WO2002058874A1 - Usinage par decharge electrique a fil et alimentation electrique pour l'usinage par decharge electrique a fil - Google Patents

Usinage par decharge electrique a fil et alimentation electrique pour l'usinage par decharge electrique a fil Download PDF

Info

Publication number
WO2002058874A1
WO2002058874A1 PCT/JP2001/000415 JP0100415W WO02058874A1 WO 2002058874 A1 WO2002058874 A1 WO 2002058874A1 JP 0100415 W JP0100415 W JP 0100415W WO 02058874 A1 WO02058874 A1 WO 02058874A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency voltage
power supply
electric discharge
discharge machining
wire electric
Prior art date
Application number
PCT/JP2001/000415
Other languages
English (en)
French (fr)
Inventor
Toshio Nakashima
Kouichirou Hattori
Yoshikazu Ukai
Atsushi Taneda
Akihiro Goto
Takashi Hashimoto
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to JP2002559197A priority Critical patent/JP3882753B2/ja
Priority to CH00031/03A priority patent/CH699826B8/de
Priority to CNB018108431A priority patent/CN1272134C/zh
Priority to PCT/JP2001/000415 priority patent/WO2002058874A1/ja
Priority to US10/297,385 priority patent/US6930273B2/en
Priority to DE10196307T priority patent/DE10196307T1/de
Priority to TW090101861A priority patent/TW521018B/zh
Publication of WO2002058874A1 publication Critical patent/WO2002058874A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/04Apparatus for supplying current to working gap; Electric circuits specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
    • B23H1/022Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges for shaping the discharge pulse train

Definitions

  • the present invention relates to a power supply device for wire electric discharge machining, which supplies electric power between the poles for use in wire electric discharge machining in which electric discharge is generated between a wire electrode and a workpiece to process the workpiece. And the improvement of the wire electric discharge machining method.
  • Japanese Patent Application Laid-Open No. 61-269915 discloses that a high-frequency AC voltage of 1 MHz to 5 MHz is applied between the poles to obtain a machined surface of 1 mRmax or less. Is disclosed. Also, Japanese Patent Application Laid-Open No. 7-92558 states that a machining surface of 0.5 zm Umax or less can be obtained by applying an AC high-frequency voltage of 7 MHz to 30 MHz between the poles. Is disclosed. '
  • FIG. 10 is a block diagram showing an example of a power supply device for electric discharge machining using a conventional AC high-frequency power supply.
  • 1 is an electrode
  • 2 is a workpiece
  • 3 is a DC power supply
  • 4 is a high-frequency oscillation. It is an amplifier circuit. According to an external command, a constant voltage or power is input from the DC power supply 3 to the high-frequency oscillation amplifier circuit 4 to generate an AC high-frequency voltage, and the AC high-frequency voltage Vg is applied between the electrode 1 and the workpiece 2. In this way, the workpiece 2 is discharged by discharge energy I do. .
  • FIG. 11 is a diagram showing an example of an inter-electrode voltage waveform when no load is applied when an AC high-frequency voltage is applied between the gaps in a conventional power supply device for electric discharge machining using an AC high-frequency power supply. .
  • an AC high-frequency voltage between the electrodes at such a frequency of, for example, 1 MHz or more, a processed surface with extremely smooth surface roughness can be obtained.
  • the power supply device for electric discharge machining using the AC high-frequency power supply described above has a great effect that the surface roughness of the machined surface of the workpiece becomes extremely smooth.
  • C showing a problem of a wire electrical discharge machining power supply apparatus using a ac high frequency power supply below
  • the surface to be processed by the power supply device for wire electric discharge machining using an AC high-frequency power supply has a surface roughness in the vertical direction (direction parallel to the wire electrode during processing) and a horizontal direction (perpendicular to the wire electrode during processing). Large difference in surface roughness It is not uncommon for differences to occur. For example, the surface roughness in the horizontal direction may be about 30 to 40% worse than the surface roughness in the vertical direction.
  • Fig. 12 shows the machining of a workpiece when a steel material with a thickness of 20 mm is machined with a brass wire electrode with a diameter of 0.2 mm using a power supply unit for wire electric discharge machining using a conventional AC high-frequency power supply.
  • Fig. 12 (a) shows a vertical surface roughness curve
  • FIG. 12 (b) shows a horizontal surface roughness curve.
  • the surface roughness in the horizontal direction is 1.82 ⁇ m Rmax
  • the surface roughness in the vertical direction is 1.29 m Umax
  • the surface roughness in the horizontal direction is It turns out that it is about 40% coarser than the roughness.
  • Such a difference in surface roughness depending on the direction is related to a streak generated on the processed surface of the workpiece.
  • FIG. 13 shows an example of an inter-electrode voltage waveform at the time of execution of machining by a power supply device for wire electric discharge machining using a conventional AC high-frequency power supply having a power supply frequency of 13.55 MHz.
  • the present invention has been made in order to solve the above-described problems, and in wire electric discharge machining of a workpiece, a power supply device for wire electric discharge machining capable of obtaining a high-accuracy and high-quality processed surface of the workpiece.
  • the object is to obtain a wire electric discharge machining method.
  • a power supply device for wire electric discharge machining is a power supply device for wire electric discharge machining that uses an AC high-frequency power supply that applies an AC high-frequency voltage between a wire electrode and a workpiece. It is provided with an AC high-frequency voltage intermittent supply means for applying and stopping the high-frequency voltage.
  • the application time of the AC high-frequency voltage by the AC high-frequency voltage intermittent supply means is a predetermined time capable of dividing the continuation of discharge.
  • the application time of the AC high frequency voltage by the AC high frequency voltage intermittent supply means is set to about 1 as or less.
  • the application time of the AC high frequency voltage by the AC high frequency voltage intermittent supply means is set to about 10 cycles or less of the AC high frequency voltage.
  • the power supply device for wire electric discharge machining according to the present invention,
  • the application time and pause time of the AC high-frequency voltage by the intermittent voltage supply means and the processing characteristics such as the peak value and frequency of the AC high-frequency voltage are stored in advance, and the application time and the application time of the AC high-frequency voltage according to the required specifications and processing conditions
  • a control means for controlling the AC high-frequency voltage intermittent supply means by retrieving the stored values of the idle time and the pause time.
  • the power supply device for wire electric discharge machining is a power supply device for wire electric discharge machining using an AC high frequency power supply for applying an AC high frequency voltage between a wire electrode and a workpiece.
  • the absolute value of the AC high-frequency voltage in the second predetermined time is made smaller by a predetermined ratio than the absolute value of the AC high-frequency voltage in the predetermined time, and the AC high-frequency voltage is supplied to the gap. It has variable voltage supply means.
  • the first application time of the AC high-frequency voltage by the AC high-frequency voltage variable supply means is a predetermined time capable of dividing the continuation of discharge.
  • the first application time of the AC high-frequency voltage by the AC high-frequency voltage variable supply means is set to about 1iis or less.
  • the first application time of the AC high-frequency voltage by the AC high-frequency voltage variable supply unit is set to about 10 cycles or less of the AC high-frequency voltage.
  • the power supply device for wire electric discharge machining is characterized in that the first predetermined time and the second predetermined time, and machining characteristics such as a peak value and a frequency of an AC high-frequency voltage are stored in advance, and the required specifications and machining are performed.
  • Control means for retrieving the stored values of the first predetermined time and the second predetermined time according to conditions and controlling the AC high-frequency voltage variable supply means is provided.
  • the wire electric discharge machining method includes: In a wire electric discharge machining method for machining the workpiece by supplying an AC high frequency voltage therebetween, the AC high frequency voltage is intermittently applied to the gap.
  • the application time and the pause time of the AC high-frequency voltage are made variable according to required specifications and machining conditions.
  • the wire electric discharge machining method according to the present invention is a wire electric discharge machining method for machining the workpiece by supplying an AC high-frequency voltage between a wire electrode and the workpiece.
  • the absolute value of the AC high-frequency voltage in the second predetermined time is made smaller than the absolute value of the AC high-frequency voltage at a predetermined ratio and supplied to the gap, and such variable voltage supply is repeated. is there.
  • the first predetermined time and the second predetermined time are variable according to required specifications and processing conditions.
  • the power supply device for wire electric discharge machining and the wire electric discharge machining method according to the present invention are configured as described above, it is possible to improve the straightness accuracy of the work surface of the workpiece. Moreover, the streaks formed on the work surface of the workpiece can be eliminated. Furthermore, the surface roughness of the work surface can be reduced. Furthermore, it is possible to suppress a decrease in processing productivity while securing the desired shape accuracy and surface roughness of the workpiece.
  • FIG. 1 is a block diagram of a power supply device for wire electric discharge machining according to Embodiment 1 of the present invention.
  • FIG. 2 is a power supply device for wire electric discharge machining according to Embodiment 1 of the present invention.
  • FIG. 3 is a conceptual diagram for explaining a voltage waveform of a pulse power supply and a voltage waveform between electrodes in FIG.
  • FIG. 3 is a diagram showing an example of an inter-electrode voltage waveform when an intermittent AC high-frequency voltage is applied by the power supply device for wire electric discharge machining according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing a shape curve, a straightness accuracy, and a measurement result of a surface roughness of a workpiece processing surface. ⁇
  • FIG. 5 is a diagram showing a change in a surface roughness in a vertical direction of a processed surface of a workpiece according to a predetermined application time T1 of an AC high-frequency voltage.
  • FIG. 6 is a circuit diagram of a power supply device for wire electric discharge machining according to Embodiment 2 of the present invention.
  • FIG. 7 is a conceptual diagram for explaining an input signal of FET and a voltage waveform between electrodes in the power supply device for wire electric discharge machining according to Embodiment 2 of the present invention.
  • FIG. 8 is a circuit diagram of a power supply device for wire electric discharge machining according to Embodiment 3 of the present invention.
  • FIG. 9 is a conceptual diagram for explaining an FET input signal and a gap voltage waveform in the power supply device for wire electric discharge machining according to Embodiment 3 of the present invention.
  • FIG. 10 is a block diagram showing an example of a conventional power supply device for electric discharge machining.
  • FIG. 11 is a diagram showing an example of a no-load voltage waveform when an AC high-frequency voltage is applied between poles in a power supply device for electric discharge machining using a conventional AC high-frequency power supply.
  • FIG. 12 is a diagram showing an example of the surface roughness of a machined surface of a workpiece by a power supply device for wire electric discharge machining using a conventional AC high-frequency power supply.
  • FIG. 13 shows a power supply unit for wire electric discharge machining using a conventional AC high-frequency power supply.
  • FIG. 4 is a diagram showing an example of a voltage waveform between electrodes when machining is performed by the placement.
  • FIG. 1 is a block diagram of a power supply device for wire electric discharge machining according to Embodiment 1 of the present invention, in which 1 a is a wire electrode, 2 is a workpiece, 4 is a high-frequency oscillation amplifier circuit, and 5 is It is a pulse power supply.
  • 1 a is a wire electrode
  • 2 is a workpiece
  • 4 is a high-frequency oscillation amplifier circuit
  • 5 is It is a pulse power supply.
  • FIG. 2 is a conceptual diagram for explaining a voltage waveform V and an inter-electrode voltage waveform V g1 of the pulse power supply 5 in the power supply device for wire electric discharge machining according to the first embodiment of the present invention.
  • An AC high-frequency voltage is intermittently applied between the electrodes in synchronization with a predetermined time T1 during which the pulse voltage V output from the pulse power supply 5 is applied and a predetermined time T2 during which the pulse voltage V is not applied.
  • the pulse power supply 5 corresponds to an AC high-frequency voltage intermittent supply means for applying an AC high-frequency voltage to the gap (predetermined time T 1) and stopping (predetermined time T 2).
  • 7 shows an example of a waveform V g 1.
  • the reason why the amplitude of the voltage waveform Vg1 between electrodes is not constant is due to the influence of the rising and falling time constants and the like.
  • Fig. 4 shows the measurement results of the shape curve, straightness accuracy and surface roughness of the work surface
  • Fig. 4 (a) shows the AC high frequency voltage of 13.55 MHz.
  • Both (a) and (b) in Fig. 4 show the measurement results when the workpiece is a steel material with a plate thickness of 20 mm and the wire electrode is brass with a diameter of 0.2 mm.
  • the intermittent application of the AC high-frequency voltage shown in FIG. 4 (b) is more effective than the continuous application of the AC high-frequency voltage shown in FIG. 4 (a). It can be seen that the difference between the surface roughness in the horizontal direction and the surface roughness in the vertical direction is small, and when the AC high-frequency voltage shown in (b) of Fig. 4 is applied intermittently, the surface generated by the vibration of the wire electrode. It was confirmed that the streaks on the machined surface disappeared.
  • FIG. 5 shows the change in the surface roughness in the vertical direction of the processed surface of the workpiece according to the predetermined application time T1 of the AC high-frequency voltage, and the predetermined application time T1 of the AC high-frequency voltage is about 1 s ( It can be seen that the surface roughness of the processed surface of the workpiece becomes extremely small and a high-quality surface property can be obtained by setting it to be equal to or less than about 10 to 10 cycles of the AC high-frequency voltage.
  • the vertical surface roughness of the workpiece surface is 0.76 nm Rmax (the horizontal surface roughness is 0.89 am Rmax), which indicates that the surface roughness can be greatly improved as compared with the measurement results of the surface roughness of the processed surface of the workpiece shown in FIG.
  • the intermittent application of the AC high-frequency voltage and the selection of the predetermined application time T1 of the AC high-frequency voltage can greatly improve the processing characteristics such as straightness accuracy and surface roughness of the workpiece.
  • the processing efficiency is reduced as compared with the case where the AC high frequency voltage is continuously applied. Therefore, machining characteristics based on the predetermined times T 1 and T 2 and the peak value and frequency of the AC high-frequency voltage are obtained in advance by experiments and stored in a control means (not shown), and the control is performed according to required specifications and machining conditions.
  • the influence of the electrostatic force increases.Therefore, the electrostatic force is reduced by increasing the predetermined time T2 and decreasing the ratio of the predetermined time T1. Straightness accuracy can be improved. Further, when the processing amount such as the processing of the inner corner portion is increased, the predetermined time T2 is reduced and the predetermined time T1 is increased, thereby realizing stable processing by increasing the processing capability. be able to.
  • a DC power supply may be used in place of the pulse power supply 5 to turn on and off the voltage input to the high-frequency oscillation amplifier circuit 4 by a switching element, or a continuous AC high-frequency voltage may be generated as the power supply.
  • a configuration may be adopted in which the gap is forcibly and periodically short-circuited.
  • the present invention includes a first power supply for applying an AC high-frequency voltage, and a second power supply for supplying a pulse current of a predetermined width from the discharge start time, and discharge is generated by applying the AC high-frequency voltage between the electrodes.
  • electrical discharge machining is performed by a pulsed current, and it relates to a power supply that uses an AC high-frequency voltage to induce electrical discharge and applies a DC current after detecting the electrical discharge. The wear is determined by the pulse current, and the technical idea is completely different from the present invention.
  • FIG. 6 is a circuit diagram of a power supply device for wire electric discharge machining according to Embodiment 2 of the present invention, in which la is a wire electrode, 2 is a workpiece, 3 is a DC power supply, and 4 is a high-frequency oscillation amplifier.
  • the circuit, 6 is a resistor device, 7a and 7b are resistors, 8a and 8b are diodes, and 9a and 9b are FETs.
  • the FETs 9a and 9b in the resistor device 6 connected in parallel between the poles are configured to be independently driven by external signals S1 and S2.
  • the diode 8a is connected in series with the resistor 7a in the direction in which current flows when the workpiece 2 has a positive polarity (positive polarity) when the wire electrode 1a is negative, and the diode 8b has a positive wire electrode 1a.
  • Workpiece 2 It is connected in series with the resistor 7b in the direction in which the current flows when the polarity is negative (reverse polarity).
  • FIG. 7 is a diagram for explaining input signals S 1 and S 2 and an inter-electrode voltage waveform V g 2 of each of the FETs 9 a and 9 b in the power supply device for wire electric discharge machining according to the second embodiment of the present invention. It is a conceptual diagram.
  • the FETs 9a and 9b are turned on and off synchronously as shown in Fig. 7 (a)
  • the external signals S1 and S2 are turned off as shown in Fig. 7 (b).
  • the predetermined time T 3 (second predetermined time) during which the external signals S 1 and S 2 are on is longer than the predetermined time T 4 (first predetermined time).
  • the absolute value of voltage V g 2 decreases.
  • the resistance device 6 in FIG. 6 reduces the absolute value of the AC high-frequency voltage during the second predetermined time from the first predetermined time at a predetermined ratio and supplies the AC voltage to the gap. It corresponds to an AC high-frequency voltage variable supply unit that repeatedly supplies a variable voltage.
  • the electrostatic force generated between the wire electrode 1a and the workpiece 2 at the predetermined time T3 can be reduced. Vibration can be suppressed, and more accurate machining can be realized.
  • FIG. 8 is a circuit diagram of a power supply device for wire electric discharge machining according to Embodiment 3 of the present invention, and the same reference numerals as those in FIG. 6 of Embodiment 2 indicate the same or corresponding parts.
  • 5 is a pulse power supply
  • 10 is a resistor device
  • 11 is a resistor
  • 12a and 12b are diodes
  • 13a and 13b are FETs.
  • FET 1 3 in resistor device 10 connected in parallel between poles a and 13b are configured to be driven simultaneously by the pulse power supply 5, pass through the diode 13b of the FET 13a and the FET 13b at reverse polarity, and pass through the diode 13b of the FET 13a at positive polarity.
  • FIG. 9 is a diagram for explaining input signals S 3, S 4 and inter-electrode voltage waveform Vg 3 of FET 13 a and FET 13 b in the power supply device for wire electric discharge machining according to Embodiment 3 of the present invention.
  • FIG. 9 By turning on and off the FET 13a and the FET 13b synchronously as shown in FIG. 9 (a), the seventh embodiment of the second embodiment can be implemented as shown in FIG. 9 (b).
  • An inter-electrode voltage wave similar to that shown in (b) of the figure can be obtained, and the same effect as in the second embodiment can be obtained.
  • the power supply device for wire electric discharge machining and the method of wire electric discharge machining according to the present invention are particularly suitable for being used for high precision and high quality wire electric discharge machining.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

明 細 書 ワイヤ放電加工用電源装置及びワイヤ放電加工方法 技術分野
この発明は、 ワイヤ電極と被加工物との極間に放電を発生させて被加 ェ物の加工を行うワイヤ放電加工に用いられる前記極間に加工電力を供 給するワイヤ放電加工用電源装置及びワイヤ放電加工方法の改良に関す るものである。 背景技術
電極と被加工物との極間に加工電力を供給する従来の放電加工用電源 装置として、 前記極間に交流高周波電圧を印加し、 短い時間幅の放電を 高い繰り返し頻度で発生させることにより、 前記被加工物に微細な加工 面が得られることが知られている。 例えば、 日本国特開昭 6 1— 2 6 0 9 1 5号公報には、 1 M H zから 5 M H zの交流高周波電圧を極間に印 加することにより 1 m Rmax以下の加工面が得られることが開示され ている。 また、 日本国特開平 7— 9 2 5 8号公報には、 7 M H zから 3 0 M H zの交流高周波電圧を極間に印加することにより 0 . 5 z m Umax以下の加工面が得られることが開示されている。 '
第 1 0図は、 従来の交流高周波電源を用いた放電加工用電源装置の例 を示すブロック図であり、 図において、 1は電極、 2は被加工物、 3は 直流電源、 4は高周波発振増幅回路である。 外部指令により、 直流電源 3から一定の電圧あるいは電力を高周波発振増幅回路 4に入力し、 交流 高周波電圧を発生させ、 電極 1と被加工物 2との極間に交流高周波電圧 V gを印加することにより、 放電エネルギにより被加工物 2を放電加工 する。 .
第 1 1図は、 従来の交流高周波電源を用いた放電加工用電源装置にお いて、 交流高周波電圧を前記極間に印加した場合の無負荷時の極間電圧 波形の一例を示す図である。このような例えば 1 M H z以上の周波数で、 交流高周波電圧を前記極間に継続的に供給することにより、 面粗さが非 常に滑らかな加工面を得ることができる。
以上のような交流高周波電源を用いた放電加工用電源装置は、 被加工 物加工面の面粗さが非常に滑らかになるという大きな効果があるが、 ヮ ィャ放電加工に使用した場合においては、 近年の巿場における厳しい要 求に対応するために、 いくつかの問題点があることがわかってきた。 交 流高周波電源を用いたワイヤ放電加工用電源装置の問題点を以下に示す c
①真直精度が低下する。
交流高周波電源を用いたワイャ放電加工用電源装置では、 極間に電圧 を印加したままの状態となるため、 ワイャ電極と被加工物との間に静電 力による引力が働き、 被加工物の中央部分が大きく加工される、 いわゆ る 「太鼓形状」 になり、 真直精度が低下するという問題点がある。
②加工面に筋が発生する。
交流高周波電源を用いたワイヤ放電加工は面粗さの細かい領域の加工 であるために、 わずかなワイャ電極の振動であっても加工面性状に与え る影響が顕著となる。 従って、 ワイヤ電極と被加工物との間の静電力に よる引力と放電による反発力が一定しないために生じるワイヤ電極の振 動により被加工物加工面に筋が発生するという問題点がある。 また、 こ のような加工面の筋は目視でも確認できるものである。
交流高周波電源を用いたワイヤ放電加工用電源装置による被加工物加 工面は、 縦方向 (加工の際にワイヤ電極と平行になる方向) の面粗さと 横方向 (加工の際にワイヤ電極と垂直になる方向) の面粗さに大きな差 異が生じることが珍しくない。 例えば、 前記横方向の面粗さが前記縦方 向の面粗さと比較して 3乃至 4割程度悪い場合がある。 第 1 2図は、 従 来の交流高周波電源を用いたワイヤ放電加工用電源装置により板厚 2 0 mmの鋼材を直径 0 . 2 mmの黄銅ワイヤ電極により加工した場合にお ける被加工物加工面の面粗さの例を示したものであり、第 1 2図の(a ) は縦方向の面粗さ曲線、 第 1 2図の (b ) は横方向の面粗さ曲線を示し ている。 第 1 2図の場合、 横方向の面粗さは 1 . 8 2 ^ m Rmax、 縦方 向の面粗さは 1 . 2 9 m Umaxであり、 横方向の面粗さは縦方向の面 粗さに比べて約 4割粗いことがわかる。 このような方向による面粗さの 相違が被加工物加工面に発生する筋と関係がある。
③加工面粗さが低下する。
交流高周波電源を用いたワイヤ放電加工用電源装置では、 電圧の極性 が交代するものの、 電圧が常に印加された状態であるため、 放電が長期 間 (数周期から数十周期分) 連続する現象がみられ、 交流高周波の 1パ ルス (交流の半波) の放電により得られると想定される面粗さよりも数 倍粗い面粗さしか得られないという問題点がある。 第 1 3図に、 電源周 波数 1 3 . 5 5 M H zの従来の交流高周波電源を用いたワイヤ放電加工 用電源装置による加工実行時の極間電圧波形の例を示す。 交流高周波印 加電圧のピーク値が所定電圧以下に下がっていることから放電の有無を 一次判断することができ、 第 1 3図の電圧波形から交流高周波印加電圧 の数十周期にわたり連続して放電している現象が見られる。 荒加工にお いて、 電圧印加後すぐに放電が発生するような現象が起きているときに は、 放電が同じところに発生していることが多いことがわかっており、 第 1 3図のような交流高周波電源を用いたワイヤ放電加工用電源装置に よる放電加工においても放電集中が起きていると推定され、 この放電集 中により加工面粗さが低下しているものと考えられる。 ワイヤ放電加工の用途として、 半導体業界をはじめとして極めて高精 度かつ非常に滑らかな面粗さが要求される用途が増加している。例えば、
I Cリードフレームの金型等の加工においては、形状精度が 1 j m以下、 面粗さが 0 . 5 m Rmax以下というような厳しい要求も見受けられる。 このような厳しい要求に応えるために、 前記のような問題点の解消が切 迫した課題となっていた。 発明の開示
この発明は、前記のような課題を解決するためになされたものであり、 被加工物のワイヤ放電加工において、 高精度かつ高品位な被加工物加工 面が得られるワイヤ放電加工用電源装置及びワイヤ放電加工方法を得る ことを目的とする。
この発明に係るワイヤ放電加工用電源装置は、 ワイヤ電極と被加工物 との極間に交流高周波電圧を印加する交流高周波電源を用いたワイヤ放 電加工用電源装置において、 前記極間への交流高周波電圧の印加及び休 止を行う交流高周波電圧間欠供給手段を備えたものである。
また、 この発明に係るワイヤ放電加工用電源装置は、 前記交流高周波 電圧間欠供給手段による交流高周波電圧の印加時間を放電の連続を分断 できる所定時間としたものである。
また、 この発明に係るワイヤ放電加工用電源装置は、 前記交流高周波 電圧間欠供給手段による交流高周波電圧の印加時間を約 1 a s以下とし たものである。
また、 この発明に係るワイヤ放電加工用電源装置は、 前記交流高周波 電圧間欠供給手段による交流高周波電圧の印加時間を交流高周波電圧の 1 0周期程度以下としたものである。
また、 この発明に係るワイヤ放電加工用電源装置は、 前記交流高周波 電圧間欠供給手段による交流高周波電圧の印加時間及び休止時間並びに 交流高周波電圧のピーク値及び周波数等による加工特性を予め保存して なり、 要求仕様及び加工条件に応じて前記交流高周波電圧の印加時間及 び休止時間の保存値を呼び出して前記交流高周波電圧間欠供給手段を制 御する制御手段を備えたものである。
また、 この発明に係るワイヤ放電加工用電源装置は、 ワイヤ電極と被 加工物との極間に交流高周波電圧を印加する交流高周波電源を用いたヮ ィャ放電加工用電源装置において、 第 1の所定時間における交流高周波 電圧の絶対値よりも第 2の所定時間における交流高周波電圧の絶対値を 所定の割合で小さくして極間への供給を行い、 このような可変電圧供給 を繰り返し行う交流高周波電圧可変供給手段を備えたものである。 また、 この発明に係るワイヤ放電加工用電源装置は、 前記交流高周波 電圧可変供給手段による交流高周波電圧の第 1の印加時間を放電の連続 を分断できる所定時間としたものである。
また、 この発明に係るワイヤ放電加工用電源装置は、 前記交流高周波 電圧可変供給手段による交流高周波電圧の第 1の印加時間を約 1 ii s以 下としたものである。
また、 この発明に係るワイヤ放電加工用電源装置は、 前記交流高周波 電圧可変供給手段による交流高周波電圧の第 1の印加時間を交流高周波 電圧の 1 0周期程度以下としたものである。
また、 この発明に係るワイヤ放電加工用電源装置は、 前記第 1の所定 時間及び第 2の所定時間並びに交流高周波電圧のピーク値及び周波数等 による加工特性を予め保存してなり、 要求仕様及び加工条件に応じて前 記第 1の所定時間及び第 2の所定時間の保存値を呼び出して前記交流高 周波電圧可変供給手段を制御する制御手段を備えたものである。
この発明に係るワイヤ放電加工方法は、 ワイヤ電極と被加工物との極 間に交流高周波電圧を供給することにより前記被加工物を加工するワイ ャ放電加工方法において、 前記極間への交流高周波電圧の印加を間欠的 に行うものである。
また、 この発明に係るワイヤ放電加工方法は、 前記交流高周波電圧の 印加時間及び休止時間を、 要求仕様及び加工条件に応じて可変としたも のである。 ,
また、 この発明に係るワイヤ放電加工方法は、 ワイヤ電極と被加工物 との極間に交流高周波電圧を供給することにより前記被加工物を加工す るワイヤ放電加工方法において、 第 1の所定時間における交流高周波電 圧の絶対値よりも第 2の所定時間における交流高周波電圧の絶対値を所 定の割合で小さくして極間への供給を行い、 このような可変電圧供給を 繰り返し行うものである。
また、 この発明に係るワイヤ放電加工方法は、 前記第 1の所定時間及 び第 2の所定時間を、 要求仕様及び加工条件に応じて可変としたもので ある。
この発明に係るワイヤ放電加工用電源装置及びワイヤ放電加工方法は 以上のように構成されているため、 被加工物加工面の真直精度を向上す ることができる。 また、 被加工物加工面に形成される筋を無くすことが できる。 さらに、 被加工物加工面の面粗さを小さくすることができる。 さらにまた、 被加工物の所期の形状精度及び面粗さを確保しながら、 加 ェ生産性の低下を抑制することができる。 図面の簡単な説明 ,
第 1図は、 この発明の実施の形態 1に係るワイヤ放電加工用電源装置 のブロック図である。
第 2図は、 この発明の実施の形態 1に係るワイヤ放電加工用電源装置 におけるパルス電源の電圧波形及び極間電圧波形を説明するための概念 図である。
第 3図は、 この発明の実施の形態 1に係るワイヤ放電加工用電源装置 による間欠的な交流高周波電圧を印加した場合の極間電圧波形の例を示 す図である。
第 4図は、 被加工物加工面の形状曲線、 真直精度及び面粗さの計測結 果を示す図である。 ·
第 5図は、 交流高周波電圧の所定印加時間 T 1による被加工物加工面 の縦方向面粗さの変化を示す図である。
第 6図は、 この発明の実施の形態 2に係るワイヤ放電加工用電源装置 の回路図である。
第 7図は、 この発明の実施の形態 2に係るワイヤ放電加工用電源装置 における F E Tの入力信号と極間電圧波形を説明するための概念図であ る
第 8図は、 この発明の実施の形態 3に係るワイヤ放電加工用電源装置 の回路図である。
第 9図は、 この発明の実施の形態 3に係るワイヤ放電加工用電源装置 における F E Tの入力信号と極間電圧波形を説明するための概念図であ る。
第 1 0図は、従来の放電加工用電源装置の例を示すブロック図である。 第 1 1図は、 従来の交流高周波電源を用いた放電加工用電源装置にお いて、 交流高周波電圧を極間に印加した時の無負荷電圧波形の一例を示 す図である。
第 1 2図は、 従来の交流高周波電源を用いたワイヤ放電加工用電源装 置による被加工物の加工面の面粗さの例を示す図である。
第 1 3図は、 従来の交流高周波電源を用いたワイヤ放電加工用電源装 置による加工実行時の極間電圧波形の例を示す図である。 発明を実施するための最良の形態
実施の形態 1 .
第 1図は、 この発明の実施の形態 1に係るワイヤ放電加工用電源装置 のブロック図であり、 図において、 1 aはワイヤ電極、 2は被加工物、 4は高周波発振増幅回路、 5はパルス電源である。 パルス電源 5から間 欠的な電圧 Vを高周波発振増幅回路 4へ入力することにより、 ワイヤ電 極 1 aと被加工物 2との極間に電圧 V g 1の交流高周波電圧が印加され る。
第 2図は、 この発明の実施の形態 1に,係るワイヤ放電加工用電源装置 におけるパルス電源 5の電圧波形 V及び極間電圧波形 V g 1を説明する ための概念図である。 パルス電源 5から出力されるパルス電圧 Vが印加 される所定時間 T 1と、 パルス電圧 Vが印加されない所定時間 T 2とに 同期して、 極間に間欠的に交流高周波電圧を印加する。
パルス電源 5が極間への交流高周波電圧の印加 (所定時間 T 1 ) 及び 休止 (所定時間 T 2 ) を行う交流高周波電圧間欠供給手段に相当する。 第 3図は、 1 3 . 5 5 M H zの周波数の交流高周波電圧を前記所定時 間 T 1 = 1 . 7 S , 前記所定時間 T 2 = 2 sで間欠的に印加した場合 の極間電圧波形 V g 1の例を示したものである。第 2図の概念図に比べ、 極間電圧波形 V g 1の振幅が一定でないのは、 立ち上がり及び立ち下が りの時定数の影響等によるものである。
以上のように間欠的に交流高周波電圧を印加することにより、 交流高 周波電圧が印加されない所定時間 T 2において極間に発生する静電力が 低減され、 ワイヤ電極 1 aの振動を抑制することが可能となり、 高精度 な加工を実現することができる。 第 4図は、 被加工物加工面の形状曲線、 真直精度及び面粗さの計測結 果を示したものであり、 第 4図の (a) は 1 3. 55MHzの交流高周 波電圧を連続的に印加した場,合、 第 4図の (b) は 1 3. 55 MHzの 交流高周波電圧を間欠的に印加した場合 (T 1=1. 7 S , T 2 = 2 s ) の形状曲線等を示している。 また、 第 4図の (a) 及び(b) 共に、 被加工物が板厚 20 mmの鋼材、 ワイヤ電極が直径 0. 2 mmの黄銅で ある場合の計測結果である。
第 4図の (a) の交流高周波電圧を連続的に印加した場合の形状曲線 を見ると、 被加工物の中央部分が大きく凹んで、 いわゆる 「太鼓形状」 となっており、 真直精度が 2. 3 9 imと悪いが、 第 4図の (b) の交 流高周波電圧を間欠的に印加した場合の真直精度は 0. 1 9 zmであり、 交流高周波電圧の間欠的印加により真直精度を大きく改善できることが 確認できた。
また、 第 4図の (b) の交流高周波電圧を間欠的に印加した場合は、 第 4図の (a) の交流高周波電圧を連続的に印加した場合と比較して、 被加工物加工面の横方向の面粗さと縦方向の面粗さとの差が小さいこと がわかり、 第 4図の (b) の交流高周波電圧を間欠的に印加した場合に は、 ワイヤ電極の振動により発生する被加工物加工面の筋が無くなるこ とも確認できた。
しかし、 第 4図の (b) の交流高周波電圧の間欠的な印加条件では、 被加工物加工面の面粗さを大きく改善することはできないことがわかる この原因としては、 交流高周波電圧の所定印加時間 T 1が長いため、 放電の連続という点に関しては連続交流高周波電圧の印加とあまり変わ らないためであると考えられる。 そこで、 交流高周波による放電の連続 を分断するために、 交流高周波電圧の所定印加時間 T 1を短くしていつ たところ、 交流高周波電圧の所定印加時間 T 1がある値以下になると被 加工物加工面の面粗さを非常に小さくできることがわかった。
第 5図は、 交流高周波電圧の所定印加時間 T 1による被加工物加工面 の縦方向面粗さの変化を示したものであり、 交流高周波電圧の所定印加 時間 T 1を約 1 s程度 (交流高周波電圧の 1 0乃至 1 0数周期程度に 相当) 以下とすることにより、 被加工物加工面の面粗さが非常に小さく なり、 高品位の面性状が得られることがわかる。 例えば交流高周波電圧 の所定印加時間 T 1が 0 . 6 Sの場合において、 被加工物加工面の縦 方向面粗さは 0 . . 7 6 n m Rmax (横方向面粗さは 0 . 8 9 a m Rmax) であり、第 4図に示した被加工物加工面の面粗さの計測結果と比較して、 面粗さを大きく改善できることがわかる。
以上のように、 交流高周波電圧の間欠的な印加及び交流高周波電圧の 所定印加時間 T 1の選定により、 被加工物の真直精度及び面粗さ等の加 ェ特性が大きく改善できることがわかったが、 交流高周波電圧の連続的 な印加による場合と比較じて加工効率は低下することになる。 従って、 前記所定時間 T 1及び T 2並びに交流高周波電庄のピーク値及び周波数 等による加工特性を予め実験により求めて図示しない制御手段に保存し ておき、 要求仕様及び加工条件に応じて前記制御手段により前記所定時 間 T 1及び T 2を設定することにより、 所期の形状精度及び面粗さを確 保しながら、 加工生産性の低下を抑制することができる。
例えば、 被加工物の板厚が大きくなると静電力による影響が大きくな るため、 前記所定時間 T 2を大きくして前記所定時間 T 1の割合を下げ ることで静電力を小さくすることにより、 真直精度を向上させることが できる。 また、 内側コーナ部の加工等加工量が大きくなる場合には、 前 記所定時間 T 2を小さくして前記所定時間 T 1を大きくすることにより、 加工能力を大きくして安定した加工を実現することができる。
以上のような間欠的な交流高周波電圧を極間に印加するためには、 交 流高周波電圧間欠供給手段として第 1図のようなパルス電源 5を用いる 他にも様々な方法がある。 例えば、 パルス電源 5の代わりに直流電源を 用いて、 高周波発振増幅回路 4に入る電圧をスィツチング素子によりォ ン ·オフしてもよいし、 電源としては連続した交流高周波電圧を発生さ せておき、 極間を強制的に周期的に短絡させる構成としてもよい。
また、 以上のような交流高周波電源に休止を入れる概念に関連するも のとして、 例えば日本国特開昭 5 9 - 2 3 2 7 2 6号公報に開示された 発明がある。 この発明は、 交流高周波電圧を印加する第 1の電源と、 放 電開始時点から所定幅のパルス電流を流す第 2の電源とを備え、 極間に 交流高周波電圧を印加して放電が発生したときにパルス電流により放電 加工を行うものであり、交流高周波電圧を放電を誘発させるために用い、 放電を検出した後に直流電流を印加する方式の電源に関するものである 従って、 '加工速度及ぴ電極消耗が前記パルス電流によって決まるもので あり、 この発明とは技術思想が全く異なるものである。
実施の形態 2 .
第 6図は、 この発明の実施の形態 2に係るワイヤ放電加工用電源装置 の回路図であり、 図において、 l aはワイヤ電極、 2は被加工物、 3は 直流電源、 4は高周波発振増幅回路、 6は抵抗装置、 7 a及び 7 bは抵 抗、 8 a及ぴ 8 bはダイオード、 9 a及ぴ 9 bは F E Tである。 直流電 源 3から所定の電圧を高周波発振増幅回路 4へ入力することにより、 ヮ ィャ電極 1 aと被加工物 2の極間に電圧 V g 2の交流高周波電圧が印加 される。 極間に並列に接続された抵抗装置 6内の、 F E T 9 a及び 9 b は、 外部信号 S 1及び S 2によりそれぞれ独立に駆動可能な構成となつ ている。 また、 ダイオード 8 aはワイヤ電極 1 aがマイナス、 被加工物 2がプラスの極性 (正極性) 時に電流が流れる向きに抵抗 7 aと直列に 接続され、 ダイオード 8 bはワイヤ電極 1 aがプラス、 被加工物 2がマ ィナスの極性 (逆極性) 時に電流が流れる向きに抵抗 7 bと直列に接続 されている。
第 7図は、 この発明の実施の形態 2に係るワイヤ放電加工用電源装置 における FET 9 aと FET 9 bそれぞれの入力信号 S 1、 S 2と極間 電圧波形 V g 2を説明するための概念図である。 FET 9 aと FET 9 bのオン ·オフを第 7図の (a) のように同期して動作させた場合、 第 7図の (b) のように、 外部信号 S 1及び S 2がオフである所定時間 T 4 (第 1の所定時間) よりも外部信号 S 1及び S 2がオンである所定時 間 T 3 (第 2の所定時間) の方が、 極間に印加される交流高周波電圧 V g 2の絶対値が小さくなる。
第 6図の抵抗装置 6が、 前記第 1の所定時間よりも前記第 2の所定時 間の交流高周波電圧の絶対値を所定の割合で小さくして極間への供給を 行い、 このような可変電圧供給を繰り返し行う交流高周波電圧可変供給 手段に相当する。
このような交流高周波電圧を極間に印加することにより、 前記所定時 間 T 3におけるワイヤ電極 1 aと被加工物 2間に発生する静電力を低減 させることができるため、 ワイヤ電極 1 aの振動を抑制することが可能 となり、 より高精度な加工を実現することができる。
実施の形態 3.
第 8図は、 この発明の実施の形態 3に係るワイヤ放電加工用電源装置 の回路図であり、 実施の形態 2の第 6図と同一符号は同一又は相当部分 を示している。 第 8図において、 5はパルス電源、 1 0は抵抗装置、 1 1は抵抗、 1 2 a及び 1 2 bはダイオード、 1 3 a及び 1 3 bは F E T である。 直流電源 3から所定の電圧を高周波発振増幅回路 4へ入力する ことにより、 ワイヤ電極 1 aと被加工物 2の極間に交流高周波電圧 Vg 3が印加される。 極間に並列に接続された抵抗装置 1 0内の FET 1 3 a及び 1 3 bは、 パルス電源 5により同時に駆動可能な構成となってお り、 逆極性時には FET 13 aと FET 1 3 bのダイオード 1 2 bを通 り、 正極性時には FET 1 3 aのダイオード 1 2 aと FET 1 3 bを介 して抵抗 1 1に電流が流れる。
第 9図は、 この発明の実施の形態 3に係るワイヤ放電加工用電源装置 における FET 1 3 aと FET 1 3 bそれぞれの入力信号 S 3、 S 4と 極間電圧波形 Vg 3を説明するための概念図である。 FET 1 3 aと F ET 1 3 bを第 9図の (a) のように同期してオン ·オフすることによ り、 第 9図の (b) のように実施の形態 2の第 7図の (b) と同様の極 間電圧波 を得ることができ、 実施の形態 2と同様の効果を奏する。 また、 この場合,は、 第 8図の抵抗装置 1 0が、 前記第 1の所定時間よ りも前記第 2の所定時間の交流高周波電圧の絶対値を所定の割合で小さ くして極間への供給を行い、 このような可変電圧供給を繰り返し行う交 流高周波電圧可変供給手段に相当する。 産業上の利用可能性
以上のように、 この発明に係るワイヤ放電加工用電源装置及びワイヤ 放電加工方法は、 特に高精度かつ高品位なワイヤ放電加工に用いられる のに適している。

Claims

請 求 の 範 囲
1 . ワイヤ電極と被加工物との極間に交流高周波電圧を印加する交流 高周波電源を用いたワイヤ放電加工用電源装置において、
前記極間への交流高周波電圧の印加及び休止を行う交流高周波電圧間 欠供給手段を備えたことを特徴とするワイヤ放電加工用電源装置。
2 . 請求の範囲 1において、 前記交流高周波電圧間欠供給手段による 交流高周波電圧の印加時間を放電の連続を分断できる所定時間としたこ とを特徴とするワイヤ放電加工用電源装置。
3 . 請求の範囲 1において、 前記交流高周波電圧間欠供給手段による 交流高周波電圧の印加時間を約 1 β s以下としたことを特徴とするワイ ャ放電加工用電源装置。 '
4 . 請求の範囲 1において、 前記交流高周波電圧間欠供給手段による 交流高周波電圧の印加時間を交流高周波電圧の 1 0周期程度以下とした ことを特徴とするワイヤ放電加工用電源装置。
5 . 請求の範囲 1において、 前記交流高周波.電圧間欠供給手段による 交流高周波電圧の印加時間及び休止時間並びに交流高周波電圧のピーク 値及び周波数等による加工特性を予め保存してなり、 要求仕様及び加工 条件に応じて前記交流高周波電圧の印加時間及び休止時間の保存値を呼 び出して前記交流高周波電圧間欠供給手段を制御する制御手段を備えた ことを特徴とするワイヤ放電加工用電源装置。
6 . ワイヤ電極と被加工物との極間に交流高周波電圧を印加する交流 高周波電源を用いたワイヤ放電加工用電源装置において、
第 1の所定時間における交流高周波電圧の絶対値よりも第 2の所定時 間における交流高周波電圧の絶対値を所定の割合で小さくして極間への 供給を行い、 このような可変電庄供給を繰り返し行う交流高周波電圧可 変供給手段を備えたことを特徴とするワイヤ放電加工用電源装置。
7 . 請求の範囲 6において、 前記交流高周波電圧可変供給手段による ' 交流高周波電圧の第 1の印加時間を放電の連続を分断できる所定時間と したことを特徴とするワイヤ放電加工用電源装置。
8 . 請求の範囲 6において、 前記交流高周波電圧可変供給手段による 交流高周波電圧の第 1の印加時間を約 1 II s以下としたことを特徴とす るワイヤ放電加工用電源装置。
9 . 請求の範囲 6において、 前記交流高周波電圧可変供給手段による 交流高周波電圧の第 1の印加時間を交流高周波電圧の 1 0周期程度以下 としたことを特徴とするワイヤ放電加工用電源装置。
1 0 . 請求の範囲 6において、 前記第 1の所定時間及び第' 2の所定時 間並びに交流高周波電圧のピーク値及び周波数等による加工特性を予め 保存してなり、 要求仕様及び加工条件に応じて前記第 1の所定時間及び 第 2の所定時間の保存値を呼び出して前記交流高周波電圧可変供給手段 を制御する制御手段を備えたことを特徴とするワイヤ放電加工用電源装
1 1 . ワイヤ電極と被加工物との極間に交流高周波電圧を供給するこ とにより前記被加工物を加工するワイヤ放電加工方法において、 前記極間への交流高周波電圧の印加を間欠的としたことを特徴とする ワイヤ放電加工方法。
1 2 . 請求の範囲 1 1において、 前記交流高周波電圧の印加時間及び 休止時間を、 要求仕様及び加工条件に応じて可変としたことを特徴とす るワイヤ放電加工方法。
1 3 . ワイヤ電極と被加工物との極間に交流高周波電圧を供給するこ とにより前記被加工物を加工するワイヤ放電加工方法において、 第 1の所定時間における交流高周波電圧の絶対値よりも第 2の所定時 間における交流高周波電圧の絶対値を所定の割合で小さくして極間への 供給を行い、 このような可変電圧供給を繰り返し行うことを特徴とする ワイヤ放電加工方法。
1 4 . 請求の範囲 1 3において、 前記第 1の所定時間及び第 2の所定 時間を、 要求仕様及び加工条件に応じて可変としたことを特徴とするヮ ィャ放電加工方法。
PCT/JP2001/000415 2001-01-23 2001-01-23 Usinage par decharge electrique a fil et alimentation electrique pour l'usinage par decharge electrique a fil WO2002058874A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002559197A JP3882753B2 (ja) 2001-01-23 2001-01-23 ワイヤ放電加工用電源装置及びワイヤ放電加工方法
CH00031/03A CH699826B8 (de) 2001-01-23 2001-01-23 Stromversorgungseinheit für die Drahterosionsbearbeitung und Drahterosionsbearbeitungsverfahren.
CNB018108431A CN1272134C (zh) 2001-01-23 2001-01-23 线放电加工用电源装置及线放电加工方法
PCT/JP2001/000415 WO2002058874A1 (fr) 2001-01-23 2001-01-23 Usinage par decharge electrique a fil et alimentation electrique pour l'usinage par decharge electrique a fil
US10/297,385 US6930273B2 (en) 2001-01-23 2001-01-23 Power supply unit for wire electrical discharge machining and method of wire electrical discharge machining
DE10196307T DE10196307T1 (de) 2001-01-23 2001-01-23 Energieversorgungseinheit für elektrische Drahtentladungsbearbeitung und Verfahren elektrischer Drahtentladungsbearbeitung
TW090101861A TW521018B (en) 2001-01-23 2001-01-31 Power supply for electrodischarge wire machining and electrodischarge wire machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/000415 WO2002058874A1 (fr) 2001-01-23 2001-01-23 Usinage par decharge electrique a fil et alimentation electrique pour l'usinage par decharge electrique a fil

Publications (1)

Publication Number Publication Date
WO2002058874A1 true WO2002058874A1 (fr) 2002-08-01

Family

ID=11736944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000415 WO2002058874A1 (fr) 2001-01-23 2001-01-23 Usinage par decharge electrique a fil et alimentation electrique pour l'usinage par decharge electrique a fil

Country Status (7)

Country Link
US (1) US6930273B2 (ja)
JP (1) JP3882753B2 (ja)
CN (1) CN1272134C (ja)
CH (1) CH699826B8 (ja)
DE (1) DE10196307T1 (ja)
TW (1) TW521018B (ja)
WO (1) WO2002058874A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2223764A2 (en) 2009-02-27 2010-09-01 Fanuc Ltd Wire electric discharge machine
JP2012045662A (ja) * 2010-08-26 2012-03-08 Fanuc Ltd 加工状態を検出するワイヤ放電加工機
US10730126B2 (en) 2012-09-18 2020-08-04 Sodick Co., Ltd. Power supply device for wire electric discharge machining
WO2023188370A1 (ja) * 2022-03-31 2023-10-05 ファナック株式会社 ワイヤ放電加工機

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7528340B2 (en) * 2006-07-24 2009-05-05 Sodick Co., Ltd. Apparatus and method for electric discharge machining and method of discriminating electric discharge
EP1886755B1 (en) * 2006-08-11 2013-01-02 Agie Charmilles SA Device and method for high frequency electrical discharge machining
US8586891B2 (en) * 2006-10-24 2013-11-19 Mitsubishi Electric Corporation Wire electrical discharge machining apparatus
JP4623756B2 (ja) * 2008-06-03 2011-02-02 株式会社ソディック 放電加工機および放電加工方法
CN102470469B (zh) * 2009-07-07 2014-04-02 三菱电机株式会社 线电极放电加工装置
TWI413559B (zh) 2010-12-17 2013-11-01 Ind Tech Res Inst 自調式放電加工節能電源裝置及其方法
CN102513623A (zh) * 2011-12-29 2012-06-27 北京理工大学 一种新型金属微缺陷电脉冲蚀刻装置
FR3083999B1 (fr) * 2018-07-23 2020-06-26 Thermocompact Procede et dispositif de prevention des ruptures de fil electrode lors d'un usinage par etincelage erosif

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101195A (en) * 1977-02-16 1978-09-04 Hitachi Ltd Apparatus for controlling the transfer of electrodes in high frequency discharge processing
JPS5615927A (en) * 1979-07-10 1981-02-16 Inoue Japax Res Inc Electrospark machining device

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1031674B (it) * 1974-02-19 1979-05-10 Niwa Yoshiei Procedimento ed apparecchiatura per la sagomatura a scarica ad alta frequenza
US4350863A (en) * 1978-03-07 1982-09-21 Inoue-Japax Research Incorporated High-frequency power feeder circuitry and supply for electrical discharge machining
JPS54119195A (en) 1978-03-07 1979-09-14 Inoue Japax Res Inc Electric discharge processing device
US4453069A (en) 1981-05-02 1984-06-05 Inoue-Japax Research Incorporated EDM Pulse forming circuit arrangement and method
JPS61260915A (ja) 1985-05-15 1986-11-19 Mitsubishi Electric Corp 放電加工用電源
CN1017691B (zh) 1985-06-19 1992-08-05 洛迦诺电子工业股份有限公司 工件的电腐蚀加工方法和设备
CH678825A5 (ja) 1986-06-03 1991-11-15 Mitsubishi Electric Corp
JP2626666B2 (ja) * 1987-04-16 1997-07-02 株式会社ソディック 放電加工方法
JPH03104517A (ja) 1989-09-18 1991-05-01 Mitsubishi Electric Corp 放電加工用電源装置
CH684632A5 (fr) * 1991-02-18 1994-11-15 Charmilles Technologies Dispositif anti-corrosion dans une machine d'usinage par électro-érosion à fil-électrode.
JP2692510B2 (ja) 1991-12-02 1997-12-17 三菱電機株式会社 放電加工装置
JP2954774B2 (ja) 1992-01-28 1999-09-27 三菱電機株式会社 放電加工機用電源装置
CN1037498C (zh) 1993-03-17 1998-02-25 哈尔滨工业大学 脉宽调制电火花加工脉冲电源
JP2914104B2 (ja) 1993-06-30 1999-06-28 三菱電機株式会社 放電加工方法及びその装置、並びにこの放電加工装置に適用可能な、静電容量可変装置及びインダクタンス可変装置
CN2174283Y (zh) 1993-08-24 1994-08-17 王明建 无工频变压器电火花加工机床脉冲电源
JP3020795B2 (ja) * 1994-02-18 2000-03-15 株式会社ソディック ワイヤ放電加工用電源回路及び電源用回路装置
JP2983139B2 (ja) 1994-04-26 1999-11-29 株式会社ソディック 放電加工用電源回路及び放電加工装置
CN2194781Y (zh) 1994-07-15 1995-04-19 王星群 一种线切割机床用电源
JP3231567B2 (ja) * 1994-12-07 2001-11-26 株式会社ソディック ワイヤ放電加工方法
JP3519149B2 (ja) 1994-12-21 2004-04-12 株式会社ソディック ワイヤ放電仕上げ加工用電源装置
JP3331077B2 (ja) 1994-12-21 2002-10-07 株式会社ソディック 放電仕上げ加工用電源装置
TW371633B (en) 1998-05-05 1999-10-11 Ind Tech Res Inst Apparatus and method for controlling wire cutting operation on EDM
CN1069856C (zh) 1998-05-08 2001-08-22 财团法人工业技术研究院 线切割放电加工控制方法与装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101195A (en) * 1977-02-16 1978-09-04 Hitachi Ltd Apparatus for controlling the transfer of electrodes in high frequency discharge processing
JPS5615927A (en) * 1979-07-10 1981-02-16 Inoue Japax Res Inc Electrospark machining device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2223764A2 (en) 2009-02-27 2010-09-01 Fanuc Ltd Wire electric discharge machine
JP2012045662A (ja) * 2010-08-26 2012-03-08 Fanuc Ltd 加工状態を検出するワイヤ放電加工機
US8975554B2 (en) 2010-08-26 2015-03-10 Fanuc Corporation Wire electric discharge machine capable of detecting machining state
US10730126B2 (en) 2012-09-18 2020-08-04 Sodick Co., Ltd. Power supply device for wire electric discharge machining
WO2023188370A1 (ja) * 2022-03-31 2023-10-05 ファナック株式会社 ワイヤ放電加工機

Also Published As

Publication number Publication date
JP3882753B2 (ja) 2007-02-21
US20030132200A1 (en) 2003-07-17
US6930273B2 (en) 2005-08-16
CN1434756A (zh) 2003-08-06
CH699826B8 (de) 2010-07-30
JPWO2002058874A1 (ja) 2004-05-27
CH699826B1 (de) 2010-05-14
DE10196307T1 (de) 2003-08-21
TW521018B (en) 2003-02-21
CN1272134C (zh) 2006-08-30

Similar Documents

Publication Publication Date Title
WO2002058874A1 (fr) Usinage par decharge electrique a fil et alimentation electrique pour l'usinage par decharge electrique a fil
JP5220036B2 (ja) 放電加工装置
JPH11221717A (ja) 放電加工方法及び装置
JPH05208317A (ja) 放電加工装置
JPH10309629A (ja) 放電加工装置用電源装置
JPS5926414B2 (ja) 放電加工装置
JP3866661B2 (ja) 放電加工方法及び装置
US6903297B2 (en) Wire electric-discharge machining method and device
JP5044898B2 (ja) 放電加工機用電源装置及びワイヤ放電加工装置
WO2002034444A1 (fr) Alimentation en courant pour l'usinage par etincelage a l'aide d'un fil-electrode
JP3627084B2 (ja) 放電加工機の電源装置
RU2140834C1 (ru) Способ электроискрового легирования и устройство для его осуществления
JPH089125B2 (ja) 放電加工用電源装置
WO2001094067A1 (fr) Alimentation electrique pour usinage par etincelage
JP2547365B2 (ja) 放電加工電源装置
JP2559799B2 (ja) 放電加工用電源装置
JPS60177819A (ja) 放電加工における仕上加工方法
JP2626666B2 (ja) 放電加工方法
JP2593187B2 (ja) 放電加工用電源装置
JP3164964B2 (ja) ワイヤ放電加工方法及びワイヤ放電加工用電源回路
JP3574503B2 (ja) 放電加工方法及びその装置
JPS59134621A (ja) 放電加工装置
JP2984664B2 (ja) 放電加工装置
WO2023223479A1 (ja) 放電加工用電源装置、放電加工装置及び放電加工方法
JPH03228521A (ja) 放電加工方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2002 559197

Country of ref document: JP

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): CH CN DE JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10297385

Country of ref document: US

Ref document number: 018108431

Country of ref document: CN

RET De translation (de og part 6b)

Ref document number: 10196307

Country of ref document: DE

Date of ref document: 20030821

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10196307

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607