WO2003075327A1 - Exposure equipment and device manufacturing method - Google Patents

Exposure equipment and device manufacturing method Download PDF

Info

Publication number
WO2003075327A1
WO2003075327A1 PCT/JP2003/002374 JP0302374W WO03075327A1 WO 2003075327 A1 WO2003075327 A1 WO 2003075327A1 JP 0302374 W JP0302374 W JP 0302374W WO 03075327 A1 WO03075327 A1 WO 03075327A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
exposure apparatus
stage
mask
reticle
Prior art date
Application number
PCT/JP2003/002374
Other languages
English (en)
French (fr)
Inventor
Naomasa Shiraishi
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to AU2003211556A priority Critical patent/AU2003211556A1/en
Priority to JP2003573686A priority patent/JPWO2003075327A1/ja
Publication of WO2003075327A1 publication Critical patent/WO2003075327A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages

Definitions

  • the present invention relates to an exposure apparatus and a device manufacturing method, and more particularly, to an exposure apparatus suitable for forming a fine pattern such as a semiconductor integrated circuit and a liquid crystal display, and a device manufacturing method using the exposure apparatus.
  • the exposure wavelength has been shifted to shorter wavelengths in order to realize high resolution in response to miniaturization of integrated circuits.
  • the wavelength of the KrF excimer laser beam is 2488 nm, but the shorter wavelength of the ArF excimer laser beam, 193 nm, is entering the stage of practical use.
  • a short wavelength of 1 5 7 nm F 2 laser light, of A r 2 laser beam having a wavelength of 1 2 6 nm a light source that emits light in a wavelength band so-called vacuum ultraviolet region using
  • a projection exposure apparatus that performs the following.
  • Such vacuum ultraviolet light having a wavelength of 190 nm or less is intensely absorbed by oxygen and water vapor in the atmosphere. Therefore, an exposure apparatus that uses vacuum ultraviolet light as exposure light
  • the gas in that space is purged (gas purged) with a rare gas such as nitrogen or helium that does not absorb the exposure light.
  • a rare gas such as nitrogen or helium that does not absorb the exposure light.
  • high resolution can be realized not only by shortening the exposure wavelength, but also by increasing the numerical aperture (N.A.) of the optical system. A. It is also being developed.
  • N.A. numerical aperture
  • the concentration of residual oxygen and water vapor in the space near the reticle also needs to be suppressed to about 1 ppm or less.
  • a method of realizing this a method of covering the entire reticle stage holding the reticle with a large airtight shielding container (reticle stage chamber) and purging the entire inside (including the reticle stage and the reticle) with a gas is also conceivable.
  • the exposure apparatus becomes larger and larger.
  • the installation area (footprint) per lithography tool becomes larger, and equipment costs (or running costs) increase, resulting in higher productivity of semiconductor devices. Will decrease.
  • access to the vicinity of the reticle becomes difficult, workability during maintenance of the reticle stage or the like is reduced, and the time required for maintenance is increased. In this regard, the productivity of the semiconductor device is also reduced.
  • a scanning projection exposure apparatus has a large reticle stage because it is necessary to scan the reticle at high speed during exposure, and the shielding container (reticle stage chamber) that covers the entire large reticle stage becomes even larger. .
  • the present invention has been made under such circumstances, and a first object of the present invention is to provide an exposure apparatus capable of reducing the size and weight of the apparatus without lowering the exposure accuracy. .
  • a second object of the present invention is to provide a device manufacturing method capable of improving the productivity of a highly integrated device. Disclosure of the invention
  • an illumination unit for illuminating a mask with illumination light; a projection unit for projecting a pattern formed on the mask onto an object; a holding space for holding the mask Formed inside the mask stage, the mask stage being movable in at least one axial direction within a plane of movement substantially perpendicular to the optical path of the illumination light; and disposed on the illumination unit side of the mask stage via a predetermined first clearance.
  • a first mask surface plate provided at a part thereof with a light transmitting portion through which the illumination light is transmitted, and having a facing surface facing the mask stage; and a first mask plate on the projection unit side of the mask stage.
  • An exposure apparatus comprising: a mask surface plate; According to this, a holding space is formed inside a mask stage movable at least in one axial direction on a moving plane substantially perpendicular to the optical path of the illumination light, and the mask is held in the holding space. Then, first and second mask bases are respectively arranged on the illumination unit side and the projection unit side of the mask stage via predetermined first and second clearances, respectively. Each of the first and second mask bases has a light transmitting portion through which illumination light passes, and at least one of the surfaces facing the respective mask stages is provided with a movement guide of the mask stage. Surface.
  • the illuminating light enters the holding space of the mask stage via the light transmitting portion of the first mask surface plate, illuminates the mask with the illuminating light, and transmits the light transmitted through the mask to the second mask. Emitted from the light transmitting part of the surface plate.
  • the gap between each platen and the mask stage is formed by disposing the mask stage with first and second clearances between the first mask platen and the second mask platen. The outside air is effectively prevented from entering (inflowing into) the holding space through each of them. This suppression effect is good when the clearances are narrow to some extent, for example, about 1 mm or less, preferably 0.5 mm or less, and more preferably 0.1 mm or less.
  • the same effect as in the case where the entire mask stage is covered with the partition wall can be obtained, and the size and weight of the entire exposure apparatus can be reduced.
  • the entire mask stage is covered with a partition, and the amount of gas used is reduced as compared with the case where the inside is replaced with the gas. Therefore, it is possible to reduce costs.
  • the concentration of the light absorbing substance in the space around the mask can be kept low, the exposure accuracy does not decrease as a result.
  • a predetermined gas is provided on the mask stage and is injected to the facing surface of the second mask surface plate, and a gas in a space near the facing surface is sucked and exhausted to the outside.
  • a differential exhaust type first gas static pressure bearing is provided on the mask stage and injects a predetermined gas onto the opposed surface of the first mask surface plate, and the
  • a differential exhaust type second gas static pressure bearing for sucking gas in the clearance and exhausting the gas to the outside may be further provided.
  • At least one of the first and second gas static pressure bearings is disposed on the supply side annular groove communicating with the predetermined gas injection port, and on the outer peripheral side of the supply side annular groove. And an exhaust-side annular groove communicating with the exhaust port for the predetermined gas.
  • the mask stage includes: a fine movement stage in which the mask holding space is formed and holding the mask; and a fine movement stage that holds the fine movement stage so as to be finely movable in a plane parallel to the facing surface. 1 and a coarse movement stage having a surface facing the second mask surface plate, respectively.
  • a predetermined gas is provided on the surface of the fine moving stage that is provided on the opposing surface on the projection unit side and opposes the opposing surface.
  • a differential exhaust type first gas static pressure bearing that sucks gas near the surface of the fine movement stage and exhausts the gas to the outside may be further provided.
  • a predetermined gas is provided on the surface of the fine moving stage which is provided on the opposing surface on the side of the illumination unit, and opposes the opposing surface.
  • a differential exhaust type second gas static pressure bearing for absorbing a gas inside a clearance between the fine movement stage and the coarse movement stage and exhausting the gas to the outside may be further provided.
  • At least one of the first and second gas static pressure bearings is disposed on the supply side annular groove communicating with the predetermined gas injection port, and on the outer peripheral side of the supply side annular groove. And an exhaust groove communicating with an exhaust port of the predetermined gas. be able to.
  • the fine movement stage when the mask stage has a fine movement stage and a coarse movement stage, the fine movement stage can form the holding space.
  • the fine movement stage when the fine movement stage includes a side wall that forms the holding space, the fine movement stage irradiates the reflecting member provided on the outer surface side of the side wall with laser light, and reflects the reflected light reflected on the reflecting surface of the reflecting member.
  • the apparatus may further include a laser interferometer that measures the position of the fine movement stage based on the information.
  • the exposure apparatus of the present invention may further include at least one of a gas supply mechanism that supplies a specific gas to the holding space and a gas exhaust mechanism that exhausts gas in the holding space. .
  • the illumination light may be vacuum ultraviolet light having a wavelength of 190 nm or less, and the specific gas may be one of nitrogen and a rare gas.
  • at least one of the first mask surface plate and the illumination unit is disposed via a predetermined clearance without contacting at least one of the first mask surface plate and the illumination unit.
  • a shielding member for substantially shielding a space between the lighting unit and a shielding member provided on the shielding member for injecting a predetermined gas into at least one of the first mask surface plate and at least one of the lighting unit and the clearance;
  • a differential exhaust type sealing mechanism for sucking the gas inside and exhausting the gas to the outside.
  • the apparatus further includes at least one of a gas supply mechanism that supplies a specific gas to an optical path space that forms an optical path of the illumination light inside the shielding member, and an exhaust mechanism that exhausts gas in the optical path space. It can be.
  • the illumination light may be vacuum ultraviolet light having a wavelength of 190 nm or less, and the specific gas may be one of nitrogen and a rare gas.
  • a small amount of the second mask surface plate and the projection unit A shielding member that is arranged via a predetermined clearance without contacting at least one of them, and substantially shields a space between the second mask surface plate and the projection unit; and a shielding member provided on the shielding member.
  • a differential exhaust type sealing mechanism for injecting a predetermined gas into at least one of the second mask surface plate and the projection unit, and for sucking the gas in the clearance to exhaust the gas to the outside. It can be done.
  • the apparatus further includes at least one of a gas supply mechanism that supplies a specific gas to an optical path space that forms an optical path of the illumination light inside the shielding member, and an exhaust mechanism that exhausts gas in the optical path space. It can be.
  • the illumination light may be vacuum ultraviolet light having a wavelength of 190 nm or less
  • the specific gas may be one of nitrogen and a rare gas.
  • the present invention can be said to be a device manufacturing method using the exposure apparatus of the present invention.
  • FIG. 1 is a view schematically showing an exposure apparatus according to one embodiment of the present invention.
  • FIG. 2 is a perspective view showing the reticle stage and its vicinity with a part thereof omitted.
  • FIG. 3 is a longitudinal sectional view of the reticle stage.
  • FIG. 4A is a sectional view taken along line AA of FIG. 3, and FIG. 4B is a sectional view taken along line BB of FIG.
  • FIG. 5A is a longitudinal sectional view showing a configuration of a first shielding mechanism
  • FIG. 5B is a longitudinal sectional view showing a configuration of a second shielding mechanism.
  • FIG. 6 is a flowchart for explaining the device manufacturing method according to the present invention.
  • FIG. 7 is a flowchart showing a specific example of step 304 of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 schematically shows an exposure apparatus 100 according to one embodiment.
  • the exposure apparatus 100 irradiates an exposure illumination light (hereinafter, referred to as “exposure light”) EL as illumination light to a reticle R as a mask, and the reticle R and a wafer W as an object.
  • Exposure light an exposure illumination light
  • a reticle R as a mask
  • the reticle R and a wafer W as an object.
  • Exposure light exposure illumination light
  • EL exposure illumination light
  • the exposure apparatus 100 emits light from a light source (not shown), an illumination unit ILU connected to the light source via a light transmission optical system, a reticle stage RST as a mask stage holding the reticle R, and a reticle R.
  • a projection unit PU for projecting the exposure light EL onto the wafer W, a wafer stage WST for holding the wafer W, and control systems for them, and a support base BD for supporting each component are provided.
  • a light source emitting light belonging to the vacuum ultraviolet region having a wavelength of about 120 nm to about 190 nm, for example, a fluorine laser (F 2 laser) having an output wavelength of 157 nm is used.
  • the light source is connected to one end of an illumination system housing 102 constituting the illumination unit ILU via a light transmission optical system (not shown) partially including an optical axis adjustment optical system called a beam matching unit.
  • the light source is actually installed in a low-clean service room different from the clean room in which the exposure apparatus body including the illumination unit I and the projection unit PU is installed, or in a utility space below the clean room floor.
  • the illumination unit ILU includes an illumination system housing 102 for isolating the interior from the outside, and an illumination uniformity optical system including an optical integrator arranged in a predetermined positional relationship inside the illumination unit housing, a relay lens, a variable ND filter, An illumination optical system including a reticle plumbing, a mirror for bending the optical path, and the like (both not shown).
  • an optical integrator a fly-eye lens, a rod integrator (internal reflection type integrator), a diffractive optical element, or the like is used.
  • the illumination unit of the present embodiment is similar to those disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 6-349701 and US Patent Nos. 5,534,970 corresponding thereto. It has a configuration. To the extent permitted by the national laws of the designated country or elected elected country specified in this international application, the disclosures in the above US patents will be incorporated herein by reference.
  • a slit-shaped illumination area (a slit-shaped area elongated in the X-axis direction defined by the reticle blind) on the reticle R on which a circuit pattern or the like is formed is exposed to the exposure light E. Illuminate with almost uniform illuminance.
  • a flat plate-shaped light transmission window (not shown) is provided near the reticle R side end in the illumination system housing 102. This light transmission window has a function of transmitting the exposure light EL from the illumination unit I and maintaining the interior of the illumination system housing 102 in an airtight state.
  • the light-transmitting window is not limited to a flat-shaped window, but may be used instead of the above-mentioned light-transmitting window by fixing the lenses that constitute the lighting units I and U in the lighting system housing 102 in an airtight manner. It is good.
  • a material of a member that transmits the exposure light EL such as a lens, an illuminance uniforming optical system, and a light transmission window a material having a high transmittance to a vacuum ultraviolet light, for example, is used. It is desirable to use fluorite. ⁇
  • fluorine-doped quartz so-called modified quartz
  • modified quartz which partially excludes hydroxyl groups to about 10 ppm or less and contains about 1% of fluorine.
  • fluorine-doped quartz it is also possible to use ordinary quartz, quartz having only a small number of hydroxyl groups, and quartz added with hydrogen.
  • fluoride crystals such as magnesium fluoride and lithium fluoride may be used.
  • the support base BD includes a first base 111 provided on a floor F of a clean room, and a second base 112 supported by the first base 111.
  • the first frame 1 1 1 is composed of a plurality (four in this example) of vibration isolating units 13 a to 13 d provided on the floor F of the clean room (the vibration isolating unit 13 3 c and 13 d are not shown), and a plurality of (four in this case) legs 12 a to 12 d provided through the anti-vibration units 13 a to 13 d (FIG. 1).
  • the legs 12c and 12d on the far side of the drawing are not shown), and a plate-like support member 11a that is supported substantially horizontally by the two legs 12a and 12c of these legs.
  • a plate-shaped support member 11b substantially horizontally supported by the remaining two legs 12b and 12d.
  • the second base 1 1 2 includes a projection system side surface plate 3 as a second mask surface plate horizontally supported by support members 11 a and 11 b, and a projection system side surface plate 3 It is provided between the illumination system side surface plate 2 as the first mask surface plate and the projection system side surface plate 3 and the illumination system side surface plate 2, and the projection system side surface plate 3 and the illumination system side A plurality (four in this case) of support pillars (spacers) 26 a to 26 d that form a predetermined space between the platen 2 and the support pillar 26 c to 26 d (in FIG. 1, the support pillar 26 c 26 d is not (See Fig. 4A and Fig. 4B) You.
  • the illumination system-side surface plate 2 and the projection system-side surface plate 3 will be described.
  • the illumination system-side surface plate 2 and the projection system-side surface plate 3 are made of materials such as natural stone, ceramic, and stainless steel, respectively.
  • the surfaces on the opposite sides that is, the lower surface of the illumination system-side surface plate 2 and the upper surface of the projection system-side surface plate 3) are polished so that the unevenness becomes a smooth plane of several meters or less.
  • the surface plates 2 and 3 are made of natural stone or porous ceramic, it is desirable to coat the surface with a fluororesin or the like to prevent the adsorption and desorption of oxygen and water vapor on the surface. .
  • the platens 2 and 3 are formed with rectangular openings 2a and 3a as light transmitting portions for transmitting the exposure light.
  • the reticle stage RST is disposed between the illumination system-side surface plate 2 and the projection system-side surface plate 3 constituting the second frame 11 with a predetermined clearance from each surface plate, and a reticle R And can move at least in the Y-axis direction.
  • the position information of the reticle stage RST is constantly measured at a resolution of, for example, about 0.5 to 1 nm by the reticle laser interferometer 9 shown in FIG. 1 via a movable mirror provided on the reticle stage RST. It has become.
  • the configuration of the reticle stage R ST and the reticle laser interferometer 9 will be described later in further detail.
  • the projection unit PU is a unit in which an optical system (projection optical system) including a lens made of fluoride crystals such as fluorite and lithium fluoride and a reflecting mirror is sealed with a lens barrel 109.
  • an optical system projection optical system
  • a refraction system having a bilateral telecentricity and a projection magnification ⁇ of, for example, 14 or 15 is used. Therefore, as described above, when the reticle R is illuminated by the exposure light EL from the illumination unit ILU, the pattern on the reticle R corresponding to the illumination area is projected onto the wafer W by the projection unit PU (projection optical system).
  • a reduced image (partial image) of the pattern portion which is partially reduced and projected and illuminated with the exposure light EL is formed.
  • the projection unit PU is supported in a non-contact manner by a later-described wafer-side shielding mechanism 22 via a flange FLG provided at a slightly lower portion in the center of the lens barrel 109 in the height direction.
  • the projection optical system is not limited to a refraction system, and any of a catadioptric system and a reflection system can be used.
  • the lower end of the projection unit PU is inserted into the wafer chamber 40 formed inside the partition wall 20 provided on the floor F via the plurality of vibration isolation units 25.
  • a wafer stage WST which holds the wafer W and moves in a two-dimensional direction (XY two-dimensional direction) is provided.
  • the wafer stage WST is provided inside the wafer chamber 40 by a wafer drive system (not shown) as a drive device including, for example, a magnetic levitation type or a gas levitation type linear motor that floats by static pressure of a pressurized gas.
  • the wafer is freely driven in the XY plane along the upper surface of the wafer stage base BS provided via a plurality of vibration isolation units 19 in a non-contact manner.
  • the wafer stage WST is actually driven freely in the XY plane (including rotation around the Z-axis (0z rotation)). It is equipped with a wafer table 135 for holding the wafer W.
  • a wafer holder (not shown) is provided on the wafer table 135, and the wafer W is held by the wafer holder, for example, by vacuum suction.
  • the wafer table 135 is minutely driven by a drive system (not shown) in the Z-axis direction and the tilt direction with respect to the XY plane.
  • the wafer stage WS T is actually a force including a plurality of stages and tables. Below the wafer stage WS T, the wafer drive system moves the wafer stage WS T around the X, Y, Z, and X axes.
  • a single stage that can be driven in six degrees of freedom, 0x for rotation, 0y for rotation about the Y axis, and 0z. The description will be made as follows.
  • the position information of the wafer stage WST is, for example, about 0.5 to 1 nm by a wafer laser interferometer (hereinafter referred to as “wafer interferometer”) 18 via a moving mirror 17 provided on the upper surface of the wafer table 135. It is always measured with a resolution of.
  • wafer interferometer wafer laser interferometer
  • the moving mirror is provided with an X moving mirror having a reflecting surface orthogonal to the X axis and a Y moving mirror having a reflecting surface orthogonal to the Y axis.
  • An X laser interferometer for measuring the directional position and a Y laser interferometer for measuring the Y direction are provided. In FIG. 1, these are representatively shown as a moving mirror 17 and a wafer interferometer 18, respectively. I have. Note that, for example, the end surface of the wafer stage may be mirror-finished to form a reflection surface (corresponding to the reflection surface of the movable mirror 17).
  • the X-laser interferometer and the Y-laser interferometer are multi-axis interferometers having a plurality of measurement axes.
  • the laser interferometer 18 measures the positions of the wafer table 135 in the directions of X, ⁇ , ⁇ z ⁇ y % ⁇ X in five degrees of freedom.
  • the position information (or speed information) of the wafer stage WST from the above-described wafer interferometer 18 is sent to a control device (not shown), and the control device performs processing based on the position information (or speed information) of the wafer stage WS.
  • the wafer stage WST is driven via the drive system.
  • the illumination system housing 102, the lens barrel 109 of the projection unit PU, and the inside of the wafer chamber 40 are airtight.
  • a gas having high transmittance to vacuum ultraviolet light such as nitrogen or a rare gas (hereinafter referred to as “low-absorbing gas” as appropriate)
  • oxygen, water vapor, Strong absorption for light in this wavelength band such as hydrogen-based gas.
  • it is necessary to exclude gases that have good absorption characteristics hereinafter referred to as “absorbent gas” as appropriate).
  • the interior of the illumination system housing 102, the lens barrel 109, and the wafer chamber 40 are connected to the interior of the illumination system housing 102, the chambers 40, for example, at 22 ° C. Nitrogen or a rare gas controlled at a predetermined temperature is sent, and the inside gas is exhausted through the exhaust pipes 108, 29, and 23, thereby replacing each inside with a low-absorbent gas.
  • a gap (clearance) between the illumination system housing 102 and the illumination system side platen 2 is provided with an illumination system for shielding gas entering (inflowing) from the outside into the gap.
  • a side-shielding mechanism 7 is provided in a gap between the projection-system-side base 3 and the projection optical system PL.
  • a projection-system-side shielding mechanism 8 that shields gas entering (inflowing) from the outside into the gap is provided in the gap between the flange FLG of the projection unit PU barrel 109 and the partition wall 20 of the wafer chamber 40.
  • a wafer-side shield that shields gas from entering (inflowing) into the gap from outside.
  • a mechanism 22 is provided in the gap between the flange FLG of the projection unit PU barrel 109 and the partition wall 20 of the wafer chamber 40.
  • These shielding mechanisms 7, 8, and 22 are respectively held by holding mechanisms (not shown), and a predetermined clearance is formed between members located above and below. The shielding mechanisms 7, 8, and 22 will be described in more
  • the control system is mainly configured by a control device (not shown).
  • the control device includes a so-called microcomputer (or workstation) including a CPU (central processing unit), a ROM (read only memory), a RAM (random access memory), and the like.
  • a CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • Vw y8 ⁇ V (yS is from reticle R to wafer W
  • Reticle stage RST is driven in the Y-axis direction based on the measurement values of reticle laser interferometer 9 and wafer interferometer 18 so as to scan at The position and speed of the reticle stage RS and the wafer stage WST are respectively controlled.
  • FIG. 2 is a perspective view showing the reticle stage RST partially omitted
  • FIG. 3 is a longitudinal sectional view of the reticle stage RST.
  • FIG. 4A is a sectional view taken along line AA of FIG. 3
  • FIG. 4B is a sectional view taken along line BB of FIG.
  • the reticle stage RST is held in a non-contact manner with the second gantry 1 1 2 while being sandwiched between the illumination system side stool 2 and the projection system side stool 3 constituting the second gantry 1 12 as described above. Have been. As shown in FIG. 2, reticle stage RST was held in a state of being surrounded by reticle coarse movement stage 4 and three directions of soil Z direction and + Y direction by reticle coarse movement stage 4. A reticle fine movement stage 5 is provided.
  • the reticle coarse movement stage 4 has an upper plate part 46a arranged at a minute interval of a few microns below the illumination system side platen 2 and a minute micron from the upper surface of the projection system side platen 3.
  • a lower plate portion 46c is provided at an interval, and an intermediate portion 46b is disposed between the upper plate portion 46a and the lower plate portion 46c.
  • the movers 48a and 48b of the linear motors RM1 and RM2 are provided on both side surfaces in the X-axis direction of the lower plate portion 46c via support members 47a and 47b.
  • the member 47a and the mover 48a are not shown, see Fig. 4A).
  • These movers 48 a and 48 b are driven in the Y-axis direction by electromagnetic interaction with stators 49 a and 49 b extending along the Y-axis direction, and thereby the reticle
  • the coarse movement stage 4 is driven in the Y-axis direction.
  • the above-mentioned stators 49a and 49b can be supported by the first frame 111 supporting the second frame 112, but separately from the first frame 111 on the floor F of the clean room.
  • a support mechanism (not shown) may be provided via a vibration mechanism, and may be supported by this.
  • the position where the movers 48a and 48b are attached is not limited to the lower plate portion 46c, but may be the intermediate portion 46b. Since the reticle coarse movement stage 4 is accelerated and decelerated by these movers 48 a and 48 b, its mounting position (position in the height direction) matches the center of gravity of the entire reticle coarse movement stage 4. It is desirable to let them.
  • the reticle coarse movement stage 4 is driven in the Y-axis direction by the linear motors RM 1 and RM 2 as described above, but the opposing surfaces of the illumination system side plate 2 and the projection system side plate 3 are parallel to each other. Since the flatness of each surface is high, even if driving in the Y-axis direction, the minute spacing between the surface plates 2, 3 and the reticle coarse movement stage 4 is almost constant. Will be kept.
  • the middle part 46 b has embedded therein Y-axis fine actuators AC 1 and AC 2 composed of voice coil motors and the like and an X-axis fine actuator AC 3.
  • the movers of these fine actuators AC1 to AC3 are connected to a reticle fine movement stage 5 via stage holding members 42a, 42b and 42c, respectively. Accordingly, the reticle fine movement stage 5 is finely driven in the X, Y and 0 z directions (rotation around the Z axis direction) by the fine actuators AC1 to AC3.
  • the reticle coarse movement stage 4 includes a differential exhaust type gas static pressure bearing for maintaining a predetermined clearance between the illumination system side surface plate 2 and the projection system side surface plate 3, and a reticle fine movement stage.
  • a differential exhaust type gas static pressure bearing is provided to maintain a predetermined clearance between the bearings 5 and 5.
  • the reticle holding mechanism 53 is connected to a vacuum pump (not shown) installed in the exposure apparatus via a vacuum pipe 54 introduced on the bottom member 55, and the reticle R is connected to the reticle holding mechanism.
  • the vacuum pipe 54 is introduced through the reticle coarse movement stage 4 and into the reticle fine movement stage by a gas introduction terminal such as a VCR gas connector.
  • the vacuum piping 44 in the reticle coarse movement stage 4 is bundled with a wiring bundle 39 together with other electric wiring connected to an actuator or the like, and connected to a vacuum pump.
  • the vacuum pump may be provided in the exposure apparatus, but a vacuum pipe supplied from a vacuum pipe of a semiconductor factory or a pipe of reduced-pressure air may be used as a vacuum source. In this regard, the same applies to the vacuum pump described below.
  • the partition wall 52 is provided at a side wall portion surrounding the four sides and at the upper end of the side wall portion, and has a central portion having substantially the same size as the reticle R for passing the exposure light EL as shown in FIG. And a ceiling formed with a rectangular opening 52 a having the following.
  • the partition 52 and the bottom surface member 55 form a holding space SS for holding the reticle.
  • the ceiling has an upper end face opposed to annular concave grooves 58, 59 described later.
  • a plane mirror 91c as a reflecting member is provided outside the holding space SS of the reticle fine movement stage 5, and on the + X side surface of the partition wall 52, as shown in FIG. 4B.
  • a light beam from a reticle laser interferometer 9c provided on the + X side of the flat mirror 91c is irradiated on the reflecting surface of the flat mirror 91c, and the X-axis of the reticle R is irradiated.
  • the position in the direction is always detected by the reticle laser interferometer 9c with a resolution of, for example, about 0.5 to 1 nm.
  • a prism-shaped corner cube (retro reflector) 9 1a, 9 as a reflecting surface is provided on the outside of the partition wall 52 (outside of the holding space SS) and near one Y-side end of the bottom member 55.
  • 1b is provided via mounting members 104a and 104b (see FIG. 2).
  • the corner cubes 91a and 91b are irradiated with laser beams from the reticle laser interferometers 9a and 9b.
  • the position of the reticle R in the Y-axis direction is determined by the reticle laser interferometers 9a and 9b.
  • it is always detected with a resolution of, for example, about 0.5 to 1 nm.
  • the + X side end face and the 1Y side end face of the bottom member 55 may be mirror-finished.
  • first bearing J a differential exhaust type gas static pressure bearing (hereinafter referred to as “first bearing J”) that forms a minute gap between the reticle coarse movement stage 4 and the projection system side platen 3
  • first bearing J On the bottom surface of the lower plate portion 4 6 c of the reticle coarse movement stage 4, an air supply side annular groove 31 is formed slightly inside the outer edge portion thereof, and the exhaust side is formed outside the air supply side annular groove 31.
  • An annular concave groove 32 is formed in the supply-side annular concave groove 31.
  • the annular concave groove 31 branches off from one end of a substantially U-shaped air supply conduit 35 formed inside the reticle coarse movement stage 4.
  • the other end of the air supply line 35 is connected to one end of an air supply line 37, and the other end of the air supply line 37 is connected to an unillustrated gas supply line.
  • the exhaust side annular concave groove 32 is provided with an exhaust pipe branched from one end of a substantially U-shaped exhaust pipe 36 formed inside the reticle coarse movement stage 4.
  • the other end of the exhaust pipe line 36 is connected to one end of an exhaust pipe 38, and the other end of the exhaust pipe 38 is connected to a vacuum pump (not shown). ing.
  • the gas is sent from the gas supply device through the air supply pipe 37.
  • Low-absorbing gas such as nitrogen or a rare gas is ejected from the supply-side annular groove 31 through the supply line 35 and the supply passage 13 1 formed inside the reticle coarse movement stage 4.
  • the gas around the exhaust-side annular groove 32 is sucked by a vacuum pump (not shown) through the exhaust-side annular groove 32, the exhaust passage 1 32, the exhaust pipe 36, and the exhaust pipe 38. Is done.
  • the reticle coarse movement stage 4 can be floated by a small distance from the projection system side platen 3 and the inside air supply side annular groove 31 from the inside air supply side annular groove 31 into the clearance (clearance) between them.
  • the first bearing is substantially constituted by the entire lower plate portion 46c.
  • a differential exhaust type gas static pressure bearing (hereinafter, referred to as a “second bearing”) for hermetically sealing between the reticle coarse movement stage 4 and the illumination system side platen 2 will be described.
  • a supply-side annular groove 27 is formed slightly inside the outer edge portion thereof, and an exhaust-side annular groove is formed outside the supply-side annular groove 27.
  • An annular concave groove 28 is formed.
  • An air supply passage 133 branched from the other end of the air supply pipe 35 formed inside the reticle coarse movement stage 4 is connected to the air supply side annular concave groove 27.
  • the exhaust-side annular concave groove 28 is connected to an exhaust passage 134 branched from the other end of the above-described exhaust pipe 36 formed inside the reticle coarse movement stage 4.
  • a low-absorbing gas such as nitrogen or a rare gas sent from the gas supply device via the air supply pipe 37 is supplied to the air supply pipe formed inside the reticle coarse movement stage 4. 3 5 and the gas supply passage 1 3 3, gas is ejected from the gas supply side annular groove 27, and gas around the gas exhaust side annular groove 28 is exhausted into the gas exhaust side annular groove 28, the gas exhaust passage 1 34, to the vacuum pump (not shown) via the exhaust line 36 and the exhaust line 38 More sucked.
  • a predetermined clearance can be maintained between the reticle coarse movement stage 4 and the illumination system side platen 2, and the gas flows from the inside to the outside of the clearance (see the dotted arrow in FIG. 3).
  • the second bearing is constituted substantially by the entire upper plate portion 46a.
  • a differential exhaust gas static pressure bearing (hereinafter, referred to as a “third bearing J”) that forms a minute gap between the lower plate portion 46 c of the reticle coarse movement stage 4 and the reticle fine movement stage 5. Will be described.
  • an air supply-side annular groove 33 is formed outside the opening 4 b, and further on the outside of the air supply-side annular groove 33, the exhaust side is formed.
  • An annular concave groove 34 is formed.
  • the aforementioned air supply passage 13 1 formed inside the reticle coarse movement stage 4 is connected to the air supply side annular concave groove 33.
  • the exhaust-side annular groove 34 is connected to the above-described exhaust passage 13 formed inside the reticle coarse movement stage 4.
  • a low-absorbing gas such as nitrogen or a rare gas sent from the gas supply device via the air supply pipe 37 is supplied to the air supply pipe formed inside the reticle coarse movement stage 4. 3 5 and the air supply passage 13, the gas is ejected from the supply-side annular groove 33, and the gas around the exhaust-side annular groove 34 is exhausted by the exhaust-side annular groove 34, the exhaust passage 13 2. It is sucked by a vacuum pump (not shown) through the exhaust pipe 36 and the exhaust pipe 38.
  • a vacuum pump not shown
  • the lower end surface of the reticle fine movement stage 5 is arranged close to the annular concave grooves 33, 34, so that the gas injected from the supply side annular concave groove 33
  • the fine motion stage 5 is pushed up and flows around the fine motion stage 5, and is sucked in the exhaust side annular groove 34. That is, the fuel is injected from the supply-side annular groove 33.
  • the reticle fine movement stage 5 is slightly lifted from the reticle coarse movement stage 4 by the lifting action of the gas, thereby achieving the above-described close proximity arrangement (floating support) .
  • the reticle coarse movement stage 4 and the reticle fine movement stage 5 A gas flow (see dotted arrows in FIG.
  • the third bearing is substantially constituted by the lower plate portion 46c.
  • a differential exhaust gas static pressure bearing (hereinafter, referred to as a "fourth bearing") for hermetically sealing between the upper plate portion 46a of the reticle coarse movement stage 4 and the reticle fine movement stage 5 will be described. explain.
  • an air supply side annular groove 58 is formed outside the opening 4 a, and further on the air supply side annular groove 58 outside the air supply side annular groove 58.
  • An annular concave groove 59 is formed.
  • the above-described air supply passage 133 formed inside the reticle coarse movement stage 4 is connected to the air supply side annular concave groove 58.
  • the exhaust side annular concave groove 59 is connected to the above-described exhaust passage 134 formed inside the reticle coarse movement stage 4.
  • a low-absorbing gas such as nitrogen or a rare gas sent from the gas supply device via the air supply pipe 37 is supplied to the air supply pipe formed inside the reticle coarse movement stage 4. 3 5 and the air supply passage 1 3 3, gas is ejected from the air supply-side annular groove 58, and gas around the exhaust-side annular groove 59 is exhausted by the exhaust-side annular groove 59, the exhaust passage 1 34, is sucked by a vacuum pump (not shown) through the exhaust pipe 36 and the exhaust pipe 38.
  • a vacuum pump not shown
  • the upper end surface of reticle fine movement stage 5 is disposed below annular concave grooves 58, 59, so that reticle fine movement stage 5 and reticle coarse movement
  • a predetermined clearance can be maintained between the upper plate portion 46a and the gas flow from the supply-side annular groove 58 to the exhaust-side annular groove 59 in the clearance (see FIG. 3 (see dotted arrow). Therefore, it is possible to prevent external air (oxygen and water vapor) from entering (inflowing) from the outside of the reticle fine movement stage 5 to the inside of the reticle fine movement stage 5, that is, to the space side where the reticle R is held.
  • the fourth bearing is substantially constituted by the upper plate portion 46a.
  • the relative movement amount between the reticle coarse movement stage 4 and the reticle fine movement stage 5 is very small enough to correct the position control of the reticle coarse movement stage 4 by the linear motors RM1 and RM2. It is an amount within a width of about jum. For this reason, the differential exhaust performed by the reticle coarse moving stage 4 (ie, the differential exhaust by the third and fourth bearings) with respect to the upper and lower end surfaces of the reticle fine moving stage 5 described above Even small amounts may not be a problem. In addition, when the end faces of the two arranged close to each other have sufficient stiffness and airtightness, the bearing between the reticle coarse movement stage 4 and the reticle fine movement stage 5 (ie, the third And the fourth bearing) may not be required.
  • Each stage is supported in a non-contact manner by the first to fourth bearings described above, and the reticle coarse movement stage 4 and the illumination system side surface plate 2 are projected into the space where the reticle R is held. Gas inflow from the outside via the gap (clearance) between the system side platen 3 and the gap (clearance) between the reticle coarse movement stage 4 and the reticle fine movement stage 5 is almost completely prevented. Will be.
  • the gas supply mechanism and the gas exhaust mechanism it is possible to replace the inside of the space holding the reticle R with nitrogen or a rare gas that absorbs little exposure light, in addition to the above airtightness.
  • the supply branch pipes 22 1 a and 22 1 b are placed between the supply side annular groove 58 and the opening 4 a, and between the supply side annular groove 33 and the opening 4 b. It may be provided.
  • the illumination system side shielding mechanism 7 is held by a holding mechanism (not shown) via a predetermined clearance between the illumination system housing 102 and the illumination system side platen 2. As shown in A, it is configured to include a cylindrical shielding member 7a having an internal space IS and the like.
  • a first air supply groove 89 having an annular shape and an annular first exhaust groove 87 having a larger diameter than the first air supply groove 89 are formed on the upper end surface of the shielding member 7a.
  • a second air supply groove 88 having an annular shape and a second exhaust groove 86 having a larger diameter than the second air supply groove 88 are formed on the lower end surface of the shielding member 7a. I have.
  • the first air supply groove 89 and the second air supply groove 88 are connected to a plurality (for example, three) of air supply lines 85 formed in the shielding member 7a, and are connected to the first exhaust groove 89.
  • the grooves 87 and the second exhaust grooves 86 are connected to a plurality (for example, three) of exhaust pipes 84 formed in the shielding member 7a.
  • Each of the air supply pipes 85 is connected to the other end of the air supply pipe 81 whose one end is connected to a gas supply device (not shown) from the outside of the shielding member 7a.
  • the exhaust pipe 8 4 from the outside of the shielding member 7 a, also c other end of the exhaust pipe 82 in which one end thereof is connected to a vacuum pump (not shown) are connected, and these Separately, the shielding member 7a is formed with a gas supply pipe 118 and a gas exhaust pipe 117 so as to communicate from the outside to the internal space IS.
  • One end of 18 is connected to a gas supply device (not shown).
  • the other end of the gas supply pipe 83 is connected, and the other end is connected to a nozzle 119.
  • the other end of the gas exhaust pipe 90 whose one end is connected to a vacuum pump (not shown) is connected to one end on the outside of the gas exhaust pipe 117.
  • nitrogen is supplied from the gas supply mechanism to the internal space IS through the gas supply pipe 83, the gas supply pipe 118, and the nozzle 119.
  • the rare gas are supplied, and the gas in the internal space IS is exhausted by the vacuum pump through the gas exhaust pipes 117 and the gas exhaust pipe 90. In this way, the gas in the internal space IS is replaced with nitrogen or a rare gas.
  • the lower end of the lighting system housing 102 is supplied from the air supply groove 89, the above gas is supplied into the gap (clearance) between the upper end of the shielding member 7a, and the gas in the gap is vacuum suctioned by the vacuum pump via the exhaust pipe 84 and the exhaust pipe 82.
  • a gas flow from the inside to the outside is formed in the gap.
  • the above gas flows into the gap (clearance) between the air supply groove 88 and the lower end surface of the shielding member 7 b and the upper end surface of the lighting system side platen 2.
  • the gas is supplied and the gas in the gap is exhausted from the exhaust groove 86, a gas flow from the inside to the outside is formed in the gap.
  • the illumination system side shielding mechanism 7 since the illumination system side shielding mechanism 7 is not in contact with the illumination system housing 102 and the illumination system surface plate 2, the vibration of the illumination system surface plate 2 is transmitted to the illumination system housing 102. However, the performance of the lighting unit ILU does not deteriorate. However, in practice, the illumination system side shielding mechanism 7 is provided by the illumination system housing 102 or the illumination system side platen 2 Vibration is not transmitted to the other even if it is in contact with either one of them, so that either one of the end faces may be contacted and fixed. In this case, it is desirable to provide an O-ring or the like on the contact surface to improve airtightness.
  • the holding mechanism for holding the illumination system side shielding mechanism 7 be provided separately from the support base BD.
  • expansion and contraction and tilt adjustment are possible so that the distance between the illumination system side shielding mechanism 7 and the object (illumination system housing 102 or illumination system side platen 3) placed in close proximity can be adjusted optimally.
  • the bellows and the drive mechanism may be provided.
  • the projection system-side shielding mechanism 8 is configured similarly to the illumination system-side shielding mechanism 7.
  • the projection system-side shielding mechanism 8 is disposed between the projection system-side platen 3 and the projection unit PU, and a predetermined clearance is provided for each of them. It has a cylindrical shielding member 8a and the like having an internal space s P held by the holding mechanism.
  • Nitrogen or a rare gas is supplied to the internal space SP of the shielding member 8a from a gas supply device (not shown) via a gas supply pipe 183, a gas supply pipe 218, and a nozzle 219.
  • the gas in the internal space SP is exhausted by a vacuum suction mechanism (not shown) through the gas exhaust pipes 2 17 and the gas exhaust pipe 190, thereby performing gas replacement in the internal space SP.
  • Nitrogen or a rare gas is supplied from the air supply grooves 188, 189 to the gap (clearance) above and below the shielding member 8 a, and the exhaust grooves 186, 1 89 are also provided.
  • a gas flow from the inside to the outside of the shielding member 8a is formed in each gap, so that the gas flows from the outside of the shielding member 8a to the space SP. It is possible to prevent the inflow of gas. That is, with such a configuration, the second sealing mechanism on the upper and lower end surfaces of the shielding member 8a is realized.
  • the projection system side shielding mechanism 8 since the projection system side shielding mechanism 8 is not in contact with the projection system side platen 3 and the projection unit PU, the vibration of the projection system side platen 3 is transmitted to the projection unit PU, and the thread; None do. However, in practice, even if the projection system side shielding mechanism 8 is in contact with either the projection system side surface plate 3 or the projection unit PU, no vibration is transmitted to the other, so that either end face is It may be fixed by contact. In this case, it is desirable to provide an O-ring or the like on the contact surface to improve airtightness.
  • the wafer-side shielding mechanism 22 is disposed between the upper surface of the third shielding mechanism 22 and the lower surface of the flange FLG, and between the lower surface of the third shielding mechanism 22 and the partition wall 20 of the wafer chamber 40.
  • a predetermined clearance is formed between the upper surface and the upper surface.
  • the wafer-side shielding mechanism 22 is also configured in the same manner as the first and second shielding mechanisms 7 and 8 described above, and the upper and lower end faces of the wafer-side shielding mechanism 22 are directed from inside to outside. A gas flow is formed. This makes it possible to prevent gas outside the wafer-side shielding mechanism 22 from flowing into the interior space of the third shielding mechanism 22.
  • the wafer-side shielding mechanism 22 By providing the wafer-side shielding mechanism 22 in this manner, the inflow of outside air into the wafer chamber 40 can be suppressed as much as possible.
  • the gas supply mechanism of the illumination system side shielding mechanism 7 is constituted by the gas supply mechanism (not shown), the gas supply pipe 83, the gas supply pipe 118, and the nozzle 119.
  • a vacuum pump (not shown), a gas exhaust pipe 90, and a gas exhaust pipe 117 constitute an exhaust mechanism of the illumination system side shielding mechanism 7.
  • Gas not shown The supply mechanism, gas supply pipe 18 3, gas supply pipe 2 18, and nozzle 2 19 constitute the gas supply mechanism of the projection system side shielding mechanism 8, and a vacuum pump (not shown), gas exhaust pipe 190,
  • An exhaust mechanism of the projection system side shielding mechanism 8 is constituted by the gas exhaust pipes 21.
  • the holding space SS is provided inside the reticle stage RST that can move at least in the Y-axis direction on a moving plane that is substantially perpendicular to the optical path of the exposure light EL. Is formed, and the reticle R is held in the holding space SS.
  • An illumination system side surface plate 2 and a projection system side surface plate 3 are arranged on the illumination unit ILU side and the projection unit PU side of the reticle stage RST with a predetermined clearance therebetween.
  • the illumination system-side surface plate 2 and the projection system-side surface plate 3 have openings 2a and 3a, respectively, as passages for the exposure light E. Is the moving guide surface of the reticle stage RST.
  • the exposure light EL enters the holding space SS of the reticle stage RST through the opening 2a of the illumination system side plate 2, and the exposure light EL illuminates the reticle R and transmits the reticle R.
  • Light is emitted from the opening 3 a of the projection system side surface plate 3.
  • the reticle stage is arranged with a predetermined clearance between the illumination system side surface plate 2 and the projection system side surface plate 3, thereby increasing the gap (clearance) between each surface plate and the reticle stage RST. The outside air is effectively prevented from entering (inflowing into) the holding space SS through the space.
  • the first bearing and the second bearing allow the reticle stage RST (more specifically, the reticle coarse movement stage 4) and the illumination system side plate 2 and the projection system side plate 3 to move from inside to outside. Since a gas flow toward the holding space SS is formed, the inflow of outside air into the holding space SS can be prevented, and the airtightness of the holding space SS can be further improved.
  • the third bearing and the fourth bearing make it possible to prevent the outside air from flowing into the holding space SS via the gap between the reticle coarse movement stage 4 and the reticle fine movement stage 5.
  • reticle fine movement stage 5 can be reduced in weight, and the position control accuracy of reticle fine movement stage can be improved, and, consequently, exposure. Accuracy can be improved.
  • the optical path of the exposure light from the illumination unit ILU (illumination system housing 102) to the projection unit PU (lens tube 109) is protected from outside air. It is possible to shield from. Then, by replacing the space in which the optical path of the exposure light is disposed with a low-absorbing gas such as nitrogen or a rare gas, absorption of the exposure light is suppressed, and highly accurate exposure can be realized. Further, in the present embodiment, a reflection mirror used for measuring the position of the reticle fine movement stage 5 is provided outside the holding space of the reticle fine movement stage 5, and the laser light from the laser interferometer is applied to the reflection mirror.
  • a reflection mirror used for measuring the position of the reticle fine movement stage 5 is provided outside the holding space of the reticle fine movement stage 5, and the laser light from the laser interferometer is applied to the reflection mirror.
  • Irradiation measures the position of the reticle fine-movement stage, so the interferometer optical path is not located in the purge space, and is not affected by measurement errors due to fluctuations in gas purge accuracy. No. Therefore, the position control performance of the reticle stage is improved, and the exposure accuracy can be improved.
  • the reticle stage RST and the wafer stage WST which are vibration sources, and the other parts are separately supported, and the vibration is hardly transmitted to an optical system or the like.
  • the effect of vibration on the vehicle is reduced as much as possible.
  • the openings are formed as the light transmitting portions of the illumination system side surface plate 2 and the projection system side surface plate 3.
  • the present invention is not limited to this.
  • the portion through which the exposure light is transmitted may be constituted by a transparent member.
  • the transparent member in this case, fluorite or modified quartz can be used similarly to the projection optical system and the illumination optical system.
  • a low-absorbing gas such as nitrogen or a rare gas is used as the gas used for the differential exhaust gas static pressure bearing and the seal mechanism.
  • the present invention is not limited to this. If the amount of exhaust air is larger than the amount of air supplied by the gas supply device, air or the like may be adopted.
  • the projection unit PU is provided with a straight cylindrical lens barrel.
  • the lens barrel is bent in the middle.
  • the present invention can be applied at all by arranging a differential pumping type air seal mechanism on the reticle-side end surface or the wafer-side end surface of the lens barrel.
  • the upper plate portion 46a and the lower plate portion 46c constituting the reticle coarse movement stage 4 are connected only by the intermediate portion 46b.
  • the gas supplied to each bearing and the gas supplied to the holding space SS where the reticle is held are controlled to a predetermined temperature (for example, 22 ° C.) It is desirable to use one from which foreign substances such as organic substances, water vapor and the like have been sufficiently removed.
  • each bearing has a double structure having an annular groove for air supply and an annular groove for exhaust has been described.
  • the present invention is not limited to this.
  • the same air-tightness effect can be obtained by supplying gas from a groove located in the middle of them and sucking gas from two grooves sandwiching the middle groove.
  • a bearing having a quadruple structure in which the above-described double structure is formed in a double manner can be employed. That is, the number of grooves can be arbitrarily selected for each bearing.
  • the present invention is not limited to this, and the exposure method of the step 'and' repeat method is not limited to this.
  • the present invention can also be suitably applied to an apparatus (so-called stepper).
  • an exposure light source F 2 laser, K r 2 laser, A r 2 laser, A r F excimer laser, such as K r F excimer laser
  • a laser light source for example, when vacuum ultraviolet light is used as the illumination light for exposure, for example, a single-wavelength laser beam in the infrared or visible region oscillated from a DFB semiconductor laser or a fiber laser is irradiated with, for example, erbium (or erbium and It is also possible to use harmonics that are amplified by a fiber amplifier doped with both ytterbium) and wavelength-converted to ultraviolet light using a nonlinear optical crystal.
  • the magnification of the projection unit may be not only a reduction system but also any one of an equal magnification and an enlargement system.
  • the illumination unit and projection unit which consist of multiple lenses, are incorporated into the main body of the exposure apparatus, optically adjusted, and a wafer stage (or reticle stage in the case of a scan type) consisting of many mechanical parts is installed in the main body of the exposure apparatus. Attach and connect the wiring and piping, assemble the partitions that compose the reticle chamber and wafer chamber, connect the gas piping system, connect each part to the control system, and make comprehensive adjustments (electric adjustment, operation check
  • the exposure apparatus according to the present invention such as the exposure apparatus 100 of the above embodiment, can be manufactured. It is desirable that the exposure apparatus be manufactured in a clean room where the temperature, cleanliness, etc. are controlled.
  • the present invention also provides an exposure apparatus for transferring a device pattern onto a glass plate, which is used not only for an exposure apparatus used for manufacturing a semiconductor element, but also for a display including a liquid crystal display element, a plasma display, or an organic EL.
  • Applicable to the exposure equipment used in the manufacture of thin-film magnetic heads such as exposure equipment used to transfer device patterns onto ceramic wafers, imaging devices (such as CCDs), micromachines, and the production of DNA chips. be able to.
  • micro devices such as semiconductor elements, glass substrates or silicon are used to manufacture reticles or masks used in optical exposure equipment, EUV exposure equipment, X-ray exposure equipment, electron beam exposure equipment, etc.
  • the present invention can be applied to an exposure apparatus that transfers a circuit pattern onto a wafer or the like.
  • FIG. 6 shows a flowchart of an example of manufacturing devices (semiconductor chips such as IC and LSI, liquid crystal panels, CCDs, thin-film magnetic heads, micromachines, and the like).
  • a device function and performance design for example, circuit design of a semiconductor device
  • a pattern design for realizing the function is performed.
  • step 302 mask manufacturing step
  • step 303 wafer manufacturing step
  • a wafer is manufactured using a material such as silicon.
  • step 304 wafer processing step
  • step 304 wafer processing step
  • step 304 device assembling step
  • step 305 includes processes such as a dicing process, a bonding process, and a packaging process (chip encapsulation) as necessary.
  • step 360 inspection step
  • inspections such as an operation confirmation test and a durability test of the device created in step 305 are performed. After these steps, the device is completed and shipped.
  • FIG. 7 shows a detailed flow example of step 304 in the semiconductor device.
  • step 311 oxidation step
  • step 312 CVD step
  • step 3 13 electrode formation step
  • step 3 1 4 ion implantation step
  • ions are implanted into the wafer. Steps 3 1 1 through Each of the steps 314 constitutes a pre-processing step in each stage of the wafer processing, and is selected and executed according to a necessary process in each stage.
  • the post-processing step is executed as follows.
  • step 315 resist forming step
  • step 316 exposure step
  • step 317 development step
  • Step 318 etching step
  • step 319 resist removing step
  • the exposure apparatus of the above embodiment is used in the exposure step (step 316), so that the exposure apparatus is miniaturized with almost no reduction in exposure accuracy. Providing a large number of devices in a semiconductor factory can improve the productivity of highly integrated devices. Industrial applicability
  • the exposure apparatus of the present invention is suitable for transferring a device pattern onto an object such as a wafer. Further, the device manufacturing method of the present invention is suitable for producing a highly integrated device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

明 細 書
露光装置及びデバイス製造方法 技術分野
本発明は露光装置及びデバイス製造方法に係り、 更に詳しくは、 半導体集積 回路、 液晶ディスプレイ等の微細パターンの形成に用いて好適な露光装置、 及 び該露光装置を用いるデバイス製造方法に関する。 背景技術
従来より、半導体素子 (集積回路)、液晶表示素子等の電子デバイスを製造す るためのリソグラフィ工程では、 電子デバイスの微細パターンを基板上に形成 する種々の露光装置が用いられている。 近年では、 特に生産性の面から、 形成 すべきパターンを 4〜 5倍程度に比例拡大して形成したフォ卜マスク(マスク) 又はレチクル (以下、 「レチクル」 と総称する) のパターンを、 投影光学系を介 してウェハ等の被露光基板 (以下、 「ウェハ」 と呼ぷ) 上に縮小転写する縮小投 影露光装置が、 主として用いられている。
この種の投影露光装置では、 集積回路の微細化に対応して高解像度を実現す るため、 その露光波長をより短波長側にシフトしてきた。 現在、 その波長は K r Fエキシマレーザ光の 2 4 8 n mが主流となっているが、 より短波長の A r Fエキシマレーザ光の 1 9 3 n mも実用化段階に入りつつある。 そして、 最近 では、更に短波長の波長 1 5 7 n mの F 2 レーザ光や、波長 1 2 6 n mの A r 2 レーザ光等の、 いわゆる真空紫外域と呼ばれる波長帯の光を発する光源を使用 する投影露光装置の提案も行なわれている。
かかる波長 1 9 0 n m以下の真空紫外光は、 大気中の酸素や水蒸気によって 激しい吸収を受ける。 このため、 真空紫外光を露光光として使用する露光装置 では、露光光の光路上の空間から酸素や水蒸気などの吸光物質を排除するため、 その空間内の気体を、 露光光を吸収しない、 窒素やヘリウムなどの希ガスでガ ス置換 (ガスパージ) する必要がある。 例えば、 波長 1 5 7 门 !^の 2 レーザ を光源とする露光装置では、 レーザからウェハに至るまでの光路の大部分で、 残存酸素濃度を 1 p p m以下に抑える必要があると言われている。
また、高解像度化は、露光波長の短波長化のみならず、光学系の大開口数(N . A . )化によっても実現可能であることから、最近では光学系のより一層の大 N . A . 化の開発もなされている。 しかるに、 高解像度の実現のためには、 投影光 学系の大 N . A .化に加えて投影光学系の収差の低減が必要である。このため、 投影光学系の製造工程では、 光の干渉を利用した波面収差計測を行ない、 残存 収差量を露光波長の 1 1 0 0 0程度の精度で計測し、 その計測値に基づいて 投影光学系の調整を行っている。
このような大 N . A . 化や低収差化は、 視野が小さい光学系ほど実現が容易 である。 但し、 露光装置としては、 視野 (露光フィールド) が大きいほど、 処 理能力 (スループット) が向上する。 そこで、 小視野ではあるが大 N . A . の 投影光学系を用いて、 かつ実質的に大きな露光フィールドを得るために、 露光 中に、 レチクルとウェハをその結像関係を維持したまま相対走査する走査型投 影露光装置、例えばステップ'アンド'スキャン方式の走査型投影露光装置(い わゆるスキャニング■ステツパ (スキャナとも呼ばれる) など) が最近の主流 となっている。
上述の真空紫外光を発する光源を露光用光源とする露光装置においては、 レ チクル近傍の空間の残存酸素及び水蒸気濃度も、 1 p p m程度以下に抑える必 要がある。 これを実現する方法として、 レチクルを保持するレチクルステージ 全体を大きな気密型の遮蔽容器 (レチクルステージチャンバ) で覆い、 その内 部 (レチクルステージ, レチクルを含む) 全体をガスパージする方法も考えら れる。 しかしながら、 このような遮蔽容器を採用すると、 露光装置が大型化及 び重量化し、 半導体工場のクリーンルーム内における、 露光装置 1台あたりの 設置面積 (フットプリント) がより大きくなリ、 設備コスト (あるいはラン二 ング■ コスト) の増大により結果的に半導体素子の生産性が低下してしまう。 また、 レチクル近傍へのアクセスが困難となり、 レチクルステージなどのメン テナンス時の作業性が低下してメンテナンスに要する時間が増大し、 この点に おいても半導体素子の生産性が低下してしまう。
特に走査型投影露光装置は、 露光中にレチクルを高速に走査する必要から大 型のレチクルステージを備えており、 この大型のレチクルステージ全体を覆う 遮蔽容器 (レチクルステージチャンバ) は一層大型化してしまう。
本発明は、 かかる事情の下になされたものであり、 その第 1の目的は、 露光 精度を低下させることなく、 装置の小型、 軽量化を図ることが可能な露光装置 を提供することにある。
また、 本発明の第 2の目的は、 高集積度のデバイスの生産性を向上させるこ とができるデ / ィス製造方法を提供することにある。 発明の開示
本発明は、 第 1の観点からすると、 照明光によりマスクを照明する照明ュニ ッ卜と ;前記マスクに形成されたパターンを物体上に投影する投影ュニッ ト と ;前記マスクを保持する保持空間がその内部に形成され、 前記照明光の光路 にほぼ垂直な移動面内で少なくとも一軸方向に移動可能なマスクステージと ; 前記マスクステージの前記照明ュニッ卜側に所定の第 1クリアランスを介して 配置され、 前記照明光が透過する光透過部が一部に設けられ、 前記マスクステ ージに対向する対向面が形成された第 1のマスク定盤と ;前記マスクステージ の前記投影ュニッ卜側に所定の第 2クリアランスを介して配置され、 前記照明 光が透過する光透過部が一部に設けられ、 前記マスクステージに対向するに対 向する対向面が形成された第 2のマスク定盤と ; を備える露光装置である。 これによれば、 照明光の光路にほぼ垂直な移動面内で少なくとも一軸方向に 移動可能なマスクステージの内部に保持空間が形成され、 この保持空間内でマ スクが保持されている。 そして、 マスクステージの照明ユニット側と投影ュニ ット側には、 所定の第 1、 第 2クリアランスをそれぞれ介して、 第 1、 第 2の マスク定盤がそれぞれ配置されている。 第 1、 第 2のマスク定盤には、 それぞ れの一部に、 照明光が透過する光透過部が設けられ、 それぞれのマスクステー ジに対する対向面の少なくとも一方は、 マスクステージの移動ガイド面とされ ている。 すなわち、 照明光が第 1のマスク定盤の光透過部を介してマスクステ ージの保持空間内に入射し、 照明光によりマスクが照明されるとともに、 マス クを透過した光が第 2のマスク定盤の光透過部から射出する。 また、 第 1のマ スク定盤と第 2のマスク定盤との間に第 1、 第 2クリアランスを隔ててマスク ステージが配置されることによリ、 各定盤とマスクステージとの間隙をそれぞ れ介して外気が保持空間内へ入り込む (流入する) のが効果的に抑制される。 この抑制効果は、上記各クリアランスがある程度狭い、例えば 1 mm程度以下、 望ましくは 0 . 5 m m以下で良好になり、 更に望ましくは 0 . 1 m m以下で特 に良好となる。
従って、 上記構成を採用することにより、 マスクステージ全体を隔壁で覆う 場合と同等の効果を得ることができ、 露光装置全体の小型化、 軽量化を図るこ とが可能となる。 また、 例えば、 保持空間内を照明光の吸収の小さいガスで置 換する場合には、 隔壁でマスクステージ全体を覆い、 その内部を前記ガスで置 換する場合と比べガスの使用量が低減されるので、 コストダウンを図ることが 可能となる。 また、 マスク周辺の空間内の吸光物質の濃度を低く抑えることも できるので、 結果的に露光精度が低下することもない。
この場合において、 前記マスクステージに設けられ、 前記第 2のマスク定盤 の前記対向面に対して所定ガスを噴射するとともに、 前記対向面近傍の空間内 のガスを吸引して外部に排気することにより、 前記第 2クリアランスを形成す る差動排気型の第 1の気体静圧軸受を更に備えることとすることができる。 この場合において、 前記マスクステージに設けられ、 前記第 1のマスク定盤 の前記対向面に対して所定ガスを噴射するとともに、 前記対向面近傍の前記第
1クリアランス内のガスを吸引して外部に排気する差動排気型の第 2の気体静 圧軸受を更に備えることとすることができる。
この場合において、 前記第 1、 第 2の気体静圧軸受の少なくとも一方は、 前 記所定ガスの噴射口に連通する給気側環状凹溝と、 該給気側環状凹溝の外周側 に配置され前記所定ガスの排気口に連通する排気側環状凹溝とを有することと することができる。
本発明の露光装置では、 前記マスクステージは、 前記マスク保持空間が形成 され前記マスクを保持する微動ステージと、 該微動ステージを前記対向面に平 行な面内で微動可能に保持し、 前記第 1、 第 2のマスク定盤にそれぞれ対向す る面が形成された粗動ステージとを有することとすることができる。
この場合において、 前記微動ステージに対向する前記粗動ステージの対向面 のうち、 前記投影ユニット側の対向面に設けられ、 該対向面に対向する前記微 動ステージの面に所定ガスを噴射するとともに、 前記微動ステージの面近傍の ガスを吸引して外部に排気する差動排気型の第 1の気体静圧軸受を更に備える こととすることができる。
この場合において、 前記微動ステージに対向する前記粗動ステージの対向面 のうち、 前記照明ユニット側の対向面に設けられ、 該対向面に対向する前記微 動ステージの面に所定ガスを噴射するとともに、 前記微動ステージと前記粗動 ステージとの間のクリアランス内部のガスを吸弓 Iして外部に排気する差動排気 型の第 2の気体静圧軸受を更に備えることとすることができる。
この場合において、 前記第 1、 第 2の気体静圧軸受の少なくとも一方は、 前 記所定ガスの噴射口に連通する給気側環状凹溝と、 該給気側環状凹溝の外周側 に配置され前記所定ガスの排気口に連通する排気用凹溝とを有することとする ことができる。
本発明の露光装置では、 マスクステージが、 微動ステージと粗動ステージと を有する場合、 前記微動ステージは、 前記保持空間を形成することとすること ができる。
この場合において、 前記微動ステージが、 前記保持空間を形成する側壁を備 える場合、 前記側壁の外面側に設けられる反射部材にレーザ光を照射し、 前記 反射部材の反射面で反射した反射光に基づいて前記微動ステージの位置を計測 するレーザ干渉計を、 更に備えることとすることができる。
本発明の露光装置では、 前記保持空間に対して、 特定ガスを供給するガス供 給機構と、 前記保持空間内のガスを排気するガス排気機構との少なくとも一方 を更に備えることとすることができる。
この場合において、前記照明光は、波長 1 9 0 n m以下の真空紫外光であり、 前記特定ガスは、 窒素及び希ガスのいずれかであることとすることができる。 本発明の露光装置では、 前記第 1のマスク定盤と前記照明ュニッ卜との少な くとも一方に対して接することなく所定のクリアランスを介して配置され、 前 記第 1のマスク定盤と前記照明ュニッ卜との間の空間をほぼ遮蔽する遮蔽部材 と ;前記遮蔽部材に設けられ、 前記第 1のマスク定盤と前記照明ュニッ卜の少 なくとも一方に所定のガスを噴射するとともに前記クリアランス内のガスを吸 引して外部に排気する差動排気型のシール機構と ; を更に備えることとするこ とができる。
この場合において、 前記遮蔽部材の内部の前記照明光の光路を形成する光路 空間に特定ガスを供給するガス供給機構と、 前記光路空間内のガスを排気する 排気機構との少なくとも一方を更に備えることとすることができる。
この場合において、前記照明光は、波長 1 9 0 n m以下の真空紫外光であり、 前記特定ガスは、 窒素及び希ガスのいずれかであることとすることができる。 本発明の露光装置では、 前記第 2のマスク定盤と前記投影ュニッ卜との少な くとも一方に対して接することなく所定のクリアランスを介して配置され、 前 記第 2のマスク定盤と前記投影ュニッ卜との間の空間をほぼ遮蔽する遮蔽部材 と ;前記遮蔽部材に設けられ、 前記第 2のマスク定盤と前記投影ュニッ卜との 少なくとも一方に所定のガスを噴射するとともに前記クリアランス内のガスを 吸引して外部に排気する差動排気型のシール機構と ; を更に備えることとする ことができる。
この場合において、 前記遮蔽部材の内部の前記照明光の光路を形成する光路 空間に特定ガスを供給するガス供給機構と、 前記光路空間内のガスを排気する 排気機構との少なくとも一方を更に備えることとすることができる。
この場合において、前記照明光は、波長 1 9 0 n m以下の真空紫外光であり、 前記特定ガスは、 窒素及び希ガスのいずれかであることとすることができる。 また、 リソグラフイエ程において、 本発明の露光装置を用いて露光を行うこ とにより、 物体上にパターンを精度良く形成することができ、 これにより、 よ リ高集積度のマイクロデバイスを歩留まり良く製造することができる。従って、 本発明は第 2の観点からすると、 本発明の露光装置を用いるデバイス製造方法 であるとも言える。 図面の簡単な説明
図 1は、 本発明の一実施形態に係る露光装置を概略的に示す図である。
図 2は、 レチクルステージ及びその近傍を一部省略して示す斜視図である。 図 3は、 レチクルステージの縦断面図である。
図 4 Aは、図 3の A— A線断面図、図 4 Bは、図 3の B— B線断面図である。 図 5 Aは、 第 1の遮蔽機構の構成を示す縦断面図、 図 5 Bは、 第 2の遮蔽機 構の構成を示す縦断面図である。
図 6は、 本発明に係るデバイス製造方法を説明するためのフローチヤ一卜で 図 7は、 図 6のステップ 3 0 4の具体例を示すフローチヤ一トである。 発明を実施するための最良の形態
以下、 本発明の一実施形態について図 1〜図 5 Bに基づいて説明する。
図 1には、 一実施形態に係る露光装置 1 0 0が概略的に示されている。 この 露光装置 1 0 0は、 照明光としての露光用照明光 (以下、 「露光光」 と呼ぷ) E Lをマスクとしてのレチクル Rに照射して、 該レチクル Rと物体としてのゥェ ハ Wとを所定の走査方向 (ここでは、 図 1における紙面左右方向である Y軸方 向とする) に同期移動してレチクル Rのパターンを投影ュニット P Uを介して ウェハ W上の複数のショッ卜領域に転写するステップ'アンド 'スキャン方式 の投影露光装置、 すなわちいわゆるスキャニング 'ステツパである。
この露光装置 1 0 0は、 不図示の光源、 該光源に送光光学系を介して接続さ れた照明ユニット I L U、 レチクル Rを保持するマスクステージとしてのレチ クルステージ R S T、 レチクル Rから射出される露光光 E Lをウェハ W上に投 射する投影ユニット P U、 ウェハ Wを保持するウェハステージ WS T、 及びこ れらの制御系、 並びに構成各部を支持する支持架台 B D等を備えている。
前記光源としては、 ここでは、 波長約 1 2 0 n m〜約 1 9 0 n mの真空紫外 域に属する光を発する光源、 例えば出力波長 1 5 7 n mのフッ素レーザ (F 2 レーザ) が用いられている。 光源は、 ビームマッチングユニットと呼ばれる光 軸調整用の光学系を一部に含む不図示の送光光学系を介して照明ュニット I L Uを構成する照明系ハウジング 1 0 2の一端に接続されている。
前記光源は、 実際には、 照明ュニット I し U及び投影ュニッ卜 P U等を含む 露光装置本体が設置されるクリーンルームとは別のクリーン度の低いサービス ルーム、 あるいはクリーンルーム床下のユーティリテイスペースなどに設置さ れている。 なお、 光源として、 出力波長 1 4 6 n mのクリプトンダイマーレ一 ザ (K r 2 レーザ)、 出力波長 1 2 6 n mのアルゴンダイマーレーザ (A r 2 レ 一ザ) などの他の真空紫外光源を用いても良く、 あるいは、 出力波長 1 9 3 η mの A r Fエキシマレーザ、 出力波長 2 4 8 (1 171の1 r Fエキシマレーザ等を 用いても良い。
前記照明ュニット I L Uは、 内部を外部から隔離する照明系ハウジング 1 0 2と、 その内部に所定の位置関係で配置されたオプティカルィンテグレータを 含む照度均一化光学系、 リレーレンズ、 可変 N Dフィルタ、 レチクルプライン ド、 及び光路折り曲げ用のミラー等 (いずれも不図示) から成る照明光学系と を含んで構成されている。 なお、 オプティカルインテグレータとしては、 フラ ィアイレンズ、 ロッドインテグレータ (内面反射型インテグレータ)、 あるいは 回折光学素子などが用いられる。 本実施形態の照明ュニッ卜は、 例えば特開平 6— 3 4 9 7 0 1号公報及びこれに対応する米国特許第 5 , 5 3 4 , 9 7 0号 公報などに開示されるものと同様の構成となっている。 本国際出願で指定した 指定国又は選択した選択国の国内法令が許す限りにおいて、 上記米国特許にお ける開示を援用して本明細書の記載の一部とする。
照明ユニット I L Uでは、 回路パターン等が形成されたレチクル R上のスリ ッ卜状の照明領域 (前記レチクルブラインドで規定される X軸方向に細長く伸 びるスリツ卜状の領域) を露光光 Eしによりほぼ均一な照度で照明する。 なお、 照明系ハウジング 1 0 2内のレチクル R側端部近傍には、 不図示の平 板状の光透過窓が配設されている。 この光透過窓は、 照明ユニット I しじから の露光光 E Lを透過するとともに、 照明系ハウジング 1 0 2内を気密状態に維 持する機能を有している。 なお、 光透過窓としては平板状のものに限らず、 照 明ュニット I し Uを構成するレンズを照明系ハウジング 1 0 2に気密に固定す ることで、 上記光透過窓の代わりとすることとしても良い。
なお、 上記照明ュニッ卜 I L Uを構成する光学部材のうち、 レンズや照度均 一化光学系、 光透過窓といった露光光 E Lを透過する部材の材料としては、 真 空紫外光に対する透過率の高い例えばホタル石を使用することが望ましい。 伹 し、 部分的には、 水酸基を 1 0 p p m以下程度に排除し、 フッ素を 1 %程度含 有させたフッ素ドープ石英 (いわゆるモディファイ ド石英) を用いることもで きる。 また、 フッ素ドープ石英に限られず、 通常の石英や単に水酸基の少ない 石英、 さらに水素を添加した石英を使用することも可能である。 また、 フッ化 マグネシウム、 フッ化リチウムなどのフッ化物結晶を使用しても良い。
なお、 前記送光光学系や照明ュニット I L U内のメンテナンス時に外部から 入り込む (流入する) 大気が、 メンテナンス対象の空間以外に広がらないよう にするために、 送光光学系と照明ュニッ卜 I L Uの境界部分に、 光透過性の仕 切リ部材を設けることとしても良い。 また、 このような仕切リ部材を、 送光光 学系や照明ュニット I L U内に設置される任意の光学部材で代用し、 送光光学 系と照明ュニッ卜 I L U内を複数の気密空間に分離することとしても良い。 前記支持架台 B Dは、 クリーンルームの床面 F上に設けられた第 1架台 1 1 1 と、 第 1架台 1 1 1にて支持された第 2架台 1 1 2とを備えている。
前記第 1架台 1 1 1は、 クリーンルームの床面 F上に設けられた複数 (ここ では 4個) の防振ュニット 1 3 a〜 1 3 d (図 1の紙面奥側の防振ュニット 1 3 c , 1 3 dは不図示) と、 該防振ュニッ卜 1 3 a〜 1 3 dを介して設けられ た複数本 (ここでは 4本) の脚部 1 2 a〜 1 2 d (図 1の紙面奥側の脚部 1 2 c , 1 2 dは不図示) と、 これらのうち 2本の脚部 1 2 a , 1 2 cによりほぼ 水平に支持された板状の支持部材 1 1 aと、 残りの 2本の脚部 1 2 b , 1 2 d によりほぼ水平に支持された板状の支持部材 1 1 bとから構成されている。 前記第 2架台 1 1 2は、 支持部材 1 1 a , 1 1 bにより水平に支持された第 2のマスク定盤としての投影系側定盤 3と、 該投影系側定盤 3の上方に配置さ れた第 1のマスク定盤としての照明系側定盤 2と、 投影系側定盤 3と照明系側 定盤 2との間に設けられ、 投影系側定盤 3と照明系側定盤 2との間に所定間隔 を形成する、 複数 (ここでは 4本) の支持柱 (スぺーサ) 2 6 a〜2 6 d (図 1では、 支持柱 2 6 c 2 6 dは不図示 (図 4 A、 図 4 B参照)) と^備えてい る。
ここで、 照明系側定盤 2及び投影系側定盤 3について説明すると、 照明系側 定盤 2及び投影系側定盤 3は、 それぞれ、 天然石, セラミック, ステンレス鋼 等の材質で形成され、 それぞれ対向する側の面 (すなわち、 照明系側定盤 2の 下面及び投影系側定盤 3の上面) は、 凹凸が数 m以下の平滑な平面となるよ うに研磨されている。
なお、 定盤 2 , 3の材質が天然石や多孔質セラミックである場合には、 その 表面にフッ素樹脂等をコートし、 表面への酸素や水蒸気の吸着とその脱離を防 止することが望ましい。
これら定盤 2 , 3には、 図 1に示されるように露光光が透過するための光透 過部としての矩形の開口部 2 a , 3 aが形成されている。
前記レチクルステージ R S Tは、 上記第 2架台 1 1 2を構成する照明系側定 盤 2及び投影系側定盤 3の間で、 それぞれの定盤に対し所定のクリアランスを 隔てて配置され、 レチクル Rを保持して少なくとも Y軸方向に移動可能となつ ている。 レチクルステージ R S Tの位置情報は、 レチクルステージ R S Tに設 けられた移動鏡を介して、 図 1に示されるレチクルレーザ干渉計 9によって、 例えば 0 . 5〜 1 n m程度の分解能で常時計測されるようになっている。なお、 レチクルステージ R S Tの構成、 及びレチクルレーザ干渉計 9等については、 後に更に詳述する。
前記投影ユニット P Uは、 ホタル石、 フッ化リチウム等のフッ化物結晶から 成るレンズや反射鏡からなる光学系 (投影光学系) を、 鏡筒 1 0 9で密閉した ものである。 投影光学系としては、 ここでは、 一例として両側テレセントリツ クで投影倍率 βが例えば 1 4あるいは 1 5の屈折系が用いられているもの とする。 このため、 前述の如く、 照明ユニット I L Uからの露光光 E Lにより レチクル Rが照明されると、 その照明領域に対応する部分のレチクル R上のパ ターンが投影ユニット P U (投影光学系) によりウェハ W上のショット領域の 一部に縮小投影され、 前記露光光 E Lで照明されたパターン部分の縮小像 (部 分像) が形成される。
この投影ュニット P Uは、 鏡筒 1 0 9の高さ方向の中央やや下側に設けられ たフランジ F L Gを介して後述するウェハ側遮蔽機構 2 2により非接触で支持 されている。
なお、 投影光学系としては、 屈折系に限らず、 反射屈折系、 反射系のいずれ をも用いることができる。
投影ュニット P Uの下端部は、 複数の防振ュニット 2 5を介して床面 F上に 設けられた隔壁 2 0の内部に形成されたウェハ室 4 0内に挿入された状態とな つている。 このウェハ室 4 0内には、 ウェハ Wを保持して 2次元方向 (X Y 2 次元方向) に移動するウェハステージ WS Tが設けられている。
前記ウェハステージ WS Tは、 例えば磁気浮上型や加圧気体の静圧によリ浮 上する気体浮上型のリニアモータ等から成る駆動装置としての不図示のウェハ 駆動系によって、 ウェハ室 4 0内に複数の防振ユニット 1 9を介して設けられ たウェハステージベース B Sの上面に沿ってかつ非接触で X Y面内で自在に駆 動されるようになっている。
ウェハステージ WS Tは、 実際には、 上記の X Y面内で自在に駆動 (Z軸回 りの回転 (0 z回転) を含む) される X Yステージ 1 3 6、 この X Yステージ 1 3 6上に搭載され、 ウェハ Wを保持するウェハテーブル 1 3 5等を備えてい る。 ウェハテーブル 1 3 5上に不図示のウェハホルダが設けられ、 該ウェハホ ルダによってウェハ Wが例えば真空吸着により保持されている。 ウェハテープ ル 1 3 5は、 不図示の駆動系により、 Z軸方向及び X Y面に対する傾斜方向に 微小駆動される。 このように、 ウェハステージ WS Tは、 実際には、 複数のス テージ、テーブルを含んで構成される力 以下では、ウェハステージ WS Tは、 ウェハ駆動系によって X、 Y、 Z、 X軸回りの回転である 0 x、 Y軸回りの回 転である 0 y、 及び 0 z方向の 6自由度方向に駆動可能な単一のステージであ るものとして説明する。
ウェハステージ W S Tの位置情報は、 ウェハテーブル 1 3 5上面に設けられ た移動鏡 1 7を介してウェハレーザ干渉計(以下、 「ウェハ干渉計」 という) 1 8によって、 例えば 0 . 5〜 1 n m程度の分解能で常時計測されるようになつ ている。
なお、 実際には、 移動鏡は X軸に直交する反射面を有する X移動鏡と、 Y軸 に直交する反射面を有する Y移動鏡とが設けられ、 これに対応してレーザ干渉 計も X方向位置計測用の Xレーザ干渉計と Y方向位置計測用の Yレーザ干渉計 とが設けられているが、 図 1ではこれらが代表して移動鏡 1 7、 ウェハ干渉計 1 8として図示されている。 なお、 例えば、 ウェハステージの端面を鏡面加工 して反射面 (移動鏡 1 7の反射面に相当) を形成しても良い。 また、 Xレーザ 干渉計及び Yレーザ干渉計は測長軸を複数有する多軸干渉計であり、 ウェハテ 一ブル 1 3 5の乂、 Y位置の他、 回転 (ョ一イング (Z軸回りの回転である 0 z回転)、 ピッチング (X軸回りの回転である 0 X回転)、 ローリング (Y軸回 りの回転である 0 y回転)) も計測可能となっている。従って、以下の説明では レーザ干渉計 1 8によって、 ウェハテーブル 1 3 5の X、 丫、 Θ z Θ y % Θ Xの 5自由度方向の位置が計測されるものとする。
上述したウェハ干渉計 1 8からのウェハステージ W S Tの位置情報 (又は速 度情報) は不図示の制御装置に送られ、 制御装置ではウェハステージ W S丁の 位置情報 (又は速度情報) に基づいてウェハ駆動系を介してウェハステージ W S Tを駆動する。
なお、本実施形態のように、真空紫外域の波長の光を露光光とする場合には、 照明系ハウジング 1 0 2や投影ユニット P Uの鏡筒 1 0 9及びウェハ室 4 0内 を気密構造とし、 その内部を窒素や希ガス等の真空紫外光に対して高い透過率 を有するガス (以下、 適宜 「低吸収性ガス」 と呼ぷ) で置換することで、 光路 から酸素や水蒸気、 炭化水素系のガス等の、 かかる波長帯域の光に対し強い吸 収特性を有するガス (以下、 適宜 「吸収性ガス」 と呼ぶ) を排除する必要があ る。 このため、 本実施形態では、 照明系ハウジング 1 02、 鏡筒 1 09及びゥ ェハ室 40の内部に、 それぞれに接続された給気管 1 07, 30, 24を介し て、 例えば 22°Cの所定温度に管理された窒素又は希ガスを送り、 排気管 1 0 8, 29, 23を介して内部のガスを排気することにより、 それぞれの内部を 低吸収性ガスにて置換することとしている。
また、 図 1に示されるように、 照明系ハウジング 1 02と照明系側定盤 2と の間の間隙 (クリアランス) には、 該間隙内へ外部から入り込む (流入する) 気体を遮蔽する照明系側遮蔽機構 7が設けられ、 投影系側定盤 3と投影光学系 P Lとの間の間隙には、 該間隙内へ外部から入り込む (流入する) 気体を遮蔽 する投影系側遮蔽機構 8が設けられ、 投影ュニット PUの鏡筒 1 09のフラン ジ F LGとウェハ室 40の隔壁 20との間の間隙には、 該間隙内へ外部から入 リ込む (流入する) 気体を遮蔽するウェハ側遮蔽機構 22が設けられている。 これら遮蔽機構 7, 8, 22は、 それぞれ不図示の保持機構により保持され ており、 上下に位置する部材との間に所定のクリアランスが形成されている。 なお、 これら遮蔽機構 7, 8, 22については後に更に詳述する。
制御系は、 不図示の制御装置によって主に構成される。 制御装置は、 CPU (中央演算処理装置)、 ROM (リード■オンリ ■メモリ)、 RAM (ランダム■ アクセス 'メモリ) 等から成るいわゆるマイクロコンピュータ (又はワークス テーシヨン) を含んで構成され、 上述した各種制御動作を行う他、 露光動作が 的確に行われるように、 例えばレチクル Rとウェハ Wの同期走査、 ウェハ Wの ステッピング等を制御する。
具体的には、 制御装置は、 例えば走査露光時には、 レチクル Rがレチクルス テージ RS Tを介して + Y方向 (又は一 Y方向) に速度 VR = Vで走査される のに同期して、 ウェハステージ WS Tを介してウェハ Wが露光領域に対して一 Y方向 (又は +Y方向) に速度 Vw = y8 ■ V (ySはレチクル Rからウェハ Wに 対する投影倍率) で走査されるように、 レチクルレーザ干渉計 9、 ウェハ干渉 計 1 8の計測値に基づいてレチクルステージ RS Tを Y軸方向に駆動する後述 するリニアモータ、 ウェハ駆動系を介してレチクルステージ RS丁、 ウェハス テージ WS Tの位置及び速度をそれぞれ制御する。
また、 ステッピングの際には、 制御装置では、 ウェハ干渉計 1 8の計測値に 基づいてウェハ駆動系を介してウェハステージ WS Tの位置を制御する。 次に、 図 2〜図 4 Bに基づいて、 レチクルステージ RS Tの構成等について 詳細に説明する。 図 2は、 レチクルステージ RS Tを一部省略して示す斜視図 であり、 図 3はレチクルステージ RS Tの縦断面図である。 また、 図 4 Aは、 図 3の A— A線断面図であり、 図 4Bは、 図 3の B— B線断面図である。 レチクルステージ RSTは、 前述したように第 2架台 1 1 2を構成する照明 系側定盤 2と投影系側定盤 3に挟まれた状態で第 2架台 1 1 2に非接触にて保 持されている。 このレチクルステージ RS Tは、 図 2に示されるように、 レチ クル粗動ステージ 4と、 該レチクル粗動ステージ 4により土 Z方向及び +Y方 向の三方向から囲まれた状態で保持されたレチクル微動ステージ 5とを備えて いる。
前記レチクル粗動ステージ 4は、 前記照明系側定盤 2の下方に数ミクロンの 微小間隔をあけて配置された上板部 46 aと、 投影系側定盤 3の上面から数ミ クロンの微小間隔をあけて配置された下板部 46 cと、 上板部 46 a及び下板 部 46 cに挟まれた状態で配置された中間部 46 bとを備えている。
前記下板部 46 cの X軸方向両側面には、 支持部材 47 a, 47 bを介して リニアモータ RM 1, RM2の可動子 48 a, 48 bが設けられている (図 2 では、 支持部材 47 a、 可動子 48 aは不図示、 図 4 A参照)。 これらの可動子 48 a, 48 bは、 Y軸方向に沿ってそれぞれ延設された固定子 49 a, 49 bとの間の電磁相互作用によリ Y軸方向に駆動され、 これによリレチクル粗動 ステージ 4が Y軸方向に駆動される。 なお、 上記固定子 4 9 a , 4 9 bは、 第 2架台 1 1 2を支持する第 1架台 1 1 1により支持することもできるが、 これとは別に、 クリーンルームの床面 F 上に防振機構を介して不図示の支持機構を設け、 これによリ支持することとし ても良い。 また、 可動子 4 8 a , 4 8 bを取り付ける位置は、 前記下板部 4 6 cに限らず、中間部 4 6 bであっても良い。なお、レチクル粗動ステージ 4は、 これらの可動子 4 8 a , 4 8 bによって加減速されるので、 その取り付け位置 (高さ方向の位置) は、 レチクル粗動ステージ 4全体の重心位置と一致させる ことが望ましい。
レチクル粗動ステージ 4は、 上述したようにリニアモータ R M 1、 R M 2に より Y軸方向に駆動されるが、 照明系側定盤 2と投影系側定盤 3の対向する面 が相互に平行とされ、 それぞれの面の平坦度が高くなつているので、 Y軸方向 への駆動を行ったとしても、 定盤 2, 3とレチクル粗動ステージ 4との間の微 小間隔はほぼ一定に保たれる。
前記中間部 4 6 bには、 図 4 Bに示されるように、 ボイスコイルモータ等か ら成る Y軸微動ァクチユエータ A C 1、 A C 2と X軸微動ァクチユエータ A C 3とが埋め込まれた状態となっている。 これら微動ァクチユエータ A C 1〜A C 3の可動子は、 それぞれステージ保持部材 4 2 a , 4 2 b , 4 2 cを介して レチクル微動ステージ 5に接続されている。 従って、 微動ァクチユエータ A C 1〜A C 3により、 レチクル微動ステージ 5が X, Y方向、 及び 0 z方向 (Z 軸方向回りの回転) に微小駆動されるようになっている。 なお、 本実施形態で は、 微動ァクチユエータ A C 1 , A C 2の温度上昇を抑制するため、 その一部 を中間部 4 6 bの外側に出し、放熱が行われやすいような構成を採用している。 なお、 レチクル粗動ステージ 4には、 照明系側定盤 2、 投影系側定盤 3との 間に所定のクリアランスを維持するための差動排気型の気体静圧軸受、 及びレ チクル微動ステージ 5との間に所定のクリアランスを維持するための差動排気 型の気体静圧軸受が設けられているが、 これらについては後に更に詳述する。 図 2に戻り、 前記レチクル微動ステージ 5は、 底面部材 5 5と、 該底面部材 5 5の上面を覆うように設けられた側壁としての隔壁 5 2とを備えている。 前記底面部材 5 5は、 図 4 Bに示されるように、 板状の部材から成り、 その 中央部近傍に矩形の開口 5 5 aが形成され、 該開口 5 5 aの周辺部には、 複数 (ここでは 4つ) のレチクル保持機構 5 3が設けられている。
前記レチクル保持機構 5 3は、 底面部材 5 5上に導入された真空配管 5 4等 を介して露光装置内に設置された不図示の真空ポンプに接続されており、 レチ クル Rがレチクル保持機構 5 3上に載置されると、真空ポンプの作動によって、 レチクル Rがレチクル保持機構 5 3にて吸着保持される。 なお、 上記真空配管 5 4は、 レチクル粗動ステージ 4を経由して、 V C Rガスコネクター等のガス 導入端子により、 レチクル微動ステージ内部に導入されている。 レチクル粗動 ステージ 4内の真空配管 4 4は、 ァクチユエータ等に接続する他の電気配線と 共に配線束 3 9にまとめられ、 真空ポンプに接続されている。 なお、 上記真空 ポンプは、 露光装置内に備えていても良いが、 真空源として半導体工場の真空 用配管から供給される真空配管又は減圧空気の配管を使用しても良い。 この点 については、 これ以降で説明する真空ポンプについても同様である。
前記隔壁 5 2は、 四方を取り囲む側壁部と、 側壁部上端に設けられ、 その中 央部に、 図 3に示されるように、 露光光 E Lを通過させるためのレチクル Rと ほぼ同一の大きさを有する矩形開口 5 2 aが形成された天井部とから構成され ている。 この隔壁 5 2と前記底面部材 5 5とにより、 レチクルが保持される保 持空間 S Sが形成されている。 なお、 天井部には後述する環状凹溝 5 8 , 5 9 に対向する上端面が形成されている。
また、 レチクル微動ステージ 5の保持空間 S Sの外側であって、 隔壁 5 2の + X側面には、 図 4 Bに示されるように、 反射部材としての平面ミラー 9 1 c が設けられている。 この平面ミラー 9 1 cの反射面に対して、 その + X側に設 けられたレチクルレーザ干渉計 9 cからの光束が照射され、 レチクル Rの X軸 方向の位置は、 レチクルレーザ干渉計 9 cによって、 例えば 0 . 5〜 1 n m程 度の分解能で常時検出されるようになっている。
更に、 隔壁 5 2の外側 (保持空間 S Sの外側) であって、 底面部材 5 5の一 Y側端部近傍には、 反射面としてのプリズム型のコーナーキューブ (レトロリ フレクタ) 9 1 a , 9 1 bが取付部材 1 0 4 a 、 1 0 4 b (図 2参照) を介し て設けられている。 このコーナーキューブ 9 1 a , 9 1 bに対しては、 レチク ルレーザ干渉計 9 a , 9 bからレーザビームが照射され、 レチクル Rの Y軸方 向の位置は、 レチクルレーザ干渉計 9 a , 9 bによって、 例えば 0 . 5〜 1 n m程度の分解能で常時検出される。 なお、 上記平面ミラー 9 1 c、 コーナーキ ユーブ 9 1 a , 9 1 bに代えて、 例えば底面部材 5 5の + X側端面及び一 Y側 端面を鏡面加工することとしても良い。
ここで、 レチクル粗動ステージ 4に設けられた気体静圧軸受について図 3に 基づいて詳細に説明する。
まず、 レチクル粗動ステージ 4と投影系側定盤 3との間に微小間隔を形成す る差動排気型の気体静圧軸受(以下、 「第 1の軸受 Jと呼ぶ)【こついて説明する。 レチクル粗動ステージ 4の下板部 4 6 cの底面には、 その外縁部のやや内側 に給気側環状凹溝 3 1が形成され、 該給気側環状 溝 3 1の外側に排気側環状 凹溝 3 2が形成されている。 給気側環状凹溝 3 1には、 レチクル粗動ステージ 4の内部に形成された略 Τ字状の給気管路 3 5の一端部から分岐された給気通 路 1 3 1に接続されている。 給気管路 3 5の別の端部には、 給気管 3 7の一端 が接続され、この給気管 3 7の他端は不図示のガス供給装置に接続されている。 また、 排気側環状凹溝 3 2には、 レチクル粗動ステージ 4内部に形成された略 Τ字状の排気管路 3 6の一端部から分岐された排気通路 1 3 2に接続されてい る。 排気管路 3 6の別の端部には、 排気管 3 8の一端が接続され、 この排気管 3 8の他端は不図示の真空ポンプに接続されている。
このような構成とすることで、 給気管 3 7を介してガス供給装置から送られ る窒素又は希ガスなどの低吸収性ガスが、 レチクル粗動ステージ 4内部に形成 された給気管路 3 5及び給気通路 1 3 1を介して給気側環状凹溝 3 1から噴出 されるとともに、 排気側環状凹溝 3 2の周辺のガスが、 排気側環状凹溝 3 2、 排気通路 1 3 2、 排気管路 3 6及び排気管 3 8を介して不図示の真空ポンプに より吸引される。 これにより、 レチクル粗動ステージ 4を、 投影系側定盤 3か ら微小距離浮上させることができるとともに、 両者間の隙間 (クリアランス) の内部に内側の給気側環状凹溝 3 1から外側の排気側環状凹溝 3 2へ向けたガ スの流れ (図 3の点線矢印参照) が形成されるので、 レチクル粗動ステージ 4 の外部からレチクル粗動ステージ 4の内部側、 すなわち開口 4 b側へ外気 (酸 素, 水蒸気) が入り込む (流入する) のを阻止することが可能となっている。 このように、 第 1の軸受は実質的に、 下板部 4 6 c全体によつて構成されてい る。
次にレチクル粗動ステージ 4と照明系側定盤 2との間を気密化する差動排気 型の気体静圧軸受 (以下、 「第 2の軸受」 と呼ぶ) について説明する。
レチクル粗動ステージ 4の上板部 4 6 aの上面には、 その外縁部のやや内側 に給気側環状凹溝 2 7が形成され、 該給気側環状凹溝 2 7の外側に排気側環状 凹溝 2 8が形成されている。 給気側環状凹溝 2 7には、 レチクル粗動ステージ 4の内部に形成された前述の給気管路 3 5の他端部から分岐された給気通路 1 3 3が接続されている。 また、 排気側環状凹溝 2 8には、 レチクル粗動ステー ジ 4の内部に形成された前述の排気管路 3 6の他端部から分岐された排気通路 1 3 4が接続されている。
このような構成とすることで、 給気管 3 7を介してガス供給装置から送られ る窒素又は希ガスなどの低吸収性ガスが、 レチクル粗動ステージ 4の内部に形 成された給気管路 3 5及び給気通路 1 3 3を介して給気側環状凹溝 2 7から噴 出されるとともに、排気側環状凹溝 2 8の周辺のガスが、排気側環状凹溝 2 8、 排気通路 1 3 4、 排気管路 3 6及び排気管 3 8を介して不図示の真空ポンプに より吸引される。 これにより、 レチクル粗動ステージ 4と照明系側定盤 2との 間に所定のクリアランスを維持することができるとともに、 そのクリアランス 内に内側から外側に向けたガスの流れ (図 3の点線矢印参照) が形成されるこ とで、 レチクル粗動ステージ 4の外部からレチクル粗動ステージ 4の内部側、 すなわち開口 4 a側へ外気 (酸素, 水蒸気) が入り込む (流入する) のを阻止 することが可能となっている。 このように、 第 2の軸受は、 実質的に上板部 4 6 a全体により構成されている。
次に、 レチクル粗動ステージ 4の下板部 4 6 cとレチクル微動ステージ 5と の間に微小間隔を形成する差動排気型の気体静圧軸受(以下、 「第 3の軸受 Jと 呼ぶ) について説明する。
レチクル粗動ステージ 4の下板部 4 6 cの上面には、 開口 4 bの外側に給気 側環状凹溝 3 3が形成され、 該給気側環状凹溝 3 3の更に外側に排気側環状凹 溝 3 4が形成されている。 給気側環状凹溝 3 3には、 レチクル粗動ステージ 4 の内部に形成された前述の給気通路 1 3 1が接続されている。 また、 排気側環 状凹溝 3 4には、 レチクル粗動ステージ 4内部に形成された前述の排気通路 1 3 2が接続されている。
このような構成とすることで、 給気管 3 7を介してガス供給装置から送られ る窒素又は希ガスなどの低吸収性ガスが、 レチクル粗動ステージ 4の内部に形 成された給気管路 3 5及び給気通路 1 3 を介して給気側環状凹溝 3 3から噴 出されるとともに、排気側環状凹溝 3 4の周辺のガスが、排気側環状凹溝 3 4、 排気通路 1 3 2、 排気管路 3 6及び排気管 3 8を介して不図示の真空ポンプに より吸引される。
ここで、 実際には、 環状凹溝 3 3 , 3 4の上方には、 レチクル微動ステージ 5の下端面が近接配置されるので、給気側環状凹溝 3 3から噴射されたガスは、 レチクル微動ステージ 5を押し上げつつその周囲を流れ、 排気側環状凹溝 3 4 にて吸引されることになる。 すなわち、 上記給気側環状凹溝 3 3から噴射され たガスによる押し上げ作用により、 レチクル微動ステージ 5が、 レチクル粗動 ステージ 4からわずかに浮上することで上記近接配置 (浮上支持)が達成され、 また、 レチクル粗動ステージ 4とレチクル微動ステージ 5との間の隙間 (クリ ァランス) 内部には、 給気側環状凹溝 3 3から排気側環状凹溝 3 4に向けてガ スの流れ (図 3の点線矢印参照) が形成されることにより、 レチクル微動ステ ージ 5の外部かちレチクル微動ステージ 5の内部側、 すなわちレチクル Rが保 持されている空間側へ外気 (酸素, 水蒸気) が入り込む (流入する) のを阻止 することが可能となっている。 このように、 第 3の軸受は、 実質的に下板部 4 6 cにより構成されている。
次に、 レチクル粗動ステージ 4の上板部 4 6 aとレチクル微動ステージ 5と の間を気密化する差動排気型の気体静圧軸受 (以下、 「第 4の軸受」 と呼ぶ) に ついて説明する。
レチクル粗動ステージ 4の上板部 4 6 aの下面には、 開口 4 aの外側に給気 側環状凹溝 5 8が形成され、 該給気側環状凹溝 5 8の更に外側に排気側環状凹 溝 5 9が形成されている。 給気側環状凹溝 5 8には、 レチクル粗動ステージ 4 の内部に形成された前述の給気通路 1 3 3が接続されている。 また、 排気側環 状凹溝 5 9には、 レチクル粗動ステージ 4の内部に形成された前述の排気通路 1 3 4が接続されている。
このような構成とすることで、 給気管 3 7を介してガス供給装置から送られ る窒素又は希ガスなどの低吸収性ガスが、 レチクル粗動ステージ 4の内部に形 成された給気管路 3 5及び給気通路 1 3 3を介して給気側環状凹溝 5 8から噴 出されるとともに、排気側環状凹溝 5 9の周辺のガスが、排気側環状凹溝 5 9、 排気通路 1 3 4、 排気管路 3 6及び排気管 3 8を介して不図示の真空ポンプに より吸引される。
ここで実際には、 環状凹溝 5 8, 5 9の下方には、 レチクル微動ステージ 5 の上端面が近接配置されるので、 レチクル微動ステージ 5とレチクル粗動ステ 一ジの上板部 4 6 aとの間の所定のクリアランスを維持できるとともに、 その クリアランス内に、 給気側環状凹溝 5 8から排気側環状凹溝 5 9に向けてガス の流れ (図 3の点線矢印参照) が形成される。 従って、 レチクル微動ステージ 5の外部からレチクル微動ステージ 5内部側、 すなわちレチクル Rが保持され ている空間側へ外気 (酸素, 水蒸気) が入り込む (流入する) のを阻止するこ とが可能となっている。 このように、 第 4の軸受は、 実質的に上板部 4 6 aに より構成されている。
なお、レチクル粗動ステージ 4とレチクル微動ステージ 5との相対移動量は、 リニアモータ R M 1, R M 2によるレチクル粗動ステージ 4の位置制御を補正 する程度の微少量であり、 具体的には数 ju m程度の幅の範囲内の量である。 こ のため、 上述したレチクル微動ステージ 5の上下端面に対して、 レチクル粗動 ステージ 4が行なう差動排気 (すなわち、 第 3、 第 4の軸受による差動排気) は、そのガス噴射量及び吸引量がわずかであっても問題とならない場合がある。 また、 近接配置される両者の端面が、 十分なすベリ性を有し、 かつ気密性を有 する場合には、 レチクル粗動ステージ 4とレチクル微動ステージ 5との間の軸 受 (すなわち、 第 3、 第 4の軸受) を設けなくても良い場合もある。
以上説明した第 1〜第 4の軸受により、 各ステージが非接触支持されるとと もに、 レチクル Rが保持された空間内への、 レチクル粗動ステージ 4と照明系 側定盤 2、投影系側定盤 3との間の間隙(クリアランス)、及びレチクル粗動ス テージ 4とレチクル微動ステージ 5との間の間隙 (クリアランス) を介した外 部からのガスの流入がほぼ完全に阻止されることになる。
ここで、 図 3に示されるように、 レチクル粗動ステージ 4に接続された給気 管 3 7内を流れる窒素又は希ガスの一部を、 レチクル粗動ステージ 4内で給気 管路 3 5から分岐された給気枝管 2 2 1 a、 2 2 1 bを介してレチクル粗動ス テージ 4に形成された開口 4 a及び開口 4 bの側壁から該開口内に流入させる ことによって保持空間 S S内に窒素又は希ガスを供給するガス供給機構を実現 することができる。 その一方で、 排気管路 3 6から分岐された排気枝管 2 2 2 a , 2 2 2 bを介して、 開口 4 a , 4 bの側壁から保持空間 S S内のガスを排 気する構成とすることによりガス排気機構を実現することができる。 これらガ ス供給機構及びガス排気機構により、 上記気密化に併せて、 レチクル Rが保持 された空間内を露光光の吸収の少ない窒素又は希ガス等により置換することが 可能となる。 なお、 給気枝管 2 2 1 a , 2 2 1 bを、 給気側環状凹溝 5 8と開 口 4 aとの間、 給気側環状凹溝 3 3と開口 4 bとの間に設けることとしても良 い。
図 1に戻り、 前記照明系側遮蔽機構 7は、 照明系ハウジング 1 0 2と照明系 側定盤 2に対して所定のクリアランスを介して、 不図示の保持機構により保持 されており、 図 5 Aに示されるように内部空間 I Sを有する円筒状の形状をし た遮蔽部材 7 a等を含んで構成されている。
前記遮蔽部材 7 aの上端面には、 円環状の形状を有する第 1給気溝 8 9と該 第 1給気溝 8 9よりも径の大きい円環状の第 1排気溝 8 7とが形成されている。 また、 遮蔽部材 7 aの下端面には、 円環状の形状を有する第 2給気溝 8 8と該 第 2給気溝 8 8よりも径の大きい第 2排気溝 8 6とが形成されている。 これら 第 1給気溝 8 9と第 2給気溝 8 8は、 遮蔽部材 7 a内に形成された複数 (例え ば 3つ) の給気管路 8 5がそれぞれ接続されており、 第 1排気溝 8 7と第 2排 気溝 8 6は、 遮蔽部材 7 a内に形成された複数 (例えば 3つ) の排気管路 8 4 がそれぞれ接続されている。 給気管路 8 5のそれぞれには、 遮蔽部材 7 aの外 部からその一端部が不図示のガス供給装置に接続された給気管 8 1の他端部が 接続されている。 また、 排気管路 8 4には、 遮蔽部材 7 aの外部から、 その一 端部が不図示の真空ポンプに接続された排気管 8 2の他端部が接続されている c また、 これらとは別に、 遮蔽部材 7 aには、 その外部から内部空間 I Sに連 通するように、ガス供給管路 1 1 8とガス排気管路 1 1 7とが形成されており、 ガス供給管路 1 1 8の一端には、 その一端が不図示のガス供給装置に接続され たガス供給管 8 3の他端が接続され、 他端には、 ノズル 1 1 9が接続されてい る。 また、 ガス排気管路 1 1 7の外側の一端には、 その一端が不図示の真空ポ ンプに接続されたガス排気管 9 0の他端が接続されている。
以上のように構成される照明系側遮蔽機構 7によると、 ガス供給管 8 3、 ガ ス供給管路 1 1 8、 ノズル 1 1 9を介してガス供給機構から内部空間 I Sに対 して窒素や希ガスが供給されるとともに、 ガス排気管路 1 1 7、 ガス排気管 9 0を介して真空ポンプにより内部空間 I S内のガスが排気される。 このように して、 内部空間 I S内のガスが窒素や希ガスに置換されることになる。
また、 給気管 8 1、 給気管路 8 5を介してガス供給機構から窒素や希ガスな どのガスが供給されることにより、 給気溝 8 9から照明系ハウジング 1 0 2の 下端部と、 遮蔽部材 7 aの上端部との間の間隙 (クリアランス) 内に上記ガス が供給されるとともに、 排気管路 8 4、 排気管 8 2を介して真空ポンプにより 間隙内のガスが真空吸引されることで、 上記間隙内に内側から外側に向けたガ スの流れが形成される。
同様に、 遮蔽部材 7 bの下面側においても、 給気溝 8 8から遮蔽部材 7 bの 下端面と照明系側定盤 2の上端面との間の間隙 (クリアランス) に対して上記 ガスが供給されるとともに、間隙内のガスが排気溝 8 6から排気されることで、 間隙内に内側から外側に向けたガスの流れが形成される。
すなわち、 前述したレチクルステージ R S Tの場合と同様に、 照明系側遮蔽 機構 7の上側及び下側の間隙を介した、 外部から内部空間 I Sへのガスの流入 を阻止することが可能となる。 すなわち、 このような構成により、 遮蔽部材 7 aの上下端面における第 1のシール機構が実現されている。
ここで、 照明系側遮蔽機構 7は、 照明系ハウジング 1 0 2とも照明系側定盤 2とも非接触とされているので、 照明系側定盤 2の振動が照明系ハウジング 1 0 2に伝達し、 照明ュニット I L Uの性能が劣化することがない。 ただし、 実 際には、 照明系側遮蔽機構 7は、 照明系ハウジング 1 0 2又は照明系側定盤 2 のいずれか一方と接触していても他方に振動が伝達することはないので、 いず れか一方の端面を接触させ、 固定することとしても良い。 この場合、 その接触 面には Oリング等を設けて気密性を向上することが望ましい。
なお、 両端面に軸受を採用する場合には、 照明系側遮蔽機構 7を保持する保 持機構は、 支持架台 B Dとは別に設けることが望ましい。
また、 照明系側遮蔽機構 7とそれに近接して配置される物体 (照明系ハウジ ング 1 0 2または照明系側定盤 3 ) の間隔を最適に調整可能なように、 伸縮及 びチルト調整可能なベローズ及び駆動機構を設けることとしても良い。
図 1に戻り、 前記投影系側遮蔽機構 8についても、 上記照明系側遮蔽機構 7 と同様に構成されている。
すなわち、 投影系側遮蔽機構 8は、 図 5 Bに示されるように、 投影系側定盤 3と投影ュニット P Uとの間に配置され、 それぞれに対して所定のクリアラン スを介して不図示の保持機構により保持された、 内部空間 s Pを有する円筒形 状をした遮蔽部材 8 a等を備えている。
遮蔽部材 8 aの内部空間 S Pに対しては、 不図示のガス供給装置からガス供 給管 1 8 3、 ガス供給管路 2 1 8、 ノズル 2 1 9を介して窒素又は希ガスが供 給され、 ガス排気管路 2 1 7、 ガス排気管 1 9 0を介して不図示の真空吸引機 構により内部空間 S P内のガスが排気されることにより、 内部空間 S P内のガ ス置換が行われる。
また、 給気溝 1 8 8 , 1 8 9から、 遮蔽部材 8 aの上側及び下側の間隙 (ク リアランス)に対して、窒素又は希ガスが供給されるとともに、排気溝 1 8 6 , 1 8 7から間隙内のガスが吸引されることにより、 いずれの間隙にも遮蔽部材 8 aの内側から外側に向けたガスの流れが形成されるので、 遮蔽部材 8 aの外 部から空間 S Pへのガスの流入を阻止することが可能となっている。すなわち、 このような構成とすることにより遮蔽部材 8 aの上下端面における第 2のシー ル機構が実現されている。 また、 投影系側遮蔽機構 8は、 投影系側定盤 3とも投影ユニット P Uとも非 接触であるので、 投影系側定盤 3の振動が投影ユニット P Uに伝達し、 その糸; 像性能が劣化することがない。 ただし、 実際には、 投影系側遮蔽機構 8は、 投 影系側定盤 3及び投影ュニッ卜 P Uのいずれかと接触していても他方へ振動が 伝達することはないので、 いずれかの端面を接触させ、 固定することとしても 良い。 この場合、 その接触面には Oリング等を設けて気密性を向上することが 望ましい。
以上のような構成とすることにより、 照明系ユニット I し U (ハウジング 1 0 2 ) から投影ユニット P U (鏡筒 1 0 9 ) に至るまでの露光光の光路を外気 から遮蔽することが可能となっている。
図 1に戻り、 投影光学系 Pしの鏡筒 1 0 9のフランジ F L Gの下面とウェハ 室 4 0の隔壁 2 0の上面との間には、 不図示の保持機構によリ保持された状態 で、 ウェハ側遮蔽機構 2 2が配置され、 この第 3遮蔽機構 2 2の上面とフラン ジ F L Gの下面との間、 及び第 3遮蔽機構 2 2の下面とウェハ室 4 0の隔壁 2 0の上面との間には所定のクリアランスが形成されている。
このウェハ側遮蔽機構 2 2も、 上述した第 1、 第 2遮蔽機構 7 , 8と同様に 構成されており、 ウェハ側遮蔽機構 2 2の上端面及び下端面にはその内部から 外部へ向けたガスの流れが形成されている。 これにより、 ウェハ側遮蔽機構 2 2の外部のガスが第 3遮蔽機構 2 2の内部空間に向けて流入するのを阻止する ことが可能となっている。
このようにウェハ側遮蔽機構 2 2を設けることにより、 ウェハ室 4 0内への 外気の流入を極力抑制することができる。
これまでの説明から明らかなように、 不図示のガス供給機構、 ガス供給管 8 3、 ガス供給管路 1 1 8、 ノズル 1 1 9により照明系側遮蔽機構 7のガス供給 機構が構成され、 不図示の真空ポンプ、 ガス排気管 9 0、 ガス排気管路 1 1 7 により照明系側遮蔽機構 7の排気機構が構成されている。 また、 不図示のガス 供給機構、 ガス供給管 1 8 3、 ガス供給管路 2 1 8、 ノズル 2 1 9により投影 系側遮蔽機構 8のガス供給機構が構成され、 不図示の真空ポンプ、 ガス排気管 1 9 0、 ガス排気管路 2 1 7により投影系側遮蔽機構 8の排気機構が構成され ている。
以上詳細に説明したように、 本実施形態の露光装置 1 0 0によると、 露光光 E Lの光路にほぼ垂直な移動面内で少なくとも Y軸方向に移動可能なレチクル ステージ R S Tの内部に保持空間 S Sが形成され、 この保持空間 S S内でレチ クル Rが保持されている。 そして、 レチクルステージ R S Tの照明ユニット I L U側と投影ユニット P U側には、 それぞれ所定のクリアランスを隔てて、 照 明系側定盤 2、 投影系側定盤 3が配置されている。 これら照明系側定盤 2、 投 影系側定盤 3には、 それぞれの一部に、 露光光 Eしの通路となる開口 2 a , 3 aが形成され、 それぞれのレチクルステージ R S Tに対する対向面は、 レチク ルステージ R S Tの移動ガイ ド面とされている。 すなわち、 露光光 E Lが照明 系側定盤 2の開口 2 aを介してレチクルステージ R S Tの保持空間 S S内に入 射し、 露光光 E Lによリレチクル Rが照明されるとともに、 レチクル Rを透過 した光が投影系側定盤 3の開口 3 aから射出する。 また、 照明系側定盤 2と投 影系側定盤 3との間に所定のクリアランスを隔ててレチクルステージが配置さ れることにより、 各定盤とレチクルステージ R S Tとの間隙 (クリアランス) をそれぞれ介して外気が保持空間 S S内へ入り込む (流入する) のが効果的に 抑制される。
従って、 上記構成を採用することにより、 レチクルステージ全体を大型の隔 壁で覆う場合と同等の効果を得ることができ、 露光装置全体の小型化、 軽量化 を図ることができる。 また、 保持空間 S S内を露光光 E Lの吸収の小さいガス で置換する場合には、 隔壁でレチクルステージ全体を覆い、 その内部を前記ガ スで置換する場合と比べてガスの使用量が低減され、 コストダウンを図ること が可能である。 また、 第 1の軸受、 第 2の軸受により、 レチクルステージ R S T (より詳し くはレチクル粗動ステージ 4 )と照明系側定盤 2及び投影系側定盤 3との間に、 その内側から外側に向かうガスの流れが形成されるので、 保持空間 S Sの内部 に対する外気の流入を阻止することができ、 保持空間 S Sの気密性を更に向上 することが可能である。
また、 第 3の軸受、 第 4の軸受により、 レチクル粗動ステージ 4とレチクル 微動ステージ 5との間隙を介した、 保持空間 S S内への外気の流入を阻止する ことが可能である。
また、 レチクルステージ R S Tの全ての軸受がレチクル粗動ステージ 4側に 設けられているので、 レチクル微動ステージ 5の軽量化を図ることができ、 レ チクル微動ステージの位置制御精度を向上し、 ひいては露光精度を向上するこ とが可能となる。
また、 レチクル微動ステージ 5におけるレチクル Rの吸着を、 レチクル粗動 ステージ 4側から導入された真空配管 5 4によって実現するので、 レチクル微 動ステージ 5内へ真空配管 5 4を直接導入する場合と比べて、 レチクル微動ス テージ 5 4の移動が配管によって制限されるのが極力抑制される。
更に、 照明系側遮蔽機構 7、 投影系側遮蔽機構 8を設けることにより、 照明 ユニット I L U (照明系ハウジング 1 0 2 ) から投影ュニット P U (鏡筒 1 0 9 )までの露光光の光路を外気から遮蔽することが可能となっている。そして、 露光光の光路が配置される空間を窒素や希ガス等の低吸収性ガスで置換するこ とにより、 露光光の吸収が抑制され、 高精度な露光を実現することができる。 また、 本実施形態では、 レチクル微動ステージ 5の保持空間の外側に、 レチ クル微動ステージ 5の位置計測に用いられる反射ミラーが設けられ、 該反射ミ ラーに対してレーザ干渉計からのレーザ光を照射することにより、 レチクル微 動ステージの位置を計測することとしているので、 パージ空間に干渉計光路が 配置されないことから、 ガスパージ精度の変動による計測誤差の影響を受けな い。 従って、 レチクルステージの位置制御性能が向上し、 ひいては露光精度の 向上を図ることが可能となる。
また、 本実施形態では、 振動源となるレチクルステージ R S T及びウェハス テージ W S Tと、 その他の部分とがそれぞれ別々に支持され、 光学系等に振動 が殆ど伝達しない構成となっていることから、 露光精度への振動による影響が 極力低減されている。
なお、 上記実施形態では、 照明系側定盤 2及び投影系側定盤 3の光透過部と して開口を形成することとしたが、 これに限らず、 定盤全体を透明部材により 構成しても良いし、 露光光の透過する部分を透明部材によリ構成することとし ても良い。 この場合の透明部材としても、 投影光学系及び照明光学系と同様に ホタル石やモディファイド石英の使用が可能である。
なお、 遮蔽機構 7, 8, 2 2及びレチクルステージ R S T内の保持空間 S S のいずれにおいても、 ガス供給機構、 ガス排気機構の両方を必ずしも設ける必 要はなく、 いずれか一方が設けられていれば良い。
なお、 上記実施形態では、 差動排気型の気体静圧軸受及びシール機構に使用 するガスとして、 窒素や希ガスなどの低吸収性ガスを採用することとしたが、 これに限らず、 真空ポンプによる排気量の方がガス供給装置による給気量よリ も多い場合には、 空気等を採用することとしても良い。
なお、 上記実施形態においては、 投影ユニット P Uとして、 直筒型の鏡筒を 備える場合を想定しているが、 投影光学系が反射屈折型の場合には、 鏡筒は、 途中で折れ曲がったリ突起が生じたりすることがあることは言うまでもない。 その場合にも、 鏡筒のレチクル側端面あるいはウェハ側端面に、 差動排気型の ェァシール機構を配置することにより、 本発明が適用できることに何ら変わり はない。
なお、 上記実施形態においてはレチクル粗動ステージ 4を構成する上板部 4 6 aと下板部 4 6 cとの間を中間部 4 6 bのみで連結するものとしたが、 これ に限らず、 レチクル粗動ステージ 4の Y側前方部 (一 Υ側) に、 上板部 4 6 a と 4 6 bとを繋ぐ支持柱を更に設け、 その剛性をより一層向上することも可能 である。
なお、 上記実施形態において、 各軸受に供給するガス及ぴレチクルが保持さ れる保持空間 S S内等に供給されるガスは、 所定の温度 (例えば 2 2 °C) に温 度制御され、 かつパーティクルや有機物、 水蒸気等の異物が十分に取り除かれ たものを使用することが望ましい。
また、 上記実施形態では各軸受が、 給気用の環状溝と排気用の環状溝を有す る二重構造である場合について説明したが、 これに限られるものではなく、 溝 を三重構造とし、 それらのうちの中間に位置する溝からガスを供給し、 該中間 の溝を挟む 2つの溝からガスを吸引することとしても、 同様の気密化効果を得 ることができる。 更には、 上記二重構造を二重に形成した四重構造の軸受を採 用することができるのは言うまでもない。 すなわち、 溝の数については各軸受 ごとに任意に選択することが可能である。
なお、 保持空間 S S内に窒素又は希ガスの一部を供給する場合、 給気枝管 2 2 1 a、 2 2 1 bの代わりに、 照明系側遮蔽機構及び投影系側遮蔽機構の少な くとも一方から窒素又は希ガスの一部を供給することとしても良い。 また、 給 気枝管 2 2 1 a, 2 2 1 bとともに照明系側遮蔽機構及び投影系側遮蔽機構の 少なくとも一方を用いて保持空間 S S内に窒素又は希ガスを供給することとし ても良い。
なお、 上記実施形態ではステップ 'アンド 'スキャン方式の露光装置に本発 明のガスパージ方法を採用した場合について説明したが、 本発明がこれに限ら れるものではなく、 ステップ 'アンド ' リピート方式の露光装置 (いわゆるス テツパ) についても、 好適に適用することができる。
なお、 上記実施形態の露光装置では、 露光用光源として、 F 2 レーザ、 K r 2 レーザ、 A r 2 レーザ、 A r Fエキシマレーザ、 K r Fエキシマレーザなどの レーザ光源をもちいるものとしたが、本発明がこれに限定されるものではない。 例えば、 露光用照明光として、 真空紫外光を用いる場合に、 例えば、 D F B半 導体レーザ又はファイバーレーザから発振される赤外域、 又は可視域の単一波 長レーザ光を、 例えばエルビウム (又はエルビウムとイッテルビウムの両方) がドープされたファイバーアンプで増幅し、 非線形光学結晶を用いて紫外光に 波長変換した高調波を用いても良い。 また、 投影ユニットの倍率は縮小系のみ ならず等倍およぴ拡大系のいずれでも良い。
なお、 複数のレンズから構成される照明ユニット、 投影ユニットを露光装置 本体に組み込み、 光学調整をするとともに、 多数の機械部品からなるウェハス テージ (スキャン型の場合はレチクルステージも) を露光装置本体に取り付け て配線や配管を接続し、 レチクル室、 ウェハ室を構成する各隔壁を組み付け、 ガスの配管系を接続し、の制御系に対する各部の接続を行い、更に総合調整(電 気調整、 動作確認等) をすることにより、 上記実施形態の露光装置 1 0 0等の 本発明に係る露光装置を製造することができる。 なお、 露光装置の製造は温度 およびクリーン度等が管理されたクリーンルームで行うことが望ましい。
また、 本発明は、 半導体素子の製造に用いられる露光装置だけでなく、 液晶 表示素子、 プラズマディスプレイ又は有機 E Lなどを含むディスプレイの製造 に用いられる、 デバイスパターンをガラスプレート上に転写する露光装置、 薄 膜磁気へッドの製造に用いられる、 デバイスパターンをセラミックウェハ上に 転写する露光装置、撮像素子 (C C Dなど)、 マイクロマシン、 及び D N Aチッ プなどの製造に用いられる露光装置などにも適用することができる。 また、 半 導体素子などのマイクロデバイスだけでなく、 光露光装置、 E U V露光装置、 X線露光装置、 及び電子線露光装置などで使用されるレチクル又はマスクを製 造するために、 ガラス基板又はシリコンウェハなどに回路パターンを転写する 露光装置にも本発明を適用できる。
《デバイス製造方法》 次に上述した露光装置をリソグラフイエ程で使用するデバイスの製造方法の 実施形態について説明する。
図 6には、デバイス( I Cや L S I等の半導体チップ、液晶パネル、 C C D、 薄膜磁気ヘッド、 マイクロマシン等) の製造例のフローチャートが示されてい る。図 6に示されるように、まず、ステップ 3 0 1 (設計ステップ) において、 デバイスの機能,性能設計 (例えば、 半導体デバイスの回路設計等) を行い、 その機能を実現するためのパターン設計を行う。引き続き、ステップ 3 0 2 (マ スク製作ステップ) において、 設計した回路パターンを形成したマスクを製作 する。 一方、 ステップ 3 0 3 (ウェハ製造ステップ) において、 シリコン等の 材料を用いてウェハを製造する。
次に、 ステップ 3 0 4 (ウェハ処理ステップ) において、 ステップ 3 0 1〜 ステップ 3 0 3で用意したマスクとウェハを使用して、 後述するように、 リソ グラフィ技術等によってウェハ上に実際の回路等を形成する。 次いで、 ステツ プ 3 0 5 (デバイス組立てステップ) において、 ステップ 3 0 4で処理された ウェハを用いてデバイス組立てを行う。 このステップ 3 0 5には、 ダイシング 工程、 ボンディング工程、 及びパッケージング工程 (チップ封入) 等の工程が 必要に応じて含まれる。
最後に、 ステップ 3 0 6 (検査ステップ) において、 ステップ 3 0 5で作成 されたデバイスの動作確認テスト、 耐久テスト等の検査を行う。 こうした工程 を経た後にデバイスが完成し、 これが出荷される。
図 7には、 半導体デバイスにおける、 上記ステップ 3 0 4の詳細なフロー例 が示されている。 図 7において、 ステップ 3 1 1 (酸化ステップ) においては ウェハの表面を酸化させる。 ステップ 3 1 2 ( C V Dステップ) においてはゥ ェハ表面に絶縁膜を形成する。 ステップ 3 1 3 (電極形成ステップ) において はウェハ上に電極を蒸着によって形成する。 ステップ 3 1 4 (イオン打ち込み ステップ) においてはウェハにイオンを打ち込む。 以上のステップ 3 1 1〜ス テツプ 3 1 4それぞれは、 ウェハ処理の各段階の前処理工程を構成しており、 各段階において必要な処理に応じて選択されて実行される。
ウェハプロセスの各段階において、 上述の前処理工程が終了すると、 以下の ようにして後処理工程が実行される。 この後処理工程では、 まず、 ステップ 3 1 5 (レジスト形成ステップ) において、 ウェハに感光剤を塗布する。 引き続 き、 ステップ 3 1 6 (露光ステップ) において、 上で説明したリソグラフイシ ステム (露光装置) 及び露光方法によってマスクの回路パターンをウェハに転 写する。 次に、 ステップ 3 1 7 (現像ステップ) においては露光されたウェハ を現像し、 ステップ 3 1 8 (エッチングステップ) において、 レジストが残存 している部分以外の部分の露出部材をエッチングにより取り去る。 そして、 ス テツプ 3 1 9 (レジスト除去ステップ) において、 エッチングが済んで不要と なったレジストを取り除く。
これらの前処理工程と後処理工程とを繰り返し行うことによって、 ウェハ上 に多重に回路パターンが形成される。
以上説明した本実施形態のデバイス製造方法を用いれば、 露光工程 (ステツ プ 3 1 6 ) において上記実施形態の露光装置が用いられるので、 露光精度の低 下が殆どない状態で小型化された露光装置を半導体工場内に数多く設けること により、 高集積度のデバイスの生産性を向上させることが可能になる。 産業上の利用可能性
以上説明したように、 本発明の露光装置は、 ウェハなどの物体上にデバイス パターンを転写するのに適している。 また、 本発明のデバイス製造方法は、 高 集積度のデバイスの生産に適している。

Claims

請 求 の 範 囲
1 . 照明光によりマスクを照明する照明ュニッ卜と ;
前記マスクに形成されたパターンを物体上に投影する投影ュニッ卜と ; 前記マスクを保持する保持空間がその内部に形成され、 前記照明光の光路に ほぼ垂直な移動面内で少なくとも一軸方向に移動可能なマスクステージと ; 前記マスクステージの前記照明ュニット側に所定の第 1クリアランスを介し て配置され、 前記照明光が透過する光透過部が一部に設けられ、 前記マスクス テージに対向する対向面が形成された第 1のマスク定盤と ;
前記マスクステージの前記投影ュニット側に所定の第 2クリアランスを介し て配置され、 前記照明光が透過する光透過部が一部に設けられ、 前記マスクス テージに対向する対向面が形成された第 2のマスク定盤と;を備える露光装置。
2 . 請求項 1に記載の露光装置において、
前記マスクステージに設けられ、 前記第 2のマスク定盤の前記対向面に対し て所定ガスを噴射するとともに、 前記対向面近傍の空間内のガスを吸引して外 部に排気することにより、 前記第 2クリアランスを形成する差動排気型の第 1 の気体静圧軸受を更に備えることを特徴とする露光装置。
3 . 請求項 2に記載の露光装置において、
前記マスクステージに設けられ、 前記第 1のマスク定盤の前記対向面に対し て所定ガスを噴射するとともに、 前記対向面近傍の前記第 1クリアランス内の ガスを吸引して外部に排気する差動排気型の第 2の気体静圧軸受を更に備える ことを特徴とする露光装置。
4 . 請求項 3に記載の露光装置において、
前記第 1、 第 2の気体静圧軸受の少なくとも一方は、 前記所定ガスの噴射口 に連通する給気側環状凹溝と、 該給気側環状凹溝の外周側に配置され前記所定 ガスの排気口に連通する排気側環状凹溝とを有することを特徴とする露光装置。
5 . 請求項 1に記載の露光装置において、
前記マスクステージは、 前記マスク保持空間が形成され前記マスクを保持す る微動ステージと、 該微動ステージを前記移動面に平行な面内で微動可能に保 持し、 前記第 1、 第 2のマスク定盤にそれぞれ対向する面が形成された粗動ス テージとを有することを特徴とする露光装置。
6 . 請求項 5に記載の露光装置において、
前記微動ステージに対向する前記粗動ステージの対向面のうち、 前記投影ュ ニット側の対向面に設けられ、 該対向面に対向する前記微動ステージの面に所 定ガスを噴射するとともに、 前記微動ステージの面近傍のガスを吸引して外部 に排気する差動排気型の第 1の気体静圧軸受を更に備えることを特徴とする露
7 . 請求項 6に記載の露光装置において、
前記微動ステージに対向する前記粗動ステージの対向面のうち、 前記照明ュ ニット側の対向面に設けられ、 該対向面に対向する前記微動ステージの面に所 定ガスを噴射するとともに、 前記微動ステージと前記粗動ステージとの間のク リアランス内部のガスを吸引して外部に排気する差動排気型の第 2の気体静圧 軸受を更に備えることを特徴とする露光装置。
8 . 請求項 7に記載の露光装置において、 前記第 1、 第 2の気体静圧軸受の少なくとも一方は、 前記所定ガスの噴射口 に連通する給気側環状凹溝と、 該給気側環状凹溝の外周側に配置され前記所定 ガスの排気口に連通する排気用凹溝とを有することを特徴とする露光装置。
9 . 請求項 5に記載の露光装置において、
前記微動ステージは、 前記保持空間を形成することを特徴とする露光装置。
1 0 . 請求項 9に記載の露光装置において、
前記微動ステージは、 前記保持空間を形成する側壁を備え、
前記側壁の外面側に設けられる反射部材にレーザ光を照射し、 前記反射部材 の反射面で反射した反射光に基づいて前記微動ステージの位置を計測するレー ザ干渉計を、 更に備えることを特徴とする露光装置。
1 1 . 請求項 1に記載の露光装置において、
前記保持空間に対して、 特定ガスを供給するガス供給機構と、 前記保持空間 内のガスを排気するガス排気機構との少なくとも一方を更に備えることを特徴 とする露光装置。
1 2 . 請求項 1 1に記載の露光装置において、
前記照明光は、 波長 1 9 0 n m以下の真空紫外光であり、
前記特定ガスは、 窒素及び希ガスのいずれかであることを特徴とする露光装
1 3 . 請求項 1に記載の露光装置において、
前記第 1のマスク定盤と前記照明ュニッ卜との少なくとも一方に対して接す ることなく所定のクリアランスを介して配置され、 前記第 1のマスク定盤と前 記照明ュニッ卜との間の空間をほぼ遮蔽する遮蔽部材と ;
前記遮蔽部材に設けられ、 前記第 1のマスク定盤と前記照明ュニッ卜の少な くとも一方に所定のガスを噴射するとともに前記クリアランス内のガスを吸引 して外部に排気する差動排気型のシール機構と ; を更に備えることを特徴とす
1 4 . 請求項 1 3に記載の露光装置において、
前記遮蔽部材の内部の前記照明光の光路を形成する光路空間に特定ガスを供 給するガス供給機構と、 前記光路空間内のガスを排気する排気機構との少なく とも一方を更に備えることを特徴とする露光装置。
1 5 . 請求項 1 4に記載の露光装置において、
前記照明光は、 波長 1 9 0 n m以下の真空紫外光であり、
前記特定ガスは、 窒素及び希ガスのいずれかであることを特徴とする露光装 置。
1 6 . 請求項 1に記載の露光装置において、
前記第 2のマスク定盤と前記投影ュニッ卜との少なくとも一方に対して接す ることなく所定のクリアランスを介して配置され、 前記第 2のマスク定盤と前 記投影ュニッ卜との間の空間をほぼ遮蔽する遮蔽部材と ;
前記遮蔽部材に設けられ、 前記第 2のマスク定盤と前記投影ュニッ卜との少 なくとも一方に所定のガスを噴射するとともに前記クリアランス内のガスを吸 引して外部に排気する差動排気型のシール機構と ; を更に備えることを特徴と する露光装置。
1 7 . 請求項 1 6に記載の露光装置において、 前記遮蔽部材の内部の前記照明光の光路を形成する光路空間に特定ガスを供 給するガス供給機構と、 前記光路空間内のガスを排気する排気機構との少なく とも一方を更に備えることを特徴とする露光装置。
1 8 . 請求項 1 7に記載の露光装置において、
前記照明光は、 波長 1 9 0 n m以下の真空紫外光であり、
前記特定ガスは、 窒素及び希ガスのいずれかであることを特徴とする露光装
1 9 . リソグラフイエ程を含むデバイス製造方法であって、
前記リソグラフイエ程では、 請求項 1〜 1 8のいずれか一項に記載の露光装 置を用いて露光を行うことを特徴とするデバイス製造方法。
PCT/JP2003/002374 2002-03-01 2003-02-28 Exposure equipment and device manufacturing method WO2003075327A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003211556A AU2003211556A1 (en) 2002-03-01 2003-02-28 Exposure equipment and device manufacturing method
JP2003573686A JPWO2003075327A1 (ja) 2002-03-01 2003-02-28 露光装置及びデバイス製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002055380 2002-03-01
JP2002-55380 2002-03-01
JP2002/220103 2002-07-29
JP2002220103 2002-07-29

Publications (1)

Publication Number Publication Date
WO2003075327A1 true WO2003075327A1 (en) 2003-09-12

Family

ID=27790931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002374 WO2003075327A1 (en) 2002-03-01 2003-02-28 Exposure equipment and device manufacturing method

Country Status (4)

Country Link
JP (1) JPWO2003075327A1 (ja)
AU (1) AU2003211556A1 (ja)
TW (1) TW200305065A (ja)
WO (1) WO2003075327A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118783A (ja) * 1999-10-21 2001-04-27 Nikon Corp 露光方法及び装置、並びにデバイス製造方法
JP2001272488A (ja) * 2000-03-27 2001-10-05 Toshiba Corp ステージ装置
JP2001319873A (ja) * 2000-02-28 2001-11-16 Nikon Corp 投影露光装置、並びにその製造方法及び調整方法
EP1172698A2 (en) * 2000-07-14 2002-01-16 Asm Lithography B.V. Lithographic projection apparatus, device manufacturing method, device manufactured thereby and gas composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118783A (ja) * 1999-10-21 2001-04-27 Nikon Corp 露光方法及び装置、並びにデバイス製造方法
JP2001319873A (ja) * 2000-02-28 2001-11-16 Nikon Corp 投影露光装置、並びにその製造方法及び調整方法
JP2001272488A (ja) * 2000-03-27 2001-10-05 Toshiba Corp ステージ装置
EP1172698A2 (en) * 2000-07-14 2002-01-16 Asm Lithography B.V. Lithographic projection apparatus, device manufacturing method, device manufactured thereby and gas composition

Also Published As

Publication number Publication date
AU2003211556A1 (en) 2003-09-16
TW200305065A (en) 2003-10-16
JPWO2003075327A1 (ja) 2005-06-30

Similar Documents

Publication Publication Date Title
US10120288B2 (en) Stage device, exposure apparatus, and method of manufacturing devices
US6791766B2 (en) Method and device for holding optical member, optical device, exposure apparatus, and device manufacturing method
KR101013347B1 (ko) 노광방법, 노광장치, 및 디바이스 제조방법
KR20020036951A (ko) 노광방법 및 장치
JP4081813B2 (ja) 光学装置、露光装置、及びデバイス製造方法
JP2004303808A (ja) 露光装置及び露光方法、フィルム構造体
KR100550138B1 (ko) 노광장치 및 이를 사용한 반도체 디바이스 제조방법
CN100472713C (zh) 曝光设备和装置制造方法
JP4258840B2 (ja) 支持装置、光学装置及び露光装置、並びにデバイス製造方法
WO2004051716A1 (ja) 露光装置及び露光方法、並びにデバイス製造方法
WO2003054936A1 (fr) Procede de purge de gaz et systeme d'exposition, ainsi que procede de production de dispositifs
WO2003075327A1 (en) Exposure equipment and device manufacturing method
JP2002033258A (ja) 露光装置、マスク装置及びパターン保護装置、並びにデバイス製造方法
JP3984898B2 (ja) 露光装置
JP2004063790A (ja) 露光装置及びデバイス製造方法
JP5120193B2 (ja) 露光装置、メンテナンス方法、露光方法、及びデバイス製造方法
JP2005079294A (ja) 露光装置、露光システム、及びデバイス製造方法
JP2002260998A (ja) 露光方法及び露光装置並びにデバイスの製造方法
JP2005150359A (ja) 露光装置及びデバイスの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003573686

Country of ref document: JP

122 Ep: pct application non-entry in european phase