WO2001040549A1 - Elektrochemische zelle für elektrolyseure mit einzelelementtechnik - Google Patents

Elektrochemische zelle für elektrolyseure mit einzelelementtechnik Download PDF

Info

Publication number
WO2001040549A1
WO2001040549A1 PCT/EP2000/011531 EP0011531W WO0140549A1 WO 2001040549 A1 WO2001040549 A1 WO 2001040549A1 EP 0011531 W EP0011531 W EP 0011531W WO 0140549 A1 WO0140549 A1 WO 0140549A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochemical cell
support
cell according
cathode
support elements
Prior art date
Application number
PCT/EP2000/011531
Other languages
English (en)
French (fr)
Inventor
Fritz Gestermann
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU13960/01A priority Critical patent/AU775645B2/en
Priority to AT00976055T priority patent/ATE292695T1/de
Priority to MXPA02005480A priority patent/MXPA02005480A/es
Priority to PL00355720A priority patent/PL355720A1/xx
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to JP2001542612A priority patent/JP2003515677A/ja
Priority to CA002394835A priority patent/CA2394835A1/en
Priority to BR0015952-2A priority patent/BR0015952A/pt
Priority to EP00976055A priority patent/EP1242653B1/de
Priority to HU0203519A priority patent/HUP0203519A3/hu
Priority to DE50010013T priority patent/DE50010013D1/de
Priority to US10/148,138 priority patent/US6984296B1/en
Priority to KR1020027006974A priority patent/KR20020059830A/ko
Publication of WO2001040549A1 publication Critical patent/WO2001040549A1/de
Priority to NO20022575A priority patent/NO20022575L/no
Priority to HK03106737.2A priority patent/HK1054412A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/63Holders for electrodes; Positioning of the electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells

Definitions

  • the invention relates to an electrochemical cell for electrolysers with single-element technology for the membrane electrolysis process according to the preamble of claim 1.
  • the cell consists of at least 2 half-shells which surround an anolyte compartment and a cathode compartment with a membrane arranged therebetween, an anode in the anolyte compartment, the cathode compartment having a Oxygen consumption cathode is provided with a plurality of pressure-compensated gas pockets arranged one above the other, a catholyte gap and optionally a back space, electrically conductive support elements in the anolyte space and support elements in the cathode space being provided in the same opposite position.
  • Electrolysers e.g. for NaCl electrolysis are known for the bipolar mode of operation in two fundamentally known basic techniques.
  • the cell elements are arranged half-shell welded back to back within the frame, with the anode and cathode each lying free-standing on the outside and the ion exchange membrane inserted between two elements forming the electrochemical cell.
  • the current from cell to cell flows here via the weld seams between the half-shells.
  • the electrochemical cell is formed by two individual half-shells, between which a membrane is placed, and which are then screwed into a single element.
  • the electrical contacting from individual element to individual element takes place here by pressing one
  • Gas straps as in US Pat. No. 5,963,202 in the basic principle and in German Offenlegungsschrift DE 196 22 744 AI described for gas pockets with active gas flow, is carried out with an electrolyte gap between the oxygen-consuming cathode and the membrane.
  • the gas pocket itself represents an empty volume.
  • Both structures, which are undefined for the force transmission, must be bridged with a system suitable for the transmission of the tension forces.
  • the clamping force is to be used for a further improvement of the current distribution in the oxygen consumption cathode via press contacts.
  • the gas pockets with the oxygen consumable cathodes usually extend over the entire width of the electrolytic cell.
  • the structures for passing the gases usually extend over the entire width of the electrolytic cell.
  • an electrochemical cell for the membrane electrolysis process consisting of at least two half-shells which surround an anolyte compartment and a cathode compartment with a membrane arranged therebetween, an anode in the anolyte compartment, the cathode compartment having one oxygen-consuming cathode and several one above the other arranged pressure-compensated gas pockets, a catholyte gap and optionally a back space is provided, which is characterized in that electrically conductive support elements are provided in the anolyte space and further support elements in the cathode space in the same, opposite position, which act on the half-shell walls
  • a preferred embodiment of the electrochemical cell is characterized in that the support in the cathode compartment is carried out by means of a multi-part support element, one support part in the catholyte gap, another support part in the gas pocket and, in the presence of a rear space, a third support part is arranged in the rear space behind the gas pockets.
  • the back of the gas pockets is welded in particular to the vertical support elements for power and current transmission.
  • Structural beams or other types of vertically extending structural bridges are welded into the gas pocket as support elements, which are so high that they have the same level with the circumferential outer edge of the gas pocket.
  • these internals must allow a horizontal gas flow through the gas pocket and at the lower edge also a horizontal drain of possible condensate.
  • the oxygen consumption cathodes After installing the oxygen consumption cathodes, they lie flat on the structural beams or bridges and the edge of the gas pockets, for example, and form a flat surface over the full width and the respective height of the gas pocket.
  • a support element as a support element made of electrolyte and heat-resistant material is used as a counterpart to the above.
  • the support element (spacer) is preferably not installed in one piece in the cell for the following reasons.
  • the segments of the support elements are attached or guided in particular at the top and bottom according to the following scheme: at the top they are attached to the edge of the gas pocket. This can be done either via a pin or a kind of push button either on the spacer or at the top of the gas pocket, whereby the opposite part must contain a corresponding hole.
  • a preferred variant of the invention is therefore characterized in that the support part in the catholyte gap is formed from a plurality of bars arranged vertically one above the other, which are optionally attached at their upper end with a releasable connecting means, for example a snap connector, to cross struts which carry the electrode.
  • a releasable connecting means for example a snap connector
  • the support element ends in a dovetail-shaped structure which surrounds the tapering upper end of the next support element underneath and thus ensures the horizontal positioning of the support element.
  • the gap between these two segments is expediently chosen so that the greater thermal expansion of the support element compared to the metallic structures is compensated for.
  • the respectively adjacent ends of the support parts are therefore designed as a tongue and groove combination, the upper end of the respective lower support part being designed in particular as a spring.
  • the second support part in the gas pockets particularly preferably has openings at selected points, in particular in its upper and lower region of the respective gas pocket, or leaves passages free.
  • the second support part is particularly preferably designed either as a solid electrically conductive ingot or as a U-shaped profile, or else as a corresponding vertical embossing of the back of the gas pocket.
  • the structural beams or bridges can be provided with slight vertical bulges either on the right and left or in the middle, which correspond to a corresponding shaping of the support elements, so that this is repeated when the electrolyzer is clamped is centered on the opposite structure.
  • the back of the oxygen consumption cathode should in particular be electrically conductive.
  • this creates a further electrical connection by press contact via the electrically conductive support elements, which leads to a further minimization of the ohmic losses.
  • the use of the support element prevents the oxygen-consuming cathode from bulging over a large area into the catholyte gap, with the risk of local blockage of the catholyte flow due to contact with the membrane. This applies in particular to the above Structuring of the support elements through which the oxygen consumption cathode is stretched.
  • the support elements in the catholyte gap are expediently made of ECTFE, FEP, MFA or PFA, in particular in the case of chloralkali electrolysis, while the electrically conductive support elements, for example structural beams or bridges, should be made of nickel or another alkali-resistant metal alloy or directly from the back wall of the gas pocket are embossed.
  • the support elements in the catholyte gap on the side facing the oxygen consumption cathode can be metallic in order to obtain an improvement in the current distribution into the oxygen consumption cathode via the press contact.
  • the support elements are preferably constructed in two layers, the side facing the membrane consisting of ECTFE, FEP, MFA or PFA, while the metallic part consists of alkali-resistant metal.
  • Electrolysis with gas diffusion electrodes in direct contact with liquid electrolytes that require pressure compensation can be used, e.g.
  • Fig. 1 shows a longitudinal section through a cathode half-shell of a cell according to the invention as a section of the upper left corner.
  • Fig. 2 shows a cross section along the line A-A 'in Fig. 1 through the electrochemical cell
  • FIG. 3 shows a longitudinal section through a cathode half-shell along the line BB 'in FIG. 1 Examples
  • FIG. 1 the view of the cathode half-shell with the upper left corner is shown as a cutout, in FIG. 2 a horizontal section A-A 'through a gas pocket 1.
  • the gas pocket structure with the rear wall 11 and the lateral border 9 is carried over the support structure 3.
  • the vertical structural beam 2a or, according to a variant shown in the same FIG. 2 or 3, the vertical structural bridge 2b are welded into the gas pocket 15.
  • both structures are broken through and do not stand on the horizontal boundary 12 of the gas pocket 15 in order to allow any condensates that may occur to flow away from the oxygen consumption cathode.
  • the oxygen consumption cathode 4 is attached to and on the lateral border 9 and the horizontal boundary 12 in an electrically conductive and gas-tight manner and lies on the structural beams or bridges.
  • the catholyte gap 14 between the membrane 5 and the oxygen-consuming cathode 4 is defined by the spacer elements 1, which in turn are supported by the membrane on the anode 6, which is held in a defined manner in the anode half-shell 8 via the support structure 7 (see FIG. 2).
  • Anode half-shell 8 and cathode half-shell 10 are connected to one another in a liquid-tight manner and form a single element (electrolysis cell).
  • electrolysis cell electrolysis cell
  • the spacer elements la, lb themselves are tapered at the top and provided with a corresponding dovetail structure at the bottom (FIG. 1). They are attached to the horizontal boundary 12 of the gas pocket 15 at the top with a pin or a push-button-like holding device 13.
  • the dovetail of the spacer element lb reaches over the tip of the next spacer element la underneath and is thus clearly positioned.
  • a defined gap between the spacer elements la, lb enables their free thermal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Secondary Cells (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

Es wird eine elektrochemische Zelle für das Membranelektrolyseverfahren für Elektrolyseure mit Einzelelementtechnik beschrieben. Die Zelle besteht wenigstens aus 2 Halbschalen (8, 10), die einen Anolytraum (16) und einen Kathodenraum (22) mit dazwischen angeordneter Membran (5) umgeben, einer Anode (6) im Anolytraum (16), wobei der Kathodenraum (22) mit einer Sauerstoffverzehrkathode (4), mit mehreren übereinander angeordneten druckkompensierten Gastaschen (15), einem Katholytspalt (14) und gegebenenfalls einem Rückraum (19) versehen ist, wobei elektrisch leitende Stützelemente (7) im Anolytraum (16) und Stützelemente (3, 2, 1) im Kathodenraum (22) auf gleicher einander gegenüberliegender Position vorgesehen sind.

Description

Elektrochemische Zelle für Elektrolyseure mit Einzelelementtechnik
Die Erfindung betrifft eine Elektrochemische Zelle für Elektrolyseure mit Einzelelementtechnik für das Membranelektrolyseverfahren nach dem Oberbegriff des Anspruches 1. Die Zelle besteht wenigstens aus 2 Halbschalen, die einen Anolytraum und einen Kathodenraum mit dazwischen angeordneter Membran umgeben, einer Anode im Anolytraum, wobei der Kathodenraum mit einer Sauerstoffverzehrkathode, mit mehreren übereinander angeordneten druckkompensierten Gastaschen, einem Katholytspalt und gegebenenfalls einem Rückraum versehen ist, wobei elektrisch leitende Stützelemente im Anolytraum und Stützelemente im Kathodenraum auf gleicher einander gegenüberliegender Position vorgesehen sind.
Elektrolyseure z.B. für die NaCl-Elektrolyse sind für die bipolare Fahrweise in zwei grundsätzlich bekannten Basistechniken bekannt.
Bei der Filterpressentechnik sind die Zellenelemente innerhalb des Rahmens halb- schalig Rücken an Rücken verschweißt angeordnet, wobei Anode und Kathode jeweils freistehend außen liegen und die zwischen zwei Elemente eingelegte Ionenaustauschermembran die elektrochemische Zelle bildet. Der Strom von Zelle zu Zelle fließt hier über die Schweißnähte zwischen den Halbschalen.
Bei der Einzelelementtechnik wird die elektrochemische Zelle durch zwei einzelne Elektrodenhalbschalen, zwischen die eine Membran gelegt wird, und die dann zu einem Einzelelement verschraubt werden, gebildet. Die elektrische Kontaktierung von Einzelelement zu Einzelelement erfolgt hier durch Zusammenpressen eines
Pakets von Einzelelementen, die über geeignete Kontaktstreifen elektrisch mit einander verbunden werden. Die von außen wirkenden Presskräfte müssen hierbei innerhalb der Elementstrukturen weitergeleitet werden.
Der Einsatz von Sauerstoffverzehrkathoden im Druckkompensationsbetrieb mit sog.
Gaslaschen, w ie in der Patentschrift US 5 963 202 im Grundprinzip sowie in der Deutschen Offenlegungsschrift DE 196 22 744 AI für aktiv gasdurchströmte Gastaschen beschrieben, erfolgt mit einem Elektrolytspalt zwischen Sauerstoffverzehrkathode und Membran. Gleichzeitig stellt die Gastasche selbst ein Leervolumen dar. Beide für die Kraftdurchleitung Undefinierte Strukturen müssen mit einem für die Durchleitung der Spannkräfte geeigneten System überbrückt werden. Gleichzeitig soll die Spannkraft für eine weitere Verbesserung der Stromverteilung in die Sauerstoffverzehrkathode über Presskontakte genutzt werden.
Die Gastaschen mit den Sauerstoffverzehrkathoden erstrecken sich üblicherweise über die gesamte Breite der Elektrolysezelle. Die Strukturen zur Durchleitung der
Spannkräfte sind wie bei der wasserstoffproduzierenden Elektrolyse aus hydraulischen Gründen vertikal angeordnet. Für die sich hierbei kreuzenden Funktionen musste eine pragmatisch einfache Lösung gefunden werden, die sowohl in neue Elektrolyseelemente von vorneherein integriert werden kann, als auch eine Nach- rüstung von derzeit im Wasserstoffbetrieb arbeitenden Elektrolysen ermöglicht.
Die Aufgabe wird erfindungsgemäß gelöst durch eine elektrochemische Zelle für das Membranelektrolyseverfahren, bestehend wenigstens aus 2 Halbschalen, die einen Anolytraum und einen Kathodenraum mit dazwischen angeordneter Membran umge- ben, einer Anode im Anolytraum, wobei der Kathodenraum mit einer Sauerstoffver- zehrkathode, mit mehreren übereinander angeordneten druckkompensierten Gastaschen, einem Katholytspalt und gegebenenfalls einem Rückraum versehen ist, die dadurch gekennzeichnet ist, dass elektrisch leitende Stützelemente im Anolytraum und weitere Stützelemente im Kathodenraum auf gleicher, einander gegenüber- liegender Position vorgesehen sind, die die auf die Halbschalenwände wirkenden
Presskräfte aufnehmen.
Eine bevorzugte Ausführung der elektrochemische Zelle ist dadurch gekennzeichnet, dass die Abstützung im Kathodenraum mittels eines mehrteiligen Stützelementes erfolgt, wobei ein Stützteil im Katholytspalt, ein weiteres Stützteil in der Gastasche und, bei Anwesenheit eines Rückraums, ein drittes Stützteil im Rückraum hinter den Gastaschen angeordnet ist.
Die Rückseite der Gastaschen ist insbesondere mit den vertikalen Stützelementen zur Kraft- und Stromdurchleitung verschweißt. In die Gastasche werden bevorzugt über diese Schweißnähte beispielsweise Strukturbalken oder andersartige, vertikal verlaufende Strukturbrücken als Stützelemente eingeschweißt, die so hoch sind, dass sie mit dem umlaufenden Außenrand der Gastasche das gleiche Niveau haben.
Ungeachtet der gewählten Ausführungsform müssen diese Einbauten einen horizontalen Gasdurchfluss durch die Gastasche sowie am unteren Rand auch einen horizontalen Abfluss von möglichem Kondensat ermöglichen.
Nach Einbau der Sauerstoffverzehrkathoden liegen diese zum Beispiel flach auf den Strukturbalken bzw. -brücken und dem Rand der Gastaschen auf und bilden eine ebene Fläche über die volle Breite sowie die jeweilige Höhe der Gastasche.
Zur Überbrückung des Katholytspaltes zwischen Sauerstoffverzehrkathode und Membran wird insbesondere ein Stützelement als Stützelement aus elektrolyt- und wärmebeständigem Material als Gegenstück zu den o.g. Strukturbalken bzw.
-brücken eingebaut, der sich einerseits über die Sauerstoffverzehrkathode sowie andererseits über die Membran an der in diesem Bereich ebenfalls unterstützten Anodenstruktur abstützt und so die Kraftdurchleitung durch die elektrochemische Zelle ermöglicht.
Das Stützelement (Abstandshalter) wird aus folgenden Gründen bevorzugt nicht in einem Stück in die Zelle eingebaut. Erstens ist eine sichere Positionierung gegenüber den o.g. Strukturbalken bzw. -brücken über die volle Höhe nicht sichergestellt, wobei schon kleine seitliche Verbiegungen zu einem Abrutschen mit der Gefahr der Zerstörung der Sauerstoffverzehrkalhode führen kann und zweitens unterscheiden sich die thermischen Ausdehnungskoeffizienten so sehr, dass ein seitliches Ausbie- gen, begünstigt durch den Gleiteffekt durch den Katholyten wahrscheinlich ist. Aus diesem Grund ist es vorteilhaft, das Stützelement zu stückeln und in Segmente zu unterteilen, die der Höhe der jeweiligen einzelnen Gastaschen entsprechen. Die Segmente der Stützelemente werden insbesondere oben und unten nach folgendem Schema befestigt bzw. geführt: am oberen Ende werden sie am Rand der Gastasche befestigt. Dies kann entweder über einen Stift oder eine Art Druckknopf entweder am Abstandshalter oder aber am oberen Rand der Gastasche erfolgen, wobei das jeweils gegenüberliegende Teil eine entsprechend Bohrung enthalten muss.
Eine bevorzugte Variante der Erfindung ist folglich dadurch gekennzeichnet, dass das Stützteil im Katholytspalt aus mehreren senkrecht übereinander angeordneten Barren gebildet wird, die gegebenenfalls an ihrem oberen Ende mit einem lösbaren Verbindungsmittel, zum Beispiel einem Schnappverbinder an Querstreben befestigt sind, die die Elektrode tragen.
Am unteren Ende läuft das Stützelement in eine schwalbenschwanzfbrmige Struktur aus, die das spitz auslaufende obere Ende des darunterliegenden nächsten Stützelements umschließt und so die horizontale Positionierung des Stützelements sicherstellt. Der Spalt zwischen diesen beiden Segmenten wird zweckmäßigerweise so gewählt, dass die größere thermische Dehnung des Stützelements gegenüber den metallischen Strukturen kompensiert wird.
In einer bevorzugten Variante der elektrochemischen Zelle sind daher die jeweils angrenzenden Enden der Stützteile als Nut-Federkombination ausgebildet, wobei das obere Ende des jeweils unteren Stützteils insbesondere als Feder ausgebildet ist.
Eine gute Kraftverteilung ergibt sich in der Zelle, wenn die Stützelemente sich über die gesamte Höhe der Halbschalen ausdehnen. Das zweite Stützteil in den Gastaschen weist besonders bevorzugt an ausgewählten Stellen, insbesondere in ihrem oberen und unteren Bereich der jeweiligen Gastasche Durchbrüche auf oder lässt Durchgänge frei.
Das zweite Stützteil ist besonders bevorzugt entweder als massiver elektrisch leitender Barren oder als U-Profil ausgebildet, oder aber als entsprechende vertikale Prägung der Rückseite der Gastasche ausgeführt.
Um eine noch sicherere Positionierung des Stützelements zu gewährleisten, können die Strukturbalken bzw. -brücken mit leichten vertikalen Aufwölbungen entweder rechts und links oder aber in der Mitte versehen werden, denen eine entsprechende Formgebung der Stützelemente entspricht, so dass dieser beim Verspannen des Elektrolyseurs immer wieder auf die gegenüberliegende Struktur zentriert wird.
Die Sauerstoffverzehrkathode sollte auf ihrer Rückseite insbesondere elektrisch leitend sein. Hierdurch wird neben der metallischen Verbindung der Sauerstoffverzehrkathode mit dem Rand der Gastasche eine weitere elektrische Verbindung durch Presskontakt über die elektrisch leitenden Stützelemente geschaffen, die zu einer weiteren Minimierung der ohmschen Verluste führt. Darüber hinaus verhindert der Einsatz des Stützelements ein großflächiges Ausbeulen der Sauerstoffverzehrkathode in den Katholytspalt mit der Gefahr der lokalen Blockade des Katholytdurchflusses durch Kontakt mit der Membran. Dies gilt insbesondere bei der o.g. Strukturierung der Stützelemente, durch die die Sauerstoffverzehrkathode gespannt wird.
Die Stützelemente im Katholytspalt werden insbesondere im Fall der Chloralkalielektrolyse zweckmäßigerweise aus ECTFE, FEP, MFA oder PFA gefertigt, während die elektrisch leitenden Stützelemente, zum Beispiel Strukturbalken bzw. -brücken aus Nickel oder einer anderen laugebeständigen Metalllegierung bestehen sollten oder unmittelbar aus der Rückwand der Gastasche herausgeprägt sind. Für den Fall einer auf ihrer Vorderseite metallisch oder elektrisch leitenden Sauer- stoffverzehrkathode können die Stützelemente im Katholytspalt auf der der Sauer- stoffverzehrkathode zugewandten Seite metallisch sein, um über den Presskontakt eine Verbesserung der Stromverteilung in die Sauerstoffverzehrkathode hinein zu erhalten. Vorzugsweise werden in diesem Fall die Stützelemente zweischichtig aufgebaut, wobei die der Membran zugewandte Seite aus ECTFE, FEP, MFA oder PFA besteht, während der metallische Teil aus laugenbeständigem Metall besteht.
Die Anwendung der beschriebenen Kraftdurchleitung in der Einzelelementtechnik ist nicht nur auf die Chlor- Alkali-Elektrolyse beschränkt, sie ist vielmehr auf alle
Elektrolysen mit Gasdiffusionselektroden im direkten Kontakt mit flüssigen Elektrolyten, die eine Druckkompensation benötigen, anwendbar, wie z.B.
Wasserstoff-Peroxid-Produktion mit Sauerstoffverzehrkathode, - Natriumdichromatelektrolyse mit Wasserstoff verzehrender Anode und
S auersto ffverzehrelektrode
Alkalische Brennstoffzellen zur Natronlaugenanreicherung Salzsäureelektrolyse mit Sauerstoffverzehrkathode
Die Erfindung wird nachstehend anhand der Figuren beispielsweise näher erläutert.
In den Figuren zeigen:
Fig. 1 einen Längsschnitt durch eine Kathodenhalbschale einer erfindungsgemäßen Zelle als Ausschnitt der linken oberen Ecke.
Fig. 2 einen Querschnitt entsprechend der Linie A-A' in Fig. 1 durch die elektrochemische Zelle
Fig. 3 einen Längsschnitt durch eine Kathodenhalbschale entsprechend der Linie B-B' in Fig. 1 Beispiele
In Figur 1 ist der Blick auf die Kathodenhalbschale mit der linken oberen Ecke als Ausschnitt gezeigt, in Figur 2 ein horizontaler Schnitt A-A' durch eine Gastasche 1 . In der Kathodenhalbschale 10 wird die Gastaschenstruktur mit der Rückwand 11 und der seitlichen Umrandung 9 über die Tragestruktur 3 getragen.
Der vertikale Strukturbalken 2a bzw., gemäß einer in derselben Fig. 2 bzw. 3 gezeigten Variante, die vertikale Strukturbrücke 2b sind in die Gastasche 15 einge- schweißt. Um den Sauerstoffquertransport in der Gastasche 15 sicherzustellen sind beide Strukturen durchbrochen und stehen nicht auf der horizontalen Begrenzung 12 der Gastasche 15 auf, um ein Abfließen möglicherweise anfallenden Kondensates aus der Sauerstoffverzehrkathode zu ermöglichen. Die Sauerstoffverzehrkathode 4 ist auf und an der seitlichen Umrandung 9 sowie der horizontalen Begrenzung 12 elektrisch leitfähig und gasdicht befestigt und liegt auf den Strukturbalken bzw. -brücken auf.
Der Katholytspalt 14 zwischen Membran 5 und Sauerstoffverzehrkathode 4 wird durch die Abstandselemente 1 definiert, die sich wiederum über die Membran an der Anode 6 abstützen, die in der Anodenhalbschale 8 über die Tragestruktur 7 definiert gehaltert wird (vergl. Fig.2).
Anodenhalbschale 8 und Kathodenhalbschale 10 werden flüssigkeitsdicht miteinander verbunden und bilden ein Einzelelement (Elektrolysezelle). Beim Zusammenpressen des Elektrolyseurs werden viele solcher Einzelelemente zusammengepresst, wobei die jeweils nächste Anodenhalbschale 8' benachbarter Einzelelemente auf die Kathodenhalbschale 10 und die nächste Kathodenhalbschale 10' eines benachbarten
Einzelelementes auf der anderen Seite des Einzelelementes auf die Anodenhalbschale 8 drücken. Die Zusammenpressung des Einzelelements belastet über die Kathodenhalbschale 10 die Tragestruktur 3, den vertikalen Strukturbalken 2a bzw. die vertikale Strukturbrücke 2b und den Abstandshalter 1 , der einerseits gegen die Sauer- stoffverzehrkathode 4 und andererseits über die Membran 5 gegen die Anode 6 drückt. Diese gibt Spannkräfte über die Tragestruktur 7 an die Anodenhalbschale 8 weiter. Durch Anpressen an die Kontaktstreifen 21a und 21b erfolgt die elektrische Kontaktierung von Einzelelement zu Einzelelement.
Die Abstandselemente la, lb selbst sind oben spitz zulaufend ausgebildet und unten mit einer entsprechenden Schwalbenschwanzstruktur versehen (Fig. 1). Sie werden oben mit einem Stift oder einer Druckknopf-ähnlichen Haltevorrichtung 13 an der horizontalen Begrenzung 12 der Gastasche 15 befestigt. Der Schwalbenschwanz des Abstandselementes lb greift über die Spitze des darunterliegenden nächsten Abstandselementes la und wird so eindeutig positioniert. Gleichzeitig ermöglicht ein definierter Spalt zwischen den Abstandselementen la, lb deren freie thermische
Ausdehnung, die, materialbedingt, größer als die der metallischen Strukturen ist.

Claims

Patentansprüche
1. Elektrochemische Zelle für das Membranelektrolyseverfahren, bestehend wenigstens aus 2 Halbschalen (8, 10), die einen Anolytraum (16) und einen Kathodenraum (22) mit dazwischen angeordneter Membran (5) umgeben, einer Anode (6) im Anolytraum (16), wobei der Kathodenraum (22) mit einer Sauerstoffverzehrkathode (4), mit mehreren übereinander angeordneten druckkompensierten Gastaschen (15), einem Katholytspalt (14) und gegebenenfalls einem Rückraum (19) versehen ist, dadurch gekennzeichnet, dass elektrisch leitende Stützelemente (7) im Anolytraum (16) und Stützelemente
(3, 2, 1) im Kathodenraum (22) auf gleicher einander gegenüberliegender Position vorgesehen sind.
2. Elektrochemische Zelle nach Anspruch 1, dadurch gekennzeichnet, dass die Abstützung im Kathodenraum (22) mittels eines mehrteiligen Stützelementes
(3, 2, 1) erfolgt, wobei ein Stützteil (1) im Katholytspalt (14), ein weiteres Stützteil (2a; 2b) in der Gastasche (15) und, bei Anwesenheit eines Rückraums (19), ein drittes Stützteil (3) im Rückraum (19) hinter den Gastaschen (15) angeordnet ist.
3. Elektrochemische Zelle nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Stützteil (1) im Katholytspalt (14) aus mehreren senkrecht übereinander angeordneten Barren (1) gebildet wird, die gegebenenfalls an ihrem oberen Ende mit einem lösbaren Verbindungsmittel (13), zum Beispiel einem Schnappverbinder (13) an Querstreben (12) befestigt sind, die die
Elektrode (4) tragen.
4. Elektrochemische Zelle nach Anspruch 3, dadurch gekennzeichnet, dass die jeweils angrenzenden Enden der Stützteile (la, lb) als Nut-Federkombination ausgebildet sind, wobei das obere Ende des jeweils unteren Stützteils (la) insbesondere als Feder ausgebildet ist.
5. Elektrochemische Zelle nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Stützelemente (3, 2, 1) sich über die gesamte Höhe der Halbschale (10) ausdehnen, denen ein durchgehendes Stützelement 7 in der zweiten Halbschale 8 gegenübersteht.
6. Elektrochemische Zelle nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das zweite Stützteil (2a) bzw. (2b) in den Gastaschen (15) an ausgewählten Stellen, insbesondere in ihrem oberen und unteren Bereich der jeweiligen Gastasche (15) Durchbrüche (22a, 22b, 23a) aufweisen oder
Durchgänge (24) freilassen.
7. Elektrochemische Zelle nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das zweite Stützteil (2) entweder als massiver elektrisch leiten- der Barren (2a) oder als U-Profil (2b) ausgebildet ist.
8. Elektrochemische Zelle nach Anspruch 7, dadurch gekennzeichnet, dass das U-Profil (2b) aus der Rückwand der Gastasche herausgeprägt ist und das Stützelement (3) in die Basis des geprägten U-Profils (2b) hineinreicht und so unmittelbar die Kraftdurchleitung bewirkt.
9. Elektrochemische Zelle nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Stützelemente (7, 3 und 2) aus laugebeständigen Metallen oder Legierungen, insbesondere aus Nickel oder aus säurefesten Metallen oder Legierungen, insbesondere aus Titan oder Legierungen aus Titan und
Palladium hergestellt sind.
10. Elektrochemische Zelle nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Stützelemente (1, 1a bzw. lb) aus einem temperatur- und elektrolytbeständigen Kunststoff bestehen.
1. Elektrochemische Zelle nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Stützelemente (1, la, lb) auf der der Sauerstoffverzehrkathode (4) zugewandten Seite metallisch leitend ausgeführt sind.
PCT/EP2000/011531 1999-12-01 2000-11-20 Elektrochemische zelle für elektrolyseure mit einzelelementtechnik WO2001040549A1 (de)

Priority Applications (14)

Application Number Priority Date Filing Date Title
CA002394835A CA2394835A1 (en) 1999-12-01 2000-11-20 Electrochemical cell for electrolysers with stand-alone element technology
MXPA02005480A MXPA02005480A (es) 1999-12-01 2000-11-20 Celula electroquimica para electrolizador con tecnologia de elementos individuales.
PL00355720A PL355720A1 (en) 1999-12-01 2000-11-20 Electrochemical cell for electrolysers with stand-alone element technology
EP00976055A EP1242653B1 (de) 1999-12-01 2000-11-20 Elektrochemische zelle für elektrolyseure mit einzelelementtechnik
JP2001542612A JP2003515677A (ja) 1999-12-01 2000-11-20 単一要素技術による電気分解用電気化学セル
AT00976055T ATE292695T1 (de) 1999-12-01 2000-11-20 Elektrochemische zelle für elektrolyseure mit einzelelementtechnik
BR0015952-2A BR0015952A (pt) 1999-12-01 2000-11-20 Célula eletroquìmica para eletrolisador na técnica de elemento individual
AU13960/01A AU775645B2 (en) 1999-12-01 2000-11-20 Electrochemical cell for electrolysers with stand-alone element technology
HU0203519A HUP0203519A3 (en) 1999-12-01 2000-11-20 Electrochemical cell for electrolysers with stand-alone element technology
DE50010013T DE50010013D1 (de) 1999-12-01 2000-11-20 Elektrochemische zelle für elektrolyseure mit einzelelementtechnik
US10/148,138 US6984296B1 (en) 1999-12-01 2000-11-20 Electrochemical cell for electrolyzers with stand-alone element technology
KR1020027006974A KR20020059830A (ko) 1999-12-01 2000-11-20 자체 직립형 요소 기술을 갖는 전해조용 전기화학 셀
NO20022575A NO20022575L (no) 1999-12-01 2002-05-30 Elektrokjemisk celle for elektrolysator med enkeltelementteknikk
HK03106737.2A HK1054412A1 (zh) 1999-12-01 2003-09-19 單元件技術的電解槽用電化學池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19959079A DE19959079A1 (de) 1999-12-01 1999-12-01 Elektrochemische Zelle für Elektrolyseure mit Einzelelementtechnik
DE19959079.6 1999-12-01

Publications (1)

Publication Number Publication Date
WO2001040549A1 true WO2001040549A1 (de) 2001-06-07

Family

ID=7931798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/011531 WO2001040549A1 (de) 1999-12-01 2000-11-20 Elektrochemische zelle für elektrolyseure mit einzelelementtechnik

Country Status (22)

Country Link
US (1) US6984296B1 (de)
EP (1) EP1242653B1 (de)
JP (1) JP2003515677A (de)
KR (1) KR20020059830A (de)
CN (1) CN1258619C (de)
AT (1) ATE292695T1 (de)
AU (1) AU775645B2 (de)
BR (1) BR0015952A (de)
CA (1) CA2394835A1 (de)
CZ (1) CZ20021886A3 (de)
DE (2) DE19959079A1 (de)
ES (1) ES2240198T3 (de)
HK (1) HK1054412A1 (de)
HU (1) HUP0203519A3 (de)
MX (1) MXPA02005480A (de)
NO (1) NO20022575L (de)
PL (1) PL355720A1 (de)
PT (1) PT1242653E (de)
RU (1) RU2002118331A (de)
WO (1) WO2001040549A1 (de)
YU (1) YU39402A (de)
ZA (1) ZA200203202B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7494579B2 (en) * 2002-07-11 2009-02-24 De Nora Elettrodi S.P.A. Spouted bed electrode cell for metal electrowinning
ITMI20082035A1 (it) * 2008-11-17 2010-05-18 Uhdenora Spa Cella elementare e relativo elettrolizzatore modulare per processi elettrolitici

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4899294B2 (ja) * 2004-06-10 2012-03-21 株式会社日立製作所 水素燃料製造システム,水素燃料製造方法および水素燃料製造プログラム
DE102005003527A1 (de) * 2005-01-25 2006-07-27 Uhdenora S.P.A. Elektrolysezelle mit erweiterter aktiver Membranfläche
DE102020206449A1 (de) 2020-05-25 2021-11-25 Siemens Aktiengesellschaft Verfahren zum Befestigen einer Elektrode
DE102020206448A1 (de) 2020-05-25 2021-11-25 Siemens Aktiengesellschaft Vorrichtung zum Befestigen einer Elektrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19641125A1 (de) * 1996-10-05 1998-04-16 Krupp Uhde Gmbh Elektrolyseapparat zur Herstellung von Halogengasen
DE19715429A1 (de) * 1997-04-14 1998-10-15 Bayer Ag Elektrochemische Halbzelle
DE19859882A1 (de) * 1998-12-23 1999-12-09 W Strewe Ionenaustauschermembranzelle für hohe Produktleistungen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3655167A (en) * 1970-08-18 1972-04-11 Peter W Skille Fence corner
DE4444114C2 (de) 1994-12-12 1997-01-23 Bayer Ag Elektrochemische Halbzelle mit Druckkompensation
DE19622744C1 (de) 1996-06-07 1997-07-31 Bayer Ag Elektrochemische Halbzelle mit Druckkompensation
US6283162B1 (en) * 1999-09-09 2001-09-04 Boyd L. Butler Thin boom tube exhaust pipes, method of sheet metal construction thereof, and exhaust systems which utilize such exhaust pipes for increased ground clearance on race cars

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19641125A1 (de) * 1996-10-05 1998-04-16 Krupp Uhde Gmbh Elektrolyseapparat zur Herstellung von Halogengasen
DE19715429A1 (de) * 1997-04-14 1998-10-15 Bayer Ag Elektrochemische Halbzelle
DE19859882A1 (de) * 1998-12-23 1999-12-09 W Strewe Ionenaustauschermembranzelle für hohe Produktleistungen

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7494579B2 (en) * 2002-07-11 2009-02-24 De Nora Elettrodi S.P.A. Spouted bed electrode cell for metal electrowinning
ITMI20082035A1 (it) * 2008-11-17 2010-05-18 Uhdenora Spa Cella elementare e relativo elettrolizzatore modulare per processi elettrolitici
WO2010055152A1 (en) * 2008-11-17 2010-05-20 Uhdenora S.P.A. Elementary cell and relevant modular electrolyser for electrolytic processes
KR20110095348A (ko) * 2008-11-17 2011-08-24 유데노라 에스.피.에이. 전기 분해 공정을 위한 원소 셀 및 관련 모듈형 전기 분해 장치
CN102216495A (zh) * 2008-11-17 2011-10-12 乌德诺拉股份公司 用于电解处理的基本单元和相关模块化电解装置
EA019177B1 (ru) * 2008-11-17 2014-01-30 Уденора С.П.А. Элементарная электролизная ячейка и электролизер на основе нее
US9062383B2 (en) 2008-11-17 2015-06-23 Uhdenora S.P.A. Elementary cell and relevant modular electrolyser for electrolytic processes
KR101643202B1 (ko) 2008-11-17 2016-07-27 티센크루프 유에이치디이 클로린 엔지니어스 (이탈리아) 에스.알.엘. 전기 분해 공정을 위한 기본 셀 및 관련 모듈형 전기 분해 장치

Also Published As

Publication number Publication date
DE50010013D1 (de) 2005-05-12
HUP0203519A3 (en) 2003-04-28
PL355720A1 (en) 2004-05-17
DE19959079A1 (de) 2001-06-07
ATE292695T1 (de) 2005-04-15
PT1242653E (pt) 2005-08-31
RU2002118331A (ru) 2004-03-27
CN1408032A (zh) 2003-04-02
JP2003515677A (ja) 2003-05-07
YU39402A (sh) 2004-12-31
ZA200203202B (en) 2003-04-23
AU775645B2 (en) 2004-08-12
HUP0203519A2 (hu) 2003-03-28
EP1242653B1 (de) 2005-04-06
AU1396001A (en) 2001-06-12
KR20020059830A (ko) 2002-07-13
CZ20021886A3 (cs) 2002-10-16
NO20022575D0 (no) 2002-05-30
MXPA02005480A (es) 2002-12-13
US6984296B1 (en) 2006-01-10
CN1258619C (zh) 2006-06-07
CA2394835A1 (en) 2001-06-07
EP1242653A1 (de) 2002-09-25
HK1054412A1 (zh) 2003-11-28
NO20022575L (no) 2002-05-30
ES2240198T3 (es) 2005-10-16
BR0015952A (pt) 2002-08-06

Similar Documents

Publication Publication Date Title
EP0717130B1 (de) Druckkompensierte elektrochemische Zelle
DE2930609C2 (de)
DE2435185C3 (de) Elektrolysezelle
EP0189535B1 (de) Elektrolyseapparat
DE2856882C2 (de)
DD243516A5 (de) Monopolare und bipolara chlorzellen und elektrodenstrukturen fuer diese
DE2656650A1 (de) Bipolare elektrode fuer eine elektrolysezelle
DE60302610T2 (de) Ionenaustauschmembran-Elektrolyseur
DE3028970A1 (de) Elektrolysezelle und verfahren zur elektrolyse von halogeniden
DD211130A5 (de) Elektrodenbauteil
EP0182114A1 (de) Elektrolyseapparat mit horizontal angeordneten Elektroden
DE4306889C1 (de) Elektrodenanordnung für gasbildende elektrolytische Prozesse in Membran-Zellen und deren Verwendung
DE69007205T2 (de) Rahmen für Elektrolyseur der Filterpressenbauart und monopolarer Elektrolyseur der Filterpressenbauart.
DE2059868B2 (de) Vertikal anzuordnende Elektrodenplatte für eine gasbildende Elektrolyse
DE2538000C3 (de) Bipolare Elektrodenkonstruktion für eine membranlose Elektrolysezelle
EP1242653B1 (de) Elektrochemische zelle für elektrolyseure mit einzelelementtechnik
DE69405047T2 (de) Elektrolyseur
DE2923818C2 (de)
DE69213362T2 (de) Elektrolyseur und Herstellung davon
EP1285103B1 (de) Bipolare mehrzweckelektrolysezelle für hohe strombelastungen
DE2818939A1 (de) Flexible elektrodenanordnung
DE3406797A1 (de) Beschichtete ventilmetallanode zur elektrolytischen gewinnung von metallen oder metalloxiden
DD249050A5 (de) Verfahren zum herstellen eines einheitsuebertragungselementes fuer elektrischen strom fuer monopolare oder bipolare elektrochemische filter-pressen-zelleneinheiten
DE2709093A1 (de) Elektrode fuer die erzeugung eines gases in einer zelle mit einer membran
EP1409769A2 (de) Elektrolyseeinrichtung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: P-394/02

Country of ref document: YU

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000976055

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002/03202

Country of ref document: ZA

Ref document number: 200203202

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/00619/MU

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2001 542612

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 10148138

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 13960/01

Country of ref document: AU

Ref document number: 2394835

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PV2002-1886

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/005480

Country of ref document: MX

Ref document number: 1020027006974

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 008166625

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2002 2002118331

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020027006974

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000976055

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV2002-1886

Country of ref document: CZ

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 13960/01

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 2000976055

Country of ref document: EP