WO2003072288A1 - Verbindung mit einer diffusionslotstelle und verfahren zu ihrer herstellung - Google Patents

Verbindung mit einer diffusionslotstelle und verfahren zu ihrer herstellung Download PDF

Info

Publication number
WO2003072288A1
WO2003072288A1 PCT/DE2003/000603 DE0300603W WO03072288A1 WO 2003072288 A1 WO2003072288 A1 WO 2003072288A1 DE 0300603 W DE0300603 W DE 0300603W WO 03072288 A1 WO03072288 A1 WO 03072288A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffusion
solder joint
nanoparticles
component
diffusion solder
Prior art date
Application number
PCT/DE2003/000603
Other languages
English (en)
French (fr)
Inventor
Khalil Hosseini
Edmund Riedl
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Publication of WO2003072288A1 publication Critical patent/WO2003072288A1/de
Priority to US10/927,621 priority Critical patent/US7368824B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3006Ag as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3013Au as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/292Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/292Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29201Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29211Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/29387Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/325Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/325Material
    • H01L2224/32505Material outside the bonding interface, e.g. in the bulk of the layer connector
    • H01L2224/32507Material outside the bonding interface, e.g. in the bulk of the layer connector comprising an intermetallic compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/8381Soldering or alloying involving forming an intermetallic compound at the bonding interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/8382Diffusion bonding
    • H01L2224/83825Solid-liquid interdiffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0101Neon [Ne]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01052Tellurium [Te]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01061Promethium [Pm]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Definitions

  • the invention relates to a diffusion solder joint between two parts connected via the diffusion solder joint and to a method for producing the diffusion solder joint in accordance with the preamble of the independent claims.
  • Diffusion soldering produces brittle intermetallic phases which, although they ensure a diffusion solder joint which is resistant to high temperatures, cause problems when connecting parts with different coefficients of thermal expansion in such a way that microcracks migrate through the diffusion solder joint. In the extreme case, delamination of the parts to be connected can occur.
  • the advantage of the higher temperature resistance of diffusion solder joints between two parts is thus partially compensated for by increased sensitivity to mechanical stress and in particular to thermal shock stress. This is particularly noticeable when control and power modules for automotive technology are manufactured with diffusion solder joints.
  • the object of the invention is to provide a diffusion solder joint, which hinders microcracks under thermomechanical loading and enables greater reliability and service life of the diffusion solder joint.
  • a diffusion solder joint is created between two parts connected via the diffusion solder joint, the diffusion solder joint having intermetallic phases of at least two solder components.
  • the first of the two Solder components have a melting point below the melting point of the intermetallic phases and the second of the solder components has a melting point above the intermetallic phases.
  • the diffusion solder joint has, in its diffusion region, nanoparticles of an additional material which is arranged spatially distributed.
  • the presence of nanoparticles in a diffusion area of the diffusion solder joint i.e. in the area in which intermetallic phases have preferably formed has the advantage that microcracks emanating from the intermetallic phases when the diffusion solder joint is subjected to thermal stress are prevented by the nanoparticles from migrating through the entire solder joint.
  • an area of the diffusion solder joint outside the diffusion region with material of the second solder component can be free of nanoparticles. Since the second solder component has a melting point which lies above the intermetallic phases, it can happen when producing the diffusion solder joint that part of the second solder component is neither dissolved nor melted. In this area of the diffusion solder joint there is then no diffusion and likewise no distribution of nanoparticles which only occur in the molten diffusion region of the diffusion solder joint during the manufacture of the
  • the diffusion solder joint according to the invention provides thermal stress compensation between the first of the parts and the second of the parts, the first of the two parts having a lower coefficient of thermal expansion than the second of the two parts.
  • This voltage equalization takes place partly via the nanoparticles, which partially absorb a negative effect of the intermetallic phase, namely the brittleness of the diffusion solder joint.
  • the thermal stress equalization is also based in part on the fact that nanoparticles are used whose thermal expansion coefficient lies between the thermal expansion coefficient of the first solder component and the thermal expansion coefficient of the second solder component. This means that the coefficient of thermal expansion of the nanoparticles of the filler material is greater than the coefficient of thermal expansion of the first part and less than the coefficient of thermal expansion of the second part.
  • Such a diffusion solder joint can have as a first part a semiconductor chip and as a second part a metallic system carrier with a semiconductor chip island as source contact for the semiconductor chip and with flat conductors which surround the chip island and serve as drain contact and / or as gate contact for the semiconductor chip.
  • a large-area metallic contact via a diffusion solder joint both on the active top side of the semiconductor chip with its common drain contact for several 100,000 MOS switches connected in parallel Transistors, as well as large-area contacting via a diffusion solder joint to the metallic semiconductor chip island of a system carrier. Both the large drainage clock as well as the large-area source contact to the semiconductor chip island ensure effective dissipation of the heat loss of such a power component.
  • a first solder component with a lower melting point than the intermetallic phases of the diffusion solder joint can have tin or a tin alloy. This tin tends to form intermetallic phases with various precious metals such as gold or silver and also copper, which create a high-temperature-resistant diffusion solder joint.
  • the second solder component can thus have silver, gold, copper or alloys thereof.
  • the materials of the solder components are applied in the form of coatings to the two parts to be connected, and nanoparticles of the diffusion solder joint are arranged on these coatings. At least one of the solder components thus has a coating with nanoparticles of the diffusion solder point.
  • the nanoparticles of the filler material can be arranged on coatings on the top of a semiconductor wafer.
  • This arrangement on a semiconductor wafer has the advantage that the nanoparticles applied to the top can penetrate into the coating even in a tempering step for the metallic conductor tracks and for the contact surfaces of a semiconductor wafer surface.
  • the application of the nanoparticles to a semiconductor wafer has the advantage that the application of the nanoparticles for many semiconductor chips can take place in a single process step.
  • the chip island belonging to the system carrier can also have a coating with nanoparticles of the diffusion solder joint. These nanoparticles are already arranged in layers in the manufacture of a system carrier, for example on the chip island, and can then be applied when a corresponding coating is brought together the back of the semiconductor chip with the chip island in the diffusion area of the diffusion solder joint.
  • the nanoparticles of the additive itself can have an amorphous substance.
  • Amorphous substances have the advantage over the parts to be connected, such as a semiconductor chip and a metallic system carrier, that their thermal expansion coefficient can be adapted to the parts to be connected depending on the composition of the amorphous substances.
  • the nanoparticles of the additive can have silicates.
  • silicates are based on silicon dioxide in amorphous form and have a coefficient of thermal expansion which is somewhat greater than the coefficient of thermal expansion of pure silicon, as is used for semiconductor chips.
  • the nanoparticles of the filler material can have borosilicates or phosphorus silicates which, compared to pure silicon dioxide as silicate or as amorphous glass, have a somewhat larger coefficient of thermal expansion, so that an optimally tailored coefficient of thermal expansion for the nanoparticles of the filler material can be achieved by suitable mixtures.
  • the diffusion solder joint according to the invention for electrical connections of components of a power module.
  • considerable power losses must be dissipated in the case of power components and power modules.
  • the diffusion solder joint produces an intensive thermal coupling of the semiconductors of the power module that generate heat loss to the corresponding circuit carrier of a line module, in particular if the circuit carrier consists of a metal.
  • the power semiconductor's power dissipation can therefore exceed Diffusion solder joint can be optimally removed.
  • the operating temperatures for the corresponding power modules can be increased to over 175 ° C up to 230 ° C.
  • a method for producing a diffusion solder joint between two parts connected via the diffusion solder joint is characterized by the following process steps. First, a first of the two parts to be connected is coated with the first solder component. Then a two-
  • L5 partially combined with the coating of the second solder component to a temperature above the melting point of the first solder component and below the temperature of the melting point of the second solder component to form intermetallic phases.
  • This method has the advantage that one part carries the solder component with the low melting point and the other part has the solder component with the high melting point. However, it is also possible that both parts initially
  • the solder component 25 have coatings with the solder component with a high melting point and at least one of the two parts has a thin layer of the solder component with the low melting point.
  • the first solder component melts due to the temperature conditions mentioned above
  • nanoparticles that are not melted next to one another and intermetallic phases that form are melting.
  • the diffusion area of the diffusion solder joint cools, the progress or migration of microcracks, which can originate from the intermetallic phases, is hindered by the nanoparticles.
  • microcracks that form in the vicinity of the brittle intermetallic phase cannot spread through the entire diffusion layer and possibly cause delamination, since the nanoparticles of the filler material cause this prevent.
  • Nanoparticles can be applied to one of the two coatings by adding nanoparticles in an electrolyte bath for the electrodeposition of the coatings. When the coatings are produced in this way, the nanoparticles are relatively evenly distributed in the coating when the coating is formed.
  • the nanoparticles can be applied to one of the two coatings by dusting with subsequent rolling in order to mechanically anchor the nanoparticles to the surface of the coating.
  • This method can be carried out relatively inexpensively and leads to an inexpensive result in which the surface of the coating is now covered with nanoparticles.
  • Nanoparticles can also be applied to one of the two coatings by first sputtering the nanoparticles and then melting the nanoparticles into the surface of the coating in a tempering step that may be required for the coating.
  • This technique can be used advantageously if, for example, a semiconductor wafer with several Semiconductor chips on its active top side is to be coated with nanoparticles in the areas of a diffusion solder joint. A large number of semiconductor chips with corresponding nanoparticles for the diffusion solder joint connections can thus be provided with this method variant.
  • thermomechanical stress leads to great tensions at the interfaces.
  • microcracks can occur in connection materials, in particular in the environment of intermetallic phases after corresponding high stress loads or in the production of the diffusion solder joint connections. Such stress loads, particularly with high temperature changes, can even lead to delamination of the diffusion solder joint.
  • nanoparticles in the diffusion soldering process thus compensates for the expansion coefficients between the diffusion solder from the two solder components and the connecting partners or parts.
  • the introduction of the nanoparticles into the diffusion soldering materials and the diffusion zone that forms there can be carried out using different methods as follows: If the alloy systems are already on the connecting parts (for example on a wafer or a system carrier), the nanoparticles can be applied to the alloy systems over a large area. Then the connecting parts are put together. With this assembly, the nanoparticles are located directly at the interface between the two solder components. If a preform is used as the alloy system, the nanoparticles can be mixed into the melt when producing the preform, for example when producing strips, wires, balls, etc., and rolled into the alloy after solidification has taken place.
  • the nanoparticles can also be introduced onto the respective connecting parts during a galvanic deposition of the alloy coating, by mixing them with the deposition electrolyte. During the deposition of the alloy coating, the nanoparticles are homogeneously built into the alloy layer.
  • the nanoparticles are initially distributed homogeneously in the melt and can then additionally enrich themselves at the interface through corresponding convection currents in the melt, so that the nanoparticles are present in increased concentration in the area of the intermetallic phases in the diffusion area of the diffusion solder joint are enriched.
  • FIG. 1 shows a schematic oblique section through a diffusion point of a first embodiment of the invention
  • FIG. 2 shows a schematic oblique section through parts which are joined together via a diffusion solder point
  • FIG. 3 shows a schematic cross section through an electronic component which has a plurality of diffusion solder points.
  • FIGS. 4 to 8 show schematic cross sections through a semiconductor wafer for producing a plurality of electronic components which have diffusion solder joints
  • FIG. 4 shows a schematic cross section through a semiconductor wafer
  • FIG. 5 shows a schematic cross section through a semiconductor wafer after application of a first solder component on its rear side
  • FIG. 6 shows a schematic cross section through a semiconductor wafer after application of a first solder component on its active upper side
  • FIG. 7 shows a schematic cross section through a semiconductor wafer after structuring the first solder component on its active upper side
  • FIG. 8 shows a schematic cross section through a semiconductor wafer after nanoparticles have been applied to its structured first solder component
  • Figure 9 shows a schematic cross section through a
  • FIGS. 10 to 12 show schematic cross sections of parts which are connected to one another to form a component with diffusion solder joints
  • Figure 10 shows a schematic cross section through a
  • Figure 11 shows a schematic cross section through a
  • FIG. 12 shows a schematic cross section through a chip island of a system carrier with a coating of a second solder component
  • FIG. 13 shows a schematic cross section through an electronic component with diffusion solder joints before the flat conductor is bent to external connections.
  • FIG. 1 shows a schematic oblique section through a diffusion solder joint 2 of a first embodiment of the invention.
  • the reference symbol 3 denotes a first part, which is electrically and mechanically connected to a second part 4 via the diffusion solder joint 2.
  • the reference symbol 5 denotes a first solder component whose melting temperature is lower than the second solder component 6.
  • the second solder component 6 has a melting temperature which is higher than the melting temperature of the intermetallic phases formed from both solder components 5 and 6. The melting temperature of the second solder component 6 is also above the soldering temperature at which the two parts 3 and 4 are joined using the diffusion solder joint 2.
  • a diffusion solder joint 2 is characterized by a non-detached remaining area of the second solder component 6 in the bevel cut.
  • nanoparticles 8 are initially distributed homogeneously in the melt and, as intermetallic phases increasingly form in the diffusion solder joint 2, as shown in FIG. 1, can be inhomogeneously distributed, that is to say that a higher concentration of nanoparticles 8 can occur in the field of intermetallic phases.
  • This inhomogeneity can be caused in part by convexation processes in the melted first solder component 5.
  • Enrichment of the nanoparticles 8 in the vicinity of the phase transition from the first solder component 5 to the undissolved portion of the second solder component 6 is also a characteristic feature of this particular type of diffusion solder joint 2.
  • the first part 3 is a semiconductor chip 9 with a lower coefficient of thermal expansion than the second part 4, which in this embodiment of the invention is part of a metallic system carrier 10.
  • This system carrier 10 is connected over a large area via the diffusion solder joint 2 to the rear side 22 of the semiconductor chip, the brittle intermetallic phases which arise during diffusion soldering being prevented by the nanoparticles 8 from forming and propagating microcracks within the diffusion solder joint 2.
  • the second part 4 in this embodiment consists of a system carrier 10, which in turn has a copper alloy and thus has a significantly higher coefficient of thermal expansion than the first part 3 of a semiconductor chip
  • the coefficient of expansion of the nanoparticles is located in a range between the values of the coefficients of expansion of the first part 3 and the second part 4.
  • the thermal expansion coefficient of the nanoparticles can be adapted to the thermal expansion coefficients of the first part 3 and the second part 4 by using suitable amorphous silicates.
  • suitable amorphous silicates can be borosilicates or phosphorus silicates.
  • the diffusion solder joint 2 can have a semiconductor chip as the first part 3 and a metallic system carrier with a semiconductor chip island 11, which serves as a source contact 12 for a power component, as the second part 4.
  • the entire source current of such a power component can thus be supplied to the semiconductor material 9 via the chip island 11.
  • FIG. 2 shows a schematic bevel cut through parts 3 and 4 which are to be connected to one another via a diffusion solder joint 2.
  • Components with the same functions as in FIG. 1 are identified by the same reference symbols and are not explained separately.
  • the first part 3, namely a semiconductor chip 9, is coated on its rear side 22 with a low-melting first solder component 5, to which the nanoparticles 8 have been applied.
  • a low-melting first solder component 5 to which the nanoparticles 8 have been applied.
  • Such application may be carried on top of the low melting temperature first solder component 5 'by rolling or stamping of the nanoparticles.
  • Another possibility is to galvanically deposit the first solder component 5 on the back of the semiconductor chip in an electrolyte bath which also contains nanoparticles 8.
  • the nanoparticles 8 are installed in the solder component 5 in a uniform and homogeneous manner.
  • the bevel cut of a second part 4 is shown in principle, which carries a second solder component 6 on its upper side.
  • This solder component 6 is a high-melting solder component 6 and thus has a higher melting temperature than the low-melting solder component 5 on the first part 3.
  • This high-melting solder component can also be a multi-layer layer of gold,
  • the high-melting component 6 will partially diffuse into the low-melting component 5 and in which Form diffusion area of intermetallic phases.
  • the diffusion solder joint 2 cools down, an inhomogeneous distribution of the nanoparticles 8 can occur in the diffusion region.
  • the low-melting solder component 5 can have tin or a tin alloy, while the second high-melting solder component 6 has silver, gold, copper or alloys thereof.
  • FIG. 3 shows a schematic cross section through an electronic component 30 for a power module, which has a plurality of diffusion solder joints 2.
  • Components with the same functions as in the previous figures are identified by the same reference numerals and are not specifically explained.
  • the reference symbol 10 denotes a system carrier
  • the reference symbol 11 denotes a semiconductor chip island of the system carrier
  • the reference symbol 12 denotes a source contact of the electronic power component 30.
  • the reference symbol 13 denotes a large-area flat conductor which contacts the parallel-connected drain contacts on the top of the power component 30
  • the reference numeral 14 denotes a flat conductor which produces a gate contact 16 to the top of the semiconductor chip.
  • the electronic power component 30 consists of several 100,000 MOS transistors 21 connected in parallel, which richly arranged the active top 20 of the semiconductor chip.
  • the active area of the upper side 20 is marked by a broken line 23. While the common source area can be contacted over a large area by the rear side 22 of the semiconductor chip 9 by electrically and mechanically connecting the chip island 11 to the rear side 22 of the semiconductor chip 9 with the aid of a diffusion solder joint 2, the several 100,000 gate electrodes become a gate contact 16 merged, which can be connected to a higher-level circuit via the flat conductor 14.
  • the flat conductor 14 for the gate contact 16 is likewise connected to the parallel connected gate electrodes of the electronic power component 30 via a diffusion solder joint 2.
  • a third diffusion solder joint 2 has the electrical and mechanical connection of the flat conductor 13 to the drain connection comprising several 100,000 electrodes connected in parallel.
  • the first low-melting solder component 5 is applied to the electrodes of the semiconductor web 9, so that the semiconductor 9 represents the first part 3 of the diffusion solder joint, while the metallic parts to be connected to the semiconductor made of flat conductors 13 and 15 and chip island 11 are first refined on their surfaces in order to diffuse the flat conductor metal or the metal of the semiconductor chip island 11 should not be allowed to penetrate to the diffusion solder joint.
  • the diffusion point coating can be a nickel alloy and the second high-melting solder component 6 can be a gold or silver alloy.
  • the overall structure can be provided for a diffusion furnace and the diffusion soldering can take place in the diffusion furnace.
  • the low-melting solder component 5, which is applied to the surfaces of the semiconductor chip is mixed with nanoparticles made of silicates. If the second solder component 6 is completely consumed in the diffusion region during diffusion soldering, at least one diffusion-inhibiting layer 24 remains between the diffusion region 7 and the metallic components such as flat conductors 13 and 14 and chip island 11.
  • FIGS. 4 to 8 show schematic cross sections through a semiconductor wafer 19 for producing a plurality of electronic power components 30 which have diffusion solder joints. Components with the same functions in the following FIGS. 4 to 8 as in the previous figures are identified with the same reference numerals and are not specifically explained.
  • FIG. 4 shows a schematic cross section through a semiconductor wafer 19.
  • This semiconductor wafer has on its active top 18 in a region which is delimited by a dashed line 23, MOS transistors which are connected in parallel with their several 100,000 gate connections and also with their several 100,000 drain electrodes are connected in parallel on the top side 18 of the semiconductor wafer 19.
  • the rear side 22 serves as a source region for several electronic power components.
  • FIG. 5 shows a schematic cross section through a semiconductor wafer 19 after a first solder component 5 has been applied to its rear side 22.
  • This solder component 5 on the rear side 22 is a metallic mirroring of the rear side with a first solder component 5, which has a lower melting point than a second solder component 6 which can form intermetallic phases with the first solder component 5 during diffusion soldering.
  • This first solder component 5 can be tin or a tin alloy. It can be Chen the semiconductor wafer 19 in a corresponding tin bath both on the back 22 of the semiconductor wafer 19 and on the active top 18 of the semiconductor wafer 19 or in two separate steps only on the back 22, as shown in Figure 5, are applied and then, as shown in FIG. 6, be applied to the active upper side 18.
  • Figure 6 shows a schematic cross section through a
  • LO semiconductor wafer 19 after application of a first solder component 5 on its active upper side 18.
  • This upper side 18 is also covered with a metal mirror made of the low-melting solder component 5 and is only structured in a next step.
  • FIG. 7 shows a schematic cross section through a semiconductor wafer 19 after structuring the first solder component 5 on the active top side 18 of the semiconductor wafer 19. The structuring of the solder component 5 on the active top
  • the entire semiconductor wafer 19 can be dusted with nanoparticles 8 made of a silicate, which are then impressed into the coating by the first solder component 5 under pressure.
  • solder component 5 can be printed in a structured manner on the active upper side of the semiconductor wafer 19 by means of a solder paste which contains the nanoparticles 8.
  • a metal mirror made of the first solder component 5 can also be galvanically deposited on the active top side of the semiconductor chip 19.
  • nanoparticles 8 are distributed in the electrolyte bath, so that they are installed homogeneously distributed in the solder component 5 on the active top side of the semiconductor wafer.
  • the nanoparticles 8 are non-conductive silicates, for example borosilicate or phosphorus silicate, the entire active surface 18 can be provided with a layer of nanoparticles without causing short circuits in the electronic structures on the active top side 18 of the semiconductor wafer 19.
  • FIG. 9 shows a schematic cross section through a semiconductor chip 9 for a semiconductor component with diffusion solder joints 2.
  • Components with the same functions as in the previous figures are identified by the same reference numerals and are not specifically explained.
  • the semiconductor wafer 19 was sawed apart along the dividing lines indicated in FIGS. 4 to 8 and thus results in the cross section of the semiconductor chip shown in FIG. 9. These cross sections are only schematic and are not to scale. In reality, the thickness d of such a semiconductor chip 9 is between 50 ⁇ m and 750 ⁇ m, while the width b of such a semiconductor chip 9 can be several centimeters.
  • FIGS. 10 to 12 schematic cross sections of parts 3 and 4 are shown in FIGS. 10 to 12, which are connected to one another to form a component with diffusion solder joints 2.
  • Components with the same functions as in the previous figures are identified by the same reference numerals and are not explained specifically for FIGS. 10 to 12.
  • FIG. 10 shows a schematic cross section through a flat conductor frame 26 which carries flat conductors 13 for a common drain contact 15 and flat conductors 14 for a common gate contact 16.
  • the respective end regions 27 and 28 of the flat conductors 13 and 14, which are to be connected to the drain electrodes or to the gate electrodes guided in parallel, are coated with a second soldering component 6.
  • This soldering component 6 can consist of several metal layers which on the one hand prevent diffusion of the flat conductor material into the diffusion soldering point 2 and on the other hand provide a diffusion soldering material which can diffuse into the molten solder of the first soldering component 5. Since these flat conductors 13 and 14 are to be placed on the active upper side of the semiconductor chip 9, no nanoparticles 8 are installed in the second solder component 6, especially since the first solder component on the semiconductor chip 9, as shown in FIG. 11, already has nanoparticles.
  • FIG. 11 shows a schematic cross section through a semiconductor chip 9 with coatings of a first solder component 5 on the top side 18 and on the back side 22, the cross section of FIG. 11 corresponding to the cross section of FIG. 9. Therefore, there is no need to interpret or explain Figure 11.
  • FIG. 12 shows a further part of the flat conductor frame 26, which carries a chip island 11, which in turn is coated with a second solder component 6 and on which a layer of nanoparticles 8 is applied. This layer of nanoparticles can already be built into the solder component 6 during the electrodeposition of the solder component 6.
  • FIG. 13 shows a schematic cross section through an electronic component with diffusion solder joints 2 before the flat conductors 13 and 14 bend to external connections.
  • Both the chip island 11 and the flat conductors 13 and 14 are connected to one another on a common flat conductor frame, the flat conductor frame having two levels, namely one for the rear side 22 of the semiconductor chip 9 with a semiconductor chip island 11 and a further level for the active upper side 18 of the semiconductor chip 9 with the corresponding flat conductors 13 and 14.
  • the nanoparticles 8 are essentially distributed in the solder component 5, while a rest of the solder component 6 has remained intact is, but at least one layer made of a diffusion-inhibiting metal alloy, which is intended to prevent the material of the leadframe from being able to diffuse into the diffusion solder joint 2 during diffusion soldering.
  • the flat conductors 13 and 14 can be bent to the level of the chip island to complete the electronic power component and the whole can be packaged in a plastic housing (not shown) ,
  • the end result in this case is an electronic power device 30, as shown in FIG. 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Die Bonding (AREA)

Abstract

Die Erfindung betrifft eine Verbindung (1) mit einer Diffusionslotstelle (2) zwischen zwei Teilen (3, 4), wobei die Diffusionslotstelle (2) intermetallische Phasen von zwei Lotkomponenten (5, 6) aufweist und in ihrem Diffusionsbereich zusätzlich zu den intermetallischen Phasen Nanopartikel (8) eines Zusatzwerkstoffes räumlich verteilt angeordnet sind. Ferner betrifft die Erfindung ein Verfahren zur Herstellung einer Diffusionslotstelle (2) zwischen zwei Teilen (3,4) und zur Herstellung eines elektronischen Leistungsbauteils, das mehrere Teile (3,4) mit Diffusionslotstellen (2) aufweist.

Description

Beschreibung
VERBINDUNG MIT EINER DIFFUSIONSLOTSTELLE UND VERFAHREN ZU IHRER HERSTELLUNG
Die Erfindung betrifft eine Diffusionslotstelle zwischen zwei über die Diffusionslotstelle verbundenen Teile sowie ein Verfahren zur Herstellung der Diffusionslotstelle gemäß der Gattung der unabhängigen Ansprüche .
Beim Diffusionslöten entstehen spröde intermetallische Phasen, die zwar eine hochtemperaturfeste Diffusionslotstelle gewährleisten, j edoch beim Verbinden von Teilen mit unterschiedlichen thermischen Ausdehnungskoeffizienten Probleme in der Weise verursachen, daß Mikrorisse durch die Diffusions- lotstelle wandern . Im äußersten Fall kann es zu Delaminatio- nen der zu verbindenden Teile kommen . Somit wird der Vorteil der höheren Temperaturbeständigkeit von Dif fusionslotstellen- verbindungen zwischen zwei Teilen durch erhöhte Empfindlichkeit gegenüber mechanischem Stress und insbesondere gegenüber Temperaturwechselbeanspruchungen teilweise kompensiert . Dieses macht sich besonders dann nachteilig bemerkbar, wenn Steuerungs- und Leistungsmodule für die Automobiltechnik mit Diffusionslotstellen gefertigt werden .
Aufgabe der Erfindung ist es, eine Diffusionslotstelle anzugeben, die Mikrorissbildungen unter thermomechanischer Belastung behindert und eine größere Zuverlä ssigkeit und Lebensdauer der Diffusionslotstelle ermöglicht .
Gelö st wird diese Aufgabe mit dem Gegenstand der unabhängigen Ansprüche . Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen .
Erfindungsgemä ß wird eine Diffusionslotstelle zwischen zwei über die Diffusionslotstelle verbundene Teile geschaffen, wobei die Diffusionslotstelle intermetallische Phasen von mindestens zwei Lotkomponenten aufweist . Die erste der beiden Lotkomponenten weist einen Schmelzpunkt unterhalb des Schmelzpunktes der intermetallischen Phasen und die zweite der Lotkomponenten weist einen Schmelzpunkt oberhalb der intermetallischen Phasen auf. Zusätzlich weist die Diffusions- lotstelle in ihrem Diffusionsbereich neben den intermetallischen Phasen Nanopartikel eines Zusatzwerkstoffes auf, der räumlich verteilt angeordnet ist.
Die Anwesenheit von Nanopartikeln in einem Diffusionsbereich der Diffusionslotstelle, d.h. in dem Bereich, in dem sich vorzugsweise intermetallische Phasen gebildet haben, hat den Vorteil, daß Mikrorisse, die von den intermetallischen Phasen bei thermischer Belastung der Diffusionslotstelle ausgehen, durch die Nanopartikel am Durchwandern der gesamten Lotstelle gehindert werden.
Somit wird eine Delamination zwischen den zwei Teilen unterbunden und zusätzlich gewährleistet, daß die Diffusionslotstelle eine größere Lebensdauer aufweist und eine höhere Stressbelastung übersteht. Somit werden die Auswirkungen der unterschiedlichen thermischen Ausdehnungskoeffizienten der beiden zu verbindenden Teile und der metallischen Phasen gemildert und teilweise unterbunden.
In einer derartigen Diffusionslotstelle kann ein Bereich der Diffusionslotstelle außerhalb des Diffusionsbereichs mit Material der zweiten Lotkomponente frei von Nanopartikeln sein. Da die zweite Lotkomponente einen Schmelzpunkt aufweist, der oberhalb der intermetallischen Phasen liegt, kann es beim Herstellen der Diffusionslotstelle dazu kommen, daß ein Teil der zweiten Lotkomponente weder angelöst noch erschmolzen wird. In diesem Bereich der Diffusionslotstelle findet dann auch keine Diffusion statt und ebenso keine Verteilung von Nanopartikeln, die sich nur im schmelzflüssigen Diffusionsbe- reich der Diffusionslotstelle während der Herstellung der
Diffusionslotstelle verteilen können. Somit ergibt sich ein charakteristisches Merkmal für Lotverbindungen, die mit dem erfindungsgemäßen Verfahren hergestellt wurden, indem ein Schliffbild der Diffusionslotstelle einen von Nanopartikeln freien Bereich aufweist.
Durch die erfindungsgemäße Diffusionslotstelle wird ein thermischer Spannungsausgleich zwischen dem ersten der Teile und dem zweiten der Teile bereitgestellt, wobei der erste der zwei Teile einen geringeren thermischen Ausdehnungskoeffizient als der zweite der zwei Teile aufweist. Dieser Spannungs- ausgleich erfolgt teilweise über die Nanopartikel, die eine negative Wirkung der intermetallischen Phase, nämlich das Verspröden der Diffusionslotstelle teilweise auffangen. Der thermische Spannungsausgleich basiert teilweise auch darauf, daß Nanopartikel eingesetzt werden, deren thermischer Ausdeh- nungskoeffizient zwischen dem thermischen Ausdehnungskoeffizienten der ersten Lotkomponente und dem thermischen Ausdehnungskoeffizienten der zweiten Lotkomponente liegt. Das bedeutet, daß der thermische Ausdehnungskoeffizient der Nanopartikel des Zusatzwerkstoffes größer als der thermische Aus- dehnungskoeffizient des ersten Teils und kleiner als der thermische Ausdehnungskoeffizient des zweiten Teils ist.
Eine derartige Diffusionslotstelle kann als ein erstes Teil einen Halbleiterchip aufweisen und als ein zweites Teil einen metallischen Systemträger mit einer Halbleiterchipinsel als Sourcekontakt für den Halbleiterchip und mit Flachleitern, welche die Chipinsel umgeben und als Drainkontakt und/oder als Gatekontakt für den Halbleiterchip dienen. Insbesondere bei diesen Halbleiterchips, die aufgrund ihrer hohen Verlust- Wärmeentwicklung als Leistungsbauteile eine intensive Kühlung benötigen, ist es von Vorteil, daß ein großflächiger metallischer Kontakt über eine Diffusionslotstelle sowohl auf der aktiven Oberseite des Halbleiterchips mit seinem gemeinsamen Drainkontakt für mehrere 100.000 parallel geschaltete MOS- Transistoren, als auch eine großflächige Kontaktierung über eine Diffusionslotstelle zu der metallischen Halbleiterchipinsel eines Systemträgers. Sowohl der großflächige Drainkon- takt als auch der großflächige Sourcekontakt zu der Halbleiterchipinsel sorgen für eine effektive Abfuhr der Verlustwärme eines derartigen Leistungsbauteils.
Eine erste Lotkomponente mit geringerem Schmelzpunkt als die intermetallischen Phasen der Diffusionslotstelle kann Zinn oder eine Zinnlegierung aufweisen. Dieses Zinn neigt dazu, mit verschiedenen Edelmetallen wie Gold oder Silber und auch Kupfer intermetallische Phasen zu bilden, die eine hochtempe- raturfeste Diffusionslotstelle schaffen. Die zweite Lotkomponente kann somit Silber, Gold, Kupfer oder Legierungen derselben aufweisen. Die Materialien der Lotkomponenten werden in Form von Beschichtungen auf die beiden zu verbindenden Teile aufgebracht und auf diesen Beschichtungen werden Nano- partikel der Diffusionslotstelle angeordnet. Somit weist mindestens eine der Lotkomponenten eine Beschichtung mit Nanopartikeln der Diffusionslotstelle auf.
Die Nanopartikel des Zusatzwerkstoffes können auf Beschich- tungen auf der Oberseite eines Halbleiterwafers angeordnet sein. Diese Anordnung auf einem Halbleiterwafer hat den Vorteil, daß bereits bei einem Temperschritt für die metallischen Leiterbahnen und für die Kontaktflächen einer Halbleiterwaferoberflache die auf die Oberseite aufgebrachten Nano- partikel in die Beschichtung eindringen können. Darüber hinaus hat das Aufbringen der Nanopartikel auf einem Halbleiter- wafer den Vorteil, daß gleichzeitig für viele Halbleiterchips das Aufbringen der Nanopartikel mit einem einzigen Verfahrensschritt erfolgen kann.
Anstelle des Halbleiterchips kann auch die zum Systemträger gehörende Chipinsel eine Beschichtung mit Nanopartikeln der Diffusionslotstelle aufweisen. Diese Nanopartikel werden bereits bei der Herstellung eines Systemträgers schichtförmig beispielsweise auf der Chipinsel angeordnet und können dann beim Zusammenbringen einer entsprechenden Beschichtung auf der Rückseite des Halbleiterchips mit der Chipinsel in dem Diffusionsbereich der Diffusionslotstelle verteilt werden.
Die Nanopartikel des Zusatzstoffes selbst können eine amorphe Substanz aufweisen. Amorphe Substanzen haben gegenüber den zu verbindenden Teilen wie beispielsweise einem Halbleiterchip und einem metallischen Systemträger den Vorteil, daß ihr thermischer Ausdehnungskoeffizient je nach Zusammensetzung der amorphen Substanzen an die zu verbindenden Teile angepaßt werden kann.
Es können die Nanopartikel des Zusatzstoffes Silikate aufweisen. Derartige Silikate basieren auf Siliziumdioxyd in amorpher Form und weisen einen thermischen Ausdehnungskoeffizien- ten auf, der etwas größer als der thermische Ausdehnungskoeffizient von reinem Silizium, wie es für Halbleiterchips eingesetzt wird, aufweist.
Die Nanopartikel des Zusatzwerkstoffes können Borsilikate oder Phosphorsilikate aufweisen, die gegenüber reinem Siliziumdioxyd als Silikat bzw. als amorphes Glas einen etwas größeren thermischen Ausdehnungskoeffizienten aufweisen, so daß durch geeignete Mischungen ein optimal zugeschnittener thermischer Ausdehnungskoeffizient für die Nanopartikel des Zu- satzwerkstoffes erreicht werden kann.
Vorteilhaft ist es, die erfindungsgemäße Diffusionslotstelle für elektrische Verbindungen von Komponenten eines Leistungsmoduls einzusetzen. Wie oben bereits erwähnt, sind bei Lei- stungsbauteilen und Leistungsmodulen erhebliche Verlustleistungen abzuführen. Durch die Diffusionslotstelle wird eine intensive thermische Ankopplung der Verlustwärme erzeugende Halbleiter des Leistungsmoduls an den entsprechenden Schaltungsträger eines Leitungsmoduls hergestellt, insbesondere dann, wenn der Schaltungsträger aus einem Metall besteht.
Aufgrund der guten Wärmeleitungseigenschaften von Metall kann somit die Verlustleistung des Leistungshalbleiters über die Diffusionslotstelle optimal abgeführt werden. Die Betriebstemperaturen für entsprechende Leistungsmodule können auf über 175°C bis zu 230°C gesteigert werden.
5 Ein Verfahren zur Herstellung einer Diffusionslotstelle zwischen zwei über die Diffusionslotstelle verbundenen Teilen ist durch nachfolgende Verfahrensschritte gekennzeichnet. Zunächst wird ein erster der zwei zu verbindenden Teile mit der ersten Lotkomponente beschichtet. Anschließend wird ein zwei-
L0 ter der zwei Teile mit der zweiten Lotkomponente beschichtet, die einen höheren Schmelzpunkt aufweist als die erste Lotkomponente. Als nächstes werden Nanopartikel auf eine der beiden Beschichtungen aufgebracht. Anschließend werden die beiden Teile mit ihren Beschichtungen unter Erwärmung des zweiten
L5 Teils mit der Beschichtung der zweiten Lotkomponente auf eine Temperatur oberhalb des Schmelzpunktes der ersten Lotkomponente und unterhalb der Temperatur des Schmelzpunktes der zweiten Lotkomponente unter Bildung von intermetallischen Phasen zusammengefügt.
.0
Dieses Verfahren hat den Vorteil, daß das eine Teil die Lotkomponente mit dem niedrigen Schmelzpunkt trägt und das andere Teil die Lotkomponente mit dem hohen Schmelzpunkt aufweist. Jedoch ist es auch möglich, daß beide Teile zunächst
25 Beschichtungen mit der Lotkomponente mit hohem Schmelzpunkt aufweisen und mindestens eines der beiden Teile eine dünne Schicht der Lotkomponente mit dem niedrigen Schmelzpunkt aufweist. Beim Zusammenfügen schmilzt aufgrund der oben erwähnten Temperaturverhältnisse die erste Lotkomponente mit ihrer
30 niedrigen Temperatur auf und es können sich die Nanopartikel in dieser Schmelze verteilen. Gleichzeitig diffundieren Atome der Beschichtung mit der hochschmelzenden Komponente in den Diffusionsbereich und bilden bei geeigneter Zusammensetzung intermetallische Phasen. Somit liegen während dieses Auf-
35 schmelzens in dem Diffusionsbereich der Diffusionslotstelle nebeneinander nicht aufgeschmolzene Nanopartikel und sich bildende intermetallische Phasen vor. Beim Erkalten des Diffusionsbereich der Diffusionslotstelle wird das Fortschreiten oder Wandern von Mikrorissen, die von den intermetallischen Phasen ausgehen können, durch die Nano- partikel behindert. Auch wenn die Diffusionslotstelle aufgrund der unterschiedlichen thermischen Ausdehnungskoeffizienten der miteinander verbundenen Teile thermischen Spannungen ausgesetzt wird, können sich bildende Mikrorisse in der Umgebung der spröden intermetallischen Phase nicht durch die gesamte Diffusionsschicht ausbreiten und evtl. eine Delamina- tion verursachen, da die Nanopartikel des Zusatzwerkstoffes dieses verhindern.
Das Aufbringen von Nanopartikeln auf eine der beiden Be- Schichtungen kann durch Zumischen von Nanopartikeln in einem Elektrolythbad zur galvanischen Abscheidung der Beschichtungen erfolgen. Bei einer derartigen Herstellung der Beschichtungen werden die Nanopartikel bereits bei der Entstehung der Beschichtung relativ gleichmäßig in der Beschichtung ver- teilt.
Bei einem anderen Durchführungsbeispiel des Verfahrens kann das Aufbringen von Nanopartikeln auf eine der beiden Beschichtungen durch Aufstäuben unter anschließendem Aufwalzen erfolgen, um die Nanopartikel mechanisch mit der Oberfläche der Beschichtung zu verankern. Dieses Verfahren ist relativ preiswert durchführbar und führt zu einem kostengünstigen Ergebnis, in dem die Oberfläche der Beschichtung nun von Nanopartikeln belegt ist.
Das Aufbringen von Nanopartikeln kann auch auf eine der beiden Beschichtungen dadurch erfolgen, daß zunächst die Nanopartikel aufgestäubt werden und anschließend bei einem Temperschritt, der eventuell für die Beschichtung erforderlich wird, ein Einschmelzen der Nanopartikel in die Oberfläche der Beschichtung erfolgt. Diese Technik ist dann vorteilhaft anwendbar, wenn beispielsweise ein Halbleiterwafer mit mehreren Halbleiterchips auf seiner aktiven Oberseite mit Nanopartikeln in den Bereichen einer Diffusionslotstelle zu beschichten ist. Somit kann mit dieser Verfahrensvariante gleich eine hohe Anzahl an Halbleiterchips mit entsprechenden Nanoparti- kein für die Diffusionslotstellenverbindungen versehen werden.
Zusammenfassend ist festzustellen, daß Verbindungen'mit Diffusionslöten spröde sind und aufgrund ihrer unterschiedlichen Ausdehnungskoeffizienten zu ihren Verbindungspartnern oder Verbindungsteilen nicht zuverlässig gegen thermomechanischen Stress geschützt sind. Dieser thermomechanische Stress führt zu großen Spannungen an den Grenzflächen. Dadurch können Mi- krorisse in Verbindungsmaterialien insbesondere in der Umge- bung von intermetallischen Phasen nach entsprechenden hohen Stressbelastungen oder bei der Herstellung der Diffusionslotstellenverbindungen auftreten. Derartige Stressbelastungen insbesondere bei hohen Temperaturwechseln können sogar zur Delamination der Diffusionslotstelle führen.
Durch ein entsprechendes Vermischen der Diffusionsmaterialien und Lotkomponenten mit den Nanopartikeln bei dem Lötprozess werden diese Materialien ein Angleichen der Ausdehnungskoeffizienten aufgrund ihrer räumlichen Beschaffenheit bewir- ken. Dies führt zum Minimieren des thermomechanischen Stresses. Weiterhin wird eine Wanderung und Verbreitung von Mikro- rissen durch die Nanopartikel unterdrückt.
Somit wird mit der Benutzung von Nanopartikeln im Diffusions- lötprozess ein Ausgleich der Ausdehnungskoeffizienten zwischen dem Diffusionslot aus den zwei Lotkomponenten und den Verbindungspartnern oder Teilen erreicht.
Das Einbringen der Nanopartikel in die Diffusionslötmateria- lien und die dort sich bildende Diffusionszone ist mit unterschiedlichen Verfahren wie folgt möglich: Wenn sich die Legierungssysteme bereits auf den Verbindungsteilen befinden (z.B. auf einem Wafer oder einem Systemträger) können die Nanopartikel flächig auf die Legierungssysteme aufgebracht werden. Anschließend wer- den die Verbindungsteile zusammengefügt. Bei diesem Zusammenfügen befinden sich die Nanopartikel direkt an der Grenzfläche zwischen beiden Lotkomponenten. Wird als Legierungssystem eine Vorform verwendet, so können die Nanopartikel beim Herstellen der Vorform, z.B. beim Herstellen von Bändern, Drähten, Kugeln usw., mit in die Schmelze eingemischt werden und nach erfolgtem Erstarren in die Legierung eingewalzt werden. Auch können die Nanopartikel während eines galvanischen Abscheidens der Legierungsbeschichtung auf den jeweili- gen Verbindungsteilen eingebracht werden, indem diese dem Abscheideelektrolyten zugemischt werden. Während der Abscheidung der Legierungsbeschichtung bauen sich die Nanopartikel homogen in die Legierungsschicht ein.
Somit verteilen sich die Nanopartikel beim Verbinden der Fügepartner in der Schmelze zunächst homogen und können sich dann jedoch an der Grenzfläche zusätzlich anreichern durch entsprechende Konvektionsströmungen in der Schmelze, so daß die Nanopartikel in erhöhter Konzentration im Bereich der in- termetallischen Phasen im sogenannten Diffusionsbereich der Diffusionslotstelle angereichert sind.
Die Erfindung wird nun anhand von Ausführungsformen mit Bezug auf die beiliegenden Figuren näher erläutert.
Figur 1 zeigt ein schematisches Schrägschliffbild durch eine Diffusionsstelle einer ersten Ausführungsform der Erfindung, Figur 2 zeigt einen schematischen Schrägschliff durch Tei- le, die über eine Diffusionslotstelle zusammengefügt werden, Figur 3 zeigt einen schematischen Querschnitt durch ein elektronisches Bauteil, das mehrere Diffusionslotstellen aufweist.
Figuren 4 bis 8 zeigen schematische Querschnitte durch einen Halbleiterwafer zur Herstellung von mehreren elektronischen Bauteilen, die Diffusionslotstellen aufweisen,
Figur 4 zeigt einen schematischen Querschnitt durch einen Halbleiterwafer, Figur 5 zeigt einen schematischen Querschnitt durch einen Halbleiterwafer nach Aufbringen einer ersten Lotkomponente auf seiner Rückseite,
Figur 6 zeigt einen schematischen Querschnitt durch einen Halbleiterwafer nach Aufbringen einer ersten Lot- komponente auf seiner aktiven Oberseite,
Figur 7 zeigt einen schematischen Querschnitt durch einen Halbleiterwafer nach Strukturieren der ersten Lotkomponente auf seiner aktiven Oberseite,
Figur 8 zeigt einen schematischen Querschnitt durch einen Halbleiterwafer nach Aufbringen von Nanopartikeln auf seiner strukturierten ersten Lotkomponente,
Figur 9 zeigt einen schematischen Querschnitt durch einen
Halbleiterchip für ein Halbleiterbauteil mit Diffusionslotstellen, Figuren 10 bis 12 zeigen schematische Querschnitte von Teilen, die zu einem Bauteil mit Diffusionslotstellen miteinander verbunden sind,
Figur 10 zeigt einen schematischen Querschnitt durch einen
Flachleiterrahmen mit Flachleiterenden, die mit ei- ner zweiten Lotkomponente 6 beschichtet sind,
Figur 11 zeigt einen schematischen Querschnitt durch einen
Halbleiterchip mit Beschichtungen einer ersten Lotkomponente 5 auf Ober und Rückseite,
Figur 12 zeigt einen schematischen Querschnitt durch eine Chipinsel eines Systemträgers mit einer Beschichtung einer zweiten Lotkomponente, Figur 13 zeigt einen schematischen Querschnitt durch ein elektronisches Bauteil mit Diffusionslotstellen vor einem Abbiegen der Flachleiter zu Außenanschlüssen.
Figur 1 zeigt ein schematisches Schrägschliffbild durch eine Diffusionslotstelle 2 einer ersten Ausführungsform der Erfindung.
Das Bezugszeichen 3 kennzeichnet ein erstes Teil, das über die Diffusionslotstelle 2 mit einem zweiten Teil 4 elektrisch und mechanisch verbunden ist. Das Bezugszeichen 5 kennzeichnet eine erste Lotkomponente, deren Schmelztemperatur niedriger ist, als die zweite Lotkomponente 6. Die zweite Lotkomponente 6 weist eine Schmelztemperatur auf, die höher liegt als die Schmelztemperatur der sich aus beiden Lotkomponenten 5 und 6 bildenden intermetallischen Phasen. Die Schmelztemperatur der zweiten Lotkomponente 6 liegt auch über der Löttemperatur, bei der die beiden Teile 3 und 4 mit Hilfe der Diffusionslotstelle 2 zusammengefügt sind.
Von dem Material der zweiten Lotkomponente 6 mit hoher Temperatur diffundiert lediglich ein Anteil, der dem Sättigungsgrad für die zweite Lotkomponente 6 in der Schmelze der ersten Lotkomponente 5 entspricht, in den Diffusionsbereich 7 der Diffusionslotstelle 2 ein. Somit ist eine erfindungsgemäße Diffusionslotstelle 2 durch einen nicht angelösten Restbereich der zweiten Lotkomponente 6 im Schrägschliff gekennzeichnet. In dem schmelzflüssigen Bereich der ersten Lotkomponente 5 verteilen sich Nanopartikel 8 zunächst homogen in der Schmelze und können bei der zunehmenden Bildung von intermetallischen Phasen in der Diffusionslotstelle 2, wie in Figur 1 gezeigt, inhomogen verteilt sein, das heißt, daß eine höhere Konzentration an Nanopartikeln 8 im Bereich der intermetallischen Phasen auftreten kann. Diese Inhomogenität kann teilweise durch Konvexionsvorgänge in der aufgeschmolzenen ersten Lotkomponente 5 verursacht sein. Eine Anreicherung der Nanopartikel 8 in der Nähe des Phasenübergangs von der ersten Lotkomponente 5 zur nicht gelösten Anteil der zweiten Lotkomponente 6 ist ebenfalls ein charakteristisches Merkmal für diese besondere Art der Diffusions- lotstelle 2.
In dieser ersten Ausführungsform der Erfindung ist das erste Teil 3 ein Halbleiterchip 9 mit einem geringeren thermischen Ausdehnungskoeffizienten als das zweite Teil 4, das in dieser Ausführungsform der Erfindung einen Teil eines metallischen Systemträgers 10 darstellt. Dieser Systemträger 10 ist großflächig über die Diffusionslotstelle 2 mit der Rückseite 22 des Halbleiterchips verbunden, wobei die beim Diffusionslöten entstehenden spröden intermetallischen Phasen an der Bildung und Ausbreitung von Mikrorissen innerhalb der Diffusionslötstelle 2 durch die Nanopartikel 8 behindert werden. Da das zweite Teil 4 in dieser Ausführungsform aus einem Systemträger 10 besteht, der seinerseits eine Kupferlegierung aufweist und somit einen wesentlich höheren thermischen Ausdehnungs- koeffizienten aufweist als das erste Teil 3 aus einem Halbleiterchip, wird der Ausdehnungskoeffizient der Nanopartikel in einem Bereich angesiedelt, der zwischen den Werten der Ausdehnungskoeffizienten des ersten Teils 3 und des zweiten Teils 4 liegt. Der thermische Ausdehnungskoeffizient der Nanopartikel ist durch Einsatz geeigneter amorpher Silikate an die thermischen Ausdehnungskoeffizienten des ersten Teils 3 und des zweiten Teils 4 anpaßbar. Derartige amorphe Silikate können Borsilikate oder Phosphorsilikate sein. Bemerkenswert ist, daß ein Teil der hochschmelzenden zweiten Lotkompo- nente 6 außerhalb des Diffusionsbereichs 7 frei von Nanopartikeln bleibt, da die zweite Lotkomponente 6 beim Anschmelzen und Diffundieren in die Schmelze der ersten Lotkomponente 5 nicht vollständig verbraucht wird.
Mit einer derartigen Diffusionslotstelle 2 wird ein thermischer Spannungsausgleich zwischen den ersten der zwei Teile und dem zweiten der zwei Teile 3 und 4 bereitgestellt. In dieser ersten Ausführungsform der Erfindung kann wie oben erwähnt die Diffusionslotstelle 2 als ersten Teil 3 einen Halbleiterchip aufweisen und als zweiten Teil 4 einen metallischen Systemträger mit einer Halbleiterchipinsel 11, die als Sourcekontakt 12 für ein Leistungsbauteil dient, aufweisen. Somit kann der gesamte Sourcestrom eines derartigen Leistungsbauteils über die Chipinsel 11 dem Halbleitermaterial 9 zugeführt werden.
Figur 2 zeigt einen schematischen Schrägschliff durch Teile 3 und 4, die über eine Diffusionslotstelle 2 miteinander verbunden werden sollen. Komponenten mit gleichen Funktionen wie in der Figur 1 werden mit gleichen Bezugszeichen gekennzeichnet und nicht extra erläutert.
Dazu ist das erste Teil 3, nämlich ein Halbleiterchip 9, auf seiner Rückseite 22 mit einer niedrigschmelzenden ersten Lotkomponente 5 beschichtet, auf die Nanopartikel 8 aufgebracht wurden. Ein derartiges Aufbringen kann ' durch Einwalzen oder Einprägen der Nanopartikel 8 auf die Oberseite der bei niedriger Temperatur schmelzenden ersten Lotkomponente 5 erfolgen. Eine andere Möglichkeit besteht darin, die erste Lotkomponente 5 galvanisch auf der Rückseite des Halbleiterchips in einem Elektrolytbad abzuscheiden, das gleichzeitig Nanoparti- kel 8 enthält. In diesem Fall werden die Nanopartikel 8 gleichmäßig und homogen in der Lotkomponente 5 verteilt eingebaut .
In dem unteren Bereich der Figur 2 ist der Schrägschliff ei- nes zweiten Teils 4 im Prinzip gezeigt, das auf seiner Oberseite eine zweite Lotkomponente 6 trägt. Diese Lotkomponente 6 ist eine hochschmelzende Lotkomponente 6 und weist somit eine höhere Schmelztemperatur auf als die niedrigschmelzende Lotkomponente 5 auf dem ersten Teil 3. Diese hochschmelzende Lotkomponente kann auch eine mehrlagige Schicht aus Gold,
Silber, Nickel und/oder Legierungen derselben aufweisen, wobei die oberste Schicht an der Diffusionslötung beteiligt ist und mit der niedrigschmelzenden Lotkomponente 5 intermetallische Phasen bildet.
Beim Zusammenfahren der beiden Teile 3 und 4 in Pfeilrichtung A bei einer Temperatur, bei der mindestens die niedrigschmelzende Lotkomponente 5 aufgeschmolzen ist und die Nanopartikel 8 gleichmäßig in der Schmelze verteilt sind, wird die hochschmelzende Komponente 6 teilweise in die niedrigschmelzende Komponente 5 eindiffundieren und in dem Diffusionsbereich in- termetallische Phasen bilden. Beim Abkühlen der Diffusionslotstelle 2 kann sich eine inhomogene Verteilung der Nanopartikel 8 im Diffusionsbereich einstellen. Diese Nanopartikel 8 verhindern im Diffusionsbereich einer Diffusionslotstelle eine Ausbreitung von durch intermetallische Phasen verursachten Mikrorissen. Dazu kann die niedrigschmelzende Lotkomponente 5 Zinn oder eine Zinnlegierung aufweisen, während die zweite hochschmelzende Lotkomponente 6 Silber, Gold, Kupfer oder Legierungen derselben aufweist.
Figur 3 zeigt einen schematischen Querschnitt durch ein elektronisches Bauteil 30 für ein Leistungsmodul, das mehrere Diffusionslotstellen 2 aufweist. Komponenten mit gleichen Funktionen wie in den vorhergehenden Figuren werden mit gleichen Bezugszeichen gekennzeichnet und nicht extra erläutert.
Das Bezugszeichen 10 kennzeichnet einen Systemträger, das Bezugszeichen 11 kennzeichnet eine Halbleiterchipinsel des Systemträgers und das Bezugszeichen 12 kennzeichnet einen Sour- cekontakt des elektronischen Leistungsbauteils 30. Das Be- zugszeichen 13 kennzeichnet einen großflächigen Flachleiter, der die parallelgeschalteten Drainkontakte auf der Oberseite des Leistungsbauteils 30 kontaktiert. Das Bezugszeichen 14 kennzeichnet einen Flachleiter, der einen Gatekontakt 16 zur Oberseite des Halbleiterchips herstellt.
Das elektronische Leistungsbauteil 30 besteht aus mehreren 100. 000 parallel geschalteten MOS-Transistoren 21 , die im Be- reich der aktiven Oberseite 20 des Halbleiterchips angeordnet sind. Der aktive Bereich der Oberseite 20 ist durch eine gestrichelte Linie 23 markiert. Während der gemeinsame Source- bereich durch die Rückseite 22 des Halbleiterchips 9 großflä- chig kontaktiert werden kann, indem mit Hilfe einer Diffusionslotstelle 2 die Chipinsel 11 elektrisch und mechanisch mit der Rückseite 22 des Halbleiterchips 9 verbunden wird, werden die mehreren 100.000 Gateelektroden zu einem Gatekontakt 16 zusammengeführt, der über den Flachleiter 14 mit einer über- geordneten Schaltung verbindbar ist.
Der Flachleiter 14 für den Gatekontakt 16 ist ebenfalls über eine Diffusionslotstelle 2 mit den parallel geschalteten Gateelektroden des elektronischen Leistungsbauteils 30 verbun- den. Eine dritte Diffusionslotstelle 2 weist die elektrische und mechanische Verbindung des Flachleiters 13 mit dem parallel geschalteten mehreren 100.000 Elektroden umfassenden Drainanschluß auf. Um die aus einem Metall bestehenden Flachleiter 13 und 14 sowie die aus einer Metallplatte bestehende Chipinsel 11 des Systemträgers 10 mit Hilfe von Diffusionslotstellen 2 mit den einzelnen Komponenten des Halbleiterchips 9 zu verbinden, ist die erste niedrigschmelzende Lotkomponente 5 auf den Elektroden des Halbleitersteg 9 aufgebracht, so daß der Halbleiter 9 das erste Teil 3 der Diffusi- onslotstelle darstellt, während die mit dem Halbleiter zu verbindenden metallischen Teile aus Flachleitern 13 und 15 und Chipinsel 11 auf ihren Oberflächen zunächst veredelt werden, um eine Diffusion des Flachleitermetalls bzw. des Metalls der Halbleiterchipinsel 11 nicht zur Diffusionslotstel- le vordringen zu lassen.
Während das Metall der Flachleiter 13 und 14 und der Chipinsel 11 im wesentlichen eine Kupferlegierung ist, kann die Diffusionsstellen-Beschichtung eine Nickellegierung sein und die zweite hochschmelzende Lotkomponente 6 eine Gold- oder Silberlegierung darstellen. Der Gesamtaufbau kann für einen Diffusionsofen bereitgestellt werden und die Diffusionslötung kann in dem Diffusionsofen stattfinden. Dazu wird in dieser Ausführungsform der Erfindung die niedrigschmelzende Lotkomponente 5, die auf den Flächen des Halbleiterchips aufgetragen ist, mit Nanopartikeln aus Silikaten versetzt. Wird bei dem Diffusionslöten die zweite Lotkomponente 6 vollkommen im Diffusionsbereich verbraucht, so verbleibt zumindest eine diffusionshemmende Schicht 24 zwischen dem Diffusionsbereich 7 und den metallischen Komponenten wie Flachleitern 13 und 14 und Chipinsel 11 erhalten.
Die Figuren 4 bis 8 zeigen schematische Querschnitte durch einen Halbleiterwafer 19 zur Herstellung von mehreren elektronischen Leistungsbauteilen 30, die Diffusionslotstellen aufweisen. Komponenten mit gleichen Funktionen in den nach- folgenden Figuren 4 bis 8 wie in den vorhergehenden Figuren werden mit gleichen Bezugszeichen gekennzeichnet und nicht extra erläutert.
Figur 4 zeigt einen schematischen Querschnitt durch einen Halbleiterwafer 19. Dieser Halbleiterwafer weist an seiner aktiven Oberseite 18 in einem Bereich, der durch eine gestrichelte Linie 23 begrenzt wird, MOS-Transistoren auf, die mit ihren mehreren 100.000 Gateanschlüssen parallelgeschaltet sind und ebenso mit ihren mehreren 100.000 Drainelektroden auf der Oberseite 18 des Halbleiterwafers 19 parallel geschaltet sind. Die Rückseite 22 dient für mehrere elektronische Leistungsbauteile als Sourcegebiet .
Figur 5 zeigt einen schematischen Querschnitt durch einen Halbleiterwafer 19 nach Aufbringen einer ersten Lotkomponente 5 auf seiner Rückseite 22. Diese Lotkomponente 5 auf der Rückseite 22 ist eine metallische Verspiegelung der Rückseite mit einer ersten Lotkomponente 5, die einen niedrigeren Schmelzpunkt aufweist als eine zweite Lotkomponente 6, die mit der ersten Lotkomponente 5 bei einem Diffusionslöten intermetallische Phasen bilden kann. Diese erste Lotkomponente 5 kann Zinn oder eine Zinnlegierung sein. Sie kann durch Tau- chen des Halbleiterwafers 19 in ein entsprechendes Zinnbad sowohl auf der Rückseite 22 des Halbleiterwafers 19 als auch auf der aktiven Oberseite 18 des Halbleiterwafers 19 aufgebracht werden oder in zwei getrennten Schritten erst auf der 5 Rückseite 22, wie es in Figur 5 gezeigt wird, aufgebracht werden und anschließend, wie es Figur 6 zeigt, auf der aktiven Oberseite 18 aufgebracht sein.
Figur 6 zeigt einen schematischen Querschnitt durch einen
LO Halbleiterwafer 19 nach Aufbringen einer ersten Lotkomponente 5 auf seiner aktiven Oberseite 18. Auch diese Oberseite 18 wird mit einem Metallspiegel aus der niedrigschmelzenden Lotkomponente 5 bedeckt und erst in einem nächsten Schritt strukturiert .
L5
Figur 7 zeigt einen schematische Querschnitt durch einen Halbleiterwafer 19 nach Strukturieren der ersten Lotkomponente 5 auf der aktiven Oberseite 18 des Halbleiterwafers 19. Das Strukturieren der Lotkomponente 5 auf der aktiven Ober-
20 seite 18 des Halbleiterwafers 19 ist erforderlich, um einen gemeinsamen parallel schaltenden Gateanschluß 16 für jeden Halbleiterchip des Halbleiterwafers 19 vorzubereiten und um einen großflächigen Kontakt für sämtliche parallel geschalteten Drainelektroden mit einem Drainkontakt 15 zu schaffen.
25 Nach diesem Schritt kann der gesamte Halbleiterwafer 19 mit Nanopartikeln 8 aus einem Silikat bestäubt werden, die anschließend unter Druck in die Beschichtung durch die erste Lotkomponente 5 eingeprägt werden.
30 Alternativ kann die Lotkomponente 5 auf der aktiven Oberseite des Halbleiterwafers 19 durch eine Lotpaste, die die Nanopartikel 8 enthält, strukturiert aufgedruckt werden. Ein Metallspiegel aus der ersten Lotkomponente 5 kann auch auf der aktiven Oberseite des Halbleiterchips 19 galvanisch abgeschie-
35 den, wobei in dem Elektrolytbad Nanopartikel 8 verteilt sind, so daß diese homogen verteilt in die Lotkomponente 5 auf der aktiven Oberseite des Halbleiterwafers eingebaut werden. Da die Nanopartikel 8 nicht-leitende Silikate sind, beispielsweise Borsilikat oder Phosphorsilikat, kann die gesamte aktive Oberfläche 18 mit einer Schicht aus Nanopartikeln versehen werden, ohne Kurzschlüsse der elektronischen Strukturen auf der aktiven Oberseite 18 des Halbleiterwafers 19 zu verursachen.
Figur 9 zeigt einen schematischen Querschnitt durch einen Halbleiterchip 9 für ein Halbleiterbauteil mit Diffusionslot- stellen 2. Komponenten mit gleichen Funktionen wie in den vorhergehenden Figuren werden mit gleichen Bezugszeichen gekennzeichnet und nicht extra erläutert.
Entlang der in den Figuren 4 bis 8 angedeuteten Trennlinien wurde der Halbleiterwafer 19 auseinandergesägt und ergibt somit den in Figur 9 abgebildeten Halbleiterchip im Querschnitt. Diese Querschnitte sind nur schematisch und nicht maßstabsgetreu. In Wirklichkeit ist die Dicke d eines derartigen Halbleiterchips 9 zwischen 50 μm und 750 μm, während die Breite b eines derartigen Halbleiterchips 9 mehrere Zentimeter betragen kann.
Um aus diesem Halbleiterchip 9 ein elektronisches Leistungsbauteil herzustellen, werden in den Figuren 10 bis 12 schema- tische Querschnitte von Teilen 3 und 4 gezeigt, die zu einem Bauteil mit Diffusionslotstellen 2 miteinander verbunden werden. Komponenten mit gleichen Funktionen wie in den vorhergehenden Figuren werden mit gleichen Bezugszeichen gekennzeichnet und für die Figuren 10 bis 12 nicht extra erläutert.
Figur 10 zeigt einen schematischen Querschnitt durch einen Flachleiterrahmen 26, der Flachleiter 13 für einen gemeinsamen Drainkontakt 15 und Flachleiter 14 für einen gemeinsamen Gatekontakt 16 trägt. Die jeweiligen Endbereiche 27 und 28 der Flachleiter 13 bzw. 14, die mit den Drainelektroden bzw. mit den parallel geführten Gateelektroden zu verbinden sind, werden mit einer zweiten Lötkomponente 6 beschichtet. Dabei kann diese Lötkomponente 6 aus mehreren Metallschichten bestehen, die einerseits eine Diffusion des Flachleitermaterials in die Diffusionslotstelle 2 verhindern und andererseits ein Diffusionslotmaterial bereitstellen, das in das schmelz- flüssige Lot der ersten Lotkomponente 5 eindiffundieren kann. Da diese Flachleiter 13 und 14 auf die aktive Oberseite des Halbleiterchips 9 aufgesetzt werden sollen, werden keine Nanopartikel 8 in die zweite Lotkomponente 6 eingebaut, zumal die erste Lotkomponente auf dem Halbleiterchip 9, wie er in Figur 11 gezeigt wird, bereits Nanopartikel aufweist.
Figur 11 zeigt einen schematischen Querschnitt durch einen Halbleiterchip 9 mit Beschichtungen einer ersten Lotkomponente 5 auf der Oberseite 18 und auf der Rückseite 22, wobei der Querschnitt der Figur 11 dem Querschnitt der Figur 9 entspricht. Deshalb erübrigt sich eine Interpretation oder Erläuterung der Figur 11.
Figur 12 zeigt einen weiteren Teil des Flachleiterrahmens 26, der eine Chipinsel 11 trägt, die ihrerseits mit einer zweiten Lotkomponente 6 beschichtet ist, und auf der eine Schicht aus Nanopartikeln 8 aufgebracht ist. Diese Schicht aus Nanopartikeln kann beim galvanischen Abscheiden der Lotkomponente 6 bereits in die Lotkomponente 6 eingebaut werden.
Figur 13 zeigt einen schematischen Querschnitt durch ein elektronisches Bauteil mit Diffusionslotstellen 2 vor einem Abbiegen der Flachleiter 13 und 14 zu Außenanschlüssen. Sowohl die Chipinsel 11 als auch die Flachleiter 13 und 14 sind auf einem gemeinsamen Flachleiterrahmen miteinander verbunden, wobei der Flachleiterrahmen zwei Niveaus aufweist, nämlich eines für die Rückseite 22 des Halbleiterchips 9 mit einer Halbleiterchipinsel 11 und ein weiteres Niveau für die aktive Oberseite 18 des Halbleiterchips 9 mit den entspre- chenden Flachleitern 13 und 14. Nach Zusammenbringen dieser Komponenten, die in Figur 13 gezeigt werden, und einem Diffusionslöten ergibt sich der in Figur 13 gezeigte prinzipielle Querschnitt, das heißt, die Nanopartikel 8 sind im wesentlichen in der Lotkomponente 5 verteilt angeordnet, während ein Rest der Lotkomponente 6 unversehrt erhalten geblieben ist, mindestens jedoch eine Schicht aus einer diffusionshemmenden Metalllegierung, die verhindern soll, daß das Material des Systemträgerrahmens in die Diffusionslotstelle 2 während des Diffusionslötens ein- diffundieren kann.
Nach der Fertigstellung des in Figur 13 gezeigten Rohbauteils mit diffusionsgelötetem gemeinsamen Gatekontakt 16 und gemeinsamen Drainkontakt 15 sowie gemeinsamen Ξourcekontakt 12 können zur Vervollständigung des elektronischen Leistungsbauteils die Flachleiter 13 und 14 auf das Niveau der Chipinsel abgebogen werden und das ganze in einem nicht gezeigten Kunststoffgehäuse verpackt werden. Das Endergebnis ist in diesem Fall ein elektronisches Leistungsbauteil 30, wie es in Figur 3 gezeigt wird.

Claims

Patentansprüche
1. Diffusionslotstelle zwischen zwei über die Diffusionslotstelle (2) verbundenen Teilen (3, 4), wobei die Dif- fusionslotstelle (2) intermetallische Phasen von mindestens zwei Lotkomponenten (5, 6) aufweist und wobei die erste der Lotkomponenten (5) einen Schmelzpunkt unterhalb des Schmelzpunktes der intermetallischen Phasen und die zweite der Lotkomponenten (6) einen Schmelzpunkt oberhalb der intermetallischen Phasen aufweist und die Diffusionslotstelle (2) in ihrem Diffusionsbereich (7) zusätzlich zu den intermetallischen Phasen Nanopartikel (8) eines Zusatzwerkstoffes räumlich verteilt angeordnet aufweist .
2. Diffusionslotstelle nach Anspruch 1, dadurch gekennzeichnet, dass die Nanopartikel (8) räumlich inhomogen in dem Diffusionsbereich (7) der Diffusionslotstelle (2) angeordnet sind.
3. Diffusionslotstelle nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass ein Bereich der Diffusionslotstelle (2) außerhalb des Diffusionsbereichs (7) mit Material der zweiten Lotkomponente (6) frei von Nanopartikeln (8) ist.
4. Diffusionslotstelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Diffusionslotstelle (2) einen thermischen Spannungsausgleich zwischen dem ersten der zwei Teile (3, 4) und dem zweiten der zwei Teile (3, 4) bereitstellt, wobei der erste der zwei Teile (3) einen geringeren thermi- sehen Ausdehnungskoeffizienten als der zweite der zwei Teile (4) aufweist.
5. Diffusionslotstelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Nanopartikel (8) des Zusatzwerkstoffes einen thermi- sehen Ausdehnungskoeffizienten aufweisen, der größer als der thermische Ausdehnungskoeffizient des ersten Teils (3) und kleiner als der thermische Ausdehnungskoeffizient des zweiten Teils (4) ist.
6. Diffusionslotstelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Diffusionslotstelle (2) als ersten Teil (3) einen Halbleiterchip (9) aufweist und als zweiten Teil (4) ei- nen metallischen Systemträger (10) mit Halbleiterchipinsel (11) als Sourcekontakt (12) für den Halbleiterchip (9) und mit Flachleitern (13, 14) als Drain- und Gatekontakt (16) für den Halbleiterchip (9).
7. Diffusionslotstelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste Lotkomponente (5) Zinn oder eine Zinnlegierung aufweist .
8. Diffusionslotstelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweite Lotkomponente (6) Silber, Gold, Kupfer oder Legierungen derselben aufweist.
9. Diffusionslotstelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lotkomponenten (5, 6) eine Beschichtung mit Nanopartikeln (8) der Diffusionslotstelle (2) aufweisen.
10. Diffusionslotstelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Nanopartikel (8) des Zusatzwerkstoffes auf Beschich- tungen (17) einer aktiven Oberseite (18) eines Halbleiterwafers (19) angeordnet sind.
11. Diffusionslotstelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Chipinsel (11) eines Systemträgers (10) eine Beschichtung (17) mit Nanopartikeln (8) der Diffusionslotstelle (2) aufweist.
12. Diffusionslotstelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein auf der aktiven Oberseite (20) eines Halbleiterchips (9) angeordneter großflächiger gemeinsamer Drainkontakt (15) für mehrere hunderttausend parallelgeschalteter
MOS-Transistoren (21) eine Beschichtung (17) mit Nanopartikeln (8) der Diffusionslotstelle (2) aufweist.
13. Diffusionslotstelle nach einem der vorhergehenden An- sprüche, dadurch gekennzeichnet, dass die Nanopartikel (8) des Zusatzwerkstoffes amorphe Substanzen aufweisen.
14. Diffusionslotstelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Nanopartikel (8) des Zusatzwerkstoffes Silikate aufweisen.
15. Diffusionslotstelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Nanopartikel (8) des Zusatzwerkstoffes Borsilikat oder Phosphorsilikat aufweisen.
16. Verwendung der Diffusionslotstelle nach einem der vorhergehenden Ansprüche für das elektrische Verbinden von Komponenten eines Leistungsmoduls.
17. Verfahren zur Herstellung einer Diffusionslotstelle (2) zwischen zwei über die Diffusionslotstelle (2) verbundenen Teilen (3, 4), wobei eine erste Lotkomponente (5) einen Schmelzpunkt unterhalb eines Schmelzpunktes von intermetallischen Phasen der zu bildenden Diffusionslotstelle (2) aufweist und eine zweite Lotkomponente (6) einen Schmelzpunkt oberhalb der intermetallischen Phasen aufweist und das Verfahren durch folgende Verfahrensschritte gekennzeichnet ist:
Beschichten eines ersten der zwei Teile (3) mit der ersten Lotkomponente (5) , - Beschichten eines zweiten der zwei Teile (4) mit der zweiten Lotkomponente (6),
Aufbringen von Nanopartikeln (8) auf eine der beiden Beschichtungen (17) , Zusammenfügen der beiden Teile (3, 4) mit ihren Be- Schichtungen (17) unter Erwärmung des zweiten Teils
(4) mit Beschichtung (17) der zweiten Lotkomponente (6) auf eine Temperatur oberhalb des Schmelzpunktes der ersten Lotkomponente (5) und unterhalb der Temperatur des Schmelzpunktes der zweiten Lotkomponen- te (6) unter Bildung von intermetallischen Phasen.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass sich während des Schmelzens der ersten Lotkomponente (5) die auf einem der Teile (3, 4) angeordneten Nanopartikel (8) räumlich gleichmäßig und homogen in der Schmelze verteilen.
19. Verfahren nach Anspruch 17 oder Anspruch 18, dadurch gekennzeichnet, dass die bei dem Erstarren der Diffusionslotstelle (2) von 5 den intermetallischen Phasen ausgehenden Mikrorisse durch die Nanopartikel (8) an einer weiteren Ausbreitung gehindert werden.
20. Verfahren nach einem der Ansprüche 17 bis 19, LO dadurch gekennzeichnet, dass das Aufbringen von Nanopartikeln (8) auf eine der beiden Beschichtungen (17) durch Zumischen der Nanopartikel (8) (8) in einem Elektrolytbad zur galvanischen Abscheidung der Beschichtung (17) erfolgt. L5
21. Verfahren nach einem der Ansprüche 17 bis 20, dadurch gekennzeichnet, dass das Aufbringen von Nanopartikeln (8) auf eine der beiden Beschichtungen (17) durch Aufstäuben unter anschließen- .0 dem Aufwalzen erfolgt.
22. Verfahren nach einem der Ansprüche 17 bis 21, dadurch gekennzeichnet, dass das Aufbringen von Nanopartikeln (8) auf eine der beiden .5 Beschichtungen (17) durch Aufstäuben und Einschmelzen während eines Temperschrittes der Beschichtung (17) erfolgt.
PCT/DE2003/000603 2002-02-28 2003-02-26 Verbindung mit einer diffusionslotstelle und verfahren zu ihrer herstellung WO2003072288A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/927,621 US7368824B2 (en) 2002-02-28 2004-08-27 Diffusion solder position, and process for producing it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10208635.4 2002-02-28
DE10208635A DE10208635B4 (de) 2002-02-28 2002-02-28 Diffusionslotstelle, Verbund aus zwei über eine Diffusionslotstelle verbundenen Teilen und Verfahren zur Herstellung der Diffusionslotstelle

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/927,621 Continuation US7368824B2 (en) 2002-02-28 2004-08-27 Diffusion solder position, and process for producing it

Publications (1)

Publication Number Publication Date
WO2003072288A1 true WO2003072288A1 (de) 2003-09-04

Family

ID=27762485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/000603 WO2003072288A1 (de) 2002-02-28 2003-02-26 Verbindung mit einer diffusionslotstelle und verfahren zu ihrer herstellung

Country Status (3)

Country Link
US (1) US7368824B2 (de)
DE (1) DE10208635B4 (de)
WO (1) WO2003072288A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088725A2 (de) * 2003-04-01 2004-10-14 Infineon Technologies Ag Verfahren zum mehrstufigen herstellen von diffusionslötverbindungen für leistungsbauteile mit halbleiterchips
WO2004113014A2 (de) * 2003-06-25 2004-12-29 Behr Gmbh & Co. Kg Flussmittel zum löten von metallbauteilen
DE10339462A1 (de) * 2003-08-27 2005-03-31 Infineon Technologies Ag Verfahren zum Befestigen eines Anschlussbügels /-beins an einem Halbleiterchip
EP1582287A1 (de) * 2004-03-31 2005-10-05 Kabushiki Kaisha Toshiba Matériau soudé , dispositif semi-conducteur, procédé de soudage tendre et procédé pour la fabrication d'un dispositif semi-conducteur
EP1600249A1 (de) * 2004-05-27 2005-11-30 Koninklijke Philips Electronics N.V. Lotzusammensetzung und Methode der Produktion eines Lötmittelanschlusses
US7874475B2 (en) 2005-12-07 2011-01-25 Infineon Technologies Ag Method for the planar joining of components of semiconductor devices and a diffusion joining structure
EP2372755A1 (de) * 2010-03-31 2011-10-05 EV Group E. Thallner GmbH Verfahren zum permanenten Verbinden zweier Metalloberflächen
CN102922071A (zh) * 2012-10-25 2013-02-13 哈尔滨工业大学 一种采用纳米金属间化合物颗粒制备低温互连高温服役接头的方法
WO2013045370A1 (de) * 2011-09-30 2013-04-04 Robert Bosch Gmbh Schichtverbund aus einem elektronischen substrat und einer schichtanordnung umfassend ein reaktionslot
EP2398305A4 (de) * 2009-02-13 2015-02-25 Senju Metal Industry Co Löthöckerherstellung auf einer leiterplatte mit einer übertragungsfolie
US8975117B2 (en) 2012-02-08 2015-03-10 Infineon Technologies Ag Semiconductor device using diffusion soldering

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004027094A1 (de) * 2004-06-02 2005-12-29 Infineon Technologies Ag Halbleitermodul mit einem Halbleiter-Sensorchip und einem Kunststoffgehäuse sowie Verfahren zu dessen Herstellung
DE102004041088B4 (de) * 2004-08-24 2009-07-02 Infineon Technologies Ag Halbleiterbauteil in Flachleitertechnik mit einem Halbleiterchip und Verfahren zu seiner Herstellung
DE102005039165B4 (de) * 2005-08-17 2010-12-02 Infineon Technologies Ag Draht- und streifengebondetes Halbleiterleistungsbauteil und Verfahren zu dessen Herstellung
DE102005049687B4 (de) * 2005-10-14 2008-09-25 Infineon Technologies Ag Leistungshalbleiterbauteil in Flachleitertechnik mit vertikalem Strompfad und Verfahren zur Herstellung
DE102006031405B4 (de) * 2006-07-05 2019-10-17 Infineon Technologies Ag Halbleitermodul mit Schaltfunktionen und Verfahren zur Herstellung desselben
DE102006034679A1 (de) * 2006-07-24 2008-01-31 Infineon Technologies Ag Halbleitermodul mit Leistungshalbleiterchip und passiven Bauelement sowie Verfahren zur Herstellung desselben
US8283756B2 (en) * 2007-08-20 2012-10-09 Infineon Technologies Ag Electronic component with buffer layer
TWI456707B (zh) * 2008-01-28 2014-10-11 Renesas Electronics Corp 半導體裝置及其製造方法
US7759780B2 (en) * 2008-09-30 2010-07-20 Intel Corporation Microelectronic package with wear resistant coating
US8748288B2 (en) * 2010-02-05 2014-06-10 International Business Machines Corporation Bonded structure with enhanced adhesion strength
DE102011102555A1 (de) 2011-05-26 2012-11-29 Forschungszentrum Jülich GmbH Lotmaterial, Verwendung des Lotmaterials in einer Lotpaste sowie Verfahren zur Herstellung einer Lötverbindung mit Hilfe des Lotmaterials
US8736052B2 (en) 2011-08-22 2014-05-27 Infineon Technologies Ag Semiconductor device including diffusion soldered layer on sintered silver layer
CN105097743B (zh) * 2014-05-12 2019-02-12 中芯国际集成电路制造(上海)有限公司 键合结构及其形成方法
US9640466B1 (en) * 2016-02-24 2017-05-02 Nxp Usa, Inc. Packaged semiconductor device with a lead frame and method for forming
DE102016002604A1 (de) 2016-03-03 2017-09-07 Wieland-Werke Ag Zinnhaltige Kupferlegierung, Verfahren zu deren Herstellung sowie deren Verwendung
DE102016002618A1 (de) 2016-03-03 2017-09-07 Wieland-Werke Ag Zinnhaltige Kupferlegierung, Verfahren zu deren Herstellung sowie deren Verwendung
DE102016008758B4 (de) 2016-07-18 2020-06-25 Wieland-Werke Ag Kupfer-Nickel-Zinn-Legierung, Verfahren zu deren Herstellung sowie deren Verwendung
DE102016008753B4 (de) 2016-07-18 2020-03-12 Wieland-Werke Ag Kupfer-Nickel-Zinn-Legierung, Verfahren zu deren Herstellung sowie deren Verwendung
DE102016008754B4 (de) 2016-07-18 2020-03-26 Wieland-Werke Ag Kupfer-Nickel-Zinn-Legierung, Verfahren zu deren Herstellung sowie deren Verwendung
DE102016008745B4 (de) 2016-07-18 2019-09-12 Wieland-Werke Ag Kupfer-Nickel-Zinn-Legierung, Verfahren zu deren Herstellung sowie deren Verwendung
DE102016008757B4 (de) 2016-07-18 2020-06-10 Wieland-Werke Ag Kupfer-Nickel-Zinn-Legierung, Verfahren zu deren Herstellung sowie deren Verwendung
US20180166369A1 (en) * 2016-12-14 2018-06-14 Texas Instruments Incorporated Bi-Layer Nanoparticle Adhesion Film
US9865527B1 (en) 2016-12-22 2018-01-09 Texas Instruments Incorporated Packaged semiconductor device having nanoparticle adhesion layer patterned into zones of electrical conductance and insulation
US9941194B1 (en) 2017-02-21 2018-04-10 Texas Instruments Incorporated Packaged semiconductor device having patterned conductance dual-material nanoparticle adhesion layer
US11031364B2 (en) * 2018-03-07 2021-06-08 Texas Instruments Incorporated Nanoparticle backside die adhesion layer
US11610861B2 (en) * 2020-09-14 2023-03-21 Infineon Technologies Austria Ag Diffusion soldering with contaminant protection

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184749A (ja) * 1982-04-23 1983-10-28 Tanaka Kikinzoku Kogyo Kk 半導体用リ−ドピンのろう付方法
EP0476734A1 (de) * 1990-08-27 1992-03-25 Koninklijke Philips Electronics N.V. Dispersionsverstärkte Blei-Zinn-Legierung
EP0612577A1 (de) * 1993-02-22 1994-08-31 AT&T Corp. Ein Weichlot mit verbesserten mechanischen Eigenschaften, enthaltendes Gegenstand und Verfahren zur Herstellung dieses Weichlot
WO1996019314A1 (de) * 1994-12-22 1996-06-27 Siemens Aktiengesellschaft Lotmetall und dessen verwendung zur bildung einer lötverbindung zwischen zwei objekten
GB2299287A (en) * 1995-03-31 1996-10-02 T & N Technology Ltd Joining aluminium articles
DE19532251A1 (de) * 1995-09-01 1997-03-06 Daimler Benz Ag Anordnung und Verfahren zum Diffusionslöten
US6214636B1 (en) * 1992-07-15 2001-04-10 Canon Kabushiki Kaisha Photovoltaic device with improved collector electrode

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936325A (en) * 1972-12-04 1976-02-03 Shanklin Dunbar L Fibrous blanket containing solder flux and solder flux with increased melted viscosity
DE4018715A1 (de) * 1990-06-12 1991-12-19 Bayer Ag Verfahren zur herstellung von metall- und/oder keramik-verbund-teilen
US5964963A (en) * 1994-08-25 1999-10-12 Turchan; Manuel C. Brazing paste
JPH10505538A (ja) * 1994-08-25 1998-06-02 キューキューシー,インコーポレイテッド ナノ規模の粒子およびその用途
EP0787386A2 (de) * 1994-10-19 1997-08-06 Power Spectrum Technology Ltd. Einrichtung und verfahren zur sektorisierten kommunikation
WO1996019134A1 (en) * 1994-12-22 1996-06-27 Sleepyhead Manufacturing Company Limited Mattress manufacture
DE19531158A1 (de) * 1995-08-24 1997-02-27 Daimler Benz Ag Verfahren zur Erzeugung einer temperaturstabilen Verbindung
DE19532250A1 (de) * 1995-09-01 1997-03-06 Daimler Benz Ag Anordnung und Verfahren zum Diffusionslöten eines mehrschichtigen Aufbaus
DE19930190C2 (de) * 1999-06-30 2001-12-13 Infineon Technologies Ag Lötmittel zur Verwendung bei Diffusionslötprozessen
US6489178B2 (en) * 2000-01-26 2002-12-03 Texas Instruments Incorporated Method of fabricating a molded package for micromechanical devices
DE10056732A1 (de) * 2000-11-15 2002-05-23 Bosch Gmbh Robert Lote und Verfahren zu ihrer Herstellung
US6682872B2 (en) * 2002-01-22 2004-01-27 International Business Machines Corporation UV-curable compositions and method of use thereof in microelectronics

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184749A (ja) * 1982-04-23 1983-10-28 Tanaka Kikinzoku Kogyo Kk 半導体用リ−ドピンのろう付方法
EP0476734A1 (de) * 1990-08-27 1992-03-25 Koninklijke Philips Electronics N.V. Dispersionsverstärkte Blei-Zinn-Legierung
US6214636B1 (en) * 1992-07-15 2001-04-10 Canon Kabushiki Kaisha Photovoltaic device with improved collector electrode
EP0612577A1 (de) * 1993-02-22 1994-08-31 AT&T Corp. Ein Weichlot mit verbesserten mechanischen Eigenschaften, enthaltendes Gegenstand und Verfahren zur Herstellung dieses Weichlot
WO1996019314A1 (de) * 1994-12-22 1996-06-27 Siemens Aktiengesellschaft Lotmetall und dessen verwendung zur bildung einer lötverbindung zwischen zwei objekten
GB2299287A (en) * 1995-03-31 1996-10-02 T & N Technology Ltd Joining aluminium articles
DE19532251A1 (de) * 1995-09-01 1997-03-06 Daimler Benz Ag Anordnung und Verfahren zum Diffusionslöten

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 021 (E - 224) 28 January 1984 (1984-01-28) *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088725A3 (de) * 2003-04-01 2004-12-16 Infineon Technologies Ag Verfahren zum mehrstufigen herstellen von diffusionslötverbindungen für leistungsbauteile mit halbleiterchips
WO2004088725A2 (de) * 2003-04-01 2004-10-14 Infineon Technologies Ag Verfahren zum mehrstufigen herstellen von diffusionslötverbindungen für leistungsbauteile mit halbleiterchips
US7851910B2 (en) 2003-04-01 2010-12-14 Infineon Technologies Ag Diffusion soldered semiconductor device
US8002905B2 (en) 2003-06-25 2011-08-23 Behr Gmbh & Co. Kg Fluxing agent for soldering metal components
WO2004113014A2 (de) * 2003-06-25 2004-12-29 Behr Gmbh & Co. Kg Flussmittel zum löten von metallbauteilen
WO2004113014A3 (de) * 2003-06-25 2005-06-02 Behr Gmbh & Co Kg Flussmittel zum löten von metallbauteilen
US8557055B2 (en) 2003-06-25 2013-10-15 Behr Gmbh & Co. Kg Fluxing agent for soldering metal components
DE10339462A1 (de) * 2003-08-27 2005-03-31 Infineon Technologies Ag Verfahren zum Befestigen eines Anschlussbügels /-beins an einem Halbleiterchip
EP1582287A1 (de) * 2004-03-31 2005-10-05 Kabushiki Kaisha Toshiba Matériau soudé , dispositif semi-conducteur, procédé de soudage tendre et procédé pour la fabrication d'un dispositif semi-conducteur
EP1600249A1 (de) * 2004-05-27 2005-11-30 Koninklijke Philips Electronics N.V. Lotzusammensetzung und Methode der Produktion eines Lötmittelanschlusses
US9943930B2 (en) 2004-05-27 2018-04-17 Koninklijke Philips N.V. Composition of a solder, and method of manufacturing a solder connection
US9095933B2 (en) 2004-05-27 2015-08-04 Koninklijke Philips N.V. Composition of a solder, and method of manufacturing a solder connection
US8298680B2 (en) 2004-05-27 2012-10-30 Koninklijke Philips Electronics N.V. Composition of a solder, and method of manufacturing a solder connection
WO2005115679A1 (en) * 2004-05-27 2005-12-08 Koninklijke Philips Electronics N.V. Composition of a solder, and method of manufacturing a solder connection
US7874475B2 (en) 2005-12-07 2011-01-25 Infineon Technologies Ag Method for the planar joining of components of semiconductor devices and a diffusion joining structure
EP2398305A4 (de) * 2009-02-13 2015-02-25 Senju Metal Industry Co Löthöckerherstellung auf einer leiterplatte mit einer übertragungsfolie
EP2597670A3 (de) * 2010-03-31 2013-09-11 EV Group E. Thallner GmbH Verfahren zum permanenten Verbinden zweier Metalloberflächen
EP2597671A3 (de) * 2010-03-31 2013-09-25 EV Group E. Thallner GmbH Verfahren zum permanenten Verbinden zweier Metalloberflächen
EP2654075A3 (de) * 2010-03-31 2014-08-20 EV Group E. Thallner GmbH Verfahren zum permanenten Verbinden zweier Metalloberflächen
EP2654074A3 (de) * 2010-03-31 2014-08-27 EV Group E. Thallner GmbH Verfahren zum permanenten Verbinden zweier Metalloberflächen
WO2011120611A1 (de) * 2010-03-31 2011-10-06 Ev Group E. Thallner Gmbh Verfahren zum permanenten verbinden zweier metalloberflächen
US9478518B2 (en) 2010-03-31 2016-10-25 Ev Group E. Thallner Gmbh Method for permanent connection of two metal surfaces
EP2372755A1 (de) * 2010-03-31 2011-10-05 EV Group E. Thallner GmbH Verfahren zum permanenten Verbinden zweier Metalloberflächen
US11282801B2 (en) 2010-03-31 2022-03-22 Ev Group E. Thallner Gmbh Method for permanent connection of two metal surfaces
WO2013045370A1 (de) * 2011-09-30 2013-04-04 Robert Bosch Gmbh Schichtverbund aus einem elektronischen substrat und einer schichtanordnung umfassend ein reaktionslot
US9630379B2 (en) 2011-09-30 2017-04-25 Robert Bosch Gmbh Laminated composite made up of an electronic substrate and a layer arrangement comprising a reaction solder
US8975117B2 (en) 2012-02-08 2015-03-10 Infineon Technologies Ag Semiconductor device using diffusion soldering
CN102922071A (zh) * 2012-10-25 2013-02-13 哈尔滨工业大学 一种采用纳米金属间化合物颗粒制备低温互连高温服役接头的方法

Also Published As

Publication number Publication date
DE10208635B4 (de) 2010-09-16
US7368824B2 (en) 2008-05-06
DE10208635A1 (de) 2003-09-18
US20050048758A1 (en) 2005-03-03

Similar Documents

Publication Publication Date Title
DE10208635B4 (de) Diffusionslotstelle, Verbund aus zwei über eine Diffusionslotstelle verbundenen Teilen und Verfahren zur Herstellung der Diffusionslotstelle
EP2845453B1 (de) Leiterplatte, insbesondere für ein leistungselektronikmodul, umfassend ein elektrisch leitfähiges substrat
DE102005049687B4 (de) Leistungshalbleiterbauteil in Flachleitertechnik mit vertikalem Strompfad und Verfahren zur Herstellung
EP1350417B1 (de) Verfahren zur herstellung einer elektronischen baugruppe
DE1764951B1 (de) Mehrschichtige metallisierung fuer halbleiteranschluesse
DE1640467B1 (de) Verfahren zum kontaktgerechten Aufbringen von mikrominiaturisierten Komponenten auf eine dielektrische Grundplatte
DE1766528B1 (de) Elektrischer modulbauteil
EP0301533A2 (de) Elektrische Sicherung und Verfahren zu ihrer Herstellung
DE3042085A1 (de) Halbleiterplaettchen-montageaufbau und verfahren zu seiner herstellung
DE10351028B4 (de) Halbleiter-Bauteil sowie dafür geeignetes Herstellungs-/Montageverfahren
DE102006012007B4 (de) Leistungshalbleitermodul mit oberflächenmontierbaren flachen Außenkontakten und Verfahren zur Herstellung desselben und dessen Verwendung
DE19622971A1 (de) Halbleitereinrichtung zur Oberflächenmontage und Halbleitereinrichtungs-Montagekomponente sowie Verfahren zu ihrer Herstellung
DE3237391A1 (de) Solarzellenanordnung und verfahren zur herstellung derselben
EP2844414B1 (de) Verfahren zur herstellung eines metallisierten aus aluminium bestehenden substrats
DE3613594C2 (de)
DE3523808C2 (de)
DE3520945A1 (de) Traegerelement zur aufnahme elektrischer und/oder elektronischer bauteile und/oder schaltungen
DE102005009164B4 (de) Kontaktanschlussfläche mit Heizerstruktur und Verfahren zum Herstellen oder Betreiben derselben
DE2443245A1 (de) Verfahren zum herstellen einer multichip-verdrahtung
DE102014115202B4 (de) Verfahren zum verlöten mindestens eines substrats mit einer trägerplatte
DE10334634B3 (de) Verfahren zum seitlichen Kontaktieren eines Halbleiterchips
WO2018158341A1 (de) Verfahren zum befestigen eines halbleiterchips auf einem leiterrahmen und elektronisches bauelement
DE102008031836A1 (de) Lotkontakt
AT404207B (de) Verfahren zum herstellen elektrischer schaltkreise
DE2744418A1 (de) Mehrschichtlot

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10927621

Country of ref document: US

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP