WO2003047748A1 - Geträgerte metalloxide als katalysatoren für aldolkondensationen - Google Patents

Geträgerte metalloxide als katalysatoren für aldolkondensationen Download PDF

Info

Publication number
WO2003047748A1
WO2003047748A1 PCT/EP2002/013797 EP0213797W WO03047748A1 WO 2003047748 A1 WO2003047748 A1 WO 2003047748A1 EP 0213797 W EP0213797 W EP 0213797W WO 03047748 A1 WO03047748 A1 WO 03047748A1
Authority
WO
WIPO (PCT)
Prior art keywords
packing
catalyst
column
range
active component
Prior art date
Application number
PCT/EP2002/013797
Other languages
English (en)
French (fr)
Inventor
Marcus Sigl
Christian Miller
Walter Dobler
Mathias Haake
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10159821A external-priority patent/DE10159821A1/de
Priority claimed from DE2002126120 external-priority patent/DE10226120A1/de
Priority to US10/497,597 priority Critical patent/US7098366B2/en
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to EP02795106A priority patent/EP1455933A1/de
Priority to MXPA04004917A priority patent/MXPA04004917A/es
Priority to BR0214603-7A priority patent/BR0214603A/pt
Priority to AU2002361017A priority patent/AU2002361017A1/en
Priority to JP2003548993A priority patent/JP4112496B2/ja
Publication of WO2003047748A1 publication Critical patent/WO2003047748A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/32Packing elements in the form of grids or built-up elements for forming a unit or module inside the apparatus for mass or heat transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/009Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in combination with chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/249Plate-type reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/92Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/003Feeding of the particles in the reactor; Evacuation of the particles out of the reactor in a downward flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0292Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds with stationary packing material in the bed, e.g. bricks, wire rings, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/12Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by gravity in a downward flow
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C45/72Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C45/72Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups
    • C07C45/74Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups combined with dehydration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2453Plates arranged in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2456Geometry of the plates
    • B01J2219/2459Corrugated plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2469Feeding means
    • B01J2219/2471Feeding means for the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2477Construction materials of the catalysts
    • B01J2219/2481Catalysts in granular from between plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2491Other constructional details
    • B01J2219/2497Size aspects, i.e. concrete sizes are being mentioned in the classified document
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/3221Corrugated sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32213Plurality of essentially parallel sheets
    • B01J2219/32217Plurality of essentially parallel sheets with sheets having corrugations which intersect at an angle of 90 degrees
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32224Sheets characterised by the orientation of the sheet
    • B01J2219/32227Vertical orientation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32237Sheets comprising apertures or perforations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32255Other details of the sheets
    • B01J2219/32258Details relating to the extremities of the sheets, such as a change in corrugation geometry or sawtooth edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32255Other details of the sheets
    • B01J2219/32262Dimensions or size aspects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/324Composition or microstructure of the elements
    • B01J2219/32408Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/324Composition or microstructure of the elements
    • B01J2219/32466Composition or microstructure of the elements comprising catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/326Mathematical modelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to a supported catalyst containing one or more metal oxides as an active component for carrying out an aldol condensation, a column for carrying out an aldol condensation by reactive distillation using a supported catalyst and a process.
  • Aldol condensation is known in a known manner as the generally base-catalyzed reaction of a carbonyl component with a methylene component.
  • the same compound can act as a carbonyl and methylene component at the same time. If different compounds are used as carbonyl or methylene components, it is often advantageous to use one of the components in excess, in particular in up to a hundredfold excess over the other component.
  • heterogeneous catalysis for example by metal oxides of lanthanum or lanthanides, is known.
  • No. 3,578,702 describes the use of oxides of metals with atomic numbers 57 to 71 as an active component on a support made of an inert material, for example aluminum oxide, diatomaceous earth or preferably silica gel, the concentration of the active component being in the range from 0.5 to 10% by weight. -%, based on the total weight of the supported catalyst, is.
  • an inert material for example aluminum oxide, diatomaceous earth or preferably silica gel
  • the object is achieved by a supported catalyst containing one or more metal oxides as an active component for carrying out an aldol condensation, the catalyst support being ⁇ -aluminum oxide, the active component comprising one or more oxides of the elements having atomic numbers 39 or 57 to 71 and the concentration of Active component, based on the total weight of the supported catalyst, is in the range from 5 to 12% by weight.
  • the supported catalysts according to the invention are preferably suitable for carrying out the aldol condensation of citral and acetone to pseudo-ionone.
  • Pseudojonon is an important intermediate for vitamin and fragrance production.
  • Citral to acetone is advantageously used in a molar ratio of 1 to 2 to 50. Reaction temperatures between 30 and 100 ° C. and pressures between 1 and 10 bar absolute are particularly advantageous.
  • the geometry of the catalyst carrier is determined such that the ratio of the outer surface to the volume is in the range from 0.5 to 10 mm “1 , preferably in the range from 1 to 5 mm " 1 , in particular that the catalyst carrier is in shape of solid or hollow cylinders, balls, honeycomb bodies, trilobes or gears.
  • Another condition that is decisive for the activity of the supported catalysts according to the invention is compliance with the concentration of the active component, which according to the invention must be in the range from 5 to 12% by weight, based on the total weight of the supported catalyst. It was found that good space-time yields are obtained if the concentration in the above range is maintained, and that concentrations outside the specified limit values lead to a decrease in the space-time yield.
  • the supported catalysts according to the invention can in principle be used in any reactor suitable for heterogeneously catalyzed reactions. Without restriction The following may be mentioned by way of example to the general public: suspension reactor, stirred tank, stirred tank cascade, tube reactor, tray reactor, tube bundle reactor, fixed bed reactor, fluidized bed reactor, reactive distillation column.
  • the reaction can be carried out at different temperatures and pressures, the optimum being determined by the starting materials used. As a rule, the reaction temperatures are between 20 and 200 ° C and the pressures between 0.1 and 100 bar absolute.
  • a particular advantage of the supported catalysts according to the invention is that simple regeneration by calcination or by washing with alkaline solutions is possible. It has been found that with a decrease in catalyst activity, which is reflected in a reduction in the space-time yield, it is possible to regenerate the catalyst and to restore the original activity.
  • the regeneration can be carried out by treatment with aqueous alkaline solutions, in particular alkali, alkaline earth metal or ammonium hydroxide solutions or by calcinations in the presence of oxygen at temperatures between 150 and 700 ° C.
  • the invention also relates to a column for carrying out an aldol condensation by reactive distillation in the presence of a heterogeneous particulate catalyst with a packing or packing which form spaces in the interior of the column, the quotient of the hydraulic diameter for the gas flow through the packing or the packing and the equivalent diameter the catalyst particle is in the range from 2 to 20, preferably in the range from 5 to 10, in such a way that the catalyst particles are loosely introduced, distributed and discharged into the interspaces under the action of gravity, and supported catalysts are used as catalyst particles, as they are are described above.
  • the hydraulic diameter is defined in a known manner as the ratio between four times the area flowed through and the circumference thereof. The specific calculation of the same for a pack with straight folds is explained in the description of the figures in conjunction with FIG. 2.
  • the hydraulic diameter of packing is determined via the porosity of the bed ⁇ , ie empty volume of the bed / total volume and the equivalent diameter of the packing,
  • d h y drau ii sch hydraulic diameter
  • d p diameter of the packing
  • porosity.
  • the equivalent diameter of the packing is defined by the ratio between six times the volume and the surface of the packing (cf. VDI Heat 0 meatlas, 5th edition, 1988, Lk 1).
  • the equivalent diameter of particles, in the present case catalyst particles, is defined by the ratio between six times the volume and the surface area of the particle (cf. VDI skilletatlas, 5th edition, 1988, Lk 1. 5
  • the column internals that are regularly used in distillation technology can be used to limit the phase interface between the phases moving in countercurrent through the column, the gaseous and the liquid phase enlarge.
  • the packs or packing elements form spaces in the interior of the colomy, which in principle must be connected to one another in order to ensure the opposite flow of gaseous and liquid phases required for the distillative separating action.
  • the inventors have thus recognized that, in principle, it is possible to introduce catalyst particles loosely into the interspaces, which form the packing or the packing in the interior of the column, under the action of gravity, to distribute them and to discharge the used catalyst particles again , It is important to ensure that there are sufficient free spaces for the gas stream produced during the distillation so that there is no accumulation of the liquid stream flowing in countercurrent to the gas stream.
  • This is ensured according to the invention in that the quotient of the hydraulic diameter for the gas flow through the packing or through the packing and the equivalent diameter of the catalyst particles is chosen to be very small, that is to say with values in the ranges defined above.
  • the invention is not restricted with regard to the shape and size of the catalyst particles which can be used; To improve the space-time yield, however, high specific surfaces and thus small catalyst particles are preferred.
  • the pressure loss in catalyst particle beds increases with increasingly smaller catalyst particles and limits the liquid and vapor throughputs to uneconomically small values in the case of reactive distillation. Because of the generally pronounced formation of a stream of liquid in catalyst beds, only small distillation capacities can be achieved for large column diameters, which are required in production-scale plants. These disadvantages have hitherto prevented the use of catalyst beds as separating internals in reactive distillations, which is desirable per se.
  • small catalyst particles which are also preferred with regard to the catalytic activity, are particularly suitable for combined use with a packing or with packing, since they are easier to insert and the smaller their dimensions compared to the dimensions of the spaces between the packing or the packing are.
  • Suitable dimensions of the catalyst particles are, for example, about 1 ⁇ 4 mm to about 4 ⁇ 40 mm for fully cylindrical catalyst particles.
  • Structured packings are preferably used as column internals, that is to say packings systematically constructed in regular geometry with defined passage areas for the countercurrent phases.
  • Packs are generally constructed from metal sheets, expanded metal or Dralit fabric layers arranged essentially parallel to one another. Compared to other column internals, they are characterized by a higher load capacity, a better separation effect and a lower specific pressure loss.
  • Packings are generally constructed from kinked metal sheets, expanded metal or fabric layers arranged essentially parallel to one another, with mostly straight folds which subdivide the packing sheet, the expanded metal or fabric layer into buckling surfaces, and the angle of inclination of the buckling surface to the vertical is usually 30 up to 45 ° amounts.
  • packs with an angle of inclination of the kink surface to the vertical in the range from 10 to 45 °, preferably from 30 ° can be used.
  • a particularly preferred embodiment is characterized in that one or more packing sheets with a high specific surface are alternately arranged with one or more packing sheets with a low specific surface. This creates gaps with different hydraulic diameters.
  • the specific surfaces of the packing sheets are particularly preferably selected such that, on the one hand, spaces are formed for which the quotient of the hydraulic diameter and the equivalent diameter of the catalyst particles is less than 1 and, on the other hand, spaces for which the quotient of the hydraulic diameter and the equivalent is The diameter of the catalyst particles is greater than 2, in particular in the range defined above between 2 and 20, in particular between 5 and 10.
  • No catalyst particles are filled into the first-mentioned spaces, with a ratio of the hydraulic diameter to the equivalent diameter of the catalyst particles less than 1; according to the invention, they are only filled into the spaces in which the quotient is greater than 2. This special embodiment ensures an increased gas flow with low pressure losses.
  • the starting material for the packs according to the invention is usually additionally provided with openings, for example with circular holes approximately 4 to 6 mm in diameter, in order to raise the flood limit of the pack and to enable a higher column load.
  • the flood limit of a pack is understood to mean the gas or liquid volume per time and cross-sectional area at which the trickle liquid is dammed up in and above the pack until it is completely flooded or entrained by the gas flow. Exceeding this load results in a rapid decrease in the separating effect and a steep increase in pressure loss.
  • fillers can be used in the same way, although there are basically no restrictions with regard to the shape thereof. For example, all forms of fillers known in distillation technology, such as Raschig rings, Pal rings or saddles, can be used.
  • Packs or fillers which have horizontal areas are advantageous.
  • the horizontal surface areas capture a part of the weight of the catalyst particles and lead it to the column wall. This reduces the mechanical load on the catalytic converter.
  • Packings which are formed from packing sheets for vertical installation in the column are preferred, with straight lines which subdivide the packing sheet into buckling surfaces, the angle of inclination of the buckling surfaces to the horizontal being in the range from 90 to 45 °, preferably 60 °.
  • the specific surface area of packages for distillation is approximately 250 to 750 m 2 / m 3 .
  • Packings with lower specific surface areas in the range from about 50 to 250 m 2 / m 3 are preferably used for columns for carrying out heterogeneously catalyzed reactive distillation.
  • wall thicknesses of the metal sheets In the case of distillation packs, wall thicknesses of the metal sheets of typically 0.07 to 0.1 mm are sufficient. In contrast, in the case of heterogeneously catalyzed reactive distillations, depending on the catalyst weight and mechanical stability of the catalyst grains, wall thicknesses of the metal sheets in the range from 0.1 to 5 mm, preferably from 0.15 to 0.3 mm, are used.
  • Packings or fillers are preferably used which have a reduced flow resistance on their surface, this reduced flow resistance being achieved in particular by perforations and / or roughening of the material of the pack or the fillers or by forming the pack as expanded metal.
  • the number and dimensions of the perforations are preferably such that at least a proportion of 20%, preferably a proportion of 40 to 80%, of the liquid reaction mixture passes through these perforations and flows onto the catalyst particles underneath.
  • the packing material consists of expanded metal, the packing material being designed in such a way that the film is deposited on the packing material. running liquid can drain as completely as possible through the packing material, the draining being supported by drainage edges.
  • the perforations are preferably provided in the vicinity of the lower fold edges of the packing plates arranged vertically in the column, as described in DE-A 100 31 119.
  • the fluid is preferably directed onto the top of the inclined kink surfaces and the liquid load on the critical bottom is reduced.
  • packs of packing sheets are used for vertical installation in the column, with straight folds which subdivide the packing sheets into buckling areas and which have a width a to be measured from buckling edge to buckling edge and perforations, with a proportion X of at least 60% of the perforations has a distance b of at most 0.4 a to the lower fold edge of each fold surface.
  • the proportion of the area occupied by the perforations of a buckling area is preferably 5 to 40%, in particular 10 to 20% of this buckling area.
  • Another preferred embodiment is characterized in that the pack is formed from corrugated or kinked layers and that a flat intermediate layer is arranged between two corrugated or kinked layers, the flat intermediate layers not extending to the edge of the pack or in the Edge zone of the pack have an increased gas permeability, in particular holes, according to DE-A 196 01 558.
  • the edge zone of the packing is a concentric volume element which extends between an outer cylindrical surface and an inner cylindrical surface (the packages typically have a cylindrical shape), the outer cylindrical surface being defined by the outer ends of the corrugated or kinked layers and the inner cylindrical surface is defined by the outer ends of the flat layers.
  • the horizontal connecting line of the inner to the outer cylinder surface oriented parallel to the packing layers and running through the column axis, intersects one to twenty, preferably three to ten channels formed by layers arranged next to one another. In the case of flat layers not reaching into the edge zone, up to twenty channels in the edge zone are thus released side by side.
  • Second layers reaching into the edge zone are preferably gas-permeable to 20 to 90%, particularly preferably 40 to 60% of their surface, that is to say provided with holes, for example.
  • the rising gas flow is blocked because the channels are closed off by the column wall. This leads to a significantly poorer separation performance of the pack.
  • the gas can change from the channels ending on the column wall to other channels which carry it on in the opposite direction.
  • the invention also relates to a process for the preparation of pseudo-ions by aldolization of citral and acetone by reactive distillation in a column as described here.
  • the column is preferably operated with regard to its gas and liquid load in such a way that a maximum of 50 to 95%, preferably 70 to 80% of the flood load is reached.
  • FIG. 1 shows a schematic representation of an embodiment of a pack according to the invention
  • Figure 2 is a schematic representation of a packing sheet with straight bends
  • Figure 3 is a schematic representation of a packing sheet with perforations
  • Figure 4 is a schematic representation of an embodiment of a column according to the invention.
  • FIG. 1 shows a packing 1 with packing sheets 2, which have rectilinear creases 5 with the formation of kink surfaces 6, an intermediate space 3 being formed between two successive packing sheets 2.
  • catalyst particles 4 are filled into the same.
  • a represents the width of a fold surface 6, measured from fold edge 5 to fold edge 5, dar, c the distance between two adjacent fold edges 5 and h the height of a fold.
  • FIG. 3 schematically shows a special embodiment of a packing sheet 2 with buckling edges 5, buckling surfaces 6 and a width a of the buckling surfaces 6 with perforations which are at a distance b from the bottom buckling edge 5 of each buckling surface 6.
  • the reactive distillation column 7 shown schematically in FIG. 4 has two pure separation zones 8, each in the upper and lower region of the reactive distillation column 7, which are equipped with structured fabric packs.
  • a reaction zone 9 is arranged in the central column region and has a lower region 9a with a packing without introduced catalyst particles and an upper region 9b with a packing according to the invention with introduced catalyst particles.
  • the reactive distillation column 7 is equipped with a bottom evaporator 10 and a condenser 11 at the top of the column.
  • the starting materials are introduced as streams I or II in the upper region of the column, the reaction mixture is taken off as bottom stream III and a top stream IV is taken off at the top of the column.
  • a pressure regulator PC is arranged on the column head.
  • a column section with a diameter of 0.3 m was equipped with two distillation packs of the type B1 from the Montz company, offset by 90 °, the height of each pack being 23 cm. Catalyst particles were poured into the distillation packs. The filling volume and the manageability of the introduction and removal of the catalyst particles were determined. ⁇ -Al O 3 full cylinders coated with 5% praseodymium oxide were used as catalyst particles. The ⁇ -Al 2 O 3 full cylinders with a diameter of 1.5 mm and a height of 1 to 4 mm have an equivalent particle diameter of 2 mm.
  • 80% of the empty tube volume could be filled with catalyst particles.
  • the pack has a hydraulic diameter of 9.4 mm.
  • the catalyst was very easy to insert and, in the dry state, also trickled out completely.
  • a type Bl-250.60 pack was used, ie with a specific surface of 250 m / m and an angle of 60 ° to the horizontal. 80% of the empty tube volume of the same could be filled with the catalyst particles mentioned above.
  • the pack has a hydraulic diameter of 9.4 mm.
  • the catalyst was very easy to insert and, in the dry state, also trickled out completely.
  • the ratio of the equivalent diameter of the catalyst particles to the hydraulic diameter of the packing was 4.7.
  • an F-factor of 0.038 Pa ⁇ ° ' 5 (corresponding to a gas flow of 1000 1 / h) and a sprinkling density of 0.178 m3 / m 2 h (corresponding to a liquid flow of 1.4 1 / h ) a specific pressure drop of 3.33 mbar / m was measured.
  • the pack began to flood at a constant liquid load of 0.178 m 3 / m 2 h from an F factor of 0.0575 Pa A ° ' 5 (corresponding to a gas flow of 15001 / h).
  • the packing sheet 2 shown by way of example in FIG. 2 has rectilinear bends 5 arranged parallel to one another, which subdivide the packing sheet 2 into buckling surfaces 6.
  • the width of a folding surface 6, measured from folding edge 5 to folding edge 5, is designated by a, the distance between two successive folding edges 5 by c and the height of the Crease with h.
  • the hydraulic diameter of the gas flow for a packing constructed from such packing sheets is then calculated using the formula
  • the supported catalysts to be tested were manufactured by impregnating the pore volume.
  • the carrier was impregnated with the active component in the form of a metal salt solution, dried in a drying cabinet at 120 ° C. and then calcined in air. Unless otherwise stated, the calcination is carried out for 2 hours at 450 ° C. with a heating rate of 3.5 ° C./min.
  • a praseodrymnihate stock solution consisting of 1170 g of praseodymium oxide, 2276 g of 65% nitric acid and 1557 g of water was used. This solution contained 18.1% by weight of praseodymium oxide and was then used in accordance with the liquid absorption of the support diluted with fully deionized water.
  • the aim of the catalyst screening was to find catalysts with a high space-time yield and thus high catalyst activity.
  • the catalyst screening was carried out in an apparatus consisting of a reservoir, a pump and a temperature-controlled metal tube reactor.
  • the reaction was carried out at 90 ° C. and 2.5 bar abs . Sampling was carried out after 2, 4 and 6 h, the values obtained were averaged.
  • the samples were analyzed by gas chromatography (GC).
  • the concentrations of the individual components were determined using an internal standard (N-methyl-pyrrolidone, NMP).
  • NMP N-methyl-pyrrolidone
  • the examples according to the invention in rows 3 to 9 of the table show that thinner strands smaller spheres and special geometries (trilobes, gears and honeycomb bodies), that is to say catalyst carrier geometries with a larger outer surface in relation to volume, improved space-time yields in the range of 0, 5 to 0.6 g pseudo ion g catalyst / h ..
  • ⁇ -alumina strands with a diameter of 1.5 mm were coated with different levels of praseodymium oxide in the manner described under 3.1 above.
  • the test results are summarized in Table 3 below.
  • ⁇ -alumina strands with a diameter of 1.5 mm were used as supports and were coated with active components in the manner described under 3.1 above.
  • the nitrate solution of the corresponding metals was assumed in all cases, with the exception of zinc, which was used as the zinc acetate solution. In all cases, 5% of the active component was assigned.
  • LnO-Mix means a commercially available rare earth mixture from Rhone-Poulenc with the composition: 13.87% CeO 2 / 7.69% La 2 O 3 / 1.65% PrO x / 5.69% Nd 2 O 3rd
  • the experimental arrangement corresponded to the schematic representation in FIG. 4.
  • the reactive distillation column 7 was in the separation zones 8 each filled with a segment of a structured tissue pack of the A3-500 type from the Montz company, each with a total height of 23 cm.
  • the reaction zone 9 was equipped in the lower region thereof with a layer of Montz-Pak type B 1-1000 with a special element height of 30 mm. This layer served as a catalyst barrier so that the catalyst particles could not trickle into the lower separation zone.
  • Three layers of Montz-Pak type B 1-250.60 with an element height of 212 mm were installed on this layer, into which the catalyst was introduced by pouring. 3121 g of catalyst with a bulk density of 700 kg / m 3 were poured in.
  • Solid cylinders made of 5% praseodymium on ⁇ -Al 2 O 3 with a particle diameter of 1.5 mm and a height of 1 to 4 mm were used as the catalyst, which were obtained by impregnating ⁇ -Al 2 O 3 with an aqueous solution of praseodymium. Nitrate and subsequent calcination were produced.
  • the column was equipped with thermocouples and sampling points in regular sections, so that the temperature profile and the concentration profile in the column could be determined.
  • the reactants citral and acetone were metered into the reactive distillation column with mass flow control from storage containers standing on scales.
  • the bottom evaporator 10 which was heated to 124 ° C. with the aid of a thermostat, had a hold-up between 50 and 150 ml during operation, depending on the dwell time.
  • the bottom stream III was level-controlled from the bottom evaporator 10 with a pump into a scale standing container required.
  • the top stream of the reactive distillation column was condensed out in a condenser 11 which was operated with a cryostat. Part of the condensate was fed via a reflux divider as stream IV into a storage tank standing on a balance, while the other part was fed as reflux to the column.
  • the apparatus was equipped with a pressure control PC and designed for a system pressure of 20 bar. All incoming and outgoing material flows were continuously recorded and registered with a process control system PLS during the entire test. The apparatus was operated continuously, 24 hours a day.
  • a system pressure of 3 bar and a return ratio of 3 kg / kg were set.
  • the bottom temperature was 92.5 °.
  • the bottom stream III of the column was 735.6 g / h of crude product with 62.14% by weight of acetone, 0.71% by weight of water, 0.45% by weight of mesityl oxide, 0.95% by weight of diacetone alcohol, 9.14% by weight of citral, 24.43% by weight of pseudo-ionone and 2.18% by weight of high boilers.
  • 323.2 g / h of distillate (stream IV) consisting of 95.8% by weight of acetone and 4.2% by weight of water were taken off.
  • the differential pressure is a measure of the load (gas and liquid) of the column, depending on the material properties and the type of internals used, the differential pressure rises with increasing load until it floods. In the state of flooding, the catalyst is whirled up and severe catalyst abrasion can occur. This condition should therefore be avoided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

Es wird ein geträgerter Katalysator enthaltend ein oder mehrere Metalloxide als Aktivkomponente auf einem Katalysatortraäger zur Durchführung einer Aldolkondensation vorgeschlagen, wobei der Katalysatorträger η-Aluminiumoxid ist, die Aktivkomponente ein oder mehere Oxide der Seltenerdmetalle umfaßt und die Konzentration der Aktivkomponente, bezogen auf das Gewicht des Katalysatorträgers, im Bereich von 5 bis 12 Gew.-%, liegt. Auch ein Verfahren zur Herstellung von Pseudojonon durch Aldolisierung von Citral und Aceton durch Reaktivdestillation in einer Kolonne in Gegenwart des obenerwähntenKatalysators und die Regenerierung des geträgerten Katalysators mit einer wässringen alkalischen Lösung werden beschrieben.

Description

Geträge rte Metalloxide als Katalysatoren für Aldolkondensationen
Die Erfindung betrifft einen getragerten Katalysator, enthaltend ein oder mehrere Metalloxide als Aktivkomponente, zur Durchführung einer Aldolkondensation, eine Kolonne zur Durchführung einer Aldolkondensation durch Reaktivdestillation unter Verwendung eines getragerten Katalysators sowie ein Verfahren.
Als Aldolkondensation bezeichnet man in bekannter Weise die in der Regel basisch katalysierte Umsetzung einer Carbonylkomponente mit einer Methylenkomponente. Hierbei kann dieselbe Verbindung gleichzeitig als Carbonyl- und Methylenkomponente fungieren. Werden jeweils unterschiedliche Verbindungen als Carbonyl- bzw. Methylenkomponente eingesetzt, so ist es häufig vorteilhaft, eine der Komponenten im Uberschuss einzusetzen, insbesondere im bis zu hundertfachen Uberschuss gegenüber der anderen Komponente.
Neben einer homogenen Katalyse in Gegenwart von wässrigen Alkali- oder Erdalkalihy- droxiden ist die heterogene Katalyse, beispielsweise durch Metalloxide des Lanthans oder der Lanthaniden, bekannt.
Die US 3,578,702 beschreibt die Verwendung von Oxiden der Metalle mit den Ordnungszahlen 57 bis 71 als Aktivkomponente auf einem Träger aus einem Inertmaterial, beispielsweise Aluminiumoxid, Kieselgur oder vorzugsweise Silikagel, wobei die Konzentra- tion der Aktivkomponente im Bereich von 0,5 bis 10 Gew.-%, bezogen auf das Gesamtgewicht des getragerten Katalysators, liegt.
Es war demgegenüber Aufgabe der Erfindung, geträgerte Katalysatoren zur Durchführung einer Aldolkondensation zur Verfügung zu stellen, die sich gegenüber bekannten geträ- gerten Katalysatoren durch eine erhöhte Katalysatoraktivität bzw. eine verbesserte Raum- Zeit- Ausbeute kennzeichnen.
Die Aufgabe wird durch einen getragerten Katalysator, enthaltend ein oder mehrere Metalloxide als Aktivkomponente zur DurcktιLihrung einer Aldolkondensation gelöst, wobei der Katalysatorträger γ-Aluminiumoxid ist, die Aktivkomponente ein oder mehrere Oxide der Elemente mit den Ordnungszahlen 39 oder 57 bis 71 umfaßt und die Konzentration der Aktivkomponente, bezogen auf das Gesamtgewicht des getragerten Katalysators, im Bereich von 5 bis 12 Gew.-% liegt.
Als Ergebnis umfangreicher Screening-Untersuchungen wurde überraschend gefunden, dass eine signifikante Verbesserung der Katalysatoraktivität bei Einhaltung der vorstehend definierten Bedingungen erreicht wird.
Die erfindungsgemäßen getragerten Katalysatoren sind bevorzugt zur Durchführung der Aldolkondensation von Citral und Aceton zu Pseudojonon geeignet. Pseudojonon ist ein wichtiges Zwischenprodukt für die Vitamin- und Riechstoffproduktion. Vorteilhaft wird Citral zu Aceton im Molverhältnis von 1 zu 2 bis 50 eingesetzt. Besonders vorteilhaft sind Reaktionstemperaturen zwischen 30 und 100°C und Drücke zwischen 1 und 10 bar absolut.
Es wurde gefunden, dass die geeignete Auswahl des Katalysatorträgers die Katalysatoraktivität maßgeblich beeinflusst. Mit γ-Aluminiumoxid als Katalysatorträger wurden deutlich verbesserte Raumzeitausbeuten erhalten.
In einer bevorzugten Ausfuhrungsform ist die Geometrie des Katalysatorträgers dergestalt bestimmt, dass das Verhältnis der äußeren Oberfläche zum Volumen im Bereich von 0,5 bis 10 mm"1, bevorzugt im Bereich von 1 bis 5 mm"1 liegt, insbesondere dass der Katalysatorträger in Form von Voll- oder Hohlzylindern, Kugeln, Wabenkörpern, Triloben oder Zahnrädern vorliegt.
Eine weitere Bedingung, die maßgeblich für die Aktivität der erfindungsgemäßen getragerten Katalysatoren ist, ist die Einhaltung der Konzentration der Aktivkomponente, die erfindungsgemäß, bezogen auf das Gesamtgewicht des getragerten Katalysators im Bereich von 5 bis 12 Gew.-% liegen muss. Es wurde gefunden, dass bei Einhaltung der Konzentration im oben genannten Bereich gute Raumzeitausbeuten erhalten werden, und dass Kon- zentrationen außerhalb der genannten Grenzwerte zum Abfall der Raumzeitausbeute führen.
Besonders vorteilhaft sind Konzentrationen der Aktivkomponente, bezogen auf das Gesamtgewicht des getragerten Katalysators, im Bereich von 7,5 bis 10 Gew.-%.
Die erfindungsgemäßen getragerten Katalysatoren können grundsätzlich in jedem für heterogen katalysierte Reaktionen geeigneten Reaktor eingesetzt werden. Ohne Einschränkung der Allgemeinheit seien beispielhaft genannt: Suspensionsreaktor, Rührkessel, Rührkesselkaskade, Rohrreaktor, Hordenreaktor, Rohrbündekeaktor, Festbettreaktor, Fließbettreaktor, Reaktivdestillationskolonne. Die Reaktion kann bei unterschiedlichen Temperaturen und Drücken gefahren werden, wobei das Optimum von den eingesetzten Edukten bestimmt wird. In der Regel liegen die Reaktionstemperaturen zwischen 20 und 200°C und die Drücke zwischen 0,1 und 100 bar absolut.
Ein besonderer Vorteil der erfindungsgemäßen getragerten Katalysatoren liegt darin, dass eine einfache Regeneration durch Kalzination oder durch Waschen mit alkalischen Lösun- gen möglich ist. Es wurde gefunden, dass bei einem Rückgang der Katalysatoraktivität, der sich in einer Verringerung der Raumzeitausbeute bemerkbar macht, es möglich ist, den Katalysator zu regenerieren, und die ursprüngliche Aktivität wieder herzustellen. Die Regeneration kann durch Behandlung mit wässrigen alkalischen Lösungen, insbesondere Alkali-, Erdalkali- oder Ammoniumhydroxid-Lösungen oder durch Kalzinationen in Gegen- wart von Sauerstoff bei Temperaturen zwischen 150 und 700°C durchgeführt werden. Darüber hinaus ist es auch möglich, die Aktivität des frischen Katalysators durch eine Basenbehandlung vor dem Einsatz in der Aldolkondensation zu steigern. Regeneration wie auch Vorbehandlung deuten auf einen basenkatalysierten Mechanismus der Aldolkondensation hin.
Gegenstand der Erfindung ist auch eine Kolonne zur Durchführung einer Aldolkondensation durch Reaktivdestillation in Gegenwart eines heterogenen teilchenförmigen Katalysators mit einer Packung oder Füllkörpern, die im Kolonneninnenraum Zwischenräume ausbilden, wobei der Quotient aus hydraulischen Durchmesser für den Gasstrom durch die Packung oder die Füllkörper und dem äquivalenten Durchmesser das Katalysatorteilchen im Bereich von 2 bis 20, bevorzugt im Bereich von 5 bis 10, liegt, dergestalt, dass die Katalysatorteilchen lose unter Einwirkung der Schwerkraft in die Zwischenräume eingebracht, verteilt und ausgetragen werden, und wobei als Katalysatorteilchen geträgerte Katalysatoren eingesetzt werden, wie sie vorstehend beschrieben sind.
Der hydraulische Durchmesser wird in bekannter Weise als das Verhältnis zwischen dem Vierfachen der durchströmten Fläche und dem Umfang derselben definiert. Die konkrete Berechnung desselben für eine Packung mit geradlinigen Knicken ist in der Figurenbeschreibung, in Verbindung mit Figur 2 erläutert. Die Bestimmung des hydraulischen Durchmessers von Füllkörpern erfolgt über die Porosität der Schüttung ψ, d. h. Leervolumen der Schüttung/Gesamtvolumen und dem äquivalenten Durchmesser der Füllkörper,
Figure imgf000006_0001
wobei dhydrauiisch = hydraulischer Durchmesser, dp = Durchmesser der Füllkörper und ψ = Porosität. Der äquivalente Durchmesser der Füllkörper wird durch das Verhältnis zwischen dem sechsfachen Volumen und der Oberfläche des Füllkörpers definiert (vgl. VDI Wär- 0 meatlas, 5. Auflage, 1988, Lk 1).
Der äquivalente Durchmesser von Teilchen, vorliegend Katalysatorteilchen wird durch das Verhältnis zwischen dem sechsfachen Volumen und der Oberfläche des Teilchens definiert (vgl. hierzu VDI Wärmeatlas, 5. Auflage, 1988, Lk 1. 5
Indem ein Quotient aus dem hydraulischen Durchmesser für den Gasstrom durch die Pak- kung oder die Füllkörper und dem äquivalenten Durchmesser der Katalysatorteilchen im oben definierten Bereich eingehalten wird, wird erfindungsgemäß gewährleistet, dass die Katalysatorteilchen lose unter Einwirkung der Schwerkraft in die Zwischenräume der Pak- 0 kung oder der Füllkörper eingebracht, verteilt und ausgetragen werden.
Bezüglich der einsetzbaren Packungen oder Füllkörper gibt es grundsätzlich keine Einschränkungen: es können die Kolonneneinbauten verwendet werden, die regelmäßig in der Destillationstechnik eingesetzt werden, um die Phasengrenzfläche zwischen den sich im 5 Gegenstrom durch die Kolonne bewegenden Phasen, der gasförmigen und der flüssigen Phase, zu vergrößern. Dabei bilden die Packungen oder Füllkörper im Kolomieninnenraum Zwischenräume aus, die grundsätzlich untereinander verbunden sein müssen, um die für die destillative Trennwirkung erforderliche gegensinnige Durchströmung von gasförmiger und flüssiger Phase zu gewährleisten. 0
Die Erfinder haben somit erkannt, dass es prinzipiell möglich ist, in die untereinander verbundenen Zwischenräume, die die Packung oder die Füllkörper im Kolonneninnenraum ausbilden, Katalysatorteilchen lose unter Einwirkung der Schwerkraft in die Zwischenräume einzubringen, zu verteilen und die verbrauchten Katalysatorteilchen wieder auszutra- 5 gen. Dabei ist zu beachten, dass genügend freie Zwischenräume für den bei der Destillation entstehenden Gasstrom vorhanden sind, so dass es nicht zu einem Anstauen des im Gegenstrom zur Gasströmung fließenden Flüssigkeitsstromes kommt. Dies wird erfindungsgemäß dadurch gewährleistet, dass der Quotient aus dem hydraulischen Durchmesser für den Gasstrom durch die Packung oder durch die Füllkörper und den äquivalenten Durchmesser der Katalysatorteilchen sehr klein, das heißt mit Werten in den oben definierten Bereichen, gewählt wird.
Die Erfindung ist nicht eingeschränkt bezüglich der Form und Größe der einsetzbaren Katalysatorteilchen; zur Verbesserung der Raumzeitausbeute sind jedoch hohe spezifische Oberflächen und somit kleine Katalysatorteilchen bevorzugt. In Schüttungen von Katalysatorteilchen nimmt bekanntermaßen der Druckverlust bei zunehmend kleineren Katalysatorteilchen zu und begrenzt im Falle einer Reaktivdestillation die Flüssigkeits- und Dampfdurchsätze auf unwirtschaftlich kleine Werte. Wegen der allgemein stark ausge- prägten Bachbildung der Flüssigkeit in Katalysatorschüttungen lassen sich für große Kolonnendurchmesser, die bei Anlagen im Produktionsmaßstab benötigt werden, nur geringe destillative Trermleistungen erzielen. Diese Nachteile verhinderten bisher den an sich wünschenswerten Einsatz von Katalysatorschüttungen als Trenneinbauten in Reaktivdestillationen. Demgegenüber sind erfindungsgemäß gerade kleine Katalysatorteilchen, die auch bezüglich der katalytischen Wirksamkeit bevorzugt sind, besonders geeignet zum kombinierten Einsatz mit einer Packung oder mit Füllkörpern, da sie sich umso einfacher einbringen und, je kleiner ihre Abmessungen im Vergleich zu den Abmessungen der Zwischenräume der Packung oder der Füllkörper sind.
Geeignete Abmessungen der Katalysatorteilchen betragen beispielsweise für vollzylindri- sche Katalysatorteilchen etwa 1 x 4 mm bis etwa 4 x 40 mm.
Bevorzugt werden als Kolonneneinbauten strukturierte Packungen eingesetzt, das heißt in regelmäßiger Geometrie systematisch aufgebaute Packungen mit definierten Durchtrittsbe- reichen für die Gegenstromphasen. Packungen sind in der Regel aus im Wesentlichen parallel zueinander angeordneten Metallblechen, Streckmetall- oder Dralitgewebelagen aufgebaut. Sie zeichnen sich gegenüber anderen Kolonneneinbauten durch höhere Belastbarkeit, eine bessere Trennwirkung und einen geringeren spezifischen Druckverlust aus. Packungen sind in der Regel aus im Wesentlich parallel zueinander angeordneten geknickten Me- tallblechen, Streckmetall- oder Gewebelagen aufgebaut, mit zumeist geradlinigen Knicken, die das Packungsblech, die Streckmetall- oder Gewebelage in Knickflächen unterteilen, und wobei der Neigungswinkel der Knickfläche zur Vertikalen üblicherweise 30 bis 45° betragt. Für die vorliegende Erfindung können Packungen mit einem Neigungswinkel der Knickfläche zur Vertikalen im Bereich von 10 bis 45°, bevorzugt von 30°, eingesetzt werden. Durch Anordnung von aufeinander folgenden Packungsblechen im gleichen Neigungswinkel zur Vertikalen, jedoch mit umgekehrten Vorzeichen, entstehen die bekannten Kreuzkanalstrukturen, wie sie beispielsweise die Packungen der Typen Mellapak, CY oder BX der Fa. Sulzer AG, CH-8404 Winterthur oder die Typen A3, BSH, Bl oder M der Fa. Montz GmbH, D-40723 Hilden aufweisen.
Für die Anwendung in der Reaktivdestillation werden bevorzugt spezielle Ausführungs- formen von strukturierten Packungen eingesetzt, die eine erhöhte Gasströmung zulassen.
Eine besonders bevorzugte Ausfuhrungsform ist dadurch gekennzeichnet, dass ein oder mehrere Packungsbleche mit hoher spezifischer Oberfläche mit einem oder mehreren Pak- kungsblechen mit niedriger spezifischer Oberfläche alternierend angeordnet werden. Da- durch werden Zwischenräume mit jeweils unterschiedlichem hydraulischen Durchmesser gebildet. Besonders bevorzugt werden die spezifischen Oberflächen der Packungsbleche dergestalt gewählt, dass zum einen Zwischenräume ausgebildet werden für die der Quotient aus dem hydraulischen Durchmesser und dem äquivalenten Durchmesser der Katalysatorteilchen kleiner als 1 ist und zum anderen Zwischenräume für die der Quotient aus dem hydraulischen Durchmesser und dem äquivalenten Durchmesser der Katalysatorteilchen größer als 2 ist, insbesondere im oben definierten Bereich zwischen 2 und 20, insbesondere zwischen 5 und 10, liegt. In die erstgenannten Zwischenräume, mit einem Verhältnis aus hydraulischem Durchmesser und äquivalentem Durchmesser der Katalysatorteilchen kleiner als 1, werden keine Katalysatorteilchen eingefüllt, dieselben werden erfin- dungsgemäß lediglich in die Zwischenräume eingefüllt, in denen der genannte Quotient größer als 2 ist. Durch diese besondere Ausfuhrungsform wird eine erhöhte Gasströmung mit niedrigen Druckverlusten gewährleistet.
Bevorzugt wird das Ausgangsmaterial für erfindungsgemäße Packungen meist zusätzlich mit Öffnungen versehen, beispielsweise mit kreisförmigen Löchern mit etwa 4 bis 6 mm Durchmesser, um die Flutgrenze der Packung anzuheben und eine höhere Kolonnenbelastung zu ermöglichen. Unter Flutgrenze einer Packung wird das Gas- bzw. Flüssigkeitsvolumen pro Zeit und Querschnittsfläche verstanden, bei dem die Rieselflüssigkeit in und oberhalb der Packung bis zum vollständigen Überfluten aufgestaut bzw. vom Gasstrom mitgerissen wird. Eine Überschreitung dieser Belastung hat eine schnelle Abnahme der Trennwirkung und einen steilen Anstieg des Druckverlustes zur Folge. Anstelle von Packungen können gleichermaßen Füllkörper eingesetzt werden, wobei es grundsätzlich keine Einschränkungen bezüglich der Form derselben gibt. So können beispielsweise alle Formen von in der Destillationstechnik bekannten Füllkörpern, wie Ra- schig-Ringe, Pal-Ringe oder Sättel eingesetzt werden.
Vorteilhaft sind Packungen oder Füllkörper, die horizontale Flächenanteile aufweisen. Die horizontalen Flächenanteile fangen einen Teil des Gewichts der Katalysatorteilchen auf und leiten ihn an die Kolonnenwand ab. Dadurch wird die mechanische Belastung des Katalysators reduziert.
Bevorzugt sind Packungen, die aus Packungsblechen zum vertikalen Einbau in die Kolonne gebildet sind, mit geradlinigen Knicken, die das Packungsblech in Knickflächen unterteilen, wobei der Neigungswinkel der Knickflächen zur Horizontalen im Bereich von 90 bis 45°, bevorzugt bei 60°, liegt.
Die spezifische Oberfläche von Packungen für die Destillation beträgt etwa 250 bis 750 m2/m3. Für Kolonnen zur Durchführung von heterogen katalysierten Reaktivdestillationen werden Packungen mit niedrigeren spezifischen Oberflächen, im Bereich von etwa 50 bis 250 m2/m3 bevorzugt eingesetzt.
Bei Destillationspackungen genügen Wandstärken der Metallbleche von typischerweise 0,07 bis 0,1 mm. Demgegenüber werden im Falle von heterogen katalysierten Reaktivdestillationen je nach Katalysatorgewicht und mechanischer Stabilität der Katalysatorkörner Wandstärken der Metallbleche im Bereich von 01, bis 5 mm, bevorzugt von 0,15 bis 0,3 mm verwendet.
Bevorzugt werden Packungen oder Füllkörper eingesetzt, die an ihrer Oberfläche einen verringerten Strömungswiderstand aufweisen, wobei dieser verringerte Strömungswiderstand insbesondere durch Perforationen und/oder Aufrauungen des Materials der Packung oder der Füllkörper oder durch Ausbildung der Packung als Streckmetall erreicht wird. Dabei sind die Perforationen bevorzugt hinsichtlich ihrer Anzahl und Abmessungen dergestalt bemessen, dass mindestens ein Anteil von 20 %, bevorzugt ein Anteil von 40 bis 80 % des flüssigen Reaktionsgemisches diese Perforationen passiert und auf die darunter liegenden Katalysatorteilchen fließt.
In einer bevorzugten Ausführungsvariante besteht das Packungsmaterial aus Streckmetall, wobei das Packungsmaterial so ausgebildet ist, dass die als Film am Packungsmaterial ab- laufende Flüssigkeit möglichst vollständig durch das Packungsmaterial nach unten ablaufen kann, wobei das Abtropfen durch Ablaufkanten unterstützt wird.
Bevorzugt sind die Perforationen in der Nähe der unteren Knickkanten der vertikal in der Kolonne angeordneten Packungsbleche vorgesehen, wie in DE-A 100 31 119 beschrieben. Dadurch wird das Fluid bevorzugt auf die Oberseite der geneigten Knickflächen geleitet und die Flüssigkeitsbelastung auf der kritischen Unterseite verringert. Hierzu werden Pak- kungen aus Packungsblechen zum vertikalen Einbau in die Kolonne eingesetzt, mit geradlinigen Knicken, die die Packungsbleche in Knickflächen unterteilen und die eine von Knickkante zu Knickkante zu messende Breite a sowie Perforationen aufweisen und wobei ein Anteil X von mindestens 60 % der Perforationen einen Abstand b von höchstens 0,4 a zur unteren Knickkante jeder Knickfläche aufweist. Bevorzugt beträgt der Anteil der von den Perforationen eine Knickfläche eingenommenen Fläche 5 bis 40 %, insbesondere 10 bis 20 % dieser Knickfläche.
Eine weitere bevorzugte Ausfuhrungsform ist dadurch gekennzeichnet, dass die Packung aus gewellten oder geknickten Lagen ausgebildet ist, und dass zwischen zwei gewellten oder geknickten Lagen jeweils eine ebene Zwischenlage angeordnet ist, wobei sich die ebenen Zwischenlagen nicht bis an den Rand der Packung erstrecken oder in der Randzone der Packung eine erhöhte Gasdurchlässigkeit, insbesondere Löcher, aufweisen, entsprechend der DE-A 196 01 558.
Es ist auch möglich, anstelle von ebenen Zwischenlagen weniger stark gewellte oder geknickte Lagen vorzusehen.
Als Randzone der Packung wird ein konzentrisches Volumenelement bezeichnet, das sich zwischen einer äußeren Zylinderfläche und einer inneren Zylinderfläche (die Packungen haben typischerweise zylindrische Form) erstreckt, wobei die äußere Zylinderfläche durch die äußeren Enden der gewellten oder geknickten Lagen definiert ist und wobei die innere Zylinderfläche durch die äußeren Enden der ebenen Lagen definiert ist. Dabei schneidet die parallel zu den Packungslagen orientierte und durch die Kolonnenachse verlaufende horizontale Verbindungslinie der inneren mit der äußeren Zylinderfläche einen bis zwanzig, vorzugsweise drei bis zehn durch jeweils nebeneinander angeordnete Lagen gebildete Kanäle. Bei nicht in die Randzone reichenden ebenen Lagen werden somit bis zu zwanzig Kanäle in der Randzone nebeneinander freigegeben. In die Randzone reichende zweite Lagen sind vorzugsweise auf 20 bis 90 %, besonders bevorzugt auf 40 bis 60 % ihrer Fläche, gasdurchlässig, also zum Beispiel mit Löchern versehen. An den Stellen, an denen die durch die Bleche gebildeten Kanäle die Kolonnenwand berühren, kommt es zu Stauungen des aufsteigenden Gasstroms, weil die Kanäle von der Kolonnenwand abgeschlossen werden. Das führt zu einer deutlich schlechteren Trennleistung der Packung. Durch die Öffnung der Packungskanäle in der Wandzone kann diese Ursache einer verminderten Trennleistung auf einfache und wirksame Weise beseitigt werden. Das Gas kann in diesem Fall von den an der Kolonnenwand endenden Kanälen in andere Kanäle überwechseln, die es in entgegengesetzter Richtung weiterführen.
Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung von PseudoJonen durch Aldolisierung von Citral und Aceton durch Reaktivdestillation in einer, wie vorliegend beschriebenen Kolonne. Bevorzugt wird die Kolonne hinsichtlich ihrer Gas- und Flüssigkeitsbelastung dergestalt betrieben, dass maximal 50 bis 95 %, bevorzugt 70 bis 80 % der Flutbelastung erreicht wird.
Die Erfindung wird im Folgenden anhand einer Zeichnung und von Ausführungsbeispielen näher erläutert.
Es zeigen im Einzelnen
Figur 1 eine schematische Darstellung einer Ausfuhrungsform einer erfindungsgemäßen Packung,
Figur 2 die schematische Darstellung eines Packungsbleches mit geradlinigen Knik- ken und
Figur 3 die schematische Darstellung eines Packungsbleches mit Perforationen und
Figur 4 die schematische Darstellung einer Ausführungsform einer erfindungsgemäßen Kolonne.
Die schematische Darstellung in Fig. 1 zeigt eine Packung 1 mit Packungsblechen 2, die geradlinige Knicke 5 unter Ausbildung von Knickflächen 6 aufweisen, wobei zwischen zwei aufeinanderfolgenden Packungsblechen 2 jeweils ein Zwischenraum 3 ausgebildet wird. In denselben werden erfindungsgemäß Katalysatorteilchen 4 eingefüllt.
Fig. 2 zeigt schematisch ein Packungsblech 2 mit geradlinigen Knicken 5, und Knickflächen 6. a stellt die Breite einer Knickfläche 6, gemessen von Knickkante 5 zu Knickkante 5, dar, c den Abstand zwischen zwei benachbarten Knickkanten 5 und h die Höhe eines Knickes.
Fig. 3 zeigt schematisch eine besondere Ausführungsform eines Packungsbleches 2 mit Knickkanten 5, Knickflächen 6 und eine Breite a der Knickflächen 6 mit Perforationen, die einen Abstand b zur unteren Knickkante 5 jeder Knickfläche 6 aufweisen.
Die in der Fig. 4 schematisch dargestellte Reaktivdestillationskolonne 7 weist zwei reine Trennzonen 8, jeweils im oberen und unteren Bereich der Reaktivdestillationskolonne 7 auf, die mit strukturierten Gewebepackungen bestückt sind. Im mittleren Kolonnenbereich ist eine Reaktionszone 9 angeordnet, die einen unteren Bereich 9a mit einer Packung ohne eingebrachten Katalysatorteilchen und einen oberen Bereich 9b mit einer erfindungsgemäßen Packung, mit eingebrachten Katalysatorteilchen aufweist. Die Reaktivdestillationskolonne 7 ist mit einem Sumpfverdampfer 10 und einem Kondensator 11 am Kolonnenkopf ausgestattet. Die Edukte werden als Ströme I bzw. II im oberen Bereich der Kolonne aufgegeben, das Reaktionsgemisch wird als Sumpfstrom III abgezogen und es wird ein Kopfstrom IV am Kolonnenkopf abgezogen. Am Kolonnenkopf ist ein Druckregler PC angeordnet.
Ausführungsbeispiele
Beispiel 1 Schüttversuche
Ein Kolonnenschuss mit 0,3 m Durchmesser wurde mit zwei um 90° versetzt angeordneten Destillationspackungen des Typs Bl der Firma Montz bestückt, wobei die Höhe jeder Pak- kung 23 cm betrug. In die Destillationspackungen wurden Katalysatorteilchen durch Schütten eingebracht. Dabei wurde das Füllvolumen und die Handhabbarkeit des Ein- und Ausbringens der Katalysatorteilchen bestimmt. Als Katalysatorteilchen wurden γ-Al O3- Vollzylinder, belegt mit 5 % Praseodymoxid, eingesetzt. Die γ-Al2O3-Vollzylinder mit einem Durchmesser von 1,5 mm und einer Höhe von 1 bis 4 mm haben einen äquivalenten Partikeldurchmesser von 2 mm.
1A) Schüttversuche mit γ-Ai2θ3-Vollzylindern, Durchmesser 1,5 mm. Es wurden Pak- kungen des Typs Bl der Firma Montz mit jeweils unterschiedlichen spezifischen Oberflächen und unterschiedlichen Neigungswinkeln der Knickflächen zur Horizontalen eingesetzt. lAi) Es wurde eine Blechpackung des Typs Bl-125.80 mit einer spezifischen Oberfläche von 125 m2/m3 und einem Winkel von 80° gegen die Horizontale eingesetzt. Dabei konnte 90 % des Leerrohrvolumens mit den oben genannten Katalysatorteilchen gefüllt werden. Die Packung hatte einen hydraulischen Durchmesser von 19 mm. Der Katalysator ließ sich sehr gut einbringen und rieselte im trockenen Zustand auch vollständig wieder heraus. Das Verhältnis des äquivalenten Durchmessers der Katalysatorteilchen zum hydraulischen Durchmesser der Packung betrug 9.
1A2) Es wurde eine Packung des Typs Bl-250.80 mit einer spezifischen Oberfläche von 250 m Ina. und einem Winkel von 80° gegen die Horizontale mit den oben genannten Katalysatorteilchen befüllt. Hierbei konnten 80 % des Leerrohrvolumens mit Katalysatorteilchen gefüllt werden. Die Packung hat einen hydraulischen Durchmesser von 9,4 mm. Der Katalysator ließ sich sehr gut einbringen und rieselte im trockenen Zustand auch vollständig wieder heraus. Das Verhältnis des äquiva- lenten Durchmessers der Katalysatorteilchen zum hydraulischen Durchmesser der
Packung betrug 4,7.
1A3) Eingesetzt wurde eine Packung des Typs Bl-250.60, das heißt mit einer spezifi- sehen Oberfläche von 250 m /m und einem Winkel von 60° gegen die Horizontale. 80 % des Leerrohrvolumens derselben konnten mit den oben genannten Katalysatorteilchen gefüllt werden. Die Packung hat einen hydraulischen Durchmesser von 9,4 mm. Der Katalysator ließ sich sehr gut einbringen und rieselte im trockenen Zustand auch vollständig wieder heraus. Das Verhältnis des äquivalenten Durchmesser der Katalysatorteilchen zum hydraulischen Durchmesser der Packung be- trug 4,7.
Demgegenüber können bei handelsüblichen Katalysatorpackungen, bei denen der Katalysator in Taschen eingebracht ist, beispielsweise vom Typ Katapack der Firma Sulzer oder Multipack der Firma Montz nur 20 bis 30 % in Ausnahmefällen maximal 50 % des Leer- rohrvolumens mit Katalysator gefüllt werden.
Beispiel 2 Druckverlustmessungen
In einem Kolonnenschuss mit 0,1 m Durchmesser wurden Druckverlustmessungen mit dem Testgemisch Stickstoff/Isopropanol gemacht. Dazu wurde die Katalysatorschüttung in den Kolonnenschuss eingebracht und mit einer definierten Menge an Isopropanol berieselt
(eine Tropfstelle). Im Gegenstrom hierzu wurde eine definierte Menge an Stickstoff von unten nach oben durch die Packung/Schüttung geleitet. Bei den Versuchen wurde der spezifische Druckverlust pro Packungs- bzw. Schüttungshöhe gemessen und der Flutpunkt bestimmt. Als Katalysatorteilchen wurden γ-Al2O -Vollzylinder, belegt mit 5 % Praseodymoxid, eingesetzt. Die Vollzylinder ( d = 1,5 mm, h = 1 - 4 mm) hatten einen äquivalenten Partikeldurchmesser von 2 mm. Anschließend wurde der spezifische Druckverlust und der Flutpunkt von einer in eine strukturierte Packung eingebrachten Schüttung bestimmt.
Beispiel 2, Vergleich
Bei einer Schütthöhe von 45 cm wurde bei einem F-Faktor von 0,038 PaΛ°'5 (entsprechend einem Gasstrom von 1000 1/h) und einer Berieselungsdichte von 0,178 m3/m2h (entsprechend einem Flüssigkeitsstrom von 1,4 1/h) ein spezifischer Druckverlust von 3,33 mbar/m gemessen. Die Packung begann bei konstanter Flüssigkeitsbelastung von 0,178 m3/m2h ab einem F-Faktor von 0,0575 PaA°'5 (entsprechend einem Gasstrom von 15001/h) zu fluten.
Beispiel 2, erfindungsgemäß:
Schüttung eingebracht in zwei um 90° gedrehte Lagen einer strukturierten Packung des Typs BS-250.60 der Firma Montz.
Bei einer Schütthöhe von 46 cm wurde bei einem F-Faktor von 0,038 PaΛ°'5 (entsprechend einem Gasstrom von 1000 1/h) und einer Berieselungsdichte von 0,178 m3/m2h (entspre- chend einem Flüssigkeitsstrom von 1,4 1/h) ein spezifischer Druckverlust von 1,09 mbar/m gemessen. Die Packung begann bei konstanter Flüssigkeitsbelastung von 0,178 m3/m2h ab einem F-Faktor von 0,114 PaΛ°'5 (entsprechend einem Gasstrom von 30001/h ) zu fluten. Die maximale Gasbelastung konnte somit im Vergleich zur Schüttung, die nicht in eine Packung eingebracht war, um den Faktor 2 gesteigert werden.
Im Folgenden wird unter Bezugnahme auf Fig. 2 die Berechnung des hydraulischen Durchmessers für eine Packung mit geradlinigen Knicken verdeutlicht:
Das in Fig. 2 beispielhaft dargestellte Packungsblech 2 weist parallel zueinander angeord- nete, geradlinige Knicke 5 auf, die das Packungsblech 2 in Knickflächen 6 unterteilen. Die Breite einer Knickfläche 6, von Knickkante 5 zu Knickkante 5 gemessen, wird mit a bezeichnet, der Abstand zwei aufeinanderfolgenden Knickkanten 5 mit c und die Höhe der Knicke mit h. Der hydraulische Durchmesser der Gasströmung für eine aus derartigen Packungsblechen aufgebaute Packung berechnet sich dann nach der Formel
, _ 2 c h hydraulisch, Gas ~ ,-. c + 2a
Beispiel 3 Katalysatorscreening
3.1 Katalysatorpräparation
Die zu testenden getragerten Katalysatoren wurden standardmäßig durch Porenvolu- menimprägnierung hergestellt. Hierzu wurde der Träger mit der Aktivkomponente in Form einer Metallsalzlösung getränkt, im Trockenschrank bei 120°C getrocknet und anschließend unter Luft kalziniert. Sofern nicht anders erwähnt, erfolgt die Kalzination 2 h lang bei 450°C, mit einer Aufheizrate von 3,5°C/min.
Für die Herstellung von Katalysatoren mit Praseodymoxid als Aktivkomponente wurde eine Praseodyrnnihat-Stammlösung aus 1170 g Praseodymoxid, 2276 g 65 %iger Salpetersäure und 1557 g Wasser verwendet Diese Lösung enthielt 18,1 Gew.-% Praseodymoxid und wurde dann je nach Flüssigkeitsaufhahme des Trägers entsprechend mit voll entioni- siertem Wasser verdünnt.
3.2 Katalysatorscreening
Ziel des Katalysatorscreenings war es, Katalysatoren mit hoher Raumzeitausbeute und somit hoher Katalysatoraktivität zu finden.
Das Katalysatorscreening erfolgte in einer Apparatur bestehend aus Vorlagebehälter, Pumpe und temperiertem Metall-Rohrreaktor. Aus dem Vorlagebehälter wurde eine Mischung aus 79 Gew.-% Aceton und 21 Gew.-% Citral mit einem Massenstrom von 200 g/h mit Hilfe einer Pumpe von unten nach oben durch den mit 50 g Katalysator gefüllten und begleitbeheizten Rohrreaktor geleitet. Die Reaktion wurde bei 90°C und 2,5 barabs durchgeführt. Die Probenahmen erfolgten nach 2, 4 und 6 h, die dabei erhaltenen Werte wurden gemittelt. 3.3 Auswertung
Die Analyse der Proben erfolgte durch Gas-Chromatographie (GC). Die Konzentrationen der Einzelkomponenten wurden mit einem internen Standard (N-Methyl-Pyrrolidon, NMP) bestimmt. Die Daten der Analysemethode sind der nachfolgenden Tabelle zu entnehmen:
GC-Trennmethode zur Analyse der Umsetzung von Citral und Aceton zu Pseudojonon
GC-Anlage: HP5890 und 6890 Trennsäule: HP5-025 Film 30 m x 0,32 mm
Detektor: FID Temperaturprogramm: 60°C 1 min
60 → 150°C 10°C/min
150 → 200°C 20°C/min
200°C 10 min
200 → 240°C 10°C/min
240°C 5 min
Interner Standard: 0,1 g NMP auf 0,7 g Probe
Berücksichtigte Komponenten Name Retenti- onszeiten
(min)
Aceton 2,9
Mesityloxid (2-Methyl-2-penten -4-on) 4,5
Diacetonalkohol (4-Hydroxy-4 -methyl-2- 5,3 pentanon)
Citral 11,9
Pseudojonon 15,9
3.4 Variation der Katalysatorträger-Zusammensetzung
Alle getesteten Trägermaterialien für den Katalysatorträger wurden jeweils mit 5 % Praseodymoxid als Aktivkomponente belegt. Durch Variation der Katalysatorträger- Zusammensetzung wurden die in der nachfolgenden Tabelle aufgeführten Ergebnisse erzielt: Die Abkürzung BET im Tabellenkopf bezeichnet in bekannter Weise die Katalysatoroberfläche nach der Bestimmungsmethode von Stephen Brunauer, Paul Emmett und Edward Teller, nach DIN 66131. RZA bezeichnet die Raumzeitausbeute in gPSJ/gKat/h, d. h. in Gramm Pseudojonon pro Gramm Katalysator und Stunde.
Tabelle 1:
Figure imgf000017_0001
Die Ergebnisse in der Tabelle zeigen, dass unter den getesteten Trägermaterialien, γ-Aluminiumoxid die mit Abstand beste Raumzeitausbeute aufweist.
3.5 Variation der Katalysatorträger-Geometrie
Die Abkürzungen im Tabellenkopf haben die gleiche Bedeutung wie vorstehend unter Ziffer 3.4 aufgeführt. Auch die Bestimmung der Raumzeitausbeuten wurde unter den selben Bedingungen wie zu 3.4 durchgeführt, das heißt bei einer Belegung der Katalysatorträger mit 5 % Praseodymoxid. Die Versuchsergebnisse sind in der nachstehenden Tabelle zu- sammengefasst:
Tabelle 2:
Figure imgf000017_0002
Figure imgf000018_0001
Die Ergebnisse in der Tabelle zeigen, dass die Verwendung von Katalysatorträgern mit großem Verhältnis von äußerer Oberfläche zu Volumen zu Katalysatoren mit guten Raumzeitausbeuten führt. So zeigen die als Vergleich gekennzeichneten Katalysatorträger in der Geometrie von 4 mm und 3 mm Strängen, Raumzeitausbeuten < 0,5 g Pseudojonon/g Katalysator/h (Vergleichsversuche in den ersten zwei Reihen der Tabelle).
Demgegenüber zeigen die erfindungsgemäßen Beispiele in den Reihen 3 bis 9 der Tabelle, dass dünnere Stränge kleinere Kugeln und Spezialgeometrien (Triloben, Zahnräder und Wabenköφer), das heißt Katalysatorträger-Geometrien mit größerer äußerer Oberfläche im Verhältnis zum Volumen, verbesserte Raumzeitausbeuten im Bereich von 0,5 bis 0,6 g Pseudojonon g Katalysator/h aufweisen..
3.6 Variation des Praseodymoxid-Gehalts
γ- Aluminiumoxid-Stränge mit einem Durchmesser von 1,5 mm wurden in der vorstehend unter 3.1 beschriebenen Weise mit unterschiedlichen Gehalten an Praseodymoxid belegt. Die Versuchsergebnisse sind in der nachfolgenden Tabelle 3 zusammengefasst.
Tabelle 3:
Figure imgf000018_0002
Die Ergebnisse der Tabelle zeigen, dass ein Maximum der Raumzeitausbeuten bei einer Praseodymoxid-Belegung zwischen 7,5 und 10 Gew.-% durchschritten wird. Höhere Belegungen führen wieder zu einem Rückgang der Raumzeitausbeute. Dieser Rückgang der Aktivität bei höheren Belegungen zeigte sich auch optisch: die ursprünglich schwach grünliche Färbung des getragerten Katalysators veränderte sich in bräunlich. Hierfür könnte eine Agglomeration der Praseodymoxid-Partikel verantwortlich sein.
3.7 Variation der Zusammensetzung der Aktivkomponente
Als Träger wurden γ-Aluminiumoxid-Stränge mit einem Durchmesser von 1,5 mm eingesetzt und in der vorstehend unter 3.1 beschriebenen Weise mit Aktivkomponenten belegt. Hierbei wurde in sämtlichen Fällen von der Nitratlösung der entsprechenden Metalle ausgegangen, mit Ausnahme von Zink, das als Zinkacetatlösung eingesetzt wurde. In allen Fällen wurde eine Belegung mit jeweils 5 % der Aktivkomponente durchgeführt.
Die Abkürzung LnO-Mix bedeutet eine handelsübliche Seltenerdmetall-Mischung der Firma Rhone-Poulenc mit der Zusammensetzung: 13,87 % CeO2 / 7,69 % La2O3 / 1,65 % PrOx / 5,69 % Nd2O3.
Die Ergebnisse sind in der nachstehenden Tabelle 4 aufgeführt.
Tabelle 4:
Figure imgf000019_0001
Beispiel 4 Herstellung von Pseudojonon durch Aldolisierung von Citral und Aceton
Die Versuchsanordnung entsprach der schematischen Darstellung in Fig. 4. Die Reaktivde- stillationskolonne 7 war in den Trennzonen 8 mit jeweils einem Segment einer strukturierten Gewebepackung vom Typ A3 -500 der Firma Montz, mit einer Gesamthöhe von jeweils 23 cm, gefüllt. Die Reaktionszone 9 war im unteren Bereich derselben mit einer Lage Montz-Pak Typ B 1-1000 in Spezialelementhöhe 30 mm bestückt. Diese Lage diente als Katalysatorsperre, damit die Katalysatorteilchen nicht in die untere Trennzone rieseln konnten. Auf diese Lage wurden drei Lagen Montz-Pak vom Typ B 1-250.60 mit einer Elementhöhe von 212 mm eingebaut, in die der Katalysator durch Schütten eingebracht wurde. Dabei wurden 3121 g Katalysator mit einer Schüttdichte von 700 kg/m3 eingeschüttet. Als Katalysator wurden Vollzylinder aus 5 % Praseodym auf γ-Al2O3 mit einem Teilchendurchmesser von 1,5 mm und einer Höhe von 1 bis 4 mm verwendet, die durch Tränken von γ-Al2O3 mit einer wässrigen Lösung von Praseodym -Nitrat und anschließender Kalzinierung hergestellt wurden. Die Kolonne war in regelmäßigen Abschnitten mit Thermoelementen sowie mit Probennahmestellen bestückt, so dass das Temperaturprofil und das Konzentrationsprofil in der Kolonne ermittelt werden konnten.
Die Reaktanden Citral und Aceton (Strom I bzw. II in Fig. 4) wurden aus auf Waagen stehenden Vorlagebehältern mit einer Pumpe massenstromgeregelt in die Reaktivdestillationskolonne dosiert.
Der Sumpfverdampfer 10, der mit Hilfe eines Thermostaten auf 124°C beheizt wurde, hatte während des Betriebs je nach Verweilzeit ein Hold-up zwischen 50 und 150 ml. Der Sumpfstrom III wurde aus dem Sumpfverdampfer 10 mit einer Pumpe standgeregelt in einen auf einer Waage stehenden Behälter gefordert.
Der Kopfstrom der Reaktivdestillationskolonne wurde in einem Kondensator 11, der mit einem Kryostaten betrieben wurde, auskondensiert. Ein Teil des Kondensats lief über einen Rücklaufteiler als Strom IV in einen auf einer Waage stehenden Vorlagebehälter, während der andere Teil als Rücklauf auf die Kolonne gegeben wurde. Die Apparatur war mit einer Druckregelung PC ausgestattet und auf einen Systemdruck von 20 bar ausgelegt. Alle ein- und austretenden Stoffströme wurden während des gesamten Versuchs mit einem Prozess- leitsy stem PLS kontinuierlich erfasst und registriert. Die Apparatur wurde kontinuierlich, im 24 Stunden-Betrieb, gefahren. In die oben beschriebenen Reaktivdestillationskolonne 7 wurde kontinuierlich ein Strom 1 von 220,0 g/h, entsprechend 1,4 mol/h Citral mit einer Reinheit von 97 % sowie ein Strom II von 840,0 g/h entsprechend 14,32 mol/h auf 80°C vorgewärmtes Aceton mit einer Reinheit von 99 % aufgegeben.
Versuchsdurchführung
Als Katalysator in der Reaktionszone 9 wurden Vollzylinder (d = 1,5 mm, h = 1 - 4 mm) aus 5 % Pr auf γ-Al2O3 verwendet. Es wurde ein Systemdruck von 3 bar und ein Rücklauf- Verhältnis von 3 kg/kg eingestellt. Die Sumpftemperatur betrug 92,5°. Als Sumpfstrom III der Kolonne wurden 735,6 g/h Rohprodukt mit 62,14 Gew.-% Aceton, 0,71 Gew.-% Wasser, 0,45 Gew.-% Mesityloxid, 0,95 Gew.-% Diacetonalkohol, 9,14 Gew.-% Citral, 24,43 Gew.-% Pseudojonon und 2,18 Gew.-% Hochsiedern gewonnen. Am Kopf der Kolonne wurden 323,2 g/h Destillat (Strom IV) bestehend aus 95,8 Gew.-% Aceton und 4,2 Gew.- % Wasser abgezogen.
Es wurde Pseudojonon mit einer Selektivität von 97,3 % bezogen auf Citral und 84,4 % bezogen auf Aceton erhalten. Die Ausbeute betrug 66,7 % bezogen auf Citral.
Bei F-Faktoren von 0,12 PaΛ°'5 und Berieselungsdichten von 0,3 m3/m2h wurde ein Differenzdruck über die Kolonne von ca. 1 mbar gemessen.
Bei Verwendung einer regelosen Katalysatorschüttung ohne Packung wurde demgegenüber der doppelte Druckverlust gemessen.
Der Differenzdruck ist ein Maß für die Belastung (Gas und Flüssigkeit) der Kolonne, je nach Stoffeigenschaften und der Art der verwendeten Einbauten steigt der Differenzdruck mit zunehmender Belastung an, bis es zum Fluten kommt. Im Zustand des Flutens wird der Katalysator aufgewirbelt und es kann zu einem starken Katalysatorabrieb kommen. Dieser Zustand ist daher zu vermeiden.
Bei Verwendung einer erfindungsgemäßen Packung kann daher ein höherer Durchsatz bei gleichem Kolonnendurchmesser erreicht werden.

Claims

Patentansprüche
1. Geträgerter Katalysator, enthaltend ein oder mehrere Metalloxide als Aktivkompo- nenten auf einem Katalysatorträger, zur Durchführung einer heterogen katalysierten
Aldolkondensation, dadurch gekennzeichnet, dass der Katalysatorträger γ- Aluminiumoxid ist, dass die Aktivkomponente ein oder mehrere Oxide der Elemente mit den Ordnungszahlen 39 oder 57 bis 71 umfaßt und dass die Konzentration der Aktivkomponente, bezogen auf das Gewicht des Katalysatorträgers, im Bereich von 5 bis 12 Gew.-%, liegt.
2. Geträgerter Katalysator nach Anspruch 1, dadurch gekennzeichnet, dass die Konzentration der Aktivkomponente, bezogen auf das Gewicht des Katalysatorträgers, im Bereich von 7,5 bis 10 Gew.-% liegt.
3. Geträgerter Katalysator nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Geometrie des Katalysatorträgers dergestalt bestimmt ist, dass das Verhältnis der äußeren Oberfläche zum Volumen im Bereich von 0,5 bis 10 mm"1, bevorzugt von 1 bis 5 mm"1 liegt, bevorzugt dass der Katalysatorträger in Form von Voll- oder Hohlzy- lindern, Kugeln und Wabenkörpern, Triloben oder Zahnrädern vorliegt.
4. Geträgerter Katalysator nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Aktivkomponente Yttriumoxid ist.
5. Geträgerter Katalysator nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Aktivkomponente Praseodymoxid ist.
6. Kolonne zur Durchführung einer Aldolkondensation durch Reaktivdestillation in Gegenwart eines heterogenen teilchenförmigen Katalysators mit einer Packung oder Füllkörpern, die im Kolonneninnenraum Zwischenräume ausbilden, dadurch gekennzeichnet, dass der Quotient aus dem hydraulischen Durchmesser für den Gasstrom durch die Packung oder die Füllköφer und dem äquivalenten Durchmesser der Katalysatorteilchen im Bereich von 2 bis 20, bevorzugt im Bereich von 5 bis 10, liegt, dergestalt, dass die Katalysatorteilchen lose unter Einwirkung der Schwerkraft in die Zwischenräume eingebracht, verteilt und ausgetragen werden, und dass die Katalysatorteilchen aus einem getragerten Katalysator nach einem der Ansprüche 1 bis 5 gebildet sind.
7. Kolonne nach Anspruch 6, dadurch gekennzeichnet, dass die Packung eines strukturierte Packung, bevorzugt eine Kreuzkanalpackung, ist.
8. Kolonne nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass die Pak- kung oder die Füllköφer horizontale Flächenanteile aufweisen.
9. Kolonne nach Anspruch 8, wobei die Packung aus Packungsblechen zum vertikalen Einbau in die Kolonne gebildet ist, mit geradlinigen Knicken, die das Packungsblech in Knickflächen unterteilen, dadurch gekennzeichnet, dass der Neigungswinkel der Knickflächen zur Horizontalen im Bereich von 90 bis 45°, bevorzugt bei 60°, liegt.
10. Kolonne nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass die Pak- kung oder die Füllköφer an ihrer Oberfläche einen verringerten Strömungswiderstand aufweisen, bevorzugt durch Perforationen und/oder Aufrauungen des Materials der Packung oder der Füllköφer oder durch Ausbildung der Packung als Streckmetall.
11. Kolonne nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass die Pak- kung aus gewellten oder geknickten Lagen ausgebildet ist, und dass zwischen zwei gewellten oder geknickten Lagen jeweils eine ebene Zwischenlage angeordnet ist, wobei sich die ebenen Zwischenlagen nicht bis an den Rand der Packung erstrecken oder in der Randzone der Packung eine erhöhte Gasdurchlässigkeit, insbesondere Löcher, aufweisen.
12. Kolonne nach einem der Ansprüche 7 bis 11, wobei die Packung aus Packungsblechen zum vertikalen Einbau in die Kolonne gebildet ist, mit geradlinigen Knicken, die die Packungsbleche in Knickflächen unterteilen und die eine von Knickkante zu Knickkante zu messende Breite a sowie Perforationen aufweisen, dadurch gekennzeichnet, dass ein Anteil X von mindestens 60 % der Perforationen einen Abstand b von höchstens 0,4 a zur unteren Knickkante jeder Knickfläche aufweist.
13. Verfahren zur Herstellung von Pseudojonon durch Aldolisierung von Citral und
Aceton durch Reaktivdestillation in einer Kolonne nach einem der Ansprüche 6 bis
12, dadurch gekennzeichnet, dass die Kolonne hinsichtlich ihrer Gas- und Flüssig- keitsbelastung so betrieben wird, dass maximal 50 bis 95 %, bevorzugt 70 bis 80 % der Flutbelastung erreicht wird.
4. Verfahren zur Durchführung einer heterogen katalysierten Aldolkondensation durch Reaktivdestillation in einer Kolonne nach einem der Ansprüche 6 bis 12, dadurch gekennzeichnet, daß der geträgerte Katalysator bei Rückgang der ursprünglichen Katalysatoraktivität durch Behandlung mit einer wässrigen alkalischen Lösung, insbesondere mit einer Alkali-, Erdalkali- oder Ammoniumhydroxid-Lösung, regeneriert wird.
PCT/EP2002/013797 2001-12-06 2002-12-05 Geträgerte metalloxide als katalysatoren für aldolkondensationen WO2003047748A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/497,597 US7098366B2 (en) 2001-12-06 2002-12-02 Supported metal oxides as catalysts for aldol condensations
EP02795106A EP1455933A1 (de) 2001-12-06 2002-12-05 Geträgerte metalloxide als katalysatoren für aldolkondensationen
MXPA04004917A MXPA04004917A (es) 2001-12-06 2002-12-05 Oxidos metalicos soportados como catalizadores para condensaciones de aldol.
BR0214603-7A BR0214603A (pt) 2001-12-06 2002-12-05 Catalisador suportado, coluna para realizar uma condensação aldólica, e, processo para preparar pseudoionona e para realizar uma condensação aldólica
AU2002361017A AU2002361017A1 (en) 2001-12-06 2002-12-05 Supported metal oxides as catalysts for aldol condensations
JP2003548993A JP4112496B2 (ja) 2001-12-06 2002-12-05 金属酸化物担持アルドール縮合触媒

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10159821A DE10159821A1 (de) 2001-12-06 2001-12-06 Vorrichtung und Verfahren zur Durchführung von heterogen katalysierter Reaktivdestillationen, insbesondere zur Herstellung von Pseudoionen
DE10159821.1 2001-12-06
DE2002126120 DE10226120A1 (de) 2002-06-12 2002-06-12 Geträgerte Metalloxide als Katalysatoren für Aldolkondensationen
DE10226120.2 2002-06-12

Publications (1)

Publication Number Publication Date
WO2003047748A1 true WO2003047748A1 (de) 2003-06-12

Family

ID=26010721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/013797 WO2003047748A1 (de) 2001-12-06 2002-12-05 Geträgerte metalloxide als katalysatoren für aldolkondensationen

Country Status (8)

Country Link
US (1) US7098366B2 (de)
EP (1) EP1455933A1 (de)
JP (1) JP4112496B2 (de)
CN (1) CN1599643A (de)
AU (1) AU2002361017A1 (de)
BR (1) BR0214603A (de)
MX (1) MXPA04004917A (de)
WO (1) WO2003047748A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004022515A1 (de) * 2002-08-15 2004-03-18 Basf Aktiengesellschaft Kontinuierliches verfahren zur herstellung von carbonylverbindungen
FR2849406A1 (fr) 2002-12-27 2004-07-02 Michelin Soc Tech Dispositif de support d'une roue a triple charniere, dispositif de suspension et vehicule comprenant ledit, dispositif de support
EP2409961A1 (de) 2010-07-21 2012-01-25 DSM IP Assets B.V. Verfahren zur Herstellung von Pseudojonon
DE102012012785A1 (de) 2012-06-22 2013-12-24 Wolfgang Hölderich Verfahren zur Herstellung von Pseudojonon
EP3290108A1 (de) * 2016-09-01 2018-03-07 Linde Aktiengesellschaft Kolonne mit packung, verfahren zum stoff- und/ oder energieaustausch zwischen einer flüssigen und einer gasförmigen phase und herstellungsverfahren für eine packung
EP2864280B1 (de) * 2012-06-22 2021-11-10 Symrise AG Herstellungsverfahren eines trägerkatalysators

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012223A1 (de) * 2003-08-01 2005-02-10 Basf Aktiengesellschaft Verfahren zur herstellung von ethylenaminen
DE102005004854A1 (de) * 2005-02-01 2006-08-17 Basf Ag Verfahren zur Herstellung von Bis(3-aminopropyl)amin (Dipropylentriamin, DPTA)
US8038950B2 (en) * 2006-09-19 2011-10-18 Basf Aktiengesellschaft Fluidized-bed reactor for carrying out a gas-phase reaction
EP2069283B1 (de) * 2006-09-19 2010-06-30 Basf Se Verfahren zur herstellung von aromatischen aminen in einem wirbelschichtreaktor
US7894869B2 (en) 2007-03-09 2011-02-22 Nellcor Puritan Bennett Llc Multiple configuration medical sensor and technique for using the same
JP5322119B2 (ja) * 2007-10-08 2013-10-23 ビーエーエスエフ ソシエタス・ヨーロピア 反応器内部構造としての触媒特性を有する成形体の使用
JP5574480B2 (ja) * 2009-03-12 2014-08-20 国立大学法人高知大学 アミノ基含有アセトン誘導体、及びそれを用いた炭素−炭素結合形成方法
US10252245B2 (en) 2016-03-17 2019-04-09 Saudi Arabian Oil Company High temperature layered mixed-metal oxide materials with enhanced stability
US10138199B2 (en) 2016-03-17 2018-11-27 Saudi Arabian Oil Company High aspect ratio layered double hydroxide materials and methods for preparation thereof
EP3429963B1 (de) 2016-03-17 2023-09-20 Saudi Arabian Oil Company Synthese von übergangsmetall adamantanecarbonsäuresalze und nanokomposit oxide
US10106482B2 (en) 2016-03-17 2018-10-23 Saudi Arabian Oil Company Synthesis of magnesium adamantane salts and magnesium oxide nanocomposites, and systems and methods including the salts or the nanocomposites
US10087355B2 (en) 2016-03-17 2018-10-02 Saudi Arabian Oil Company Oil-based drilling fluids containing an alkaline-earth diamondoid compound as rheology modifier
US10875092B2 (en) 2017-05-19 2020-12-29 Saudi Arabian Oil Company Methods for preparing mixed-metal oxide diamondoid nanocomposites and catalytic systems including the nanocomposites
EP3625175A1 (de) 2017-05-19 2020-03-25 Saudi Arabian Oil Company Synthese von übergangsmetall-adamantan-salzen und oxidnanoverbundstoffen
CN113443964B (zh) * 2021-05-28 2022-07-22 浙江工业大学 一种乙醇催化转化合成高级醇的方法
CN114749118B (zh) * 2022-04-08 2023-04-14 南京工业大学 一种高通量多孔混合器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE130457C (de) *
JPS5272362A (en) * 1975-12-12 1977-06-16 Toray Ind Inc Lowering pressure loss caused by catalyst layer in reactor and apparat us for catalyst layer
EP0013385A1 (de) * 1979-01-10 1980-07-23 BASF Aktiengesellschaft Verfahren zur Herstellung von aliphatischen Carbonylverbindungen
EP0085996A2 (de) * 1982-02-08 1983-08-17 Shell Internationale Researchmaatschappij B.V. Verfahren zur Herstellung von asymmetrischen aliphatischen Ketonen
US4521630A (en) * 1982-08-09 1985-06-04 Shell Oil Company Process for the preparation of aldehydes
JPH01175951A (ja) * 1987-12-28 1989-07-12 Toray Ind Inc 高級脂肪族ケトン類の製造法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3578702A (en) 1965-12-03 1971-05-11 Eastman Kodak Co Process for producing alpha,beta-unsaturated organic compounds
US4270006A (en) 1979-12-27 1981-05-26 Basf Aktiengesellschaft Preparation of aliphatic carbonyl compounds
EP1029844A1 (de) * 1999-02-16 2000-08-23 Universiteit Utrecht Verfahren zur Kondensation einem Aldehyd und einem Keton

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE130457C (de) *
JPS5272362A (en) * 1975-12-12 1977-06-16 Toray Ind Inc Lowering pressure loss caused by catalyst layer in reactor and apparat us for catalyst layer
EP0013385A1 (de) * 1979-01-10 1980-07-23 BASF Aktiengesellschaft Verfahren zur Herstellung von aliphatischen Carbonylverbindungen
EP0085996A2 (de) * 1982-02-08 1983-08-17 Shell Internationale Researchmaatschappij B.V. Verfahren zur Herstellung von asymmetrischen aliphatischen Ketonen
US4521630A (en) * 1982-08-09 1985-06-04 Shell Oil Company Process for the preparation of aldehydes
JPH01175951A (ja) * 1987-12-28 1989-07-12 Toray Ind Inc 高級脂肪族ケトン類の製造法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 001, no. 111 (C - 027) 26 September 1977 (1977-09-26) *
PATENT ABSTRACTS OF JAPAN vol. 013, no. 457 (C - 644) 16 October 1989 (1989-10-16) *
PODREBARAC G G ET AL: "More uses for catalytic distillation", CHEMTECH;CHEMTECH MAY 1997 ACS, WASHINGTON, DC, USA, vol. 27, no. 5, May 1997 (1997-05-01), pages 37 - 45, XP008015170 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004022515A1 (de) * 2002-08-15 2004-03-18 Basf Aktiengesellschaft Kontinuierliches verfahren zur herstellung von carbonylverbindungen
FR2849406A1 (fr) 2002-12-27 2004-07-02 Michelin Soc Tech Dispositif de support d'une roue a triple charniere, dispositif de suspension et vehicule comprenant ledit, dispositif de support
EP2409961A1 (de) 2010-07-21 2012-01-25 DSM IP Assets B.V. Verfahren zur Herstellung von Pseudojonon
WO2012022562A1 (de) 2010-07-21 2012-02-23 Dsm Ip Assets B.V. Verfahren zur herstellung von pseudojonon
US8921605B2 (en) 2010-07-21 2014-12-30 Dsm Ip Assets B.V. Process for preparing pseudoionone
DE102012012785A1 (de) 2012-06-22 2013-12-24 Wolfgang Hölderich Verfahren zur Herstellung von Pseudojonon
EP2864280B1 (de) * 2012-06-22 2021-11-10 Symrise AG Herstellungsverfahren eines trägerkatalysators
EP3290108A1 (de) * 2016-09-01 2018-03-07 Linde Aktiengesellschaft Kolonne mit packung, verfahren zum stoff- und/ oder energieaustausch zwischen einer flüssigen und einer gasförmigen phase und herstellungsverfahren für eine packung

Also Published As

Publication number Publication date
EP1455933A1 (de) 2004-09-15
US7098366B2 (en) 2006-08-29
US20050070733A1 (en) 2005-03-31
JP2005511274A (ja) 2005-04-28
JP4112496B2 (ja) 2008-07-02
CN1599643A (zh) 2005-03-23
AU2002361017A1 (en) 2003-06-17
BR0214603A (pt) 2004-09-14
MXPA04004917A (es) 2006-03-09

Similar Documents

Publication Publication Date Title
WO2003047748A1 (de) Geträgerte metalloxide als katalysatoren für aldolkondensationen
EP1455931B1 (de) Vorrichtung und verfahren zur durchführung von heterogen katalysierten reaktivdestillationen, insbesondere zur herstellung von pseudoionon
EP1074296B1 (de) Verfahren zum Wärme- und Stoffaustausch
DE69534557T2 (de) Verfahren zur Herstellung eines Katalysators für die Herstellung von Vinylacetat in einem Wirbelbett
WO2002094432A1 (de) Verfahren zur destillation oder reaktivdestillation eines gemisches, das mindestens eine toxische komponente enthält
DE2728576C3 (de) Verfahren zur Anreicherung von Wasserstoffisotopen
EP1261404B1 (de) Verfahren zum Betreiben eines Flüssigkeitsverteilers
DE2628463A1 (de) Verfahren zur umwandlung von synthesegasen
DE4238640C2 (de) Verfahren zur Hydrierung wenigstens einer der Verbindungen CO und CO¶2¶
EP2834003A1 (de) Wasserstoffoxidationskatalysator, verwendung desselben und verfahren zur wasserstoffrekombination
DE3146203A1 (de) Verfahren zur durchfuehrung von stark exothermen reaktionen
EP1166867A1 (de) Packung für Wärme und Stoffaustauschkolonnen
DE2728575A1 (de) Wasserstoffisotopenaustausch-katalysator sowie verwendung zum austausch von wasserstoffisotopen zwischen stroemen aus gasfoermigem wasserstoff und fluessigem wasser
EP1317955B1 (de) Vorrichtung und Verfahren zur Durchführung von heterogen katalysierten Reaktionen
DE10226120A1 (de) Geträgerte Metalloxide als Katalysatoren für Aldolkondensationen
WO2006103190A1 (de) VERFAHREN ZUR GEWINNUNG EINES STROMES VON KOHLENWASSERSTOFFEN, ENTHALTEND 4 BIS 12 KOHLENSTOFFATOME PRO MOLEKÜL, MIT ERHÖHTEM ANTEIL AN LINEAREN α-OLEFINEN
EP0079491B1 (de) Verfahren zur Herstellung von Methacrylsäure
DE2016774A1 (de) Katalytische Zusammensetzung, die Nickel, Wolfram und ein Trägermaterial aus Aluminosilicatmaterial und ein anorganisches Oxyd umfasst, und ein Verfahren zur Verwendung dieser Zusammensetzung
DE19607437A1 (de) Eierschalenförmiger Katalysator und Verfahren zu dessen Herstellung
DE2512294C2 (de)
EP0557833B1 (de) Verfahren zur Herstellung von Ethylenoxid
DE2544185C3 (de) Verfahren zur katalytischen Dehydrierung von Äthylbenzol
DE60108332T2 (de) Verwendung von katalysatoren zur oxidativen Dehydrierung von Alkanen und Verfahren zur Herstellung von Olefinen
DE2141035B2 (de) Verfahren zur Herstellung eines Katalysators und dessen Verwendung
DE594629C (de)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: PA/a/2004/004917

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 10497597

Country of ref document: US

Ref document number: 2003548993

Country of ref document: JP

Ref document number: 1228/CHENP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 20028242807

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2002795106

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002795106

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642