid; cyclic dimer of hydroxycarboxylic acid such as glycolide, L-lactide, D-lactide, etc. Stele; and other cyclic ester-ethers such as 1,3-dioxolane-one, 1,4-dioxane-13-one, and 1,5-dioxepane-21-one. These may be used as a mixture of two or more monomers. Aliphatic polyester copolymer
本発明における上記 (A) 成分、 (B) 成分、 及び必要に応じて加えられる (C) 成分の重合反応によって得られる脂肪族ポリエステル共重合体 (a) 又は 後述する低分子量の脂肪族ポリエステル共重合体 (a' ) は、 ランダムであって も、 ブロックであってよい。 上記モノマーの仕込は、 一括仕込み (ランダム) 、 分割仕込み (ブロック) 、 あるいは、 ジカルボン酸ージオールのポリマーにラク トン類を重合させたり、 あるいは、 ポリラクトンにジカルボン酸とジオールを重 合させてもよい。 本発明における上記 (A) 、 (B) および (C) の 3成分の重合反応によって 低分子量脂肪族ポリエステル共重合体 (a' ) を合成する場合には、 合成工程は、 使用する原料の種類によって、 例えば、 前半の脱水反応が主に進行するエステル 化工程と、 後半のエステル交換反応が主に進行する重縮合工程とに分けることが できる。  In the present invention, the aliphatic polyester copolymer (a) obtained by the polymerization reaction of the above-mentioned component (A), the component (B), and the component (C) optionally added, or a low-molecular-weight aliphatic polyester described later. The polymer (a ') may be random or block. The monomers may be charged at once (random), dividedly (blocked), polymerized dicarboxylic acid-diol polymer with lactones, or polylactone mixed with dicarboxylic acid and diol. In the case of synthesizing the low molecular weight aliphatic polyester copolymer (a ') by the polymerization reaction of the three components (A), (B) and (C) in the present invention, the synthesis step depends on the type of raw materials used. Thus, for example, it can be divided into an esterification step in which the first half of the dehydration reaction mainly proceeds and a polycondensation step in which the second half of the ester exchange reaction mainly proceeds.
エステル化工程は 80ΐ:〜 250°C、 好ましくは 100°C〜240°C、 さらに 好ましくは 145°C〜230での反応温度で、 0. 5〜5時間、 好ましくは 1〜 4時間、 760〜100To r rの条件下で行うことが望ましい。 触媒は、 必ず しも必要としないが、 原料として用いられる脂肪族ジカルボン酸又はジエステル 1モルに対して、 10- 7〜 10—3モル、 好ましくは 10— 6〜5 X 10— 4モルの量 で用いてもよい。 The esterification step is carried out at a reaction temperature of 80 °: ~ 250 ° C, preferably 100 ° C to 240 ° C, more preferably 145 ° C to 230, for 0.5 to 5 hours, preferably 1 to 4 hours, 760 It is desirable to carry out under conditions of ~ 100 To rr. The catalyst does not require necessarily for aliphatic dicarboxylic acid or diester to 1 mole is used as a starting material, 10- 7 to 10- 3 mol, preferably in an amount of 10 6 to 5 X 10- 4 mole May be used.
後半の重縮合工程は、 反応系を減圧しながら反応温度を高めて 2〜10時間、 好ましくは 3〜 6時間で終了することが望ましく、 最終的には 180°C〜270 °C、 好ましくは 1 9 0で〜 2 4 0 の反応温度で減圧度 3 T o r r以下、 好まし くは 1 T o r r以下とすることが望ましい。 この工程では、 一般的なエステル交 換反応触媒を用いる方が好ましく、 原料として用いられる脂肪族ジカルボン酸又 はジエステル 1モルに対して、 1 0— 7~ 1 0—3モル、 好ましくは 1 0—6〜 5 X 1 0一4モルの量で用いる。 この範囲より触媒量が少なくなると反応がうまく進行せ ず、 反応に長時間を要するようになる。 一方、 この範囲より多くなると重合時の ポリマーの熱分解、 架橋、 着色等の原因となり、 また、 ポリマーの成形加工にお いて熱分解等の原因となり好ましくない。 The latter half polycondensation step is desirably completed in 2 to 10 hours, preferably 3 to 6 hours by raising the reaction temperature while depressurizing the reaction system, and finally 180 ° C to 270 ° C. It is desirable that the degree of reduced pressure be 3 Torr or less, preferably 1 Torr or less, at a reaction temperature of 190 ° C., preferably 190 ° to 240 ° C. In this step, preferably better to use a general ester exchange reaction catalyst, with respect to the aliphatic dicarboxylic acid or diester to 1 mole used as a starting material, 1 0 7 to 1 0 3 mol, preferably 1 0 - 6 ~ 5 X 1 0 used in an amount of one 4 mol. If the amount of catalyst is less than this range, the reaction does not proceed well, and the reaction takes a long time. On the other hand, if it exceeds this range, it causes thermal decomposition, cross-linking and coloring of the polymer at the time of polymerization, and also causes thermal decomposition and the like in the molding process of the polymer.
合成工程において、 脱水反応が主に進行するエステル化工程と、 後半のエステ ル交換反応が主に進行する重縮合工程との両者において用いることのできる触媒 としては、 以下のような具体例を挙げることができるが、 これらの触媒は単独で 用いても、 2種以上組合せて用いてもよい。  In the synthesis process, specific examples of the catalyst that can be used in both the esterification process in which the dehydration reaction mainly progresses and the polycondensation process in which the latter half ester exchange reaction mainly progresses include the following. These catalysts may be used alone or in combination of two or more.
触媒としては、 金属類の各種化合物、 例えば、 カルボン酸塩、 炭酸塩、 ホウ酸塩、 酸化物、 水酸化物、 水素化合物、 アルコラート、 ァセチルァセトネートキレート等 が挙げられる。 上記金属類としては、 リチウム、 カリウムなどのアルカリ金属;マ グネシゥム、 カルシウム、 バリウムなどのアルカリ土類金属;スズ、 アンチモン、 ゲルマニウム等の典型金属;鉛、 亜鉛、 カドミウム、 マンガン、 コバルト、 ニッケ ル、 ジルコニウム、 チタン、 鉄等の遷移金属; ビスマス、 ニオブ、 ランタン、 サマ リウム、 ユウ口ピウム、 エルビウム、 イッテルビウム等のランタノイド金属等が挙 げられる。 触媒としては、 また、 含窒素塩基性化合物や、 ホウ酸、 またはホウ酸ェ ステルなども用いられる。  Examples of the catalyst include various compounds of metals, for example, carboxylate, carbonate, borate, oxide, hydroxide, hydride, alcoholate, acetyl acetonate chelate and the like. Examples of the metals include alkali metals such as lithium and potassium; alkaline earth metals such as magnesium, calcium and barium; typical metals such as tin, antimony and germanium; lead, zinc, cadmium, manganese, cobalt, nickel, Transition metals such as zirconium, titanium, and iron; and lanthanoid metals such as bismuth, niobium, lanthanum, samarium, europium, palladium, erbium, and ytterbium. As the catalyst, a nitrogen-containing basic compound, boric acid, boric acid ester, or the like is also used.
具体的には、 アルカリ金属化合物としては、 水酸化ナトリウム、 水酸化カリウム、 水酸化リチウム、 炭酸水素カリウム、 炭酸水素リチウム、 炭酸ナトリウム、 炭酸力 リウム、 炭酸リチウム、 酢酸ナトリウム、 酢酸カリウム、 酢酸リチウム、 ステアリ ン酸ナトリウム、 ステアリン酸リチウム、 水素化ホウ素ナトリウム、 フエ二ル化ホ ゥ素ナトリウム、 安息香酸リチウム、 リン酸二水素ナトリウム、 リン酸二水素カリ ゥム、 リン酸二水素リチウムなどが挙げられる。 Specifically, the alkali metal compounds include sodium hydroxide, potassium hydroxide, lithium hydroxide, potassium hydrogen carbonate, lithium hydrogen carbonate, sodium carbonate, potassium carbonate, lithium carbonate, sodium acetate, potassium acetate, lithium acetate, Sodium stearate, lithium stearate, sodium borohydride, sodium borohydride, lithium benzoate, sodium dihydrogen phosphate, potassium dihydrogen phosphate And lithium dihydrogen phosphate.
アルカリ土類金属化合物としては、 水酸化カルシウム、 水酸化バリウム、 水酸化 マグネシウム、 水酸化ストロンチウム、 炭酸水素カルシウム、 炭酸水素バリウム、 炭酸水素マグネシウム、 炭酸水素ストロンチウム、 炭酸カルシウム、 炭酸バリウム、 炭酸マグネシウム、 炭酸ストロンチウム、 酢酸カルシウム、 酢酸バリウム、 酢酸マ グネシゥム、 酢酸ストロンチウム、 ステアリン酸カルシウム、 ステアリン酸バリゥ ム、 ステアリン酸マグネシウム、 ステアリン酸ストロンチウムなどが挙げられる。 典型金属化合物としては、 ジブチルスズヒドロキシド、 ジブチルスズジラウレー ト、 三酸化アンチモン、 酸化ゲルマニウム、 炭酸ビスマスヒドロキシド、 酢酸ビス マスヒドロキシドなどが挙げられる。  Alkaline earth metal compounds include calcium hydroxide, barium hydroxide, magnesium hydroxide, strontium hydroxide, calcium hydrogen carbonate, barium hydrogen carbonate, magnesium hydrogen carbonate, strontium hydrogen carbonate, calcium carbonate, barium carbonate, magnesium carbonate, carbonate Examples include strontium, calcium acetate, barium acetate, magnesium acetate, strontium acetate, calcium stearate, barium stearate, magnesium stearate, and strontium stearate. Typical metal compounds include dibutyltin hydroxide, dibutyltin dilaurate, antimony trioxide, germanium oxide, bismuth hydroxide carbonate, bismuth acetate acetate and the like.
遷移金属化合物としては、 酢酸鉛、 酢酸亜鉛、 ァセチルァセトネ一ト亜鉛、 酢酸 カドミウム、 酢酸マンガン、 マンガンァセチルァセトネート、 酢酸コバルト、 コバ ルトァセチルァセトネート、 酢酸ニッケル、 ニッケルァセチルァセトネート、 酢酸 ジルコニウム、 ジルコニウムァセチルァセトネート、 酢酸チタン、 テトラブトキシ チタネート、 テトライソプロポキシチタネート、 チタニウムヒドロキシァセチルァ セトネート、 酢酸鉄、 ァセチルァセトネート鉄、 酢酸ニオブなどが挙げられる。 希土類化合物としては、 酢酸ランタン、 酢酸サマリウム、 酢酸ユウ口ピウム、 酢 酸エルピウム、 酢酸ィッテルビゥムなどが挙げられる。  Transition metal compounds include lead acetate, zinc acetate, zinc acetyl acetate, cadmium acetate, manganese acetate, manganese acetyl acetate, cobalt acetate, cobalt acetylacetonate, nickel acetate, nickel acetyl acetate, Examples include zirconium acetate, zirconium acetyl acetate, titanium acetate, tetrabutoxy titanate, tetraisopropoxy titanate, titanium hydroxyacetyl acetate, iron acetate, iron acetyl acetate, and niobium acetate. Examples of the rare earth compound include lanthanum acetate, samarium acetate, palladium europium acetate, erpium acetate, ytterbium acetate, and the like.
含窒素塩基性化合物としては、 具体的には、 テトラェチルアンモニゥムヒドロキ シド、 テトラェチルアンモニゥムヒドロキシド、 テトラプチルアンモニゥムヒドロ キシド、 トリメチルベンジルアンモニゥムヒドロキシドなどの脂肪族ァミンや芳香 族ァミンから誘導された有機ァンモニゥムヒドロキシド類; トリメチルァミン、 ト リエチルァミン、 ジメチルベンジルァミン、 トリフエニルァミンなどの三級アミン 類; R 2NH (式中 Rはメチル、 ェチルなどのアルキル、 フエニル、 トルィルなどの ァリール基などである) 示される二級アミン類、 R NH2 (式中 Rは上記と同じであ る) で示される一級アミン類;アンモニア、 テトラメチルアンモニゥムポロハイド ライド、 テトラプチルアンモニゥムポロハイドライド、 テトラプチルアンモニゥム テトラフエ二ルポレート、 テトラメチルアンモニゥムテトラフエ二ルポレートなど の塩基性化合物などが挙げられる。 これらの内、 テトラアルキルアンモニゥムヒド 口キシド類が特に好ましい。 Specific examples of the nitrogen-containing basic compound include aliphatic ethers such as tetraethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, and trimethylbenzylammonium hydroxide. Organic ammonium hydroxides derived from amines and aromatic amines; tertiary amines such as trimethylamine, triethylamine, dimethylbenzylamine, triphenylamine; R 2 NH (where R is Alkyl, such as methyl and ethyl, and aryl, such as phenyl and toluyl, etc.) secondary amines represented by: R NH 2 (where R is the same as above); primary amines represented by: ammonia, tetra Methylammonium polohydrate And basic compounds such as ride, tetrabutylammonium tetraborohydride, tetrabutylammonium tetraphenylporate, and tetramethylammonium tetraphenylporate. Of these, tetraalkylammonium hydroxides are particularly preferred.
ホウ酸エステルとしては、 具体的には、 ホウ酸トリメチル、 ホウ酸トリへキシル、 ホウ酸トリへプチル、 ホウ酸トリフエニル、 ホウ酸トリトリル、 ホウ酸トリナフチ ルなどが挙げられる。  Specific examples of the borate ester include trimethyl borate, trihexyl borate, triheptyl borate, triphenyl borate, tritolyl borate, and trinaphthyl borate.
また、 必要に応じて前記の 3官能以上の多価カルボン酸、 多価アルコール、 多 価ヒドロキシカルボン酸類の原料を用いることもできる。  Further, if necessary, the above-mentioned raw materials of the trifunctional or higher functional polycarboxylic acid, polyhydric alcohol, and polyhydroxycarboxylic acid can be used.
脂肪族ポリエステル共重合体 (a) 又は (a' ) を合成する工程において、 原 料 (A) 成分および (B) 成分の仕込み比は、 以下の条件式 (1) に合致するよ うに選択することが望ましい。  In the step of synthesizing the aliphatic polyester copolymer (a) or (a '), the feed ratio of the raw materials (A) and (B) is selected so as to satisfy the following conditional expression (1). It is desirable.
1. 0≤ [B] / [A] ≤2. 0 ( i)  1. 0≤ [B] / [A] ≤2.0 (i)
(式中、 [A] は (A) 成分のモル数、 [B] は (B) 成分のモル数を表す。 )  (In the formula, [A] represents the number of moles of the component (A), and [B] represents the number of moles of the component (B).)
[B] / [A] の値が 1より小さいと、 過剰の酸の存在によって加水分解反応 が進行し、 所望の分子量の脂肪族ポリエステル共重合体 (a) 又は (a' ) を得 ることが難しく、 また [B] / [A] の値が 2より大きい場合は前半のエステル 化工程終了時点での分子量が過度に小さく、 後半の重縮合工程に長時間の反応時 間が必要となる。  If the value of [B] / [A] is less than 1, the hydrolysis reaction proceeds due to the presence of an excess acid, and an aliphatic polyester copolymer (a) or (a ') having a desired molecular weight is obtained. When the value of [B] / [A] is greater than 2, the molecular weight at the end of the first half esterification step is excessively small, and a long reaction time is required for the second half polycondensation step. .
本発明では、 最終的に実用的な強度を有する脂肪族ポリエステル共重合体  In the present invention, finally, an aliphatic polyester copolymer having practical strength
(a) を得るために、 溶融状態の低分子量脂肪族ポリエステル共重合体 (a' ) に前記式 (7) で表される 2官能性の連結剤 (e) を加えて重量平均分子量を 4 0, 000以上に高めるようにしてもよい。  In order to obtain (a), a bifunctional linking agent (e) represented by the above formula (7) is added to the low-molecular-weight aliphatic polyester copolymer (a ') in a molten state, so that the weight average molecular weight is 4 You may make it raise to 000 or more.
重合工程で得られる共重合体 (a' ) は、 重量平均分子量が 5, 000以上、 好ましくは 10, 000以上であり、 酸価と水酸基価の値の合計が 1. 0から 4 5の間であり、 さらに酸価が 30以下であることが望ましい。 共重合体 (a' ) の酸価と水酸基価の値の合計は、 共重合体 (a' ) の末端基 の濃度に比例しており、 分子量は重量平均分子量が 5 , 000以上の場合、 実質 上酸価と水酸基価の値の合計は 45以下である。 酸価と水酸基価の値の合計が 4 5より大きい場合、 共重合体 (a' ) の分子量が低く、 連結剤の添加によって所 望の分子量まで高めようとするのに、 多量の連結剤が必要となる。 連結剤の使用 量が多い場合には、 ゲル化などの問題が生じやすい。 酸価と水酸基価の値の合計 が 1. 0以下の場合には、 該共重合体 (a' ) の分子量が高いために溶融状態の 粘度が高くなる。 この場合は、 連結剤の使用量も極少量となるために均一に反応 させることが困難で、 やはりゲル化などの問題が生じやすい。 また、 均一に反応 させることを目的として溶融温度を上げるとポリマーの熱分解、 架橋、 着色等の 問題が生じる。 The copolymer (a ') obtained in the polymerization step has a weight average molecular weight of 5,000 or more, preferably 10,000 or more, and the sum of the acid value and the hydroxyl value is between 1.0 and 45. Preferably, the acid value is 30 or less. The sum of the acid value and the hydroxyl value of the copolymer (a ') is proportional to the concentration of the terminal group of the copolymer (a'), and when the weight average molecular weight is 5,000 or more, Virtually, the sum of the acid value and the hydroxyl value is 45 or less. If the sum of the acid value and the hydroxyl value is greater than 45, the molecular weight of the copolymer (a ') is low, and a large amount of the coupling agent is required to increase the molecular weight to the desired molecular weight by adding the coupling agent. Required. When a large amount of the linking agent is used, problems such as gelation are likely to occur. When the sum of the acid value and the hydroxyl value is 1.0 or less, the viscosity of the molten state becomes high because the molecular weight of the copolymer (a ') is high. In this case, since the amount of the linking agent used is extremely small, it is difficult to make the reaction uniform, and problems such as gelation are liable to occur. In addition, if the melting temperature is raised for the purpose of causing a uniform reaction, problems such as thermal decomposition, cross-linking and coloring of the polymer occur.
本発明に用いる連結剤 (e) は前記式'(7) によって表される。 連結剤 (e) の反応基 X1、 及び X2としては、 実質上水酸基とのみ反応して共有結合を形成可 能な式 ( 9 ) 〜 ( 1 1 ) : The linking agent (e) used in the present invention is represented by the above formula (7). As the reactive groups X 1 and X 2 of the linking agent (e), formulas (9) to (11) capable of forming a covalent bond by reacting substantially only with a hydroxyl group:
― N=C=0 0) — N=S=0 do
Figure imgf000016_0001
で表される反応基群及び/又は、 実質上力ルポキシル基とのみ反応して共有結合 を形成可能な一般式 (12) 〜 (15)
― N = C = 0 0) ― N = S = 0 do
Figure imgf000016_0001
General formulas (12) to (15) capable of forming a covalent bond by reacting only with the reactive group represented by
Figure imgf000016_0002
(R8〜R1Qは 2価の脂肪族基または芳香族基を表し、 環に直接結合している水素は 脂肪族及び Z又は芳香族基で置換されてもよい。 ) で表される 3〜 8員環の環状反 応基群から選ぶことができる。 X1と X2は同一の化学構造であってもよいし、 異 なってもよい。
Figure imgf000016_0002
(R 8 to R 1Q represent a divalent aliphatic group or an aromatic group, and the hydrogen directly bonded to the ring may be substituted with an aliphatic group and Z or an aromatic group.) It can be selected from a group of cyclic reaction groups having up to 8 members. X 1 and X 2 may have the same chemical structure or may have different chemical structures.
連結剤 (e) としては、 一連のジイソシァネート化合物のような、 WO 02 -44249号公報に記載の各種の連結剤が使用可能である。  As the linking agent (e), various linking agents described in WO 02-44249, such as a series of diisocyanate compounds, can be used.
連結剤 (e) の反応基 X1と X2を、 実質上水酸基とのみ反応して共有結合を形 成可能な前記式 (9) 〜 (11) で表される反応基群から選ぶ場合、 前駆体とな る低分子量脂肪族ポリエステル共重合体 (a' ) の酸価は 2. 0以下、 好ましく は 1. 0以下である。 酸価が 2. 0より大きい場合は、 共重合体 (a' ) の水酸 基末端濃度が小さく、 連結反応が効率的に行えなかったり、 連結反応後、 すなわ ち最終生成物の酸価が大きく、 成形加工時の分子量低下が起こり易いなどの問題 が生じる。 When the reactive groups X 1 and X 2 of the linking agent (e) are selected from the group of reactive groups represented by the above formulas (9) to (11), which can form a covalent bond by reacting substantially only with a hydroxyl group, The acid value of the low molecular weight aliphatic polyester copolymer (a ′) as a precursor is 2.0 or less, preferably 1.0 or less. If the acid value is greater than 2.0, the concentration of the hydroxyl terminal of the copolymer (a ') is low and the ligation reaction cannot be carried out efficiently, or after the ligation reaction, that is, the acid value of the final product. And the molecular weight tends to decrease during molding.
連結剤 (e) の反応基 X1と X2を、 実質上力ルポキシル基とのみ反応して共有 結合を形成可能な前記式 (12) 〜 (15) で表される 3〜 8員環の環状反応基 群から選ぶ場合、 共重合体 (a' ) の酸価は 0. 5以上 30以下であることが好 ましい。 酸価が 0. 5より小さい場合は、 連結剤の使用量も極少量となるために 均一に反応させることが困難となる。 酸価が 30より大きいと、 最終生成物の酸 価を低くすることがで出来なかったり、 多量の連結剤を用いてゲル化が生じる危 険があるなどの問題が生じる。 The reactive groups X 1 and X 2 of the linking agent (e) can react with substantially only a lipoxyl group to form a covalent bond, thereby forming a 3- to 8-membered ring represented by the above formulas (12) to (15). When selected from the group of cyclic reactive groups, the acid value of the copolymer (a ') is preferably from 0.5 to 30. When the acid value is smaller than 0.5, the amount of the linking agent used is extremely small, so that it is difficult to perform a uniform reaction. If the acid value is larger than 30, problems such as the inability to lower the acid value of the final product and the risk of gelation due to the use of a large amount of the linking agent arise.
上記ジィソシァネー 1、化合物としては、 好ましくは脂肪族ジィソシァネート化合 物であり、 具体的にはへキサメチレンジイソシァネート、 リジンジイソシァネート メチルエステル {OCN- (CH2) 4-CH (-NCO) (-COOCH3) } 、 トリメ ィソシァネートが好ましい。 またウレタン結合を含む脂肪族ポリエステル樹脂は、 重量平均分子量 40, 000以上、 通常 70, 000〜 350, 000、 好ましく は 7 0, 0 0 0〜2 50, 0 0 0の範囲のものである。 The diisocyanate 1 and the compound are preferably aliphatic diisocyanate compounds, and specifically, hexamethylene diisocyanate, lysine diisocyanate methyl ester (OCN- (CH 2 ) 4-CH (-NCO ) (-COOCH 3 )}, trimisosinate. The aliphatic polyester resin containing a urethane bond has a weight average molecular weight of 40,000 or more, and usually 70,000 to 350,000, preferably Is in the range of 70,000 to 250,000.
連結剤 (e) と低分子量脂肪族ポリエステル共重合体 (a ' ) の反応は、 該共 重合体 (a ' ) が均一な溶融状態又は少量の溶剤を含有した状態で、 容易に攪拌 可能な条件下で行われることが望ましい。 用いる連結剤 (e) の量は、 該共重合 体 (a' ) 1 0 0重量部に対し、 0. 1〜5重量部であることが望ましい。 これ より連結剤 (e) の量が少ないと、 所望の分子量の最終生成物を得ることが困難 であり、 多いと、 ゲル化などの問題が生じやすい。  The reaction between the linking agent (e) and the low molecular weight aliphatic polyester copolymer (a ′) can be easily stirred in a state where the copolymer (a ′) is in a uniform molten state or contains a small amount of solvent. It is desirable to be carried out under conditions. The amount of the coupling agent (e) used is desirably 0.1 to 5 parts by weight based on 100 parts by weight of the copolymer (a '). If the amount of the linking agent (e) is smaller than this, it is difficult to obtain a final product having a desired molecular weight, and if it is larger, problems such as gelation are likely to occur.
連結剤 (e) を用いて高分子量化する反応は、 共重合体 (a' ) の融点以上で 行い、 2 7 0°C以下、 好ましくは 2 5 0°C以下、 さらに好ましくは、 2 3 0°C以 下で行うことができる。 この反応は、 低分子量脂肪族ポリエステルを製造した反 応器に連結剤 (e) を添加することにより、 重縮合反応と同じ反応器内で実施す ることができる。 また、 低分子量脂肪族ポリエステルと連結剤を、 通常の押出機 あるいはスタティックミキサ一等を用いて混合することにより実施することもで さる。  The reaction for increasing the molecular weight using the linking agent (e) is carried out at a temperature equal to or higher than the melting point of the copolymer (a '), and is lower than 270 ° C, preferably lower than 250 ° C, more preferably lower than 23 ° C. It can be performed below 0 ° C. This reaction can be carried out in the same reactor as the polycondensation reaction by adding the linking agent (e) to the reactor in which the low molecular weight aliphatic polyester was produced. In addition, it can be carried out by mixing the low-molecular-weight aliphatic polyester and the linking agent using an ordinary extruder or a static mixer.
本発明において、 成分 (C) が用いられる場合は、 分子鎖が、 下記一般式: 一 (一 CO— R1— COO— R2— O—) -In the present invention, when the component (C) is used, the molecular chain is represented by the following general formula: one (one CO—R 1 —COO—R 2 —O —) —
(式中、 R1は炭素数 1〜1 2の二価脂肪族基、 R2は炭素数 2〜1 2の二価脂肪 族基を表す。 ) (In the formula, R 1 represents a divalent aliphatic group having 1 to 12 carbon atoms, and R 2 represents a divalent aliphatic group having 2 to 12 carbon atoms.)
で表される繰り返し単位 (P) 、 及び下記一般式: And a repeating unit (P) represented by the following general formula:
一 (一 C〇一 R3— 0—) 一 One (one C〇-1 R 3 — 0—) one
(式中、 R 3は炭素数 1〜1 0の二価脂肪族基を表す。 ) (In the formula, R 3 represents a divalent aliphatic group having 1 to 10 carbon atoms.)
で表される繰り返し単位 (Q) から構成される場合も含めて、 原料 (A) 成分お よび (C) 成分の仕込み比は以下の条件式 (ii) に合致するように選択すること が好ましい。 It is preferable that the feed ratio of the raw materials (A) and (C) be selected so as to satisfy the following conditional expression (ii), including the case where the repeating unit (Q) is represented by .
0. 0 0 0 2≤ [C] / ( [A] + [C] ) ≤0. 40 (ii)  0.0 0 0 0 2≤ [C] / ([A] + [C]) ≤ 0.40 (ii)
(式中、 [A] は (A) 成分の使用モル数、 [C] は (C) 成分の使用モル数を 示す。 ) (Where [A] is the number of moles of component (A) and [C] is the number of moles of component (C). Show. )
上記式中の [C] ( [A] + [C] ) は、 脂肪族ポリエステル共重合体 (a) 又は (a' ) 中に含まれる成分 (C) のモル分率を表し、 繰り返し単位 (P) および繰り返し単位 (Q) から構成される場合には、 繰り返し単位 Qのモ ル分率を表している。 上記範囲は、 好ましくは 0. 0002〜0. 30、 更に好 ましくは 0. 0002〜0. 20、 より好ましくは 0. 0002〜0. 18の範 囲である。 この値が 0. 0002より小さい場合は、 得られるポリマーは結晶性 が高く柔軟性のない硬いものとなり、 さらに生分解性の点でも速度が遅く不十分 のものとなる。 また、 0. 40より大きい場合は、 得られるポリマーの融点が低 く、 さらに結晶性が極端に低下するために耐熱性が無く実用に不向きである。 本発明において、 原料 (A) 成分、 (B) 成分および (C) 成分の仕込み比は 以下の条件式 (ii' ) に合致するように選択することが好ましい。  [C] ([A] + [C]) in the above formula represents the mole fraction of the component (C) contained in the aliphatic polyester copolymer (a) or (a ′), and the repeating unit ( When it consists of P) and a repeating unit (Q), it indicates the mole fraction of the repeating unit Q. The above range is preferably from 0.0002 to 0.30, more preferably from 0.0002 to 0.20, more preferably from 0.0002 to 0.18. When this value is smaller than 0.0002, the obtained polymer has high crystallinity and is inflexible and hard, and the biodegradability is slow and insufficient. On the other hand, when it is larger than 0.40, the obtained polymer has a low melting point and extremely low crystallinity, so that it has no heat resistance and is not suitable for practical use. In the present invention, it is preferable that the charging ratios of the raw materials (A), (B) and (C) are selected so as to satisfy the following conditional expression (ii ').
0. 0002≤ [C] / ( [A] + [B] + [C] ) ≤0. 25 (ii') (式中、 [A] 、 [B] 、 [C] は、 それぞれ (A) 成分、 (B) 成分、 (C) 成分の使用モル数を示す。 )  0. 0002≤ [C] / ([A] + [B] + [C]) ≤ 0.25 (ii ') (where [A], [B], and [C] are (A) Shows the number of moles of component, component (B) and component (C).)
上記式中の [C] / ( [A] + [B] + [C] ) は、 脂肪族ポリエステル共重 合体 (a) 又は (a' ) 中に含まれる成分 (C) のモル分率を表し、 この値が 0. 0002より小さい場合は、 得られるポリマーは結晶性が高く柔軟性のない硬い ものとなり、 さらに生分解性の点でも速度が遅く不十分のものとなる (場合が、 成分 (C) の種類等によってはある) 。 また、 0. 25より大きい場合は、 得ら れるポリマーの融点が低く、 さらに結晶性が極端に低下するために耐熱性が無く 実用に不向きである (場合が、 成分 (C) の種類等によってはある) 。  [C] / ([A] + [B] + [C]) in the above formula represents the mole fraction of the component (C) contained in the aliphatic polyester copolymer (a) or (a ′). If this value is less than 0.0002, the resulting polymer is hard with high crystallinity and inflexibility, and the biodegradability is slow and insufficient in terms of biodegradability. (Depending on the type of (C), etc.) On the other hand, if it is larger than 0.25, the obtained polymer has a low melting point and extremely low crystallinity, so that it has no heat resistance and is not suitable for practical use (in some cases, depending on the type of component (C), etc.). Is).
成分 (C) のモル分率は、 0. 25以下、 好ましくは 0. 0002〜0. 14、 特に好ましくは 0. 0002〜0. 18である。  The molar fraction of component (C) is 0.25 or less, preferably 0.0002 to 0.14, particularly preferably 0.0002 to 0.18.
本発明に係る高分子量脂肪族ポリエステル共重合体 (a) は、 重量平均分子量 が 40, 000以上、 通常、 70, 000〜 350, 000、 好ましくは 70, 0 00〜250, 000の範囲である。 また、 融点は、 通常 80°C以上と高く、 しか もその融点と分解温度との差は 100°C以上と大きく、 熱成形も容易である。 本発明に係る脂肪族ポリエステル共重合体において、 特に、 前記一般式 (1) における R1および R2が (CH2) 2または (CH2) 4で、 R3が (CH2) 5であ るものは、 融点が高くかつ結晶性の高いものである。 The high molecular weight aliphatic polyester copolymer (a) according to the present invention has a weight average molecular weight of 40,000 or more, usually 70,000 to 350,000, preferably 70,0. The range is from 00 to 250,000. The melting point is usually as high as 80 ° C or more, and the difference between the melting point and the decomposition temperature is as large as 100 ° C or more, and thermoforming is easy. In the aliphatic polyester copolymer according to the present invention, in particular, R 1 and R 2 in the general formula (1) are (CH 2 ) 2 or (CH 2 ) 4 , and R 3 is (CH 2 ) 5 Those have high melting points and high crystallinity.
前記本発明に使用される脂肪族ポリエステル共重合体において、 特に、 前記一般 式 (1) における R1および R2が (CH2) 2または (CH2) 4で、 R3が (CH2) 5であるものは、 融点が高くかつ結晶性の高いものである。 In the aliphatic polyester copolymer used in the present invention, in particular, R 1 and R 2 in the general formula (1) are (CH 2 ) 2 or (CH 2 ) 4 , and R 3 is (CH 2 ) Those with 5 have a high melting point and high crystallinity.
本発明に係る高分子量脂肪族ポリエステル共重合体 (a) は、 後述する方法で 測定して、 分子量 500以下のオリゴマー含有率が 1, 000〜 20, 000卯 m、 好ましくは 1, 000〜15, 00 Oppm、 特に好ましくは 1, 000〜10, 00 Oppmのものである。  The high molecular weight aliphatic polyester copolymer (a) according to the present invention has an oligomer content of 1,000 to 20,000 m, preferably 1,000 to 15, having a molecular weight of 500 or less, as measured by the method described below. , 00 Oppm, particularly preferably from 1,000 to 10,000 Oppm.
このため、 成形品を製造した場合に、 オリゴマーの成形品表面へのブリードア ゥト、 特に経時的なブリードアウトによる、 成形品表面への粉吹きやそれに伴う 外観の低下などが問題になる。 他の生分解性樹脂 (b)  For this reason, when a molded article is manufactured, bleeding out of the oligomer onto the molded article surface, particularly, blowing over the molded article surface due to bleeding out with time, and the resulting deterioration in appearance are problematic. Other biodegradable resins (b)
本発明では、 上記ブリードアウトを抑制するために、 脂肪族ポリエステル共重 合体 (a) に他の生分解性樹脂 (b) が添加される。 他の生分解性樹脂 (b) と しては、 合成及び 又は天然高分子が使用される。  In the present invention, another biodegradable resin (b) is added to the aliphatic polyester copolymer (a) in order to suppress the bleed-out. As the other biodegradable resin (b), synthetic and / or natural polymers are used.
合成高分子としては、 脂肪族ポリエステル、 ポリアミ ド、 ポリアミ ド エステル、 生分解性セルロースエステル、 ポリペプチド、 ポリビニルァ ルコール、 又はこれらの混合物が挙げられる。  Examples of the synthetic polymer include aliphatic polyesters, polyamides, polyamide esters, biodegradable cellulose esters, polypeptides, polyvinyl alcohol, and mixtures thereof.
以下、 合成脂肪族ポリエステル樹脂を、 単に、 脂肪族ポリエステル樹 脂と略称し、 天然に産出されるものの場合にはその旨明記する。 ポリ乳酸 (PLA) Hereinafter, the synthetic aliphatic polyester resin is simply referred to as an aliphatic polyester resin, and if it is produced naturally, this fact is specified. Polylactic acid (PLA)
他の生分解性樹脂 (b) として脂肪族ポリエステル樹脂、 好ましくはポリ (ヒドロキシアルキレン (炭素数 1〜 1 0 ) カルボン酸) 、 特にポリ乳酸 (PLA) を使用する場合は、 ブリードアウトの抑制の他に、 生分解性速度を制御し たり物性を調節する目的でも使用されるが、 本発明では脂肪族ポリエステル共重 合体 (a) とポリ乳酸との重量比は 99. 9/0. 1〜70 30であり、 好ま しくは9575〜80/ 20、 さらに好ましくは 90/10〜80/20である。 ポリ乳酸の重量比率が 0. 1より少なすぎるとプリ一ドアゥト抑制や生分解遅延 効果が認められず、 30を超えると脂肪族ポリエステル共重合体 (a) 本来の特 徴である柔軟性が失われ、 脆い成形品となるおそれがある。  When using an aliphatic polyester resin as the other biodegradable resin (b), preferably a poly (hydroxyalkylene (1 to 10 carbon atoms) carboxylic acid), particularly a polylactic acid (PLA), It is also used for the purpose of controlling the rate of biodegradability and controlling the physical properties. In the present invention, the weight ratio of the aliphatic polyester copolymer (a) to the polylactic acid is 99.9 / 0.1 to 0.1. 7030, preferably 9575 to 80/20, more preferably 90/10 to 80/20. If the weight ratio of polylactic acid is less than 0.1, no inhibition of pre-adhesion and no effect of delaying biodegradation are observed, and if it exceeds 30, the aliphatic polyester copolymer (a) loses its original characteristic flexibility. This may result in brittle molded products.
上記ポリ乳酸としては、 MFR (ASTM D— 1238による。 荷重 216 0 g、 温度 190で) が 0. 1〜; L 00 gZl 0分、 好ましくは 1〜50 g/1 0分、 特に好ましくは 2〜10 gZl 0分のものが使用される。  The polylactic acid has an MFR (according to ASTM D-1238; load of 2160 g, at a temperature of 190) of from 0.1 to; L00 gZl for 0 minutes, preferably 1 to 50 g / 10 minutes, particularly preferably 2 ~ 10 gZl 0 min is used.
また、 ポリ乳酸の種類としては、 D, L—ポリ乳酸共重合体であり、 好ましく は D体含有率が 5〜 50%、 特に好ましくは 10〜20%の範囲にあるポリ乳酸 共重合体である。 ポリ乳酸としてかかる範囲の共重合体を用いることにより、 脂 肪族ポリエステル共重合体 (a) との組成物から得られる靭性に富んだ成形品が 得られる。  The type of polylactic acid is a D, L-polylactic acid copolymer, preferably a D-form content of 5 to 50%, particularly preferably 10 to 20%. is there. By using a copolymer in such a range as the polylactic acid, a molded article having a high toughness obtained from the composition with the aliphatic polyester copolymer (a) can be obtained.
ポリ乳酸 (共重合体) の融点は 160°C以下、 好ましくは非晶質のものである。 ポリ力プロラクトン (PCL)  The melting point of polylactic acid (copolymer) is 160 ° C or less, preferably amorphous. Poly force prolactone (PCL)
他の生分解性樹脂 (b) として、 ポリ (ヒドロキシアルキレン (炭素数 1 〜 1 0 ) カルボン酸) 、 更に好ましくはポリラクトン、 特に好ましくはポ リカプロラクトン (PCL) を使用する場合は、 ブリードアウトの抑制の他に、 生分 解性速度を制御したり物性を調節する目的でも使用されるが、 本発明では脂肪族 ポリエステル共重合体 (a) とポリ力プロラクトンとの重量比は 99. 9X0. 1〜70/30であり、 好ましくは 95/5〜 80Z20、 さらに好ましくは 9 0Z10〜80 20である。 ポリ力プロラクトンの重量比率が上記範囲より少 なすぎるとプリ一ドアゥト抑制や生分解遅延効果が認められず、 上記範囲より多 すぎると耐熱性が損なわれるおそれがある。 As the other biodegradable resin (b), poly (hydroxyalkylene (C 1-10) carboxylic acid), more preferably polylactone, particularly preferably polyprolactone (PCL) is used. In addition to suppression, it is also used for the purpose of controlling the biodegradation rate and controlling the physical properties. In the present invention, the weight ratio of the aliphatic polyester copolymer (a) to the polyprolactone is 99.9X0. 1-70 / 30, preferably 95 / 5-80Z20, more preferably 9 0Z10 to 8020. If the weight ratio of the polyfunctional prolactone is too small, the effect of suppressing pre-adhesion and the effect of delaying biodegradation are not recognized. If it is too large, the heat resistance may be impaired.
上記ポリ力プロラクトンとしては、 重量平均分子量 60, 000〜400, 0 00、 好ましくは 100, 000〜 300, 000、 特に好ましくは 140, 0 00〜200, 000のものが使用される。  As the polyforce prolactone, those having a weight average molecular weight of 60,000 to 400,000, preferably 100,000 to 300,000, particularly preferably 140,000 to 200,000 are used.
また、 ポリ力プロラクトンとしては、 水;エチレンダリコール、 プロピレング リコール、 グリセリンなどの 2価以上のグリコール類;シユウ酸、 コハク酸、 ァ ジピン酸、 ブタンテトラカルボン酸などの 2価以上のジカルボン酸類; グリコー ル酸、 乳酸、 リンゴ酸などの 2価以上のヒドロキシカルボン酸類を開始剤とした ポリ力プロラクトンが使用可能である。  Examples of the polyprolactone include water; divalent or higher valent glycols such as ethylene dalicol, propylene glycol, and glycerin; and divalent or higher valent dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, and butanetetracarboxylic acid. Acids: Polycaprolactone using dicarboxylic or higher hydroxycarboxylic acids as initiators such as glycolic acid, lactic acid, and malic acid can be used.
本発明では、 他の生分解性樹脂 (b) として、 上記ポリ乳酸単独でもよいが、 ポリ乳酸と上記ポリ力プロラクトンを併用することができる。  In the present invention, the above polylactic acid alone may be used as the other biodegradable resin (b), but polylactic acid and the above polyprolactone can be used in combination.
ポリ乳酸とポリ力プロラクトンの重量比率は、 ポリ乳酸:ポリ力プロラクトン が、 100 : 0〜0 : 100、 好ましくは 90 : 10〜50 : 50、 更に好まし くは 80 : 20〜 60 : 40である。 他の生分解性樹脂 (b) として使用できる生分解性セルロースエステルと しては、 酢酸セルロース、 セルロースプチレート、 セルロースプロピオ ネート等の有機酸エステル ; 硝酸セルロース、 硫酸セルロース、 リン酸 セルロース等の無機酸エステル ; セルロースァセテ一トブチレ一ト、 セ ルロースアセテートフタレート、 硝酸酢酸セルロース等の混成エステル が例示できる。 これらのセルロースエステルは、 単独で又は二種以上混 合して使用できる。 これらのセルロースエステルのうち有機酸エステル、 セルロースアセテートプロピオネート、 セルロースアセテートブチレー 卜が好ましいが、 さらに、 可塑剤を配合した酢酸セルロースが好ましレ 酢酸セルロースの酢化度は、 4 0 . 0 3〜6 2 . 5 5 %のもの、 つまりセルロー スの繰り返し単位当りのァセチル置換度が 1 . 5〜3 . 0のものが有用なものと して知られているが、 可塑剤を配合した酢酸セルロースを使用する場合、 酢化度 4 8 . 8〜6 2 . 5、 特に酢化度 5 0〜6 2 . 5 %の酢酸セルロースが有用であ る。 The weight ratio of polylactic acid to polyprolactone is such that polylactic acid: polyprolactone is 100: 0 to 0: 100, preferably 90:10 to 50:50, and more preferably 80:20 to 60: 40. Examples of the biodegradable cellulose ester that can be used as the other biodegradable resin (b) include organic acid esters such as cellulose acetate, cellulose butylate, and cellulose propionate; and cellulose nitrate, cellulose sulfate, and cellulose phosphate. Inorganic acid esters; hybrid esters such as cellulose acetate butyrate, cellulose acetate phthalate and cellulose nitrate acetate can be exemplified. These cellulose esters can be used alone or in combination of two or more. Among these cellulose esters, organic acid esters, cellulose acetate propionate, and cellulose acetate butyrate are preferred, and cellulose acetate containing a plasticizer is more preferred. A cellulose acetate having a degree of acetylation of 40.03 to 62.5%, that is, a cellulose acetate having a degree of acetyl substitution of 1.5 to 3.0 per repeating unit is considered to be useful. It is known that when cellulose acetate containing a plasticizer is used, cellulose acetate having an acetylation degree of 48.8 to 62.5, particularly 50 to 62.5%, is useful. is there.
また、 ポリペプチドとしては、 ポリメチルグルタミン酸等のポリアミ ノ酸及びポリアミ ドエステル等が例示できる。  Examples of the polypeptide include polyamino acids such as polymethylglutamic acid and polyamide esters.
ポリアミ ドエステルとしては、 ε —力プロラク トンと ε —力プロラク タムより合成される樹脂等が挙げられる。  Examples of the polyamide ester include resins synthesized from ε-force prolacton and ε-force prolactam.
天然高分子としては、 澱粉、 セルロース、 紙、 パルプ、 綿、 麻、 毛、 絹、 皮革、 カラギーナン、 キチン · キトサン質、 天然直鎖状ポリエステ ル系樹脂、 又はこれらの混合物が挙げられる。  Examples of the natural polymer include starch, cellulose, paper, pulp, cotton, hemp, wool, silk, leather, carrageenan, chitin / chitosan, natural linear polyester resin, and a mixture thereof.
上記澱粉としては、 天然物由来の澱粉、 加工 (変性) 澱粉又は両者の混合物が使 用できる。 具体的には、 馬鈴薯澱粉、 トウモロコシ澱粉、 甘藷澱粉、 小麦澱粉、 米澱粉、 タピオ力澱粉、 サゴ澱粉、 キヤッサバ澱粉、 マメ澱粉、 クズ澱粉、 ワラ ビ澱粉、 ハス澱粉、 ヒシ澱粉等の天然澱粉及びこれらの分解物、 アミロース分解 澱粉及びァミロべクチン分解澱粉等が挙げられる。  As the above-mentioned starch, starch derived from a natural product, processed (modified) starch or a mixture of both can be used. More specifically, natural starches such as potato starch, corn starch, sweet potato starch, wheat starch, rice starch, tapio starch, sago starch, cassava starch, legume starch, kuzu starch, bracken starch, lotus starch, and heshi starch. These degradation products, amylose-degraded starch, and amylobectin-degraded starch are exemplified.
澱粉は必要により可溶化して使用することができる。 例えば、 澱粉に水を加え て加温し、 粘稠な液状にして使用することができる。 更には水の代りにエチレング リコールやグリセリンなどで可塑化され液状になったものも使用することができる。 加工澱粉としては、 天然澱粉に種々の物理的変性を行ったもの、 例えば、 α— 澱粉、 分別アミロース、 湿熱処理澱粉等、 天然澱粉に種々の酵素変性を行った澱 粉、 例えば、 加水分解デキストリン、 酵素分解デキストリン、 アミロース分解澱 粉、 アミ口べクチン分解澱粉等、 天然澱粉に種々の化学処理をしたもの、 例えば、 酸処理澱粉、 次亜塩素酸酸化澱粉、 酸化処理を行ったジカルボン酸澱粉、 ァシル 化を行ったァセチル澱粉、 その他の化学変性澱粉誘導体、 例えば、 エステル化処 理を行ったエステル澱粉、 エーテル化処理を行ったエーテル化澱粉、 架橋剤で処 理した架橋澱粉、 2—ジメチルアミノエチルクロライドでァミノ化したような力 チォン化澱粉などが挙げられる。 Starch can be used after solubilization if necessary. For example, starch can be heated by adding water to a viscous liquid for use. Further, a liquid that has been plasticized with ethylene glycol or glycerin instead of water and used as a liquid can also be used. Examples of the processed starch include those obtained by subjecting natural starch to various physical denaturation, such as α-starch, fractionated amylose, and moisture-heat-treated starch. Starch obtained by subjecting natural starch to various enzymatic denaturation, such as hydrolyzed dextrin , Enzymatically decomposed dextrin, amylose-degraded starch, ami-mouth pectin-degraded starch, etc. Acetylated starch, other chemically modified starch derivatives, such as esterification Ester starch that has been processed, etherified starch that has been etherified, cross-linked starch that has been processed with a cross-linking agent, and starch that has been aminated with 2-dimethylaminoethyl chloride.
好ましい澱粉は、 粒状澱粉、 水及び Z又は可塑剤により可塑化された可塑化澱粉、 粒状澱粉と、 水及び Z又は可塑剤により可塑化された可塑化澱粉の混合物である。 脂肪族ポリエステル共重合体 ( a ) と澱粉の重量組成比は、 95/5〜 20/8 0であり、 好ましくは 90ノ10〜40/60である。 樹脂添加剤  Preferred starches are granular starch, plasticized starch plasticized with water and Z or a plasticizer, a mixture of granular starch and plasticized starch plasticized with water and Z or a plasticizer. The weight composition ratio of the aliphatic polyester copolymer (a) and the starch is 95/5 to 20/80, preferably 90 to 10/40/60. Resin additive
樹脂添加剤としては可塑剤、 熱安定剤、 滑剤、 ブロッキング防止剤、 核剤、 光 分解剤、 生分解促進剤、 酸化防止剤、 紫外線安定剤、 帯電防止剤、 難燃剤、 流滴 剤、 抗菌剤、 防臭剤、 充填材、 着色剤、 又はこれらの混合物が挙げられる。  Resin additives include plasticizers, heat stabilizers, lubricants, anti-blocking agents, nucleating agents, photolytic agents, biodegradation accelerators, antioxidants, UV stabilizers, antistatic agents, flame retardants, droplet agents, and antibacterial agents Agents, deodorants, fillers, coloring agents, or mixtures thereof.
可塑剤としては、 脂肪族二塩基酸エステル、 フ夕ル酸エステル、 ヒド ロキシ多価カルボン酸エステル、 ポリエステル系可塑剤、 脂肪酸エステ ル、 エポキシ系可塑剤、 又はこれらの混合物が例示される。 具体的には、 フタル酸ジ一 2—ェチルへキシル (DO P) 、 フ夕ル酸ジブチル (D B P ) 、 フタル酸ジイソデシル (D I D P) 等のフタル酸エステル、 アジ ピン酸—ジ— 2—ェチルへキシル (DOA) 、 アジピン酸ジイソデシル (D I DA) 等のアジピン酸エステル、 ァゼライン酸—ジ— 2—ェチル へキシル (DO Z) 等のァゼライン酸エステル、 ァセチルクェン酸トリ 一 2ーェチルへキシル、 ァセチルクェン酸トリブチル等のヒドロキシ多 価カルボン酸エステル、 ポリプロピレングリコールアジピン酸エステル 等のポリエステル系可塑剤であり、 これらは一種または二種以上の混合 物で用いられる。  Examples of the plasticizer include an aliphatic dibasic acid ester, a fluoric acid ester, a hydroxy polycarboxylic acid ester, a polyester plasticizer, a fatty acid ester, an epoxy plasticizer, and a mixture thereof. Specifically, phthalic acid esters such as di-2-ethylhexyl phthalate (DOP), dibutyl phthalate (DBP), diisodecyl phthalate (DIDP), and di-2-ethyl ethyl adipate Adipates such as xyl (DOA) and diisodecyl adipate (DI DA); azelates such as azelaic acid-di-2-ethylhexyl (DOZ); tri-l-ethylhexyl acetyl citrate; tributyl acetyl citrate And polyester-based plasticizers such as polypropylene glycol adipate, etc., and these are used alone or in a mixture of two or more.
これら可塑剤の添加量としては、 用途によって異なるが、 一般には脂 肪族ポリエステル共重合体 ( a) 1 0 0重量部に対して、 3〜 3 0重量部 の範囲が好ましい。 成形品であると、 5〜 1 5重量部の範囲が好ましい。 3重量部未満であると、 破断伸びや衝撃強度が低くなる場合があり、 ま た 3 0重量部を超えると、 破断強度や衝撃強度の低下を招く場合がある。 熱安定剤としては、 脂肪族カルボン酸塩がある。 脂肪族カルボン酸と しては、 特に脂肪族ヒドロキシカルボン酸が好ましい。 脂肪族ヒドロキ シカルボン酸としては、 乳酸、 ヒドロキシ酪酸等の天然に存在するもの が好ましい。 The amount of the plasticizer to be added varies depending on the application, but is generally 3 to 30 parts by weight based on 100 parts by weight of the aliphatic polyester copolymer (a). Is preferable. When it is a molded product, the content is preferably in the range of 5 to 15 parts by weight. If the amount is less than 3 parts by weight, the elongation at break and the impact strength may decrease, and if it exceeds 30 parts by weight, the strength at break and the impact strength may decrease. Heat stabilizers include aliphatic carboxylate salts. As the aliphatic carboxylic acid, an aliphatic hydroxycarboxylic acid is particularly preferred. As the aliphatic hydroxycarboxylic acid, naturally occurring ones such as lactic acid and hydroxybutyric acid are preferable.
塩としては、 ナトリウム、 カルシウム、 アルミニウム、 バリウム、 マ グネシゥム、 マンガン、 鉄、 亜鉛、 鉛、 銀、 銅等の塩が挙げられる。 こ れらは、 一種または二種以上の混合物として用いることができる。  Examples of the salt include salts of sodium, calcium, aluminum, barium, magnesium, manganese, iron, zinc, lead, silver, copper and the like. These can be used as one kind or as a mixture of two or more kinds.
添加量としては、 共重合体 1 0 0重量部に対して、 0 . 5〜 1 0重量 部の範囲である。 上記範囲で熱安定剤を用いると、 衝撃強度 (アイゾッ ト衝撃値) が向上し、 破断伸び、 破断強度、 衝撃強度のばらつきが小さ くなる効果がある。  The amount of addition is in the range of 0.5 to 10 parts by weight based on 100 parts by weight of the copolymer. When a heat stabilizer is used in the above range, the impact strength (Izod impact value) is improved, and the effects of elongation at break, breaking strength and impact strength are reduced.
滑剤としては、 内部滑剤、 外部滑剤として一般に用いられるものが使 用可能である。 たとえば、 脂肪酸エステル、 炭化水素樹脂、 パラフィ ン、 高級脂肪酸、 ォキシ脂肪酸、 脂肪酸アミ ド、 アルキレンビス脂肪酸アミ ド、 脂肪族ケトン、 脂肪酸低級アルコールエステル、 脂肪酸多価アルコ ールエステル、 脂肪酸ポリダリコールエステル、 脂肪族アルコール、 多 価アルコール、 ポリダリコール、 ポリクリセロール、 金属石鹼、 変性シ リコーンまたはこれらの混合物が挙げられる。 好ましくは、 脂肪酸エス テル、 炭化水素樹脂等が挙げられる。  As the lubricant, those generally used as an internal lubricant and an external lubricant can be used. For example, fatty acid esters, hydrocarbon resins, paraffins, higher fatty acids, oxy fatty acids, fatty acid amides, alkylene bis fatty acid amides, aliphatic ketones, fatty acid lower alcohol esters, fatty acid polyhydric alcohol esters, fatty acid polydaricol esters, fatty acids Aliphatic alcohols, polyhydric alcohols, polydalicol, polycricerol, metal stones, modified silicones or mixtures thereof. Preferably, fatty acid esters, hydrocarbon resins and the like are used.
滑剤を選択する場合には、 ラク トン樹脂やその他の生分解性樹脂の融 点に応じて、 その融点以下の滑剤を選択する必要がある。 例えば、 脂肪 族ポリエステル樹脂の融点を考慮して、 脂肪酸アミ ドとしては 1 6 O t: 以下の脂肪酸アミ ドが選ばれる。 W 200 When selecting a lubricant, it is necessary to select a lubricant whose melting point is lower than the melting point of lactone resin and other biodegradable resins. For example, in consideration of the melting point of the aliphatic polyester resin, a fatty acid amide of 16 Ot: or less is selected as the fatty acid amide. W 200
25 twenty five
配合量は、 成形品を例にとると、 樹脂 1 0 0重量部に対し、 滑剤を 0 . 0 5〜 5重量部を添加する。 0 . 0 5重量部未満であると効果が充分で なく、 5重量部を超えるとロール等に巻きつかなくなり、 物性も低下す る。  For example, in the case of a molded article, 0.05 to 5 parts by weight of a lubricant is added to 100 parts by weight of the resin. If the amount is less than 0.05 part by weight, the effect is not sufficient, and if it exceeds 5 parts by weight, it is not wound around a roll or the like, and the physical properties are deteriorated.
環境汚染を防止する観点から、 安全性が高く、 且つ F D A (米国食品 医薬品局) に登録されているエチレンビスステアリン酸アミ ド、 ステア リン酸アミ ド、 ォレイン酸アミ ド、 エル力酸アミ ドが好ましい。  From the viewpoint of preventing environmental pollution, ethylene bisstearic acid amide, stearic acid amide, oleic acid amide, and erlic acid amide, which are highly safe and registered with the FDA (US Food and Drug Administration), preferable.
上記光分解促進剤としては、 例えば、 ベンゾイン類、 ベンゾインアル キルエーテル類、 ベンゾフエノン、 4, 4一ビス (ジメチルアミノ) ベ ンゾフエノンなどのべンゾフエノンとその誘導体; ァセトフエノン、 α α—ジエトキシァセトフエノンなどのァセトフエノンとその誘導体 ; キ ノン類 ; チォキサントン類 ; フタロシアニンなどの光励起材、 アナ夕一 ゼ型酸化チタン、 エチレン一一酸化炭素共重合体、 芳香族ケトンと金属 塩との増感剤などが例示される。 これらの光分解促進剤は、 1種又は 2 種以上併用できる。  Examples of the photodegradation accelerator include benzophenones such as benzoins, benzoin alkyl ethers, benzophenone, and 4,4-bis (dimethylamino) benzophenone, and derivatives thereof; Acetophenone and its derivatives; quinones; thioxanthones; photoexciting materials such as phthalocyanine, analytic titanium oxide, ethylene carbon monoxide copolymer, and sensitizers of aromatic ketones and metal salts. Is exemplified. These photolysis accelerators can be used alone or in combination of two or more.
上記生分解促進剤には、 例えば、 ォキソ酸 (例えば、 グリコール酸、 乳酸、 クェン酸、 酒石酸、 リンゴ酸などの炭素数 2〜 6程度のォキソ 酸) 、 飽和ジカルボン酸 (例えば、 修酸、 マロン酸、 コハク酸、 無水コ ハク酸、 ダルタル酸などの炭素数 2〜 6程度の低級飽和ジカルボン酸な ど) などの有機酸; これらの有機酸と炭素数 1〜4程度のアルコールと の低級アルキルエステルが含まれる。 好ましい生分解促進剤には、 クェ ン酸、 酒石酸、 リンゴ酸などの炭素数 2〜 6程度の有機酸、 及び椰子殻 活性炭等が含まれる。 これらの生分解促進剤は 1種又は 2種以上併用で きる。  Examples of the biodegradation accelerator include oxo acids (eg, oxo acids having about 2 to 6 carbon atoms such as glycolic acid, lactic acid, citric acid, tartaric acid, and malic acid), saturated dicarboxylic acids (eg, oxalic acid, malonic acid, etc.). Organic acids such as acids, succinic acid, succinic anhydride, and dartaric acid, etc .; lower saturated dicarboxylic acids having about 2 to 6 carbon atoms); lower alkyls of these organic acids and alcohols having about 1 to 4 carbon atoms. Esters are included. Preferred biodegradation promoters include organic acids having about 2 to 6 carbon atoms, such as citric acid, tartaric acid, and malic acid, and coconut shell activated carbon. These biodegradation accelerators can be used alone or in combination of two or more.
上記充填剤 (増量剤、 ブロッキング防止剤を含む) としては、 種々の 充填剤、 例えば前記の炭酸カルシウムやタルクの他に、 マイ力、 珪酸カ ルシゥム、 微粉末シリカ (無水物) 、 ホワイ トカーボン (含水物) 、 石 綿、 陶土 (焼成) 、 麦飯石、 各種の酸化チタン、 ガラス繊維等の無機充 填剤や、 天然素材の粒子等の有機充填剤を挙げることができる。 Examples of the filler (including a bulking agent and an anti-blocking agent) include various fillers, such as calcium carbonate and talc, myrgic acid, and silica silicate. Inorganic fillers such as lucidum, finely divided silica (anhydride), white carbon (hydrated), asbestos, porcelain clay (fired), maltstone, various titanium oxides, glass fibers, etc., and organic materials such as particles of natural materials Fillers can be mentioned.
ブロッキングを防止する場合には、 粒子径は 0. 1〜7 mのものが好ましい。 無機充填剤としての微粉末シリカは、 湿式法でつく られたシリカや、 四塩化ケィ素の酸水素焰中での高温加水分解により製造されたシリカで もよいが、 粒径が 5 0 n m以下のものが好ましく、 ヘーズが低いことが要求 される場合にはさらに 10 nmレベルのものが好ましい。  When blocking is to be prevented, the particle diameter is preferably from 0.1 to 7 m. The finely divided silica as the inorganic filler may be silica produced by a wet method or silica produced by high-temperature hydrolysis of silicon tetrachloride in oxyhydrogen, but the particle size is 50 nm or less. Is preferable, and when low haze is required, a further 10 nm level is preferable.
無機充填材を添加することにより生分解性が更に向上すると共に溶融強度 (粘 度) が大きくなるので、 溶融成形時のドローダウンが防がれ、 真空成形、 ブロー 成形、 インフレーション成形等の成形性が向上する。  By adding an inorganic filler, the biodegradability is further improved and the melt strength (viscosity) is increased, so that drawdown during melt molding is prevented, and moldability such as vacuum molding, blow molding, and inflation molding is possible. Is improved.
充填剤の添加量は特に限定するものではないが、 脂肪族ポリエステル共重合体 ( a) に対して、 充填剤 Z共重合体 ( a) の重量比が 5〜50/95〜50、 好 ましくは 10〜45Z90〜55、 更に好ましくは 20〜 40 / 80〜 60、 特 に好ましくは 25〜35Z75〜65である。  The amount of the filler added is not particularly limited, but the weight ratio of the filler Z copolymer (a) to the aliphatic polyester copolymer (a) is preferably 5 to 50/95 to 50. More preferably, it is 10 to 45Z90 to 55, more preferably 20 to 40/80 to 60, particularly preferably 25 to 35Z75 to 65.
充填剤の量が過大では、 樹脂が粉を吹き、 過小では成形時にドロ一ダウン、 ネ ッキング、 厚みむら、 目やに発生が著しい。  If the amount of filler is too large, the resin will blow powder, while if it is too small, drawdown, necking, uneven thickness, and noticeable irregularities will occur during molding.
有機充填剤としては、 直径が 5 0ミクロン以下の、 紙より製造した微 粉末粒子が挙げられる。 有機充填剤の添加量や粒径は上記無機充填剤の 場合と同じである。  Organic fillers include finely divided particles of paper having a diameter of 50 microns or less and made from paper. The addition amount and particle size of the organic filler are the same as in the case of the inorganic filler.
増量剤としては、 木粉、 ガラスバルーン等が挙げられる。 増量剤の添 加量は無機充填剤の場合と同じである。  Examples of the bulking agent include wood flour and glass balloon. The amount of filler added is the same as for inorganic fillers.
脂肪族ポリエステル共重合体 (a) と他の生分解性樹脂 (b) 及び/又はその他 添加剤との混練方法は、 一般的な方法が好ましく使用でき、 具体的には原料樹脂べ レツトゃ粉体、 固体の細片等をヘンシェルミキサーやリポンミキサーで乾式混合し、 単軸や 2軸の押出機、 バンバリ一ミキサー、 ニーダー、 ミキシングロールなどの公 知の溶融混合機に供給して溶融混練することができる。 本発明のブリードアゥトが抑制された生分解性成形品は、 上記で得られた混練 物を射出成形方法、 押出成形方法、 キャスト成形方法、 インフレーションフィル ム成形方法等により成形して得られる。 As a method for kneading the aliphatic polyester copolymer (a) with the other biodegradable resin (b) and / or other additives, a general method can be preferably used. Specifically, the raw material resin pellet powder is used. The body and solid flakes are dry-mixed with a Henschel mixer or a Ripon mixer, and then mixed with a single-screw or twin-screw extruder, Banbury mixer, kneader, mixing roll, etc. It can be supplied to a known melt mixer and melt-kneaded. The biodegradable molded article of the present invention in which bleeding is suppressed is obtained by molding the kneaded product obtained above by an injection molding method, an extrusion molding method, a cast molding method, an inflation film molding method, or the like.
ァニール処理 Annealing treatment
上記で得られた成形品は、 ァニール処理を行うことにより、 更にオリゴマーの ブリードアウトを効果的に抑制することができる。  By subjecting the molded article obtained above to an annealing treatment, the bleed out of the oligomer can be further effectively suppressed.
ァニ一ル処理温度としては、 組成比にもよるが、 通常、 30〜60T:、 好まし くは 35〜 50で、 さらに好ましくは 35〜45°Cの範囲にある。 ァニール処理 温度が 30で未満では、 オリゴマーのブリードアウトの更なる抑制効果は認めら れない場合があり、 60°Cより高すぎると成形品が軟かくなりすぎてブロッキン グするおそれがある。  The annealing temperature is usually from 30 to 60 T, preferably from 35 to 50, and more preferably from 35 to 45 ° C, depending on the composition ratio. If the annealing temperature is less than 30, the effect of further suppressing the bleed-out of the oligomer may not be observed. If the temperature is higher than 60 ° C, the molded article becomes too soft and may be blocked.
ァニール処理時間としては、 温度にもよるが、 通常、 10時間以上、 好ましく は 24〜480時間、 さらに好ましくは 72〜360時間である。 ァニール処理 時間が 10時間未満では、 オリゴマーの更なるプリ一ドアウトの抑制効果が発現 しないおそれがある。 上限は特には限定されないが、 480時間を超えると抑制 効果の発現が飽和する。  The annealing time depends on the temperature, but is usually 10 hours or more, preferably 24 to 480 hours, more preferably 72 to 360 hours. If the anneal treatment time is less than 10 hours, the effect of further suppressing the premide out of the oligomer may not be exhibited. The upper limit is not particularly limited, but if it exceeds 480 hours, the expression of the suppressing effect is saturated.
本発明の成形品は、 へキサン中で 60秒間浸漬撹拌時におけるオリゴマー抽出 量が 1 Smg/^ 500 cm2以下、 好ましくは 12mgZ成形品表面一 2500 cm2以下、 さらに好ましくは 1 OmgZ成形品表面一 2500 cm2以下、 特に 好ましくは 8 mgZ成形品表面一 2500 cm2以下のものである。 本発明の成形品としては、 生分解性が好まれる用途の成形品であって、 板材、 ボトル 'タンク (飲料ボトル、 食品ボトル、 工業用大型容器、 洗剤容器、 医薬品 •農薬容器) 、 トレー、 カップ (汎用カップ/食品カップ Zレトルト食品カップ /その他のカップ類) 、 ブリスター成形品、 P T P包装品、 包装関連資材 (テー プ、 ロープ、 梱包用バンド) 、 ホース 'チューブ、 コンテナ一 (ビールコンテナ、 生鮮食料コンテナ) 、 緩衝材、 断熱材 (魚箱、 その他) 、 被覆材、 各種フィルム、 曰用品 '雑貨 (ファスナー/ポタン) 、 吸水性ポリマー、 繊維 (糸、 織物、 不織 布、 ネット、 ロープ) をはじめ、 これらの応用製品である電化製品 (冷蔵庫、 ェ アコン、 照明器具、 熱器具の各種部材) 、 電子製品 (テレビ、 ビデオ等映像関連 機器、 ラジオ、 ステレオ、 CD、 MD音響機器、 電話 · F AX,携帯電話、 パソコン、 ワープロ、 プリンタ一 'コピ一機、 プロジェクタの各種部材) 、 重電 '弱電の絶 縁材料 (コンデンサフィルム) 、 磁気テープ用フィルム、 回路基板材料、 I C封 止材料、 ボンド磁石、 磁気カード、 導電性材料、 電池用材料 (電極用材料、 電解 質用材料、 セパレー夕一、 電池用外装材料) 、 レジスト材料、 センサー材料 (光、 ガス、 臭い、 湿度、 温度、 イオン) 、 玩具 ·文具 'スポーツ用品 (ゴルフ用品、 スキー用品、 釣り用品、 シューズ、 ヘルメット) 、 機械部品 (摺動部品 (軸受Molded article of the present invention, the oligomer extraction amount in 60 seconds when immersed stirred in hexane is 1 Smg / ^ 500 cm 2 or less, preferably 12mgZ molded article surface one 2500 cm 2 or less, more preferably 1 OmgZ molded article surface one 2500 cm 2 or less, particularly preferably those of 8 MGZ molded article surface one 2500 cm 2 or less. The molded article of the present invention is a molded article for use in which biodegradability is preferred, and includes plate materials, bottles' tanks (beverage bottles, food bottles, industrial large containers, detergent containers, pharmaceutical and agricultural chemical containers), trays, Cup (general purpose cup / food cup Z retort food cup / Other cups), Blister molded products, PTP packaged products, Packaging related materials (tapes, ropes, packing bands), hoses, tubes, containers (beer containers, fresh food containers), cushioning materials, insulation materials ( These are applied products such as fish boxes, others), coating materials, various films, accessories (zippers / pots), water-absorbing polymers, fibers (threads, woven fabrics, non-woven fabrics, nets, and ropes). Products (refrigerators, air conditioners, lighting equipment, heating equipment), electronic products (TV, video and other video-related equipment, radio, stereo, CD, MD audio equipment, telephones, faxes, mobile phones, personal computers, word processors, Printers (copiers, various components of projectors), heavy electrical materials (insulation materials for light electricity (condenser films), magnetic tape films, circuit boards) Plate materials, IC sealing materials, bonded magnets, magnetic cards, conductive materials, battery materials (electrode materials, electrolyte materials, separators, battery batteries), resist materials, sensor materials (light, gas , Smell, humidity, temperature, ion), toys and stationery 'sporting goods (golf supplies, ski supplies, fishing supplies, shoes, helmets), mechanical parts (sliding parts (bearing)
(ベアリング) ) 、 伝動部品 (歯車、 ローラー、 ロール、 カム、 シ一ブ、 キャス 夕一、 ベルト、 チェーン) 、 締結部品 (ネジ、 ポルト、 パッキン) 、 制振 (防 振) 部材) 、 自動車 ·船舶 ·鉄道 ·航空 ·宇宙関連の資材 (外装材 (バンパー材 料/ボディーパネル/その他の外装樹脂部品) 、 内装材 (計器パネル Zドアトリ ム /ビラ一トリム/天井 (ヘッドライニング) 、 建築 .土木用の配管材料、 板材 料 (シート及び平板ノ波板 Z化粧合板) 、 断熱材 ·保温 ·保冷材 (発泡プラスチ ック) 、 接着剤 'シーリング材、 タイル、 医療用品 (分離膜、 縫合糸、 人工臓器、 生体吸収性材料、 コンタクトレンズ、 注射筒 '注射針、 採血管 ·検体検査用器具、 輸液 '輸血用器具、 カテーテル ·チューブ) 等が挙げられる。 実施例 (Bearings)), Power transmission parts (Gears, Rollers, Rolls, Cams, Shivers, Cass, Belts, Chains), Fastening parts (Screws, Porto, Packing), Damping (vibration-proof) members, Automotive Ships, railways, aviation, space-related materials (exterior materials (bumper materials / body panels / other exterior resin parts), interior materials (instrument panels Z door trims / bill trims / ceilings (headlinings), architecture. Plumbing materials, board materials (sheets and flat corrugated sheets Z decorative plywood), heat insulation materials, heat insulation, cold insulation materials (foam plastic), adhesives' sealing materials, tiles, medical supplies (separation membranes, sutures, Artificial organs, bioabsorbable materials, contact lenses, syringes 'injection needles, blood collection tubes and specimen testing instruments, infusions' blood transfusion instruments, catheters and tubes), etc.
以下、 実施例により本発明を更に具体的に説明するが、 本発明はこれらの実施 例によって限定されるものでない。 樹脂原料 Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to these Examples. Resin raw material
脂肪族ポリエステル共重合体 (a) Aliphatic polyester copolymer (a)
ダイセル化学工業 (株) 社製ブタンジオールーコハク酸一力プロラクトン三元 共重合体、 CBS- 051 (ポリスチレン換算 Mw20. 8万、 MFR (190°C) 1. 8、 Tml 08°C、 オリゴマー含有率 560 Oppm) 、  Butanediol-Succinic acid prolactone terpolymer, manufactured by Daicel Chemical Industries, Ltd., CBS-051 (Mw20.80,000 in terms of polystyrene, MFR (190 ° C) 1.8, Tml 08 ° C, oligomer Content 560 Oppm)
同 CBS- 071 (Mw22万、 MFR (190で) 0. 9、 Tm 104で、 オリゴマー含 有率 6900 ppm) 、  CBS-071 (Mw 220,000, MFR (at 190) 0.9, Tm 104, oligomer content 6900 ppm),
同 CBS-101 (Mw22万、 MFR ( 190°C) 0. 9、 Tml 02°C、 オリゴマー含 有率 6800 ppm) 他の脂肪族ポリエステル (b)  Same CBS-101 (Mw 220,000, MFR (190 ° C) 0.9, Tml 02 ° C, oligomer content 6800 ppm) Other aliphatic polyester (b)
ポリ乳酸 (PLA)  Polylactic acid (PLA)
ポリ乳酸共重合体 (D 2 ) : D—乳酸含有量 2. 2 %、 MFR ( 190 °C) 9. 4 g/10分、 融点 164 )  Polylactic acid copolymer (D 2): D-lactic acid content 2.2%, MFR (190 ° C) 9.4 g / 10 min, melting point 164)
ポリ乳酸共重合体 (D 13) : D—乳酸含有量 12. 6 %、 MFR (190°C) 2. 6 g/10分、 非晶質)  Polylactic acid copolymer (D13): D-lactic acid content 12.6%, MFR (190 ° C) 2.6 g / 10min, amorphous
ポリ乳酸共重合体 (D3) : D—乳酸含有量 1. 6 %、 MFR (190 ) 2. 6 g/10分、 融点 168°C  Polylactic acid copolymer (D3): D-lactic acid content 1.6%, MFR (190) 2.6 g / 10min, melting point 168 ° C
ポリ力プロラクトン (PCL) :ダイセル化学工業 (株) 社製、 商品名 PH7 (M w210, 000、 MFR (190 °C) 2. 0、 融点 60 °C) 樹脂添加剤  Polycaprolactone (PCL): manufactured by Daicel Chemical Industries, Ltd., trade name PH7 (Mw210,000, MFR (190 ° C) 2.0, melting point 60 ° C) Resin additive
エル力酸アミド (EA) :チバスペシャルティケミカルズ社製、 商品名 ATMER SA1753  L amic acid amide (EA): manufactured by Ciba Specialty Chemicals, trade name ATMER SA1753
シリカ (S I) :富士シリシァ社製、 商品名サイシリア 730 (粒径 4 m) 上記を樹脂組成物中にそれぞれ 1000重量 ppm添加した。 本発明における各種測定方法は以下のとおりである。 Silica (SI): trade name, Cycilia 730 (particle size: 4 m), manufactured by Fuji Silica Co., Ltd. Each of the above was added to the resin composition in an amount of 1000 ppm by weight. Various measuring methods in the present invention are as follows.
(1) 重量平均分子量: GPCにより測定し、 標準ポリスチレン換算で求めた。 (1) Weight average molecular weight: Measured by GPC and determined in terms of standard polystyrene.
(2) オリゴマー含有率 (ρριη) :上記ポリマーの GPC測定において、 標準ポリ スチレン換算分子量分子量 500以下のものの、 全体に対する面積比率で求めた。 (2) Oligomer content (ρριη): In the GPC measurement of the above polymer, it was determined by the area ratio to the whole of those having a molecular weight of 500 or less in terms of standard polystyrene.
(3) ブリードアウト量 (mg) :成形品 (大きさ A4版のもの 2枚、 合計面積 2 500 cm2) をへキサン溶媒 500m 1に浸漬、 60秒撹拌後、 成形品を取り出 し、 へキサン溶媒を濃縮、 乾固し、 固形分を 80°C、 400Torr、 12時間減圧 乾燥して、 秤量して求めた。 (3) Bleed-out amount (mg): Immerse the molded article (2 pieces of A4 size, total area 2 500 cm 2 ) in 500m1 of hexane solvent, stir for 60 seconds, take out the molded article, The hexane solvent was concentrated and dried, and the solid content was dried under reduced pressure at 80 ° C and 400 Torr for 12 hours and weighed.
なお、 上記抽出物中の添加剤エル力酸アミドの量は、 必要によりガスクロマト グラフにより分析した。  The amount of the additive erlic acid amide in the above extract was analyzed by gas chromatography as necessary.
なお、 この試験方法で留意する点は、 成形品内部からの抽出が若干生じている ことであり、 樹脂添加剤無添加の場合は 4〜 5 ppmが成形品内部からの抽出による ものと推定され、 エル力酸アミド 1000卯 m添加の場合は 7〜8ρριηが成形品内部か らの抽出によるものと推定される。 従って、 表面のみのプリ一ドアウト量は、 上 記秤量して求めた値からそれらを差し引いた値であると推定される。  The point to be noted in this test method is that some extraction from inside the molded article occurred, and it is estimated that when no resin additive was added, 4 to 5 ppm was due to extraction from inside the molded article. However, when 1000 μm of L-acid amide is added, it is estimated that 7 to 8 ρριη is due to extraction from inside the molded article. Therefore, it is estimated that the pre-amount of only the surface is a value obtained by subtracting them from the value obtained by weighing.
(4) ブリードアウトの官能評価:成形品を指先でこすり、 指への付着の程度で 評価した。 付着が殆どないものを〇、 付着が微少あるものを△、 付着が多く明ら かに通常の用途に使用不可のものを Xで表した。  (4) Sensory evaluation of bleed-out: The molded product was rubbed with a fingertip and evaluated by the degree of adhesion to the finger. Those with little adhesion were marked with 〇, those with very little sticking with △, and those with lots of sticking that were clearly unusable for normal use were marked with X.
(5) 機械的物性:試験片として、 成形品から MD方向又は TD方向の短冊状成 形品片 (長さ 15 Omm、 巾 15mm) を採取して、 チャック間距離 10 Ommで、 引張試験を行い、 降伏点及び破断点における強度 (MPa) 、 伸度 (%) 、 ヤング率 (5) Mechanical properties: As a test piece, a strip-shaped molded piece (length 15 Omm, width 15 mm) in the MD or TD direction is sampled from the molded product and subjected to a tensile test at a chuck-to-chuck distance of 10 Omm. Performed, yield strength and elongation at break (MPa), elongation (%), Young's modulus
(MPa) を求めた。 なお、 伸度 (%) はチャック間距離の変化とした。 (MPa). The elongation (%) was the change in the distance between the chucks.
なお、 測定条件は以下の通りである。  The measurement conditions are as follows.
使用機器:オリエンテック社製テンシロン万能試験機 RTC- 1225  Equipment used: Orientec Tensilon Universal Testing Machine RTC-1225
クロスへッドスピード: 30 Omm/分 (但し、 ヤング率の測定は 5mm/分で 行った。 ) Cross head speed: 30 Omm / min (However, Young's modulus is measured at 5 mm / min. went. )
測定値は 5回の平均値である。  The measured values are the average of five measurements.
( 6 ) 成形品のァニール処理  (6) Annealing of molded products
成形後、 4 0 °Cの恒温槽内でァニールを行った。 表示は以下の例に従う。  After molding, annealing was performed in a constant temperature bath at 40 ° C. The display follows the example below.
成形 20日後、 ァニールなし:成形後の成形品を室温で 2 0日間放置。  20 days after molding, no annealing: The molded article is left at room temperature for 20 days.
成形 20日後、 3日間ァニール:成形後 3日間ァニールした成形品を室温で 17日 間放置し、 成形後 20日となったもの。  20 days after molding, 3 days anneal: A molded product that has been annealed for 3 days after molding is left at room temperature for 17 days, and 20 days after molding.
成形 0日後、 10日間ァニール:成形後 10日間ァニールした成形品を室温で 10日間 放置し、 成形後 20日となったもの。  0 days after molding, 10 days anneal: A molded product that was annealed for 10 days after molding was left at room temperature for 10 days, and 20 days after molding.
なお、 単に成形 0日後、 成形 3日後、 成形 12日後、 成形 60日後等とあるのは、 ァニール処理を行っていないものを示す。  The terms “0 day after molding”, “3 days after molding”, “12 days after molding”, “60 days after molding” and the like indicate those without annealing treatment.
[実施例 1〜 4、 比較例 1および 2 1 [Examples 1-4, Comparative Examples 1 and 21
上記脂肪族ポリエステル共重合体 (a ) 及び他の脂肪族ポリエステル (b ) を 表 1に示す割合で、 予め溶融混練して混練組成物を得た。  The aliphatic polyester copolymer (a) and the other aliphatic polyester (b) were previously melt-kneaded at the ratios shown in Table 1 to obtain a kneaded composition.
上記で得た混練組成物を用い、 成形品を得た。  A molded article was obtained using the kneading composition obtained above.
なお、 経過日数の基点は、 製膜日を 0日とした (以下、 同じ) 。  In addition, the base point of the elapsed days was set to 0 day for the film formation date (the same applies hereinafter).
結果を表 1に示す。 比較例 1および 2では、 脂肪族ポリエステル共重合体 ( a ) 単独であり経時的にオリゴマーのブリードアウトを生じ、 ヘーズおよび平 行光線透過率が悪化する。 これに対して、 他の脂肪族ポリエステル (b ) として ポリ乳酸共重合体を添加したものではブリードアゥ卜が抑制され、 外観の悪化が 抑制される。 実 節! 例 比 較 例 Table 1 shows the results. In Comparative Examples 1 and 2, the aliphatic polyester copolymer (a) alone was used, and the bleed out of the oligomer occurred over time, and the haze and the parallel light transmittance deteriorated. On the other hand, in the case where a polylactic acid copolymer is added as another aliphatic polyester (b), bleeding is suppressed, and deterioration of appearance is suppressed. Actually! Example Comparison example
1 2 3 4 1 2  1 2 3 4 1 2
共重合体 (a) CBS101 CBS101 CBS051 CBS051 CBS101 CBS051  Copolymer (a) CBS101 CBS101 CBS051 CBS051 CBS101 CBS051
重量% 9 0 9 0 9 0 9 0 1 0 0 1 0 0  Weight% 9 0 9 0 9 0 9 0 1 0 0 1 0 0
ホ。リ Iステル (b) PLA D2 D13 D2 D13  E. Re Ister (b) PLA D2 D13 D2 D13
重量% 1 0 1 0 1 0 1 0  Weight% 1 0 1 0 1 0 1 0
添加剤 重量 ppm ― 一 ― ― ― ―  Additive Weight ppm------
[経過日数]  [Number of days elapsed]
ァリ-ドアウト量 m g  Lead-out amount mg
製膜 3日後 5. 2 5. 1 5. 1 6. 3 5. 7  3 days after film formation 5.2 5.1 5.1 6.3 5.7
12日後 6. 0 6. 1 5. 9 11. 2 9. 1  12 days later 6.0 0 6.1 5.9 11.29.1
60日後 6. 2 11. 5 10. 7  60 days later 6.2 11.5 10.7
[実施例 5〜 8及び比較例 3 ] [Examples 5 to 8 and Comparative Example 3]
上記脂肪族ポリエステル共重合体 (a ) 、 J o他o— の脂肪族ポリエステル (b ) 、 及 び樹脂添加剤を表 2に示す割合で添加し、 実施例 1と同様にして、 混練組成物を 得、 混練組成物を用い、 成形機を使用して厚さ 3 0 mの成形品を得た。  The kneading composition was added in the same manner as in Example 1 by adding the aliphatic polyester copolymer (a), the aliphatic polyester (b) of Jo and other o- and the resin additive in the proportions shown in Table 2. Using a kneading composition, a molded product having a thickness of 30 m was obtained using a molding machine.
結果を表 2に示す。 この結果から判るように、 比較例 3では、 脂肪族ポリエス テル共重合体 (a ) 単独であり経時的にオリゴマーのブリードアウト量が多いが、 実施例 5〜 8から判るようにポリ乳酸の添加率と共にブリードアウトが抑制され る。 なお、 ポリ乳酸共重合体の添加により、 樹脂組成物中のオリゴマー含有率は 希釈されて低くなるが、 ブリードアウト量はその希釈による低下を明らかに上回 るものであることが判る。  Table 2 shows the results. As can be seen from these results, in Comparative Example 3, although the aliphatic polyester copolymer (a) was used alone and the amount of bleed-out of the oligomer was large over time, the addition of polylactic acid was observed as shown in Examples 5 to 8. Bleed-out is suppressed along with the rate. The addition of the polylactic acid copolymer dilutes and lowers the oligomer content in the resin composition, but the bleed-out amount clearly exceeds the decrease due to the dilution.
表 2  Table 2
実 摘 i 例 比較例  Practical example i Comparative example
5 6 7 8 3  5 6 7 8 3
共重合体 (a) CBS101 CBS101 CBS101 CBS101 CBS101  Copolymer (a) CBS101 CBS101 CBS101 CBS101 CBS101
重量% 9 5 9 0 9 0 8 5 Ί 0 0  Weight% 9 5 9 0 9 0 8 5 Ί 0 0
ホ°リ1ステル (b) PLA D2 D2 D13 D13 —  (1) PLA D2 D2 D13 D13 —
里 5 1 0 1 0 1 5  Sato 5 1 0 1 0 1 5
添加剤 S I pm 1000 1000 1000 1000 1000  Additive S I pm 1000 1000 1000 1000 1000
盧量 , EA ppm 1000 1000 1000 1000 1000  Roh, EA ppm 1000 1000 1000 1000 1000
ブリード量 製膜 20日後  Bleed amount 20 days after film formation
m g 10日間ァニ-ル 13. 1 9, 8 10. 0 7. 1 14. 8 [実施例 9〜1 2及び比較例 4 ] mg 10-day annealing 13.1 9, 8 10.0 7.1 14.8 [Examples 9 to 12 and Comparative Example 4]
脂肪族ポリエステル共重合体 (a ) として CBS 101の代りに CBS051を用いた以外 は実施例 5と同様にして、 成形品を得た。 ポリ乳酸共重合体を添加しない場合を 比較例 4とした。  A molded product was obtained in the same manner as in Example 5 except that CBS051 was used instead of CBS101 as the aliphatic polyester copolymer (a). Comparative Example 4 was performed without the addition of the polylactic acid copolymer.
この結果、 実施例 5〜 8及び比較例 3と同様に、 ポリ乳酸共重合体の添加率と 共にブリードアウトが抑制されることが判つた。  As a result, as in Examples 5 to 8 and Comparative Example 3, it was found that bleed-out was suppressed together with the addition ratio of the polylactic acid copolymer.
[実施例 1 3〜 2 1及び比較例 5〜 7 ] [Examples 13 to 21 and Comparative Examples 5 to 7]
上記脂肪族ポリエステル共重合体 (a ) 、 他の脂肪族ポリエステル (b ) 、 及 び樹脂添加剤を表 3〜4に示す割合で添加し、 実施例 1と同様にして、 混練組成 物を得、 混練組成物を用い、 成形機を使用して厚さ 3 0 /i mの成形品を得た。  The above aliphatic polyester copolymer (a), other aliphatic polyester (b), and a resin additive were added in the proportions shown in Tables 3 and 4, and a kneaded composition was obtained in the same manner as in Example 1. A molded product having a thickness of 30 / im was obtained using a kneading composition and a molding machine.
結果を表 3〜4に示す。 この結果から判るように、 比較例 5では、 脂肪族ポリ エステル共重合体 (a ) 単独であり経時的にオリゴマーのブリードアウト量が多 く、 外観も悪い。 さらに、 製膜後、 ァニール処理をしても、 ブリードアウトの改 善は小さい。  The results are shown in Tables 3 and 4. As can be seen from the results, in Comparative Example 5, the aliphatic polyester copolymer (a) alone was used, and the amount of bleed-out of the oligomer over time was large, and the appearance was poor. Furthermore, even if annealing is performed after film formation, the improvement in bleed-out is small.
これに対して、 他の脂肪族ポリエステル (b ) としてポリ乳酸共重合体を添加 したもの (実施例 1 3〜1 7 ) 、 および、 ポリ力プロラクトンを添加したもの On the other hand, those obtained by adding a polylactic acid copolymer as the other aliphatic polyester (b) (Examples 13 to 17), and those obtained by adding a polycaprolactone
(実施例 1 8〜1 9 ) では、 ブリードアウトが抑制され、 外観も改善される。 In Examples 18 to 19, bleed-out is suppressed and the appearance is improved.
特に、 成形後成形品をァニール処理することにより、 更にブリードアウトが抑 制され、 抑制するために必要な他の脂肪族ポリエステル (b ) の添加量を少なく することが可能である。  In particular, by annealing the molded article after molding, bleed-out can be further suppressed, and the amount of other aliphatic polyester (b) necessary for suppressing the bleed-out can be reduced.
プリ一ド抑制効果については、 ポリ乳酸共重合体の D—乳酸含有量が異なっても、 又、 分子量が異なっても、 ポリ乳酸共重合体の配合量が同じである限り同程度の 抑制効果がある。 Regarding the effect of suppressing the pread, even if the D-lactic acid content of the polylactic acid copolymer is different or the molecular weight is different, as long as the blending amount of the polylactic acid copolymer is the same, the same effect is obtained. There is a suppression effect.
一方、 得られる成形品の物性の変化に着眼すると、 D—乳酸含有量が多い D13 (D—乳酸含有量 12. 6 %) を混合した組成物から得られる成形品は、 その混合 量を 15重量%にしても TDの伸度が大きい。 他方、 D—乳酸含有量が少ない D2 (D—乳酸含有量 2. 2%) 又は D3 (D—乳酸含有量 1. 6%) を混合した組成物 から得られる成形品は、 その混合量を 15重量%とすると、 TDの伸度が小さい成 形品が得られる。  On the other hand, when focusing on the change in physical properties of the obtained molded article, the molded article obtained from the composition containing D13 having a high D-lactic acid content (D-lactic acid content of 12.6%) has a mixed amount of 15%. The TD has a large elongation even in weight%. On the other hand, molded articles obtained from a composition containing D2 (D-lactic acid content: 2.2%) or D3 (D-lactic acid content: 1.6%), which has a low D-lactic acid content, have a lower mixing amount. When the content is 15% by weight, a molded article having a small elongation of TD can be obtained.
従って、 ブリード抑制効果を有し、 且つ、 より強靭な成形品を得るには D—乳酸 含有量が多いポリ乳酸共重合体を用いることが好ましいことが明らかである。 なお、 比較例 6および 7では、 他の脂肪族ポリエステル (b) としてポリ乳酸 共重合体単独であり、 成形品は MD、 TD共に伸びが著しく小さい。 Therefore, it is clear that it is preferable to use a polylactic acid copolymer having a high D-lactic acid content in order to obtain a molded product having a bleed control effect and toughness. In Comparative Examples 6 and 7, the polylactic acid copolymer alone was used as the other aliphatic polyester (b), and the molded articles exhibited extremely low elongation in both MD and TD.
表 3 Table 3
比較例 実 施 例  Comparative example Example
5 1 3 1 4 1 5 1 6 1 7 共重合体 (a) C BS071  5 1 3 1 4 1 5 1 6 1 7 Copolymer (a) C BS071
重量% 100 90 85 80 70 50 ホ°リ Iステル (b) PLA D13 D13 D13 D13 D13 重量% 10 15 20 30 50 添加剤 SI ppi 1000 1000 1000 1000 1000 1000 Weight% 100 90 85 80 70 50 Hotel I (b) PLA D13 D13 D13 D13 D13 Weight% 10 15 20 30 50 Additive SI ppi 1000 1000 1000 1000 1000 1000
EA 醒 1000 1000 1000 1000 1000 1000 成形 2日後 プリード 0 0 0 0 0 0 成形 20日後 プリ—ド X X X X 0 0 ァ;: -ルなし EA Awake 1000 1000 1000 1000 1000 1000 2 days after molding Preed 0 0 0 0 0 0 20 days after molding Pread X X X X 0 0
成形 20日後 プリード X X 0 0 0 020 days after molding Preed X X 0 0 0 0
3日間ァニ-ル 3 days annealing
成形 20日後 プリード X Δ 0 0 0 020 days after molding Preed X Δ 0 0 0 0
10日間ァニ-ル 10 days anniversary
成形 20日後 D 降伏点強度 (MPa) 24 26 26 20 days after molding D Yield point strength (MPa) 24 26 26
ァ二-ルなし 伸度 (%) 17 12 12 No elongation Elongation (%) 17 12 12
破断点強度 (MPa) 49 47 50  Break strength (MPa) 49 47 50
伸度 (%) 410 350 390  Elongation (%) 410 350 390
ヤンク'率 (MPa) 410 780 790  Yank 'rate (MPa) 410 780 790
T D 降伏点強度 (MPa) 23 26 27  T D Yield point strength (MPa) 23 26 27
伸度 (%) 12 8 9  Elongation (%) 12 8 9
破断点強度 (MPa) 19 32 31 伸度 (%) 220 330 300  Break point strength (MPa) 19 32 31 Elongation (%) 220 330 300
ヤング率 (MPa) 470 670 690  Young's modulus (MPa) 470 670 690
イン八'外 (m J) 600 780 470  Inn Hachi 'outside (m J) 600 780 470
成形 20日後 D 降伏点強度 (MPa) 26 29 29 28 29 一20 days after molding D Yield point strength (MPa) 26 29 29 28 29
3日間ァ二-ル 伸度 (%) 17 13 13 7 12 ― 3 days elongation (%) 17 13 13 7 12 ―
破断点強度 (MPa) 47 49 48 46 49 49 伸度 (%) 390 320 320 310 340 4 ヤンク'率 (MPa) 350 830 910 1000 1050 1600 Strength at break (MPa) 47 49 48 46 49 49 Elongation (%) 390 320 320 310 340 4 Yank 'rate (MPa) 350 830 910 1000 1050 1600
T D 降伏点強度 (MPa) 25 31 31 30 30 39 伸度 (%) 12 6 4 7 8 4 破断点強度 (MPa) 20 35 35 30 30 39 伸度 (%) 62 210 120 0.7 8 4 ヤンク'率 (MPa) 490 690 730 780 860 1580 イン八 °外 (mJ) 690 580 600 540 600 150 成形 20日後 M D 降伏点強度 (MPa) 23 30 30 30 30 46TD Yield strength (MPa) 25 31 31 30 30 39 Elongation (%) 12 6 4 7 8 4 Strength at break (MPa) 20 35 35 30 30 39 Elongation (%) 62 210 120 0.7 8 4 (MPa) 490 690 730 780 860 1580 in 8 ° outside (mJ) 690 580 600 540 600 150 20 days after molding MD yield point strength (MPa) 23 30 30 30 30 46
1 0日間ァニ-ル 伸度 (%) 18 14 14 12 13 4 破断点強度 (MPa) 41 48 46 45 45 46 伸度 (%) 350 320 310 310 310 4 ヤンク'率 (MPa) 360 800 850 890 960 180010 days annealing elongation (%) 18 14 14 12 13 4 Breaking strength (MPa) 41 48 46 45 45 46 elongation (%) 350 320 310 310 310 4 Yank 'rate (MPa) 360 800 850 890 960 1800
T D 降伏点強度 (MPa) 26 28 30 31 30 38 伸度 (%) 13 9 8 7 8 4 破断点強度 (MPa) 25 28 65 31 30 38 伸度 ( % ) 35 1 10 95 7 8 4 ヤング率 (MPa) 500 700 730 800 980 1580 表 ED 4 TD Yield strength (MPa) 26 28 30 31 30 38 Elongation (%) 13 9 8 7 8 4 Elongation at break (MPa) 25 28 65 31 30 38 Elongation (%) 35 1 10 95 7 8 4 Young's modulus (MPa) 500 700 730 800 980 1580 Table ED 4
I 実 施 例 比較例 I Example Example Comparative Example
1 8 1 9 2 0 2 1 6 7 共重合体 (a) CBS071 ― 一 重量% 90 80 85 85  1 8 1 9 2 0 2 1 6 7 Copolymer (a) CBS071 ― 1% by weight 90 80 85 85
ホ °リ1ス ϊル (b) PLA 一 D 2 H M W D 2 D 1 3 重量% 15 15 100 100 ホ。リ Iステル (b) PCL P H 7 P H 7 ― ― 一 重量% 10 20  Hole 1 (b) PLA-D 2 H M W D 2 D 13 3% by weight 15 15 100 100 List (b) PCL P H 7 P H 7 ― ― One weight% 10 20
添加剤 SI pm 1000 1000 1000 1000  Additive SI pm 1000 1000 1000 1000
EA ppm 1000 1000 1000 1000  EA ppm 1000 1000 1000 1000
成形 2日後 ブリード 0 0 0 0 〇 0 製膜 20日後 プリード X X X X 0 0 ァニ -ルなし 2 days after molding Bleed 0 0 0 0 〇 0 20 days after film formation Preed X X X X 0 0 No annealing
成形 20日後 ブリード X Δ 0 0 20 days after molding Bleed X Δ 0 0
成形 20日後 ブリード Δ 0 0 0 20 days after molding Bleed Δ 0 0 0
10日間ァニ -ル  10 days
成形 20日後 M D 降伏点強度 (MPa) 19 22 71 66 ァニ-ルなし 伸度 (%) 13 15 4 3 破断点強度 (MPa) 0.48 46 71 66 伸度 (%) 370 490 4 3 ヤンク'率 (MPa) 460 550 3000 270020 days after molding MD Yield strength (MPa) 19 22 71 66 Without elongation Elongation (%) 13 15 4 3 Breaking strength (MPa) 0.48 46 71 66 Elongation (%) 370 490 4 3 (MPa) 460 550 3000 2700
T D 降伏点強度 (MPa) 20 20 60 55 伸度 (%) 13 10 3 3 破断点強度 (MPa) 18 23 60 55 伸度 (%) 160 430 3 3 ヤンゲ率 (MPa) 450 500 3000 2900 イン Λ°外 (mJ) 470 520 TD Yield point strength (MPa) 20 20 60 55 Elongation (%) 13 10 3 3 Breaking strength (MPa) 18 23 60 55 Elongation (%) 160 430 3 3 Yange rate (MPa) 450 500 3000 2900 in イ ン° Outside (mJ) 470 520
成形 20日後 M D 降伏点強度 (MPa) 24 24 29 29 29 2920 days after molding MD yield strength (MPa) 24 24 29 29 29 29
3日間ァニ-ル 伸度 (%) 17 15 13 13 13 13 破断点強度 (MPa) 49 44 45 51 45 51 伸度 (%) 390 390 320 330 320 330 ヤング率 (MPa) 510 610 720 920 720 9203-day annealing Elongation (%) 17 15 13 13 13 13 Breaking strength (MPa) 49 44 45 51 45 51 Elongation (%) 390 390 320 330 320 330 Young's modulus (MPa) 510 610 720 920 720 920
T D 降伏点強度 (MPa) 21 22 29 31 29 31 伸度 (%) 12 12 9 9 9 9 破断点強度 (MPa) 20 20 29 31 29 31 伸度 (%) 67 130 9 9 9 9 ヤング率 (MPa) 470 510 670 730 670 730 イン八。外 (rruJ) 510 660 550 500 550 500 成形 20日後 M D 降伏点強度 (MPa) 25 24 29 30 29 30TD Yield strength (MPa) 21 22 29 31 29 31 Elongation (%) 12 12 9 9 9 9 Elongation at break (MPa) 20 20 29 31 29 31 Elongation (%) 67 130 9 9 9 9 Young's modulus ( MPa) 470 510 670 730 670 730 in Outer (rruJ) 510 660 550 500 550 500 20 days after molding M D Yield point strength (MPa) 25 24 29 30 29 30
10日間ァニ-ル 伸度 (%) 18 17 15 14 15 14 破断点強度 (MPa) 47 45 45 49 45 49 伸度 (%) 370 420 330 330 330 330 ヤング率 (MPa) 460 570 810 870 810 870 丁 D 降伏点強度 (MPa) 22 21 28 31 28 31 伸度 (%) 12 1 1 9 9 9 9 破断点強度 (MPa) 20 19 28 31 28 31 伸度 (%) 38 120 9 9 9 9 ヤング率 (MPa) 490 510 700 760 700 760 [実施例 1 8〜1 9 ] (インフレーション) 10-day annealing Elongation (%) 18 17 15 14 15 14 Strength at break (MPa) 47 45 45 49 45 49 Elongation (%) 370 420 330 330 330 330 Young's modulus (MPa) 460 570 810 870 810 870 D D Yield point strength (MPa) 22 21 28 31 28 31 Elongation (%) 12 1 1 9 9 9 9 Strength at break (MPa) 20 19 28 31 28 31 Elongation (%) 38 120 9 9 9 9 Young's modulus (MPa) 490 510 700 760 700 760 [Examples 18 to 19] (Inflation)
上記脂肪族ポリエステル共重合体 (a ) 、 他の脂肪族ポリエステル (b ) 、 及 び樹脂添加剤を表 5に示す割合で添加し、 実施例 1と同様にして混練組成物を得 た。  The above aliphatic polyester copolymer (a), other aliphatic polyester (b), and a resin additive were added in the proportions shown in Table 5, and a kneaded composition was obtained in the same manner as in Example 1.
上記で得た混練組成物を成形機を用いて、 厚さ 3 0 mと 4 0 の成形品を 得た。 得られた成形品を、 4 0 °Cで 1 0日間ァニール処理を行い、 その後室温に 1 0日間放置した後測定に供した。 表 5  Using the kneading composition obtained above, a molded product having a thickness of 30 m and a thickness of 40 was obtained using a molding machine. The obtained molded article was subjected to an annealing treatment at 40 ° C. for 10 days, then left at room temperature for 10 days, and then subjected to measurement. Table 5
Figure imgf000038_0001
産業上の利用可能性
Figure imgf000038_0001
Industrial applicability
本発明によれば、 オリゴマーを含有する高分子量脂肪族ポリエステル共重合体 を使用して、 機械的物性及び生分解性において優れ、 且つ粉吹き、 さらには外観 の悪化等の問題のない生分解性樹脂成形品が得られる。  According to the present invention, using a high molecular weight aliphatic polyester copolymer containing an oligomer, the biodegradability is excellent in mechanical properties and biodegradability, and has no problems such as powder blowing and further deterioration of appearance. A resin molded product is obtained.

Claims

請 求 の 範 囲 The scope of the claims
1. 分子鎖が、 下記一般式 (1) と (2) で示される繰返し単位:  1. A molecular chain is a repeating unit represented by the following general formulas (1) and (2):
一 CO— R1— CO - (1) One CO— R 1 — CO-(1)
(式中、 R1は炭素数 1〜12の二価脂肪族基を表す。 ) (Wherein, R 1 represents a divalent aliphatic group having 1 to 12 carbon atoms.)
一 O— R2—〇一 (2) One O— R 2 —〇-1 (2)
(式中、 R2は炭素数 2〜12の二価脂肪族基を表す。 ) (In the formula, R 2 represents a divalent aliphatic group having 2 to 12 carbon atoms.)
及び必要に応じて加えられる (3) で示される繰返し単位: And the repeating unit shown in (3), which is added as necessary:
一 CO— R3—〇一 (3) One CO—R 3 —〇-1 (3)
(式中、 R 3は炭素数 1〜10の二価脂肪族基を表す。 ) (In the formula, R 3 represents a divalent aliphatic group having 1 to 10 carbon atoms.)
からなり、 重量平均分子量が 40, 000以上であり、 分子量 500以下のオリ ゴマー含有率が 1, 000〜20, 00 Oppmである脂肪族ポリエステル共重合体An aliphatic polyester copolymer having a weight average molecular weight of 40,000 or more and an oligomer having a molecular weight of 500 or less and a content of 1,000 to 20,000 ppm by weight
(a) 、 及び (a), and
他の生分解性樹脂 (b) Other biodegradable resins (b)
からなる脂肪族ポリエステル系生分解性樹脂組成物。 An aliphatic polyester-based biodegradable resin composition comprising:
2. 脂肪族ポリエステル共重合体 (a) が、 該脂肪族ポリエステル共重合体 (a) の重合中間体である重量平均分子量 5, 000以上の低分子量脂肪族ポリ エステル共重合体 (a' ) 100重量部に対し、 0. 1〜5重量部の一般式  2. The aliphatic polyester copolymer (a) is a polymer intermediate of the aliphatic polyester copolymer (a), and is a low molecular weight aliphatic polyester copolymer (a ') having a weight average molecular weight of 5,000 or more. 0.1 to 5 parts by weight for 100 parts by weight
(7) :  (7):
X1 - R7 - X2 (7) X 1 -R 7 -X 2 (7)
(式中、 X1、 X2は水酸基または力ルポキシル基と作用して共有結合を形成可能 な反応基、 R7は単結合、 炭素数 1〜 20の脂肪族基又は芳香族基を表し、 X1、 X2は同一の化学構造であってもよいし、 異なってもよい) (In the formula, X 1 and X 2 each represent a reactive group capable of forming a covalent bond by acting with a hydroxyl group or a hydroxyl group, R 7 represents a single bond, an aliphatic group or an aromatic group having 1 to 20 carbon atoms, X 1 and X 2 may have the same chemical structure or may have different chemical structures)
で表される 2官能性の連結剤 (e) を反応させて高分子量化されたものである請 求項 1に記載の生分解性樹脂組成物。 3. The biodegradable resin composition according to claim 1, which is obtained by reacting a bifunctional linking agent (e) represented by the following formula to increase the molecular weight.
3. 一般式 (1) が、 コハク酸残基及び Z又はアジピン酸残基である請求項 1又 は 2に記載の生分解性樹脂組成物。 3. The biodegradable resin composition according to claim 1, wherein the general formula (1) is a succinic acid residue and a Z or adipic acid residue.
4. 一般式 (2) が、 エチレングリコール残基及び/又は 1, 4一ブタンジォ一 ル残基である請求項 1〜 3のいずれか 1項に記載の生分解性樹脂組成物。 4. The biodegradable resin composition according to any one of claims 1 to 3, wherein the general formula (2) is an ethylene glycol residue and / or a 1,4-butanediol residue.
5. 一般式 (3) が、 ε—力プロラクトン、 4ーメチルカプロラクトン、 3, 5, 5—トリメチルカプロラクトン、 3, 3, 5—トリメチルカプロラクトン、 β— プロピオラクトン、 ァープチロラクトン、 δ—バレロラクトン、 ェナントラクト ンからなる群から選ばれた少なくとも 1種に基づく基である請求項 1〜 4のいず れか 1項に記載の生分解性樹脂組成物。  5. General formula (3) has ε-force prolactone, 4-methylcaprolactone, 3,5,5-trimethylcaprolactone, 3,3,5-trimethylcaprolactone, β-propiolactone, arptyrolactone, The biodegradable resin composition according to any one of claims 1 to 4, wherein the group is based on at least one selected from the group consisting of δ-valerolactone and enanthlactone.
6. 一般式 (7) で表される 2官能性の連結剤 (e) の反応基がイソシァネート 基、 イソチオシァネート基、 エポキシ基、 ォキサゾリン基、 ォキサゾロン基もし くはォキサジノン基、 アジリジン基、 又はこれらの混合基であることを特徴とす る請求項 2に記載の生分解性樹脂組成物。  6. The reactive group of the bifunctional linking agent (e) represented by the general formula (7) is an isocyanate group, an isothiocyanate group, an epoxy group, an oxazoline group, an oxazolone group or an oxazinone group, an aziridine group, 3. The biodegradable resin composition according to claim 2, wherein the composition is a mixed group thereof.
7. 脂肪族ポリエステル共重合体 (a) 又は低分子量脂肪族ポリエステル共重合 体 (a' ) 中に含まれる繰返し単位 (3) のモル分率が、 0. 25以下である請 求項 1〜 6のいずれか 1項に記載の生分解性樹脂組成物。  7. Claims 1 to 7, wherein the mole fraction of the repeating unit (3) contained in the aliphatic polyester copolymer (a) or the low molecular weight aliphatic polyester copolymer (a ') is 0.25 or less. 7. The biodegradable resin composition according to any one of 6.
8. 脂肪族ポリエステル共重合体 (a) と他の生分解性樹脂 (b) の重量組成比 が 99. 9/0. 1〜70/30である請求項 1〜7のいずれか 1項に記載の生 分解性樹脂組成物。  8. The composition according to any one of claims 1 to 7, wherein the weight composition ratio of the aliphatic polyester copolymer (a) and the other biodegradable resin (b) is 99.9 / 0.1 to 70/30. The biodegradable resin composition described in the above.
9. 他の生分解性樹脂 (b) が脂肪族ポリエステル (b l) である請求項 1〜8 のいずれか 1項に記載の生分解性樹脂組成物。  9. The biodegradable resin composition according to any one of claims 1 to 8, wherein the other biodegradable resin (b) is an aliphatic polyester (bl).
10. 脂肪族ポリエステル (b l) が、 ポリ乳酸 (PLA) 、 ポリ (ε—力プロラク トン) (PCL) 、 又はこれらの混合物である請求項 9に記載の生分解性樹脂組成物。 10. The biodegradable resin composition according to claim 9, wherein the aliphatic polyester (bl) is polylactic acid (PLA), poly (ε-force prolacton) (PCL), or a mixture thereof.
11. ポリ乳酸 (PLA) が、 D体を 5〜 50%含むポリ乳酸共重合体である請求項 10に記載の生分解性樹脂組成物。 11. The biodegradable resin composition according to claim 10, wherein the polylactic acid (PLA) is a polylactic acid copolymer containing 5 to 50% of a D-form.
12. 製膜 60日後の成形品をへキサン中で 60秒間浸漬撹拌した場合に、 分子 量 500以下のオリゴマーの抽出量が 10mgZ2500 cm2以下である請求項 1〜 11のいずれか 1項に記載の生分解性樹脂組成物。 12. If film formation was 60 seconds immersed stirred hexane in f the molded product after 60 days, according to any one of claims 1 to 11 the extracted amount of a molecular weight of 500 or less of the oligomer is 10mgZ2500 cm 2 or less Biodegradable resin composition.
PCT/JP2003/015004 2002-11-25 2003-11-25 Biodegradable resin composition WO2004048471A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004555030A JPWO2004048471A1 (en) 2002-11-25 2003-11-25 Biodegradable resin composition
AU2003302415A AU2003302415A1 (en) 2002-11-25 2003-11-25 Biodegradable resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-341570 2002-11-25
JP2002341570 2002-11-25

Publications (1)

Publication Number Publication Date
WO2004048471A1 true WO2004048471A1 (en) 2004-06-10

Family

ID=32375862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015004 WO2004048471A1 (en) 2002-11-25 2003-11-25 Biodegradable resin composition

Country Status (4)

Country Link
JP (1) JPWO2004048471A1 (en)
KR (1) KR20050083981A (en)
AU (1) AU2003302415A1 (en)
WO (1) WO2004048471A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096863A (en) * 2004-09-29 2006-04-13 Daicel Chem Ind Ltd Film of aliphatic polyester resin composition and its application
JP2006274257A (en) * 2005-03-02 2006-10-12 Daicel Chem Ind Ltd Aliphatic polyester copolymer composition having low branching degree, molded article and film
KR100657936B1 (en) * 2004-07-07 2006-12-14 도레이새한 주식회사 Biodegradable polyester resin composition containing nano particles
JP2007262118A (en) * 2006-03-27 2007-10-11 Toyobo Co Ltd Biodegradable polyester resin composition for light scattering sheet and method for producing the same
JP2007284595A (en) * 2006-04-18 2007-11-01 Daicel Chem Ind Ltd Aliphatic polyester film
WO2008073101A1 (en) * 2006-12-15 2008-06-19 Kimberly-Clark Worldwide, Inc. Biodegradable polylactic acids for use in forming fibers
WO2008073099A1 (en) * 2006-12-15 2008-06-19 Kimberly-Clark Worldwide, Inc. Biodegradable polyesters for use in forming fibers
JP2012040360A (en) * 2010-08-13 2012-03-01 Tyco Healthcare Group Lp Surface eroding suture
WO2012055973A1 (en) * 2010-10-27 2012-05-03 Novamont S.P.A. Biodegradable polyester and wrapping films for packaging produced therewith
US8268738B2 (en) 2008-05-30 2012-09-18 Kimberly-Clark Worldwide, Inc. Polylactic acid fibers
US8461262B2 (en) 2010-12-07 2013-06-11 Kimberly-Clark Worldwide, Inc. Polylactic acid fibers
US8518311B2 (en) 2007-08-22 2013-08-27 Kimberly-Clark Worldwide, Inc. Multicomponent biodegradable filaments and nonwoven webs formed therefrom
ITMI20120737A1 (en) * 2012-05-03 2013-11-04 Univ Pisa POLYESTER BASED COPOLYMERS AND REACTIVE PLASTICANTS FOR THE PRODUCTION OF TRANSPARENT AND BIODEGRADABLE PACKAGING FILM
KR101343735B1 (en) * 2006-12-15 2013-12-19 킴벌리-클라크 월드와이드, 인크. Biodegradable polyesters for use in forming fibers
WO2019085522A1 (en) * 2017-11-03 2019-05-09 金发科技股份有限公司 Polylactic acid 3d printing material and wire prepared therefrom
JP2019093520A (en) * 2017-11-27 2019-06-20 スキューズ株式会社 Finger mechanism, robot hand, and control method of robot hand
KR20190096174A (en) * 2018-02-08 2019-08-19 최만재 Bio-degradable medical yarn having excellent tensile strength and flexibility and manufacturing method thereof
WO2023210177A1 (en) * 2022-04-28 2023-11-02 Dic株式会社 Biodegradable resin degradation accelerator, biodegradable resin composition, molded body, and method for degrading biodegradable resin

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5007504B2 (en) * 2006-01-25 2012-08-22 富士通株式会社 Biodegradable resin molded product and manufacturing method thereof
KR102394168B1 (en) * 2021-09-01 2022-05-03 바이오플라스틱스 이노베이션스 리미티드 Biodegradable composition comprising poly(propane sebacate) having improved transparency and impact strength, and a manufacturing method thereof
KR102553049B1 (en) * 2022-03-03 2023-07-07 주식회사 피엘에이코리아 Biodegradable material, biodegradable fiber member, biodegradable fabric member and manufacturing methods thereof
KR102621143B1 (en) * 2023-03-07 2024-01-03 김효열 Biodegradable adhesive composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245866A (en) * 1995-03-09 1996-09-24 Shimadzu Corp Plasticized polylactic acid composition and its molded item

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245866A (en) * 1995-03-09 1996-09-24 Shimadzu Corp Plasticized polylactic acid composition and its molded item

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100657936B1 (en) * 2004-07-07 2006-12-14 도레이새한 주식회사 Biodegradable polyester resin composition containing nano particles
JP2006096863A (en) * 2004-09-29 2006-04-13 Daicel Chem Ind Ltd Film of aliphatic polyester resin composition and its application
JP2006274257A (en) * 2005-03-02 2006-10-12 Daicel Chem Ind Ltd Aliphatic polyester copolymer composition having low branching degree, molded article and film
JP2007262118A (en) * 2006-03-27 2007-10-11 Toyobo Co Ltd Biodegradable polyester resin composition for light scattering sheet and method for producing the same
JP2007284595A (en) * 2006-04-18 2007-11-01 Daicel Chem Ind Ltd Aliphatic polyester film
WO2008073101A1 (en) * 2006-12-15 2008-06-19 Kimberly-Clark Worldwide, Inc. Biodegradable polylactic acids for use in forming fibers
WO2008073099A1 (en) * 2006-12-15 2008-06-19 Kimberly-Clark Worldwide, Inc. Biodegradable polyesters for use in forming fibers
KR101343735B1 (en) * 2006-12-15 2013-12-19 킴벌리-클라크 월드와이드, 인크. Biodegradable polyesters for use in forming fibers
US8518311B2 (en) 2007-08-22 2013-08-27 Kimberly-Clark Worldwide, Inc. Multicomponent biodegradable filaments and nonwoven webs formed therefrom
US8268738B2 (en) 2008-05-30 2012-09-18 Kimberly-Clark Worldwide, Inc. Polylactic acid fibers
JP2012040360A (en) * 2010-08-13 2012-03-01 Tyco Healthcare Group Lp Surface eroding suture
US9012573B2 (en) 2010-10-27 2015-04-21 Novamont S.P.A. Biodegradable polyester and wrapping films for packaging produced therewith
WO2012055973A1 (en) * 2010-10-27 2012-05-03 Novamont S.P.A. Biodegradable polyester and wrapping films for packaging produced therewith
US8461262B2 (en) 2010-12-07 2013-06-11 Kimberly-Clark Worldwide, Inc. Polylactic acid fibers
ITMI20120737A1 (en) * 2012-05-03 2013-11-04 Univ Pisa POLYESTER BASED COPOLYMERS AND REACTIVE PLASTICANTS FOR THE PRODUCTION OF TRANSPARENT AND BIODEGRADABLE PACKAGING FILM
WO2013164743A1 (en) * 2012-05-03 2013-11-07 Universita' Di Pisa Copolymers based on reactive polyesters and plasticisers for the manufacture of transparent, biodegradable packaging film
WO2019085522A1 (en) * 2017-11-03 2019-05-09 金发科技股份有限公司 Polylactic acid 3d printing material and wire prepared therefrom
JP2019093520A (en) * 2017-11-27 2019-06-20 スキューズ株式会社 Finger mechanism, robot hand, and control method of robot hand
US10661450B2 (en) 2017-11-27 2020-05-26 Squse Inc. Finger mechanism, robot hand and robot hand controlling method
KR20190096174A (en) * 2018-02-08 2019-08-19 최만재 Bio-degradable medical yarn having excellent tensile strength and flexibility and manufacturing method thereof
KR102141487B1 (en) 2018-02-08 2020-08-05 최만재 Bio-degradable medical yarn having improved tensile strength and flexibility and manufacturing method thereof
WO2023210177A1 (en) * 2022-04-28 2023-11-02 Dic株式会社 Biodegradable resin degradation accelerator, biodegradable resin composition, molded body, and method for degrading biodegradable resin
JP7401028B1 (en) 2022-04-28 2023-12-19 Dic株式会社 Biodegradable resin decomposition accelerator, biodegradable resin composition, molded article, and biodegradable resin decomposition method

Also Published As

Publication number Publication date
JPWO2004048471A1 (en) 2006-03-23
KR20050083981A (en) 2005-08-26
AU2003302415A1 (en) 2004-06-18

Similar Documents

Publication Publication Date Title
WO2004048471A1 (en) Biodegradable resin composition
EP1674528B1 (en) Aliphatic polyester composition and moulded article
TWI424023B (en) Polylactic acid resin composition and its molded product
JP4312764B2 (en) Aliphatic polyester biodegradable resin film molding
JP4472971B2 (en) Biodegradable resin film
JP5145695B2 (en) Method for producing polylactic acid resin film
JP3774672B2 (en) Aliphatic polyester biodegradable resin film molding
JP2006274257A (en) Aliphatic polyester copolymer composition having low branching degree, molded article and film
JP2007284595A (en) Aliphatic polyester film
JP4356372B2 (en) Polyester resin composition and molded article thereof
JP3905896B2 (en) Biodegradable film with improved water vapor barrier property and method for controlling water vapor barrier property
JP2000327847A (en) Resin composition
JP2006274252A (en) Aliphatic polyester having low branching degree and high molecular weight, molded article and film
JP2006070057A (en) Crystalline polylactic acid resin composition and film obtained using the same
JP4102216B2 (en) Biaxially stretched biodegradable polyester film and method for producing the same
JP2004143400A (en) High molecular weight polyoxalate and method for producing the same
JP2006274256A (en) Aliphatic polyester resin composition having low branching degree and high molecular weight, molded article and film
JP2005002165A (en) Biodegradable resin composition, agricultural mulching film and method for inhibiting biodegradability
JP5155643B2 (en) Polylactic acid resin, polylactic acid resin composition, and molded article thereof
JP2002294045A (en) Aliphatic polyester copolymer/starch-blended resin composition and molded product
JP2002293893A (en) Resin having lactone
JP2006096863A (en) Film of aliphatic polyester resin composition and its application
JP2006182808A (en) Aliphatic polyester resin composition film, laminated film and bag
JP2006274255A (en) Aliphatic polyester having low branching degree and high molecular weight, molded article and film
JP2002293900A (en) Polylactic acid-based high molecular weight aliphatic copolyester and method for producing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004555030

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057009306

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057009306

Country of ref document: KR

122 Ep: pct application non-entry in european phase