WO2002051429A2 - Verwendung einer zusammensetzung zur stimulation des nervenwachstums, zur inhibition der narbengewebsbildung, zur reduktion eines sekundärschadens und/oder zur akkumulation von makrophagen - Google Patents

Verwendung einer zusammensetzung zur stimulation des nervenwachstums, zur inhibition der narbengewebsbildung, zur reduktion eines sekundärschadens und/oder zur akkumulation von makrophagen Download PDF

Info

Publication number
WO2002051429A2
WO2002051429A2 PCT/EP2001/015147 EP0115147W WO02051429A2 WO 2002051429 A2 WO2002051429 A2 WO 2002051429A2 EP 0115147 W EP0115147 W EP 0115147W WO 02051429 A2 WO02051429 A2 WO 02051429A2
Authority
WO
WIPO (PCT)
Prior art keywords
composition according
transporter
toxin
binding
protein
Prior art date
Application number
PCT/EP2001/015147
Other languages
English (en)
French (fr)
Other versions
WO2002051429A3 (de
Inventor
Philippe P. Monnier
Bernhard K. Mueller
Jan Schwab
Original Assignee
Migragen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Migragen Ag filed Critical Migragen Ag
Priority to JP2002552571A priority Critical patent/JP2004519448A/ja
Priority to AU2002217149A priority patent/AU2002217149A1/en
Priority to US10/451,487 priority patent/US20040151739A1/en
Priority to EP01272037A priority patent/EP1345619A2/de
Publication of WO2002051429A2 publication Critical patent/WO2002051429A2/de
Publication of WO2002051429A3 publication Critical patent/WO2002051429A3/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/45Transferases (2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/4886Metalloendopeptidases (3.4.24), e.g. collagenase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • compositions for stimulating nerve growth, for inhibiting scar tissue formation, for reducing secondary damage and / or for accumulating macrophages for stimulating nerve growth, for inhibiting scar tissue formation, for reducing secondary damage and / or for accumulating macrophages
  • the present invention relates to the use of a composition
  • a composition comprising a fusion protein and at least one transporter for in-vivo stimulation of nerve growth, for / «- v / v ⁇ -inhibition of scar tissue formation, for / « - vz ' vo reduction of secondary damage and / or for the in vivo accumulation of macrophages, the fusion protein containing at least one binding domain for the transporter and at least one modulation domain for the covalent modification of small GTP-binding proteins, and the transporter mediates the uptake of the fusion protein into a target cell.
  • the spinal cord and brain form the central nervous system (CNS) in vertebrates.
  • the spinal cord runs in the longitudinal direction of the body and is surrounded by the spinal canal. In humans, it can be divided into eight neck, twelve breast, five lumbar, five sacrum and one or two coccyx segments.
  • the central gray matter with its lateral projections (anterior and posterior horn) is formed by the cell bodies of the nerve cells and the peripheral white matter by the medulla bundle of nerve fibers.
  • Afferent (ascending, sensitive) and efferent (descending, effectoric) conduits run in the white matter.
  • the descending pathways of the spinal cord are divided into the pyramidal pathways (voluntary movements) and extrapyramidal paths (involuntary movements; distribution of muscle tone). Most of the pyramidal fibers run crossed in the pyramid side strand of the opposite side and to a lesser extent uncrossed in the pyramid anterior strand to anterior horn and posterior horn cells of the different spinal cord segments.
  • the spinal cord and brain are made up of two cell classes. Nerve cells and glial cells.
  • the glial cells are divided into oligodendrocytes and astrocytes. Oligodendrocytes form the myelin sheaths of the nerve axons, astrocytes provide the nerve cells with nutrients, absorb released neurotransmitters and form the blood-brain barrier.
  • Myelin is the fatty insulation sheath that spirally surrounds nerves. This covering is responsible for the trouble-free transmission of the electrical impulses along the nerve.
  • Paralysis resulting from complete failure of at least one segment is called paraplegia.
  • the result is the loss of sensitive (e.g. temperature, pain or pressure sensations), motor (voluntary and involuntary movement) and vegetative functions (e.g. bladder and bowel function) for all areas below the affected segment.
  • sensitive e.g. temperature, pain or pressure sensations
  • motor voluntary and involuntary movement
  • vegetative functions e.g. bladder and bowel function
  • the inhibitory myelin residues remain at the injury site for a long time. If macrophages activated by contact with peripheral nerves are introduced into the injury site in the CNS, they remove the myelin residues and thereby induce the regeneration of the nerve axons (Lazarov-Spiegier O, Solomon AS, Schwartz M, 1998, Glia, 24: 329-337) ,
  • the primary, mechanically caused lesion (primary damage) is enlarged by secondary phenomena (secondary damage) and scarring begins.
  • secondary damage secondary phenomena
  • GFAP glial fibrillary acidic protein
  • Astrocytes near the site of injury upregulate vimentin and nestin production and cell division becomes observable.
  • a new glia limitans is formed on the border between migrating meningeal cells and surviving astrocytes. As a result, astrocytes in this area become hypertrophic (enlarge), form many fine processes and some divide.
  • the finished scar mainly consists of hyperfilamentous astrocytes, the extensions of which are interwoven over many gap and tight junctions and are so tightly packed that only a little extra cellular space remains.
  • the scar is a mechanical obstacle to regenerating axons that can hardly be overcome.
  • the scar also contains a large number of regeneration-inhibiting substances. These are mainly chondroitin sulfate proteoglycans (CSPG, e.g.: Aggrecan, Versican, Neurocan, Brevican, Phosphacan, NG2) and Tenascin (Fawcett JW and Asher RA, 1999, Brain Research Bulletin, 49: 377-391).
  • CSPG chondroitin sulfate proteoglycans
  • Tenascin Tenascin
  • Alzheimer's disease Parkinson's disease, multiple sclerosis and similar diseases that are associated with nerve fiber loss and demarking, as well as amyotrophic lateral sclerosis and other motor neuron diseases, ischemia, stroke, epilepsy, Huntington's disease, AIDS dementia complex and prion diseases.
  • the aim of the research is therefore to regenerate the nerve axons across the injury in spinal cord lesions and to stimulate nerve growth in other diseases of the peripheral and central nervous system.
  • Scarring in the central nervous system of mammals represents an enormous barrier to regeneration for growing nerve fibers. For this reason, slowing or preventing scar formation and stimulating nerve fiber growth are essential therapeutic goals in neuroregenerative treatment concepts.
  • Rho A, B, C small GTP-binding proteins from the family of Rho-GTPases
  • Rho A, B, C small GTP-binding proteins from the family of Rho-GTPases
  • Rho AC Rho AC activation leads to new sprouting nerve fibers Collapse of the growth cone, the distal tip of the neurite, and thereby prevents the formation of new nerve tracts.
  • NGF nerve growt factor
  • the binding of NGF (nerve growt factor) to the p75 receptor leads to apoptosis (Casaccia-Bonnefil P, Carter BD, Dobrowsky RT, Chao MV, 1996, Nature, 383: 716-719).
  • the intracellular domain of p75 is directly linked to Rho AC. Binding of neurotrophins to the p75 receptor reduces the activity of Rho A and thus leads to neurite elongation. If the activity of Rho A is permanently increased by a mutation (Val 14 -Rho A), the addition of NGF does not lead to neurite growth.
  • Rho A inhibits the signal transduction cascade of NGF-p75 and should thereby also inhibit the apoptotic effect of the binding of NGF to p75 in oligodendrocytes.
  • the bacterial exoenzyme C3 transferase is known from the prior art as a specific inhibitor of Rho A, B and C (Aktories K, Schmidt G, Just I, 2000, Biol. Chem. 381: 421-426). This protein ADP-ribosylates Rho AC at argenin residue 41 and thereby inhibits these Rho-GTPases (Aktories et al, 2000, supra). In order to achieve sufficient activation blockade of the Rho-GTPases, over 90% of the intracellular Rho AC proteins have to be ADP-ribosylated and thus inactivated. However, the C3 transferase has a very poor membrane permeability and is therefore only absorbed by the cells in very small amounts (approx.
  • the C2 toxin consists of two proteins, the C2I component, which is enzymatically active, and the C2II component, which mediates binding to the plasma membrane and subsequent translocation.
  • the enzymatic activity of the C2I protein is located in the C-terminal region, while the binding to C2II takes place via the N-terminal region.
  • a chimeric fusion protein was produced from C3 transferase (from Clostridium limosum) and from the N-terminal C2I protein (FIG. 1).
  • This C3-C2IN fusion protein now reaches the interior of the cells with the help of the binding protein C2II (Barth H, Hofmann C, Olenik C, Just I, Aktories K, 1998, Infect. Immun. 66: 1364-1369).
  • the complex of C3-C2IN and C2II is internalized via receptor-mediated endocytosis and reaches intracellular vesicles.
  • the fusion protein C3-C2IN reaches the cytosol from these vesicles, where it can develop its effects and RhO AC ADP-ribosylate and thereby inactivate.
  • This binary protein complex of C3-C2IN and C2II combines the active properties of C3-Transferase with a membrane permeability that is improved by a factor of 100-1000 and thus guarantees a much better intracellular availability. This is also the reason why only small amounts of C3-C2IN are necessary to achieve a 90 percent inhibition of Rho AC.
  • the efficacy has so far only been shown in / "vt ' tro experiments (Wahl S, Barth H, Ciossek T, Aktories K, Mueller BK, 2000, J. Cell. Biol. 149: 263-270).
  • the object of the present invention was therefore to restore the function of nerve fibers after injury or as a result of illnesses in vivo and thus to regain their functions. In this way, partial or total regeneration should be achieved in the event of diseases or injuries to the peripheral and central nervous system.
  • the object of the present invention is therefore the use of a composition containing a fusion protein and at least one transporter for i-v / vo stimulation of nerve growth, for / «- v vo inhibition of scar tissue formation, for / n-vz ' vo reduction of a Secondary damage and / or accumulation of macrophages, wherein the fusion protein has at least one binding domain for the transporter and at least one modulation domain for the covalent modification of small GTP-binding Contains proteins, and the transporter mediates the uptake of the fusion protein into a target cell.
  • composition according to the invention surprisingly not only the effects of myelin-associated inhibitors such as NOGO, MAG and CSPG, but also the effects of potent other inhibitors such.
  • myelin-associated inhibitors such as NOGO, MAG and CSPG
  • potent other inhibitors such as potent other inhibitors.
  • Rho activators such as B. Myelin inhibitors, RGM or Ephrin-A5, which attack the outside of the nerve fiber, inhibit the locomotion of the nerve fibers by triggering a drastic retraction of the nerve fibers.
  • Rho A-C prevents this, but does not lead to further growth of the nerve fibers alone, because this requires the activation of Cdc42 and Rac.
  • the combination of inhibition of Rho A-C and activation of Cdc42 and Rac is particularly efficient for stimulating nerve fiber growth.
  • Macrophages remove regeneration-inhibiting cell residues and inhibitory myelin components from the injury area and secrete cytokines that modulate the activity of astro- and oligodendrocytes and thereby promote the regeneration of nerve fibers.
  • macrophages that appear early in the injury area induce remyelination of demyelinated nerve fibers (Kotter MR, Setzu A, Sim FJ, van Rooijen N, Franklin RJM, 2001, Glia, 35: 204-212).
  • a "vz o-stimulation of nerve growth in the sense of the present invention means accelerated and / or increased nerve growth, this being based on the extent and / or the speed of the
  • the nerve fiber preferably grows at least by approx. factor 2, preferably by approx. factor 3, most preferably by approx. factor 4, faster and / or further.
  • the number of growing fibers is increased by at least a factor of 2, preferably by a factor of 3, most preferably by a factor of 4.
  • An R ⁇ -v / vo inhibition of scar tissue formation in the sense of the present invention means an approximately 50 percent, preferably approximately 75 percent, most preferably approximately 90 percent reduction in scar tissue and / or lacunae or cavity formation. It follows from this that the inhibition can be a complete or partial inhibition. Suitable tests for quantifying the parameters are described in Example 2.
  • secondary damage means damage that occurs as a further consequence of the initial injury (primary damage).
  • secondary damage in the sense of the present invention means the enlargement of an initial lesion site (primary damage) caused by pathophysiological mechanisms. Examples include ischemic necrosis, apoptosis of nerve fibers and other cells, and inflammatory reactions.
  • a T -v / vo reduction of secondary damage in the sense of the present invention means an approximately 50 percent, preferably an approximately 75 percent, most preferably an approximately 90 percent reduction of a secondary damage.
  • An accumulation of macrophages is understood to mean the increase in the number of macrophages, in particular at the site of action and / or administration. The number of macrophages is increased by at least a factor of 2, preferably by a factor of 3, most preferably by a factor of 4.
  • the site of action is understood to mean the place where the composition according to the invention has its effect on the neurons, the nerve tissue and / or neighboring cells or tissues.
  • the place of administration in the sense of the present invention is understood to mean the place at which the composition according to the invention is released in the body.
  • a fusion protein is the expression product of a fused gene.
  • a fused gene is created by linking two or more genes or gene fragments, creating a new combination.
  • the fusion protein contains a modulation domain and a binding domain.
  • a GTP -binding protein is a protein that binds GTP (guanosine triphosphate) and hydrolyzes to GDP (guanosine diphosphate) as a result of a cellular signal cascade.
  • GTP guanosine triphosphate
  • GDP guanosine diphosphate
  • the heterotrimeric GTP-binding proteins consist of an ⁇ , a ⁇ and a ⁇ subunit, whereas the monomeric GTP-binding proteins consist of only one subunit.
  • the group of small GTP-binding proteins includes, for example, the members of the Ras, Rho, Rab, Arf, Sar and Ran family.
  • the Rho GTPases of mammals can be divided into six different classes: Rho (RhoA, Rl oB, RhoC), Rac (Rac 1, Rac 2, Rac 3, Rho G), Cdc42 (Cdc42Hs, G25K, TC10), Rnd ( RhoE / Rnd3, Rndl / Rho6, Rnd2 / Rho7), Rho D and TTF.
  • a GTP-binding protein has a guanine nucleotide binding site to which both GTP or GDP can be bound.
  • the protein is active in the GTP-bound form and inactive in the GDP-bound form.
  • the exchange of GDP and GTP and thus the activation of the GTP-binding molecule is mediated by the activator upstream of the GTP-binding protein in the signal cascade.
  • Activation of the effector i.e. the molecule downstream of the GTP-binding protein in the signal transduction, causes the GTP to be split into GDP and inorganic phosphate. This inactivates the GTP-binding protein.
  • GTPase-activating proteins support GTP hydrolysis
  • GEF guanine nucleotide exchange factors
  • GDI GDP dissociation inhibitors
  • the activity of the small GTP-binding protein is changed.
  • a change in the activity of small GTP-binding proteins in the sense of the present invention means an increase or decrease in the activity.
  • the degradation can lead to partial or total inhibition or inactivation.
  • the activity of the small GTP-binding protein is increased or decreased by at least a factor of 2, preferably by about a factor of 3 or by about a factor of 4, most preferably by about a factor of 10.
  • Relevant methods are known to the person skilled in the art with which the activity of small GTP-binding proteins can be determined.
  • the hydrolysis activity of the small GTP-binding protein with GTP as the substrate which is labeled on the ⁇ -phosphate group (e.g. radioactive)
  • could be determined in an enzyme test Read PW and Nakamoto PIK, 2000, Methods in Enzymology 325: 15; Seif AJ and Hall A, 1995, Methods in Enzymology 256: 67).
  • the modulation domain can change the activity, for example, by interacting with GAP, GDI GEF or the small GTP-binding protein.
  • u. a the rate of hydrolysis from GTP to GDP, the dissociation of GDP or the binding of GTP can be affected. This could be done, for example, by covalent or non-covalent modification of one of the proteins involved by the modulation domain.
  • the small GTP-binding molecule preferably Rho AC
  • the change in the activity of the small GTP-binding proteins is achieved by non-covalent modification.
  • a molecule could be attached to the small GTP-binding protein, which e.g. stabilizes an active or inactive form by changing the conformation of the protein.
  • a molecule could also be embedded in the binding pocket of the small GTP-binding protein, so that the GTP can no longer be bound, and the activity of the small GTP-binding protein is reduced.
  • the activity of RhoGTPases can be inhibited by Rho-inhibiting toxins such as e.g.
  • ExoS Pseudomonas aeraginosa exoenzyme S
  • SptP Salmonella typhimurium protein tyrosine Phosphatase
  • YopE Yersinia pseudotuberculosis outer protein E
  • Rho-activating toxins such as e.g. SopE (Salmonella typhimurium outer protein E) can be changed (Lerm M, Schmidt G, Aktories K, 2000, FEMS Microbiology Letters 188: 1-6; Aktories K, Schmidt G, Just I, 2000, Biol Chem 381: 421-426) ,
  • the modification is not effected by the modulation domain itself, but rather by a signal molecule connected upstream or downstream of the small GTP-binding protein in the signal cascade.
  • the modulation domain would then activate such a signaling molecule, which in turn would phosphorylate the small GTP-binding protein (indirect modulation).
  • protein kinase A PKA
  • Rho-GDI Rho-GDI
  • the GTP-binding proteins Rho A, B or C are modified covalently. ADP ribosylation of the asparagine residue at position 41 is particularly preferred. This is associated with inactivation of the small GTP-binding protein.
  • the threonine residue at position 35 or 37 of a small GTP-binding protein of the Rho family is glycosylated. This also leads to the inactivation of the small GTP-binding protein.
  • the small GTP-binding proteins Cdc42 and / or Rac are preferably activated. (This could be done, for example, by crosstalking the two signal transduction pathways.
  • Crosstalk is understood by the person skilled in the art to mean the mutual influencing of different signal transduction pathways within a cell.
  • inactivating the signal pathway which contains the GTP-binding proteins Rho A, B or C could be one Activate the signaling pathway with the participation of Cdc42 and / or Rac (see also Mueller BK, 1999, Annu Rev Neurosci 22: 351-388; Wahl S, Barth H, Ciossek T, Aktories K, Mueller BK, 2000, J. Cell Biol. 149: 263-270; Sander EE, Ten Klooster JP, Van Delft S, Van der Kämmen RA, Collard JG, 1999, J Cell Biol 147: 1009-1022).
  • the modulation domain is preferably derived from a toxin.
  • This can be, for. B. act as a bacterial toxin.
  • Bacterial toxins could come from a bacterium of the genus Clostridium, Staphylococcus, Bacillus, Pseudomonas, Salmonella or Yersinia.
  • it is the C3 transferase from Clostridium botulinum or a related transferase.
  • a related transferase is an enzyme that, like C3 transferase, effects the ADP ribosylation of GTP-binding proteins of the Rho family.
  • Another part of the fusion protein is the binding domain. It binds to the transporter.
  • the binding domain is bound to the transporter z. B. by covalent bonding, by electrostatic interactions, Van-der-Waals interactions or hydrogen bridge bonding.
  • the binding domain is derived from a binary bacterial toxin, in particular the C2 toxin from Clostridium botulinum.
  • a binary toxin is a toxin that consists of two separate proteins.
  • the proteins are an enzyme component and a cell binding / translocation component.
  • binary toxins are the anthrax toxin or the toxin from Clostridium perfringens iota.
  • the Clostridium perfringens iota toxin is a member of the binary actin ADP-ribosylating toxin family.
  • the binding domain is particularly preferably derived from the C2 toxin from Clostridium botulinum. In the most preferred embodiment, the binding domain is the N-terminal C2I domain of the C2 toxin from Clostridium botulinum.
  • the transporter mediates the uptake of the fusion protein into the cell.
  • the transporter can be, for example, a peptide or protein.
  • An example of such a protein or peptide is the Antennapedia peptide, a 16 amino acid-long peptide of the homoeobox gene Antennapedia, which is used to introduce exogenous, hydrophilic components into the interior of living cells (Prochiantz A, 1999, Ann NY Acad Sei 886 : 172-179; Prochiantz A, 1996, Curr Opin Neurobiol 6: 629-634)
  • the transporter could also be a viral protein or a ligand for a cell surface structure or be derived therefrom.
  • a viral transport protein is VP22, a 38 kDA structural protein of Herpes Simplex Virus-1. This protein translocates (permeates) the plasma membranes of mammalian cells and can be used as a transporter to transfer other proteins into the interior of the cells (O'Hare P and Elliot G, 1997, Cell 88: 223-233; Phelan A; Elliott G; O'Hare P, 1998, Nat Biotechnol 16: 440-443).
  • ligands of surface structures are the plant toxin ricin and the bacterial shiga toxin (Sandvig K and van Deurs B, 2000, EMBO J 19: 5943-5950).
  • liposomes could also perform the transporter function.
  • proteins can be introduced into cells in addition to nucleic acids (Rao M and Alving CR, 2000, Adv Drug Delv Res 30: 171-188).
  • the uptake into the cell can take place, for example, by fusion through the cell membrane, by passage through cell pores, by facilitated diffusion, active transport by means of a carrier in the cell membrane or by pinocytosis and phagocytosis.
  • the absorption of the fusion protein is effected via the binding of the transporter to a structure on the cell surface. This structure could e.g. B. a receptor, a channel or another membrane protein.
  • the structure on the surface causes the absorption of the composition or a part thereof into the cell.
  • the uptake of the fusion protein could e.g. B. by endocytosis of a receptor-protein complex.
  • the protein complex could be released in the cell and subsequently change the activity of the small GTP-binding protein.
  • Ligands are molecules that bind specifically to certain receptors. These ligands could, for example, be endogenous molecules such as hormones, neurotransmitters such as e.g. Acetylcholine or foreign molecules like artificially produced ligands.
  • the ligands can be of peptide, protein or non-protein origin.
  • the transporter could target the variable region of an antibody e.g. B. represent a monoclonal antibody or be connected to this. This region could cause specific binding to cell surface structures.
  • the uptake into the cell could also be effected by liposome transporters (Rao M and Alving CR, 2000, Adv Drug Delv Res 30: 171-188).
  • the fusion protein would be e.g. B. enclosed in liposomes.
  • the binding domain would be designed so that the fusion protein would be particularly suitable for inclusion in a liposome.
  • the liposome would fuse with the cell membrane, causing the fusion protein to enter the cell.
  • Suitable lipids are known to the person skilled in the art and can be used to form protein-liposome complexes.
  • a viral transporter Another possibility would be the uptake of the fusion protein by a viral transporter.
  • An example of a viral transport protein is - as already mentioned - VP22 (O'Hare P and Elliot G, 1997, Cell 88: 223-233; Phelan A; Elliott G; O'Hare P, 1998, Nat Biotechnol 16: 440- 443).
  • the transporter is derived from a binary bacterial toxin.
  • binary toxins are the anthrax toxin or the toxin from Clostridium perfringens iota.
  • the Clostridium perfringens iota toxin is a member of the binary actin-ADP-ribosylating toxin family.
  • the transporter is particularly preferably derived from the C2 toxin from Clostridium botulinum.
  • the transporter protein is the C2II domain of the C2 toxin from Clostridium botulinum.
  • the preparation of the medicament containing the composition containing at least one fusion protein and at least one transporter is carried out in the usual way using common pharmaceutical-technological processes.
  • the active ingredients as such or in the form of their salts, are processed together with suitable, pharmaceutically acceptable auxiliaries and additives to give the pharmaceutical forms suitable for the indication and the application site.
  • auxiliaries and additives which serve, for example, to stabilize or preserve the medicament or diagnostic agent, are generally known to the person skilled in the art (see, for example, Sucker H et al. (1991) Pharmaceutical
  • Auxiliaries and / or additives are antimicrobial compounds, proteinase inhibitors, aqua sterilisata, substances that influence the pH, such as organic and inorganic acids and bases, and their salts, buffer substances for adjusting the pH, isotonizing agents, such as sodium chloride, Sodium bicarbonate, glucose and fructose, surfactants or surface-active substances and emulsifiers, such as partial fatty acid esters of polyoxyethylene sorbitan (Tween®) or, for example, fatty acid esters of polyoxyethylene (Cremophor®), fatty oils, such as peanut oil, soybean oil and castor oil, synthetic fatty acid esters, such as Ethyl oleate, isopropyl myristate and neutral oil (Miglyol®), as well as polymeric auxiliaries such as gelatin, dextran, polyvinylpyrrolidone, from the solubility-incre
  • the medicament could be in parenteral use form, in particular in intrathecal, intramedullary, intraartial, intravenous, intramuscular or subcutaneous form, in particular at the injury site, in intradermal form, for example as a plaster, in enteral use form, in particular for oral or rectal use, or in topical use form , especially as a dermatical, can be used.
  • an acute injury or illness of the brain and / or the spinal cord is understood to mean a suddenly occurring or onset injury or illness. Examples of this are traumatic brain injuries as a result of external violence; Infections caused by bacteria, viruses, fungi, parasites; Strokes (cerebral circulatory disorder and intrecerebral or subarachnoid bleeding); intoxication; traumatic spinal cord lesions.
  • a chronic injury and / or disease of the brain or spinal cord is understood to mean a slowly developing, creeping disease, usually of a long duration. Examples of chronic diseases of the brain and spinal cord are Alzheimer's disease, Parkinson's disease, multiple sclerosis, tumors and similar diseases.
  • Inflammatory diseases of the nervous system which are accompanied by demarking damage, are, for example, multiple sclerosis or leukodystrophies.
  • Remyelination is the partial or complete reconstruction of the myelin layer after demyelination.
  • Demyelination is the damage and / or loss of myelin in the central or peripheral nervous system and arises as a result of various diseases of the nervous system or after general damage to neurons or the oligodendrocytes by, for example, inflammatory, immunopathological or toxic processes. Examples include multiple sclerosis, leukodystrophies or viral diseases such as canine distemper.
  • Neurological and neurodegenerative diseases of the peripheral and central nervous system include, for example, Alzheimer's disease, Parkinson's disease, multiple sclerosis and similar diseases, which are associated with nerve fiber loss and demyelination (demyelination), as well as amyotrophic lateral sclerosis and other motor neuron diseases, ischemia, stroke, epilepsy, disease Huntington, AIDS dementia complex and prion disorders understood.
  • Figure 1 Schematic representation of the particularly preferred system containing a fusion and a transporter protein
  • the fusion protein consists of the modulation domain derived from C. limosum C3 transferase and the binding domain derived from the N-terminal end of the C2 botulinum C2 toxin subunit.
  • the C2II subunit of the C2 toxin from C. botulinum represents the transporter.
  • D fusion protein C3-C2IN consisting of binding domain (C2IN) and modulation domain (C3)
  • the restoration of the motor functions of differently treated animals was determined depending on the recovery period.
  • the rats (circle; •) treated with C3-C2IN in the presence of C2II showed a significantly higher motor recovery compared to the control animals (triangle; A) and animals that were only treated with C2II (square; ⁇ ).
  • the C3-C21N-treated animals reached a value of 11.50 ( ⁇ 1.15) on the BBB scale in contrast to the control animals and the C2II-treated animals, with which values of 4.00 ( ⁇ 0 , 90) and 2.71 ( ⁇ 1.09) were achieved.
  • Figure 3 Intraspinal accumulation of activated macrophages after C3-C2IN / C2II administration
  • the number of ED-1 positive macrophages in response to the intramedullary injection of 10 ⁇ g C3-C2IN / 10 ⁇ g C2II was determined after 1, 3 and 7 days and after 4 weeks.
  • the number of ED-1 positive macrophages in animals without substance administration and in animals with PBS administration was determined on days 1 and 3.
  • Figure 4 Histology for intraspinal accumulation of activated macrophages after C3-C2IN / C2II administration
  • the individual pictures show:
  • Figure 5 Diagram for reduced intraspinal accumulation of vimentin + reactive astrocytes and fibroblastoid cells after C3-C2IN / C2II administration Activated astrocytes and fibroblastoid cells were immunohistochemically labeled with nimentin antibodies and counted. The number of nimentin reactive astrocytes and fibroblastoid cells 3 days after C3-C2I ⁇ / C2II administration (C) is greatly reduced compared to the sole administration of PBS (B). (A) shows the number of vimentin + reactive astrocytes and fibroblastoid cells in untreated control animals.
  • the individual figures show the number of vimentin + reactive astrocytes and fibroblastoid cells: A untreated control animals B animals treated with PBS C animals treated with C3-C2IN / C2II
  • Figure 6 Growth assay of retinal ganglion cell axons on chondroitin sulfate proteoglycan (CSPG)
  • C3-C2IN / C2II The neutralization of inhibitory scar components by C3-C2IN / C2II was shown in the wax-out assay for CSPG.
  • miniature retina embryos from embryonic chickens (E7) were plated on cover slips coated with 20 ⁇ g / ml CSPG.
  • CSPG inhibits the outgrowth of retinal ganglion cell axons (A).
  • 1ml C3-C2IN / C2II 300ng / ml leads to the neutralization of the inhibitory effect of CSPG and the outgrowth of retinal axons (B).
  • the individual figures show the growth of retinal ganglion cell axons: A incubation with CSPG B incubation with CSPG and C3-C21N / C2II
  • mice 8-12 week old male Lewis rats (220-280 g, Charles River, Sulfeld, GER) were randomly divided into two groups and at least half of the spinal cord was severed. After 21 days, one group was perfused with 10 ⁇ g C3-C2IN and a second group only with 10 ⁇ g C2II. The control animals received either 10 ul C2 alone (without C3 component) or a transection without injection. All animals were kept under controlled light and temperature conditions and provided with food and water for free disposal. The rats were kept according to the "International Health Guidelines" and a protocol checked by the University of Tübingen.
  • the dorsal spinal cord was cut with fine iridectomy scissors to perform a 2/3 overhemisection.
  • the severed neural structures were both motor (crossed part of the pyramidal tract, parts of the extrapyramidal tract) and sensory (dorsal spinal cord) origin.
  • the wound was rinsed with sterile saline and closed. All animals were warmed under infrared light until they regained consciousness.
  • Postoperative treatment and tissue preparation All rats received postoperative pain therapy by a single intraperitoneal injection of Rimadyl 2 mg / kg (Carproven, Pfizer, GER) and underwent manual voiding (3 times a day) until spontaneous bladder function was restored (usually within 10-14 days). Before the spontaneous bladder function reappeared, the rats were bathed 2-3 times a day to prevent urine-related wounds. The animals were weighed regularly and killed 20% or more if they lost weight. For immunohistological studies, rats were sacrificed and perfused intracardially with a fixative (4% formalin in 0.1 mol / 1 phosphate buffer, pH 7.5) containing 20,000 IU / 1 heparin. Spinal cord and brain were removed and fixed at 4 ° C overnight. The fixed tissue was embedded in paraffin, serial sections were made and these were transferred to silane-coated slides.
  • a fixative 4% formalin in 0.1 mol / 1 phosphate buffer, pH 7.5
  • Immunohistochemistry After fixation with formalin and embedding in paraffin, rehydrated 2 ⁇ m pieces were boiled 7 times for 5 minutes in citrate buffer (2.1 g / 1 sodium citrate, pH 6) and incubated with 10% normal pig semen (Biochrom, Berlin, GER), to suppress non-specific binding of immunoglobulins. Antibodies against cell-specific antigens were used to identify certain cell types.
  • GFAP Glial Fibrillary Acidic Protein, Boehringer Mannheim, GER, 1: 100
  • MBP Myelin Basic Protein, Dako, Glostrup, DEN, 1: 200
  • neurofilament Dako, Glostrup, DEN, 1 : 200
  • Microglia or macrophages were taken with monoclonal antibodies against EDI (Serotec, Oxford, GB, 1: 100), OX-42 (Serotex, Oxford, BG, 1: 100) or ED2 (Serotec, Oxford, BG, 1: 200) Labeled use of the ABC method (avidin-biotin complex) in combination with alkaline phosphatase conjugates.
  • monoclonal antibodies against OX-22 (Serotec, Oxford, GB, 1: 100) were used to identify B lymphocytes and W3 / 13 (Serotec, Oxford, GB, 1: 100) to identify T lymphocytes.
  • OX-6 (Serotec, Oxford, GB, 1: 100) was used to identify MHC-II molecules to characterize functional immune competence.
  • the antibodies were raised in the above solutions with 1% TRIS buffered bovine serum albumin (BSA / TBS) placed on the slides. The binding was visualized by adding a biotin-coupled second antibody (1: 400; 30 min.) And an alkaline phosphatase-conjugated ABC complex (1: 400 in BSA / TBS; 30 min.).
  • Histological staining on myelin and nuclei The serial tissue sections that were used for hnmunhistochemistry were stained on myelin with Luxol Fast-Blue. Starting from the center of the lesion, the areas of the tissue that were obviously damaged or lacked myelin were identified at various intervals (0.6; 1.2; 1.8; 2.4; 3.0 cm). The nuclei were stained with cresyl violet (0.1%) to distinguish intact and damaged areas of the gray matter. The sections showed that the rats treated with C3-C2IN in the presence of C2II had less secondary damage. The lacunae formation and cave formation was significantly reduced in the animals treated in this way compared to the control animals. At the same time, more cells, fewer recesses and an increased neuronal sprouting could be detected.
  • Stereotactic microinjection In order to be able to inject exactly defined amounts (10 x 1 ⁇ l, 10 ⁇ g) of C3-C2IN toxin into the rostal stump of the severed spinal cord, microcapillaries and a stereotactic device were used. In order to further stabilize the spinal cord, a device to raise the rat was built, which blocked the expansion of the breathing movement to the spine.
  • Anterograde labeling 30 ⁇ l (30 ⁇ g, 15 ⁇ l per side of biotinylated biodextran (BDA, 10,000 kDa) were injected into the motor cortex areas using a Hamilton syringe. After the injection, the wound was washed and closed. This method is used to display regenerated ones axonal fibers of the corticospinal tract (CST). The biotinylated biodextran is transported from the motor cortex areas to the spinal cord. All fibers that are below the lesion site biotinylated biodextran
  • the rats treated with C3-C2IN in the presence of C2II showed significantly increased nerve fiber growth compared to the control animals. Both the number of fibers and the length of the newly grown fibers were significantly increased.
  • the newly grown fibers were GAP43 (detection by means of polyclonal antibodies) with which they were identified as neuronal, sprouting fibers.
  • rats that received C3-C2IN showed a significant (p ⁇ 0 3 0001) improvement in sensory and motor function compared to rats that received only active or inactive C2 transporter protein or rats that belonged to the control group ,
  • the improvement in sensory and motor function started after the third day and reached a maximum of 21 days after the injury event.
  • the biological and functional activity of the C3-C2IN constructs was checked in E2-v / tr ⁇ experiments to collapse the growth cone.
  • Studies on motor function such as toe spread, alignment, straightening, inclined plane and on sensory function such as the reflexes of the hind limbs in response to pull, pain (manual and heat) and pressure as well as swimming tests were carried out carried out.
  • a third experiment was carried out as a double-blind arrangement and gave identical results.
  • Example 2 a laminectomy was performed at the level of the fhoracic segment TH8 in rats, but without subsequently severing the spinal cord. Through the dura was into the
  • the animals were perfused as described in Example 2, the brain and spinal cord were removed, fixed and the tissues were embedded in paraffin and cut.
  • Vimentin reactive astrocytes and fibroblastoid cells were immunohistochemically labeled with vimentin antibodies (Dako, Glostrup, DEN, 1:15).
  • the eyes of embryonic chickens were removed, the retina isolated, spread out flat on a tissue chopper plate and made with a tissue chopper 150 ⁇ m x 150 ⁇ m in size.
  • the explants were in culture medium (F12, PAA, AT; 10% fetal calf serum gold, PAA, AT; 2% chicken serum, Invitrogen, DE; penicillin / streptomycin, 1: 100, PAA, AT; glutamine, 1: 100, PAA, AT) and transferred 20-30 pieces with a pipette to the coated coverslips. These were used for 24 hours at 37 ° C and 4% CO 2 in 24 Cultivated corrugated sheets. 300ng C3C2I / C2II was added at the time of explanting.
  • the mini explants were then fixed with 4% PFA (Merck, DE; overnight at 4 ° C) and the cytoskeleton was stained with phalloidin-Allexa stain (Allexa 488, Molecular Probes, NL, according to instructions).
  • CSPG inhibits axon outgrowth from mini retinal explants. By adding C3C2I / C2II this inhibitory effect is neutralized and axons grow out.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Die vorliegende Erfindung betrifft die Verwendung einer Zusammensetzung enthaltend ein Fusionsprotein und mindestens einen Transporter zur In-vivo-Inhibition der Narbengewebsbildung, zur In-vivo-Reduktion eines Sekundärschadens und/oder zur In-vivo-Akkumulation von Makrophagen, Wobei das Fusionsprotein mindestens eine Bindungsdomäne für den Transporter und mindestens eine Moldulationsdomäne zur kovalenten Modifikation von kleinen GTP-bindenden Proteinen enthält, und der Transporter die Aufnahme des Fusionsproteins in eine Zielzelle vermittelt.

Description

Verwendung einer Zusammensetzung zur Stimulation des Nervenwachs- tums, zur Inhibition der Narbengewebsbildung, zur Reduktion eines Sekundärschadens und/oder zur Akkumulation von Makrophagen
Die vorliegende Erfindung betrifft die Verwendung einer Zusammensetzung enthaltend ein Fusionsprotein und mindestens einen Transporter zur In-vivo- Stimulation des Nervenwachstums, zur /«-v/vσ-Inhibition der Narbengewebsbildung, zur /«-vz'vo-Reduktion eines Sekundärschadens und/oder zur In- v vo-Akkumulation von Makrophagen, wobei das Fusionsprotein mindestens eine Bindungsdomäne für den Transporter und mindestens eine Modulationsdomäne zur kovalenten Modifikation von kleinen GTP-bindenden Proteinen enthält, und der Transporter die Aufnahme des Fusionsproteins in eine Zielzelle vermittelt.
Rückenmark und Gehirn bilden bei den Wirbeltiere das zentrale Nervensystem (ZNS). Das Rückmark verläuft in Körperlängsrichtung und wird von dem Wirbelkanal umgeben. Es lässt sich beim Menschen in acht Hals-, zwölf Brust-, fünf Lenden-, fünf Kreuzbein- und ein bis zwei Steißbeinsegmente gliedern. Die zentrale graue Substanz mit ihren seitlichen Ausladungen (Vorder- und Hinterhorn) wird von den Zellkörpern der Nervenzellen und die periphere weiße Substanz durch die markhaltige Nervenfaserbündel gebildet. In der weißen Substanz verlaufen afferente (aufsteigende, sensible) und efferente (absteigende, effektorische) Leitungsbahnen. Die absteigenden Bahnen des Rückenmark werden in die Pyramidenbahnen (willkürliche Bewegungen) und extrapyramidale Bahnen (unwillkürliche Bewegungen; Verteilung des Muskeltonus) unterschieden. Der größte Teil der pyramidalen Fasern verläuft gekreuzt in der Pyramidenseiten- strangbahn der Gegenseite und zum kleineren Teil ungekreuzt in der Pyramiden- vorderstrangbahn zu Vorderhorn- und Hinterhornzellen der verschiedenen Rückenmarkssegmente.
Rückenmark und Gehirn werden von zwei Zellklassen gebildet. Nervenzellen und Gliazellen. Die Gliazellen werden in Oligodendrozyten und Astrozyten untergliedert. Oligodendrozyten bilden die Myelinscheiden der Nervenaxone, Astrozyten versorgen die Nervenzellen mit Nährstoffen, nehmen ausgeschüttete Neurotransmitter auf und bilden die Blut-Hirn-Schranke. Myelin ist die fetthaltige Isolationshülle, die Nerven spiralförmig umgibt. Diese Umhüllung ist für die störungsfreie Weiterleitung der elektrischen Impulse am Nerv entlang verantwortlich.
Bei zahlreichen Krankheiten, wie beispielsweise Multiple Sklerose, Encephalitis periaxialis, diffuse Sklerose, Encephalomyelitis acuta disseminata, Neuromyelitis optica, SMON (subakute myelooptische Neuropathie), angeborene Entmarkungskrankheiten, wie Leukodystrophien und bei generell immunmediierten entzündlichen Erkrankungen des Nervensystems, wie Neuro- Behcet und Kawasaki-Syndrom, können die Myelinscheiden angegriffen und zerstört werden. In der Folge kommt es dann zu einer elektrischen Leitungsblockade und neurologischen Symptomen mit dem Verlust vieler wichtiger Funktionen.Eine Verletzung des Rückenmarks z.B. infolge eines Unfalls führt zu einer dauerhaften Unterbrechung der Leitungsfunktion der betroffenen Nervenfasern. Eine Lähmung in Folge eines völligen Ausfalls von mindestens einem Segment bezeichnet man als Querschnittslähmung. Die Folge ist der Verlust der sensiblen (z. B. Temperatur-, Schmerz- oder Druckempfindungen), motorischen (willkürliche und unwillkürliche Bewegung) und vegetativen Funktionen (z.B. Blasen- und Darmfunktion) für alle Gebiete unterhalb des betroffenen Segments. Aufgrund der schlechten regenerativen Fähigkeiten der Nervenfasern bleibt die Lähmung der Willkürmotorik und der vollständige Sensibilitätsverlust dauerhaft bestehen. Traumatische Läsionen im ZNS führen zum Absterben von Zellen direkt am Verletzungsort. Hierbei entstehen große Mengen an regenerationshemmenden Zellresten und inhibitorischen Myelinbestandteilen. Bei Verletzungen im peripheren Nervensystem werden diese schnell durch Makrophagen entfernt. Diese Entzündungsreaktion ist im ZNS verzögert und fällt geringer aus. Daraus resultiert, dass die inhibitorischen Myelinreste lange am Verletzungsort verbleiben. Werden, durch Kontakt mit peripheren Nerven aktivierte, Makrophagen in die Verletzungsstelle im ZNS eingebracht, entfernen diese die Myelinreste und induzieren dadurch die Regeneration der Nervenaxone (Lazarov- Spiegier O, Solomon AS, Schwartz M, 1998, Glia, 24: 329-337).
Die primäre, mechanisch verursachte Läsion (Primärschaden) wird durch sekundäre Phänomene (Sekundärschaden) vergrößert und die Narbenbildung beginnt. Zunächst kommt es zu einer räumlich ausgedehnten Reaktion der Astrozyten. Diese ist an der Hochregulierung von GFAP (glial fibrillary acidic protein) erkennbar. Astrozyten nahe der Verletzungsstelle regulieren die Vimentin und Nestin Produktion hoch und Zellteilung wird beobachtbar. An der Grenze zwischen eingewanderten meningealen Zellen und überlebenden Astrozyten wird eine neue Glia limitans gebildet. Daraufhin werden Astrozyten in diesem Gebiet hypertroph (vergrößern sich), bilden viele feine Fortsätze und einige teilen sich.
Die fertige Narbe besteht hauptsächlich aus hyperfilamentösen Astrozyten, deren Fortsätze über viele gap und tight junctions miteinander verwoben sind und so enggepackt sind, dass nur noch wenig Extrazellulärraum frei bleibt. Damit stellt die Narbe ein mechanisches, kaum zu überwindendes Hindernis für regenerierende Axone dar. Darüber hinaus enthält die Narbe aber auch noch eine Vielzahl an regenerationshemmenden Substanzen. Hierbei handelt es sich hauptsächlich um Chondroitinsulfat-Proteoglykane (CSPG, z.B.: Aggrecan, Versican, Neurocan, Brevican, Phosphacan, NG2) und um Tenascin (Fawcett JW and Asher RA, 1999, Brain Research Bulletin, 49: 377-391). Es sind aber auch neurologische und neurodegenerative Erkrankungen des peripheren und zentralen Nervensystems bekannt, bei denen Nervenzellen zugrunde gehen. Dies sind z.B. Morbus Alzheimer, Morbus Parkinson, Multiple Sklerose und ähnliche Erkrankungen, die mit einem Nervenfaserverlust und Entmarkung einhergehen, sowie Amyotrophe Lateral Sklerose und andere Motoneuonenerkrankungen, Ischämie, Schlaganfall, Epilepsie, Morbus Huntington, AIDS Demenz Komplex und Prionen-Erkrankungen.
Ziel der Forschung ist es daher, bei Läsionen des Rückenmarks eine Regeneration der Nervenaxone über die Verletzung hinweg zu bewerkstelligen und bei anderen Krankheiten des peripheren und zentralen Nervensystems, das Nervenwachstum zu stimulieren. Die Narbenbildung im zentralen Nervensystem der Säugetiere stellt ein enormes Regenerationshemmnis für wachsende Nervenfasern dar. Aus diesem Grund sind die Verlangsamung oder Verhinderung der Narbenbildung sowie die Stimulation des Nervenfaserwachstums wesentliche therapeutische Ziele bei neuroregenerativen Behandlungskonzepten.
Einen Ansatzpunkt bietet die Einflußnahme auf Signaltransduktionswege in Nervenzellen. Es ist bekannt, daß die Aktivierung kleiner GTP-bindender Proteine aus der Familie der Rho-GTPasen (Rho A, B, C) zu einer starken Wachstumshemmung von Nervenfasern unter Zellkulturbedingungen führt (Mueller BK, 1999, Annu. Rev. Neurosci. 22: 351-388). Experimentelle Belege sprechen dafür, daß die spezifische Aktivierung von Rho A, B und/oder C im Inneren der Nervenfasern durch potente, außen an der Membran angreifende regenerationshemmende Proteine des adulten Säuger-Gehirns (NOGO, MAG, RGM, Ephrin-A5) einen wesentlichen Mechanismus der Inhibition des Nervenfaserwachstums darstellt (Jin Z und Strittmatter SM, 1997, J. Neurosci. 17: 6256-6263; Lehmann M, Fournier A, Selles-Navarro I, Dergham P, Sebok A, Leclerc N, Tigyi G, McKerracher L, 1999, J. Neurosci. 19: 7537-7547; Wahl S, Barth H, Ciossek T, Aktories K, Mueller BK, 2000, J. Cell. Biol. 149: 263-270). Die Aktivierung von Rho A-C führt bei neu aussprossenden Nervenfasern zum Kollaps des Wachstumskegels, der distalen Spitze des Neuriten, und verhindert dadurch die Ausbildung neuer Nervenbahnen.
Bei reifen Oligodendrozyten führt die Bindung von NGF (nerve growt factor) an den p75-Rezeptor zur Apoptose (Casaccia-Bonnefil P, Carter BD, Dobrowsky RT, Chao MV, 1996, Nature, 383: 716-719). Bei neuronalen Zellen ist die intrazelluläre Domäne von p75 direkt an Rho A-C gebunden. Bindung von Neurotrophinen an den p75-Rezeptor verringert die Aktivität von Rho A und führt dadurch zur Neuritenelongation. Wird die Aktivität von Rho A durch eine Mutation (Val14-Rho A) permanent erhöht, führt die Zugabe von NGF nicht zum Neuritenwachstum. (Yamashita T, Tucker KL, Barde Y-A, 1999, Neuron, 24: 585-593). Die direkte Einflußnahme auf Rho A unterbindet die Signaltransduktionskaskade von NGF-p75 und sollte dadurch auch die apoptotische Wirkung der Bindung von NGF an p75 bei Oligodendrocyten hemmen.
Aus dem Stand der Technik ist das bakterielle Exoenzym C3-Transferase als spezifischer Inhibitor von Rho A, B und C bekannt (Aktories K, Schmidt G, Just I, 2000, Biol. Chem. 381:421-426). Dieses Protein ADP-ribosyliert Rho A-C am Argeninrest 41 und inhibiert dadurch diese Rho-GTPasen (Aktories et al, 2000, supra). Um eine ausreichende Aktivierungsblockade der Rho-GTPasen zu erreichen, müssen über 90% der intrazellulären Rho A-C Proteine ADP-ribosyliert und damit inaktiviert werden. Die C3-Transferase besitzt jedoch eine sehr schlechte Membranpermeabilität und wird daher nur in geringsten Mengen (ca. 1% der Ausgangsmenge) von den Zellen aufgenommen. Für eine Inaktivierung von 90% der intrazellulären Rho A-C Proteine sind folglich sehr hohe C3- Transferasemengen erforderlich. Infolge dessen müßten für pharmazeutische Anwendungen sehr hohe Mengen dieser als Toxine bekannten C3-Transferasen verabreicht werden. Hierdurch können toxische Nebenwirkungen nicht ausgeschlossen werden. Daher ist die pharmakologische Verwendung der C3- Transferase alleine aufgrund ihrer Toxizität nicht geeignet. Um einen besseren Transport der Wirkstoffkomponente C3-Transferase durch die Plasmamembran der Zellen zu erreichen, wurde ein chimäres Fusionsprotein hergestellt (DE 197 35 105). Zu diesem Zweck wurde das binäre Aktin ADP- ribosylierende C2-Toxin aus Clostridium botulinum verwendet. Das C2-Toxin besteht aus zwei Proteinen, der C2I-Komponente, die enzymatisch aktiv ist, sowie der C2II-Komponente, die die Bindung an die Plasmamembran und eine nachfolgende Translokation vermittelt. Die enzymatische Aktivität des C2I- Proteins ist im C-terminalen Bereich lokalisiert, während die Bindung an C2II über den N-terminalen Bereich erfolgt. Um die C3-Transferase mit Hilfe dieses effizienten Aufnahmemechanismus in die Zellen einzuschleusen, wurde ein chimäres Fusionsprotein aus C3-Transferase (aus Clostridium limosum) und aus dem N-terminalen C2I-Protein hergestellt (Fig. 1). Dieses C3-C2IN-Fusions- protein gelangt nun mit Hilfe des Bindeproteins C2II ins Innere der Zellen (Barth H, Hofmann C, Olenik C, Just I, Aktories K, 1998, Infect. Immun. 66: 1364- 1369). Der Komplex aus C3-C2IN und C2II wird über Rezeptor- vermittelte Endozytose internalisiert und gelangt in intrazelluläre Vesikel. Aus diesen Vesikeln gelangt das Fusionsprotein C3-C2IN ins Cytosol, kann dort seine Wirkung entfalten und Rho A-C ADP-ribosylieren und dadurch inaktivieren. Dieser binäre Proteinkomplex aus C3-C2IN und C2II verbindet die Wirkeigenschaften der C3-Transferase mit einer um Faktor 100-1000 verbesserten Membranpermeabilität und gewährleistet dadurch eine wesentlich bessere intrazelluläre Verfügbarkeit. Dies ist auch der Grund dafür, daß nur noch geringe Mengen an C3-C2IN nötig sind, um eine 90prozentige Hemmung von Rho A-C zu erreichen. Die Wirksamkeit wurde bisher nur in /«-vt'tro-Experimenten gezeigt (Wahl S, Barth H, Ciossek T, Aktories K, Mueller BK, 2000, J. Cell. Biol. 149: 263-270). In diesen Experimenten mit embryonalen Zellen oder Zelllinien - also proliferationskompetenten Zellen - konnten Neuritenwachsrums-stimulierende Effekte nachgewiesen werden (Wahl S, 2000, Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften. Fakultät der Biologie, Eberhard- Karls-Universität Tübingen). Die mit C3-C2IN und C2II behandelten Neuriten waren resistent gegenüber potenten Inhibitoren wie Ephrin-A5 und RGM (Wahl S, 2000, supra ). Darüber hinaus wurde noch ein zweites chimäres Fusionsprotein, ein chimärer C. botulinum C2/C3 Inhibitor, beschrieben (WO 99/08533). Bei dieser Chimäre wurde die Domäne des C2, die ADP-Ribosylierungsaktivität besitzt, deletiert und durch das C3 -Enzym ersetzt wurde. Es handelt sich hierbei also um ein C2II-C3 Fusionsprotein.
Bisher ist jedoch keine Verwendung bekannt, mit der es möglich wäre, adulte Nervenzellen - also Zellen mit stark eingeschränkten proliferativen Eigenschaften in vivo dauerhaft zu stimulieren. Die In-vivo- Verwendung von C3 war nur an frisch durchtrennten Nervenzellen möglich und führte nur zu kurzzeitigen Effekten, da C3 von regenerierenden Nervenfasern nur in geringem Umfange aufgenommen wird (Lehmann M, Fournier A, Selles-Navarro I, Dergham P, Sebok A, Leclerc N, Tigyi G, McKerracher L, 1999, J. Neurosci. 19: 7537-7547). Deshalb und aufgrund der hohen Dosen die eingesetzt werden müssen, ist dieses System nicht geeignet, motorische oder sensorische Funktionen nach Rückenmarkstrennung wieder herzustellen. Für andere Rho-Inhibitoren liegen keine In-vivo-Daten vor.
Aufgabe der vorliegenden Erfindung war daher, die Funktion von Nervenfasern nach Verletzung oder infolge von Erkrankungen in vivo wieder herzustellen und damit sie ihre Funktionen wieder zurückzuerlangen. Somit soll eine partielle oder totale Regeneration bei Krankheiten oder Verletzungen des peripheren und zentralen Nervensystems erreicht werden.
Der Gegenstand der vorliegenden Erfindung ist daher die Verwendung einer Zusammensetzung enthaltend ein Fusionsprotein und mindestens einen Transporter zur i -v/vo-Stimulation des Nervenwachstums, zur /«-v vo-Inhibition der Narbengewebsbildung, zur /n-vz'vo-Reduktion eines Sekundärschadens und/oder Akkumulation von Makrophagen, wobei das Fusionsprotein mindestens eine Bindungsdomäne für den Transporter und mindestens eine Modulationsdomäne zur kovalenten Modifikation von kleinen GTP-bindenden Proteine enthält, und der Transporter die Aufnahme des Fusionsproteins in eine Zielzelle vermittelt.
Unter erfindungsgemäßer Verwendung der Zusammensetzung konnten überraschenderweise nicht nur die Effekte von Myelin-assoziierten Inhibitoren wie NOGO, MAG und CSPG, sondern auch die Effekte potenter anderer Inhibitoren wie z. B. Semaphorin und RGM (Repulsive Guidance Molecule) und der inhibitorischen Narben-assoziierten Chondroitinsulfat-Proteoglykane aufgehoben werden.
Überraschenderweise konnte unter Verwendung des oben beschriebenen Systems nicht nur die Blockade des Neuritenwachstums durch regenerationshemmende Proteine aufgehoben werden, sondern sogar das Nervenfaserwachstum aktiv stimuliert werden.
Weiterhin war überraschend, daß die erfindungsgemäße Verwendung der Zusammensetzung nicht nur die Inaktivierung von Rho A-C, sondern auch auf der Aktivierung von Cdc42 und Rac bewirkte. Die Aktivierung von Rac und Cdc42 in Nervenzellen fuhrt zur Bildung von Finger-artigen Filopodien und Lamellipodien (Häuten zwischen den Filopodien) (Kozma R, Sarner S, Ahmed S, Lim L, 1997, Mol Cell Biol 17: 1201-1211). Filopodien und Lamellipodien sind für das zielgerichtete Wachstum von Nervenfasern notwendig. Aktivatoren von Rho, wie z. B. Myelin-Inhibitoren, RGM oder Ephrin-A5, die außen an der Nervenfaser angreifen, hemmen jedoch die Fortbewegung der Nervenfasern, indem sie ein drastisches Zurückziehen der Nervenfasern auslösen. Die Hemmung von Rho A-C verhindert dies, führt jedoch alleine nicht zum Weiterwachsen der Nervenfasern, denn dafür ist die Aktivierung von Cdc42 und Rac nötig. Somit ist die Kombination von Hemmung der Rho A-C und Aktivierung von Cdc42 und Rac besonders effizient zur Stimulation des Nervenfaserwachstums.
Überraschenderweise wurde unter Verwendung des oben beschriebenen Systems die Anzahl von ED-1 positiven Makrophagen an der Injektionsstelle stark erhöht. Makrophagen entfernen regenerationshemmende Zellreste und inhibitorische Myelinbestandteile aus dem Verletzungsgebiet und sezernieren Cytokine, die die Aktivität von Astro- und Oligodendrocyten modulieren und dadurch die Regeneration von Nervenfasern fördern. Darüber hinaus induzieren Makrophagen, die früh im Verletzungsgebiet auftauchen eine erneute Remyelinisierung demyelinisierter Nervenfasern (Kotter MR, Setzu A, Sim FJ, van Rooijen N, Franklin RJM, 2001, Glia, 35: 204-212).
Ebenfalls überraschend war die Beobachtung, daß unter erfindungsgemäßer Verwendung der Zusammensetzung die Anzahl der Narbengewebe-bildenden Astrozyten verringert und damit die Bildung von Narbengewebe reduziert war. Es entstand weniger Narbengewebe, welches auch in einer weniger kompakten Weise wuchs, so daß Raum zum Wachstum der Nervenfasern blieb. Die Lakunen- und Hohlraumbildung war stark herabgesetzt und damit die sekundäre Schädigung drastisch reduziert. Hierdurch wurde die Regeneration von Nervenfasern positiv beeinflußt.
Alle Effekte zusammen bewirkten nach Rückenmarksläsion eine Wiederherstellung der motorischen, sensorischen und vegetativen Funktionen über die Verletzungsstelle des Rückenmark hinaus. Insbesondere konnte gezeigt werden, daß Ratten nach Läsion des Rückenmarks auf Höhe des achten Thorakalwirbels (TH8) und einmaliger Injektion von C3-C2IN und C2II ihre Hinterbeine wieder bewegen konnten und keine nennenswerten Lähmungserscheinungen übrig behielten. Neben den motorischen wurden auch sensorische und vegetative Funktionen wieder hergestellt. Die Ratten zeigten eine Reaktion auf äußere Reize (z. B. Schmerz) und konnten ihre Blase wieder selbständig leeren (siehe Beispiel 2).
Unter einer /«-vz o-Stimulation des Nervenwachstum im Sinne der vorliegenden Erfindung wird eine beschleunigtes und/oder vermehrtes Nervenwachstum verstanden, wobei sich dieses auf das Ausmaß und/oder die Geschwindigkeit des
Wachstums beziehen kann. Vorzugsweise wachsen die Nervenfaser mindestens um ca. Faktor 2, bevorzugt um ca. Faktor 3, am meisten bevorzugt um ca. Faktor 4, schneller und/oder weiter. Alternativ ist die Anzahl der wachsenden Fasern mindestens um ca. Faktor 2, bevorzugt um ca. Faktor 3, am meisten bevorzugt um ca. Faktor 4, erhöht. Unter einer Rϊ-v/vo-Inhibition der Narbengewebsbildung im Sinne der vorliegenden Erfindung wird eine ca. 50prozentige, bevorzugt eine ca. 75prozentige, am meisten bevorzugt eine ca. 90prozentige Reduktion des Narbengewebes und/oder der Lakunen- oder Hohlraumbildung verstanden. Daraus ergibt sich, daß die Inhibition eine völlige oder teilweise Inhibition sein kann. Geeignete Tests zur Quantifizierung der Parameter sind in Beispiel 2 beschrieben. Unter Sekundärschäden versteht man im Gegensatz zu Primärschaden solche Schäden, die erst als weitere Folge der anfänglichen Verletzung (des Primärschadens) auftreten. Unter Sekundärschaden in Sinne der vorliegenden Erfindung versteht man im Gegensatz zu Primärschaden, die durch pathophysiologische Mechanismen verursachte Vergrößerung einer initial Läsionsstelle (Primärschaden). Beispiele hierfür sind eine ischämische Nekrose, die Apoptose von Nervenfasern und anderen Zellen sowie inflammatorische Reaktionen. Unter einer T -v/vo-Reduktion eines Sekundärschadens in Sinne der vorliegenden Erfindung wird eine ca. 50prozentige, bevorzugt eine ca. 75prozentige, am meisten bevorzugt eine ca. 90prozentige Reduktion eines Sekundärschadens verstanden. Unter einer Akkumulation von Makrophagen wird die Erhöhung der Makrophagenzahl, insbesondere am Wirk- und/oder Verabreichungsort, verstanden. Hierbei ist die Zahl der Makrophagen mindestens um ca. Faktor 2, bevorzugt um ca. Faktor 3, am meisten bevorzugt um ca. Faktor 4, erhöht. Unter dem Wirkort wird der Ort verstanden, an dem die erfindungsgemäße Zusammensetzung ihre Wirkung auf die Neuronen, das Nervengewebe und/oder benachbarte Zellen oder Gewebe entfaltet. Unter dem Verabreichungsort im Sinne der vorliegenden Erfindung wird der Ort verstanden, an dem die erfindungsgemäße Zusammensetzung im Körper freigesetzt wird. Unter einem Fusionsprotein versteht man das Expressionsprodukt eines fusionierten Gens. Ein fusioniertes Gen entsteht aus der Verknüpfung zweier oder mehrerer Gene oder Genfragmente, wobei eine neue Kombination erzeugt wird. In der vorliegenden Erfindung enthält das Fusionsprotein eine Modulationsdomäne und eine Bindungsdomäne.
Ein GTP -bindendes Protein ist ein Protein, das GTP (Guanosintriphosphat) bindet und infolge einer zellulären Signalkaskade zu GDP (Guanosindiphosphat) hydrolysiert. Die Signal-induzierte Hydrolyse des GTP zu GDP bewirkt die Interaktion des GTP -bindenden Proteins mit einem Effektormolekül. Man unterscheidet zwischen heterotrimeren (großen) GTP -bindenden Proteinen und monomeren (kleinen) GTP-bindenden Proteinen. Die heterotrimeren GTP- bindenden Proteinen bestehen aus einer α-, einer ß- und einer γ-Untereinheit, wohingegen die monomeren GTP-bindenden Proteine nur aus einer Untereinheit bestehen. Zu der Gruppe der kleinen GTP-bindenden Proteine gehören beispielsweise die Mitglieder der Ras-, Rho-, Rab-, Arf-, Sar- und Ran-Familie. Die Rho-GTPasen der Säugetiere kömien in sechs verschiedene Klassen eingeteilt werden: Rho (RhoA, Rl oB, RhoC), Rac (Rac 1, Rac 2, Rac 3, Rho G), Cdc42 (Cdc42Hs, G25K, TC10), Rnd (RhoE/Rnd3, Rndl/Rho6, Rnd2/Rho7), Rho D und TTF.
Ein GTP-bindendes Protein besitzt eine Guaninnukleotid-Bindungstelle, an der sowohl GTP oder GDP gebunden sein kann. In der GTP-gebundenen Form ist das Protein aktiv, in der GDP-gebundenen Form inaktiv. Der Austausch von GDP und GTP und somit die Aktivierung des GTP-bindenden Moleküls wird durch den in der Signalkaskade dem GTP-bindenden Protein vorgeschalteten Aktivator vermittelt. Die Aktivierung des Effektor, also des dem GTP-bindenden Protein in der Signaltransduktion nachgeschalteten Moleküls, bewirkt die Spaltung des GTP zu GDP und anorganischen Phosphat. Hierdurch wird das GTP-bindende Protein wieder inaktiviert. Die Regulation der Signalkaskade auf Ebene des GTP- bindenden Proteins wird in der Zelle durch mindestens drei weitere Proteine reguliert; GTPase-aktivierende Proteine (GAP) unterstützen die GTP-Hydrolyse, Guaninnukleotidaustausch-Faktoren (GEF) katalysieren den Austausch von GDP zu GTP und GDP-Dissoziationsinhibitoren (GDI) unterdrücken die Dissoziation des GDP vom kleinen GTP-bindenden Protein (siehe hierzu Hall A, 1998, Science 279: 509-514; Mueller BK, 1999, Annu Rev Neurosci 22: 351-388; Luo L, 2000, Nature Review Neurosci 1,3: 173-180)
Bei erfindungsgemäßer Verwendung der Zusammensetzung wird die Aktivität des kleinen GTP-bindenden Proteins geändert. Unter einer Änderung der Aktivität von kleinen GTP-bindenden Proteinen im Sinne der vorliegenden Erfindung versteht man eine Erhöhung oder Erniedrigung der Aktivität. Die Erniedrigung kann zu einer teilweisen oder völligen Hemmung oder Inaktivierung führen. Die Aktivität des kleinen GTP-bindenden Proteins wird mindestens um Faktor 2, bevorzugt um ca. Faktor 3 oder um ca. Faktor 4, am meisten bevorzugt um ca. Faktor 10, erhöht oder erniedrigt. Dem Fachmann sind einschlägige Methoden bekannt, mit der die Aktivität von kleinen GTP-bindenden Proteinen bestimmt werden kann. Beispielsweise könnte in einem Enzymtest die Hydrolyse- Aktivität des kleinen GTP-bindenden Proteins mit GTP als Substrat, das an der γ- Phosphatgruppe markiert ist (z. B. radioaktiv), bestimmt werden (Read PW und Nakamoto PIK, 2000, Methods in Enzymology 325: 15; Seif AJ und Hall A, 1995, Methods in Enzymology 256: 67).
Die Veränderung der Aktivität durch die Modulationsdomäne kann beispielsweise durch Wechselwirkung mit GAP, GDI GEF oder dem kleinen GTP-bindenden Protein erfolgen. Dabei kann u. a. die Geschwindigkeit der Hydrolyse von GTP zu GDP, die Dissoziation von GDP oder die Bindung von GTP beeinflußt werden. Dies könnte beispielsweise durch kovalente oder nicht-kovalente Modifikation eines der beteiligten Proteine durch die Modulationsdomäne erfolgen. (Bishop AL and Hall A, 2000, Rho GTPases and their effector proteins. Biochem J 348: 241 - 255; Hall A, 1999, Signal transduction pathways regulated by the Rho family of small GTPases. Br J Cancer 80 Suppl 1:25-27; Kjoller L und Hall A, 1999, Signaling to Rho GTPases. Exp Cell res 253: 166-179)
In einer bevorzugten Ausfuhrungsform wird das kleinen GTP-bindenden Molekül, vorzugsweise Rho A-C, durch kovalente Modifikation teilweise oder völlig gehemmt. Vorzugsweise geschieht dies durch ADP-Ribosylierung oder Glykosylierung des kleinen GTP-bindenden Proteins, d. h. ADP-Ribose oder ein Saccharid wird kovalent gebunden. Diese Modifikation führt zu einer veränderten Signaltransduktion auf Ebene des kleinen GTP-bindenden Moleküls.
In einer weiteren Ausfuhrungsform wird die Änderung der Aktivität der kleinen GTP-bindenden Proteine durch nicht-kovalente Modifikation erzielt. Beispielsweise könnte ein Molekül an das kleine GTP-bindende Protein angelagert werden, welches z.B. durch Änderung der Konformation des Proteins eine aktive oder inaktive Form stabilisiert. In einer weiteren Ausführungsform könnte aber auch ein Molekül in die Bindungstasche des kleinen GTP-bindenden Proteins eingelagert werden, so daß das GTP nicht mehr gebunden werden kann, und so die Aktivität des kleinen GTP-bindenden Proteins reduziert ist. Beispielsweise kann die Aktivität von RhoGTPasen durch Rho-inhibierende Toxine wie z.B. ExoS (Pseudomonas aeraginosa exoenzyme S), SptP (Salmonella typhimurium protein tyrosine Phosphatase) oder YopE (Yersinia pseudotuberculosis outer protein E) oder durch Rho-aktivierende Toxine wie z.B. SopE (Salmonella typhimurium outer protein E) verändert werden (Lerm M, Schmidt G, Aktories K, 2000, FEMS Microbiology Letters 188: 1-6; Aktories K, Schmidt G, Just I, 2000, Biol Chem 381: 421-426).
In einer weiteren Ausführungsform wird die Modifikation nicht durch die Modulationsdomäne selbst, sondern durch ein in der Signalkaskade dem kleinen GTP-bindenden Protein vor- oder nachgeschalteten Signalmolekül bewirkt. Die Modulationsdomäne würde dann ein solches Signalmolekül aktivieren, welches dann wiederum z.B. das kleine GTP-bindende Protein phosphoryliert (indirekte Modulation). Beispielsweise phosphoryliert die Proteinkinase A (PKA) in Lymphozyten aktives GTP-gebundenes RhoA und induziert über Rho-GDI seine Translokation von der Membran ins Cytosol, dadurch wird die Rho-Aktivierung auf zweierlei Arten beendet. Das Signalmolekül cAMP aktiviert die PKA, diese phosphoryliert RhoA und inhibiert es dadurch, gleichzeitig wird eine Aktivierung von RhoA verhindert, indem es durch Rho-GDI von der Membran ins Cytosol transportiert wird (Mueller BK, 1999, Annu Rev Neurosci 22: 351-388; Lang P, Gespert F, Delespine-Carmagnat M, Stancou R, Pouchelet M, Bertoglio J, 1996, EMBO J 15: 510-519; Laudanna C, Campbell JJ, Butcher EC, 1997, J Biol Chem 272: 24141-24144).
In einer besonders bevorzugten Ausführungsform werden die GTP-bindenden Proteine Rho A, B oder C kovalent modifiziert. Besonders bevorzugt ist die ADP- Ribosylierung des Asparagin-Restes an Position 41. Damit verbunden ist eine Inaktivierung des kleinen GTP-bindenden Proteins. In einer weiteren Ausführungsform wird der Threonin-Rest an Position 35 bzw. 37 eines kleinen GTP-bindenden Proteins der Rho-Familie glykosyliert. Dieses führt ebenfalls zur Inaktivierung des kleinen GTP-bindenden Proteins. Gleichzeitig werden vorzugsweise die kleinen GTP-bindenden Protein Cdc42 und/oder Rac aktiviert. (Dies könnte beispielsweise durch Crosstalk der beiden Signaltransduktionswege erfolgen. Unter Crosstalk versteht der Fachmann die wechselseitige Beeinflussung verschiedener Signaltransduktionswege innerhalb einer Zelle. Im vorliegenden Fall könnte beispielsweise die Inaktivierung des Signalweges, der die GTP- bindenden Proteine Rho A, B oder C beinhaltet, eine Aktivierung des Signalweges unter Beteiligung von Cdc42 und /oder Rac bewirken, (siehe hierzu Mueller BK, 1999, Annu Rev Neurosci 22: 351-388; Wahl S, Barth H, Ciossek T, Aktories K, Mueller BK, 2000, J. Cell. Biol. 149: 263-270; Sander EE, Ten Klooster JP, Van Delft S, Van der Kämmen RA, Collard JG, 1999, J Cell Biol 147: 1009-1022).
Vorzugsweise ist die Modulationsdomäne von einem Toxin abgeleitet. Hierbei kann es sich z. B. um bakterielles Toxin handeln. Bakterielle Toxine könnten aus einem Bakterium der Gattung Clostridium, Staphylococcus, Bacillus, Pseudo- monas, Salmonella oder Yersinia stammen. In einer bevorzugten Ausführungsform handelt es sich um die C3-Transferase aus Clostridium botulinum oder eine verwandte Transferase. Unter einer verwandten Transferase versteht man ein Enzym das wie die C3 -Transferase die ADP-Ribosylierung von GTP-bindenden Proteinen der Rho-Familie bewirkt. Einen weiteren Teil des Fusionsproteins bildet die Bindungsdomäne. Sie bewirkt die Bindung an den Transporter. Die Bindung der Bindungsdomäne an den Transporter erfolgt z. B. durch kovalente Bindung, durch elektrostatische Wechselwirkungen, Van-der-Waals- Wechselwirkungen oder Wasserstoff- Brücken-Bindung. In einer Ausführungsform stammt die Bindungsdomäne von einem binären bakteriellen Toxin, insbesondere dem C2-Toxin aus Clostridium botulinum.
Unter einem binären Toxin versteht man ein Toxin, das aus zwei getrennten Proteinen besteht. Die Proteine sind eine Enzym-Komponente und eine Zellbindungs-/Translokationskomponente. Beispiele für binäre Toxine sind das Anthrax-Toxin oder das Toxin aus Clostridium perfringens iota. Das Clostridium perfringens iota Toxin ist ein Mitglied der Familie der binären Aktin ADP- ribosylierenden Toxine. Besonders bevorzugt stammt die Bindungsdomäne von dem C2-Toxin von Clostridium botulinum. In der am meisten bevorzugten Ausführungsform handelt es sich bei der Bindungsdomäne um die N-terminale C2I-Domäne des C2-Toxins von Clostridium botulinum.
Der Transporter vermittelt die Aufnahme des Fusionsproteins in die Zelle. Bei dem Transporter kann es sich beispielsweise um ein Peptid oder Protein handeln. Ein Beispiele für ein solches Protein oder Peptid ist das Antennapedia Peptid, ein 16 Aminosäuren-langes Peptid des Homoeobox-Gens Antennapedia, welches eingesetzt wird, um exogene, hydrophile Komponenten ins Innere lebender Zellen einzuschleusen (Prochiantz A, 1999, Ann NY Acad Sei 886: 172-179; Prochiantz A, 1996, Curr Opin Neurobiol 6: 629-634)
Der Transporter könnte aber auch ein virales Protein oder einen Liganden für eine Zelloberflächenstruktur darstellen oder davon abgeleitet sein. Ein Beispiel für ein virales Transportprotein ist VP22, ein 38 kDA großes Strukturprotein des Herpes Simplex-Virus-1. Diese Protein transloziert (permeiert) die Plasmamembranen von Säugerzellen und kann als Transporter andere Proteine ins Innere der Zellen transferieren (O'Hare P und Elliot G, 1997, Cell 88: 223-233; Phelan A; Elliott G; O'Hare P, 1998, Nat Biotechnol 16: 440-443). Beispiele für Liganden von Oberflächenstrukturen stellen das pflanzliche Toxin Ricin und das bakterielle Shiga Toxin dar (Sandvig K und van Deurs B, 2000, EMBO J 19: 5943-5950).
Beispielsweise könnten aber auch Liposomen die Transporterfunktion erfüllen. Mit Hilfe von liposomalen Transportern können neben Nukleinsäuren auch Proteine in Zellen eingeschleust werden (Rao M und Alving CR, 2000, Adv Drug Delv Res 30: 171-188). Die Aufnahme in die Zelle kann beispielsweise durch die Fusion durch die Zellmembran, durch Durchtritt durch Zellporen, durch erleichterte Diffusion, aktiven Transport mittels Carrier in der Zellmembran oder durch Pinozytose und Phagozytose erfolgen. In einer Ausführungsform wird die Aufnahme des Fusionsproteins über die Bindung des Transporters an eine Struktur an der Zelloberfläche bewirkt. Diese Struktur könnte z. B. ein Rezeptor, ein Kanal oder ein anderes Membranprotein sein. Die Struktur an der Oberfläche bewirkt die Aufnahme der Zusammensetzung oder eines Teils davon in die Zelle. Die Aufnahme des Fusionsproteins könnte z. B. durch Endozytose eines Rezeptor-Protein-Komplexes erfolgen. In der Zelle könnte der Proteinkomplex freigesetzt werden und anschließend die Aktivität des kleinen GTP-bindende Proteins verändern.
Bei dem Transporter kann es sich z. B. um einen Liganden handeln. Liganden sind Moleküle, die spezifisch an bestimmte Rezeptoren binden. Bei diesen Liganden könnte es sich beispielsweise um körpereigene Moleküle wie Hormone, Neurotransmitter wie z.B. Acetylcholin oder um körperfremde Moleküle wie künstlich hergestellte Liganden handeln. Die Liganden können peptidergen, proteinergen oder nicht-proteinergen Ursprungs sein. In einer Ausführungsform könnte der Transporter die variablen Region eines Antikörpers z. B. eines monoklonale Antikörpers darstellen oder mit dieser verbunden sein. Diese Region könnte die spezifische Bindung an Zelloberflächenstrukturen bewirken.
Die Aufnahme in die Zelle könnte aber auch durch Liposomentransporter (Rao M und Alving CR, 2000, Adv Drug Delv Res 30: 171-188) bewirkt werden. Hierbei wäre das Fusionsprotein z. B. in Liposomen eingeschlossen. Die Bindungsdomäne wäre so gestaltet, daß das Fusionsprotein besonders geeignet für den Einschluß in ein Liposom wäre. Das Liposom würde mit der Zellmembran fusionieren und so die Aufnahme des Fusionsproteins in die Zelle bewirken. Dem Fachmann sind geeignete Lipide bekannt, die zur Bildung von Protein-Liposomen-Komplexen verwendet werden können.
Eine weitere Möglichkeit wäre eine Aufnahme des Fusionsproteins durch einen viralen Transporter. Ein Beispiel für ein virales Transportprotein ist - wie bereits erwähnt - VP22 (O'Hare P und Elliot G, 1997, Cell 88: 223-233; Phelan A; Elliott G; O'Hare P, 1998, Nat Biotechnol 16: 440-443).
In einer bevorzugten Ausführungsform stammt der Transporter von einem binären bakteriellen Toxin. Beispiele für binäre Toxine sind das Anthrax-Toxin oder das Toxin aus Clostridium perfringens iota. Das Clostridium perfringens iota Toxin ist ein Mitglied der Familie der binären Aktin-ADP-ribosylierenden Toxine. Besonders bevorzugt stammt der Transporter von dem C2-Toxin von Clostridium botulinum. In der am meisten bevorzugten Ausführungsform handelt es sich bei dem Transporterprotein um C2II-Domäne des C2-Toxins von Clostridium botulinum.
Die Herstellung des Arzneimittels enthaltend die Zusammensetzimg enthaltend mindestens ein Fusionsprotein und mindestens einen Transporter erfolgt in üblicher Weise anhand geläufiger pharmazeutisch-technologischer Verfahren. Dazu werden die Wirkstoffe als solche oder in Form ihrer Salze zusammen mit geeigneten, pharmazeutisch annehmbaren Hilfs- und Zusatzstoffen zu den für die Indikation und den Applikationsort geeigneten Arzneiformen verarbeiten.
Geeignete Hilfs- und Zusatzstoffe, die beispielsweise der Stabilisierung oder Konservierung des Arzneimittels oder Diagnostikums dienen, sind dem Fachmann allgemein bekannt (siehe z. B. Sucker H et al. (1991) Pharmazeutische
Technologie, 2. Auflage, Georg Thieme Verlag, Stuttgart). Beispiele für solche Hilfs- und/oder Zusatzstoffe sind antimikrobielle Verbindungen, Proteinaseinhibi- toren, Aqua sterilisata, den pH-Wert beeinflussende Substanzen, wie z.B. organische und anorganische Säuren und Basen sowie deren Salze, Puffersubstanzen zur Einstellung des pH- Wertes, Isotonisierungsmittel, wie z.B. Natriumchlorid, Natriumhydrogencarbonat, Glucose und Fructose, Tenside bzw. oberflächenaktive Substanzen und Emulgatoren, wie z.B. Partialfettsäureester des Polyoxyethylensorbitans (Tween®) oder z.B. Fettsäureester des Polyoxyethylens (Cremophor®), fette Öle, wie z.B. Erdnussöl, Sojabohnen öl und Rizinusöl, synthetische Fettsäureester, wie z.B. Ethyloleat, Isopropylmyristat und Neutralöl (Miglyol®), sowie polymere Hilfsstoffe sie z.B. Gelatine, Dextran, Polyvinylpyrrolidon, von die Löslichkeit erhöhenden Zusätzen organischer Lösungsmittel wie z.B. Propylenglycol, Ethanol, N,N-Dimethylacetamid, Propylenglycol oder komplexbildender Stoffe, wie z.B. Citraten und Harnstoff, Konservierungsmittel, wie z.B. Benzoesäurehydroxypropyl- und -methylester, Benzylalkohol, Antioxidantien, wie z.B. Natriumsulfit und Stabilisatoren, wie z.B. EDTA, verwendet werden.
Das Arzneimittel könnte in parenteraler Anwendungsform, insbesondere in intrathekaler, intramedullärer, intraartieller, intravenöser, intramuskulärer oder subcutaner Form, insbesondere an der Verletzungsstelle, in intradermaler Form, beispielsweise als Plaster, in enteraler Anwendungsform, insbesondere zur oralen oder rektalen Anwendung, oder in topischer Anwendungsform, insbesondere als Dermatikum, angewendet werden.
Unter einer akuten Verletzung oder Erkrankung des Gehirns und/oder des Rückenmarks versteht man im Gegensatz zu einer chronischen Erkrankung eine plötzlich auftretende oder einsetzende Verletzung oder Erkrankung. Beispiele hierfür sind Schädel-Hirn-Traumen infolge von äußerer Gewalteinwirkung; Infektionen, bedingt durch Bakterien, Viren, Pilze, Parasiten; Schlaganfälle (zerebrale Durchblutungsstörung und intrezerebrale bzw. subarachnoidale Blutungen); Intoxikationen; traumatische Rückenmarksläsionen. Unter einer chronischen Verletzung und/oder Erkrankung des Gehirns oder des Rückenmarks versteht man eine sich langsam entwickelnde, schleichende Erkrankung von in der Regel langer Dauer. Beispiele für chronische Erkrankungen des Gehirns und des Rückenmarks sind Morbus Alzheimer, Morbus Parkinson, Multiple Sklerose, Tumore und ähnliche Erkrankungen.
Entzündlichen Erkrankung des Nervensystems, die mit Entmarkungsschäden einhergeht, sind beispielsweise Multiple Sklerose oder Leukodystrophien.
Unter Remyelinisierung versteht man den teil weisen oder völligen Wiederaufbau der Myelinschicht nach Demyelinisierung. Demyelinisierung ist die Schädigung und/oder der Verlust von Myelin im zentralen oder peripheren Nervensystem und entsteht als Folge verschiedener Erkrankungen des Nervensystems oder nach allgemeinen Schädigungen von Neuronen oder der Oligodendrozyten durch beispielsweise entzündliche, immunpathologische oder toxische Vorgänge. Beispiele hierfür sind Multiple Sklerose, die Leukodystrophien oder Viruserkrankungen wie Hundestaupe.
Unter neurologischen und neurodegenerativen Erkrankungen des peripheren und zentralen Nervensystems werden beispielsweise Morbus Alzheimer, Morbus Parkinson, Multiple Sklerose und ähnliche Erkrankungen, die mit einem Nervenfaserverlust und Entmarkung (Demyelinisierung) einhergehen, sowie Amyotrophe Lateral Sklerose und andere Motoneuonenerkrankungen, Ischämie, Schlaganfall, Epilepsie, Morbus Huntington, AIDS Demenz Komplex und Prionen-Erkrankungen verstanden.
Die Erfindung wird in den nachfolgenden Figuren und Ausfuhrungsbeispielen näher erläutert, ohne sie darauf einzuschränken.
Beschreibung der Figuren: Figur 1: Schematische Darstellung des besonders bevorzugten Systems enthaltend ein Fusions- und ein Transporterprotein
Das Fusionsprotein besteht aus der Modulationsdomäne, die von der C3- Transferase aus C. limosum abgeleitet ist, und der Bindungsdomäne, die von dem N-terminalen Ende des C2I-Untereinheit des C2-Toxins aus C. botulinum stammt. Die C2II-Untereinheit des C2-Toxins aus C. botulinum stellt den Transporter dar.
Die einzelnen Abbildungen stellen folgende Moleküle dar:
A C2-Toxin aus Clostridium botulinum B C3-Exoenzym aus Clostridum limosum
C Transporter-Protein C2II
D Fusionsprotein C3-C2IN bestehend aus Bindungs- (C2IN) und Modulationsdomäne (C3)
Figur 2: Verbesserung der motorischen Funktionen nach C3-C2IN-Gabe
Die Wiederherstellung der motorischen Funktionen unterschiedlich behandelter Tiere wurde in Abhängigkeit von der Genesungsdauer bestimmt. Die mit C3- C2IN in Gegenwart von C2II behandelten Ratten (Kreis; •) zeigten gegenüber den Kontrolltieren (Dreieck; A) und Tieren, die lediglich mit C2II behandelt wurden (Quadrat; ■), eine deutlich höhere motorische Genesung. Nach 28 Tagen erreichten die C3-C21N-behandelten Tiere auf der BBB-Skala einen Wert von 11,50 (± 1,15) im Gegensatz zu den Kontrolltieren und die C2II-behandelten Tieren, mit denen Werte von 4,00 (± 0,90) und 2,71(± 1,09) erzielt wurden.
Figur 3: Intraspinale Akkumulation von aktivierten Makrophagen nach C3- C2IN/C2II-Gabe
Die Anzahl von ED-1 positiven Makrophagen als Antwort auf die intramedulläre Injektion von 10 μg C3-C2IN/10 μg C2II wurde nach 1, 3 und 7 Tagen und nach 4 Wochen bestimmt. Als Kontrolle wurde die Anzahl von ED-1 positiven Makrophagen bei Tieren ohne Substanzgabe und bei Tieren mit PBS-Gabe (PBS: phosphate buffered saline, pH 7,4) an den Tagen 1 und 3 bestimmt. Bereits ein Tag nach der Injektion der Substanzen war die Anzahl der Makrophagen um den Faktor 23 erhöht, am Tag 3 um den Faktor 47. Am siebten Tag erreicht die Anzahl der Makrophagen ihr Maximum (Erhöhung um Faktor 65) und nach 4 Wochen liegt sie mit 162 ED-1 positive Makrophagen/0,25 mm2 immer noch um den Faktor 28 über dem Normalwert (5,8 ED-1 positive Makrophagen/0,25 mm2)
Die einzelnen Säulen der Abbildung bedeuten:
A unbehandelt
B PBS-Gabe; Untersuchung am 1. Tag
C C3-C2IN/C2II-Gabe; Untersuchung am 1. Tag
D PBS-Gabe; Untersuchung am 3. Tag
E C3-C2IN/C2II-Gabe; Untersuchung am 3. Tag
F C3-C2IN/C2II-Gabe; Untersuchung am 7. Tag
G C3-C2IN/C2II-Gabe; Untersuchung nach 4 Wochen
Figur 4: Histologie zur intraspinalen Akkumulation von aktivierten Makrophagen nach C3-C2IN/C2II-Gabe
Die Akkumulation von ED-1 positiven Makrophagen als Antwort auf die intramedulläre Injektion von 10 μg C3-C2IN/10 μg C2II ist direkt an der Injektionsstelle stark erhöht. Im Vergleich zur Kontrolle zeigt die immunhistologische Anfarbung der Makrophagen 1 cm von der Injektionsstelle entfernt immer noch eine erhöhte Akkumulation.
Die einzelnen Abbildungen zeigen:
A ED-1 positive Makrophagen an der Injektionsstelle von C3-C2IN/C2II B ED-1 positive Makrophagen in einem Abstand von 1 cm von der Injektionsstelle von C3-C2IN/C2II
C Kontrolle/unbehandelt
Figur 5: Diagram zur reduzierten intraspinalen Akkumulation Vimentin+reaktiver Astrozyten und fibroblastoider Zellen nach C3- C2IN/C2II-Gabe Aktivierte Astrozyten und fibroblastoide Zellen wurden immunhistochemisch mit Nimentin-Antikörpern markiert und ausgezählt. Die Anzahl Nimentin reaktiver Astrozyten und fibroblastoider Zellen 3 Tage nach C3-C2IΝ/C2II-Gabe (C) ist im Vergleich zur alleinigen PBS-Gabe (B) stark reduziert. (A) zeigt die Anzahl Vimentin+reaktiver Astrozyten und fibroblastoider Zellen bei unbehandelten Kontrolltieren.
Die einzelnen Abbildungen zeigen die Anzahl Vimentin+reaktiver Astrozyten und fibroblastoider Zellen: A unbehandelte Kontrolltiere B mit PBS behandelte Tiere C mit C3-C2IN/C2II behandelte Tiere
Figur 6: Auswachs-Assay retinaler Ganglionzell-Axone auf Chondroitin- sulfat-Proteoglykan (CSPG)
Die Neutralisation inhibitorischer Narbenbestandteile durch C3-C2IN/C2II wurde im Auswachs-Assay auf CSPG gezeigt. Hierzu wurden Retina-Miniexplantate von embryonalen Hühnchen (E7) auf mit 20μg/ml CSPG beschichteten Deckgläschen ausplattiert. CSPG hemmt das Auswachsen retinaler Ganglienzell- Axone (A). Die Zugabe von 1ml C3-C2IN/C2II (300ng/ml) führt zur Neutralisierung der inhibitorischen Wirkung von CSPG und zum Auswachsen retinaler Axone (B).
Die einzelnen Abbildungen zeigen das Auswachsen retinaler Ganglienzell- Axone: A Inkubation mit CSPG B Inkubation mit CSPG und C3-C21N/C2II
Beispiel 1
Die Konstruktion, Expression, Reinigung und Charakterisierimg der Proteine erfolgte wie in DE 197 35 105 AI Beispiele 1 bis 5 beschrieben. Beispiel 2
Tiere: 8-12 Wochen alte, männliche Lewis-Ratten (220-280 g, Charles River, Sulfeld, GER) wurden zufällig auf zwei Gruppen verteilt und das Rückenmark mindestens zur Hälfte durchtrennt. Nach 21 Tagen wurde eine Gruppe mit 10 μg C3-C2IN und eine zweite Gruppe nur mit 10 μg C2II perfundiert. Die Kontrolltiere erhielten entweder 10 μl C2 alleine (ohne C3 -Komponente) oder eine Transektion ohne Injektion. Alle Tiere wurden unter kontrollierten Licht- und Temperaturbedingungen gehalten und mit Futter und Wasser zur freien Verfügung ausgestattet. Die Ratten wurden entsprechend den "International Health Guidelines" so wie einem von der Universität Tübingen überprüften Protokoll gehalten.
Rückenmarksläsionen: Die Ratten wurden durch intraperitoniale Injektion von Ketanest (Ketaminhydrochlorid, Parke Davis: 100 mg/kg) und Rompun (Xylazinhydrochlorid, Bayer: 10 mg/kg) betäubt. Um eine Austrocknung der Augen während der Anästhesie zu erreichen, wurden beide Augen mit Oculotect Gel (Retinolpalmitat, CIBA Vision, Novartis, GER) bedeckt. Nach Erreichen einer ausreichenden Anästhesie wurde die Haut über der Wirbelsäule geöffnet, die den Wirbeln anheftenden Muskeln gelöst und zur Freilegung des Rückenmarks eine Bi-Laminektomie auf Höhe des thorakalen Segments TH8 durchgeführt. Nach Öffnung der Dura (äußerste, fibröse Hülle des Rückenmarks) wurde der dorsale Rückenmarksstrang mit einer feinen Iridektomie-Schere durchtrennt, um eine 2/3 Überhemisektion durchzuführen. Die durchtrennten neuralen Strukturen waren sowohl motorischen (gekreuzter Teil der Pyramidenbahn, Teile der extrapyramidalen Bahn) als auch sensorischen (dorsales Rückenmark) Ursprungs. Die Wunde wurde mit steriler Salzlösung gespült und verschlossen. Alle Tiere wurden unter Infrarotlicht gewärmt, bis sie das Bewußtsein wiedererlangten.
Postoperative Behandlung und Gewebspräparation: Alle Ratten erhielten eine postoperative Schmerztherapie durch eine einzelne intraperitoniale Injektion von Rimadyl 2 mg/kg (Carproven, Pfizer, GER) und wurden einer manuellen Blasenentleerung (3 x täglich) unterzogen, bis die spontane Blasenfiinktion wiederhergestellt war (gewöhnlich innerhalb von 10-14 Tagen). Vor dem Wiedereintritt der spontanen Blasenfiinktion wurden die Ratten 2-3 x täglich gebadet, um Urin-bedingte Wunden zu verhindern. Die Tiere wurden regelmäßig gewogen und bei einem Gewichtsverlust 20% oder mehr getötet. Für immunhistologische Untersuchungen wurden Ratten getötet und intrakardial mit Fixativ (4% Formalin in 0,1 mol/1 Phosphatpuffer, pH 7,5), das 20.000 IU/1 Heparin enthielt, perfudiert. Rückenmark und Gehirn wurden entfernt und über Nacht bei 4°C nachfixiert. Das fixierte Gewebe wurde in Paraffin eingebettet, Serienschnitte angefertigt und diese auf Silan-beschichteten Objektträgern überführt.
Immunhistochemie: Nach Fixierung mit Formalin und Einbettung in Paraffin wurden rehydrierte 2μm-Stücke 7 Mal für 5 Minuten in Citratpuffer (2,1 g/1 Natriumeitrat, pH 6) gekocht und mit 10% normalem Schweinesemm (Biochrom, Berlin, GER) inkubiert, um die nicht-spezifische Bindung von Immunglobulinen zu unterdrücken. Zur Identifizierung bestimmter Zelltypen wurden Antikörper gegen zellspezifische Antigene benutzt. Dies waren beispielsweise GFAP (Glial Fibrillary Acidic Protein, Boehringer Mannheim, GER, 1:100) für Astrozyten, MBP (Myelin Basic Protein, Dako, Glostrup, DEN, 1 :200) für Oligodendrozyten oder Neurofilament (Dako, Glostrup, DEN, 1 :200) für Neurone. Mikroglia bzw. Makrophagen wurden mit monoklonalen Antikörpern gegen EDI (Serotec, Oxford, GB, 1:100), OX-42 (Serotex, Oxford, BG, 1:100) oder ED2 (Serotec, Oxford, BG, 1:200) unter Verwendung des ABC-Verfahrens (avidin-biotin- complex) in Kombination mit alkalinen Phosphatasen-Konjugaten markiert. Zusätzlich wurden monoklonale Antikörper gegen OX-22 (Serotec, Oxford, GB, 1:100) zur Identifikation von B-Lymphozyten und W3/13 (Serotec, Oxford, GB, 1:100) zur Identifikation von T-Lymphozyten verwendet. OX-6 (Serotec, Oxford, GB, 1:100) wurde eingesetzt, um MHC-II-Moleküle zur Charakterisierung der funktioneilen Immunkompetenz zu identifizieren. Die Antikörper wurden in den oben angegebenen Lösungen mit 1% TRIS-gepuffertem bovinem Serumalbumin (BSA/TBS) auf die Objektträger gegeben. Die Bindung wurde durch Zugabe eines Biotin-gekoppelten zweiten Antikörper (1:400; 30 min.) und eines alkalischen Phosphatase-konjugierten ABC-Komplexes (1:400 in BSA/TBS; 30 min.) sichtbar gemacht.
Histologische Färbung auf Myelin und Nuklein: Die seriellen Gewebsschnitte, die zur hnmunhistochemie verwendet wurden, wurden mit Luxol Fast-Blue auf Myelin gefärbt. Ausgehend vom Läsionszentrum wurden rostral und kaudal in verschiedenen Abständen (0,6; 1,2; 1,8; 2,4; 3,0 cm) die Gebiete des Gewebes identifiziert, die offensichtlich beschädigt waren oder einen Mangel an Myelin aufwiesen. Die Kerne wurden mit Kresylviolett (0,1 %) angefärbt, um intakte und beschädigte Gebiete der grauen Substanz unterscheiden zu können. Die Schnitte zeigten, daß die mit C3-C2IN in Gegenwart von C2II behandelten Ratten weniger Sekundärschäden aufwiesen. Die Lakunenformation und Höhlenbildung war an den so behandelten Tieren gegenüber den Kontrolltieren deutlich reduziert. Gleichzeitig konnten mehr Zellen, weniger Aussparungen und eine erhöhte Neuronensprossung nachgewiesen werden.
Stereotaktische Mikroinjektion: Um exakt definierte Mengen (10 x 1 μl, 10 μg) von C3-C2IN Toxin in den rostalen Stumpf des durchtrennten Rückenmarks injizieren zu können, wurden Mikrokapillaren sowie ein stereotaktischer Apparat benutzt. Um das Rückenmark weiterhin zu stabilisieren, wurde eine Vorrichtung zur Anhebung der Ratte gebaut, die eine Ausdehnung der Atembewegung auf die Wirbelsäule blockierte.
Anterograde Markierung: 30 μl (30 μg, 15 μl pro Seite biotinyliertem Biodextran (BDA, 10.000 kDa) wurden mittels Hamilton-Spritze in die motorischen Cortex-Gebiete injiziert. Nach Injektion wurde die Wunde gewaschen und verschlossen. Diese Methode dient der Darstellung von regenerierten axonalen Fasern des Corticospinaltrackts (CST). Das biotinylierte Biodextran wird von den motorischen Kortex-Gebieten in das Rückenmark transportiert. Alle Fasern, die unterhalb der Läsionsstelle biotinyliertes Biodextran
«. er enthalten, müssen folglich neu gewachsen sein. Die mit C3-C2IN in Gegenwart von C2II behandelten Ratten zeigten im Vergleich zu den Kontrolltieren ein deutlich erhöhtes Nervenfaserwachstum. Hierbei war sowohl die Anzahl der Fasern als auch die Länge der neugewachsenen Fasern deutlich erhöht. Die neu gewachsenen Fasern waren GAP43 (Nachweis mittels polyklonaler Antikörper) womit sie als neuronale, aussprossende Fasern identifiziert wurden.
Sensorische und lokomotorische Beurteilung: Die Tiere wurden über einen Zeitraum von 1-21 Tagen nach dem Verletzungsereignis in Hinblick auf die Funktionswiederkehr beobachtet und unter Verwendung des "Combined Sensory- Motor Gale-Score" (Gale K, Kerasidis H, Wrathhall JR, 1985, Spinal cord contusion in the rat: behavioural analysis of functional neurologic impairment. Exp Neurol 88: 123-134) unter Einbeziehung der schiefen Ebene (Rivlin AS, Tator CH, 1977, Objective clinical assessment of motor function after experimental spinal cord injury in the rat. J Neurosurg 47: 577-581) und dem "Motor Openfield BBB-Score (Basso D; Beatti MS, Breshnahan JC, 1996, Graded histological and locomotor outcomes after spinal cprd contsuion using the NYU wight-drop device versus transection. Exp Neurol 139: 244-256) beurteilt.
In zwei unabhängigen Experimenten zeigten Ratten, welche C3-C2IN erhalten hatten eine signifikante (p<030001) Verbesserung der sensorischen und motorischen Funktion im Vergleich zu Ratten, die lediglich aktives oder inaktives C2-Transporterprotein erhalten hatten oder Ratten, die der Kontrollgruppe angehörten. Die Verbesserung der sensorischen und motorischen Funktion trat bereits nach dem dritten Tag ein und erreichte ein Maximum 21 Tage nach dem Verletzungsereignis. Vor der Applikation wurde die biologische und funktioneile Aktivität der C3-C2IN-Konstrukte in E2-v/trσ-Versuchen zum Kollaps des Wachstumskegels überprüft. Es wurden Untersuchungen zur motorischen Funktion wie Zehspreizung, Ausrichtung, Aufrichtung, schiefe Ebene und zur sensorischen Funktion wie die Rückzugsreflexe der Hintergliedmaßen als Antwort auf Zug, Schmerz (manuell und Hitze) und Druck sowie Schwimmtests durchgeführt. Ein dritter Versuch wurde als doppelblinde Versuchsanordnung durchgeführt und lieferte identische Ergebnisse.
In einem vierten Experiment wurde die Relevanz der C2-Transporter- Komponente für die funktionelle Wiederkehr analysiert. Die Mikroinjektion von C3-C2IN und inaktivierter C2-Komponente resultierte nicht in einer signifikanten Wiederkehr der Funktion. Diese Ergebnisse belegen, daß das aktive Transporter- Protein C2 zur Regeneration notwendig ist.
Die Verbesserung der motorischen Funktionen von C3-C2IN-behandelten Tieren wurde durch das Erscheinen einer funktionaler Haltung der Hintergliedmaßen (gewöhnlich eine Beugung in der Hüfte, dann den Knien und zuletzt eine Dorsiflektion in den Knöcheln), die ein Maximum (Mittelwert + SEM) von 12,2 Punkten (± 0,84) in der BBB- Wertung (0-21 Punkte) einschließlich einer Gewichtsunterstützung der Hintergliedmaßen erreichte (Fig. 2). In den meisten Fällen (< 80%) trat die Genesung symmetrisch ein. Die Kontrolltiere erreichten ein Maximum von 4,1 Punkten (± 0,5) in der BBB- Wertung und zeigten keine fortschreitende Verbesserung während des untersuchten Zeitraums. Dies ist im Einklang mit den Ergebnissen anderer Gruppen (Basso et al., 1996; supra). Am 10. Tag nach der Durchtrennung zeigten die C3-C2IN-Tiere eine Verbesserung von bis zu 8-9 Punkten ("sweeping") im Vergleich zu dem ersten Untersuchungszeitpunkt, wogegen die Kontrolltiere unter 3 Punkten lagen. Ausschließlich im ersten Experiment beobachteten wir eine Verbesserung nach 21 Tagen bis zu 8 Punkten (+ 0,58) auch in den Tieren, die nur C2 erhielten. Im zweiten Experiment konnten wir den Effekt einer alleinigen C2- Gabe bis jetzt nicht bestätigen. Bis zum heutigen Tag war eine signifikante motorische Genesung einschließlich einer Gewichtsunterstützung der Hinterextremitäten auf Ratten beschränkt, die C3-C2IN-Konstrukte erhielten. Keine signifikante motorische Genesung trat bei den Tieren ein, die mit C3-C2IN mit einer inaktiven C2-Transporter-Komponente, nur mit C2-Transporter- Komponente oder ohne Zugabe von irgendwelchen Komponenten (Kontrolltiere) blieben. Die sensorische Genesung wurde mittels einer senso-motorischen Gale- Wertung quantifiziert. 21 Tage nach Injektion zeigten C3-C2IN behandelte Ratten ein vollständiges Zurückziehen der Hinterextremitäten als Antwort auf alle getesteten Stimuli (Berührung, Mechano-Rezeption, Temperatur) in einer Weise, die vergleichbar ist mit unbehandelten Ratten. C3-C2IN-Tiere erreichten bis zu 95% Genesung in dieser kombinierten Wertung, wogegen C2-Tiere oder Kontrolltiere weniger als 50%) Genesung erreichten. Weiterhin wurde ein richtig ausgeprägter Tastsinn in C3-C2IN-Tieren beobachtet, der essentiell für ein spezifisches Ausrichten der Hinterextremitäten ist.
Histologische Veränderungen nach C2-C3IN/C2II-Gabe zeigen sich in der stark erhöhten Anzahl ED-1 positiver Makrophagen.
Morphologische Veränderungen charakterisiert durch (i) reduzierte Narbenbildung und (ii) reduzierte sekundäre Schadensphänomene wie Hohlraumbildung, wurden in C3-C2IN behandelten Tieren beobachtet. Die Gewebsneubildung wurde durch immunhistochemische Methoden (spezifische Antikörper, Nukleinfärbung) beschrieben und das die Läsionsstelle überbrückende Gewebe als Gewebe neuronalen Ursprungs (Neurophilament) identifiziert.
Eine durchgeführte Retranssektion oberhalb der ersten Läsionsstelle (Gh7) führte bei den Tieren, die eine über 95%ige Regeneration zeigten, führte erneut zur Lähmung der Hinterläufe. Dies ist darauf zurückzuführen, daß die Regeneration tatsächlich von corticospinalen Fasern oberhalb der ersten Läsionsstelle, die die Läsion überbrückten, bewirkt wurde.
Beispiel 3:
Wie in Beispiel 2 ausgeführt, wurde bei Ratten eine Laminektomie auf Höhe des fhorakalen Segments TH8 durchgeführt, allerdings ohne daraufhin das Rückenmark zu durchtrennen. Durch die Dura hindurch wurde 20mal in das
? C Rückenmark eingestochen, um 10 μl C3C2I/C2II (2μg/μl in PBS) bzw. 10 μl PBS zu injizieren.
Die Tiere wurden nach drei Tagen, wie in Beispiel 2 beschrieben, perfundiert, Gehirn und Rückenmark entnommen, fixiert und die Gewebe in Paraffin eingebettet und geschnitten.
Vimentin reaktive Astrozyten und fibroblastoide Zellen wurden immunhistochemisch mit Vimentin-Antikörpern markiert (Dako, Glostrup, DEN, 1: 15).
Die Reduktion der Narbenge websbildung bei C3C2I/C2II-behandelten Tieren zeigte die histologische Auswertung: Die Anzahl der Vimentin positiven Astrozyten/fibroblastoide Zellen war, im Vergleich zu PBS-behandelten Tiere, um den Faktor 5,5 reduziert.
Beispiel 4:
Auswachs-Assay von retinalen Miniexplantaten auf CSPG Hierzu wurden Deckgläschen mit Poly-L-Lysin (200μg/ml, Sigma, DE, 30 min bei Raumtemperatur) und mit einem Proteingemisch aus CSPG (20μg/ml, Chemicon, DE) und Laminin (20μg/ml, Invitrogen, DE) 2h lang bei 37°C beschichtet und anschließend mit Hank's Puffer (PAA, AT) gewaschen.
Für die Präparation der Retina-Miniexplantate wurden die Augen embryonaler Hühnchen (E7) entnommen, die Retina isoliert, auf einer Gewebehackerplatte flach ausgebreitet und mit einem Gewebehacker 150 μm x 150μm große Quadrate gefertigt. Die Explantate wurden in Kulturmedium (F12, PAA, AT; 10% fetal calf serum Gold, PAA, AT; 2% chicken serum, Invitrogen, DE; Penicillin/Streptomycin, 1: 100, PAA, AT; Glutamin, 1: 100, PAA, AT) aufgenommen und 20-30 Stück mit einer Pipette auf die beschichteten Deckgläschen übertragen. Diese wurden für 24h bei 37°C und 4% CO2 in 24- Wellplatten kultiviert. 300 ng C3C2I/C2II wurden zum Zeitpunkt des Explantierens zugegeben.
Anschließend wurden die Miniexplantate mit 4% PFA (Merck, DE; über Nacht bei 4°C) fixiert und das Zytoskelett mit Phalloidin-Allexa-Färbung (Allexa 488, Molecular Probes, NL, nach Anleitung) dargestellt.
CSPG hemmt das Auswachsen von Axonen aus retinalen Miniexplantaten. Durch Zugabe von C3C2I/C2II wird diese hemmende Wirkung neutralisiert und Axone wachsen aus.

Claims

Ansprüche:
1. Verwendung einer Zusammensetzung enthaltend mindestens ein Fusionsprotein und mindestens einen Transporter zur Herstellung eines Arzneimittels zur Ez-vtvo-Stimulation des Nervenwachstums, zur Rj-vzvo-Inhibition der Narbengewebsbildung, zur E2-vz'vo-Reduktion eines Sekundärschadens und/oder zur E-z-vtvo-Akkumulation von Makrophagen,
wobei das Fusionsprotein mindestens eine Bindungsdomäne für den Transporter und mindestens eine Modulationsdomäne zur Änderung der Aktivität von kleinen GTP-bindenden Proteinen enthält, und der Transporter die Aufnahme des Fusionsproteins in eine Zelle vermittelt.
2. Verwendung einer Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß der Transporter an eine Struktur an der Zelloberfläche, insbesondere einen Rezeptor oder ein Oberflächenprotein, bindet.
3. Verwendung einer Zusammensetzung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Transporter ein viraler, liposomaler, ein proteinerger oder peptiderger Transporter ist.
4. Verwendung einer Zusammensetzung nach Anspruch 1-3, dadurch gekennzeichnet, daß der Transporter von einem binären bakteriellen Toxin, insbesondere von dem C2-Toxin aus Clostridium botulinum, stammt.
5. Verwendung einer Zusammensetzung nach Anspruch 1-4, dadurch gekennzeichnet, daß die Modulationsdomäne das kleine GTP-bindenden Proteine, insbesondere Rho A-C, inaktiviert.
6. Verwendung einer Zusammensetzung nach Anspruch 1-5, dadurch gekennzeichnet, daß die Modulationsdomäne, vorzugsweise durch kovalente Modifikation, am meisten bevorzugt durch ADP-Ribosylierung oder Glykosylierung, das kleine GTP-bindenden Proteine inaktiviert.
7. Verwendung einer Zusammensetzung nach Anspruch 1-4, dadurch gekennzeichnet, daß die Modulationsdomäne das kleine GTP-bindenden Proteine, insbesondere Cdc42 und Rac, aktiviert.
8. Verwendung einer Zusammensetzung nach Anspruch 1-7, dadurch gekenn- zeichnet, daß die Modulationsdomäne von einem Toxin abgeleitet ist.
9. Verwendung einer Zusammensetzung nach Anspruch 8, dadurch gekennzeichnet, daß das Toxin ein bakterielles Toxin ist, wobei das Bakterium insbesondere aus der Gruppe der Gattungen Clostridium, Staphylococcus, Bacillus, Pseudomonas, Salmonella oder Yersinia ausgewählt ist.
10. Verwendung einer Zusammensetzung nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß das Toxin das C3-Exoenzym aus Clostridium limosum oder eine verwandte Transferase ist.
11. Verwendung einer Zusammensetzung nach Anspruch 1-10, dadurch gekennzeichnet, daß die Bindungsdomäne ganz oder teilweise ein binäres bakterielles Toxin, vorzugsweise das C2-Toxin aus Clostridium botulinum, besonders bevorzugt die C2IN-Domäne enthält.
12. Verwendung einer Zusammensetzung nach Anspruch 1-11 zur Behandlung eines Neuronenschadens.
13. Verwendung einer Zusammensetzung nach Anspruch 1-12 zur Behandlung einer akuten und/oder chronischen Verletzung und/oder Erkrankung des
Gehirns und/oder des Rückenmarks.
14. Verwendung einer Zusammensetzung nach Anspruch 1-13 zur Behandlung einer neurologischen und neurodegenerativen Erkrankung des zentralen und/oder peripheren Nervensystems .
15. Verwendung einer Zusammensetzung nach Anspruch 1-14 zur Behandlung einer entzündlichen Erkrankung des Nervensystems, die mit Entmarkungs- schäden einhergeht.
16. Verwendung einer Zusammensetzung nach Anspruch 1-15 zur Stimulierung der Remyelinisierung.
PCT/EP2001/015147 2000-12-22 2001-12-20 Verwendung einer zusammensetzung zur stimulation des nervenwachstums, zur inhibition der narbengewebsbildung, zur reduktion eines sekundärschadens und/oder zur akkumulation von makrophagen WO2002051429A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002552571A JP2004519448A (ja) 2000-12-22 2001-12-20 神経成長の刺激、瘢痕組織形成の抑制、二次損傷の低減及び/又はマクロファージ蓄積のための組成物の使用
AU2002217149A AU2002217149A1 (en) 2000-12-22 2001-12-20 Use of a composition for the stimulation of nerve growth, the inhibition of scar tissue formation, the reduction of secondary damage and/or the accumulation of macrophages
US10/451,487 US20040151739A1 (en) 2000-12-22 2001-12-20 Use of a composition for the stimulation of nerve growth, the inhibition of scar tissue formation, the reduction of secondary damage and/or the accumulation of macrophages
EP01272037A EP1345619A2 (de) 2000-12-22 2001-12-20 Verwendung einer zusammensetzung zur stimulation des nervenwachstums, zur inhibition der narbengewebsbildung, zur reduktion eines sekundärschadens und/oder zur akkumulation von makrophagen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10064195A DE10064195A1 (de) 2000-12-22 2000-12-22 Verwendung einer Zusammensetzung zur Stimulation des Nervenwachstums, zur Inhibition der Narbengewebsbildung und/oder Reduktion eines Sekundärschadens
DE10064195.4 2000-12-22

Publications (2)

Publication Number Publication Date
WO2002051429A2 true WO2002051429A2 (de) 2002-07-04
WO2002051429A3 WO2002051429A3 (de) 2003-06-19

Family

ID=7668395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/015147 WO2002051429A2 (de) 2000-12-22 2001-12-20 Verwendung einer zusammensetzung zur stimulation des nervenwachstums, zur inhibition der narbengewebsbildung, zur reduktion eines sekundärschadens und/oder zur akkumulation von makrophagen

Country Status (6)

Country Link
US (1) US20040151739A1 (de)
EP (1) EP1345619A2 (de)
JP (1) JP2004519448A (de)
AU (1) AU2002217149A1 (de)
DE (1) DE10064195A1 (de)
WO (1) WO2002051429A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005009475A1 (ja) * 2003-07-25 2005-02-03 Yukako Fujinaga クロストリジウム属菌由来成分を含む医薬製剤
US6855688B2 (en) 2001-04-12 2005-02-15 Bioaxone Thérapeutique Inc. ADP-ribosyl transferase fusion proteins, pharmaceutical compositions, and methods of use
EP1667709A1 (de) * 2003-09-29 2006-06-14 Bioaxone Therapeutique Inc. Clostridium botulinum c3 exotransferase zusammensetzungen und verfahren zur behandlung von tumorausbreitung

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7858298B1 (en) * 1996-04-01 2010-12-28 Progenics Pharmaceuticals Inc. Methods of inhibiting human immunodeficiency virus type 1 (HIV-1) infection through the administration of CCR5 chemokine receptor antagonists
US20080160552A1 (en) * 2006-12-13 2008-07-03 Dolly Mehta Methods and Compounds for Treating Inflammation
KR20130056348A (ko) * 2008-09-25 2013-05-29 인비보 테라퓨틱스 코포레이션 척수 외상, 염증, 및 면역 질환: 치료제의 국소적 제어 방출

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999008533A1 (en) * 1997-08-13 1999-02-25 Yale University Central nervous system axon regeneration
DE19735105A1 (de) * 1997-08-13 1999-03-04 Univ Albert Ludwigs Freiburg Transportsystem zur Einbringung von Proteinen in Zielzellen mit Hilfe eines Fusionsproteins, Nucleinsäurekonstrukte kodierend für die Komponenten des Transportsystems und Arzneimittel, die Komponenten des Transportsystems umfassen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999008533A1 (en) * 1997-08-13 1999-02-25 Yale University Central nervous system axon regeneration
DE19735105A1 (de) * 1997-08-13 1999-03-04 Univ Albert Ludwigs Freiburg Transportsystem zur Einbringung von Proteinen in Zielzellen mit Hilfe eines Fusionsproteins, Nucleinsäurekonstrukte kodierend für die Komponenten des Transportsystems und Arzneimittel, die Komponenten des Transportsystems umfassen

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
H. BARTH ET AL: "The N-Terminal Part of the Enzyme Component (C2I) of the Binary Clostridium botulinum C2 Toxin Interacts with the Binding Component C2II and Functions as a Carrier System for a Rho ADP-Ribosylating C3-Like Fusion Toxin" INFECTION AND IMMUNITY, Bd. 66, Nr. 4, April 1998 (1998-04), Seiten 1364-1369, XP002233432 in der Anmeldung erw{hnt *
M. LEHMANN ET AL: "Inactivation of Rho Signaling Pathway Promotes CNS Axon Regeneration" THE JOURNAL OF NEUROSCIENCE, Bd. 19, Nr. 17, 1. September 1999 (1999-09-01), Seiten 7537-7547, XP002233431 in der Anmeldung erw{hnt *
M. LERM ET AL: "Bacterial protein toxins targeting Rho GTPases " FEMS MICROBIOLOGY LETTERS, Bd. 188, 2000, Seiten 1-6, XP002233433 in der Anmeldung erw{hnt *
SANDVIG K ET AL: "Entry of ricin and Shiga toxin into cells: molecular mechanisms and medical perspectives" EMBO JOURNAL, OXFORD UNIVERSITY PRESS, SURREY, GB, Bd. 19, Nr. 22, 15. November 2000 (2000-11-15), Seiten 5943-5950, XP002228667 ISSN: 0261-4189 in der Anmeldung erw{hnt *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855688B2 (en) 2001-04-12 2005-02-15 Bioaxone Thérapeutique Inc. ADP-ribosyl transferase fusion proteins, pharmaceutical compositions, and methods of use
WO2005009475A1 (ja) * 2003-07-25 2005-02-03 Yukako Fujinaga クロストリジウム属菌由来成分を含む医薬製剤
EP1667709A1 (de) * 2003-09-29 2006-06-14 Bioaxone Therapeutique Inc. Clostridium botulinum c3 exotransferase zusammensetzungen und verfahren zur behandlung von tumorausbreitung
EP1667709A4 (de) * 2003-09-29 2009-08-26 Bioaxone Therapeutique Inc Clostridium botulinum c3 exotransferase zusammensetzungen und verfahren zur behandlung von tumorausbreitung

Also Published As

Publication number Publication date
US20040151739A1 (en) 2004-08-05
JP2004519448A (ja) 2004-07-02
WO2002051429A3 (de) 2003-06-19
DE10064195A1 (de) 2002-07-11
AU2002217149A1 (en) 2002-07-08
EP1345619A2 (de) 2003-09-24

Similar Documents

Publication Publication Date Title
Yatsiv et al. Erythropoietin is neuroprotective, improves functional recovery, and reduces neuronal apoptosis and inflammation in a rodent model of experimental closed head injury
Paterniti et al. Docosahexaenoic acid attenuates the early inflammatory response following spinal cord injury in mice: in-vivo and in-vitro studies
Butovsky et al. Morphological aspects of spinal cord autoimmune neuroprotection: colocalization of T cells with B7‐2 (CD86) and prevention of cyst formation
Oudega et al. Long‐term effects of methylprednisolone following transection of adult rat spinal cord
DE69433562T2 (de) Prosaposin und cytokinabhängige peptide als therapeutisch wirksame mittel
Tom et al. Intraspinal microinjection of chondroitinase ABC following injury promotes axonal regeneration out of a peripheral nerve graft bridge
Cadelli et al. Regeneration of lesioned septohippocampal acetylcholinesterase‐positive axons is improved by antibodies against the myelin‐associated neurite growth inhibitors NI‐35/250
Yang et al. Application of liposome-encapsulated hydroxycamptothecin in the prevention of epidural scar formation in New Zealand white rabbits
VARON et al. Nerve growth factor in CNS repair
EP1185291A2 (de) Therapeutikum mit einem botulinum-neurotoxin
WO2004061456A2 (de) Verwendungen von hmgb, hmgn, hmga proteinen
JPH03503632A (ja) 血液脳関門を経る治療薬の分別送達
Won et al. Influence of age on the response to fibroblast growth factor-2 treatment in a rat model of stroke
Marklund et al. Cognitive outcome following brain injury and treatment with an inhibitor of Nogo-A in association with an attenuated downregulation of hippocampal growth-associated protein-43 expression
Sahenk et al. Ultrastructural study of zinc pyridinethione-induced peripheral neuropathy
Piermartiri et al. Alpha-linolenic acid-induced increase in neurogenesis is a key factor in the improvement in the passive avoidance task after soman exposure
Gash et al. Transplantation into the Mammalian CNS
EP1345619A2 (de) Verwendung einer zusammensetzung zur stimulation des nervenwachstums, zur inhibition der narbengewebsbildung, zur reduktion eines sekundärschadens und/oder zur akkumulation von makrophagen
DE69818106T2 (de) Immunologische zusammensetzungen und verfahren zur transienten änderung des zentralnervensystem-myelins der saügetiere und förderung der nerven-regenerierung
EP1056467B1 (de) Verfahren zur behandlung von erkrankungen oder störungen des innenohrs
DE69533311T2 (de) Verfahren zur behandlung von autoimmunerkrankungen mittels typ-1-interferonen
Ochi et al. Fluorescence and electron microscopic evidence for the dual innervation of the iris sphincter muscle of the rabbit
EP0756605B1 (de) Peptide als therapeutikum für autoimmunerkrankungen
Jakubowska-Doğru et al. chronic intracerebroventricular NGF administration improves working memory in young adult memory deficient rats
Sprick et al. Effects of chronic substance P treatment and intracranial fetal grafts on learning after hippocampal kainic acid lesions

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002552571

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2001272037

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001272037

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10451487

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2001272037

Country of ref document: EP