WO2014057842A1 - 電磁式回転駆動装置 - Google Patents

電磁式回転駆動装置 Download PDF

Info

Publication number
WO2014057842A1
WO2014057842A1 PCT/JP2013/076710 JP2013076710W WO2014057842A1 WO 2014057842 A1 WO2014057842 A1 WO 2014057842A1 JP 2013076710 W JP2013076710 W JP 2013076710W WO 2014057842 A1 WO2014057842 A1 WO 2014057842A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron core
drive device
permanent magnet
fixed electromagnet
electromagnetic
Prior art date
Application number
PCT/JP2013/076710
Other languages
English (en)
French (fr)
Inventor
兼子康男
Original Assignee
株式会社カネコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネコ filed Critical 株式会社カネコ
Publication of WO2014057842A1 publication Critical patent/WO2014057842A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors

Definitions

  • the present invention relates to an electromagnetic rotary drive device.
  • Patent Document 1 or 2 discloses an electromagnetic rotation driving device that converts a magnetic force and rotates a rotating permanent magnet with respect to a fixed electromagnet by a magnetic attractive force and a magnetic repulsive force acting between an iron core and a permanent magnet. Known as described.
  • a coil is wound around an iron core, and the energization direction to the coil is converted or turned on / off.
  • an electromagnetic rotary drive device that converts the polarity of a fixed electromagnet and that is provided with rotating permanent magnets composed of permanent magnets whose polarities alternately change with rotation at both ends of the iron core of the fixed electromagnet.
  • the electromagnetic rotary drive device according to the first aspect, wherein the rotary permanent magnet is displaced at the iron core end of the fixed electromagnet. Is.
  • the iron core end portion of the fixed electromagnet is cut out in an arc shape, and one outer peripheral portion of the rotating permanent magnet faces the cutout portion.
  • the outer peripheral portion of the rotating permanent magnet faces the side portion of the iron core end portion of the fixed electromagnet.
  • the electromagnetic rotational driving device according to the fourth aspect, wherein a plurality of rotating permanent magnets are provided at the iron core end of the fixed electromagnet. Is.
  • the electromagnetic rotational driving device according to any one of the first to fifth aspects, wherein the stationary electromagnet is provided with a multifaceted columnar iron core end. To do.
  • the rotating permanent magnet is rotatably provided facing the multi-faced columnar iron core end portion of the fixed electromagnet.
  • a rotational drive device is provided.
  • the electromagnetic rotary drive device in the electromagnetic rotary drive device according to claim 7, two or more rotating permanent magnets are provided facing one side surface of the multi-faced columnar iron core end portion of the fixed electromagnet.
  • An electromagnetic rotary drive device is provided.
  • the rotating permanent magnet is rotated so as to face two parallel surfaces of the end face of the iron core of the polyhedral columnar shape of the fixed electromagnet.
  • An electromagnetic rotary drive device provided freely is provided.
  • the rotation shafts of the plurality of rotating permanent magnets provided at the iron core end of the fixed electromagnet are integrated.
  • the present invention provides an electromagnetic rotary drive device that is connected to a drive shaft.
  • a coil having a winding start terminal and a winding end terminal is wound around the iron core of the fixed electromagnet in multiple times.
  • the present invention provides an electromagnetic rotary drive device that can arbitrarily set connection between coils or connection to a power source.
  • an electromagnetic type comprising a heat dissipating means for circulating a cooling fluid around the outer periphery of the coil of the fixed electromagnet.
  • a rotational drive device is provided.
  • the electromagnetic rotary drive device as described in claim 1 of the present invention, as a fixed electromagnet to convert magnetic force, a coil is wound around an iron core, and the energization direction to the coil is changed.
  • the magnetic energy can be effectively converted into driving energy.
  • the electromagnetic rotary drive device has a configuration in which the rotating permanent magnet is displaced at the iron core end portion of the fixed electromagnet.
  • the rotating permanent magnet can be rotated smoothly by breaking the balance between the attractive magnetic force and the repulsive magnetic force against the rotating permanent magnet at the end, and a plurality of rotating permanent magnets can be displaced and installed at the iron core end. There is an effect that can.
  • the iron core end portion of the fixed electromagnet is cut out in an arc shape, and one outer peripheral portion of the rotating permanent magnet faces the cutout portion.
  • the outer peripheral portion of the rotating permanent magnet faces the side portion of the iron core end portion of the fixed electromagnet.
  • the fixed electromagnet has a configuration in which a plurality of rotating permanent magnets are provided at the iron core end of the fixed electromagnet.
  • the magnetic force generated at the end of the iron core can be effectively used by a plurality of rotating permanent magnets.
  • the rotating permanent magnet is rotatably provided facing the end of the multi-faced columnar iron core of the fixed electromagnet.
  • two or more rotating permanent magnets are provided facing one side surface of the multi-faced columnar iron core end portion of the fixed electromagnet.
  • two rotating permanent magnets face each other on two parallel surfaces of the end face of the iron core of the fixed electromagnet.
  • the rotation shafts of the plurality of rotating permanent magnets provided at the iron core end of the fixed electromagnet are integrated.
  • a coil having a winding start terminal and a winding end terminal is wound around the iron core of the fixed electromagnet in multiple times.
  • a reinforcing belt made of a nonmagnetic material is provided on the outer periphery of the rotating permanent magnet.
  • a structure in which a heat dissipating means for circulating a cooling fluid is provided on the outer periphery of the coil of the fixed electromagnet.
  • reference numeral 1 denotes a fixed electromagnet whose magnetic force should be converted at both extremes, and a coil 3 is wound around an intermediate portion of the iron core 2.
  • Reference numeral 4 denotes a coil pressing plate provided on both sides of the coil 3.
  • FIG. 1 shows a state in which the center of the iron core 2 is vertically cut along the longitudinal direction, and fixed electrode portions 5 and 6 are provided at both ends of the iron core 2 of the fixed electromagnet 1.
  • the polarity N or S of the fixed electrode portions 5 and 6 at both ends of the iron core 2 is converted to the polarity S or N when the energization direction to the coil 3 is changed.
  • each fixed electrode portion 5, 6 is provided with an arc-shaped cutout portion 7 having a slightly longer upper part than a semicircle, and the polarity of the outer periphery changes in each cutout portion 7 with rotation.
  • Rotating permanent magnets 10 and 12 each consisting of permanent magnets 8 and 9 that are alternately changed are rotatably provided.
  • the permanent magnet 8 of the magnetism S of the rotating permanent magnet 12 that rotates clockwise as indicated by the arrow B faces each other with the electrode of the left fixed electrode portion 6 in the S state, and repulsive forces that repel each other act.
  • the permanent magnet 9 having the polarity N at the next rotational position receives the attractive force, so that the rotation of the rotating permanent magnet 12 continues.
  • two rotating permanent magnets 10 and 12 that are rotors can be provided at both ends of the iron core 2 of the fixed electromagnet 1. There is an effect that the two rotors can be rotationally driven by effectively using the magnetic force.
  • Supply of input power to the coil 3 of the fixed electromagnet 1 is performed by a start circuit that lowers the input voltage and switches the energization direction at the base frequency at the start, and when the rotary permanent magnets 10 and 12 start to rotate, By shifting to an operation circuit that supplies voltage and high frequency input power, the rotating permanent magnets 10 and 12 can be rotated at high speed.
  • the rotating permanent magnets 10 and 12 rotate integrally with the rotating shafts 11 and 13, respectively, and the permanent magnets 8 and 9 occupy the rotation circumference of the 360 degree arc by 180 degree arcs.
  • the permanent magnet 8 is configured such that the outer peripheral side is the S pole and the inner peripheral side is the N pole
  • the permanent magnet 9 is configured such that the outer peripheral side is the N pole and the inner peripheral side is the S pole.
  • the shape of the notch portion 7 is composed of the arc-shaped portion 7a and the linear portion 7b, so the magnetic force of the arc-shaped portion 7a of the notch portion 7 is strong
  • the magnetic force of the linear portion 7b acts weakly, and has a configuration in which the linear portion 7b is displaced.
  • the rotating permanent magnet is greatly displaced at the iron core end of the fixed electromagnet. It has a configuration. 2 is the same as that of FIG. 1, the same reference numerals as those in FIG. 1 are used, and the description thereof is omitted.
  • the rotating permanent magnets 10 and 12 including the permanent magnets 8 and 9 whose polarities on the outer periphery change alternately with rotation in the notches 7 are formed as arcuate fixed electrode portions 5 and 5.
  • the permanent magnets 8 and 9 are rotated by receiving the attraction force and the repulsion force almost evenly, so that they may receive the attraction force and the repulsion force in the reverse rotation direction. There is.
  • the rotating permanent magnets 10, 12 including the permanent magnets 8, 9 whose polarity alternately changes in accordance with the rotation in each notch portion 7 are fixed electrodes 5, 12. 6 is arranged to face the arcuate portion 7a having a strong magnetic force evenly but is displaced so as to be gradually separated from the linear portion 7b having a weak magnetic force. It will rotate by receiving an unbalanced suction force and a repulsive force that accelerate in the direction of rotation in the part. That is, in Example 2 of FIG.
  • the rotation shafts 19, 20, 21, and 22 are parallel to the side edges 5 a, 5 b and 6 a, 6 b of both ends 5, 6 of the iron core 2 of the four-sided columnar fixed electromagnet 1.
  • four rotating permanent magnets 15, 16, 17, and 18 are rotatably provided. Since four rotating permanent magnets, which are rotors, can be provided at both ends 5 and 6 of the iron core 2 of the fixed electromagnet 1, the magnetic force generated at both ends of the iron core 2 of the fixed electromagnet 1 can be used effectively. Can do.
  • the side edges 6a and 6b of the fixed electrode portion 6 have strong S poles. Since the N-pole permanent magnet 9 of the rotating permanent magnets 17 and 18 is strongly attracted, the S-pole permanent magnet 8 is strongly repelled, and the rotating permanent magnets 17 and 18 are strongly attracted. 18 rotates in the direction of arrows E and F.
  • the rotating permanent magnets 17 and 18 are rotated halfway, the energization direction to the coil 3 is changed, and in a state where the polarities of the fixed electrode portions 5 and 6 at both ends of the iron core 2 are reversed to N, the S pole is permanent. While the magnet 8 is strongly attracted, the N-pole permanent magnet 9 is strongly repelled, and the rotating permanent magnets 17 and 18 continue to rotate in the directions of arrows E and F.
  • the side edges 5a, 5b, 6a and 6b of the fixed electrode portions 5 and 6 have a stronger magnetic force than the side portions thereof, so that the rotating permanent magnets 15, 16, 17 and 18 are It is provided in a position where the balance of the strength of the magnetic force is different from that of the second embodiment.
  • the rotational speed increases, a constant rotational speed can be maintained even if the action of the magnetic force in the acceleration rotational direction is small.
  • FIGS. 4 a and 4 b four-sided columnar fixed electrode portions 25, 26 are provided in a T shape at both ends of the iron core 2 of the four-sided columnar fixed electromagnet 1.
  • Rotating permanent magnets 27, 28, 29, and 30 are provided on the corner side edge portions 25a, 25b, 25c, and 25d, respectively, and similarly, the four corner side edge portions 26a, 26b, 26c, and the other fixed electrode portion 26 are provided.
  • 26d is provided with rotating permanent magnets 31, 32, 33, and 34, respectively.
  • Each rotating permanent magnet is arranged at a displaced position in which the balance of the strength of the magnetic force is different at the four side edge portions of the fixed electrode portion, and in the same way as in the third embodiment shown in FIG. It will rotate with the conversion.
  • a total of eight rotating permanent magnets rotate in the directions of arrows G, H, I, and J, respectively.
  • Reference numerals 23 and 24 denote rotating shafts of the rotating permanent magnet.
  • each rotating permanent magnet is installed in a displaced state in which the balance of the strength of the magnetic force is different at the side edge portions of the four surfaces of the fixed electrode portion, as in the third embodiment shown in FIG. Along with the change of the energization direction, it rotates toward the electrode portion end face of the fixed electromagnet as indicated by arrows C and D and arrows E and F.
  • the rotation shafts 23a and 23b that are orthogonal to each other are rotated. It can be connected so as to be interlocked by a bevel gear, and one of the rotation shafts 23b can be extended and connected to the drive unit 36 or the like.
  • FIG. 6 is a longitudinal side view of an embodiment of the rotating permanent magnet 40, 41 is a rotating shaft, 42 is a base shaft portion made of iron as a magnetic material, 43 is a permanent magnet provided by being bonded to the outer periphery of the base shaft portion 42, Reference numeral 44 denotes a rotor holding washer, 45 and 46 denote rotor assembly bolts and nuts, and 47 denotes a reinforcing belt made of a non-magnetic material provided on the outer periphery of the permanent magnet 43 for preventing the permanent magnet 43 from peeling off.
  • FIG. 7 shows another embodiment of the rotating permanent magnet 40, in which four permanent magnets 43a, 43b having different magnetic poles are provided on the outer periphery of the iron base shaft portion 42 alternately.
  • a spacing member 48 made of a nonmagnetic material is provided between the permanent magnets 43a and 43b.
  • a reinforcing belt 47 is provided on the outer periphery.
  • a spacing member 48 made of a nonmagnetic material is provided between the permanent magnets 43a and 43b, and a reinforcing belt 47 is provided on the outer periphery.
  • a lightweight shaft portion 49 made of a lightweight aluminum alloy is provided between the rotating shaft 41 and the iron base shaft portion 42. The lightweight shaft portion 49 is provided with a number of hollow holes 49a to reduce the weight.
  • the coil 3 in FIG. 5 a and FIG. 5 b is taken as an example, and the heat dissipating means 50 of the coil 3 provided in the intermediate part of the iron core 2 of the fixed electromagnet 1 is shown. It is possible to dissipate heat directly by providing a large number of fins 51 in FIG. 4, but in the illustrated embodiment, the outer periphery of the coil 3 is covered with a heat dissipating case 52, and cooling oil or It is also possible to supply a fluid such as cooling water, discharge it from the discharge cock 54 to the outside of the case, and circulate other external cooling / heating devices or the like to use heat dissipation. In this case, the entire coil 3 can be fixed with a varnish or the like, and can be formed into an uneven shape so that the surroundings can easily dissipate heat.
  • FIG. 10 shows an embodiment of the coil 3 according to the present invention.
  • the coils 3a and 3b are wound twice, and the energizing directions of one coil 3a and the other coil 3b are set in reverse to each coil 3a.
  • the energizing direction of the coil 3 can be substantially changed, the back electromotive force accompanying the switch switching is prevented, and the spark of the switch is prevented.
  • 56 is a DC power source
  • 57a is a spark prevention device including a capacitor for the switch 55a of the coil 3a
  • 57b is a spark prevention device including a capacitor for the switch 55b of the coil 3b.
  • Example 11 shown in FIG. 11b the coil 3 wound around the iron core 60 of the fixed electromagnet, as shown in FIG. 11a, the winding start terminals 1a, 2a, 3a, 4a, 5a, 6a, 7a, 8a and the winding end. It is composed of eight coils 61, 62, 63, 64, 65, 66, 67, 68 having children 1b, 2b, 3b, 4b, 5b, 6b, 7b, 8b.
  • the resistance of each coil is 5.5 ohms for coil 61, 6.5 ohms for coil 62, 8 ohms for coil 63, and 8.5 ohms for coil 64.
  • the coil 65 is 9.5 ohms
  • the coil 66 is 10 ohms
  • the coil 67 is 11 ohms
  • the coil 68 is 12.5 ohms.
  • the resistance value is set larger for the outer peripheral coil.
  • the fourth and fifth layer coils 64 and 65 are connected by one terminal 4b and 5a as shown in FIG. 11e so as to constitute a four layer coil having the same resistance value.
  • the other terminals 4a and 5b are connected to different power sources 70 and 71, and the third and sixth layers of coils 63 and 66 are connected by one terminal 3b and 6a, and the other terminals 3a and 6b are connected to the power sources 70 and 71, respectively.
  • the second and seventh layer coils 62 and 67 are connected by one terminal 2b and 7a, the other terminals 2a and 7b are connected to the power sources 70 and 71, respectively, and the first and eighth layer coils 61 and 68 are connected to one.
  • the other terminals 1a and 8b are connected to the power sources 70 and 71, respectively, connected by terminals 1b and 8a.
  • coils of 8 layers are connected in order of the fourth and fifth layers, the third and sixth layers, the second and seventh layers, and the first and eighth layers, and connected to the power sources 70 and 71.
  • the coil of the layer can be energized as a single coil having the same resistance value.
  • two layers of an eight-layer coil are connected in the order of the fourth and fifth layers, the third and sixth layers, and the second and seventh layers are connected in order of the first and eighth layers.
  • the eight-layer coil can be energized as two coils of the same resistance value by being connected to the power sources 70 and 71.
  • each of the coils 61 to 68 shown in FIG. 11a can be connected to the power sources 70 and 71, respectively, so that the eight layers of coils can be energized in parallel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Electromagnets (AREA)

Abstract

【課題】 従来装置では、2個の固定電磁石が1個の回転永久磁石に対して配置し、1個の回転永久磁石を2個の固定電磁石で回転するから、固定電磁石の鉄芯の両端に発生する磁力の一方の磁力しか利用することができない課題があった。 【解決手段】 磁力を変換すべき固定電磁石1として、鉄芯2にコイル3を巻き回し、コイル3への通電方向を変換して鉄芯2の両端部の固定電極部5,6の極性を変換すると共に、前記固定電極部5,6に回転に伴って極性が交互に変転する永久磁石8,9からなる回転永久磁石15,16,17,18を回転自在に設けた電磁式回転駆動装置。

Description

電磁式回転駆動装置
 本発明は、電磁式回転駆動装置に関する。
 ハウジング内に回転自在に永久磁石から成る回転永久磁石を設けると共に、ハウジングの内壁に、磁力を変換すべき固定電磁石として鉄芯にコイルを巻き回し、コイルへの通電方向を変換して固定電磁石の磁力を変換し、鉄芯と永久磁石との間に作用する磁気的吸引力、磁気的反発力により、回転永久磁石を固定電磁石に対して回転する電磁式回転駆動装置は特許文献1又は2に記載のように知られている。
特開2010-265805号公報 特開2012-157143号公報
 この従来装置では、2個の固定電磁石が1個の回転永久磁石に対して配置してあり、2個の鉄芯と1個の回転永久磁石との間に作用する磁気的吸引力、磁気的反発力により、回転永久磁石を固定電磁石に対して回転するから、固定電磁石の鉄芯の両端に発生する磁力の一方の磁力しか利用することができない課題があった。
 そこで、本発明は、特許請求の範囲の請求項1に記載のように、磁力を変換すべき固定電磁石として、鉄芯にコイルを巻き回し、コイルへの通電方向を変換又はオン・オフして固定電磁石の極性を変換すると共に、前記固定電磁石の鉄芯の両端部に回転に伴って極性が交互に変転する永久磁石からなる回転永久磁石を設けた電磁式回転駆動装置を提供するものである。
 また、請求項2に記載のように、請求項1に記載の電磁式回転駆動装置において、固定電磁石の鉄芯端部に回転永久磁石を変位して設けてなる電磁式回転駆動装置を提供するものである。
 また、請求項3に記載のように、請求項2に記載の電磁式回転駆動装置において、固定電磁石の鉄芯端部を弧状に切欠いて、切欠き部分に回転永久磁石の一外周部分が対面するように設けてなる電磁式回転駆動装置を提供するものである。
 また、請求項4に記載のように、請求項1、2又は3に記載の電磁式回転駆動装置において、固定電磁石の鉄芯端部の側部に回転永久磁石の一外周部分が対面するように設けてなる電磁式回転駆動装置を提供するものである。
 また、請求項5に記載のように、請求項4に記載の電磁式回転駆動装置において、固定電磁石の鉄芯端部に複数個の回転永久磁石を設けてなる電磁式回転駆動装置を提供するものである。
 また、請求項6に記載のように、請求項1乃至5のいずれかに記載の電磁式回転駆動装置において、固定電磁石に多面柱状の鉄芯端部を設けてなる電磁式回転駆動装置を提供するものである。
 また、請求項7に記載のように、請求項6に記載の電磁式回転駆動装置において、固定電磁石の多面柱状の鉄芯端部に対面して回転永久磁石を回転自在に設けてなる電磁式回転駆動装置を提供するものである。
 また、請求項8に記載のように、請求項7に記載の電磁式回転駆動装置において、固定電磁石の多面柱状の鉄芯端部の一側面に対面して2個以上の回転永久磁石を設けてなる電磁式回転駆動装置を提供するものである。
 また、請求項9に記載のように、請求項8に記載の電磁式回転駆動装置において、固定電磁石の多面柱状の一鉄芯端部の平行する2面にそれぞれ対面して回転永久磁石を回転自在に設けてなる電磁式回転駆動装置を提供するものである。
 また、請求項10に記載のように、請求項1乃至9のいずれかに記載の電磁式回転駆動装置において、固定電磁石の鉄芯端部に設けた複数個の回転永久磁石の回転軸を一駆動軸に連結して設けてなる電磁式回転駆動装置を提供するものである。
 また、請求項11に記載のように、請求項1乃至10のいずれかに記載の電磁式回転駆動装置において、固定電磁石の鉄芯に巻始端子と巻終端子を有するコイルを多重に巻き回し、各コイル間の接続又は電源への接続を任意に設定可能にしてなる電磁式回転駆動装置を提供するものである。
 また、請求項12に記載のように、請求項1乃至11のいずれかに記載の電磁式回転駆動装置において、回転永久磁石の回転外周に非磁性体からなる補強ベルトを設けてなる電磁式回転駆動装置を提供するものである。
 また、請求項13に記載のように、請求項1乃至12のいずれかに記載の電磁式回転駆動装置において、固定電磁石のコイルの外周に冷却用流体の循環する放熱手段を設けてなる電磁式回転駆動装置を提供するものである。
 本発明に係る電磁式回転駆動装置によれば、特許請求の範囲の請求項1に記載のように、磁力を変換すべき固定電磁石として、鉄芯にコイルを巻き回し、コイルへの通電方向を変換又はオン・オフして固定電磁石の極性を変換すると共に、前記固定電磁石の鉄芯の両端部に回転に伴って極性が交互に変転する永久磁石からなる回転永久磁石を回転自在に設けた構成を有することにより、固定電磁石の鉄芯の両端部において回転子である回転永久磁石を設けることができるから、固定電磁石の鉄芯の両端に発生する磁力を回転永久磁石の磁力によって個々に利用し、磁力エネルギーを駆動エネルギーに有効に転換することができる効果がある。
 また、請求項2に記載のように、請求項1に記載の電磁式回転駆動装置において、固定電磁石の鉄芯端部に回転永久磁石を変位して設けてなる構成を有することにより、鉄芯端部の回転永久磁石に対する吸引磁力と反発磁力のバランスを崩すことによって回転永久磁石の回転を円滑にすることができると共に、鉄芯端部に複数個の回転永久磁石を変位して設置することができる効果がある。
 また、請求項3に記載のように、請求項2に記載の電磁式回転駆動装置において、固定電磁石の鉄芯端部を弧状に切欠いて、切欠き部分に回転永久磁石の一外周部分が対面するように設けてなる構成を有することにより、鉄芯端部の鉄芯に変位して回転永久磁石を配置することができる効果がある。
 また、請求項4に記載のように、請求項1、2又は3に記載の電磁式回転駆動装置において、固定電磁石の鉄芯端部の側部に回転永久磁石の一外周部分が対面するように設けてなる構成を有することにより、鉄心端部の外周囲部分に変位して回転永久磁石を設けることができる効果がある。
 また、請求項5に記載のように、請求項4に記載の電磁式回転駆動装置において、固定電磁石の鉄芯端部に複数個の回転永久磁石を設けてなる構成を有することにより、固定電磁石の鉄芯端部に発生する磁力を複数個の回転永久磁石で有効に利用することができる効果がある。
 また、請求項6に記載のように、請求項1乃至5のいずれかに記載の電磁式回転駆動装置において、固定電磁石に多面柱状の鉄芯端部を設けてなる構成を有することにより、多面柱状の鉄芯端部の各面に対して回転永久磁石を回転軸の方向を含めて自由に配置することができる効果がある。
 また、請求項7に記載のように、請求項6に記載の電磁式回転駆動装置において、固定電磁石の多面柱状の鉄芯端部に対面して回転永久磁石を回転自在に設けてなる構成を有することにより、多面柱状の鉄芯端部の形成する面の数だけ任意に回転永久磁石を配置することができる効果がある。
 また、請求項8に記載のように、請求項7に記載の電磁式回転駆動装置において、固定電磁石の多面柱状の鉄芯端部の一側面に対面して2個以上の回転永久磁石を設けてなる構成を有することにより、多面柱状の鉄芯端部の形成する面の数以上の回転永久磁石を配置することができる効果がある。
 また、請求項9に記載のように、請求項8に記載の電磁式回転駆動装置において、固定電磁石の多面柱状の一鉄芯端部の平行する2面にそれぞれ対面して2個の回転永久磁石を回転自在に設けてなる構成を有することにより、一鉄心端部に互いに直交する回転軸を有する回転永久磁石を配置して、各回転軸を簡単な機構で連動させて一軸に回転力を纏めて取り出すことができる効果がある。
 また、請求項10に記載のように、請求項1乃至9のいずれかに記載の電磁式回転駆動装置において、固定電磁石の鉄芯端部に設けた複数個の回転永久磁石の回転軸を一駆動軸に連結して設けてなる構成を有することにより、各回転永久磁石の回転駆動力を一駆動軸に集中して利用することができる効果がある。
 また、請求項11に記載のように、請求項1乃至10のいずれかに記載の電磁式回転駆動装置において、固定電磁石の鉄芯に巻始端子と巻終端子を有するコイルを多重に巻き回し、各コイル間の接続又は電源への接続を任意に設定可能にしてなる構成を有することにより、各コイルの通電、通電方向の変換或いは抵抗値の分散と均等化を図ることができる効果がある。
 また、請求項12に記載のように、請求項1乃至11のいずれかに記載の電磁式回転駆動装置において、回転永久磁石の回転外周に非磁性体からなる補強ベルトを設けてなる構成を有することにより、回転永久磁石を回転軸に強固に固定し安定化することができる。
 また、請求項13に記載のように、請求項1乃至12のいずれかに記載の電磁式回転駆動装置において、固定電磁石のコイルの外周に冷却用流体の循環する放熱手段を設けてなる構成を有することにより、コイルの冷却ができると共に、冷却流体を他の構造物に循環させて暖めることができる効果がある。
本発明の一実施例の概略説明図。 本発明の他の実施例の概略説明図。 本発明の他の実施例の概略説明図。 本発明の他の実施例の概略説明図。 図4aをG矢視方向から見た実施例の概略説明図。 本発明の他の実施例の概略説明図。 図5aをA矢視方向から見た実施例の概略説明図。 本発明の要部の一実施例の概略説明図。 本発明の要部の他の実施例の概略説明図。 本発明の要部の他の実施例の概略説明図。 本発明の他の実施例の概略説明図。 本発明の要部の他の実施例の概略説明図。 本発明の要部の他の実施例の概略説明図。 本発明の要部の他の実施例の概略説明図。 本発明の要部の他の実施例の概略説明図。 本発明の要部の他の実施例の概略説明図。 本発明の要部の他の実施例の概略説明図。
 以下図示する実施例を参考に本発明に係る電磁式回転駆動装置を説明する。
 図1に記載の実施例において、1は磁力を両極端部で変換すべき固定電磁石で、その鉄芯2の中間部にコイル3を巻き回してある。4はコイル3の両側に設けたコイル押さえ板である。図1は鉄芯2の中央を長手方向に沿って縦断した態様で示してあり、固定電磁石1の鉄芯2の両端部には固定電極部5,6が設けてある。鉄芯2の両端部の固定電極部5,6の極性N又はSは、コイル3への通電方向が変わると極性S又はNに変換することとなる。それぞれの固定電極部5,6には、実施例1の場合、半円以下の上部がやや長い円弧状の切欠部7が設けてあり、各切欠部7内に回転に伴って外周の極性が交互に変転する永久磁石8,9からなる回転永久磁石10、12がそれぞれ回転自在に設けてある。
 コイル3への通電方向が変わることにより、鉄芯2の両端部の固定電極部5,6の極性N・SがS・Nにそれぞれ変換し、図1において、右側の固定電極部5の電極がNの状態で、矢標Aのように左回りしている回転永久磁石10の磁性Nの永久磁石9が対面し、互いに反発する反発力が作用し、同時に次の回転位置の極性Sの永久磁石8が吸引力を受ける結果、回転永久磁石10の回転は持続する。
 同様に、左側の固定電極部6の電極がSの状態で、矢標Bのように右回りしている回転永久磁石12の磁性Sの永久磁石8が対面し、互いに反発する反発力が作用し、同時に次の回転位置の極性Nの永久磁石9が吸引力を受ける結果、回転永久磁石12の回転は持続する。
 コイル3への通電方向が変わると、鉄芯2の両端部の固定電極部5,6の極性NSが反転するから、図1における左右の固定電極部5、6の極性が反転し、固定電極部5,6と回転永久磁石10、12の永久磁石8,9の極性が交互に対面する状態となるから、回転永久磁石10、12はそれぞれA、B方向に回転を持続することとなる。
 上記の構成を有することにより、固定電磁石1の鉄芯2の両端部において回転子である回転永久磁石10,12を2個設けることができるから、固定電磁石1の鉄芯2の両端において発生する磁力を有効に利用して2個の回転子を回転駆動することができる効果がある。
 なお、固定電磁石1のコイル3への入力電力の供給は、起動時には入力電圧を低く通電方向の切り換えも底周波数で行う起動回路により行い、回転永久磁石10,12の回転駆動が始まると、高電圧と高周波数の入力電力を供給する運転回路に移行することによって、回転永久磁石10,12を高速回転することができる。
 また、図1の実施例の場合、回転永久磁石10、12は回転軸11、13と一体にそれぞれ回転し、永久磁石8,9は360度円弧の回転円周を180度円弧ずつ占拠するように磁性体からなる基軸部14の外周に設けてある。図1において、永久磁石8は、外周側がS極、内周側がN極になり、永久磁石9は、外周側がN極、内周側がS極になるように、それぞれ構成してある。
 図2に記載の実施例2の場合は、固定電極部5,6に設けた切欠部7の形態が図1の実施例1の上部がやや長い半円以下の殆ど全てが円弧状になるため、切欠部7の上部磁力がやや強力になるのとは異なり、切欠部7の形態が円弧状部7aと直線状部7bとからなるから、切欠部7の円弧状部7aの磁力が強力に作用するのに対して、直線状部7bの磁力が弱く作用し、変位して設けてなる構成を有することにより、結果として、固定電磁石の鉄芯端部に回転永久磁石を大きく変位して設けた構成になっている。図2の実施例2の他の構成は図1と同様であるから、図1と同じ符号を付して、その説明は省略してある。
 図1の実施例1の場合、各切欠部7内に回転に伴って外周の極性が交互に変転する永久磁石8,9からなる回転永久磁石10、12は、円弧状の固定電極部5,6内にほぼ均等に対面するように設けてあるから、個々の永久磁石8,9はほぼ均等に吸引力と反発力を受けて回転するため、逆回転方向の吸引力や反発力を受ける恐れがある。
 これに対して、図2の実施例2の場合、各切欠部7内に回転に伴って極性が交互に変転する永久磁石8,9からなる回転永久磁石10、12は、固定電極部5,6の磁力の強い円弧状部7aとは均等に対面するが、磁力の弱い直線状部7bとは徐々に離反するように変位して設けてあるから、個々の永久磁石8,9はその一部において回転方向に加速するアンバランスな吸引力と反発力を受けて回転することとなる。即ち、図2の実施例2では、固定電極部5,6の吸引力も反発力も回転永久磁石10,12の回転力を加速する方向に作用するから、鉄芯端部の回転永久磁石に対する吸引磁力と反発磁力のバランスを崩すことによって回転永久磁石の回転をより円滑にすることができる。
 図3に記載の実施例3の場合、四面柱状の固定電磁石1の鉄芯2の両端部5,6の側部エッジ5a、5b及び6a、6bに回転軸19,20,21,22が平行するように、4個の回転永久磁石15,16,17,18がそれぞれ回転可能に設けてある。固定電磁石1の鉄芯2の両端部5,6において回転子である回転永久磁石を4個設けることができるから、固定電磁石1の鉄芯2の両端に発生する磁力をそれだけ有効に利用することができる。
 図示の場合、コイル3への通電方向が変わり、鉄芯2の両端部の固定電極部5,6の極性が反転した状態において、固定電極部5の側部エッジ5a,5bでは、強力なN極の磁力を帯びているから、回転永久磁石15,16のS極の永久磁石8が強力に吸引されるのに対して、N極の永久磁石9は強力に反発されて、回転永久磁石15,16は矢標C,D方向に回転することとなる。そして、回転永久磁石15,16が半回転したところで、コイル3への通電方向が変わり、鉄芯2の両端部の固定電極部5,6の極性が反転した状態において、N極の永久磁石9が強力に吸引されるのに対して、S極の永久磁石8は強力に反発されて、回転永久磁石15,16は矢標C,D方向に回転を持続することとなる。
 同様に、コイル3への通電方向が変わり、鉄芯2の両端部の固定電極部5,6の極性が反転した状態において、固定電極部6の側部エッジ6a,6bでは、強力なS極の磁力を帯びているから、回転永久磁石17,18のN極の永久磁石9が強力に吸引されるのに対して、S極の永久磁石8は強力に反発されて、回転永久磁石17,18は矢標E,F方向に回転することとなる。
 そして、回転永久磁石17,18が半回転したところで、コイル3への通電方向が変わり、鉄芯2の両端部の固定電極部5,6の極性がNに反転した状態において、S極の永久磁石8が強力に吸引されるのに対して、N極の永久磁石9は強力に反発されて、回転永久磁石17,18は矢標E,F方向に回転を持続することとなる。
 なお、この実施例3において、固定電極部5,6の側部エッジ5a,5b,6a,6bではその側面部分より強力な磁力を帯びているから、回転永久磁石15,16,17,18は磁力の強弱のバランスの異なる位置に先に実施例2より更に変位して設けてあることとなる。この実施例3の場合、回転数が上がると加速回転方向の磁力の作用は少なくても一定の回転数を維持することができる。
 また、先の実施例と同じ構成部分は同じ符号を付し説明を省力してある。
 図4a及び4bに記載の実施例の場合、四面柱状の固定電磁石1の鉄芯2の両端部に四面柱状の固定電極部25、26をT字状に設け、一方の固定電極部25の4隅の側部エッジ部25a,25b,25c,25dにそれぞれ回転永久磁石27,28,29,30を設け、同様に他方の固定電極部26の4隅の側部エッジ部26a,26b,26c,26dにそれぞれ回転永久磁石31,32,33,34を設けてある。それぞれの回転永久磁石は固定電極部の4隅の側部エッジ部に磁力の強弱のバランスの異なる変位した位置に配置され、図3に記載の実施例3と同様に、コイル3の通電方向の変換に伴って回転することとなる。この場合、合計8個の回転永久磁石がそれぞれ矢標G,H,I,J方向に回転することとなる。23,24はそれぞれ回転永久磁石の回転軸である。
 図5a及び5bに記載の実施例の場合、四面柱状の固定電磁石1の鉄芯2の両端部の固定電極部25,26の4側面の側部エッジ部25a,25b,25c,25dと26a,26b,26c,26dに、それぞれ回転永久磁石27,28,29,30と31,32,33,34を設けてある。それぞれの回転永久磁石は固定電極部の4面の側部エッジ部に磁力の強弱のバランスの異なる変位した状態で設置されているから、図3に記載の実施例3と同様に、コイル3の通電方向の変換に伴って、矢標C,D及び矢標E,Fのように固定電磁石の電極部端面に向かって回転することとなる。
 この場合、合計8個の回転永久磁石が回転することとなる。また、図5a及び図5bに記載のように、一端部25の固定電磁石27,28,29,30はそれぞれ電極部端面に向かって矢標C,Dのように同一方向に回転するから、そのそれぞれ直交する回転軸23a,23b,23c,23dを傘歯車35によって連動するように連結可能で,その内の一回転軸23bを延長して駆動機36に接続して使用することができる。図において、37はクラッチ、38は軸継ぎ手である。なお、他端部26の固定電磁石31,32,33,34もそれぞれ電極部端面に向かって矢標E,Fのように同一方向に回転するから、そのそれぞれ直交する回転軸23a,23b等を傘歯車によって連動するように連結可能で,その内の一回転軸23bを延長して駆動機36等に接続して使用することができる。
 図6は回転永久磁石40の一実施例の縦断側面図で、41は回転軸、42は磁性体である鉄からなる基軸部、43は基軸部42の外周に接着して設けた永久磁石、44はローター押さえ座金、45,46はローター組み付けボルト・ナット、47は永久磁石43の剥離防止用に永久磁石の外周に設けた非磁性材からなる補強ベルトである。
 図7は回転永久磁石40の他の実施例で、鉄製の基軸部42の外周に磁極が異なる永久磁石43a、43bが交互に4個設けてある。永久磁石43a,43bの間には非磁性材からなる間隔部材48が設けてある。外周には補強ベルト47が設けてある。
 図8の実施例では、基軸部42の外周に磁極が異なる永久磁石43a、43bが交互に8個設けてある。永久磁石43a,43bの間には非磁性材からなる間隔部材48が設けてあり、外周には補強ベルト47が設けてある。回転軸41と鉄製の基軸部42との間には軽量のアルミ合金からなる軽量軸部49が設けてあり、軽量軸部49には多数の空洞孔49aが設けて軽量化を図ってある。
 図9の実施例では、図5a及び図5bにおけるコイル3を一例として、固定電磁石1の鉄芯2の中間部に設けたコイル3の放熱手段50を示し、図では省略したが、コイル押さえ板4に多数のフィン51を設けて直接的に放熱することも可能であるが、図示の実施例では、コイル3の外周を放熱用ケース52で覆い、ケース52内にタンク53から冷却用油又は冷却水のような流体を供給して、排出コック54からケース外に排出し、他の外部の冷暖房装置等を循環させて放熱を利用することも可能である。この場合、コイル3は全体をニス等で固定して、周囲を放熱しやすいように凹凸の形状にすることも可能である。
 図10は本発明に係るコイル3の実施例で、コイルを3a、3bのように二重に巻き、一方のコイル3aと他方のコイル3bとの通電方向を逆に設定して、各コイル3a,3 bのスイッチ55a,55bをオン・オフすることにより、コイル3の通電方向を実質的に変換することができ、スイッチ切り換えに伴う逆起電力の防止を図り、スイッチのスパークを防止することができる。図10において、56は直流電源、57aはコイル3aのスイッチ55a用のコンデンサー等からなるスパーク防止装置、57bはコイル3bのスイッチ55b用のコンデンサー等からなるスパーク防止装置である。
 図11bに示す実施例11では、固定電磁石の鉄芯60に巻き回すコイル3を、図11aに示すように、巻始端子1a、2a、3a、4a、5a、6a、7a、8aと巻終端子1b、2b、3b、4b、5b、6b、7b、8bを有する8重のコイル61,62,63,64,65,66,67,68で構成してある。図示の実施例の場合、図11aに記載の如く、各コイルの抵抗値が、コイル61で5.5オーム,コイル62で6.5オーム,コイル63で8オーム,コイル64で8.5オーム、コイル65で9.5オーム、コイル66で10オーム、コイル67で11オーム、コイル68で12.5オームのように、内周から外周に抵抗値が増加するように巻き回して放熱しやすい外周のコイルほど抵抗値を大きく設定してある。
 図11bに記載の実施例では、抵抗値が同じになる4層のコイルを構成するように、図11eに記載の如く、第4・5層のコイル64・65を一端子4b・5aで接続して他端子4a・5bをそれぞれ異なる電源70・71に接続し、第3・6層のコイル63・66を一端子3b・6aで接続して他端子3a・6bをそれぞれ電源70・71に接続し、第2・7層のコイル62・67を一端子2b・7aで接続して他端子2a・7bをそれぞれ電源70・71に接続し、第1・8層のコイル61・68を一端子1b・8aで接続して他端子1a・8bをそれぞれ電源70・71に接続してある。各層のコイルの抵抗を同じにすることによって、各コイルへの一斉安定して通電を行うことができる。
 図11cの実施例は、8層のコイルを第4・5層、第3・6層、第2・7層、第1・8層の順に連結して電源70・71に接続して、8層のコイルを一巻きの同じ抵抗値のコイルとして通電することができるようにしたものである。
 図11bの実施例は、8層のコイルを、第4・5層、第3・6層の順に接続するものと、第2・7層、第1・8層の順に接続するものの2層を、電源70・71に接続して、8層のコイルを二巻きの同じ抵抗値のコイルとして通電することができるようにしたものである。
 なお、図11aに記載した61から68の各コイルを、それぞれ電源70,71に接続して、8層のコイルを並列に通電することもできることは勿論である。
1      固定電磁石
2      鉄芯
3      コイル3
4      コイル押さえ板
5      固定電極部
6      固定電極部
7      切欠部
8      永久磁石
9      永久磁石
10     回転永久磁石
11     回転軸
12     回転永久磁石
13     回転軸
14     基軸部
15、16,17,18 回転永久磁石
19,20,21,22 回転軸
23     回転軸
24     回転軸
25、26  固定電極部
27、28、29、30  回転永久磁石
31、32、33、34  回転永久磁石
35     傘歯車
36     駆動機
37     クラッチ
38     軸継ぎ手
40     回転永久磁石
41     回転軸
42     基軸部
43     永久磁石
44     ローター押さえ金具
45、46  ローター組み付けボルト・ナット
47     補強ベルト
48     間隔部材
49     軽量軸部
50     放熱手段
51     フィン
52     放熱用ケース
53     タンク
54     排出コック
55a、55b スイッチ
56     直流電源
60     回転軸
61~68  コイル
70、71  直流電源

Claims (13)

  1.  磁力を変換すべき固定電磁石として、鉄芯にコイルを巻き回し、コイルへの通電方向を変換又はオン・オフして固定電磁石の極性を変換すると共に、前記固定電磁石の鉄芯の両端部に回転に伴って極性が交互に変転する永久磁石からなる回転永久磁石を設けた電磁式回転駆動装置。
  2.  請求項1に記載の電磁式回転駆動装置において、固定電磁石の鉄芯端部に回転永久磁石を変位して設けてなる電磁式回転駆動装置。
  3.  請求項2に記載の電磁式回転駆動装置において、固定電磁石の鉄芯端部を弧状に切欠いて、切欠き部分に回転永久磁石の一円周部分が対面するように設けてなる電磁式回転駆動装置。
  4.  請求項1、2又は3に記載の電磁式回転駆動装置において、固定電磁石の鉄芯端部の側部に回転永久磁石の一外周部分が対面するように設けてなる電磁式回転駆動装置。
  5.  請求項1乃至4のいずれかに記載の電磁式回転駆動装置において、固定電磁石の鉄芯端部に複数個の回転永久磁石を設けてなる電磁式回転駆動装置。
  6.  請求項1乃至5のいずれかに記載の電磁式回転駆動装置において、固定電磁石に多面柱状の鉄芯端部を設けてなる電磁式回転駆動装置。
  7.  請求項6に記載の電磁式回転駆動装置において、固定電磁石の多面柱状の鉄芯端部に対面して回転永久磁石を回転自在に設けてなる電磁式回転駆動装置。
  8.  請求項7に記載の電磁式回転駆動装置において、固定電磁石の多面柱状の鉄芯端部の一側面に2個の回転永久磁石を対面して設けてなる電磁式回転駆動装置。
  9.  請求項8に記載の電磁式回転駆動装置において、固定電磁石の多面柱状の一鉄芯端部の平行する2面にそれぞれ対面して回転永久磁石を回転自在に設けてなる電磁式回転駆動装置。
  10.  請求項1乃至9のいずれかに記載の電磁式回転駆動装置において、固定電磁石の鉄芯端部に設けた複数個の回転永久磁石の回転軸を一駆動軸に連結して設けてなる電磁式回転駆動装置。
  11.  請求項1乃至10のいずれかに記載の電磁式回転駆動装置において、固定電磁石の鉄芯に巻始端子と巻終端子を有するコイルを多重に巻き回し、各コイル間の接続又は電源への接続を任意に設定可能にしてなる電磁式回転駆動装置。
  12.  請求項1乃至11のいずれかに記載の電磁式回転駆動装置において、回転永久磁石の回転外周に非磁性体からなる補強ベルトを設けてなる電磁式回転駆動装置。
  13.  請求項1乃至12のいずれかに記載の電磁式回転駆動装置において、固定電磁石のコイルの外周に冷却用流体の循環する放熱手段を設けてなる電磁式回転駆動装置。
PCT/JP2013/076710 2012-10-12 2013-10-01 電磁式回転駆動装置 WO2014057842A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-227221 2012-10-12
JP2012227221A JP2014082808A (ja) 2012-10-12 2012-10-12 電磁式回転駆動装置

Publications (1)

Publication Number Publication Date
WO2014057842A1 true WO2014057842A1 (ja) 2014-04-17

Family

ID=50477309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076710 WO2014057842A1 (ja) 2012-10-12 2013-10-01 電磁式回転駆動装置

Country Status (2)

Country Link
JP (1) JP2014082808A (ja)
WO (1) WO2014057842A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204077A1 (ja) * 2015-06-16 2016-12-22 文美子 兼子 電磁式回転駆動装置
JP2017200416A (ja) * 2016-04-25 2017-11-02 株式会社空 回転電機

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145367U (ja) * 1980-03-28 1981-11-02
JPS57116568A (en) * 1981-01-12 1982-07-20 Seikosha Co Ltd Small-sized motor with battery lifetime predicting function
JPS6087657A (ja) * 1983-09-16 1985-05-17 オメガ・エス・ア− 単相電磁ステツプモ−タ
JPH04222445A (ja) * 1990-12-25 1992-08-12 Kyocera Corp リング体の回転駆動装置
JPH0614484A (ja) * 1992-04-15 1994-01-21 Westinghouse Electric Corp <We> コイル巻線
JPH0680350U (ja) * 1992-10-06 1994-11-08 愛知電機株式会社 永久磁石付回転子
JP2001258217A (ja) * 2000-03-14 2001-09-21 Fukuchi Denso:Kk モータ
WO2004019468A1 (ja) * 2002-08-21 2004-03-04 Toyota Jidosha Kabushiki Kaisha 車両用モータ
JP2011120412A (ja) * 2009-12-05 2011-06-16 Shigeto Abe 発電機,直流電動機及び直流電動発電機

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145367U (ja) * 1980-03-28 1981-11-02
JPS57116568A (en) * 1981-01-12 1982-07-20 Seikosha Co Ltd Small-sized motor with battery lifetime predicting function
JPS6087657A (ja) * 1983-09-16 1985-05-17 オメガ・エス・ア− 単相電磁ステツプモ−タ
JPH04222445A (ja) * 1990-12-25 1992-08-12 Kyocera Corp リング体の回転駆動装置
JPH0614484A (ja) * 1992-04-15 1994-01-21 Westinghouse Electric Corp <We> コイル巻線
JPH0680350U (ja) * 1992-10-06 1994-11-08 愛知電機株式会社 永久磁石付回転子
JP2001258217A (ja) * 2000-03-14 2001-09-21 Fukuchi Denso:Kk モータ
WO2004019468A1 (ja) * 2002-08-21 2004-03-04 Toyota Jidosha Kabushiki Kaisha 車両用モータ
JP2011120412A (ja) * 2009-12-05 2011-06-16 Shigeto Abe 発電機,直流電動機及び直流電動発電機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204077A1 (ja) * 2015-06-16 2016-12-22 文美子 兼子 電磁式回転駆動装置
JP2017200416A (ja) * 2016-04-25 2017-11-02 株式会社空 回転電機

Also Published As

Publication number Publication date
JP2014082808A (ja) 2014-05-08

Similar Documents

Publication Publication Date Title
US10734851B2 (en) Outer rotor type brushless motor
EP1689067B1 (en) Induction motor having reverse-rotation preventing function
US7777385B2 (en) Compact, electromagnetically braked actuator assembly
JP2006353009A (ja) アキシャルエアギャップ型電動機
CA2617918A1 (en) Dc induction electric motor generator
RU2396675C1 (ru) Электрическая машина
US6198182B1 (en) Two-phase stepper motor having two disk stators with salient poles positioned on either side of two disk rotors
CN111466070B (zh) 执行器
CA2246367A1 (en) A two-phase stepper motor
WO2014057842A1 (ja) 電磁式回転駆動装置
JP7047337B2 (ja) 永久磁石式回転電機
JP6933731B2 (ja) 永久磁石オフセットシステム及び方法
JP2004147425A (ja) 回転電機
KR20170058627A (ko) 전기 모터
US9934897B1 (en) Polarity-switching magnet diode
JP2000512838A (ja) 自己起動式ブラシレス電気モータ
JP2001037175A (ja) 2軸同期反転駆動モータ
JP2004343930A (ja) アクチュエータ
WO2017118855A1 (en) Electrical machine
JP6721254B2 (ja) アウターロータ型ブラシレスモータ
KR101029610B1 (ko) 모터
JP5874246B2 (ja) リニア駆動装置の可動子
BR112019013223B1 (pt) Diodo magnético de comutação de polaridade
KR101838014B1 (ko) 고속 전동기
AU2008234988B2 (en) An Electric Motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13844821

Country of ref document: EP

Kind code of ref document: A1