WO2004019468A1 - 車両用モータ - Google Patents

車両用モータ Download PDF

Info

Publication number
WO2004019468A1
WO2004019468A1 PCT/JP2003/009121 JP0309121W WO2004019468A1 WO 2004019468 A1 WO2004019468 A1 WO 2004019468A1 JP 0309121 W JP0309121 W JP 0309121W WO 2004019468 A1 WO2004019468 A1 WO 2004019468A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
motor
oil
stator
coolant
Prior art date
Application number
PCT/JP2003/009121
Other languages
English (en)
French (fr)
Inventor
Yasuji Taketsuna
Toshiaki Katsu
Kenji Harada
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP03741470A priority Critical patent/EP1542336A1/en
Priority to JP2004530534A priority patent/JPWO2004019468A1/ja
Priority to US10/522,109 priority patent/US20050151429A1/en
Publication of WO2004019468A1 publication Critical patent/WO2004019468A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/197Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil in which the rotor or stator space is fluid-tight, e.g. to provide for different cooling media for rotor and stator

Definitions

  • the present invention relates to a structure of a motor, and more particularly to a structure of a liquid-cooled motor mounted on a vehicle such as an automobile.
  • a motor or a generator mounted on a vehicle such as an automobile has a rotor and a stator core disposed around the rotor and wound with a stator winding.
  • the motor energizes the stator winding to obtain rotational force, and the generator extracts the current flowing through the stator winding due to the rotation of the rotor.
  • the stator core and the stator winding generate heat.
  • a cooling device for suppressing this heat generation is disclosed, for example, in Japanese Patent Application Laid-Open No. 2001-145302.
  • This cooling device is a cooling device for a motor mounted on a vehicle with the rotation axis being horizontal.
  • the motor includes a rotor that is rotatable about a rotation axis, a stator core having a plurality of slots facing a peripheral surface of the rotor, and a stator winding wound inside the slots.
  • This motor cooling device includes a cooling passage in which an opening of a slot facing the rotor and parallel to the rotation axis is covered with a sealing member, and an inlet which is one end of the stator core and communicates with the upper cooling passage.
  • An outlet communicating with the lower cooling passage at the other end of the stator core; and a pump for flowing the coolant from the upper side to the lower side of the motor in the cooling passage from the inlet chamber to the outlet chamber.
  • the cooling passage is formed by covering the opening of the slot of the stator core, which faces the rotor and is parallel to the rotation axis, with the sealing member.
  • the coolant flows through the cooling passage, and the stator winding wound inside the slot is directly cooled by the coolant. Therefore, the cooling effect can be enhanced, and the cooling liquid can be flown along the stator windings to uniformly cool the stator windings.
  • the slots for winding the stator windings are used as cooling passages. There is no need to separately form a cooling passage inside the theta core, and costs can be reduced.
  • the cooling liquid flows from above to below the motor having the rotating shaft horizontal. In this case, air remains in the cooling passage. Further, in order to distribute the coolant to all portions of the stator winding, it is necessary to provide a flow straightening plate in the cooling passage, which complicates the structure. Bubbles are mixed in such a cooling passage. These bubbles may cause rust on the stator windings of the motor and cause deterioration. In addition, a portion where the cooling liquid and the stator winding do not come into direct contact with each other due to the bubbles comes out, so that the cooling performance may be reduced.
  • an object of the present invention is to provide a vehicle motor that can efficiently cool a stator portion that generates heat from a coil.
  • Another object of the present invention is to provide a motor for a vehicle that can uniformly cool a stator portion generating heat from a coil.
  • Still another object of the present invention is to provide a motor for a vehicle which does not give bubbles in a cooling liquid to a stator winding of the motor.
  • Still another object of the present invention is to provide a motor for a vehicle in which the stator winding of the motor is not rusted and deteriorated. Disclosure of the invention
  • a vehicle motor includes a rotor that rotates about a horizontal rotating shaft, a stator core having a plurality of slots in the direction of the rotating shaft facing a peripheral surface of the rotor, and a winding inside the slots.
  • a stator core having a plurality of slots in the direction of the rotating shaft facing a peripheral surface of the rotor, and a winding inside the slots.
  • a cooling passage is formed such that the release portion of the slot of the stator core is covered by a sealing member so that the coolant contacts the stator winding wound around the slot of the stator core facing the rotor. Is done. Since the cooling fluid is caused to flow in the cooling passage, the stator winding wound inside the slot is directly cooled by the cooling fluid, and the cooling effect can be enhanced. Further along the stator winding As a result, the cooling liquid is flown, and the stator winding can be cooled uniformly.
  • a coolant discharge section is provided at the top of the cooling passage, for example, a coolant supply section is separately provided at the bottom, and the coolant is filled from the supply section to the discharge section from below to above. Go.
  • the cooling passage may include a passage in which an opening of the slot is covered with a sealing member.
  • a cooling liquid supply unit provided at the lowermost part of the cooling passage may be further included.
  • the coolant is supplied to the coolant supply portion provided at the lowermost portion by, for example, a pressure pump, and passes through a cooling passage formed so that the coolant contacts the stator winding.
  • the cooling liquid is discharged from a cooling liquid discharge section provided at the top. In this way, the cooling liquid is filled upward from below. Therefore, no air bubbles are mixed.
  • the distribution means may include a conduit connected to the discharge part and the supply part, respectively, and a supply part for supplying the cooling liquid discharged from the discharge part to the supply part.
  • the vehicle motor may be provided in the pipeline and further include a prevention unit for preventing the coolant from leaking.
  • the supply means is a cooling fluid pressure pump and is driven by the engine of the vehicle. Even in this case, since the cooling liquid does not escape from the discharge portion due to the prevention means, when the vehicle starts again, the cooling passage is still filled with the cooling liquid, so that desired cooling performance can be realized. . Since the cooling passage is kept filled with the coolant, no bubbles are generated in the coolant. More preferably, the supply means is a pump that circulates the cooling liquid.
  • the conduit may be provided with storage means for storing the coolant in contact with the air.
  • the prevention means may be provided in any of the pipelines from the outlet of the pump to the entrance of the storage means.
  • a storage means such as an oil pan temporarily stores the cooling liquid in contact with air.
  • the prevention means is provided in any of the pipelines from the outlet of the pump to the entrance of the storage means, the coolant does not leak from the discharge part.
  • the prevention means may be provided in the discharge section.
  • the prevention means may be provided in the supply unit.
  • leakage of the coolant can be prevented by a check valve or the like provided in the supply unit.
  • the vehicle motor may be a distributed winding motor.
  • the thickness of the motor end portion is larger than that of the concentratedly wound motor, and the area where the coil and the coolant are in contact is larger.
  • FIG. 1 is a structural diagram of a motor according to a first embodiment of the present invention.
  • FIGS. 2A to 2C are views showing a slot portion of the stator.
  • FIG. 3 is a configuration diagram of the motor cooling system according to the first embodiment of the present invention.
  • FIG. 4 is a configuration diagram of a motor cooling system according to a modification of the first embodiment of the present invention.
  • FIG. 5 is a configuration diagram of a motor cooling system according to a second embodiment of the present invention.
  • FIG. 6 is a configuration diagram of a motor cooling system according to a first modification of the second embodiment of the present invention.
  • FIG. 7 shows a motor cooling system according to a second modification of the second embodiment of the present invention. It is a block diagram. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a sectional view and a side view of the motor 100.
  • the motor 100 is mainly composed of a stator section and a rotor section.
  • the stator section includes a stator core 106 in which a coil 104 is wound around a slot.
  • the stator portion is covered by a coil end cover 102 surrounding both ends of the coil 104 and the stator core 106 in a U-shape.
  • the cooling end cover 102 is provided with a cooling oil inlet 130 below it and a cooling oil outlet 140 above it.
  • the coil end cover 102 is in contact with the stator core 106 via an O-ring 108.
  • the coil end cover 102 is connected to the stator core 106 by a predetermined number of ports 110 to form a stator portion.
  • the coil 104 of the stator section is immersed in cooling oil. Heat exchange is performed between the cooling oil and the coil 104 using the cooling oil as a medium, and the heat generated in the coil 104 is taken by the cooling oil, and the coil 104 and the stator core 104 are taken away. 6 is cooled.
  • the rotor section includes a rotor core 112 and a magnet 114 contained in the rotor core.
  • a rotor core 112 is connected to a rotor shaft 116.
  • the heat generated in the coil 104 and the coil 104 whose temperature has risen due to the current flowing through the coil 104 in the stator portion and the stator core itself generate heat.
  • the temperature of the stator core increased due to the heat generated.Heat exchange was performed between 106 and the cooling oil to reduce the temperature of the stator.
  • the motor 100 is used with the rotor shaft 1 16 oriented horizontally, with a cooling oil inlet 130 at the bottom of the stator and cooling at the top of the stator.
  • An oil outlet 140 is provided.
  • the oil supplied from the cooling oil inlet 130 by the oil pump described later is filled from the lower part of the stator part to the upper part so as to impregnate the coil 104 of the stator part.
  • the cooling oil is supplied from the oil pump to fill all of 04, the oil is discharged from the cooling oil discharge port 140.
  • the cooling oil performs heat exchange by coming into contact with the coils 104 of the stator section.
  • the slot of the motor 100 will be described with reference to FIGS. 2A to 2C.
  • a number of slots 118 are provided in the status part.
  • the slot 110 contains a coil 104 of a stator part.
  • Insulating paper 122 is provided to insulate the stator from the coil 104, and the coil 104 of the slot 118 is fixed, and the slot prevents the cooling oil from leaking to the rotor side.
  • a sealing member 120 is provided for each slot.
  • an air gap between the slot nozzle member 120 and the coin nozzle 104 is used as an oil passage 150.
  • the gap used as the oil passage 150 may be provided at any place in the slot, and for example, may be on the outer diameter side as shown in FIG. 2B.
  • an oil passage 150 may be provided between the insulating paper 122 and the stator core 106.
  • the slot seal member 120 a member obtained by integrally molding a lip seal with a rod-shaped member is given as an example.
  • the oil injected from the cooling oil inlet 130 can be discharged from the cooling oil outlet 140 at the other end parallel to the rotor shaft 116. .
  • the cooling system of the motor 100 is composed of an oil pump 160, a supply line 162 connecting the oil pump 160 and the cooling oil inlet 130, and an oil pump. It includes a pan 170, and a discharge line 164 connecting the oil pan 170 and the cooling oil discharge port 140. Oil pump 16 Connected to the rotating shaft, the oil pump is driven when the engine is running. The oil supplied from the oil pump 160 reaches the cooling oil inlet 130 via the supply line 162.
  • the cooling oil that has reached the cooling oil input port 130 diffuses in the direction parallel to the rotor shaft 1 16 through the oil passage 150 of the stator slot 1 18 and the oil pump 16 0 As the amount of oil supplied from the motor increases, oil is filled from below to above the motor 100.
  • the oil passage 150 is completely filled with cooling oil. Further, when the oil pump 160 supplies the cooling oil, the cooling oil is discharged from the cooling oil discharge port 140 to the discharge line 164. The cooling oil discharged to the discharge line 164 is supplied to the oil pan 170. At this time, in the oil pan 170, the cooling oil is temporarily stored in a state where it is in contact with the air. The cooling oil once stored in the oil pan 170 is supplied to the motor 100 again by the operation of the oil pump 160.
  • Numeral 0 supplies the cooling oil once stored in the oil pan 170 to the inside of the motor 100 (stator portion) from the cooling oil inlet 130 through the supply line 162. Cooling oil supplied from the oil pump 160 flows in a direction parallel to the rotor shaft 116 through an oil passage 150 provided in a stator slot 118 of the motor 100. To spread. Further, the inside of the coil end cover 102 is filled with cooling oil supplied by an oil pump 160. When the inside of the coil end cover 102 and the oil passage 150 is filled with cooling oil, and the oil pump 160 continues to operate, the cooling oil outlet provided at the top of the motor 100 is provided. Cooling oil is discharged from 0. The discharged cooling oil is returned to the oil pan 170 through the discharge line 164.
  • the cooling oil is supplied by the oil pump, and the cooling oil flows from the cooling oil inlet at the bottom of the motor to the inside of the coil end cover and the oil passage. Supplied. Since the cooling oil outlet is provided at the top of the motor, the cooling oil supplied by the oil pump is The bubbles are gradually supplied to the inside of the stator without mixing, and the oil level rises. Eventually, when the oil level reaches the cooling oil outlet, the cooling oil discharged through the outlet pipe 164 is returned to the oil pan 170. As a result, no air bubbles are mixed in the cooling oil, and the cooling oil and the stator coil are in direct contact with each other, so that the motor can be prevented from deteriorating without the occurrence of ⁇ .
  • This modification is different from the motor according to the first embodiment in that the slot 118 has no oil passage 150.
  • the slots 118 are buried due to varnish or mold processing and cannot be used as an oil passage.
  • a cooling system for the motor 101 according to the present modification will be described with reference to FIG.
  • the cooling system for the motor 101 according to the present modification is different from the cooling system for the motor 100 according to the above-described first embodiment, in which the cooling system for the motor 101 is cooled downward. Oil inlets 130 and 131, and cooling oil outlets 140 and 141 were provided above the motor 101.
  • the other structure of the cooling system is the same as the cooling system of the motor 100 according to the first embodiment described above. Therefore, a detailed description of them will not be repeated here.
  • the motor 101 according to the present modification does not have the oil passage 150 in the direction parallel to the rotor shaft 116, two cooling oil inlets and two cooling oil inlets are provided in the direction parallel to the rotor shaft 116. A cooling oil outlet was provided.
  • the motor cooling system according to the present embodiment is provided with a check valve 300 at the cooling oil outlet 140 of the motor cooling system according to the first embodiment.
  • Other structures are the same as those of the motor cooling system according to the first embodiment described above. Therefore, a detailed description of them will be repeated here. Absent.
  • a check valve 300 is provided between the discharge line 164 and the cooling oil discharge port 140 to allow oil flow only in the direction from the motor to the discharge line 164. . Cooling oil cannot flow in the opposite direction.
  • the oil When the operation of the motor 160 is started and the cooling oil is supplied to the motor, the oil is filled upward from below the motor. This oil fills the inside of the coil end cover 102 and the inside of the oil passage 150 with cooling oil. Further, when the oil pump 160 supplies the cooling oil, the oil level of the cooling oil rises to the cooling oil discharge port 140, and the oil is supplied to the discharge line 164 via the check valve 300. Discharge.
  • the position of the check valve 300 is not limited to the position of the cooling oil discharge port 140.
  • a check valve 310 may be provided at the cooling oil inlet 130.
  • the position of the check valve 300 is not limited to the cooling oil discharge port 140 and the cooling oil input port 130 of the motor. It may be in the middle of the discharge line 16 4 or in the middle of the supply line 16 2. These positions are determined by the position of the cooling oil discharge port 140 in the height direction and the position of the check valve 400 in the height direction.
  • this cooling system includes a check valve 300 at a cooling oil outlet 140 of the motor cooling system according to a modification of the first embodiment, and a cooling oil outlet 14 1 is provided with a check valve 301.
  • the other structure is the same as that of the modified example of the first embodiment, and therefore the detailed description will not be repeated here.
  • the oil passage 150 is not provided in the slot 118 of the stator portion. Therefore, a cooling oil discharge port is provided in each of the left and right directions of the rotor shaft 116, and check valves 300 and 301 are provided at the discharge ports, respectively. Therefore, even if the oil pump is stopped, oil flows back into the motor or bubbles contained in the oil flow back, so that the coil 104 does not come into contact with air.
  • the vehicle motor of the present invention is suitable for being mounted on a hybrid vehicle, an electric vehicle, and a fuel cell vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

回転軸が水平であって、ステータ部を効率よく冷却するモータ(100)は、オイルポンプ(160)から供給管路(162)を介して供給された冷却オイルを投入するために、モータ(100)の下方に設けられた冷却オイル投入口(130)と、ステータのコイル(104)を冷却オイルで充填するためのコイルエンドカバー(102)と、冷却オイルをモータ(100)から排出するために、モータ(100)の上方に設けられた冷却オイル排出口(140)と、冷却オイル排出口(140)に接続され、オイルパン(170)に冷却オイルを排出するための排出管路(164)とを含む。

Description

" 車両用モータ 技術分野
この発明は、 モータの構造に関し、 特に、 自動車等の車両に搭載される液冷の モータの構造に関する。 背景技術
自動車等の車両に搭載されるモータや発電機は、 回転子 (ロータ) と、 その周 囲に配設されステータ卷線が巻き付けられたステータコアとを有する。 モータは ステータ卷線に通電して回転力を得て、 発電機はロータの回転によりステータ卷 線に流れる電流を取り出す。 そして、 ロータ回転時にステータ卷線に電流が流れ ると、 ステータコアゃステータ巻線が発熱する。 この発熱を抑えるための冷却装 置が、 例えば特開 2 0 0 1— 1 4 5 3 0 2公報に開示されている。
この冷却装置は、 回転軸を水平方向にして車両に搭載されるモータの冷却装置 である。 モータは、 回転軸を中心に回転自在な回転子と、 回転子の周面に対向し た複数のスロットを有するステータコアと、 スロットの内側に卷装されたステー タ卷線とを備える。 このモータの冷却装置は、 回転子と対向して回転軸に平行な スロットの開放部が密封部材で覆われた冷却通路と、 ステータコァの一端部であ つて上方の冷却通路に連通する入口部と、 ステータコアの他端部で下方の冷却通 路に連通する出口部と、 入口室から出口室に向かい冷却通路内にモータの上方か ら下方への方向に冷却液を流すポンプとを含む。
この冷却装置によると、 回転子と対向して回転軸に平行なステータコアのスロ ットの開放部を密封部材で覆うことにより冷却通路が形成される。 冷却通路内に 冷却液を流して、 スロットの内側に巻装されたステータ巻線が冷却液によって直 接冷却される。 そのため、 冷却効果を高めることができるとともに、 ステータ卷 線に沿って冷却液が流され、 ステータ巻線を均一に冷却することができる。 この とき、 ステータ卷線を卷装するためのスロットを冷却通路として用いるので、 ス テータコアの内部に別途冷却通路を加工する必要がなく、 コストも抑制すること ができる。
し力 ^しながら、 上述した公報に開示された冷却装置によると、 回転軸を水平に したモータの上方から下方へ冷却液を流通させる。 この場合、 冷却通路内に空気 の部分が残る。 また、 ステータ卷線の全ての部位に冷却液を行き渡らせるために は、 冷却通路内に整流板を設ける必要があり構造が複雑になる。 このような冷却 通路内には気泡が混入する。 この気泡により、 モータのステータ巻線にさびが発 生して劣化することがある。 また、 この気泡により冷却液とステータ卷線とが直 接接触しなくなる部分が出てくるため、 冷却性能が低下することがある。
そこで、 この発明の目的は、 コイルから発熱するステータ部を効率よく冷却す ることができる車両用モータを提供することである。
この発明の他の目的は、 コイルから発熱するステータ部を均一に冷却すること ができる車両用モータを提供することである。
この発明のさらに他の目的は、 モータのステータ卷線に冷却液中の気泡を与え ない車両用モータを提供することである。
この発明のさらに他の目的は、 モータのステータ卷線にさびが発生して劣化す ることがない車両用モータを提供することである。 発明の開示
この発明に係る車両用モータは、 水平な回転軸を中心に回転する回転子と、 回 転子の周面に対向して回転軸方向に複数のスロットを有するステータコアと、 ス ロットの内側に卷装されたステータ巻線と、 ステータ巻線と冷却液とが接触する ように形成された冷却通路と、 冷却通路に冷却液を流すための流通手段と、 冷却 通路の最上部に設けられた冷却液の排出部とを含む。
このようにすると、 回転子と対向したステータコアのスロットに巻装されたス テータ卷線を冷却液が接触するように、 たとえば、 ステータコアのスロットの解 放部を密閉部材により覆った冷却通路が形成される。 その冷却通路内に冷却液を 流すようにしたので、 スロットの内側に卷装されたステータ卷線が冷却液によつ て直接冷却され、 冷却効果を高めることができる。 さらに、 ステータ卷線に沿つ て冷却液が流され、 ステータ卷線を均一に冷却することができる。 このとき、 冷 却通路の最上部に冷却液の排出部を設け、 たとえば冷却液の供給部を別途最下部 に設け、 その供給部からその排出部へ、 下方から上方へ冷却液が充填されていく。 このため、 気泡が混入することがない。 したがって、 モータのステータ巻線にさ びが発生して劣化することがなく、 この気泡により冷却液とステータ巻線とが直 ■接接触しなくなり、 冷却性能が低下することがない、 車両用モータを提供するこ とができる。
さらに好ましくは、 車両用モータは、 冷却通路は、 スロットの開放部を密封部 材により覆われた通路を含むようにしてもよい。
このようにすると、 さらに、 ステータ巻線を巻装するためのスロットを冷却通 路どして用いるので、 ステータコアの内部に別途冷却通路を加工する必要がなく、 コストを抑えられる。
さらに好ましくは、 冷却通路の最下部に設けられた冷却液の供給部をさらに含 むようにしてもよレ、。
このようにすると、 最下部に設けられた冷却液の供給部には、 たとえば圧送ポ ンプにより冷却液が供給され、 冷却液がステータ卷線と接触するように形成され た冷却通路を通って、 最上部に設けられた冷却液の排出部から排出される。 この ようにすると、 下方から上方へ冷却液が充填されていく。 このため、 気泡が混入 することがない。
さらに好ましくは、 流通手段は、 排出部と供給部とにそれぞれ接続された管路 と、 排出部から排出された冷却液を供給部に供給するための供給手段とを含むよ うにしてもよい。 車両用モータは、 管路に設けられ、 冷却液の抜けを防止するた めの防止手段をさらに含むようにしてもよい。
このようにすると、 たとえば、 供給手段が冷却液圧送ポンプであって、 車両の エンジンにより駆動されている場合に、 車両が停止してエンジンが停止してポン プが停止した場合を考える。 この場合であっても、 防止手段により、 排出部から 冷却液が抜けないのて、 車両が再び発進したときに、 冷却通路が冷却液で満たさ れたままであるので、 所望の冷却性能を実現できる。 冷却通路が冷却液で満たさ れた状態を維持するので、 冷却液に気泡が発生することがない。 さらに好ましくは、 供給手段は、 冷却液を循環させるポンプである。 管路には、 冷却液が空気に接触された状態で貯蔵するための貯蔵手段を設けるようにしても よい。 防止手段は、 ポンプの突出口から貯蔵手段の入口までの管路のいずれかに 設けるようにしてもよい。
このようにすると、 冷却液は、 ポンプにより循環させられる。 オイルパンなど の貯蔵手段は、 冷却液を空気に接触された状態で一時的に貯蔵される。 このとき に、 防止手段を、 ポンプの突出口から貯蔵手段の入口までの管路のいずれかに設 けたので、 排出部から冷却液が抜けることがない。
さらに好ましくは、 防止手段を、 排出部に設けるようにしてもよい。
このようにすると、 排出部に設けられた逆止弁などにより、 冷却液の漏れを防 止することができる。
さらに好ましくは、 防止手段を、 供給部に設けるようにしてもよい。
このようにすると、 供給部に設けられた逆止弁などにより、 冷却液の漏れを防 止することができる。
さらに好ましくは、 車両用モータは、 分布卷きモータとしてもよい。
このようにすると、 集中巻きしたモータよりもモータ端部の厚みが大きく、 コ ィルと冷却液とが接触する面積が大きい。 この端部を冷却することにより、 優れ た冷却性能を実現できる。 図面の簡単な説明
図 1は、 本発明の第 1の実施例に係るモータの構造図である。
図 2 A〜図 2 Cは、 ステータのスロット部を示す図である。
図 3は、 本発明の第 1の実施例に係るモータの冷却システムの構成図である。 図 4は、 本発明の第 1の実施例の変形例に係るモータの冷却システムの構成図 である。
図 5は、 本発明の第 2の実施例に係るモータの冷却システムの構成図である。 図 6は、 本発明の第 2の実施例の第 1の変形例に係るモータの冷却システムの 構成図である。
図 7は、 本発明の第 2の実施例の第 2の変形例に係るモータの冷却システムの 構成図である。 発明を実施するための最良の形態
以下、 図面を参照しつつ、 本発明の実施例について説明する。 以下の説明では、 同一の部品には同一の符号を付してある。 それらの名称および機能も同じである。 したがってそれらについての詳細な説明の繰り返しは適宜省略する。
第 1の実施例
図 1を参照して、 本実施例に係るモータの構造について説明する。 図 1に示す ように、 このモータ 1 0 0は、 車両に搭載され、 その回転軸を水平として使用さ れる。 図 1に、 モータ 1 0 0の断面図および側面図を示す。 モータ 1 0 0は、 大 きくステータ部とロータ部とから構成される。 ステータ部には、 スロットにコィ ル 1 0 4が巻かれたステータコア 1 0 6を含む。 ステータ部は、 コイル 1 0 4お よびステータコア 1 0 6の両端面を、 コの字型形状に取囲むコイルエンドカバー 1 0 2·により覆われている。
コィノレエンドカバー 1 0 2には、 その下方に冷却オイノレ投入口 1 3 0が設けら れ、 その上方に冷却オイノレ排出口 1 4 0が設けられる。 コィノレエンドカバー 1 0 2は、 Oリング 1 0 8を介してステータコア 1 0 6と接している。 コイルエンド カバー 1 0 2は、 所定の数のポルト 1 1 0でステータコア 1 0 6に連結され、 ス テータ部を構成する。
後述するように、 ステータ部のコイル 1 0 4は、 冷却オイルに浸される。 その 冷却オイルとコイル 1 0 4との間で、 冷却オイルを媒介として熱交換が実行され、 コイル 1 0 4にて発生した熱量が冷却オイルに奪われて、 コイル 1 0 4およびス テータコア 1 0 6が冷却される。
ロータ部は、 ロータコア 1 1 2と、 ロータコアに内包された磁石 1 1 4とを含 む。 ロータ部は、 ロータコア 1 1 2がロータシャフト 1 1 6に接続される。
本実施例に係るモータ 1 0 0は、 そのステータ部におけるコイル 1 0 4に電流 が流れることにより温度上昇したコイル 1 0 4およびコイル 1 0 4にて発生した 熱量が伝わる分とステータコア自身が発熱する分とにより温度上昇したステータ コア.1 0 6と、 冷却オイルとの間で熱交換を実行し、 ステータ部の温度を低下さ せる。
図 1に示すように、 このモータ 1 0 0は、 ロータシャフト 1 1 6を水平方向に して使用され、 ステータ部の最下部に冷却オイル投入口 1 3 0を、 ステータ部の 最上部に冷却オイル排出口 1 4 0が設けられる。 後述するオイルポンプにより、 冷却オイル投入口 1 3 0から投入されたオイルは、 ステータ部の下方から上方に ステータ部のコイル 1 0 4を含浸するように充填されていき、 ステータ部のコィ ル 1 0 4のすベてを充填するほどオイルポンプから冷却オイルが供給されると、 冷却オイル排出口 1 4 0からオイルが排出される。 冷却オイルは、 ステータ部の コイル 1 0 4と接触することにより熱交換を実行する。
図 2 A〜図 2 Cを参照して、 モータ 1 0 0のスロットについて説明する。 ステ ータ部には多数のスロット 1 1 8が設けられている。 図 2 A〜図 2 Cに示すよう に、 スロット 1 1 8には、 ステータ部のコイル 1 0 4が内包されている。 ステー タ部とコイル 1 0 4とを絶縁するために絶縁紙 1 2 2が設けられるとともに、 ス ロット 1 1 8のコイル 1 0 4を固定し、 かつ冷却オイルがロータ側に漏れないよ うにスロットシール部材 1 2 0が各スロットごとに設けられる。
図 2 Aに示すように、 このスロットシ一ノレ部材 1 2 0とコィノレ 1 0 4との間の 空隙が油路 1 5 0として用いられる。 また、 油路 1 5 0として用いる空隙は、 ス ロット内のいずれの場所に設けてもよく、 たとえば、 図 2 Bに示すように外径側 でもよい。 また、 図 2 Cに示すように、 絶縁紙 1 2 2とステータコア 1 0 6との 間に油路 1 5 0を設けてもよい。
なお、 スロットシール部材 1 2 0は、 棒状の部材にリップシールを一体成型し たものを一例として挙げている。 この結果、 図 1に示すように、 冷却オイノレ投入 口 1 3 0から投入されたオイルは、 ロータシャフト 1 1 6に平行な他端にある冷 却オイル排出口 1 4 0から排出することができる。
図 3を参照して、 本実施例に係るモータ 1 0 0の冷却システムについて説明す る。 図 3に示すように、 このモータ 1 0 0の冷却システムは、 オイルポンプ 1 6 0と、 オイルポンプ 1 6 0と冷却オイル投入口 1 3 0とを接続する供給管路 1 6 2と、 オイルパン 1 7 0と、 オイルパン 1 7 0と冷却オイル排出口 1 4 0とを接 続する排出管路 1 6 4とを含む。 オイルポンプ 1 6 0は、 たとえば、 エンジンの 回転軸に接続され、 エンジンが回転しているとオイルポンプが駆動する。 このォ ィルポンプ 1 6 0から供給されたオイルは、 供給管路 1 6 2を介して冷却オイル 投入口 1 3 0に到達する。 冷却オイル投入口 1 3 0に到達した冷却オイルは、 ス テータのスロット 1 1 8の油路 1 5 0を通ってロータシャフト 1 1 6に平行な方 向に拡散するとともに、 オイルポンプ 1 6 0からの供給オイル量が増えるに従つ て、 モータ 1 0 0の下方から上方にオイルを充填する。
オイルポンプ 1 6 0が油路 1 5 0の容量に匹敵するオイルを供給すると、 油路 1 5 0がすべて冷却オイルで満たされる。 さらにオイルポンプ 1 6 0が冷却オイ ルを供給すると冷却オイル排出口 1 4 0から冷却オイルが排出管路 1 6 4に排出 される。 排出管路 1 6 4に排出された冷却オイルは、 オイルパン 1 7 0に供給さ れる。 このとき、 オイルパン 1 7 0においては、 冷却オイルと空気とが接した状 態で一旦貯留される。 オイルパン 1 7 0に一旦貯留された冷却オイルは、 オイル ポンプ 1 6 0の作動により再度モータ 1 0 0に供給される。
以上のような構造を有するモータ 1 0 0の冷却動作について説明する。
エンジンが回転するとオイルポンプ 1 6 0が作動を開始し、 オイルポンプ 1 6
0はオイルパン 1 7 0に一旦貯留された冷却オイルを供給管路 1 6 2を介して冷 却オイル投入口 1 3 0からモータ 1 0 0の内部 (ステータ部分) に供給する。 ォ ィルポンプ 1 6 0から供給された冷却オイルは、 モータ 1 0 0のステータのス口 ット 1 1 8に設けられた油路 1 5 0を介して、 ロータシャフト 1 1 6に平行な方 向に拡散する。 また、 コイルエンドカバー 1 0 2内をオイルポンプ 1 6 0により 供給された冷却オイルで充填される。 コイルエンドカバー 1 0 2および油路 1 5 0の内部が冷却オイルで充填され、 さらにオイルポンプ 1 6 0が作動を続けると、 モータ 1 0 0の最上部に設けられた冷却オイル排出口 1 4 0から冷却オイルが排 出される。 排出された冷却オイルは排出管路 1 6 4を通ってオイルパン 1 7 0に 戻される。
以上のようにして、 本実施例に係るモータによると、 オイルポンプにより冷却 オイルが供給され、 その冷却オイルはモ一タの最下部にある冷却オイル投入口か らコイルエンドカバー内および油路に供給される。 冷却オイルの排出口はモータ の最上部に設けられているため、 オイルポンプにより供給された冷却オイルは、 気泡が混じることなく、 徐々にステータ内部に供給され、 その油面が上昇する。 やがて冷却オイノレ 出口まで油面が到達すると、 出管路 1 6 4を介してお出さ れた冷却オイルがオイルパン 1 7 0に戻される。 その結果、 冷却オイルには気泡 が混じることがなく、 冷却オイルとステータのコイルとが直接接触するので、 鲭 などが発生せずに、 モータの劣化を防止することができる。
第 1の実施例 変形例
図 4を参照して、 本変形例に係るモータについて説明する。 この変形例は、 第 1の実施例に係るモータとは異なり、 スロット 1 1 8に油路 1 5 0を有しない。 たとえば、 ワニス、 モールド処理などにより、 スロット 1 1 8が埋まっていて、 油路として使えない場合である。
図 4を参照して、 本変形例に係るモータ 1 0 1の冷却システムについて説明す る。 図 4に示すように、 本変形例に係るモータ 1 0 1の冷却システムは、 前述の 第 1の実施例に係るモータ 1 0 0の冷却システムとは異なり、 モータ 1 0 1の下 方に冷却オイノレ投入口 1 3 0、 1 3 1を、 モータ 1 0 1の上方に、 冷却オイノレ 出口 1 4 0、 1 4 1を設けた。 それ以外の冷却システムの構造については、 前述 の第 1の実施例に係るモータ 1 0 0の冷却システムと同じである。 したがって、 それらについての詳細な説明はここでは繰返さなレ、。
本変形例に係るモータ 1 0 1は、 ロータシャフト 1 1 6に平行な方向に油路 1 5 0を有しないため、 ロータシャフト 1 1 6の平行な方向に 2ケ所ずつ冷却オイ ル投入口と冷却オイル排出口とを設けた。
これにより、 ワニス、 モールド処理などにより、 スロット部に油路が設けられ なレ、場合であっても、 良好な冷却性能を実現することができる。
第 2の実施例
以下、 本発明の第 2の実施例に係るモータおよびモータの冷却システムについ て説明する。
図 5に示すように、 本実施例に係るモータの冷却システムは、 前述の第 1の実 施例に係るモータの冷却システムの冷却オイル排出口 1 4 0に逆止弁 3 0 0を設 けた。 それ以外の構造については、 前述の第 1の実施例に係るモータの冷却シス テムと同じである。 したがって、 それらについての詳細な説明はここでは繰返さ ない。
逆止弁 3 0 0は、 排出管路 1 6 4と、 冷却オイル排出口 1 4 0との間に設けら れ、 モータから排出管路 1 6 4への方向のみのオイルの流れを許可する。 その逆 方向に冷却オイ が流れることができない。
本実施例に係るモータの冷却システムの動作について説明する。 オイルポンプ
1 6 0が動作を開始し、 モータに冷却オイルが供給されると、 モータの下方から 上方にオイルが充填されていく。 このオイルは、 コイルエンドカバー 1 0 2内お よび油路 1 5 0内を冷却オイルで満たす。 さらにオイルポンプ 1 6 0が冷却オイ ルを供給すると、 その冷却オイルの油面が冷却オイル排出口 1 4 0まで上昇し、 逆止弁 3 0 0を介して排出管路 1 6 4にオイルを排出する。
この状態で、 オイルポンプ 1 6 0の運転が停止されると、 供給管路 1 6 2から 冷却オイル供給口 1 3 0へのオイルの供給が停止する。 この停止により、 供給さ れる冷却オイルの圧力が減少するため、 排出管路 1 6 4内にあるオイルおょぴ空 気がモータ内部に戻ろうとする。 し力 し、 逆止弁 3 0 0が冷却オイノレ排出口と排 出管路 1 6 4との間に設けられているため、 冷却オイルおょぴ空気がモータ内部 に逆流することができない。 これにより、 オイルポンプ 1 6 0が停止した場合で あっても、 モータのステータ内部 (コイルエンドカバー 1 0 2内およぴ油路 1 5 0内) を冷却オイルで充填させておくことができる。
なお、 図 5に示したように、 逆止弁 3 0 0の位置は、 冷却オイル排出口 1 4 0 の位置に限定されない。 図 6に示すように、 冷却オイル投入口 1 3 0に逆止弁 3 1 0を設けてもよい。 図 5および図 6に示すように、 逆止弁 3 0 0の位置は、 モ ータの冷却オイル排出口 1 4 0および冷却オイル投入口 1 3 0に限定されない。 . 排出管路 1 6 4の途中であってもよいし、 供給管路 1 6 2の途中であってもよい。 なお、 これらの位置は、 冷却オイル排出口 1 4 0の高さ方向の位置と逆止弁 4 0 0の高さ方向の位置により定められる。
第 2の実施例 変形例
図 7を参照して、 本変形例に係るモータの冷却システムについて説明する。 図 7に示すように、 この冷却システムは、 第 1の実施例の変形例に係るモータの冷 却システムの冷却オイル排出口 1 4 0に逆止弁 3 0 0を、 冷却オイル排出口 1 4 1に逆止弁 3 0 1を設けたものである。 それ以外の構造は、 前述の第 1の実施例 の変形例と同じであるためここでの詳細な説明は繰返さない。
図 7に示すような構造にした本変形例に係るモータの冷却システムにおいては、 ステータ部のスロット 1 1 8に油路 1 5 0を有しない。 そのため、 ロータシャフ ト 1 1 6の左右方向にそれぞれ冷却オイルの排出口を設けるとともに、 その排出 口にそれぞれ逆止弁 3 0 0、 3 0 1を設けたものである。 したがって、 オイルポ ンプが停止しても、 モータ内部にオイルが逆流したりオイルに含まれる気泡が逆 流したりして、 コイル 1 0 4と空気とが触れることがなくなる。
今回開示された実施例はすべての点で例示であって制限的なものではないと考 えられるべきである。 本発明の範囲は上記した説明ではなくて特許請求の範囲に よって示され、 特許請求の範囲と均等の意味および範囲内でのすべての変更が含 まれることが意図される。 産業上の利用可能性
以上のように、 この車両用モータによれば、 ステータ部のコイルを均一にかつ 効率良く冷却することができる。 また、 冷却液に気泡が混じらないので、 ステー タ部が空気に触れることなくステータの卷線が鲭びて劣化することを防止できる。 そのため、 本発明の車両用モータは、 ハイブリッド自動車、 電気自動車および燃 料電池自動車に搭載するのに適している。

Claims

請求の範囲
1. 水平な回転軸 (116) を中心に回転する回転子 (1 12) と、 前記回転子 (1 12) の周面に対向して前記回転軸 (1 16) 方向に複数のス ロット (1 18) を有するステータコア (106) と、
前記スロット (1 18) の内側に巻装されたステータ卷線 (104) と、 前記ステータ巻線 (104) と冷却液とが接触するように形成された冷却通路 (150) と、
前記冷却通路 (150) に冷却液を流すための流通手段と、
前記冷却通路 (150) の最上部に設けられた前記冷却液の排出部 (140) とを含む、 車両用モータ。
2. 前記冷却通路 (150) は、 前記スロット (1 18) の開放部を密封部 材 (120) により覆われた通路を含む、 請求項 1に記載の車両用モータ。
3. 前記モータは、 前記冷却通路 (150) の最下部に設けられた前記冷却 液の供給部 (130) をさらに含む、 請求項 1に記載の車両用モータ。
4. 前記流通手段は、
前記排出部 (140) と前記供給部 (130) とにそれぞれ接続された管路と、 前記排出部 (140) から排出された前記冷却液を前記供給部 (130) に供 給するための供給手段 (160) とを含み、
前記モータは、 前記管路に設けられ、 前記冷却液の抜けを防止するための防止 手段 (300, 301, 310) をさらに含む、 請求項 3に記載の車両用モータ。
5. 前記供給手段 (160) は、 前記冷却液を循環させるポンプであって、 前記管路には、 前記冷却液が空気に接触された状態で貯蔵するための貯蔵手段
(170) が設けられ、
前記防止手段 (300, 301, 310) は、 前記ポンプの突出口から前記貯 蔵手段の入口までの管路のいずれかに設けられた、 請求項 4に記載の車両用モー タ。
6. 前記防止手段 (300, 301, 310) は、 前記排出部 (140) に 設けられた、 請求項 5に記載の車両用モータ。
7. 前記防止手段 (300, 301, 310) は、 前記供給部 (130) に 設けられた、 請求項 5に記載の車両用モータ。
8. 前記車両用モータは、 分布卷きモータである、 請求項 1〜7のいずれか に記載の車両用モータ。
PCT/JP2003/009121 2002-08-21 2003-07-17 車両用モータ WO2004019468A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03741470A EP1542336A1 (en) 2002-08-21 2003-07-17 Vehicle motor
JP2004530534A JPWO2004019468A1 (ja) 2002-08-21 2003-07-17 車両用モータ
US10/522,109 US20050151429A1 (en) 2002-08-21 2003-07-17 Motor for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-240411 2002-08-21
JP2002240411 2002-08-21

Publications (1)

Publication Number Publication Date
WO2004019468A1 true WO2004019468A1 (ja) 2004-03-04

Family

ID=31943933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009121 WO2004019468A1 (ja) 2002-08-21 2003-07-17 車両用モータ

Country Status (5)

Country Link
US (1) US20050151429A1 (ja)
EP (1) EP1542336A1 (ja)
JP (1) JPWO2004019468A1 (ja)
CN (1) CN1675814A (ja)
WO (1) WO2004019468A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005323416A (ja) * 2004-05-06 2005-11-17 Nissan Motor Co Ltd モータジェネレータの冷却構造
JP2005348594A (ja) * 2004-05-06 2005-12-15 Nissan Motor Co Ltd モータジェネレータの冷却構造
JP2006197772A (ja) * 2005-01-17 2006-07-27 Toyota Motor Corp 回転電機
JP2006271150A (ja) * 2005-03-25 2006-10-05 Nissan Motor Co Ltd モータジェネレータの冷却構造
JP2008148464A (ja) * 2006-12-11 2008-06-26 Toyota Motor Corp コイル冷却装置
WO2010058278A2 (en) 2008-11-21 2010-05-27 Toyota Jidosha Kabushiki Kaisha Rotating electrical machine
JP2010124659A (ja) * 2008-11-21 2010-06-03 Toyota Motor Corp 回転電機
JP2010124658A (ja) * 2008-11-21 2010-06-03 Toyota Motor Corp 回転電機
WO2011132305A1 (ja) * 2010-04-23 2011-10-27 トヨタ自動車株式会社 モータの冷却装置
US8129875B2 (en) 2007-11-07 2012-03-06 Toyota Jidosha Kabushiki Kaisha Motor cooling structure
JP2012055106A (ja) * 2010-09-02 2012-03-15 Toyota Motor Corp 回転電機
US8138640B2 (en) 2008-08-12 2012-03-20 Toyota Jidosha Kabushiki Kaisha Rotating electric machine and cooling system for the rotating electric machine
JP2012090434A (ja) * 2010-10-20 2012-05-10 Toyota Motor Corp 回転電機
JP2014019538A (ja) * 2012-07-18 2014-02-03 Toshiba Corp 巻上機および巻上機用冷却システム
JP2014033602A (ja) * 2012-02-10 2014-02-20 Aisin Aw Co Ltd ハイブリッド駆動装置
WO2014057842A1 (ja) * 2012-10-12 2014-04-17 株式会社カネコ 電磁式回転駆動装置
JP2014128041A (ja) * 2012-12-25 2014-07-07 Denso Corp 車両用回転電機
JP2014197962A (ja) * 2013-03-29 2014-10-16 株式会社デンソー 固定子及びその固定子を備えた回転電機並びにその固定子の製造方法
US9528436B2 (en) 2012-02-10 2016-12-27 Aisin Aw Co., Ltd. Hybrid drive device
WO2021199376A1 (ja) * 2020-04-01 2021-10-07 三菱電機株式会社 固定子および回転電機
WO2024052956A1 (ja) * 2022-09-05 2024-03-14 日産自動車株式会社 回転電機

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040384A1 (en) * 2005-10-06 2007-04-12 C.C.M. Beheer B.V. Cooling of stator windings of an electrical machine
DE112008001594T5 (de) * 2007-06-13 2010-04-29 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Kühlstruktur für eine elektrische Rotationsmaschine
JP4661849B2 (ja) * 2007-09-27 2011-03-30 トヨタ自動車株式会社 固定子構造
DE102008048020A1 (de) 2008-09-19 2010-03-25 Schaeffler Kg Gleitlager
JP5260399B2 (ja) * 2009-04-24 2013-08-14 日立オートモティブシステムズ株式会社 車両駆動用回転電機およびそれを用いた車両
US8169110B2 (en) * 2009-10-09 2012-05-01 GM Global Technology Operations LLC Oil cooled motor/generator for an automotive powertrain
JP2011130545A (ja) * 2009-12-16 2011-06-30 Toyota Industries Corp 熱回収装置
CN102934330A (zh) * 2010-06-08 2013-02-13 瑞美技术有限责任公司 电机冷却***和方法
JP5575055B2 (ja) * 2010-06-24 2014-08-20 株式会社日本自動車部品総合研究所 回転電機
EP2626985B1 (en) 2010-10-05 2018-04-11 Honda Motor Co., Ltd. Apparatus for driving electric vehicle
US8970073B2 (en) * 2010-10-19 2015-03-03 Toyota Jidosha Kabushiki Kaisha Cooling structure for rotary electric machine
JP5646276B2 (ja) * 2010-10-22 2014-12-24 株式会社東芝 回転電機の密封油供給装置
JP5134064B2 (ja) * 2010-11-18 2013-01-30 トヨタ自動車株式会社 回転電機
US9308957B2 (en) * 2010-12-27 2016-04-12 Kawasaki Jukogyo Kabushiki Kaisha Saddle-type electric vehicle
US9331553B2 (en) * 2011-09-19 2016-05-03 Georgia Tech Research Corporation Systems and methods for direct winding cooling of electric machines
US10886819B2 (en) 2011-09-19 2021-01-05 J. Rhett Mayor Electric machine with direct winding heat exchanger
CN102624121A (zh) * 2012-03-29 2012-08-01 中国科学院电工研究所 一种电机绕组端部冷却结构
DK201270179A (en) * 2012-04-11 2013-10-11 Envision Energy Denmark Aps Wind turbine with improved cooling
GB2506970B (en) * 2012-08-24 2020-12-30 Borgwarner Inc A shield and coolant guide for an electric machine
GB2507153B (en) * 2012-08-24 2020-08-26 Borgwarner Inc Cooling stator windings of an electric machine
JP6105387B2 (ja) * 2013-05-22 2017-03-29 株式会社日本自動車部品総合研究所 回転電機
DE102013213002A1 (de) * 2013-07-03 2015-01-08 Siemens Aktiengesellschaft Kühleinrichtung
JP6181592B2 (ja) * 2014-04-11 2017-08-16 トヨタ自動車株式会社 回転電機冷却装置
WO2017041025A1 (en) * 2015-09-02 2017-03-09 Nidec Motor Corporation Motor having split spray ring for cooling end turns
US20170310189A1 (en) * 2016-04-25 2017-10-26 Ford Global Technologies, Llc Stator Cooling For Electric Machines
JPWO2018030342A1 (ja) * 2016-08-09 2019-06-13 日本電産株式会社 モータユニット
DE102017101094A1 (de) 2017-01-20 2018-07-26 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Vorrichtung zur Abdichtung mehrerer Nuten eines Stators einer elektrischen Antriebsmaschine
GB201706438D0 (en) * 2017-04-24 2017-06-07 Rolls Royce Plc Electrical machine apparatus
US10910916B2 (en) * 2017-11-30 2021-02-02 General Electric Company Fluid cooled and fluid insulated electric machine
FR3083033B1 (fr) * 2018-06-22 2020-05-29 Renault S.A.S Machine electrique refroidie par un liquide caloporteur dielectrique
US20200177043A1 (en) * 2018-11-29 2020-06-04 Pratt & Whitney Canada Corp. Fuel-cooled brushless machine system for gas turbine engine
US11784526B2 (en) 2020-02-28 2023-10-10 Schaeffler Technologies AG & Co. KG Cooling system for electric motor busbar, stator and coils
CN112054613B (zh) * 2020-04-27 2021-08-17 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种水冷电机定子及电机
JP7255556B2 (ja) * 2020-05-28 2023-04-11 トヨタ自動車株式会社 車両用回転電機のステータの製造方法
CN116529985A (zh) * 2020-10-27 2023-08-01 塔乌电机股份有限公司 用于使用冷却剂罐的电机的热管理的***和方法
JP2022107337A (ja) * 2021-01-08 2022-07-21 トヨタ自動車株式会社 モータのコイル冷却構造
CN113394890B (zh) * 2021-06-28 2023-04-07 威海西立电子有限公司 一种电机定子冷却***及电机
DE102022209904A1 (de) * 2022-09-20 2024-03-21 Magna powertrain gmbh & co kg Elektrische Maschine mit optimiertem Kühlsystem

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145356U (ja) * 1980-03-28 1981-11-02
JPS5755754A (en) * 1980-09-18 1982-04-02 Toshiba Corp Feeder for sealing oil
JPS63153755U (ja) * 1987-03-27 1988-10-07
JPS63179763U (ja) * 1987-05-11 1988-11-21
JP2000245112A (ja) * 1999-02-23 2000-09-08 Mitsubishi Electric Corp 車両用交流発電機
JP2002186205A (ja) * 2000-12-14 2002-06-28 Nissan Motor Co Ltd 回転電機

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE337561C (de) * 1917-12-29 1921-09-28 Michael Seidner Dr Ing Anordnung zur Kuehlung von elektrischen Maschinen
US4227108A (en) * 1978-04-24 1980-10-07 Tokyo Shibaura Electric Co., Ltd. Glass compound layer for mechanical and thermal protection of a laminated iron core rotary electromachine
US4994700A (en) * 1990-02-15 1991-02-19 Sundstrand Corporation Dynamoelectric machine oil-cooled stator winding
JP3208772B2 (ja) * 1990-05-24 2001-09-17 セイコーエプソン株式会社 電気自動車
JP3475973B2 (ja) * 1994-12-14 2003-12-10 株式会社ニコン リニアモータ、ステージ装置、及び露光装置
JP3443248B2 (ja) * 1996-07-30 2003-09-02 株式会社荏原製作所 水冷キャンドモータ
JP2001069693A (ja) * 1999-08-26 2001-03-16 Honda Motor Co Ltd 回転電機
JP3661529B2 (ja) * 1999-11-17 2005-06-15 日産自動車株式会社 モータの冷却装置
DE10115186A1 (de) * 2001-03-27 2002-10-24 Rexroth Indramat Gmbh Gekühltes Primärteil oder Sekundärteil eines Elektromotors
JP3748387B2 (ja) * 2001-04-05 2006-02-22 株式会社日立製作所 永久磁石式回転電機及びそれを用いた発電システムと駆動システム
JP3864728B2 (ja) * 2001-06-20 2007-01-10 日産自動車株式会社 回転電機
US6633098B2 (en) * 2001-08-29 2003-10-14 Hitachi, Ltd. Alternator for use in a vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145356U (ja) * 1980-03-28 1981-11-02
JPS5755754A (en) * 1980-09-18 1982-04-02 Toshiba Corp Feeder for sealing oil
JPS63153755U (ja) * 1987-03-27 1988-10-07
JPS63179763U (ja) * 1987-05-11 1988-11-21
JP2000245112A (ja) * 1999-02-23 2000-09-08 Mitsubishi Electric Corp 車両用交流発電機
JP2002186205A (ja) * 2000-12-14 2002-06-28 Nissan Motor Co Ltd 回転電機

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4586408B2 (ja) * 2004-05-06 2010-11-24 日産自動車株式会社 モータジェネレータの冷却構造
JP2005348594A (ja) * 2004-05-06 2005-12-15 Nissan Motor Co Ltd モータジェネレータの冷却構造
JP2005323416A (ja) * 2004-05-06 2005-11-17 Nissan Motor Co Ltd モータジェネレータの冷却構造
JP2006197772A (ja) * 2005-01-17 2006-07-27 Toyota Motor Corp 回転電機
WO2006085429A1 (ja) * 2005-01-17 2006-08-17 Toyota Jidosha Kabushiki Kaisha 回転電機
CN101107767B (zh) * 2005-01-17 2012-11-07 丰田自动车株式会社 旋转电机
JP4586542B2 (ja) * 2005-01-17 2010-11-24 トヨタ自動車株式会社 回転電機
US7919890B2 (en) 2005-01-17 2011-04-05 Toyota Jidosha Kabushiki Kaisha Rotating electric machine
JP2006271150A (ja) * 2005-03-25 2006-10-05 Nissan Motor Co Ltd モータジェネレータの冷却構造
JP4687180B2 (ja) * 2005-03-25 2011-05-25 日産自動車株式会社 モータジェネレータの冷却構造
JP2008148464A (ja) * 2006-12-11 2008-06-26 Toyota Motor Corp コイル冷却装置
US8129875B2 (en) 2007-11-07 2012-03-06 Toyota Jidosha Kabushiki Kaisha Motor cooling structure
US8138640B2 (en) 2008-08-12 2012-03-20 Toyota Jidosha Kabushiki Kaisha Rotating electric machine and cooling system for the rotating electric machine
US8766497B2 (en) 2008-11-21 2014-07-01 Toyota Jidosha Kabushiki Kaisha Rotating electrical machine
WO2010058278A2 (en) 2008-11-21 2010-05-27 Toyota Jidosha Kabushiki Kaisha Rotating electrical machine
JP4670942B2 (ja) * 2008-11-21 2011-04-13 トヨタ自動車株式会社 回転電機
JP2010124658A (ja) * 2008-11-21 2010-06-03 Toyota Motor Corp 回転電機
DE112009003166T5 (de) 2008-11-21 2012-06-28 Toyota Jidosha K.K. Rotierende elektrische Maschine
JP2010124659A (ja) * 2008-11-21 2010-06-03 Toyota Motor Corp 回転電機
CN102859846A (zh) * 2010-04-23 2013-01-02 丰田自动车株式会社 电动机的冷却装置
DE112010005507T5 (de) 2010-04-23 2013-03-21 Toyota Jidosha K.K. Motorkühlvorrichtung
US9112391B2 (en) 2010-04-23 2015-08-18 Toyota Jidosha Kabushiki Kaisha Motor cooling device having flow rate adjusting means for a coil end cover
WO2011132305A1 (ja) * 2010-04-23 2011-10-27 トヨタ自動車株式会社 モータの冷却装置
JP5429367B2 (ja) * 2010-04-23 2014-02-26 トヨタ自動車株式会社 モータの冷却装置
JP2012055106A (ja) * 2010-09-02 2012-03-15 Toyota Motor Corp 回転電機
JP2012090434A (ja) * 2010-10-20 2012-05-10 Toyota Motor Corp 回転電機
JP2014033602A (ja) * 2012-02-10 2014-02-20 Aisin Aw Co Ltd ハイブリッド駆動装置
US9284882B2 (en) 2012-02-10 2016-03-15 Aisin Aw Co., Ltd. Hybrid drive device
US9528436B2 (en) 2012-02-10 2016-12-27 Aisin Aw Co., Ltd. Hybrid drive device
US9644531B2 (en) 2012-02-10 2017-05-09 Aisin Aw Co., Ltd. Hybrid drive device
JP2014019538A (ja) * 2012-07-18 2014-02-03 Toshiba Corp 巻上機および巻上機用冷却システム
WO2014057842A1 (ja) * 2012-10-12 2014-04-17 株式会社カネコ 電磁式回転駆動装置
JP2014128041A (ja) * 2012-12-25 2014-07-07 Denso Corp 車両用回転電機
JP2014197962A (ja) * 2013-03-29 2014-10-16 株式会社デンソー 固定子及びその固定子を備えた回転電機並びにその固定子の製造方法
US10291106B2 (en) 2013-03-29 2019-05-14 Denso Corporation Stator, rotary electric machine provided with the stator and method of manufacturing the stator
WO2021199376A1 (ja) * 2020-04-01 2021-10-07 三菱電機株式会社 固定子および回転電機
WO2024052956A1 (ja) * 2022-09-05 2024-03-14 日産自動車株式会社 回転電機

Also Published As

Publication number Publication date
US20050151429A1 (en) 2005-07-14
EP1542336A1 (en) 2005-06-15
CN1675814A (zh) 2005-09-28
JPWO2004019468A1 (ja) 2005-12-15

Similar Documents

Publication Publication Date Title
WO2004019468A1 (ja) 車両用モータ
KR101369080B1 (ko) 액체 냉각식 전기 기계
JP5368866B2 (ja) 回転電機
JP4682716B2 (ja) 電動機の冷却装置
CN106464088B (zh) 具有横向液体冷却式转子和定子的感应式马达
KR101858441B1 (ko) 하이브리드 전기 장치를 냉각하는 모드
EP2760113B1 (en) Generator motor and electric vehicle using same
KR100347876B1 (ko) 차량용 교류발전기
JP4497113B2 (ja) ハイブリッド車両
JP6197592B2 (ja) モータの冷却構造
JPH10225060A (ja) 車両用発電機及び車両用冷却装置
US20040012294A1 (en) Lamination cooling system
JP2008029113A (ja) 電動ポンプ
JPH10501399A (ja) 電気誘導モーターとその冷却方法
JP2004215358A (ja) 多相モータ装置
JP5920108B2 (ja) 回転電機装置
CN111030383A (zh) 一种用于低温环境中的自泵式喷油内循环散热电机
US7343884B1 (en) Coolant system for hybrid power system
Liu et al. Direct coil cooling of a high performance switched reluctance machine (SRM) for EV/HEV applications
CN109660071B (zh) 旋转电机的冷却构造
JP2009017700A (ja) 回転電機の冷却装置
JP2005253263A (ja) 電動機の冷却装置
US10604003B2 (en) Hydraulic pressure supply system of automatic transmission for hybrid vehicle and cooling the jacket of a motor with low pressure supply to low pressure part
EP4097830A1 (en) System for cooling an electric motor
JP2005073351A (ja) 回転電機の冷却構造

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004530534

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10522109

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003741470

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038197545

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003741470

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003741470

Country of ref document: EP