WO2002005844A2 - Proteinkomplex als vehikel für oral verfügbare arzneimittel - Google Patents

Proteinkomplex als vehikel für oral verfügbare arzneimittel Download PDF

Info

Publication number
WO2002005844A2
WO2002005844A2 PCT/DE2001/002816 DE0102816W WO0205844A2 WO 2002005844 A2 WO2002005844 A2 WO 2002005844A2 DE 0102816 W DE0102816 W DE 0102816W WO 0205844 A2 WO0205844 A2 WO 0205844A2
Authority
WO
WIPO (PCT)
Prior art keywords
complex
protein
proteins
molecular weight
low molecular
Prior art date
Application number
PCT/DE2001/002816
Other languages
English (en)
French (fr)
Other versions
WO2002005844A8 (de
WO2002005844A3 (de
Inventor
Hans Bigalke
Jürgen Frevert
Original Assignee
BioteCon Gesellschaft für Biotechnologische Entwicklung und Consulting mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PL01364993A priority Critical patent/PL364993A1/xx
Priority to KR1020037000614A priority patent/KR100822006B1/ko
Priority to JP2002511776A priority patent/JP2004503600A/ja
Priority to CA002415712A priority patent/CA2415712A1/en
Priority to BR0112515-0A priority patent/BR0112515A/pt
Priority to DE10192679T priority patent/DE10192679D2/de
Priority to MXPA03000566A priority patent/MXPA03000566A/es
Priority to HU0301644A priority patent/HUP0301644A3/hu
Application filed by BioteCon Gesellschaft für Biotechnologische Entwicklung und Consulting mbH filed Critical BioteCon Gesellschaft für Biotechnologische Entwicklung und Consulting mbH
Priority to EP01964858A priority patent/EP1303535A2/de
Priority to IL15353901A priority patent/IL153539A0/xx
Priority to AU8568801A priority patent/AU8568801A/xx
Priority to AU2001285688A priority patent/AU2001285688B2/en
Priority to US10/333,477 priority patent/US20040028703A1/en
Publication of WO2002005844A2 publication Critical patent/WO2002005844A2/de
Publication of WO2002005844A8 publication Critical patent/WO2002005844A8/de
Publication of WO2002005844A3 publication Critical patent/WO2002005844A3/de
Priority to NO20030231A priority patent/NO20030231L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/33Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Clostridium (G)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/08Clostridium, e.g. Clostridium tetani
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/4886Metalloendopeptidases (3.4.24), e.g. collagenase
    • A61K38/4893Botulinum neurotoxin (3.4.24.69)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/6415Toxins or lectins, e.g. clostridial toxins or Pseudomonas exotoxins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/33Assays involving biological materials from specific organisms or of a specific nature from bacteria from Clostridium (G)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • Protein complex as a vehicle for orally available drugs
  • the present invention relates to a protein complex comprising one or more complex proteins or derivatives from Clostridium botulinum type A, B, C 2 , D, E, F or G and a selected polypeptide or low molecular weight pharmaceutical.
  • EPO Erythropoietin
  • the present invention is illustrated by the following figure.
  • Figure 1 shows schematically the result of an SDS-polyacrylamide gel electrophoresis (12%) of a protein complex according to the invention with tetanus toxin.
  • protein complex used here denotes a vehicle with which other selected polypeptides or low-molecular pharmaceuticals can be transported into the blood system of humans and animals.
  • the protein complex consists of at least one hemagglutinin and possibly non-toxic, non-hemagglutinating protein (NTHT) of the botulinum toxin complexes from at least one of the Clostridium botulinum types A, B, C 2 , D, E, F or G.
  • NTHT non-toxic, non-hemagglutinating protein
  • botulinum toxin complex means a naturally occurring protein complex of the type A, B, Ci, C 2 , D, E, F or G from Clostridium botulinum, comprising the botulinum toxin, hemagglutinins and non-toxic, non- hemagglutinating protein (NTHT).
  • NTHT non-toxic, non- hemagglutinating protein
  • polypeptide or "selected polypeptide” used here means a peptide of at least 2 amino acids.
  • the polypeptide can be linear, circular or branched.
  • the polypeptide can consist of more than one amino acid chain, the chains e.g. can be connected to each other via a disulfide bond.
  • the polypeptides can also modified amino acids and the usual post-translational modifications such as
  • polypeptides Contain glycosylation.
  • the polypeptides can be pharmacologically or immunologically active
  • Polypeptides or polypeptides used for diagnostic purposes e.g. Antibodies or
  • Clostridium botulinum is divided into 8 serogroups, which are differentiated on the basis of their toxins: type A, B, C ⁇ , C, D, E, F, G.
  • the toxins hereinafter also called botulinum toxin, are proteins with a Molecular weight of approximately 150,000 daltons (Da).
  • Botulinum toxin is usually taken up with contaminated food, enterally absorbed and reaches its place of action, the motor end plate, where the nerve impulse is transmitted to muscles.
  • the toxins are absorbed by the nerve cell and paralyze the secretion mechanism of acetylcholine in the nerve endings, so that the affected muscle is no longer activated and slackens.
  • botulinum toxin is not secreted by Clostridium botulinum, but is produced in a complex form, i.e. the clostridia produce besides botulinum toxin various other proteins that bind the toxin into a complex with a molecular weight of about 700,000 to about 900,000 daltons, the botulinum toxin - complex.
  • the formation of the botulinum toxin complex is necessary for the oral toxicity of the botulinum toxin. It was shown that the botulinum toxin, which is present in the botulinum toxin complex, has a toxicity that is approximately 100,000 times higher than that of pure botulinum toxin.
  • the hemagglutinins may be used to attach the complex to the intestinal wall to allow it to be transported through the intestinal mucosa into the bloodstream.
  • the complex is said to serve as protection against proteases in the gastrointestinal tract.
  • the other proteins are a series of hemagglutinins and a non-toxic, non-hemagglutinating protein (NTHT) that has a molecular weight of approximately 120,000 Da.
  • NTHT non-toxic, non-hemagglutinating protein
  • the following hemagglutinins were described for the botulinum toxin complex of type A: Ha2 with approximately 16,900 Da, Ha3a with approximately 21,000 Da, Ha3b with approximately 52,000 Da and Hai with approximately 35,000 Da.
  • the complexes of the other toxin types B to G are structured according to a similar scheme.
  • the complex of type B may be mentioned as an example.
  • Ha-70 with a molecular weight of about 70,000 Da, Ha-17 with a molecular weight of about 17,000 Da and Ha-33 with a molecular weight of about 33,000 Da are described (cf. Bhandari, M. et al. (1997) Current Microbiology 35, p. 207-214).
  • the complexes formed have a different composition depending on their serotype, i.e. a different number of individual ha agglutinene or NTHT is integrated in the complex.
  • a different number of individual ha agglutinene or NTHT is integrated in the complex.
  • One aspect of the present invention is therefore to provide a
  • Protein complex comprising one or more complex proteins or their derivatives from at least one of the Clostridium botulinum types A, B, C ls C 2 , D, E, F or G.
  • Protein complex also contains a selected polypeptide or a low molecular weight drug, which is of the protein complex according to the invention when administered orally
  • the selected polypeptide can be a pharmacologically active, an immunologically active or a polypeptide used for diagnostic purposes.
  • the selected low molecular weight pharmaceutical can also be a pharmacologically active, an immunologically active or a pharmaceutical used for diagnostic purposes or any drug.
  • the protein complex according to the invention therefore serves as a transport vehicle with which the selected polypeptides and the low-molecular pharmaceuticals are introduced into the blood system of animals, preferably of mammals or birds, particularly preferably of humans, and are thus transported to the site of action.
  • a further aspect of the present invention therefore consists in the provision of a protein complex as a therapeutic agent, vaccine or diagnostic agent in human and / or veterinary medicine.
  • Another aspect of the present invention is the use of a protein complex comprising one or more complex proteins from at least one of the Clostridium botulinum types A, B, C 1 ⁇ C 2 , D, E, F or G as a transport vehicle for pharmacologically active polypeptides or low molecular weight Substances (pharmaceuticals), immunologically active polypeptides or low-molecular substances (pharmaceuticals) or polypeptides or low-molecular substances (pharmaceuticals or diagnostics) for diagnostic purposes.
  • the protein complex is made up of hemagglutinins and NTHT and can thereby be the naturally occurring complexes of types A, B, C 1? C 2 , D, E, F or G from Clostridium botulinum correspond.
  • the protein complex can also contain a composition other than its natural one, for example it can only be composed of hemagglutinin without the NTHT proteins.
  • the protein complex can be constructed from fewer types of hemagglutinin than the naturally occurring complex, preferably from three different types of hemagglutinin, preferably from two, particularly preferably from one type of hemagglutinin, wherein the protein complex may or may not contain the NTHT protein.
  • the protein complex can also be constructed from a mixture of one or more types of hemagglutinin and / or NTHT proteins of the different serotypes. Protein complexes which correspond to the naturally occurring protein complexes from Clostridium botulinum of types A, B, C ⁇ , C, D, E, F or G are preferred, for example a protein complex with shark, Ha2, Ha3a, Ha3b and NTNH from Clostridium botulinum type B
  • the protein complex can also be composed of shark, Ha2, Ha3a and NTNH, from shark, Ha2, Na3b and NTNH, as well as from Shark and Ha3a, Ha3b and NTNH, furthermore from Ha2, Ha3a, Ha3b and NTNH, from Hai, Ha2 and NTNH, from Hai, Ha3a and NTNH, from Hai, Ha3b and NTNH, from Ha2, Ha3a and NTNH, from Ha2, Ha3a and NTNH from Ha2, Ha3a and NTNH from Ha
  • the protein complex can also be composed of one of the hemagglutinins and NTNH, and the protein complex can also be composed of the listed combinations of hemagglutinins without NTNH.
  • protein complexes of the hemagglutinins and / or NTNH of types A are also preferred,
  • the protein complexes according to the invention are further preferred, one or more complex proteins being linked via a chemical bond to the selected polypeptide or the low molecular weight pharmaceuticals. This binding could be cleaved in the blood after absorption, so that the polypeptide or the low-molecular drug can then reach its site of action.
  • the selected polypeptide or the low molecular weight pharmaceutical can be bound to the complex proteins via a "cross-linking agent".
  • Preferred cross-linking agents are e.g.
  • a single complex protein is preferred, which is linked via a chemical bond to the selected polypeptide or the low molecular weight pharmaceutical
  • Another aspect of the present invention is to provide a method for producing the protein complex according to the invention, comprising the steps: a) separate isolation of at least one botulinum toxin complex of type A, B, Ci, C 2 , D, E, F or G from Clostridium botulinum at a pH of 2.0 to 6.5, b) increasing the pH to pH 7.0 to 10.00 in each case.
  • step c) separating the respective botulinum toxin from the complex proteins by means of chromatographic methods, d) mixing the complex proteins obtained in step c) with a selected polypeptide or a low molecular weight pharmaceutical, or d ⁇ ) separating the complex proteins obtained in step c) and mixing at least one Complex protein with a selected polypeptide or a low molecular weight drug, and e) dialyzing the mixture from step d) or d ') against a buffer at a pH of 2.0 to 6.5, and optionally f) connecting the complex proteins with the selected polypeptide or the low molecular weight pharmaceutical via a chemical bond.
  • a preferred method is one in which the at least two complex proteins mixed in step d) or d ⁇ ) originate from one or from different botulinum toxin complex types.
  • the complex proteins can be isolated from the natural botulinum toxin complexes.
  • An exemplary method for isolation is as follows: First, the botulinum toxin complex from clostridia is at an acidic pH, preferably pH 2.0 to pH 6.5, particularly preferably pH 4.0 to 6.5, particularly preferably pH 6 , 0, isolated. After increasing the pH to pH 7.0 to 10.0, preferably to pH 7.0 to 8.0, the botulinum toxin is separated off using chromatographic methods. This process can be carried out because the complex is stable at a pH ⁇ 6.5, disintegrates at neutral or alkaline pH and the toxin is released.
  • the toxin-free complex proteins can then be mixed with another orally administered polypeptide and the pH value dialyzed against a buffer customary in protein chemistry, particularly preferably a phosphate, acetate or citrate buffer to pH 2.0 to 6. 5, preferably 4.0 to 6.0, particularly preferably reduced to pH 5.5.
  • a buffer customary in protein chemistry particularly preferably a phosphate, acetate or citrate buffer to pH 2.0 to 6. 5, preferably 4.0 to 6.0, particularly preferably reduced to pH 5.5.
  • a new complex is formed which ensures the oral bioavailability of the bound polypeptide.
  • complex proteins can also be produced recombinantly in special host organisms by means of recombinant DNA techniques.
  • the complex proteins produced in this way can also have modifications, ie they can
  • Amino acids e.g. Methylations, or acethylations, as well as post-translational
  • Modifications e.g. Glycosylations or phosphorylations.
  • the expression of desired proteins in different hosts is known to the person skilled in the art and need not be described separately here.
  • the complex proteins required for the protein complex can be expressed separately or at the same time expressed in a host organism. Preferred is the production of the recombinant complex proteins in bacteria, e.g. in E. coli, Bacillus subtilis or Clostridium di ßcile, or in eukaryotic cells, e.g. in CHO cells, in insect cells, e.g. using the baculovirus system, or in yeast cells.
  • the complex proteins can be isolated and the selected polypeptide or the low-molecular drug can be added by the method as described above.
  • the selected polypeptide together with the complex proteins can be expressed simultaneously in the host organism. The simultaneous or separate production of the respective complex proteins together with the selected polypeptide via a YAC in yeast is particularly preferred.
  • the protein complexes according to the invention can furthermore be composed of a mixture of recombinantly produced complex proteins isolated from natural botulinum toxin complexes.
  • the pharmacologically or immunologically active polypeptides which are administered orally with the aid of the protein complex according to the invention can be all therapeutically or preventively active polypeptides which previously had to be administered parenterally.
  • the polypeptides can be, for example, hormones, cytokines, enzymes, growth factors, antigens, antibodies, inhibitors, receptor agonists or antagonists or coagulation factors. It does not matter whether the polypeptides were produced recombinantly or were isolated from their natural sources.
  • Preferred polypeptides are insulin, erythropoietin, interferons, terleukins, HIV protease inhibitors, GM-CSF (granulocyte / macrophage stimulating factor), NGF (nerve growth factor), PDGF (platelet derived growth factor), FGF (fibroblast growth factor) ), Plasminogen activators, e.g. TPA (tissue plasminogen activator), Renin inhibitors, human growth factor, IGF (insulin-like growth factor), vaccines such as tetanus vaccine, hepatitis B vaccine, diphtheria vaccine, antibodies such as Herceptin
  • Antibodies against Her2 antibodies against antibodies against TNF (tumor necrose factor), calcitonin,
  • the polypeptides used for diagnostic purposes can e.g. Antibodies or ligands, whereby the polypeptides can be provided with a label. Any marking that can be detected in the body of humans or animals can be used as a marking.
  • Preferred labels are isotopes, e.g. C, or radioactive labels.
  • the labeled anti-bodies can be used for the detection of tumors, the labeled ligands for the detection of e.g. pathological receptors can be used.
  • the low molecular weight pharmaceuticals that are made orally bioavailable can e.g. Neomycin, salbutamol, pyrimethamine, methicillin, pethidine, ketamine or mephenesin.
  • Example 1 Obtaining the complex proteins from C. botulinum type B
  • botulinum type B was fermented in a 20 L fermenter according to published procedures
  • the fermentation medium consisted of 2% proteose peptone no. 2 (DIFCO), 1% yeast extract, 1% glucose and 0.05% sodium thioglycolate. After 72 h of growth at 33 ° C., the toxic complex was precipitated by adding 3 NH 2 SO 4 . The precipitate was extracted with 2 x 250 0.2 M mL Na phosphate pH 6.0. Nucleic acids were precipitated from the combined extracts by adding 125 mL of 2% protamine sulfate. The toxic complex was then precipitated using 233 g of ammonium sulfate (14 h at 2-8 ° C).
  • the precipitate was dissolved in 125 mL 50 mM Tris / HCl, 1 mM EDTA and dialyzed against this buffer overnight at 2-8 ° C (2 x 2 L). Insoluble articles were separated by centrifugation (15 min x 15,000 rpm). The 429 mg protein thus obtained were chromatographed on a Sepharose Q column (2.6 x 25 cm). Bound protein was eluted with a NaCl gradient (0-500 mM). The free neurotoxin type B was eluted at approx. 100 mM NaCl, the complex was detached at approx. 250 mM NaCl. Chromatography gave 151 mg of protein.
  • Example 2 Removal of residues of botulinum toxin type B from complex proteins 33 mg of the complex proteins still contaminated by botulinum toxin (pooled fractions according to the Sepharose Q chromatograph) were dialyzed against 50 mM Tris / HCl pH 7.9, 2 mM EDTA overnight (2 x 1 L). The protein solution was chromatographed on a Q-Hyper-D column (2.6 x 8 cm), bound protein was eluted with a NaCl gradient (0-400 mM). The neurotoxin was detached at a NaCl concentration of approx. 100 mM, the complex proteins appeared at approx. 190 mM NaCl. In SDS polyacrylamide gel electrophoresis, the proportion of neurotoxin was ⁇ 1% of the analyzed protein.
  • Example 3 Separation of traces of the neurotoxin by means of affinity chromatography to obtain the protein complex (apocomplex).
  • affinity chromatography was carried out. Rabbits were immunized with detoxified homogeneous neurotoxin. The antisera obtained were purified by means of ammonium sulfate precipitation. The neurotoxin-specific antibodies could be purified using affinity chromatography. For this purpose, 3 mg of pure neurotoxin were immobilized on 0.6 g of rehydrated CNBr-Sepharose (according to the manufacturer's instructions).
  • Antiserum (after ammonium sulfate precipitation) against the neurotoxin type B was chromatographed after dialysis against 20 mM sodium phosphate pH 7.0, 0.5 M NaCl on a column (0.5 ⁇ 3 cm) which was filled with the synthesized matrix.
  • the toxin-specific antibodies were obtained by elution with 0.1 M glycine pH 2.7 (yield 1.57 mg). 1.25 mg of the purified neurotoxin antibodies were immobilized on 1 g of CNBr-Sepharose.
  • Example 4 Formation of a protein complex according to the invention with tetanus toxin
  • Protein complex formed with the heterologous toxin Protein complex formed with the heterologous toxin.
  • the pellet was dissolved in 50 mM Na phosphate, 150 mM NaCl, 2 mM EDTA, pH 5.9 and an aliquot was analyzed in a gel filtration.
  • a Biosep SEC 3000 7.8 x 300 mM (Phenomenex) was used for this (flow rate 0.5 mL / min). > 90% of the protein was eluted in a high molecular peak (Mr> 500,000). Analysis of the peak fraction in a 12% SDS-PAGE showed that the protein complex contained tetanus toxin. The presence of tetanus toxin was confirmed in the diaphragm test.
  • mice 5 mg of the purified complex proteins in 2.5 mL 50 mM Tris / HCl, pH 8.0 were mixed with 1 mg tetanus toxin and dialyzed overnight against 50 mM citrate / phosphate buffer pH 6.0. 25 ⁇ L of the solution were checked for the presence of tetanus toxin in the protein complex (see Example 4A). 5 CD 1 mice were administered by gavage each time to 0.5 mL. 3 other mice (control) were given an equivalent amount of tetanus toxin. The mice treated with tetanus toxin-protein complex died of tetanus after 24 hours, while the control mice showed no signs of tetanus.
  • Example 6 Testing the tetanus toxin-protein complex in vivo in rats 2 ⁇ g each of the protein complex according to the invention (see Example 4B) in 0.5 ml 50 mM sodium phosphate, 150 mM NaCl 2 mM EDTA, 100 ⁇ g BSA / mL, pH 6.0 5 Wistar rats (180-200 g) were administered by gavage. 3 other rats (control) were given an equivalent amount of tetanus toxin in the same buffer. The one with tetanus toxin Protein complex-treated rats died of tetanus within 24 hours while the
  • Example 7 Formation of a protein complex according to the invention with insulin (A) 10 mg of the purified complex proteins were dialyzed with 0.5 mg insulin overnight in a 50 mM citrate / phosphate buffer. A sample was examined for complex formation in a gel filtration. A peak with a molecular weight of> 500,000 Da appears. An aliquot of the peak fraction was examined in an SDS polyacrylamide gel electrophoresis. The peak fraction contained both the bands of the complex proteins and the band of insulin.
  • mice were given 1 mL of a 10% sucrose solution with a gavage. After 1 hour, 5 mice were given 1 mg of an insulin-protein complex by gavage. The blood sugar level of the mice was determined every half hour. It was found that the blood sugar level in the treated mice was 25-40% below the mean blood sugar level in the untreated mice.
  • mice 3 mg of tetanus toxoid (mutant tetanus toxin) were added to 30 mg of complex protein preparation and dialyzed overnight against 50 mM citrate / phosphate buffer, pH 5.5. 5 CD 1 mice were each administered 1 mg of tetanus toxoid-protein complex with a throat tube. The same dose was administered after 2 and 6 weeks. Blood was obtained 2 weeks after the last treatment and the antibody titer was determined by means of ELISA. In contrast to 5 control mice, which received the same dose of non-complex-bound toxoid, the mice had developed an antibody titer against the toxin (> 1: 1000). A neutralization assay was also able to show that the sera inactivated the activity of the toxin.
  • Example 11 Preparation of a complex with recombinant complex proteins of Clostridium botulinum type A.
  • E. coli cf. Fujinaga, Y. et al. (2000) FEBS Letters 467, p. 179 - 183.
  • the method is based on the production of hemagglutinins (HA 1: M r about 33,000 Da, HA 2: M r about 17,000 Da, HA 3a: M r about 21,000 Da, HA 3b: M r about 48,000 Da) in E. coli in a pGEX-SX-3 expression vector as GST fusion proteins.
  • HA 1 M r about 33,000 Da
  • HA 2 M r about 17,000 Da
  • HA 3a M r about 21,000 Da
  • HA 3b M r about 48,000 Da
  • the glutathione-S-transferase was cut off with factor Xa and after separation of factor Xa and GST the pure recombinant proteins were obtained.
  • the non-toxic, non-hemagglutinating complex protein was also produced by the same method.
  • the recombinant complex proteins were dialyzed against a 50 mM Tris / HCl buffer pH 8.0 overnight (protein concentration 1 - 1.5 mg / mL). To produce a complex with tetanus toxin, the components were mixed with one another in the following molar ratios:
  • the protein mixture was dialyzed against a 50 mM sodium citrate buffer, pH 5.5 for 16 hours. A 25 ⁇ L sample was examined for gel formation in the gel filtration. The protein appears in a peak with a molecular weight of approximately 500,000. The analysis of the peak fraction in SDS-polyacrylamide gel electrophoresis showed not only the complex proteins but also the band of tetanus toxin (150,000 Da).
  • Example 12 Examination of the recombinant complex on the mouse
  • Example 10 (A) The complex described in Example 10 (A) was tested on 3 CD1 mice.
  • the mice received 50 ⁇ g of the recombinant complex via a pharyngeal tube. All three mice died of tetanus within 48 hours, while 3 mice, which received an equivalent amount of pure tetanus toxin (11 ⁇ g), showed no signs of rigidity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • Mycology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Die vorliegende Erfindung betrifft einen Proteinkomplex, umfassend ein oder mehrere Komplexproteine oder Derivate aus <i>Clostridium botulinum</i> Typ A, B, C1, C2, D, E, F oder G und ein ausgewähltes Polypeptid oder niedermolekulares Pharmakon.

Description

Protein omplex als Vehikel für oral verfügbare Arzneimittel
Die vorliegende Erfindung betrifft einen Proteinkomplex, umfassend ein oder mehrere Komplexproteine oder Derivate aus Clostridium botulinum Typ A, B, , C2, D, E, F oder G und ein ausgewähltes Polypeptid oder niedermolekulares Pharmakon.
Dank der Erfolge biotechnologischer Verfahren sind zahlreiche hochwirksame Arzneimittel entwickelt, die z.B. Proteine als Wirkstoffe enthalten. Neben rekombinantem Insulin gehören dazu auch höher molekulare Proteine, z.B. Wachstumsfaktoren, Interleukine und monoklonale
Antikörper. Einige dieser Arzneimittel, z.B. Erythropoetin (EPO), gehören zu den umsatzstärksten Pharmaka. Die Anzahl von Proteinarzneimitteln wird - auch wegen der Erkenntnisse aus der vollständigen Sequenzierung des humanen Genoms - in Zukunft noch zunehmen. Alle diese neuartigen Pharmaka haben einen erheblichen Nachteil gegenüber herkömmlichen niedermolekularen Arzneimitteln: sie werden oral nicht resorbiert. Die geschilderten Nachteile gelten ebenfalls für Impfstoffe zur aktiven .Immunisierung, z.B.
Tetanustoxoid.
Die überwiegende Anzahl von niedermolekularen Wirkstoffen kann oral verabreicht werden. Die Substanzen durchqueren die Darmmukosa und gelangen in den Blutkreislauf, sind deshalb systemisch verfügbar und erreichen über das Blutsystem ihren Wirkort. Dieser Weg ist Protein- Arzneimitteln, säurelabilen Wirkstoffen und Wirkstoffen mit ungünstiger Ladung verwehrt. Eine Reihe von Mechanismen verhindert die Resorption von Proteinen. Bereits im Magen werden wegen des niedrigen pH-Wertes viele Proteine denaturiert und verlieren ihre biologische Aktivität. Des weiteren werden Proteine von einer Vielzahl von Pankreasproteasen (u. a. Trypsin, Chyrnotrypsin, Pepsin) in ihre resorbierbaren Aimnosäurebestandteile zerlegt. Aber selbst wenn ein Protein die proteolytischen Angriffe übersteht und unbeschadet im Dünndarm ankäme, könnte es nicht ohne weiteres resorbiert werden, denn die Darmwand ist für höhermolekulare Substanzen undurchlässig, da sonst der Körper mit Antigenen überschwemmt würde. Es gibt außerdem eine Vielzahl von pharmazeutischen Wirkstoffen, die wegen ungünstiger Ladung bzw. Hydrophobizität nicht resorbiert werden. Aus diesen Gründen sind oral verabreichte Protein-Arzneimittel oder Protein-Impfstoffe und bestimmte niedermolekulare Pharmaka wirkungslos. Sie müssen injiziert werden oder z.B. über eine nasale Applikation zum Wirkort gelangen.
Eine Reihe von Entwicklungen beschäftigt sich damit, die genannten Barrieren zu überwinden. Um Proteine oder bestimmte niedermolekulare Pharmaka vor einer Inaktivierung und einem Abbau im Magen-Darmtrakt zu schützen, können sie in Magen-resistente Kapseln gepackt werden, die sich im Dünndarm auflösen und das Pharmaprotein oder die niedermolekularen Pharmaka freisetzen. Dieses Verfahren scheitert daran, daß zwar das Protein und die niedermolekularen Pharmaka nicht degradiert werden, aber nach wie vor nicht die Darmwand durchdringen können. Andere Entwicklungen versuchen Carriersysteme auszunutzen, die dem aktiven Transport von Substanzen durch die Darmmukosa dienen, z.B. das Carriersystem von Vitamin B. Diese Verfahren sind für sich allein nicht erfolgreich, sondern erfordern ebenfalls, daß die Proteine und labile niedermolekulare Pharmaka zunächst geschützt werden.
Daher liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein Mittel bereitzustellen, mit dem gewünschte Polypeptide und niedermolekulare Pharmaka oral verabreicht werden können.
Die Aufgabe wird durch den in den Patentansprüchen definierten Gegenstand gelöst.
Die vorliegende Erfindung wird durch die folgende Figur erläutert.
Figur 1 zeigt schematisch das Ergebnis einer SDS-Polyacrylamidgelelektrophorese (12 %) eines erfindungsgemäßen Proteinkomplexes mit Tetanustoxin.
Der hier verwendete Begriff "Proteinkomplex" bezeichnet ein Vehikel, mit dem andere ausgewählte Polypeptide oder niedermolekulare Pharmaka in das Blutsystem von Mensch und Tier transportiert werden können. Der Proteinkomplex besteht dabei aus wenigstens einem Hämagglutinin und evtl. nicht-toxischem, nicht-hämagglutinierendem Protein (NTHT) der Botulinum-Toxin-Komplexe aus wenigstens einem der Clostridium botulinum Typen A, B,
Figure imgf000003_0001
C2, D, E, F oder G. Der hier verwendete Begriff "Botulinum-Toxin-Komplex" bedeutet einen natürlicherweise vorkommenden Proteinkomplex des Typs A, B, Ci, C2, D, E, F oder G aus Clostridium botulinum, umfassend das Botulinumtoxin, Hämagglutinine und nicht-toxisches, nicht- hämagglutinierendes Protein (NTHT).
Der hier verwendete Begriff "Polypeptid" oder "ausgewähltes Polypeptid" bedeutet ein Peptid aus mindestens 2 Aminosäuren. Das Polypeptid kann linear, zirkulär oder verzweigt sein. Ferner kann das Polypeptid aus mehr als einer Aminosäurekette bestehen, wobei die Ketten z.B. über eine Disulfidbindung miteinander verbunden sein können. Die Polypeptide können ferner modifizierte Aminosäuren und die üblichen posttranslationalen Modifikationen wie
Glykosylierung enthalten. Die Polypeptide können pharmakologisch oder immunologisch aktive
Polypeptide oder für diagnostische Zwecke verwendete Polypeptide sein, z.B. Antikörper oder
Liganden.
Bakterien vom Stamme Clostridium botulinum haben im Laufe der Evolution einen Weg gefunden, über den Magen-Darm-Trakt ein intaktes Protein - Clostridium botulinum Toxin - in die Blutzirkulation von Säugetieren zu schleusen.
Clostridium botulinum wird in 8 Serogruppen eingeteilt, die aufgrund ihrer Toxine unterschieden werden: Typ A, B, C\, C , D, E, F, G. Bei den Toxinen, im nachfolgenden auch Botulinumtoxin genannt, handelt es sich um Proteine mit einem Molekulargewicht von etwa 150.000 Dalton (Da). Botulinumtoxin wird üblicherweise mit kontaminierten Lebensmitteln aufgenommen, enteral resorbiert und gelangt zu seinem Wirkort, der motorischen Endplatte, wo der Nervenimpuls auf Muskeln übertragen wird. Die Toxine werden von der Nervenzelle aufgenommen und legen in den Nervenendigungen den Sekretionsmechamsmus von Acetylcholin lahm, so daß der betroffene Muskel nicht mehr aktiviert wird und erschlafft.
Botulinumtoxin wird von Clostridium botulinum jedoch nicht in nackter Form sezerniert, sondern in komplexierter Form hergestellt, d.h. die Clostridien produzieren neben Botulinumtoxin verschiedene weitere Proteine, die das Toxin in einen Komplex mit einem Molekulargewicht von etwa 700.000 bis etwa 900.000 Dalton einbinden, den Botulinum-Toxin- Komplex. In verschiedenen Untersuchungen konnte nachgewiesen werden, daß die Bildung des Botulinum-Toxin-Komplexes für die orale Toxizität des Botulinumtoxins erforderlich ist. So konnte gezeigt werden, daß das Botulinumtoxin, das im Botulinum-Toxin-Komplex vorliegt, eine ca. 100.000-fach höhere Toxizität aufweist, als das reine Botulinumtoxin. Möglicherweise dienen die Hämagglutinine dazu, den Komplex an die Darmwand anzulagern, um den Transport durch die Darmmukosa in den Blutkreislauf zu ermöglichen. Darüber hinaus soll der Komplex als Schutz gegen Proteasen im Magen-Darm-Trakt dienen.
Bei den weiteren Proteinen (Komplexproteine) handelt es sich um eine Reihe von Hämagglutininen und einem nicht-toxischen, nicht-hämagglutinierenden Protein (NTHT), das ein Molekulargewicht von etwa 120.000 Da aufweist. Bei dem Botulinum-Toxin-Komplex des Typ A wurden folgende Hämagglutinine beschrieben: Ha2 mit etwa 16.900 Da, Ha3a mit etwa 21.000 Da, Ha3b mit etwa 52.000 Da und Hai mit etwa 35.000 Da.
Die Komplexe der anderen Toxin-Typen B bis G sind nach ähnlichem Schema aufgebaut. Als Beispiel seien genannt der Komplex vom Typ B. Neben dem NTHT sind hier Ha-70 mit einem Molekulargewicht von etwa 70.000 Da, Ha-17 mit einem Molekulargewicht von etwa 17.000 Da und Ha-33 mit einem Molekulargwicht von etwa 33.000 Da beschrieben (vgl. Bhandari, M.et al. (1997) Current Microbiology 35, p. 207 - 214).
Ferner beschrieben East, A.Ket al. ((1994) System Appl. Microbiol. 17 306-312) die Sequenz von Ha-33 von Typ B im Vergleich mit der Sequenz von Typ A und C. Für die Typ C und Typ D sind neben den Ha-33 (= Hai) mit einem Molekulargewicht von etwa 33.000 Da ebenfalls - analog Typ A - das Ha3b mit etwa 53.000 Da und Ha3a mit etwa 22.000 bis 24.000 Da und Ha2 mit etwa 17.000 Da (vgl. oue, K.et al. (1999) Microbiology 145, p. 2533 - 2542) beschrieben.
Die gebildeten Komplexe haben jedoch je nach ihrem Serotyp eine unterschiedliche Zusammensetzung, d.h. es ist eine unterschiedliche Anzahl der einzehien Hä agglutinene bzw. NTHT im Kompex integriert. Für den Komplex des Typ A haben z.B. ioue et al. ((1996) Infection and Immunity 64 (5), p. 1589 - 1594) folgende Zusammensetzung berechnet:
Figure imgf000005_0001
Ein Aspekt der vorliegenden Erfindung besteht daher in der Bereitstellung eines
Proteinkomplexes, umfassend ein oder mehrere Komplexproteine oder deren Derivate aus wenigstens einem der Clostridium botulinum Typen A, B, Cls C2, D, E, F oder G. Der
Proteinkomplex enthält ferner ein ausgewähltes Polypeptid oder ein niedermolekulares Pharmakon, das vom erfindungsgemäßen Proteinkomplex bei oraler Verabreichung vor
Degradation durch Proteasen oder Säuren in der Magen-Darm-Passage geschützt wird bzw. durch die Komplexproteine systemisch verfügbar gemacht wird. Das ausgewählte Polypeptid kann ein pharmakologisch aktives, ein immunologisch aktives oder ein für diagnostische Zwecke verwendetes Polypeptid sein. Das ausgewählte niedermolekulare Pharmakon kann ebenfalls ein pharmakologisch aktives, ein immunologisch aktives oder ein für diagnostische Zwecke verwendetes Pharmakon oder ein beliebiges Arzneimittel sein. Der erfindungsgemäße Proteinkomplex dient daher als Transportvehikel, mit dem die ausgewählten Polypeptide und die niedermolekularen Pharmaka in das Blutsystem von Tieren, bevorzugt von Säugetieren oder Vögeln, besonders bevorzugt von Menschen eingebracht und damit zum Wirkort transportiert werden. Ein weiterer Aspekt der vorliegenden Erfindung besteht daher in der Bereitstellung eines Proteinkomplexes als therapeutisches Mittel, Impfstoff oder Diagnostikum in der Human- und/oder Tiermedizin. Ein weiterer Aspekt der vorliegenden Erfindung besteht in der Verwendung eines Proteinkomplexes, umfassend ein oder mehrere Komplexproteine aus wenigstens einem der Clostridium botulinum Typen A, B, C1} C2, D, E, F oder G als Transportvehikel für pharmakologisch aktive Polypeptide oder niedermolekulare Substanzen (Pharmaka), immunologisch aktive Polypeptide oder niedermolekulare Substanzen (Pharmaka) oder Polypeptide oder niedermolekulare Substanzen (Pharmaka oder Diagnostika) für diagnostische Zwecke.
Der Proteinkomplex ist aufgebaut aus Hämagglutininen und NTHT und kann dabei den natürlicherweise vorkommenden Komplexen der Typen A, B, C1? C2,D, E, F oder G aus Clostridium botulinum entsprechen. Der Proteinkomplex kann jedoch auch eine andere als seine natürliche Zusammensetzung enthalten, z.B. kann er nur aus Hämagglutinin ohne die NTHT- Proteine aufgebaut sein. Ferner kann der Proteirikomplex aus weniger Hämagglutininarten als der natürlicherweise vorkommende Komplex aufgebaut sein, vorzugsweise aus drei verschiedenen Hämagglutininarten, vorzugsweise aus zwei, insbesondere bevorzugt aus einer Hämagglutininart, wobei der Proteinkomplex jeweils das NTHT-Protein enthalten kann oder nicht. Der Proteinkomplex kann ferner aus einem Gemisch eines oder mehrerer Hämagglutininarten und/oder NTHT-Proteinen der verschiedenen Serotypen aufgebaut sein. Bevorzugt sind Proteinkomplexe, die den natürlicherweise vorkommenden Proteinkomplexen aus Clostridium botulinum der Typen A, B, C\, C , D, E, F oder G entsprechen, beispielsweise ein Proteinkomplex mit Hai, Ha2, Ha3a, Ha3b und NTNH von Clostridium botulinum Typ B. Der Proteinkomplex kann außerdem zusammengesetzt sein aus Hai, Ha2, Ha3a und NTNH, aus Hai, Ha2, Na3b und NTNH, sowie aus Hai und Ha3a, Ha3b und NTNH, des weiteren aus Ha2, Ha3a, Ha3b und NTNH, aus Hai, Ha2 und NTNH, aus Hai, Ha3a und NTNH, aus Hai, Ha3b und NTNH, aus Ha2, Ha3a und NTNH, aus Ha2, Ha3b und NTNH aus Ha3a, Ha3b und NTNH oder aus weiteren beliebigen Kombinationen der aufgeführten Komplexproteine. Der Proteinkomplex kann sich ferner zusammensetzen aus einem der Hämagglutinine und NTNH, außerdem kann sich der Proteinkomplex zusammensetzen aus den aufgeführten Kombinationen der Hämagglutinine ohne NTNH. Entsprechend der beispielhaften Proteinkomplexe des Typs B sind ferner bevorzugt Proteinkomplexe aus den Hämagglutininen und/oder NTNH der Typen A,
Figure imgf000007_0001
Ferner bevorzugt sind die erfindungsgemäßen Proteinkomplexe, wobei ein oder mehrere Komplexproteine über eine chemische Bindung mit dem ausgewählten Polypeptid oder den niedermolekularen Pharmaka verknüpft sind. Diese Bindung könnte nach Resorption im Blut gespalten werden, so daß das Polypeptid oder das niedermolekulare Arzneimittel dann zu seinem Wirkort gelangen kann. Das ausgewählte Polypeptid oder das niedermolekulare Pharmakon kann über ein "cross-linking agent" an die Komplexproteine gebunden werden. Bevorzugte cross- linking Mittel sind z.B. N-(4-azidphenylthio)phthalimid, 4,4'-Dithiobis-phenylazid, Dithiobispropionimidat, 3,3'-Dithiobis(sulphosuccinimid-propionat), Ethyl-4-azidphenyl-l,4- dithiopropionat, N-sulphosuccinidyl-(4-azidphenyl)- 1 ,3 '-dithiopropionat, Sulphosuccinidyl-2-(p- azidsalicylamin)-ethyl- 1,3 '-dithiopropionat, N-succinimid-3-(2-pyridyldithio)propionat oder Bis(2-(succinimidyloxycarbonyloxy)-ethyl)sulphon. Bevorzugt ist ein einziges Komplexprotein, das über eine chemische Bindung mit dem ausgewählten Polypeptid oder dem niedermolekularen Pharmakon verknüpft ist.
Ein weiterer Aspekt der vorliegenden Erfindung besteht in der Bereitstellung eines Verfahren zur Herstellung des erfindungsgemäßen Proteinkomplexes, umfassend die Schritte: a) getrennte Isolierung von wenigstens einem Botulinum-Toxin-Komplex des Typ A, B, Ci, C2, D, E, F oder G aus Clostridium botulinum bei einem pH- Wert von 2,0 bis 6,5, b) Erhöhen des pH- ertes auf jeweils pH 7,0 bis 10,00. c) Abtrennen des jeweiligen Botulinum-Toxins von den Komplexproteinen mittels chromatographischer Verfahren, d) Mischen der in Schritt c) erhaltenen Komplexproteine mit einem ausgewählten Polypeptid oder einem niedermolekularen Pharmakon, oder dλ) Auftrennen der in Schritt c) erhaltenen Komplexproteine und Mischen wenigstens eines Komplexproteins mit einem ausgewählten Polypeptid oder einem niedermolekularen Pharmakon, und e) Dialysieren des Gemisches aus Schritt d) oder d') gegen einen Puffer bei einem pH- Wert von 2,0 bis 6,5, und gegebenenfalls f) Verbinden der Komplexproteine mit dem ausgewählten Polypeptid oder dem niedermolekularen Pharmakon über eine chemische Bindung.
Bevorzugt ist ein Verfahren, wobei die in Schritt d) oder dΛ) gemischten wenigstens zwei Komplexproteine aus einem oder aus verschiedenen Botulinum-Toxin-Komplex-Typen stammen.
Die Komplexproteine können aus den natürlichen Botulinum-Toxin-Komplexen isoliert werden. Ein beispielhaftes Verfahren zur Isolierung ist folgendes: Zunächst wird der Botulinum-Toxin- Komplex aus Clostridien bei saurem pH- Wert, vorzugsweise pH 2,0 bis pH 6,5, besonders bevorzugt pH 4,0 bis 6,5, insbesondere bevorzugt pH 6,0, isoliert. Nach Erhöhung des pH-Werts auf pH 7,0 bis 10,0, vorzugsweise auf pH 7,0 bis 8,0 wird das Botulinumtoxin über chromatographische Verfahren abgetrennt. Dieses Verfahren ist durchführbar, da der Komplex bei einem pH- Wert < 6,5 stabil ist, bei neutralen bzw. bei alkalischem pH zerfällt und das Toxin freigesetzt wird. Die toxin-freien Komplexproteine können dann mit einem anderen, oral zu verabreichenden Polypeptid versetzt werden und der pH- Wert durch Dialyse gegen einen in der Proteinchemie üblichen Puffer, insbesondere bevorzugt einen Phosphat-, Acetat- oder Citratpuffer auf pH 2,0 bis 6,5, vorzugsweise 4,0 bis 6,0, insbesondere bevorzugt auf pH 5,5 erniedrigt. Dabei wird ein neuer Komplex gebildet, der die orale Bioverfügbarkeit des gebundenen Polypeptids gewährleistet.
Andere in der Proteinchemie übliche chromatographische Verfahren, Konzentrierungsverfahren und Fällungen können für die Isolierung der Komplexproteine ebenfalls verwendet werden. Die Komplexproteine können aufgrund ihrer bekannten DNA-Sequenzen auch rekombinant mittels DNA-Rekombinationstechniken in speziellen Wirtsorganismen hergestellt werden. Die so hergestellten Komplexproteine können ferner Modifikationen aufweisen, d.h. sie können
Derivate der Komplexproteine sein. Modifikationen bedeuten dabei nicht nur Deletionen, Additionen, Insertionen oder Substitutionen sondern ferner auch chemische Modifikationen von
Aminosäuren, z.B. Methylierungen, oder Acethylierungen, sowie posttranslationale
Modifikationen, z.B. Glykosylierungen oder Phosphorylierungen. Die Expression von gewünschten Proteinen in verschiedenen Wirten ist Wissen des Durchschnittsfachmanns und muß hier nicht gesondert beschrieben werden. Dabei können die für den Proteinkomplex benötigten Komplexproteine gesondert oder auch gleichzeitig in einem Wirtsorganismus exprimiert werden. Bevorzugt ist die Herstellung der rekombinanten Komplexproteine in Bakterien, z.B. in E. coli, Bacillus subtilis oder Clostridium di ßcile, oder in eukaryotischen Zellen, z.B. in CHO-Zellen, in Insektenzellen, z.B. unter Verwendung des Baculovirus-Systems, oder in Hefezellen. Die Komplexproteine können isoliert werden und nach dem wie vorstehend beschriebenen Verfahren mit dem ausgewählten Polypeptid oder dem niedermolekularen Pharmakon versetzt werden. Ferner kann das ausgewählten Polypeptid zusammen mit den Komplexproteinen gleichzeitig in dem Wirtsorganismus exprimiert werden. Besonders bevorzugt ist die gleichzeitige oder getrennte Herstellung der jeweiligen Komplexproteine zusammen mit dem ausgewählten Polypeptid über ein YAC in Hefe.
Die erfindungsgemäßen Proteinkomplexe können ferner aus einer Mischung von rekombinant hergestellten und aus natürlichen Botulinum-Toxin-Komplexen isolierten Komplexproteinen zusammengesetzt sein.
Die pharmakologisch oder immunologisch aktiven Polypeptide, die mit Hilfe des erfindungsgemäßen Proteinkomplexes oral verabreicht werden, können sämtliche therapeutisch oder präventiv wirksamen Polypeptide sein, die bisher parenteral appliziert werden mussten. Die Polypeptide können z.B. Hormone, Cytokine, Enzyme, Wachstumsfaktoren, Antigene, Antikörper, Inhibitoren, Rezeptor-Agonisten oder -Antagonisten oder Gerinnungsfaktoren sein. Dabei spielt es keine Rolle, ob die Polypeptide rekombinant hergestellt oder aus ihren natürlichen Quellen isoliert wurden. Bevorzugte Polypeptide sind Insulin, Erythropoetin, Interferone, h terleukine, HIV-Protease-Inhibitoren, GM-CSF(Granulocyte/Makrophage- stimulating factor), NGF (Nerve growth factor), PDGF (Platelet derived growth factor), FGF (fibroblast growth factor), Plasminogen-Aktivatoren, z.B. TPA (Tissue Plasminogen Activator), Renin-Inhibitoren, humaner Wachstumsfaktor, IGF (Insulin-like Growth Factor), Impfstoffe wie z.B. Tetanus-Vaccin, Hepatitis B Vaccin, Diphterie-Vaccin, Antikörper z.B. Herceptin
(Antikörper gegen Her2), Antikörper gegen TNF (Tumor Necrose Factor), Calcitonin,
Urokinase, Streptokinase, Angionese-Inhibitoren, Faktor VIII, Factor Xa-Antagonisten, Metalloproteinase-Inhibitoren.
Die für diagnostische Zwecke verwendeten Polypeptide können z.B. Antikörper oder Liganden sein, wobei die Polypeptide mit einer Markierung versehen sein können. Als Markierung kommt jede Markierung in Frage, die im Körper des Menschen oder Tieres nachgewiesen werden kann.
1 ^ Bevorzugte Markierungen sind Isotope, z.B. C , oder radioaktive Markierungen. Die markierten Anitkörper können zum Nachweis von Tumoren, die markierten Liganden zum Nachweis von z.B. pathologischen Rezeptoren verwendet werden.
Die niedermolekularen Pharmaka, die oral bioverfügbar gemacht werden, können z.B. Neomycin, Salbutamol, Pyrimethamin, Methicillin, Pethidin, Ketamin oder Mephenesin sein.
Die folgenden Beispiele erläutern die Erfindung und sind nicht als einschränkend aufzufassen.
Beispiele
Beispiel 1: Gewinnung der Komplexproteine aus C. botulinum Typ B
C. botulinum Typ B wurde nach publizierten Verfahren in einem 20-L-Fermenter fermentiert
(vgl. Evans et al., 1986; European Journal of Bioch. 154, 409-416). Das Fermentationsmedium bestand aus 2 % proteose peptone no. 2 (DIFCO), 1 % Hefeextrakt, 1 % Glucose und 0,05 % Natriumthioglycolat. Nach 72 h Wachstum bei 33°C wurde der toxische Komplex durch Zugabe von 3 N H2SO4 gefällt. Das Präzipitat wurde mit 2 x 250 0,2 M mL Na-Phosphat pH 6,0 extrahiert. Aus den vereinigten Extrakten wurden Nukleinsäuren durch Zugabe von 125 mL 2 % Protaminsulfat gefällt. Anschließend wurde der toxische Komplex mittels 233 g Ammoniumsulfat präzipitiert (14 h bei 2 - 8°C). Das Präzipitat wurde in 125 mL 50 mM Tris/HCl, 1 mM EDTA gelöst und gegen diesen Puffer über Nacht bei 2 - 8°C dialysiert (2 x 2 L). Unlösliche Artikel wurden über eine Zentrifugation abgetrennt (15 min x 15.000 rpm). Die so gewonnenen 429 mg Protein wurden über eine Sepharose Q-Säule (2,6 x 25 cm) chromatographiert. Gebundenes Protein wurde mit einem NaCl-Gradienten eluiert (0 - 500 mM). Das freie Neurotoxin Typ B wurde bei ca. 100 mM NaCl eluiert, der Komplex wurde bei ca. 250 mMNaCl abgelöst. Die Chromatographie ergab 151 mg Protein.
Beispiel 2: Abtrennung von Resten des Botulinumtoxins Typ B von Komplexproteinen 33 mg der noch von Botulinumtoxin verunreinigten Komplexproteine (gepoolte Fraktionen nach der Sepharose Q-Chromatograpliie) wurden gegen 50 mM Tris/HCl pH 7,9, 2 mM EDTA über Nacht dialysiert (2 x 1 L). Die Proteinlösung wurde über eine Q-Hyper-D-Säule (2,6 x 8 cm) chromatographiert, gebundenes Protein wurde mit einem NaCl-Gradienten eluiert (0 - 400 mM). Das Neurotoxin wurde bei einer NaCl-Konzentration von ca. 100 mM abgelöst, die Komplexproteine erschienen bei ca. 190 mM NaCl. In der SDS-Polyacrylamidgelelectrophorese war der Anteil des Neurotoxin < 1 % des analysierten Proteins.
Beispiel 3: Abtrennung von Spuren des Neurotoxins mittels Affinitätschromatographie zur Gewinnung des Proteinkomplexes (Apokomplexes) Um die Komplexproteine von Spuren des Neurotoxins zu befreien, wurde eine Affinitätschromatographie vorgenommen. Kaninchen wurden mit detoxifizierten homogenen Neurotoxin immunisiert. Die gewonnenen Antiseren wurden mittels Ammoniumsulfatfällung gereinigt. Die Neurotoxin-spezifischen Antikörper konnten über eine Affinitätschromatographie gereinigt werden. Dazu wurden 3 mg reines Neurotoxin an 0,6 g rehydrierter CNBr-Sepharose immobilisiert (gemäß Angaben des Herstellers). Antiserum (nach Ammoniumsulfatfällung) gegen das Neurotoxin Typ B wurde nach Dialyse gegen 20 mM Natriumphosphat pH 7,0, 0,5 M NaCl über eine Säule (0,5 x 3 cm) chromatographiert, die mit der synthetisierten Matrix gefüllt war. Die Toxin-spezifischen Antikörper wurden durch Elution mit 0,1 M Glycin pH 2,7 gewonnen (Ausbeute 1,57 mg). 1,25 mg der gereinigten Neurotoxin- Antikörper wurden an 1 g CNBr-Sepharose immobilisiert. Anschließend wurden 11,6 mg Komplex (nach der Q-Hyper-D- Chromatographie) in 50 mM Tris/HCl pH 7,9, 2 mM EDTA pH 7,9 über diese Antikörper- Affinitätssäule chromatographiert. Dabei wurde die Lösung über Nacht (16 h) mit einer Fließgeschwindigkeit von 40 mL/h mehrmals über die Säule zirkuliert. Gebundener Neurotoxin- haltiger Komplex konnte mit 0,1 M Glycin pH 2,7 abgelöst werden. Im affmitätsgereinigten Komplex (9.8 mg) konnte im biologischen Nachweis (Zwerchfelltest: Goeschel et al, Experimental Neurology 147, pp. 96 - 102 (1987)) kein Neurotoxin mehr nachgewiesen werden.
Beispiel 4: Bildung eines erfindungsgemäßen Proteinkomplexes mit Tetanustoxin
(A) 1 mg der gereinigten Komplexproteine wurden in 1 mL 50 mM Tris/HCl-Puffer, pH 8,0 mit 200 μg reinem Tetanustoxin versetzt und über Nacht gegen 50 mM Citrat/Phosphatpuffer, pH
6,0 dialysiert. Ein Aliquot (25 μL) wurde in einem 50 mM Na-Citratpuffer auf einer
Gelfiltrationssäule (Bioselect SEC 250-5) analysiert. Es erschien ein einziger Peak, der einem
Molekulargewicht von etwa 500.000 Da entspricht. Die Peak-Fraktion wurde einer SDS- Polyacrylamidgelelektrophorese unterzogen. Es zeigte sich, daß sowohl die Banden der
Komplexproteine als auch die des Tetanustoxin zu erkennen waren. Es hatte sich also ein neuer
Proteinkomplex mit dem heterologen Toxin gebildet.
(B) 6 mg Tetanustoxin und 6 mg Apokomplex (s. Beispiel 3) in 3 mL Tris/HCl, pH 7,9, 2 mM EDTA wurden 2 Tage bei 2 - 8°C gegen 50 mM Na-Phosphat, 250 mM NaCl, 2 mM EDTA, pH 7,0 dialysiert und anschließend gegen den gleichen Puffer aber pH 6,0 5 Tage dialysiert. Anschließend wurden 1,5 mL der Lösung mit 346 μL 4 M Ammoniumsulfat (-» 0,75 M) versetzt und damit der Komplex präzipitiert. Das Pellet wurde in 50 mM NaPhosphat, 150 mM NaCl, 2 mM EDTA, pH 5,9 gelöst und ein Aliquot in einer Gelfiltration analysiert. Dazu wurde eine Biosep SEC 3000 7,8 x 300 mM (Phenomenex) verwendet (Fließgeschwindigkeit 0,5 mL/min). > 90 % des Proteins wurde in einem hochmolekularen Peak (Mr > 500.000) eluiert. Die Analyse der Peakfraktion in einer 12 %igen SDS-PAGE ergab, daß der Proteinkomplex Tetanustoxin enthielt. Die Anwesenheit von Tetanustoxin wurde im Zwerchfelltest bestätigt.
Beispiel 5: Prüfung des Tetanustoxin-Proteinkomplexes in vivo an Mäusen
5 mg der gereinigten Komplexproteine wurden in 2,5 mL 50 mM Tris/HCl, pH 8,0 mit 1 mg Tetanustoxin versetzt und über Nacht gegen 50 mM Citrat/Phosphatpuffer pH 6,0 dialysiert. 25 μL der Lösung wurden auf die Anwesenheit von Tetenustoxin im Proteinkomplex geprüft (s. Beispiel 4A). Jeweils 0,5 mL wurden 5 CD 1 -Mäusen per Schlundsonde verabreicht. 3 weiteren Mäusen (Kontrolle) wurde eine äquivalente Menge an Tetanustoxin verabreicht. Die mit Tetanustoxin-Proteinkomplex behandelten Mäuse starben nach 24 Stunden an Tetanus, während die Kontrollmäuse keinerlei Anzeichen von Tetanus aufwiesen.
Beispiel 6: Prüfung des Tetanustoxin-Proteinkomplexes in vivo an Ratten Jeweils 2 μg des erfindungsgemäßen Proteinkomplexes (s. Beispiel 4B) in 0,5 mL 50 mM Natriumphosphat, 150 mM NaCl 2 mM EDTA, 100 μg BSA/mL, pH 6,0 wurden 5 Wistar- Ratten (180 - 200 g) per Schlundsonde verabreicht. 3 weiteren Ratten (Kontrolle) wurde eine äquivalente Menge an Tetanustoxin im gleichen Puffer verabreicht. Die mit Tetanustoxin- Proteinkomplex behandelten Ratten starben innerhalb von 24 Stunden an Tetanus, während die
Kontrollratten keinerlei Anzeichen von Tetanus aufwiesen.
Beispiel 7: Bildung eines erfindungsgemäßen Proteinkomplexes mit Insulin (A) 10 mg der gereinigten Komplexproteine wurden mit 0,5 mg Insulin über Nacht in einem 50 mM Citrat/Phosphatpuffer dialysiert. Eine Probe wurde in einer Gelfiltration auf Komplexbildung untersucht. Es erscheint ein Peak mit einem Molekulargewicht von > 500.000 Da. Ein Aliquot der Peakfraktion wurde in einer SDS-Polyacrylamidgelelektrophorese untersucht. Die Peakfraktion enthielt sowohl die Banden der Komplexproteine als auch die Bande von Insulin.
(B) 3 mg der gereinigten Komplexproteine wurden mit 0,5 mg Insulin über 2 Tage in einem 50 mM Phosphatpuffer, pH 7,0 dialysiert, gefolgt von einer Dialyse gegen 50 mM Phosphat, pH 6,0 für 5 Tage. Anschließend wurde wieder mit Ammoniumsulfat gefällt. Eine Probe wurde in einer Gelfiltration auf Komplexbildung untersucht. Es erscheint ein Peak mit einem Molekulargewicht von > 500.000 Da. Ein Aliquot der Peakfraktion wurde in einer SDS- Polyacrylamidgelelektrophorese untersucht. Die Peakfraktion enthielt sowohl die Banden der Komplexproteine als auch die Bande von Insulin.
Beispiel 8: Glukose-Belastungstest an Mäusen
Nachdem der Blutzuckerspiegel bestimmt wurde, erhielten 10 CD 1 -Mäuse mit einer Schlundsonde 1 mL einer 10 % Saccharose-Lösung. Nach 1 Stunde wurde 5 Mäusen jeweils 1 mg eines Insulin-Proeteinkomplexes per Schlundsonde verabreicht. In halbstündigem Abstand wurde der Blutzuckerspiegel der Mäuse bestimmt. Es zeigte sich, daß der Blutzuckerspiegel der behandelten Mäuse um 25 - 40 % unter dem mittleren Blutzuckerspiegel der unbehandelten Mäuse lag.
Beispiel 9: Glukose-Belastungstest an Ratten
Nachdem der Blutzuckerspiegel bestimmt wurde, erhielten 6 Wistar-Ratten mit einer Schlundsonde 1 mL einer 10 % Saccharose-Lösung. Nach 1 Stunde wurde 3 Ratten jeweils 0,5 mg eines Insulin-Proteinkomplexes per Schlundsonde verabreicht. In halbstündigem Abstand wurde der Blutzuckerspiegel der Ratten bestimmt. Es zeigte sich, daß der Blutzuckerspiegel der behandelten Ratten um 25 - 40 % unter dem mittleren Blutzuckerspiegel der unbehandelten Ratten lag. Beispiel 10: Orale Immunisierung gegen Tetanus
(A) 30 mg Komplexproteinpräparation wurden mit 3 mg Tetanustoxoid (mutiertes Tetanustoxin) versetzt und über Nacht gegen 50 mM Citrat/Phosphatpuffer, pH 5,5 dialysiert. 5 CD 1 -Mäusen wurde jeweils 1 mg Tetanustoxoid-Proteinkomplex mit einer Schlundsonde verabreicht. Nach 2 und 6 Wochen wurde die gleiche Dosis verabreicht. 2 Wochen nach der letzten Behandlung wurde Blut gewonnen und der Antikörpertiter mittels ELISA bestimmt. Die Mäuse hatten im Gegensatz zu 5 Kontrollmäusen, die die gleiche Dosis an nicht komplexgebundenen Toxoid erhielten, einen Antikörpertiter gegen das Toxin entwickelt (> 1 : 1000). In einem Neutralisierungsassay konnte weiterhin gezeigt werden, daß die Seren die Aktivität des Toxins inaktivierten.
(B) 10 mg Komplexproteinpräparation wurden mit 3 mg Tetanustoxoid (mutiertes rekombinantes Tetanustoxin) versetzt und 2 Tage gegen 50 mM Phosphatpuffer, pH 7,0, und dann 3 Tage bei pH 6,0 dialysiert. 5 CDl-Mäusen wurde jeweils 0,5 mg Tetanustoxoid-Komplex mit einer Schlundsonde verabreicht. Nach 2 und 6 Wochen wurde die gleiche Dosis verabreicht. 2 Wochen nach der letzten Behandlung wurde Blut gewonnen und der Antikörpertiter mittels ELISA bestimmt. Die Mäuse hatten im Gegensatz zu 5 Kontrollmäusen, die die gleiche Dosis an nicht komplexgebundenen Toxoid erhielten, einen Antikörpertiter gegen das Toxin entwickelt (> 1 : 1000). h einem Neutralisierungsassay konnte weiterhin gezeigt werden, daß die Seren das Toxin inaktivierten.
Beispiel 11: Herstellung eines Komplexes mit rekombinanten Komplex-Proteinen von Clostridium botulinum Typ A Zur Präparation eines rekombinanten Komplexes wurden die einzelnen Proteinkomponenten in E. coli hergestellt (vgl. Fujinaga, Y.et al. (2000)FEBS Letters 467, p. 179 - 183). Das Verfahren lehnt sich an die Herstellung der Hämagglutinine (HA 1: Mr etwa 33.000 Da, HA 2: Mr etwa 17.000 Da, HA 3a: Mr etwa 21.000 Da, HA 3b: Mr etwa 48.000 Da) in E. coli in einem pGEX- SX-3-Expressionsvektor als GST-Fusionsproteine an. Nach Reinigung über eine Glutathion- Sepharose 4B wurde die Glutathion-S-Transferase mit Faktor Xa abgeschnitten und nach Abtrennung von Faktor Xa und GST die reinen rekombinanten Proteine gewonnen. Nach dem gleichen Verfahren wurde auch das nichttoxische-nichthämagglutinierende Komplexprotein hergestellt. Die rekombinanten Komplexproteine wurden gegen einen 50 mM Tris/HCl-Puffer pH 8.0 über Nacht dialysiert (Proteinkonzentration 1 - 1.5 mg/mL). Zur Herstellung eines Komplexes mit Tetanustoxin wurden die Komponenten in folgenden molaren Verhältnissen miteinander gemischt:
Figure imgf000015_0001
Die Proteinmischung wurde 16 Stunden gegen einen 50 mM Natriumeitratpuffer, pH 5,5 dialysiert. Eine Probe 25 μL wurde in der Gelfiltration auf Komplexbildung untersucht. Das Protein erscheint in einem Peak mit dem Molekulargewicht von ca. 500.000. Die Analyse der Peakfraktion in der SDS-Polyacrylamidgelelektrophorese ergab neben den Komplexproteinen ebenfalls die Bande von Tetanustoxin (150.000 Da).
Beispiel 12: Prüfung des rekombinanten Komplexes an der Maus
Der in Beispiel 10 (A) beschriebene Komplex wurde an 3 CDl-Mäusen getestet. Die Mäuse erhielten über eine Schlundsonde 50 μg des rekombinanten Komplexes. Alle drei Mäuse starben innerhalb von 48 Stunden an Tetanus, während 3 Mäuse, die eine äquivalente Menge reines Tetanustoxin (11 μg) erhielten, keine Anzeichen von Starrkrampf zeigten.

Claims

Patentansprüche
1. Ein Proteinkomplex, umfassend ein oder mehrere Komplexproteine aus wenigstens einem der Clostridium botulinum Typen A, B, C\, C , D, E, F oder G und ein ausgewähltes Polypeptid oder ein niedermolekulares Pharmakon, wobei das ausgewählte Polypeptid nicht ein Botulinum-Toxin ist.
2. Proteinkomplex nach Anspruch 1, wobei die Komplexproteine ein Gemisch aus Komplexproteinen aus wenigstens einem der Clostridium botulinum Typen A, B, Cls C2, D, E, F oder G sind.
3. Proteinkomplex nach Anspruch 1 oder 2, wobei das ausgewählte Polypeptid ein pharmakologisch aktives, ein immunologisch aktives oder ein für diagnostische Zwecke verwendetes Polypeptid ist.
4. Proteinkomplex nach Anspruch 3, wobei das pharmakologisch oder immunologisch aktive Polypeptid ein Hormon, Cytokin, Enzym, Wachstumsfaktor, Antigen, Antikörper, Inhibitor, Rezeptor- Agonist oder -Antagonist oder Gerinnungsfaktor ist.
5. Proteinkomplex nach Anspruch 3, wobei das für diagnostische Zwecke verwendete Polypeptid ein markierter Antikörper oder ein markierter Ligand ist.
6. Proteinkomplex nach Anspruch 1 oder 2, wobei das niedermolekulare Pharmakon Neomycin, Salbutamol, Pyrimethamin, Methicillin, Pethidin, Ketamin oder Mephenesin ist.
7. Proteinkomplex nach einem der Ansprüche 1 bis 6, wobei ein Komplexprotein mit dem ausgewählten Polypeptid oder dem niedermolekularen Pharmakon über eine chemische Bindung verknüpft ist.
8. Proteinkomplex nach einem der Ansprüche 1 bis 7 als therapeutisches Mittel, Impfstoff oder Diagnostikum in der Human- und/oder Tiermedizin.
9. Verfahren zur Herstellung des Proteinkomplexes nach einem der Ansprüche 1 bis 7, umfassend die folgenden Schritte: a) getrennte Isolierung von wenigstens einem Botulinum-Toxin-Komplex des Typ A, B, C1} C2,D, E, F oder G aus Clostridium botulinum bei einem pH- Wert von 2,0 bis 6,5, b) Erhöhen des pH- Wertes auf jeweils pH 7,0 bis 10,00. c) Abtrennen des jeweiligen Botulinum-Toxins von den Komplexproteinen mittels chromatographischer Verfahren, d) Mischen der in Schritt c) erhaltenen Komplexproteine mit einem ausgewählten Polypeptid oder einem niedermolekularen Pharmakon, oder dΛ) Auftrennen der in Schritt c) erhaltenen Komplexproteine und Mischen wenigstens eines Komplexproteins mit einem ausgewählten Polypeptid oder einem niedermolekularen Pharmakon, und e) Dialysieren des Gemisches aus Schritt d) oder d") gegen einen Puffer bei einem pH -Wert zwischen 2,0 und 6,5, und gegebenenfalls f) Verbinden der Komplexproteine mit dem ausgewählten Polypeptid oder dem niedermolekularen Pharmakon über eine chemische Bindung.
10. Verfahren nach Anspruch 9, wobei die in Schritt d) oder d") gemischten wenigstens zwei Komplexproteine aus einem oder aus verschiedenen Botulinum-Toxin-Komplex-Typen stammen.
11. Verfahren zur Herstellung des Proteinkomplexes nach einem der Ansprüche 1 bis 7, wobei die jeweiligen Komplexproteine mittels DNA-Rekombinationstechnologien hergestellt werden.
12. Verwendung eines Proteinkomplexes, umfassend ein oder mehrere Komplexproteine aus wenigstens einem der Clostridium botulinum Typen A, B, C\, C2, D, E, F oder G als Transportvehikel für pharmakologisch aktive Polypeptide oder niedermolekulare Substanzen, immunologisch aktive Polypeptide oder niedermolekulare Substanzen oder Polypeptide oder niedermolekulare Substanzen für diagnostische Zwecke.
PCT/DE2001/002816 2000-07-19 2001-07-19 Proteinkomplex als vehikel für oral verfügbare arzneimittel WO2002005844A2 (de)

Priority Applications (14)

Application Number Priority Date Filing Date Title
EP01964858A EP1303535A2 (de) 2000-07-19 2001-07-19 Proteinkomplex als vehikel für oral verfügbare arzneimittel
KR1020037000614A KR100822006B1 (ko) 2000-07-19 2001-07-19 경구적으로 투여가능한 약제의 전파체로서 작용하는단백질 복합체
IL15353901A IL153539A0 (en) 2000-07-19 2001-07-19 Protein complexes and methods for the preparation thereof
BR0112515-0A BR0112515A (pt) 2000-07-19 2001-07-19 Complexo protéico utilizado como veìculo para medicamentos oralmente administráveis
DE10192679T DE10192679D2 (de) 2000-07-19 2001-07-19 Proteinkomplex als Vehikel für oral verfügbare Arzneimittel
MXPA03000566A MXPA03000566A (es) 2000-07-19 2001-07-19 Complejo de proteina que sirve como vehiculo para faramcos que pueden administrarse por via oral.
HU0301644A HUP0301644A3 (en) 2000-07-19 2001-07-19 Protein complex serving as a vehicle for orally administrable medicaments
PL01364993A PL364993A1 (en) 2000-07-19 2001-07-19 Protein complex serving as a vehicle for orally administerable medicaments
JP2002511776A JP2004503600A (ja) 2000-07-19 2001-07-19 経口利用可能な医薬品に対するビヒクルとしてのタンパク質複合体
CA002415712A CA2415712A1 (en) 2000-07-19 2001-07-19 Protein complex serving as a vehicle for orally administerable medicaments
AU8568801A AU8568801A (en) 2000-07-19 2001-07-19 Protein complex serving as a vehicle for orally administerable medicaments
AU2001285688A AU2001285688B2 (en) 2000-07-19 2001-07-19 Protein complex serving as a vehicle for orally administerable medicaments
US10/333,477 US20040028703A1 (en) 2000-07-19 2001-07-19 Protein complex serving as a vehicle for orally administerable medicaments
NO20030231A NO20030231L (no) 2000-07-19 2003-01-17 Proteinkompleks som fungerer som en vehikkel for oralt administrerbare medikamenter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10035156.5 2000-07-19
DE10035155 2000-07-19
DE10035156A DE10035156A1 (de) 2000-07-19 2000-07-19 Proteinkomplex als Vehikel für oral verfügbare Protein-Arzneimittel
DE10035155.7 2000-07-19

Publications (3)

Publication Number Publication Date
WO2002005844A2 true WO2002005844A2 (de) 2002-01-24
WO2002005844A8 WO2002005844A8 (de) 2002-02-14
WO2002005844A3 WO2002005844A3 (de) 2002-06-27

Family

ID=26006444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/002816 WO2002005844A2 (de) 2000-07-19 2001-07-19 Proteinkomplex als vehikel für oral verfügbare arzneimittel

Country Status (18)

Country Link
US (1) US20040028703A1 (de)
EP (1) EP1303535A2 (de)
JP (1) JP2004503600A (de)
KR (1) KR100822006B1 (de)
CN (1) CN100497379C (de)
AU (2) AU2001285688B2 (de)
BR (1) BR0112515A (de)
CA (1) CA2415712A1 (de)
CU (1) CU23381A3 (de)
CZ (1) CZ2003169A3 (de)
DE (2) DE10035156A1 (de)
HU (1) HUP0301644A3 (de)
IL (1) IL153539A0 (de)
MX (1) MXPA03000566A (de)
NO (1) NO20030231L (de)
PL (1) PL364993A1 (de)
RU (1) RU2002134755A (de)
WO (1) WO2002005844A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005009475A1 (ja) * 2003-07-25 2005-02-03 Yukako Fujinaga クロストリジウム属菌由来成分を含む医薬製剤
WO2006010360A2 (de) * 2004-07-22 2006-02-02 Biotecon Therapeutics Gmbh Carrier für arzneimittel zur gewinnung der oralen bioverfügbarkeit
WO2009131435A1 (en) * 2008-04-23 2009-10-29 Erasmus University Medical Center Rotterdam Linker containing bungarotoxin and a binding peptide
WO2011075500A3 (en) * 2009-12-18 2011-08-18 Allergan, Inc. Clostridium botulinum carrier complex for the administration of therapeutic agents

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346510B1 (en) * 1995-10-23 2002-02-12 The Children's Medical Center Corporation Therapeutic antiangiogenic endostatin compositions
JP2003009897A (ja) * 2001-07-03 2003-01-14 Keiji Oguma ボツリヌス毒素の分離・精製法
US7691394B2 (en) * 2002-05-28 2010-04-06 Botulinum Toxin Research Associates, Inc. High-potency botulinum toxin formulations
US20040086532A1 (en) * 2002-11-05 2004-05-06 Allergan, Inc., Botulinum toxin formulations for oral administration
US20060063930A1 (en) * 2004-08-20 2006-03-23 Agoston Gregory E Compositions and methods comprising proteinase activated receptor antagonists
JP2009081997A (ja) * 2007-09-27 2009-04-23 Chemo Sero Therapeut Res Inst ボツリヌス毒素成分haを核酸の細胞内導入キャリアーとして利用する方法
CA2745657C (en) 2008-12-04 2022-06-21 Botulinum Toxin Research Associates, Inc. Extended length botulinum toxin formulation for human or mammalian use
KR101134146B1 (ko) * 2010-05-31 2012-04-19 메덱스젠 주식회사 국소 근마비 효과를 갖는 비확산형 보툴리눔 독소와 그의 정제방법
US9393291B2 (en) 2012-04-12 2016-07-19 Botulinum Toxin Research Associates, Inc. Use of botulinum toxin for the treatment of cerebrovascular disease, renovascular and retinovascular circulatory beds
US11484580B2 (en) 2014-07-18 2022-11-01 Revance Therapeutics, Inc. Topical ocular preparation of botulinum toxin for use in ocular surface disease
US9901627B2 (en) 2014-07-18 2018-02-27 Revance Therapeutics, Inc. Topical ocular preparation of botulinum toxin for use in ocular surface disease
US11123411B2 (en) * 2016-12-08 2021-09-21 Gary E. Borodic Method of treating macular degeneration using botulinum toxin-based pharmaceuticals
US11096993B2 (en) 2016-12-08 2021-08-24 Gary E. Borodic Method of treating macular degeneration using botulinum toxin-based pharmaceuticals
US20210121542A1 (en) * 2019-10-28 2021-04-29 Prime Bio, Inc. Composition for delivery of protein therapeutics through oral, sublingual and buccal route

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995032738A1 (en) * 1994-05-31 1995-12-07 Allergan, Inc. Modification of clostridial toxins for use as transport proteins
US5696077A (en) * 1992-06-23 1997-12-09 Associated Synapse Biologics Pharmaceutical composition containing botulinum B complex
DE19735105A1 (de) * 1997-08-13 1999-03-04 Univ Albert Ludwigs Freiburg Transportsystem zur Einbringung von Proteinen in Zielzellen mit Hilfe eines Fusionsproteins, Nucleinsäurekonstrukte kodierend für die Komponenten des Transportsystems und Arzneimittel, die Komponenten des Transportsystems umfassen
WO1999017806A1 (en) * 1997-10-08 1999-04-15 The Speywood Laboratory Limited Conjugates of galactose-binding lectins and clostridial neurotoxins as analgesics

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ286242A (en) * 1991-03-26 1997-11-24 Csl Ltd Use of veterinary implant as a single dose vaccination system: rupturable polymer film coating around core of active agent and water soluble excipient
GB9120306D0 (en) * 1991-09-24 1991-11-06 Graham Herbert K Method and compositions for the treatment of cerebral palsy
JP4129544B2 (ja) * 1993-03-29 2008-08-06 ファイザー・インク サポニンアジュバント使用の多成分系クロストリジウム・ワクチン
US5562907A (en) * 1993-05-14 1996-10-08 Arnon; Stephen S. Method to prevent side-effects and insensitivity to the therapeutic uses of toxins
WO1994028923A1 (en) * 1993-06-10 1994-12-22 Allergan, Inc. Multiple botulinum toxins for treating neuromuscular disorders and conditions
US6004583A (en) * 1995-03-22 1999-12-21 Orex Pharmaceutical Development Corp. Protein-containing polymer composition for oral administration
GB9508204D0 (en) * 1995-04-21 1995-06-07 Speywood Lab Ltd A novel agent able to modify peripheral afferent function
US6699966B1 (en) * 1996-07-08 2004-03-02 University Of Massachusetts Proteins within the type E botulinum neurotoxin complex
US20030082107A1 (en) * 1997-10-01 2003-05-01 Dugger Harry A. Buccal, polar and non-polar spray or capsule containing drugs for treating an infectious disease or cancer
CA2319113A1 (en) * 1998-01-26 1999-07-29 University Of Massachusetts Biologically active hemagglutinin from type a clostridium botulinum and methods of use
US5955368A (en) * 1998-04-06 1999-09-21 Wisconsin Alumni Research Foundation Expression system for clostridium species
DE19856897A1 (de) * 1998-12-10 2000-06-15 Biotecon Ges Fuer Biotechnologische Entwicklung & Consulting Mbh Therapeutikum zur Unterdrückung von Schnarchgeräuschen
DE60125986T3 (de) * 2000-02-08 2011-07-28 Allergan, Inc., 92612, Calif. Pharmazeutische Zusammensetzungen mit Botulinum Toxin
US20030118598A1 (en) * 2000-02-08 2003-06-26 Allergan, Inc. Clostridial toxin pharmaceutical compositions
JP2003009897A (ja) * 2001-07-03 2003-01-14 Keiji Oguma ボツリヌス毒素の分離・精製法
EP1531859A4 (de) * 2002-05-31 2005-12-07 Univ Jefferson Zusammensetzungen und verfahren für den transepithelialen molekültransport
US20050169942A1 (en) * 2003-10-07 2005-08-04 Allergan, Inc. Novel DNA sequences of the botulinum neurotoxin complex of Clostridium botulinum type A-Hall (Allergan) strain for production of therapeutics
US7172764B2 (en) * 2003-11-17 2007-02-06 Allergan, Inc. Rescue agents for treating botulinum toxin intoxications
US7514088B2 (en) * 2005-03-15 2009-04-07 Allergan, Inc. Multivalent Clostridial toxin derivatives and methods of their use
US20060073208A1 (en) * 2004-10-01 2006-04-06 Allergan, Inc. Cosmetic neurotoxin compositions and methods
JP2008532549A (ja) * 2005-03-15 2008-08-21 アラーガン、インコーポレイテッド 内因性クロストリジウム毒素受容体系に対する増大した標的能力を有する修飾クロストリジウム毒素
FR2896693B1 (fr) * 2006-01-27 2008-03-14 Sod Conseils Rech Applic Composition comprenant plusieurs toxines botuliques

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5696077A (en) * 1992-06-23 1997-12-09 Associated Synapse Biologics Pharmaceutical composition containing botulinum B complex
WO1995032738A1 (en) * 1994-05-31 1995-12-07 Allergan, Inc. Modification of clostridial toxins for use as transport proteins
DE19735105A1 (de) * 1997-08-13 1999-03-04 Univ Albert Ludwigs Freiburg Transportsystem zur Einbringung von Proteinen in Zielzellen mit Hilfe eines Fusionsproteins, Nucleinsäurekonstrukte kodierend für die Komponenten des Transportsystems und Arzneimittel, die Komponenten des Transportsystems umfassen
WO1999017806A1 (en) * 1997-10-08 1999-04-15 The Speywood Laboratory Limited Conjugates of galactose-binding lectins and clostridial neurotoxins as analgesics

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FU FN ET AL.: "A Protease-Resistant Novel Hemagglutinin Purified from Type A Clostridium botulinum" JOURNAL OF PROTEIN CHEMISTRY, Bd. 17, Nr. 1, Januar 1998 (1998-01), Seiten 53-60, XP002919755 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005009475A1 (ja) * 2003-07-25 2005-02-03 Yukako Fujinaga クロストリジウム属菌由来成分を含む医薬製剤
WO2006010360A2 (de) * 2004-07-22 2006-02-02 Biotecon Therapeutics Gmbh Carrier für arzneimittel zur gewinnung der oralen bioverfügbarkeit
WO2006010360A3 (de) * 2004-07-22 2007-12-27 Biotecon Therapeutics Gmbh Carrier für arzneimittel zur gewinnung der oralen bioverfügbarkeit
WO2009131435A1 (en) * 2008-04-23 2009-10-29 Erasmus University Medical Center Rotterdam Linker containing bungarotoxin and a binding peptide
WO2011075500A3 (en) * 2009-12-18 2011-08-18 Allergan, Inc. Clostridium botulinum carrier complex for the administration of therapeutic agents
US9782492B2 (en) 2009-12-18 2017-10-10 Allergan, Inc. Stabilization of therapeutic agents to facilitate administration

Also Published As

Publication number Publication date
CU23381A3 (es) 2009-06-25
HUP0301644A3 (en) 2010-01-28
CN100497379C (zh) 2009-06-10
CZ2003169A3 (cs) 2004-02-18
NO20030231L (no) 2003-03-18
AU2001285688B2 (en) 2005-09-08
KR100822006B1 (ko) 2008-04-15
RU2002134755A (ru) 2004-07-10
DE10192679D2 (de) 2003-06-18
KR20030045013A (ko) 2003-06-09
IL153539A0 (en) 2003-07-06
CN1443196A (zh) 2003-09-17
DE10035156A1 (de) 2002-02-07
PL364993A1 (en) 2004-12-27
WO2002005844A8 (de) 2002-02-14
MXPA03000566A (es) 2004-12-13
WO2002005844A3 (de) 2002-06-27
US20040028703A1 (en) 2004-02-12
BR0112515A (pt) 2003-07-01
CA2415712A1 (en) 2003-01-10
HUP0301644A2 (hu) 2003-08-28
AU8568801A (en) 2002-01-30
EP1303535A2 (de) 2003-04-23
JP2004503600A (ja) 2004-02-05
NO20030231D0 (no) 2003-01-17

Similar Documents

Publication Publication Date Title
WO2002005844A2 (de) Proteinkomplex als vehikel für oral verfügbare arzneimittel
EP1185291B2 (de) Therapeutikum mit einem botulinum-neurotoxin
DE69837209T2 (de) Zusammensetzungen und methoden zur systemischen verabreichung von oralen impfstoffen und therapeutischen wirkstoffen
DE69633228T2 (de) Botulinumtoxinderivate die periferishe sensorische afferende funktionen ändern können
EP0305967B1 (de) Konjugate von Interferon alpha mit Immunglobulinen
DE69735496T2 (de) Nukleinsäure zur Verwendung in Gentherapie, welche Therapie intestinale Zell-Expression der Gene involviert
DE69329651T3 (de) Wässrige arzneizusammensetzung, welche das menschliche wachstumshormon enthält
DE69836982T2 (de) Hybride Tetanustoxinproteine die retrograd und transsynaptisch ins ZNS migrieren
EP0430200B1 (de) Arzneimittel zur subkutanen oder intramuskulären Applikation enthaltend Polypeptide
DE2638762A1 (de) Wasserloesliche adjuvantien, verfahren zu ihrer herstellung und sie enthaltende arzneimittel
WO2006010360A2 (de) Carrier für arzneimittel zur gewinnung der oralen bioverfügbarkeit
DE60034117T2 (de) Verfahren zur herstelllung von gonadotropin-zusammensetzungen
DE69731891T2 (de) Verfahren zur reinigung von gbs-toxin/cm101
EP0287076A1 (de) Rezeptor der Kleinen Rhinovirus Rezeptor Gruppe
DE1902865A1 (de) Substituierte Insulin-Derivate,Verfahren zu ihrer Herstellung und ihre Verwendung in pharmazeutischen Zubereitungen
EP1592439B1 (de) Verfahren zur herstellung einer albuminlösung
DE2710455C2 (de) N-Acetylmuramyl-L-alanyl-D-glutaminsäure-alpha-methylamid, Verfahren zu seiner Herstellung und diese Verbindung enthaltende Arzneimittel
CH622527A5 (de)
EP3752128A1 (de) Nukleinsäure-basiertes botulinum neurotoxin zur therapeutischen anwendung
WO2001045743A2 (de) Verwendung eines enzyms zur verbesserung der geweberesorption von arzneimitteln
DE2710457A1 (de) 2-(2-acetamido-2-desoxy-3-0-d-glucopyranosyl)-d-propionyl-l-seryl-isoglutamin, 2-(2-acetamido-2-desoxy-3-0- d-glucopyranosyl)-d-propionyl-l-seryl- d-glutaminsaeure, die amid- und ester- derivate dieser verbindungen, verfahren zu ihrer herstellung und diese verbindungen als wirkstoffe enthaltende arzneimittel
DE3134526C2 (de)
EP1171464A2 (de) Von interleukin 12 abgeleitete peptid-homodimere und peptid-heterodimere
DE19919149A1 (de) Von Interferon alpha-2 abgeleitete Peptid-Homodimere und Peptid-Heterodimere
DE19609261C2 (de) Arzneimittel zur Vorbeugung gegen und Behandlung der durch Chemotherapie von Tumorerkrankungen bedingten Myelosuppression

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

AK Designated states

Kind code of ref document: C1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: C1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

CFP Corrected version of a pamphlet front page

Free format text: UNDER (57) PUBLISHED ABSTRACT IN ENGLISH REPLACED BY CORRECT ABSTRACT

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2001964858

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 153539

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2001285688

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2415712

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020037000614

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PV2003-169

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 018130909

Country of ref document: CN

Ref document number: PA/a/2003/000566

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2002134755

Country of ref document: RU

Kind code of ref document: A

Ref country code: RU

Ref document number: RU A

WWP Wipo information: published in national office

Ref document number: 2001964858

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037000614

Country of ref document: KR

REF Corresponds to

Ref document number: 10192679

Country of ref document: DE

Date of ref document: 20030618

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10192679

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 10333477

Country of ref document: US

ENP Entry into the national phase

Ref country code: RU

Ref document number: RU A

WWP Wipo information: published in national office

Ref document number: PV2003-169

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 2001285688

Country of ref document: AU