WO2004019497A1 - 信号符号化装置及び方法、並びに信号復号装置及び方法 - Google Patents

信号符号化装置及び方法、並びに信号復号装置及び方法 Download PDF

Info

Publication number
WO2004019497A1
WO2004019497A1 PCT/JP2003/009613 JP0309613W WO2004019497A1 WO 2004019497 A1 WO2004019497 A1 WO 2004019497A1 JP 0309613 W JP0309613 W JP 0309613W WO 2004019497 A1 WO2004019497 A1 WO 2004019497A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
spectrum
signal
frequency
mapping
Prior art date
Application number
PCT/JP2003/009613
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Honma
Jun Matsumoto
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to US10/492,677 priority Critical patent/US7205910B2/en
Priority to EP03792639A priority patent/EP1531551A4/en
Publication of WO2004019497A1 publication Critical patent/WO2004019497A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/038Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0204Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition

Definitions

  • TECHNICAL FIELD The present invention relates to a case where a time-series signal limited to a frequency band on the encoding side is extended to a wider frequency band on the decoding side.
  • TECHNICAL FIELD The present invention relates to a signal encoding device and method suitable for use in a device, a signal decoding device and method thereof, and a program and a recording medium.
  • Such high-efficiency compression employs its own format, and the encoding side can freely control the sound quality and bit rate within the range of the format to some extent.
  • the mini disc (MD) (trademark of Sony Corporation) has two modes, LP2 and LP4, that use the same high-efficiency compression technology as the long-time recording mode. By compressing LP 2 more than half, it is possible to record twice as long as LP 2, although the sound quality is inferior.
  • the format is extended so that devices that use the conventional format can perform playback with limited bandwidth, and devices that use the new format can perform high-quality playback with the extended bandwidth. Needs to be changed on both the encoding side and the decoding side, but better results can be obtained than the improvement on the decoding side alone.
  • HDCD which improves the dynamic range and playback band of a CD
  • the quality is improved by concealing parameters such as the filter type for extending the band below the audible level in the conventional format. I am planning.
  • a signal encoding device and a method thereof when orthogonally transforming and encoding an input time-series signal, perform a predetermined process on the input time-series signal.
  • a method of the mapping is used.
  • the generated mapping information is adaptively generated, and the encoded spectrum of the limited band and the mapping information are output.
  • a signal decoding apparatus and a method thereof provide a signal decoding apparatus for a coded limited band corresponding to a predetermined frequency band of a time-series signal input on an encoding side.
  • the spectrum is obtained, the spectrum of the extension band is subjected to inverse orthogonal transform to generate a time series signal of the extension band, and the time series signal of the limited band and the time series signal of the extension band are added and output. .
  • the encoding side corresponds to a predetermined frequency band of an input time-series signal.
  • a mapping method showing the mapping method is used. Generate information adaptively.
  • the coded spectrum of the limited band is decoded to generate a time-series signal of the limited band, and based on the mapping information, the extension to be extended from the spectrum of the limited band.
  • a time series signal of a band is generated, and the time series signal of the limited band and the time series signal of the extension band are added and output.
  • a program according to the present invention causes a computer to execute the above-described signal encoding process or signal decoding process
  • a recording medium according to the present invention is a computer-readable medium on which such a program is recorded. is there.
  • FIG. 1 is a diagram illustrating a schematic configuration of a signal encoding device according to the present embodiment.
  • FIG. 2A and FIG. 2B are diagrams schematically showing a spectrum normalization state in a spectrum envelope analysis generation circuit of the signal encoding apparatus.
  • FIG. 2B shows a spectrum envelope of a spectrum standardized based on the spectrum envelope.
  • FIG. 3 is a flowchart illustrating a procedure for determining a return frequency in the high-band signal generation information extraction circuit of the signal encoding device.
  • FIG. 4 is a diagram schematically showing how the aliasing frequency is determined.
  • FIG. 5 is a flowchart illustrating a procedure for determining a shift frequency in the high band signal generation information extraction circuit of the signal encoding apparatus.
  • FIG. 6 is a diagram schematically showing how the shift frequency is determined.
  • FIG. 7 is a diagram illustrating a schematic configuration of the signal decoding device according to the present embodiment.
  • FIG. 8 is a diagram schematically showing an internal configuration of a high-band signal generation circuit in the signal decoding device.
  • FIG. 9 is a flowchart illustrating a processing procedure when a tone signal spectrum is generated by using a return frequency in a tone signal generation circuit in the high band signal generation circuit.
  • FIG. 10 is a diagram schematically showing how the normalized low-frequency spectrum is folded back in the tone signal generating circuit.
  • FIG. 11 is a flowchart illustrating a processing procedure when a tone signal spectrum is generated using a shift frequency in a tone signal generation circuit in the high frequency signal generation circuit.
  • FIG. 12 is a diagram schematically showing how the normalized low-frequency spectrum shifts in the tone signal generating circuit.
  • FIG. 13 is a flowchart illustrating a processing procedure of the signal encoding device in a case where the return processing or the shift processing is designated by the high-frequency generation method flag.
  • FIG. 14 is a flowchart illustrating a processing procedure of the signal decoding device when the return processing or the shift processing is specified by the high-frequency generation method flag.
  • FIG. 15 is a diagram showing the overall configuration of a system to which the same signal encoding device and the same signal decoding device are applied.
  • FIGS. 16A and 16B are diagrams showing an example of a data string format according to the conventional standard and the standard according to the present embodiment
  • FIG. 16A is a diagram illustrating the conventional standard having no extended data area
  • FIG. 16B shows a data string of the standard of the present embodiment having an extended data area.
  • the present invention is applied to a signal decoding device and a method thereof that extend to a high frequency band (high-frequency signal) using a mapping, for example, folding or shifting (parallel movement).
  • a mapping for example, folding or shifting (parallel movement).
  • the input time-series signal is converted to a certain cutoff frequency f. While limiting to the following low-frequency signals, the aliasing frequency fa or shift frequency fsh used for generating the high-frequency signal on the decoding side is determined adaptively.
  • the low-frequency spectrum on the frequency axis is symmetrically folded around the folding frequency fa input from the encoding side, or shifted by 2 fc-fsh based on the shift frequency fsh, and this folded or Generate a high-frequency signal based on the shifted spectrum.
  • FIG. 1 shows a schematic configuration of a signal encoding device according to the present embodiment.
  • signal encoding apparatus 10 according to the present embodiment includes a single-pass filter
  • LPF low-frequency signal encoding circuit 11
  • delay circuit 13 difference circuit 14
  • spectrum envelope analysis generation circuits 15 16, and high-frequency signal generation information extraction circuit 17
  • the one-pass filter 11 restricts the input time-series signal to a low-frequency signal below a certain cut-off frequency f, and converts this low-frequency signal into a low-frequency signal encoding circuit 12, a difference circuit 14 and a vector envelope. This is supplied to the analysis generation circuit 15.
  • the low-frequency signal encoding circuit 12 orthogonally transforms the low-frequency signal passed through the low-pass filter 11 for each fixed frame and encodes the same, and supplies the obtained low-frequency code sequence to the multiplexer 18.
  • the delay circuit 13 has the same delay time as the one-pass filter 11, and after synchronizing the input time-series signal with the low-pass signal filtered by the one-pass filter 11, The signal is supplied to a difference circuit 14.
  • the difference circuit 14 calculates a difference between the time-series signal supplied from the delay circuit 13 and the low-frequency signal supplied from the one-pass filter 11, and generates a high-frequency signal.
  • the difference circuit 14 supplies this high-frequency signal to the spectrum envelope analysis generation circuit 16.
  • the spectrum envelope analysis generation circuit 15 analyzes the supplied low-frequency signal to generate a low-frequency spectrum envelope, and normalizes the low-frequency spectrum by the low-frequency spectrum envelope.
  • the spectrum is supplied to the high frequency signal generation information extraction circuit 17.
  • the spectrum envelope analysis generation circuit 16 analyzes the high-frequency spectrum obtained by orthogonally transforming the supplied high-frequency signal for each fixed frame to generate a high-frequency spectrum envelope, The high-frequency spectrum envelope information for outputting the high-frequency spectrum envelope and the normalized high-frequency spectrum in which the high-frequency spectrum is standardized by the high-frequency spectrum envelope are generated. . Then, the spectrum envelope analysis generation circuit 16 supplies the normalized high band spectrum to the high band signal generation information extraction circuit 17 and supplies the high band spectrum envelope information to the multiplexer 18.
  • the high-frequency signal generation information extraction circuit 17 performs analysis based on the normalized high-frequency spectrum and the normalized low-frequency spectrum, and generates a high-frequency signal for generating a high-frequency signal on the decoding side. Generate information.
  • the high-frequency signal generation information in addition to the aliasing frequency f a and the shift frequency f sh , tone / noise mixed information r indicating tone characteristics and noise characteristics
  • the tone noise mixture information r can be obtained, for example, from the generation start frequency of the standardized low band spectrum to the terminal frequency of the standardized high band spectrum according to the following equation (1).
  • Smax indicates the maximum value of the spectrum
  • Save indicates the average value of the spectrum.
  • A indicates a predetermined constant.
  • the multiplexer 18 includes a low-frequency code sequence supplied from the low-frequency signal encoding circuit 12, high-frequency signal generation information supplied from the spectrum envelope analysis generation circuit 16, and a high-frequency signal generation information extraction circuit 17. The supplied high frequency spectrum envelope information is combined and output as one code string.
  • FIG. 2A shows both the high-frequency spectrum envelope included in the code string as a parameter and the low-frequency spectrum envelope generated from the low-frequency signal.
  • fi ⁇ f 6 in FIG. 2 A shows a peak position of the spectrum
  • fc denotes the cut-off frequency of the low-pass filter 1 1 ( Figure 1). This Standardize the spectrum based on the spectrum envelope.
  • Figure 2B shows the spectrum envelope of the standardized spectrum.
  • the normalized high frequency band vector is represented as F-high, and F-high (f) in particular represents the spectrum in the higher frequency range than f.
  • the normalized low-frequency spectrum is expressed as F_ 1 ow, and in particular, F_ low '(f) is a low-frequency spectrum F- 1 ow (f) below the frequency f, which is line-symmetric with respect to the frequency f. It represents the spectrum obtained by folding back.
  • fa-min and fa-ma indicate a lower limit value and an upper limit value of a frequency which is a search range when determining the return frequency f a , respectively.
  • the fa-min and fa-max may be fixed in a standard or may be arbitrarily set by an encoder within the range of the standard.
  • step S1 the minimum value min which is an internal variable is set to infinity, and the frequency f is set to fa-min as initial values.
  • step S2 the distance d f between the vectors when F_h igh) and F-1 ow '(f) are regarded as vectors is calculated according to the following equation (2).
  • i indicates the index of the discrete frequency
  • n f indicates the number of samples up to the frequency f.
  • S—1 ow ′ (i) indicates the magnitude of F—1 ow ′ (f) at discrete frequency i
  • S_h igh (i) is the magnitude of F—high (f) at discrete frequency i. Is shown.
  • step S 3 the distance d f is equal to or less than the minimum value min is determined. Distance If d f is less than the minimum value min in the (Yes), followed by the minimum value min is updated to d f at stearyl-up S 4, stores the frequency f at that time as a folded frequency f a. On the other hand, when the distance d f is equal to or greater than the minimum value min (No), the process proceeds to step S 5.
  • step S5 it is determined whether or not the frequency f is within the range of fa-min to fa_max. If the frequency f is within the range of fa-min to fa_max (Yes), the process proceeds to step S6. Increment frequency: f and return to step S2. On the other hand, if the frequency f is not within the range of f a — min to f a — ma X (No), the currently stored aliasing frequency f is determined and included in the high-band signal generation information described above.
  • the normalized high band spectrum is represented as F-high, and particularly, F-high (f) represents a spectrum higher than the frequency f.
  • the normalized low-frequency spectrum is expressed as F-1 ow.
  • F-1 ow '(f) shifts the low-frequency spectrum F-1 ow only below the frequency f) by, for example, 2 ff.
  • fs h_m in and fs h_m ax shows the lower limit and the upper limit of the frequency at which the search range in determining the shift frequency f sh, respectively.
  • the fs h_min and fsh —max may be fixed in the standard, and within the range of the standard, Any one may set it arbitrarily.
  • step S10 the minimum value min which is an internal variable is set to infinity and the frequency f is set to fsh_min as initial values.
  • step S 11 the distance d f between the vectors when F— high (f) and F— 1 ow ′ (f) are regarded as vectors, respectively, is calculated according to the following equation (3).
  • i is shows the index of discrete frequency
  • n f denotes the number of samples to frequency f.
  • S—1 ow ′ (i) indicates the magnitude of F—1 ow ′ (f) at discrete frequency i
  • S—high (i) indicates the magnitude of F_h igh (f) at discrete frequency i. Show.
  • step S 1 2 the distance d f is equal to or less than the minimum value min is determined. Distance If d f is less than the minimum value min in the (Yes), and updates the minimum value min in d f in a subsequent scan Tetsupu S 1 3, stores the frequency f at that time as a shift frequency f sh. On the other hand, when the distance d f is equal to or greater than the minimum value min (No), the process proceeds to step S 14.
  • step S14 it is determined whether or not the frequency f is within the range of fsh_min from fsh_min, and from the range of fsh_min; if it is within the range of fsh-max (Yes), the step is determined.
  • step S15 the frequency f is incremented, and the process returns to step S11.
  • the signal encoding device 10 converts the input time-series signal to a certain cutoff frequency f.
  • the following low-frequency signals are restricted, and a low-frequency code sequence obtained by encoding this low-frequency signal is included in the output code sequence.
  • the signal encoding device 10 adaptively determines the aliasing frequency f a or the shift frequency f sh used for generating the high-frequency signal on the decoding side, or the tone noise synthesis information r.
  • the information is included as high-band signal generation information in the code string output together with the high-band spectral envelope information.
  • FIG. 7 shows a schematic configuration of a signal decoding device according to the present embodiment for generating a high-frequency signal using the above-described high-frequency signal generation information and the like.
  • the signal decoding device 30 includes a demultiplexer 31, a low-band signal decoding circuit 32, a spectrum envelope generation circuit 33, and a spectrum envelope analysis circuit. It comprises a generating circuit 34, a high-frequency signal generating circuit 35, and an adding circuit 36.
  • the demultiplexer 31 separates the code sequence input from the signal encoding device 10 (FIG. 1) into three information, a low-frequency signal code sequence, high-frequency spectrum envelope information, and high-frequency signal generation information. It is supplied to a low-band signal decoding circuit 32, a spectrum envelope generation circuit 33, and a high-band signal generation circuit 35.
  • the low-band signal decoding circuit 32 decodes the low-band signal code sequence supplied from the demultiplexer 31 and converts the obtained decoded low-band signal into a spectrum envelope analysis generation circuit 34 and a high-band signal generation circuit 35. And to the adder circuit 36.
  • the spectrum envelope generation circuit 33 generates a high-frequency spectrum envelope based on the high-frequency spectrum envelope information supplied from the demultiplexer 31, and generates the high-frequency spectrum envelope to generate a high-frequency signal. Feed to circuit 35.
  • the spectrum envelope analysis generation circuit 34 analyzes the decoded low-frequency signal supplied from the low-frequency signal decoding circuit 32 to generate a low-frequency spectrum envelope, and increases this low-frequency spectrum envelope to a high level.
  • the signal is supplied to the area signal generation circuit 35.
  • the high-frequency signal generation circuit 35 generates a high-frequency signal using the high-frequency spectrum envelope and the low-frequency spectrum envelope, the low-frequency signal, and the high-frequency signal generation information as described later, and obtains the generated high-frequency signal.
  • the signal is supplied to the adder circuit 36.
  • the adder circuit 36 receives the decoded low-frequency signal and the high-frequency signal supplied from the low-frequency signal decoding circuit 32. It adds the generated high-frequency signal supplied from the signal generation circuit 35 and outputs a final time-series signal.
  • FIG. 8 schematically shows the internal configuration of the above-described high-frequency signal generation circuit 35.
  • the high-frequency signal generation circuit 35 includes a noise signal generation circuit 40, a tone signal generation circuit 41, and a comparison and synthesis circuit 42.
  • the noise signal generation circuit 40 generates a noise signal using the high-frequency spectrum envelope and the high-frequency signal generation information.
  • This noise signal is a signal having a high-frequency spectrum envelope in amplitude and a random phase in the frequency domain, as shown by the following equation (4).
  • Equation (4) k is a discrete frequency
  • NS is a complex noise spectrum
  • R e ⁇ is the real part of the complex number
  • Im ⁇ is the imaginary part of the complex number
  • r is the tone and noise described above. Shows mixed information.
  • E is the high-frequency spectrum envelope
  • 0r is the random phase
  • RND () is a random number uniformly distributed from 0 to 1.
  • the noise signal generation circuit 40 supplies the noise signal spectrum obtained by the equation (4) to the comparison and synthesis circuit 42.
  • the tone signal generation circuit 41 generates a tone signal spectrum using a high-band spectrum envelope, high-band signal generation information, a low-band spectrum envelope, and a decoded low-band signal as described later.
  • the tone signal generation circuit 41 supplies the generated tone signal spectrum to the comparison and synthesis circuit 42.
  • the comparison and synthesis circuit 42 compares the magnitude on the frequency axis between the noise signal spectrum supplied from the noise signal generation circuit 40 and the tone signal spectrum supplied from the tone signal generation circuit 41, A larger spectrum is selected for each discrete frequency to generate a composite spectrum. Then, the comparison synthesis circuit 42 The vector is converted to a time-series signal by inverse discrete Fourier transform (IDFT), and windowing is performed. The signal overlapped with the output signal of the previous frame is output as the generated high-frequency signal described above.
  • IDFT inverse discrete Fourier transform
  • the tone signal generation circuit 41 can generate a tone signal spectrum based on the return frequency f a or the shift frequency f sh included in the high band signal generation information.
  • FIG. 9 shows a processing procedure for generating a tone signal spectrum using the aliasing frequency f a .
  • the decoded low-frequency signal is subjected to discrete Fourier transform (DFT) to generate a decoded low-frequency spectrum, and in step S21, the obtained decoded low-frequency spectrum is reduced. Normalize by dividing by the spectrum envelope. Subsequently, in Step S 2 2, folded back symmetrically about the folding frequency f a contained normalized low Ikisupe vector to high-frequency signal generation information.
  • DFT discrete Fourier transform
  • FIG. 10 schematically shows how the normalized low band spectrum is folded.
  • FIG. 10 only the spectrum at the peak position in the normalized low-frequency spectrum is shown.
  • the frequency of the spectrum of the peak positions respectively f 1 from the low frequency;
  • ff using folding frequency fa, fi, ff 3 are respectively f 'i, f' are folded to 2, f '3.
  • N l, 2, 3
  • the relationship between f 'n can be represented by the formula (5) as follows.
  • step S23 a high-frequency spectrum envelope is applied to the folded high-frequency spectrum.
  • step S24 the gain is corrected using the tone / noise mixture information r included in the high band signal generation information.
  • step S30 of FIG. 11 the decoded low-frequency signal is subjected to discrete Fourier transform (DFT) to generate a decoded low-frequency spectrum.
  • step S31 the obtained decoded low-frequency spectrum is reduced. Normalize by dividing by the spectrum envelope.
  • step S32 the normalized low band spectrum is shifted by 2 fc-f sh using the shift frequency f sh included in the high band signal generation information.
  • Fig. 12 schematically shows how this normalized low-frequency spectrum shifts.
  • FIG. 12 only the spectrum at the peak position in the normalized low-frequency spectrum is shown.
  • the frequency of the spectrum at the peak position is ff 2 and f 3, respectively, from the low band
  • ff 2 and f 3 are calculated using the shift frequency fsh: T f
  • step S33 a high-frequency spectrum envelope is applied to the folded high-frequency spectrum.
  • step S34 the gain is corrected using the tone noise synthesis information r included in the high frequency signal generation information.
  • signal decoding apparatus 30 includes high-frequency signal generation information including aliasing frequency f a , shift frequency f sh, and tone / noise mixed information r included in a code string, and high-frequency signal generation information. Generate a high-frequency signal from a low-frequency signal using a spectral envelope and add the generated high-frequency signal and low-frequency signal to output a time-series signal extended to the high-frequency signal Can be.
  • step S 4 the processing procedure in the signal encoding device 10 in this case will be described with reference to the flowchart of FIG. First, at step S 4 0, FIG earlier 3, performs the steps in folding process described with reference to FIG. 4, the least square error d a and the folding frequency f a to save.
  • step S41 the shift processing is performed according to the procedure described above with reference to FIGS. 5 and 6, and the least square error d sh and its shift frequency f sh are stored.
  • step S42 the two least square errors are compared. Specifically, for example, whether the minimum square error d or less than sh when the minimum square error d a when performing loopback performs shift processing is determined. If the least square error d a is smaller than the least square error d sh (Yes), it is determined that the return processing is better, and the high-frequency generation method flag is set to 0 in step S43. You. On the other hand, when the minimum square error d a is the least square error dsh more (No) is determined towards the shifting process is good, the high-frequency generation method flag is set to 1 in step S 4 4.
  • the high-frequency generation flag can be included in the high-frequency signal generation information described above.
  • step S50 it is determined whether or not the flag is 0 by referring to the high-frequency generation method flag included in the high-frequency generation information. If the flag is 0 (Yes), in step S51, a high-band spectrum is generated by loopback processing. On the other hand, if the flag is 1 (No), in step S52, a high band spectrum is generated by shift processing.
  • FIG. 15 shows a configuration of the entire system to which the signal encoding device 10 and the signal decoding device 30 according to the present embodiment described above are applied.
  • FIG. 15 a signal decoding device 200 decodes a code string transmitted between conventional coding and decoding systems.
  • FIG. 16A shows an example of the format of a data string handled by the signal decoding device 200 of the conventional standard.
  • the header data from address 0 to address 99 contains the frame data length, main data length, There is an area for recording the extended data length. Of the frame data length 600, 500 except the header length 100 is assigned to main data, and the code string of the conventional standard is recorded in this area. Is done.
  • the signal encoding device 100 has the same configuration as the signal encoding device 100 described above. Based on a time-series signal, a signal sequence of a conventional frequency band-limited signal, and the limited frequency band And information for generating bands other than the above at the time of decoding.
  • FIG. 16B shows an example of the format of the data sequence output from the signal encoding device 100. As shown in FIG. 16B, there is an area for recording the frame data length, the main data length, and the extension data length in the header portion from addresses 0 to 99. Further, among the frame data 600, 400 is allocated to the main data, and an area of 100 is allocated to the extended data.
  • the signal decoding device 201 has the same configuration as that of the signal decoding device 30 described above, and decodes the main data and the extended data type at address 500 in FIG. In the case of the standard of the decoding device 201, decoding is performed also on the area starting at address 501. As a result, the signal decoding device 201 decodes the frequency-band-limited code sequence based on the code sequence encoded by the signal coding device 100 and the band generation information, and Based on the information, a signal in a new frequency band can be generated, and both can be superimposed to obtain a final time-series signal.
  • the signal decoding device 200 of the conventional standard described above cannot understand this extended data area, but is designed to ignore this extended data area.
  • decoding a time-series signal whose frequency band is limited can be obtained.
  • the sequence signal may be orthogonally transformed, and a low-band spectrum may be extracted and encoded.
  • the configuration of the hardware is described.
  • the present invention is not limited to this, and arbitrary processing is realized by causing a CPU (Central Processing Unit) to execute a computer program. It is also possible.
  • the computer program can be provided by being recorded on a recording medium, or can be provided by being transmitted via the Internet or another transmission medium.
  • the encoding side encodes the spectrum of the limited band corresponding to the predetermined frequency band of the input time-series signal, and extends the spectrum on the decoding side.
  • mapping information indicating the method of the mapping is adaptively generated.
  • a spectrum of the limited band is decoded to generate a time-series signal of the limited band, and a time-series signal of an extended band to be extended is generated from the spectrum of the limited band based on the mapping information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

明細書 信号符号化装置及び方法、 並びに信号復号装置及び方法 技術分野 ' 本発明は、 符号化側である周波数帯域に制限された時系列信号を、 復号側でよ り広い周波数帯域に拡張する場合に用いて好適な信号符号化装置及びその方法、 信号復号装置及びその方法、 並びにプログラム及び記録媒体に関する。
本出願は、 日本国において 2002年 8月 21日に出願された日本特許出願番 号 2002— 241 052を基礎として優先権を主張するものであり、 この出願 は参照することにより、 本出願に援用される。 背景技術 近年、 オーディオ信号の高能率符号化では、 人間の聴覚の仕組みを利用するこ とで、 CD (Compact Disk) 相当の音質を元の C Dの 1 / 10程度のデータ量に 圧縮することが可能となっている。 現在、 市場にもこれらの技術を利用した商品 が流通しており、 より小さな記録媒体に記録したり、 ネットワークを通じて配信 したりすることが実現している。
このような高能率圧縮では、 それぞれ独自のフォーマツトが採用されており、 フォーマツトの範囲内であれば、 符号化側で音質とビットレートとをある程度自 由にコントロールすることが可能である。 例えば、 ミニディスク (MD) (ソニ —株式会社商標) についても、 長時間記録モードとして同じ高能率圧縮技術を採 用した LP 2と LP 4の 2つのモ一ドが存在しており、 L P 4は L P 2に対して さらに半分に圧縮することで、 音質は劣るものの L P 2の 2倍の記録時間を可能 としている。
しかしながら、 このような高能率圧縮技術は、 ビットレートと音質に明確な夕 —ゲットを定めて設計、 規格化されているため、 規格 (フォーマット) を維持し たままさらにビットレートを下げると極端に音質が劣化することになる。 このよ うな状況を避けるために、 符号化側の高能率符号化アルゴリズムの改善や、 人間 の聴覚が鈍感な高域の信号を制限し、 余ったビットを低域の信号に振り分けると いった方法が一般的にとられる。
ところで、 上述したようにフォーマットを維持したまま、 音質を維持しビット レートを下げるために高域の信号を制限した場合において、 高域の信号を復号側 で再現する試みもある。 例えば、 日本特許公開公報平 2— 3 1 1 0 0 6号記載の、 4 4 . 1 k H zサンプリングの P C M信号の再生帯域を 2倍にするような技術や、 日本特許公開公報平 9 一 5 5 7 7 8号記載の、 電話の周波数帯域を受信側で拡大 するような技術がある。
こうした技術はフォーマツトの変更が必要なく、 復号側だけの改善ですむとい つた利点があるが、 受信した信号のみから帯域を拡大させる必要があるため、 音 質的には劇的な効果はみられず、 また、 入力される音源によっては、 特に低域と 高域に相関があまりない場合など、 高域に聴覚上の歪みが耳につくようになる。 また、 上述した日本特許公開公報平 9— 5 5 7 7 8号では、 復号時にピッチ分 析を行い、 その n倍の周波数のスペクトルを高域に付加することにより、 電話の 周波数帯域を受信側で拡大しているが、 電話用途の音声の場合ではピッチが複数 あることが稀であるのに対して、 一般のオーディォ信号では複数のピッチを含む ことが多々あるため、 このような方法をとることは有効でなく、 そもそもピッチ 分析が機能しない場合が多い。
一方、 フォーマットを拡張して、 従来のフォーマットを採用する機器では帯域 が制限された再生が可能で、 新しいフォーマツトを採用する機器では帯域が拡張 された高品位の再生が可能であるようにする場合は、 符号化側と復号側との双方 で変更が必要になるが、 復号側だけでの改善よりもよい結果を得ることができる。 例えば、 H D C Dと呼ばれる C Dのダイナミックレンジ及び再生帯域を改善する 技術では、 帯域を拡張するためのフィルタ種別等のパラメータを、 従来フォーマ ッ卜の中に可聴レベル以下に隠蔽することで、 品質の改善を図っている。
また、 こうしたフォーマットの拡張に限らず、 携帯電話やフラッシュメディア 等の半導体録音機器等では、 低ビットレートでより高音質であることが望まれて おり、 現状の波形符号化によるコーデックに対して新たな技術を導入することに よる、 さらなる性能向上が求められている。 発明の開示 本発明は、 このような従来の実情に鑑みて提案されたものであり、 複雑な高調 波が存在する場合であっても、 復号時に拡張する周波数帯域で最適な高調波を生 成することを可能とする信号符号化装置及びその方法、 信号符号化装置から出力 された符号列を復号する信号復号装置及びその方法、 並びにそのような信号符号 化処理及び信号復号処理をコンピュータに実行させるプログラム及びそのプログ ラムが記録されたコンピュータ読み取り可能な記録媒体を提供することを目的と する。
上述した目的を達成するために、 本発明に係る信号符号化装置及びその方法は、 入力された時系列信号を直交変換して符号化する際に、 上記入力された時系列信 号の所定の周波数帯域に対応する制限帯域のスぺクトルを符号化すると共に、 復 号側で拡張すべき周波数帯域の時系列信号を上記制限帯域のスペクトルの写像に 基づいて求めるために、 該写像の方法を示す写像情報を適応的に生成し、 符号化 された上記制限帯域のスペクトルと上記写象情報とを出力する。
また、 上述した目的を達成するために、 本発明に係る信号復号装置及びその方 法は、 符号化側で入力された時系列信号の所定の周波数帯域に対応する符号化さ れた制限帯域のスぺクトルと、 復号側で拡張すべき周波数帯域の時系列信号を上 記制限帯域のスぺクトルの写像に基づいて求めるために、 適応的に生成された該 写像の方法を示す写像情報とを入力し、 符号化された上記制限帯域のスぺクトル を復号して制限帯域の時系列信号を生成すると共に、 上記写像情報に基づいて、 上記制限帯域のスペクトルから、 拡張すべき拡張帯域のスペクトルを求め、 当該 拡張帯域のスぺクトルを逆直交変換して拡張帯域の時系列信号を生成し、 上記制 限帯域の時系列信号と上記拡張帯域の時系列信号とを加算して出力する。
' このような信号符号化装置及びその方法、 並びに信号復号装置及びその方法に よれば、 符号化側において、 入力された時系列信号の所定の周波数帯域に対応す る制限帯域のスぺクトルを符号化すると共に、 復号側で拡張すべき周波数帯域の 時系列信号をこの制限'帯域のスぺクトルの写像に基づいて求めるために、 該写像 の方法を示す写像情報を適応的に生成する。 そして、 復号側において、 符号化さ れた上記制限帯域のスペクトルを復号して制限帯域の時系列信号を生成すると共 に、 上記写像情報に基づいて、 上記制限帯域のスペクトルから、 拡張すべき拡張 帯域の時系列信号を生成し、 上記制限帯域の時系列信号と上記拡張帯域の時系列 信号とを加算して出力する。
また、 本発明に係るプログラムは、 上述した信号符号化処理又は信号復号処理 をコンピュータに実行させるものであり、 本発明に係る記録媒体は、 そのような プログラムが記録されたコンピュータ読み取り可能なものである。
本発明の更に他の目的、 本発明によって得られる具体的な利点は、 以下に説明 される実施例の説明から一層明らかにされるであろう。 図面の簡単な説明 図 1は、 本実施の形態における信号符号化装置の概略構成を説明する図である。 図 2 A及び図 2 Bは、 同信号符号化装置のスぺクトル包絡分析生成回路におけ るスペクトルの規格化の様子を模式的に示す図であり、 図 2 Aは、 低域信号及び 高域信号のスペクトル包絡を示し、 図 2 Bは、 このスペクトル包絡に基づいて規 格化されたスぺクトルのスぺクトル包絡を示す。
図 3は、 同信号符号化装置の高域信号生成情報抽出回路において折り返し周波 数を決定する手順を説明するフローチャートである。
図 4は、 折り返し周波数を決定する様子を模式的に示す図である。
図 5は、 同信号符号化装置の高域信号生成情報抽出回路においてシフト周波数 を決定する手順を説明するフローチャートである。
図 6は、 シフト周波数を決定する様子を模式的に示す図である。
図 7は、 本実施の形態における信号復号装置の概略構成を説明する図である。 図 8は、 同信号復号装置における高域信号生成回路の内部構成を概略的に示す 図である。 図 9は、 同高域信号生成回路内のトーン信号発生回路において、 折り返し周波 数を利用してトーン信号スぺクトルを生成する場合の処理手順を説明するフロー チヤ一卜である。
図 1 0は、 同トーン信号発生回路における規格化低域スぺクトルの折り返しの 様子を模式的に示す図である。
図 1 1は、 同高域信号生成回路内のトーン信号発生回路において、 シフト周波 数を利用してトーン信号スぺクトルを生成する場合の処理手順を説明するフロー チヤ一卜である。
図 1 2は、 同トーン信号発生回路における規格化低域スぺクトルのシフトの様 子を模式的に示す図である。
図 1 3は、 高域生成法フラグによって折り返し処理又はシフト処理を指定する 場合の信号符号化装置の処理手順を説明するフローチャートである。
図 1 4は、 高域生成法フラグによって折り返し処理又はシフト処理が指定され ている場合の信号復号装置の処理手順を説明するフローチャートである。
図 1 5は、 同信号符号化装置及び同信号復号装置が適用されるシステムの全体 構成を示す図である。
図 1 6 A及び図 1 6 Bは、 従来規格及び本実施の形態の規格におけるデータ列 のフォーマッ トの一例を示す図であり、 図 1 6 Aは、 拡張データ領域を有さない 従来規格のデータ列を示し、 図 1 6 Bは、 拡張デ一夕領域を有する本実施の形態 の規格のデ一タ列を示す。 発明を実施するための最良の形態 以下、 本発明を適用した具体的な実施の形態について、 図面を参照しながら詳 細に説明する。 この実施の形態は、 本発明を、 入力された時系列信号を低周波数 帯域 (低域信号) に制限する信号符号化装置及びその方法と、 その時系列信号を、 周波数軸上の低域スペクトルの写像、 例えば折り返し又はシフト (平行移動) を 用いて、 高周波数帯域 (高域信号) まで拡張する信号復号装置及びその方法とに 適用したものである。 簡単には、 本実施の形態の符号化側では、 入力された時系列信号をある遮断周 波数 f 。以下の低域信号に制限する一方で、 復号側での高域信号の生成に用いられ る折り返し周波数 f a又はシフト周波数 f s h等を適応的に決定する。 そして、 復号 側では、 周波数軸上の低域スペクトルを、 符号化側から入力した折り返し周波数 f aを中心として対称に折り返し、 又はシフト周波数 f s hに基づいて 2 f c— f s h だけシフトさせ、 この折り返され又はシフトされたスぺクトルに基づいて高域信 号を生成する。
先ず、 本実施の形態における信号符号化装置の概略構成を図 1に示す。 図 1に 示すように、 本実施の形態における信号符号化装置 1 0は、 口一パスフィルタ
( L P F ) 1 1と、 低域信号符号化回路 1 2と、 遅延回路 1 3と、 差分回路 1 4 と、 スペクトル包絡分析生成回路 1 5 , 1 6と、 高域信号生成情報抽出回路 1 7 と、 マルチプレクサ 1 8とから構成されている。
口一パスフィルタ 1 1は、 入力された時系列信号をある遮断周波数 f 以下の低 域信号に制限し、 この低域信号を低域信号符号化回路 1 2、 差分回路 1 4及びス ベクトル包絡分析生成回路 1 5に供給する。
低域信号符号化回路 1 2は、 ローパスフィルタ 1 1を介した低域信号を一定フ レーム毎に直交変換して符号化し、 得られた低域符号列をマルチプレクサ 1 8に 供給する。
遅延回路 1 3は、 口一パスフィル夕 1 1と同じ遅延時間を持ち、 入力された時 系列信号について口一パスフィルタ 1 1において濾波された低域信号との同期を とった後、 この時系列信号を差分回路 1 4に供給する。
差分回路 1 4は、 遅延回路 1 3から供給された時系列信号と口一パスフィル夕 1 1から供給された低域信号との差分をとり、 高域信号を生成する。 差分回路 1 4は、 この高域信号をスぺクトル包絡分析生成回路 1 6に供給する。
スペクトル包絡分析生成回路 1 5は、 供給された低域信号を分析して低域スぺ クトル包絡を生成し、 この低域スぺクトル包絡によって低域スぺクトルを規格化 した規格化低域スぺクトルを髙域信号生成情報抽出回路 1 7に供給する。
同様に、 スペクトル包絡分析生成回路 1 6は、 供給された高域信号を一定フレ —ム毎に直交変換した高域スぺクトルを分析して高域スぺクトル包絡を生成し、 この高域スぺクトル包絡を出力するための高域スぺクトル包絡情報と、 その高域 スぺクトル包絡で髙域スぺクトルを規格化した規格化高域スぺクトルとを生成す る。 そして、 スペクトル包絡分析生成回路 1 6は、 規格化高域スペクトルを高域 信号生成情報抽出回路 1 7に供給すると共に、 高域スペクトル包絡情報をマルチ プレクサ 1 8に供給する。
高域信号生成情報抽出回路 1 7は、 規格化高域スぺクトルと規格化低域スぺク トルとに基づいて分析を行い、 復号側で高域信号を生成するための高域信号生成 情報を生成する。 ここで、 この高域信号生成情報としては、 折り返し周波数 f aや シフト周波数 f shの他、 トーン性、 ノイズ性を示すトーン · ノイズ混合情報 r
(0. 0≤ r≤ 1. 0) が挙げられる。 このトーンノイズ混合情報 rは、 例えば 規格化低域スぺクトルの生成開始周波数から規格化高域スぺクトルの終端周波数 までの間で、 以下のような式 (1) に従って求めることができる。 ここで、 式
(1) において、 Sma Xはスペクトルの最大値を示し、 S a v eはスペクトル の平均値を示す。 また、 Aは所定の定数を示す。
r=AxSmax/Save (0.0≤r≤1.0) · · · (1)
マルチプレクサ 1 8は、 低域信号符号化回路 1 2から供給された低域符号列と、 スペクトル包絡分析生成回路 16から供給された高域信号生成情報と、 高域信号 生成情報抽出回路 1 7から供給された高域スぺクトル包絡情報とをまとめて、 1 つの符号列として出力する。
ここで、 スペクトル包絡分析生成回路 1 5, 1 6におけるスペクトルの規格化 の様子を図 2 A及び図 2 Bに模式的に示す。 図 2 Aは、 符号列にパラメ一夕化し て含まれる高域スぺクドル包絡と低域信号から作り出した低域スぺクトル包絡と を併せて示したものである。 なお、 図 2 Aにおける f i〜 f 6は、 スペクトルのピ ーク位置を示し、 f cはローパスフィルタ 1 1 (図 1) の遮断周波数を示す。 この スぺクトル包絡に基づいてスぺクトルを規格化する。 規格化されたスぺクトルの スぺクトル包絡を図 2 Bに示す。
このように、 スペクトルをスペクトル包絡で規格化することにより、 スぺクト ルのピーク位置に重きを置いて折り返し周波数 f ゃシフト周波数 f shを決定する ことができ、 復号側で生成される高域信号の精度がよくなる。 但し、 処理時間や ハードウェア的な制約が存在する場合には、 精度を犠牲にした上で、 この規格化 の処理を省略しても構わない。
以下、 このような規格化低域スぺクトル及び規格化高域スぺクトルに基づいて、 上述した高域信号生成情報抽出回路 1 7において折り返し周波数 f 又はシフト周 波数 f を決定する手順について、 順に説明する。
先ず、 高域信号生成情報抽出回路 1 7において折り返し周波数 f を決定する手 順について、 図 3のフローチャートを用いて説明する。 以下では、 規格化高域ス ベクトルを F— h i g hと表し、 特に F— h i g h (f )は、 周波数 : f よりも高域 のスペクトルを表すこととする。 また、 規格化低域スペクトルを F_ 1 o wと表 し、 特に F_ l o w' (f )は、 周波数 f 以下の低域スぺクトル F— 1 ow(f )を、 周波数 f を中心に線対称に折り返して得られるスぺクトルを表すこととする。 ま た、 f a— m i n及び f a— ma は、 それぞれ折り返し周波数 f aを決定する際 の探索範囲となる周波数の下限値と上限値を示す。 この f a— m i n及び f a— ma xは、 規格で固定としてもよく、 またその規格の範囲内でエンコーダが任意 に設定してもよい。
先ずステップ S 1において、 初期値として内部変数である最小値 m i nを無限 大に、 周波数 f を f a—m i nにそれぞれ設定する。
次にステップ S 2において、 以下の式 (2) に従って、 F_h i g hけ)及び F— 1 o w' (f )をそれぞれべクトルと見なした場合におけるべクトル間の距離 d fを計算する。 ここで、 式 (2) において、 iは離散周波数のインデックスを示し、 n fは周波数 f までのサンプル数を示す。 また、 S— 1 o w' ( i )は離散周波数 i における F— 1 ow' (f )の大きさを示し、 S_h i g h ( i )は離散周波数 iにお ける F— h i g h (f )の大きさを示す。
Figure imgf000011_0001
すなわち、 図 4に模式的に示すように、 離散周波数 f から離散周波数 2 f まで について、 F— 1 o w' ( f )と F_h i g h ( f )との大きさ (レベル) の差の自乗 (= I S_ 1 o w' ( i ) - S_h i g h ( i ) | 2) を累積加算し、 距離 d fとする。 再び図 3に戻って、 ステップ S 3では、 距離 d fが最小値 m i n未満であるか否 かが判別される。 距離 d fが最小値 m i n未満である場合 (Yes) には、 続くステ ップ S 4において最小値 m i nを d fに更新し、 そのときの周波数 f を折り返し周 波数 f aとして保存する。 一方、 距離 d fが最小値 m i n以上である場合 (No) に は、 ステップ S 5に進む。
ステツプ S 5では、 周波数 f が f a— m i nから f a_m a xの範囲内にある か否かが判別され、 f a— m i nから f a_ma Xの範囲内である場合 (Yes) に は、 ステップ S 6において周波数: f をインクリメントして、 ステップ S 2に戻る。 一方、 周波数 f が f a_m i nから f a— m a Xの範囲内にない場合 (No) には、 現在保存されている折り返し周波数 f を確定し、 上述した高域信号生成情報の中 に含める。
次に、 高域信号生成情報抽出回路 1 7においてシフト周波数: f shを決定する手 順について、 図 5のフローチャートを用いて説明する。 上述と同様に、 規格化高 域スペクトルを F— h i g hと表し、 特に F— h i g h (f )は周波数 f よりも高 域のスペクトルを表すこととする。 また、 規格化低域スペクトルを F— 1 owと 表し、 特に F— 1 ow' (f )は周波数 f 以下の周波数の低域スぺクトル F— 1 o w け)を、 例えば 2 f f だけシフトして得られるスぺクトルを表すこととする。 また、 f s h_m i n及び f s h_m a xは、 それぞれシフト周波数 f shを決定 する際の探索範囲となる周波数の下限値と上限値を示す。 この f s h_m i n及 び f s h —ma xは、 規格で固定としてもよく、 またその規格の範囲内でェンコ 一ダが任意に設定してもよい。
先ずステップ S 1 0において、 初期値として内部変数である最小値 m i nを無 限大に、 周波数 f を f s h_m i nにそれぞれ設定する。
次にステップ S 1 1において、 以下の式 (3) に従って、 F— h i g h (f )及 び F— 1 o w' (f )をそれぞれべクトルと見なした場合におけるべクトル間の距離 d fを計算する。 ここで、 式 (3) において、 iは離散周波数のインデックスを示 し、 n fは周波数 f までのサンプル数を示す。 また、 S— 1 o w' ( i )は離散周波 数 iにおける F— 1 ow' (f )の大きさを示し、 S— h i g h ( i )は離散周波数 i における F_h i g h ( f )の大きさを示す。
2fc
∑ |S— low '(i)-S_ high (if . . . (3)
df =i≡ l
nf
すなわち、 図 6に模式的に示すように、 離散周波数 2 f 。― f から離散周波数 2 f までについて、 F一 l ow' (f )と F_h i gh (f )との大きさの差の自乗 (= | S— l ow' (i)— S_h i g h (i ) | 2) を累積加算し、 距離 d fとする。 再び図 5に戻って、 ステップ S 1 2では、 距離 d fが最小値 m i n未満であるか 否かが判別される。 距離 d fが最小値 m i n未満である場合 (Yes) には、 続くス テツプ S 1 3において最小値 m i nを d fに更新し、 そのときの周波数 f をシフト 周波数 f shとして保存する。 一方、 距離 d fが最小値 m i n以上である場合 (No) には、 ステツプ S 14に進む。
ステップ S 14では、 周波数 f 力 S f s h_m i nから f s h_m a xの範囲内 にあるか否かが判別され、 f s h_m i nから; f s h— m a xの範囲内である場 合 (Yes) には、 ステツプ S 1 5において周波数 f をインクリメントして、 ステツ プ S 1 1に戻る。 一方、 周波数 f が f s h— m i nから f s h_m a xの範囲内 にない場合 (No) には、 現在保存されているシフト周波数 f shを確定し、 上述し た高域信号生成情報の中に含める。 以上説明したように、 本実施の形態における信号符号化装置 1 0は、 入力され た時系列信号をある遮断周波数 f 。以下の低域信号に制限し、 この低域信号を符号 化した低域符号列を出力する符号列に含める。
また、 信号符号化装置 1 0は、 復号側での高域信号の生成に用いられる折り返 し周波数 f a又はシフト周波数 f s h、 或いはトーンノイズ合成情報 rを適応的に決 定し、 これらの情報を高域信号生成情報として、 高域スペクトル包絡情報と共に 出力する符号列に含める。
続いて、 上述した高域信号生成情報等を用いながら高域信号を生成する本実施 の形態における信号復号装置の概略構成を図 7に示す。 図 7に示すように、 本実 施の形態における信号復号装置 3 0は、 デマルチプレクサ 3 1と、 低域信号復号 回路 3 2と、 スぺクトル包絡生成回路 3 3と、 スぺクトル包絡分析生成回路 3 4 と、 髙域信号生成回路 3 5と、 加算回路 3 6とから構成されている。
デマルチプレクサ 3 1は、 信号符号化装置 1 0 (図 1 ) から入力した符号列を 低域信号符号列、 高域スぺクトル包絡情報及び高域信号生成情報の 3つの情報に 分離し、 それぞれ低域信号復号回路 3 2、 スペクトル包絡生成回路 3 3及び高域 信号生成回路 3 5に供給する。
低域信号復号回路 3 2は、 デマルチプレクサ 3 1から供給された低域信号符号 列を復号し、 得られた復号低域信号をスペクトル包絡分析生成回路 3 4、 高域信 号生成回路 3 5及び加算回路 3 6に供給する。
スぺクトル包絡生成回路 3 3は、 デマルチプレクサ 3 1から供給された高域ス ぺクトル包絡情報に基づいて高域スぺクトル包絡を生成し、 この高域スぺクトル 包絡を高域信号生成回路 3 5に供給する。
スぺクトル包絡分析生成回路 3 4は、 低域信号復号回路 3 2から供給された復 号低域信号を分析して低域スぺクトル包絡を生成し、 この低域スぺクトル包絡を 高域信号生成回路 3 5に供給する。
高域信号生成回路 3 5は、 高域スペクトル包絡及び低域スペクトル包絡、 低域 信号、 及び高域信号生成情報とを用いて後述のように高域信号を生成し、 得られ た生成高域信号を加算回路 3 6に供給する。
加算回路 3 6は、 低域信号復号回路 3 2から供給された復号低域信号と高域信 号生成回路 3 5から供給された生成高域信号とを加算し、 最終的な時系列信号を 出力する。
ここで、 上述した高域信号生成回路 35の内部構成を図 8に概略的に示す。 図 8に示すように、 高域信号生成回路 3 5は、 ノイズ信号発生回路 40と、 トーン 信号発生回路 4 1と、 比較合成回路 42とから構成されている。
ノイズ信号発生回路 40は、 高域スぺクトル包絡及び高域信号生成情報を用い てノイズ信号を生成する。 このノイズ信号は、 以下の式 (4) で示すように、 周 波数領域上で高域スぺクトル包絡を振幅とし位相をランダムとする信号である。 なお、 式 (4) において、 kは離散周波数、 NSは複素数であるノイズスぺクト ル、 R e {} は複素数の実部、 I m {} は複素数の虚部、 rは上述したトーン · ノイズ混合情報をそれぞれ示す。 また、 Eは高域スペクトル包絡、 0 rはランダ ム位相、 RND ()は 0から 1までの範囲に一様に分布する乱数をそれぞれ示す。
Re { NS(k)ト r χ E (k)x cos (Θ r)
< Im{NS(k)ト rxE(k>sin(6r)
6r =2 xRND( )
ノイズ信号発生回路 40は、 この式 (4) で得られるノイズ信号スペクトルを 比較合成回路 42に供給する。
一方、 トーン信号発生回路 41は、 高域スペクトル包絡、 高域信号生成情報、 低域スぺクトル包絡及び復号低域信号を用いて、 後述のようにトーン信号スぺク トルを生成する。 トーン信号発生回路 41は、 生成したトーン信号スペクトルを 比較合成回路 42に供給する。
比較合成回路 42は、 ノイズ信号発生回路 40から供給されたノイズ信号スぺ クトルとトーン信号発生回路 41から供給されたトーン信号スぺクトルとについ て、 周波数軸上での大きさを比較し、 離散周波数毎に大きい方のスペクトルを選 択して合成スペクトルを生成する。 そして、 比較合成回路 42は、 この合成スぺ クトルを逆離散フーリエ変換 ( I DFT) して時系列信号に変換し、 さらに窓が けを行って前フレームの出力信号とオーバーラップ合成した信号を上述した生成 高域信号として出力する。
ここで、 トーン信号発生回路 41における具体的な処理手順を図 9乃至図 1 2 を用いて説明する。 このトーン信号発生回路 41は、 高域信号生成情報中に含ま れる折り返し周波数 f a又はシフト周波数 f shに基づいて、 トーン信号スぺクトル を生成することができる。
先ず、 折り返し周波数 f aを利用してトーン信号スぺクトルを生成する場合の処 理手順を図 9に示す。 図 9のステップ S 20において、 復号低域信号を離散フー リエ変換 (DFT) して復号低域スペクトルを生成し、 続くステップ S 2 1にお いて、 得られた復号低域スぺクトルを低域スぺクトル包絡で割って規格化する。 続いてステップ S 2 2において、 規格化低域スぺクトルを高域信号生成情報に 含まれる折り返し周波数 f aを中心として線対称に折り返す。
この規格化低域スペクトルの折り返しの様子を図 1 0に模式的に示す。 なお、 この図 1 0では、 規格化低域スぺクトルにおけるピーク位置のスぺクトルのみを 表したものである。 ピーク位置のスペクトルの周波数を低域からそれぞれ f 1; f f とすると、 折り返し周波数 f aを用いて、 f i, f f 3は、 それぞれ f ' i, f ' 2 , f ' 3へと折り返される。 この 。 (n= l , 2, 3) と f ' nとの関係は、 以 下のような式 (5) で表すことができる。
fn'=fa + (fa-fn)= 2xfa-fn (5)
再び図 9に戻って、 ステップ S 23では、 この折り返してできた生成高域スぺ クトルに高域スぺクトル包絡を掛ける。
そして、 ステップ S 24において、 高域信号生成情報に含まれるトーン · ノィ ズ混合情報 rを用いてゲインの補正を行う。 次に、 シフト周波数 f shを利用してトーン信号スぺクトルを生成する場合の処 理手順を図 1 1に示す。 図 1 1のステップ S 30において、 復号低域信号を離散 フーリエ変換 (DFT) して復号低域スぺクトルを生成し、 続くステップ S 3 1 において、 得られた復号低域スぺクトルを低域スぺクトル包絡で割って規格化す る。
続いてステップ S 32において、 規格化低域スペクトルを高域信号生成情報に 含まれるシフト周波数 f shを用いて 2 f c - f shだけシフトさせる。
この規格化低域スペクトルのシフトの様子を図 1 2に模式的に示す。 なお、 こ の図 1 2では、 規格化低域スぺクトルにおけるピーク位置のスぺクトルのみを表 したものである。 ピーク位置のスペクトルの周波数を低域からそれぞれ f f 2 , f 3とすると、 シフト周波数 f s hを用いて、 f f 2 , f 3は、 それぞれ: T f
' 2, f ' 3へとシフトされる。 この f n ( n = 1 , 2 , 3) と f 'nとの関係は、 以下 のような式 (6) で表すことができる。
fn'=fn + (2 fc-fsh) (6)
再び図 1 1に戻って、 ステップ S 3 3では、 この折り返してできた生成高域ス ぺクトルに高域スぺクトル包絡を掛ける。
そして、 ステップ S 34において、 高域信号生成情報に含まれるトーンノイズ 合成情報 rを用いてゲインの補正を行う。
以上説明したように、 本実施の形態における信号復号装置 30は、 符号列に含 まれる折り返し周波数 f a、 シフト周波数 f sh及びトーン · ノイズ混合情報 rを含 む高域信号生成情報と高域スぺクトル包絡を用いて、 低域信号から高域信号を生 成し、 この生成高域信号と低域信号とを足し合わせることで、 高域信号まで拡張 された時系列信号を出力することができる。
なお、 上述の説明では、 折り返し処理又はシフト処理の一方のみを行うものと して説明したが、 処理に余裕がある場合には、 フレーム毎に両方の処理を並行し て行い、 よい結果が得られる方を高域生成法フラグによって指定するようにして も構わない。
この場合の信号符号化装置 1 0における処理手順を図 1 3のフローチヤ一トを 用いて説明する。 先ずステップ S 4 0において、 先に図 3、 図 4を用いて説明し た手順で折り返し処理を行い、 最小自乗誤差 d aとその折り返し周波数 f aとを保 存する。
次にステップ S 4 1において、 先に図 5、 図 6を用いて説明した手順でシフト 処理を行い、 最小自乗誤差 d s hとそのシフ卜周波数 f s hとを保存する。
続いてステップ S 4 2では、 2つの最小自乗誤差が比較される。 具体的には、 例えば折り返し処理を行う場合の最小自乗誤差 d aがシフト処理を行う場合の最小 自乗誤差 d s h未満であるか否かが判別される。 そして、 最小自乗誤差 d aが最小自 乗誤差 d s h未満である場合 (Yes) には折り返し処理の方がよいと判定され、 ステ ップ S 4 3において高域生成法フラグが 0に設定される。 一方、 最小自乗誤差 d aが最小自乗誤差 d s h以上である場合 (No) にはシフト処理の方がよいと判定され、 ステップ S 4 4において高域生成法フラグが 1に設定される。 なお、 この高域生 成用フラグは、 上述した高域信号生成情報に含めることができる。
続いて、 信号復号装置 3 0における処理手順を図 1 4のフローチャートを用い て説明する。 先ずステップ S 5 0において、 高域生成情報中に含まれる高域生成 法フラグを参照し、 フラグが 0であるか否かが判別される。 フラグが 0である場 合 (Yes) には、 ステップ S 5 1において、 折り返し処理によって高域スペクトル の生成を行う。 一方、 フラグが 1である場合 (No) には、 ステップ S 5 2におい て、 シフト処理によって高域スペクトルの生成を行う。
ここで、 上述した本実施の形態における信号符号化装置 1 0及び信号復号装置 3 0が適用されるシステム全体の構成を図 1 5に示す。
図 1 5において、 信号復号装置 2 0 0は、 従来の符号化復号システム間を伝送 される符号列を復号するものである。 この従来規格の信号復号装置 2 0 0が扱う データ列のフォ一マットの一例を図 1 6 Aに示す。 図 1 6 Aに示すように、 例え ば 0番地から 9 9番地までのヘッダ部に、 フレームデータ長、 メインデータ長、 拡張データ長を記録する領域があり、 フレームデータ長 6 0 0のうち、 ヘッダ長 1 0 0を除く 5 0 0がメインデ一夕に割り当てられており、 従来規格の符号列は、 この領域に記録される。
信号符号化装置 1 0 0は、 上述した信号符号化装置 1 0と同様の構成であり、 時系列信号に基づいて、 従来の周波数帯域制限された信号の符号列と、 その制限 された周波数帯域以外の帯域を復号時に生成するための情報とを符号化する。 こ の信号符号化装置 1 0 0から出力されるデータ列のフォーマツトの一例を図 1 6 Bに示す。 図 1 6 Bに示すように、 0番地から 9 9番地までのヘッダ部に、 フレ ームデータ長、 メインデータ長、 拡張データ長を記録する領域がある。 また、 フ レームデータ 6 0 0のうち、 メインデータには 4 0 0が割り当てられ、 拡張デー 夕に 1 0 0の領域が割り当てられている。
信号復号装置 2 0 1は、 上述した信号復号装置 3 0と同様の構成であり、 メイ ンデ一夕を復号すると共に、 図 1 6 Bの 5 0 0番地の拡張デ一夕種別がこの信号 復号装置 2 0 1の規格である場合には、 5 0 1番地以降の領域についても復号す る。 これにより、 信号復号装置 2 0 1は、 信号符号化装置 1 0 0により符号化さ れた符号列及び帯域生成情報をもとに、 周波数帯域制限された符号列を復号し、 また、 帯域生成情報をもとに、 新たな周波数帯域の信号を生成し、 両者を重畳さ せて最終的な時系列信号を得ることができる。
一方、 上述の従来規格の信号復号装置 2 0 0は、 この拡張データ領域を理解す ることができないが、 この拡張データ領域を無視するように設計されているため、 従来通りにメインデータのみを復号し、 周波数帯域制限された時系列信号を得る ことができる。
なお、 本発明は、 図面を参照して説明した上述の実施例に限定されるものでは なく、 添付の請求の範囲及びその主旨を逸脱することなく、 様々な変更、 置換又 はその同等のものを行うことができることは当業者にとって明らかである。
例えば、 上述の実施の形態では、 ローパスフィル夕で帯域制限した低域信号を 一定フレーム毎に直交変換して符号化するものとして説明したが、 これに限定さ れるものではなく、 入力された時系列信号を直交変換し、 低域スペクトルを抽出 して符号化するようにしても構わない。 また、 上述の実施の形態では、 八一ドウエアの構成として説明したが、 これに 限定されるものではなく、 任意の処理を、 C P U (Central Process ing Uni t) に コンピュータプログラムを実行させることにより実現することも可能である。 こ の場合、 コンピュータプログラムは、 記録媒体に記録して提供することも可能で あり、 また、 インタ一ネットその他の伝送媒体を介して伝送することにより提供 することも可能である。 産業上の利用可能性 上述した本発明によれば、 符号化側において、 入力された時系列信号の所定の 周波数帯域に対応する制限帯域のスぺクトルを符号化すると共に、 復号側で拡張 すべき周波数帯域の時系列信号をこの制限帯域のスぺクトルの写像に基づいて求 めるために、 該写像の方法を示す写像情報を適応的に生成し、 復号側において、 符号化された上記制限帯域のスぺクトルを復号して制限帯域の時系列信号を生成 すると共に、 上記写像情報に基づいて、 上記制限帯域のスペクトルから、 拡張す べき拡張帯域の時系列信号を生成し、 上記制限帯域の時系列信号と上記拡張帯域 の時系列信号とを加算して出力することにより、 複雑な高調波が存在する場合で あっても、 復号時に拡張する周波数帯域で最適な高調波を生成することが可能と される。

Claims

請求の範囲
1 . 入力された時系列信号を直交変換して符号化する信号符号化装置において、 上記入力された時系列信号の所定の周波数帯域に対応する制限帯域のスぺクト ルを符号化する符号化手段と、
復号側で拡張すべき周波数帯域の時系列信号を上記制限帯域のスぺクトルの写 像に基づいて求めるために、 該写像の方法を示す写像情報を適応的に生成する写 像情報生成手段と、
符号化された上記制限帯域のスペクトルと上記写像情報とを出力する出力手段 と
を備えることを特徵とする信号符号化装置。
2 . 請求の範囲第 1項記載の信号符号化装置であって、
上記写像は、 上記制限帯域のスぺクトルを周波数軸上のある位置で折り返す折 り返し処理であり、
上記写像情報生成手段は、 折り返し位置を適応的に決定して上記写像情報を生 成すること
を特徴とする信号符号化装置。
3 . 請求の範囲第 2項記載の信号符号化装置であって、
上記写像生成手段は、 上記制限帯域のスぺクトルをそのスぺクトル包絡で規格 化し、 規格化された上記制限帯域のスぺクトルを折り返す位置を適応的に決定し て上記写像情報を生成することを特徴とする信号符号化装置。
4 . 請求の範囲第 2項記載の信号符号化装置であって、
上記写像生成手段は、 周波数軸上のある位置で折り返された上記制限帯域のス ベクトルと、 復号側で拡張すべき拡張帯域のスペクトルとの距離を算出し、 当該 距離に基づいて上記折り返し位置を決定することを特徴とする信号符号化装置。
5 . 請求の範囲第 4項記載の信号符号化装置であって、
上記距離は、 各周波数における上記制限帯域のスぺクトルと上記拡張帯域のス ぺクトルとのレベル差の自乗和であることを特徴とする信号符号化装置。
6 . 請求の範囲第 1項記載の信号符号化装置であって、 上記写像は、 上記制限帯域のスぺクトルを周波数軸上のある位置で平行移動す る平行移動処理であり、
上記写像情報生成手段は、 平行移動位置を適応的に決定して上記写像情報を生 成すること
を特徴とする信号符号化装置。
7 . 請求の範囲第 6項記載の信号符号化装置であって、
上記写像生成手段は、 上記制限帯域のスぺクトルをそのスぺクトル包絡で規格 化し、 規格化された上記制限帯域のスぺクトルを平行移動する位置を適応的に決 定して上記写像情報を生成することを特徴とする信号符号化装置。
8 . 請求の範囲第 6項記載の信号符号化装置であって、
上記写像生成手段は、 周波数軸上のある位置で平行移動した上記制限帯域のス ベクトルと、 復号側で拡張すべき拡張帯域のスペクトルとの距離を算出し、 当該 距離に基づいて上記平行移動位置を決定することを特徴とする信号符号化装置。
9 . 請求の範囲第 1項記載の信号符号化装置であって、
上記写像は、 上記制限帯域のスぺクトルを周波数軸上のある位置で折り返す折 り返し処理、 又は上記制限帯域のスぺクトルを周波数軸上のある位置で平行移動 する平行移動処理であり、
上記写像情報生成手段は、 入力された時系列信号の状態に応じて、 上記折り返 し処理又は上記平行移動処理を適応的に決定して上記写像情報を生成すること を特徴とする信号符号化装置。
1 0 . 請求の範囲第 1項記載の信号符号化装置であって、
上記拡張すべき周波数帯域は、 上記所定の周波数帯域よりも高域であることを 特徴とする信号符号化装置。
1 1 . 入力された時系列信号を直交変換して符号化する信号符号化方法において、 上記入力された時系列信号の所定の周波数帯域に対応する制限帯域のスぺクト ルを符号化する符号化工程と、
復号側で拡張すべき周波数帯域の時系列信号を上記制限帯域のスぺクトルの写 像に基づいて求めるために、 該写像の方法を示す写像情報を適応的に生成する写 像情報生成工程と、 符号化された上記制限帯域のスベクトルと上記写像情報とを出力する出力工程 と
を有することを特徴とする信号符号化方法。
1 2 . 入力された時系列信号を直交変換して符号化する信号符号化処理をコンビ ユー夕に実行させるプログラムにおいて、
上記入力された時系列信号の所定の周波数帯域に対応する制限帯域のスぺクト ルを符号化する符号化工程と、
復号側で拡張すべき周波数帯域の時系列信号を上記制限帯域のスペクトルの写 像に基づいて求めるために、 該写像の方法を示す写像情報を適応的に生成する写 像情報生成工程と、
符号化された上記制限帯域のスぺクトルと上記写像情報とを出力する出力工程 と
を有することを特徴とするプログラム。
1 3 . 入力された時系列信号を直交変換して符号化する信号符号化処理をコンビ ユー夕に実行させるプログラムが記録されたコンピュータ読み取り可能な記録媒 体において、
上記入力された時系列信号の所定の周波数帯域に対応する制限帯域のスぺクト ルを符号化する符号化工程と、
復号側で拡張すべき周波数帯域の時系列信号を上記制限帯域のスぺクトルの写 像に基づいて求めるために、 該写像の方法を示す写像情報を適応的に生成する写 像情報生成工程と、
符号化された上記制限帯域のスペクトルと上記写像情報とを出力する出力工程 と
を有することを特徴とするプログラムが記録された記録媒体。
1 4 . 符号化側で入力された時系列信号の所定の周波数帯域に対応する符号化さ れた制限帯域のスぺクトルと、 復号側で拡張すべき周波数帯域の時系列信号を上 記制限帯域のスぺクトルの写像に基づいて求めるために、 適応的に生成された該 写像の方法を示す写像情報とを入力する入力手段と、
符号化された上記制限帯域のスぺクトルを復号し、 制限帯域の時系列信号を生 成する復号手段と、
上記写像情報に基づいて、 上記制限帯域のスペクトルから、 拡張すべき拡張帯 域のスぺクトルを求め、 当該拡張帯域のスぺクトルを逆直交変換して拡張帯域の 時系列信号を生成する帯域拡張手段と、
上記制限帯域の時系列信号と上記拡張帯域の時系列信号とを加算して出力する 出力手段と
を備えることを特徴とする信号復号装置。
1 5 . 請求の範囲第 1 4項記載の信号復号装置であって、
上記写像は、 上記制限帯域のスぺクトルを周波数軸上のある位置で折り返す折 り返し処理であり、
上記帯域拡張手段は、 符号化側から入力した折り返し位置を示す情報に基づい て、 上記拡張帯域のスペクトルを求めること
を特徴とする信号復号装置。
1 6 . 請求の範囲第 1 5項記載の信号復号装置であって、
上記帯域拡張手段は、 上記制限帯域のスぺクトルをそのスぺクトル包絡で規格 化し、 規格化された上記制限帯域のスペクトルを、 上記符号化側から入力した折 り返し位置を示す情報に基づいて折り返して、 上記拡張帯域のスぺクトルを求め ることを特徴とする信号復号装置。
1 7 . 請求の範囲第 1 4項記載の信号復号装置であって、
上記写像は、 上記制限帯域のスぺクトルを周波数軸上のある位置で平行移動す る平行移動処理であり、
上記帯域拡張手段は、 符号化側から入力した平行移動位置を示す情報に基づい て、 上記拡張帯域のスペクトルを求めること
を特徴とする信号復号装置。
1 8 . 請求の範囲第 1 7項記載の信号復号装置であって、
上記帯域拡張手段は、 上記制限帯域のスぺクトルをそのスぺクトル包絡で規格 化し、 規格化された上記制限帯域のスペクトルを、 上記符号化側から入力した平 行移動位置を示す情報に基づいて平行移動して、 上記拡張帯域のスぺクトルを求 めることを特徴とする信号復号装置。
1 9 . 請求の範囲第 1 4項記載の信号復号装置であって、
上記写像は、 上記制限帯域のスぺクトルを周波数軸上のある位置で折り返す折 り返し処理、 又は上記制限帯域のスぺクトルを周波数軸上のある位置で平行移動 する平行移動処理であり、
上記帯域拡張手段は、 入力された時系列信号の状態に応じて設定された選択情 報に基づいて上記折り返し処理又は上記平行移動処理を選択し、 上記拡張帯域の スぺクトルを求めること
を特徴とする信号復号装置。
2 0 . 請求の範囲第 1 4項記載の信号復号装置であって、
上記拡張すべき周波数帯域は、 上記所定の周波数帯域よりも高域であることを 特徴とする信号復号装置。
2 1 . 符号化側で入力された時系列信号の所定の周波数帯域に対応する符号化さ れた制限帯域のスぺクトルと、 復号側で拡張すべき周波数帯域の時系列信号を上 記制限帯域のスぺクトルの写像に基づいて求めるために、 適応的に生成された該 写像の方法を示す写像情報とを入力する入力工程と、
符号化された上記制限帯域のスぺクトルを復号し、 制限帯域の時系列信号を生 成する復号工程と、
上記写像情報に基づいて、 上記制限帯域のスペクトルから、 拡張すべき拡張帯 域のスぺクトルを求め、 当該拡張帯域のスぺクトルを逆直交変換して拡張帯域の 時系列信号を生成する帯域拡張工程と、
上記制限帯域の時系列信号と上記拡張帯域の時系列信号とを加算して出力する 出力工程と
を有することを特徴とする信号復号方法。
2 2 . 所定の処理をコンピュータに実行させるプログラムにおいて、
符号化側で入力された時系列信号の所定の周波数帯域に対応する符号化された 制限帯域のスぺクトルと、 復号側で拡張すべき周波数帯域の時系列信号を上記制 限帯域のスぺクトルの写像に基づいて求めるために、 適応的に生成された該写像 の方法を示す写像情報とを入力する入力工程と、
符号化された上記制限帯域のスぺクトルを復号し、 制限帯域の時系列信号を生 成する復号工程と、
上記写像情報に基づいて、 上記制限帯域のスペクトルから、 拡張すべき拡張帯 域のスぺクトルを求め、 当該拡張帯域のスぺクトルを逆直交変換して拡張帯域の 時系列信号を生成する帯域拡張工程と、
上記制限帯域の時系列信号と上記拡張帯域の時系列信号とを加算して出力する 出力工程と
を有することを特徴とするプログラム。
2 3 . 所定の処理をコンピュータに実行させるプログラムが記録されたコンビュ —夕読み取り可能な記録媒体において、
符号化側で入力された時系列信号の所定の周波数帯域に対応する符号化された 制限帯域のスぺクトルと、 復号側で拡張すべき周波数帯域の時系列信号を上記制 限帯域のスぺクトルの写像に基づいて求めるために、 適応的に生成された該写像 の方法を示す写像情報とを入力する入力工程と、
符号化された上記制限帯域のスぺクトルを復号し、 制限帯域の時系列信号を生 成する復号工程と、
上記写像情報に基づいて、 上記制限帯域のスペクトルから、 拡張すべき拡張帯 域のスぺクトルを求め、 当該拡張帯域のスぺクトルを逆直交変換して拡張帯域の 時系列信号を生成する帯域拡張工程と、
上記制限帯域の時系列信号と上記拡張帯域の時系列信号とを加算して出力する 出力工程と
を有することを特徴とするプログラムが記録された記録媒体。
PCT/JP2003/009613 2002-08-21 2003-07-29 信号符号化装置及び方法、並びに信号復号装置及び方法 WO2004019497A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/492,677 US7205910B2 (en) 2002-08-21 2003-07-29 Signal encoding apparatus and signal encoding method, and signal decoding apparatus and signal decoding method
EP03792639A EP1531551A4 (en) 2002-08-21 2003-07-29 SIGNAL CODING DEVICE, METHOD, SIGNAL DECODING DEVICE AND METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002241052A JP3861770B2 (ja) 2002-08-21 2002-08-21 信号符号化装置及び方法、信号復号装置及び方法、並びにプログラム及び記録媒体
JP2002-241052 2002-08-21

Publications (1)

Publication Number Publication Date
WO2004019497A1 true WO2004019497A1 (ja) 2004-03-04

Family

ID=31943955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009613 WO2004019497A1 (ja) 2002-08-21 2003-07-29 信号符号化装置及び方法、並びに信号復号装置及び方法

Country Status (6)

Country Link
US (1) US7205910B2 (ja)
EP (1) EP1531551A4 (ja)
JP (1) JP3861770B2 (ja)
KR (1) KR20050030887A (ja)
CN (1) CN1579047A (ja)
WO (1) WO2004019497A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7668711B2 (en) 2004-04-23 2010-02-23 Panasonic Corporation Coding equipment
CN112528743A (zh) * 2020-11-09 2021-03-19 江苏海洋大学 基于功能磁共振技术解码脑活动的频谱差异映射框架方法
WO2021168356A1 (en) 2020-02-20 2021-08-26 Illumina, Inc. Data compression for artificial intelligence-based base calling
WO2023278788A1 (en) 2021-07-01 2023-01-05 Illumina, Inc. Efficient artificial intelligence-based base calling of index sequences

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0202159D0 (sv) 2001-07-10 2002-07-09 Coding Technologies Sweden Ab Efficientand scalable parametric stereo coding for low bitrate applications
US8605911B2 (en) 2001-07-10 2013-12-10 Dolby International Ab Efficient and scalable parametric stereo coding for low bitrate audio coding applications
CN100395817C (zh) * 2001-11-14 2008-06-18 松下电器产业株式会社 编码设备、解码设备和解码方法
KR100648760B1 (ko) 2001-11-29 2006-11-23 코딩 테크놀러지스 에이비 고주파 재생 기술 향상을 위한 방법들 및 그를 수행하는 프로그램이 저장된 컴퓨터 프로그램 기록매체
SE0202770D0 (sv) 2002-09-18 2002-09-18 Coding Technologies Sweden Ab Method for reduction of aliasing introduces by spectral envelope adjustment in real-valued filterbanks
US7558389B2 (en) * 2004-10-01 2009-07-07 At&T Intellectual Property Ii, L.P. Method and system of generating a speech signal with overlayed random frequency signal
ATE480851T1 (de) 2004-10-28 2010-09-15 Panasonic Corp Skalierbare codierungsvorrichtung, skalierbare decodierungsvorrichtung und verfahren dafür
EP1808684B1 (en) * 2004-11-05 2014-07-30 Panasonic Intellectual Property Corporation of America Scalable decoding apparatus
KR100707174B1 (ko) * 2004-12-31 2007-04-13 삼성전자주식회사 광대역 음성 부호화 및 복호화 시스템에서 고대역 음성부호화 및 복호화 장치와 그 방법
JP5224017B2 (ja) * 2005-01-11 2013-07-03 日本電気株式会社 オーディオ符号化装置、オーディオ符号化方法およびオーディオ符号化プログラム
JP2006243041A (ja) 2005-02-28 2006-09-14 Yutaka Yamamoto 高域補間装置及び再生装置
BRPI0616624A2 (pt) * 2005-09-30 2011-06-28 Matsushita Electric Ind Co Ltd aparelho de codificação de fala e método de codificação de fala
JP5190359B2 (ja) * 2006-05-10 2013-04-24 パナソニック株式会社 符号化装置及び符号化方法
KR20070115637A (ko) * 2006-06-03 2007-12-06 삼성전자주식회사 대역폭 확장 부호화 및 복호화 방법 및 장치
CN101140759B (zh) * 2006-09-08 2010-05-12 华为技术有限公司 语音或音频信号的带宽扩展方法及***
JP4396683B2 (ja) * 2006-10-02 2010-01-13 カシオ計算機株式会社 音声符号化装置、音声符号化方法、及び、プログラム
DE102006049154B4 (de) * 2006-10-18 2009-07-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Kodierung eines Informationssignals
US8688441B2 (en) * 2007-11-29 2014-04-01 Motorola Mobility Llc Method and apparatus to facilitate provision and use of an energy value to determine a spectral envelope shape for out-of-signal bandwidth content
WO2009078681A1 (en) * 2007-12-18 2009-06-25 Lg Electronics Inc. A method and an apparatus for processing an audio signal
US8433582B2 (en) * 2008-02-01 2013-04-30 Motorola Mobility Llc Method and apparatus for estimating high-band energy in a bandwidth extension system
US20090201983A1 (en) * 2008-02-07 2009-08-13 Motorola, Inc. Method and apparatus for estimating high-band energy in a bandwidth extension system
JP5326311B2 (ja) * 2008-03-19 2013-10-30 沖電気工業株式会社 音声帯域拡張装置、方法及びプログラム、並びに、音声通信装置
US8463412B2 (en) * 2008-08-21 2013-06-11 Motorola Mobility Llc Method and apparatus to facilitate determining signal bounding frequencies
CA2989886C (en) 2008-12-15 2020-05-05 Frederik Nagel Audio encoder and bandwidth extension decoder
US8463599B2 (en) * 2009-02-04 2013-06-11 Motorola Mobility Llc Bandwidth extension method and apparatus for a modified discrete cosine transform audio coder
US8626516B2 (en) * 2009-02-09 2014-01-07 Broadcom Corporation Method and system for dynamic range control in an audio processing system
JP5511785B2 (ja) * 2009-02-26 2014-06-04 パナソニック株式会社 符号化装置、復号装置およびこれらの方法
RU2568278C2 (ru) * 2009-11-19 2015-11-20 Телефонактиеболагет Лм Эрикссон (Пабл) Расширение полосы пропускания звукового сигнала нижней полосы
JP5651980B2 (ja) * 2010-03-31 2015-01-14 ソニー株式会社 復号装置、復号方法、およびプログラム
JP2011059714A (ja) * 2010-12-06 2011-03-24 Sony Corp 信号符号化装置及び方法、信号復号装置及び方法、並びにプログラム及び記録媒体
JP5743137B2 (ja) * 2011-01-14 2015-07-01 ソニー株式会社 信号処理装置および方法、並びにプログラム
JP5569476B2 (ja) * 2011-07-11 2014-08-13 ソニー株式会社 信号符号化装置及び方法、信号復号装置及び方法、並びにプログラム及び記録媒体
EP2774145B1 (en) * 2011-11-03 2020-06-17 VoiceAge EVS LLC Improving non-speech content for low rate celp decoder
JP2014074782A (ja) * 2012-10-03 2014-04-24 Sony Corp 音声送信装置、音声送信方法、音声受信装置および音声受信方法
JP6262668B2 (ja) * 2013-01-22 2018-01-17 パナソニック株式会社 帯域幅拡張パラメータ生成装置、符号化装置、復号装置、帯域幅拡張パラメータ生成方法、符号化方法、および、復号方法
CN105745706B (zh) * 2013-11-29 2019-09-24 索尼公司 用于扩展频带的装置、方法和程序
CN106409300B (zh) 2014-03-19 2019-12-24 华为技术有限公司 用于信号处理的方法和装置
JP5892395B2 (ja) * 2014-08-06 2016-03-23 ソニー株式会社 符号化装置、符号化方法、およびプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10126272A (ja) * 1996-10-16 1998-05-15 Yamaha Corp オーディオデータ伝送方式
JP2003108197A (ja) * 2001-07-13 2003-04-11 Matsushita Electric Ind Co Ltd オーディオ信号復号化装置およびオーディオ信号符号化装置
WO2003038812A1 (en) * 2001-11-02 2003-05-08 Matsushita Electric Industrial Co., Ltd. Audio encoding and decoding device
JP2003140692A (ja) * 2001-11-02 2003-05-16 Matsushita Electric Ind Co Ltd 符号化装置及び復号化装置
WO2003042979A2 (en) * 2001-11-14 2003-05-22 Matsushita Electric Industrial Co., Ltd. Encoding device and decoding device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3134337B2 (ja) * 1991-03-30 2001-02-13 ソニー株式会社 ディジタル信号符号化方法
JP3178026B2 (ja) * 1991-08-23 2001-06-18 ソニー株式会社 ディジタル信号符号化装置及び復号化装置
US5765127A (en) * 1992-03-18 1998-06-09 Sony Corp High efficiency encoding method
JP3123286B2 (ja) * 1993-02-18 2001-01-09 ソニー株式会社 ディジタル信号処理装置又は方法、及び記録媒体
US6167375A (en) * 1997-03-17 2000-12-26 Kabushiki Kaisha Toshiba Method for encoding and decoding a speech signal including background noise
SE512719C2 (sv) 1997-06-10 2000-05-02 Lars Gustaf Liljeryd En metod och anordning för reduktion av dataflöde baserad på harmonisk bandbreddsexpansion
EP1126620B1 (en) 1999-05-14 2005-12-21 Matsushita Electric Industrial Co., Ltd. Method and apparatus for expanding band of audio signal
FR2807897B1 (fr) 2000-04-18 2003-07-18 France Telecom Methode et dispositif d'enrichissement spectral
US7742927B2 (en) 2000-04-18 2010-06-22 France Telecom Spectral enhancing method and device
ATE319162T1 (de) * 2001-01-19 2006-03-15 Koninkl Philips Electronics Nv Breitband-signalübertragungssystem
MXPA02010770A (es) * 2001-03-02 2004-09-06 Matsushita Electric Ind Co Ltd Aparato para codificar y aparato para descodificar.
JP3984468B2 (ja) 2001-12-14 2007-10-03 松下電器産業株式会社 符号化装置、復号化装置及び符号化方法
JP3926726B2 (ja) 2001-11-14 2007-06-06 松下電器産業株式会社 符号化装置および復号化装置
JP4317355B2 (ja) 2001-11-30 2009-08-19 パナソニック株式会社 符号化装置、符号化方法、復号化装置、復号化方法および音響データ配信システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10126272A (ja) * 1996-10-16 1998-05-15 Yamaha Corp オーディオデータ伝送方式
JP2003108197A (ja) * 2001-07-13 2003-04-11 Matsushita Electric Ind Co Ltd オーディオ信号復号化装置およびオーディオ信号符号化装置
WO2003038812A1 (en) * 2001-11-02 2003-05-08 Matsushita Electric Industrial Co., Ltd. Audio encoding and decoding device
JP2003140692A (ja) * 2001-11-02 2003-05-16 Matsushita Electric Ind Co Ltd 符号化装置及び復号化装置
WO2003042979A2 (en) * 2001-11-14 2003-05-22 Matsushita Electric Industrial Co., Ltd. Encoding device and decoding device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1531551A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7668711B2 (en) 2004-04-23 2010-02-23 Panasonic Corporation Coding equipment
WO2021168356A1 (en) 2020-02-20 2021-08-26 Illumina, Inc. Data compression for artificial intelligence-based base calling
WO2021168358A1 (en) 2020-02-20 2021-08-26 Illumina, Inc. Split architecture for artificial intelligence-based base caller
WO2021168360A1 (en) 2020-02-20 2021-08-26 Illumina, Inc. Bus network for artificial intelligence-based base caller
CN112528743A (zh) * 2020-11-09 2021-03-19 江苏海洋大学 基于功能磁共振技术解码脑活动的频谱差异映射框架方法
CN112528743B (zh) * 2020-11-09 2024-05-10 江苏海洋大学 基于功能磁共振技术解码脑活动的频谱差异映射框架方法
WO2023278788A1 (en) 2021-07-01 2023-01-05 Illumina, Inc. Efficient artificial intelligence-based base calling of index sequences

Also Published As

Publication number Publication date
CN1579047A (zh) 2005-02-09
KR20050030887A (ko) 2005-03-31
JP2004080635A (ja) 2004-03-11
JP3861770B2 (ja) 2006-12-20
EP1531551A4 (en) 2006-01-04
US20040247037A1 (en) 2004-12-09
EP1531551A1 (en) 2005-05-18
US7205910B2 (en) 2007-04-17

Similar Documents

Publication Publication Date Title
WO2004019497A1 (ja) 信号符号化装置及び方法、並びに信号復号装置及び方法
US10522168B2 (en) Audio signal synthesizer and audio signal encoder
JP4822843B2 (ja) スペクトル符号化装置、スペクトル復号化装置、音響信号送信装置、音響信号受信装置、およびこれらの方法
JP4707739B2 (ja) 音声の品質および了解度を改善するためのシステム
JP5301471B2 (ja) 音声符号化システム及び方法
JP2007156506A (ja) 音声処理装置及び音声を処理する方法
JP7297367B2 (ja) 周波数帯域拡張方法、装置、電子デバイスおよびコンピュータプログラム
JP2008058667A (ja) 信号処理装置および方法、記録媒体、並びにプログラム
JP6073456B2 (ja) 音声強調装置
JP2003255973A (ja) 音声帯域拡張システムおよび方法
WO2016021412A1 (ja) 符号化装置および方法、復号装置および方法、並びにプログラム
US20020154041A1 (en) Coding device and method, decoding device and method, and recording medium
WO2006001159A1 (ja) 信号符号化装置及び方法、並びに信号復号装置及び方法
JPH0946233A (ja) 音声符号化方法とその装置、音声復号方法とその装置
JP2008033269A (ja) デジタル信号処理装置、デジタル信号処理方法およびデジタル信号の再生装置
JP2003157100A (ja) 音声通信方法及び装置、並びに音声通信プログラム
JP4574320B2 (ja) 音声符号化方法、広帯域音声符号化方法、音声符号化装置、広帯域音声符号化装置、音声符号化プログラム、広帯域音声符号化プログラム及びこれらのプログラムを記録した記録媒体
JP2005114814A (ja) 音声符号化・復号化方法、音声符号化・復号化装置、音声符号化・復号化プログラム、及びこれを記録した記録媒体
JP4516805B2 (ja) オーディオ装置
JP2005114813A (ja) オーディオ信号再生装置及び再生方法
JP3094522B2 (ja) ベクトル量子化方法及びその装置
JP2008033211A (ja) 付加信号生成装置、信号変換された信号の復元装置、付加信号生成方法、信号変換された信号の復元方法および付加信号生成プログラム
JP2000250597A (ja) Lsp補正装置,音声符号化装置及び音声復号化装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 2003792639

Country of ref document: EP

Ref document number: 10492677

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038013592

Country of ref document: CN

Ref document number: 1020047005898

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2003792639

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003792639

Country of ref document: EP