EP1242653B1 - Elektrochemische zelle für elektrolyseure mit einzelelementtechnik - Google Patents

Elektrochemische zelle für elektrolyseure mit einzelelementtechnik Download PDF

Info

Publication number
EP1242653B1
EP1242653B1 EP00976055A EP00976055A EP1242653B1 EP 1242653 B1 EP1242653 B1 EP 1242653B1 EP 00976055 A EP00976055 A EP 00976055A EP 00976055 A EP00976055 A EP 00976055A EP 1242653 B1 EP1242653 B1 EP 1242653B1
Authority
EP
European Patent Office
Prior art keywords
electrochemical cell
supporting
cathode
chamber
cell according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00976055A
Other languages
English (en)
French (fr)
Other versions
EP1242653A1 (de
Inventor
Fritz Gestermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Publication of EP1242653A1 publication Critical patent/EP1242653A1/de
Application granted granted Critical
Publication of EP1242653B1 publication Critical patent/EP1242653B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/63Holders for electrodes; Positioning of the electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells

Definitions

  • the invention relates to an electrochemical cell for electrolysers with single element technology for the membrane electrolysis process according to the preamble of Claim 1.
  • the cell consists of at least two half-shells, the Anolyteraum and surrounding a cathode compartment with membrane therebetween, an anode in the anolyte compartment, the cathode compartment being equipped with an oxygen-consuming cathode, with several pressure-compensated gas pockets arranged one above the other, a Katholytspalt and optionally a rear space is provided, wherein electrically conductive support elements in the Anolyteraum and supporting elements in the cathode compartment are provided on the same opposite position.
  • Electrolyzers e.g. for the NaCl electrolysis are in bipolar mode in two known basic techniques known.
  • the cell elements within the frame are half-shelled Back-to-back welded, with anode and cathode each freestanding lie outside and inserted between two elements ion exchange membrane forms the electrochemical cell.
  • the flow from cell to cell flows here over the welds between the half-shells.
  • the electrochemical cell is separated by two Half shells, between which a membrane is placed, and then to a single element are screwed formed.
  • the electrical contact From single element to single element is done here by compressing a Packages of individual elements electrically connected to each other via suitable contact strips get connected.
  • the externally acting pressing forces must be within the element structures are forwarded.
  • the gas pockets with the oxygen-consuming cathodes usually extend over the entire width of the electrolytic cell.
  • the structures for the passage of the clamping forces are like hydrogen-producing electrolysis for hydraulic reasons arranged vertically.
  • For the here intersecting functions had to be a pragmatic Simple solution can be found in both new electrolysis elements of be integrated in advance, as well as a retrofit of currently in the Hydrogen operation working electrolysis allows.
  • an electrochemical cell for the Membrane electrolysis process consisting of at least 2 half-shells, the one Anolyte space and a cathode space surrounded with membrane arranged between them, an anode in the anolyte compartment, the cathode compartment being equipped with an oxygen-consuming cathode, with a plurality of pressure-compensated gas pockets arranged one above the other, one Katholytspalt and optionally a rear space is provided, characterized electrically conductive support elements in the anolyte space and support elements in the Cathode space are provided on the same opposite position, which support each other, wherein the support in the cathode compartment by means of a multi-part support element is carried out with a support member in Katholytspalt, another Support member in the gas pocket, which at selected locations, especially in the upper and lower portion of the respective gas pocket breakthroughs or passages (has, and in the presence of a back space a third support member in the rear space behind the Gas bags
  • the back of the gas pockets is in particular with the vertical support elements for Power and power transmission welded.
  • the vertical support elements for Power and power transmission welded are preferred over this Welds, for example, structural beams or other types of vertical Structural bridges welded as support elements, which are so high that they with the surrounding outer edge of the gas pocket have the same level.
  • these fixtures must be a horizontal Gas flow through the gas pocket and at the bottom also a horizontal Allow drainage of possible condensate.
  • the oxygen-consuming cathodes After installation of the oxygen-consuming cathodes, for example, they lie flat on the Structural beams or bridges and the edge of the gas pockets on and form a level Surface across the full width and the respective height of the gas pocket.
  • a support element as a support element of electrolyte and heat-resistant material as a counterpart to the o.g. Structural beams or bridges built on the one hand on the oxygen-consuming cathode and on the other hand the membrane is supported on the anode structure also supported in this area and so allows the passage of power through the electrochemical cell.
  • the support member (spacer) is preferably not in one for the following reasons Piece installed in the cell.
  • the second support part is particularly preferably either as a solid electrically conductive Ingot or formed as a U-profile, or as a corresponding vertical embossment of Rear side of the gas pocket executed. Out For this reason, it is advantageous to piece the support element and into segments subdivide, which correspond to the height of the respective individual gas pockets.
  • the segments The support elements are in particular the top and bottom of the following Scheme attached or guided: at the top they are at the edge of the gas pocket attached. This can either be via a pin or a push-button type either on Spacers or at the top of the gas pocket done, with each opposite part must contain a corresponding hole.
  • a preferred variant of the invention is therefore characterized in that the support member in the Katholytspalt of several vertically stacked Ingot is formed, optionally at its upper end with a detachable Connecting means, for example a snap connector attached to cross struts are who carry the electrode.
  • the tapered upper end of the underlying next support element encloses and so ensures the horizontal positioning of the support element.
  • the gap between these two segments is expediently so chosen that the greater thermal expansion of the support element over the metallic structures is compensated.
  • each adjacent ends of the support members formed as a groove-spring combination, wherein the upper end of each lower support member is formed in particular as a spring.
  • the Structural beams or bridges with slight vertical bulges either to the right and left or in the middle are provided, which a corresponding shaping of the Support elements corresponds, so that this always when clamping the electrolyzer is centered again on the opposite structure.
  • the oxygen-consuming cathode should in particular be electrically conductive on its rear side be.
  • the edge of the gas pocket another electrical connection by press contact created the electrically conductive support elements, which to further minimize the ohmic losses leads.
  • the use of the support element prevents a large-scale bulging of the oxygen-consuming cathode in the Katholytspalt with the Risk of local blockage of the catholyte through contact with the membrane. This applies in particular to the o.g. Structuring of the supporting elements through which the Oxygen consumption cathode is stretched.
  • the supporting elements in the Katholytspalt be particularly in the case of Chloralkalielektrolyse suitably made of ECTFE, FEP, MFA or PFA, while the electrically conductive support elements, for example, structural beams or bridges made of nickel or another non-sag metal alloy, or directly are stamped out of the back wall of the gas pocket.
  • the support elements in the catholyte gap on the oxygen-consuming cathode facing side to be metallic over the press contact an improvement of the current distribution into the oxygen-consuming cathode receive.
  • the support elements are two-layered constructed, with the membrane-facing side of ECTFE, FEP, MFA or PFA consists, while the metallic part consists of alkali-resistant metal.
  • FIG 1 the view of the cathode half-shell with the left upper corner than Section shown in Figure 2 is a horizontal section A-A 'through a gas pocket 15th In the cathode half shell 10, the gas pocket structure with the rear wall 11 and the lateral border 9 carried on the support structure 3.
  • the vertical structural beam 2a or, according to one in the same Fig. 2 and 3, respectively shown variant, the vertical structural bridge 2b are welded into the gas pocket 15.
  • both structures are broken and do not stand on the horizontal boundary 12 the gas pocket 15 on to drain any accumulating condensate to allow the oxygen-consuming cathode.
  • the oxygen-consuming cathode 4 is on and on the lateral border 9 and the horizontal boundary 12 electrically attached conductive and gas-tight and rests on the structural beam or bridges.
  • the Katholytspalt 14 between membrane 5 and oxygen-consuming cathode 4 is defined by the spacer elements 1, which in turn via the membrane on the Support anode 6, which defines in the anode half-shell 8 on the support structure 7 is held (see Fig.2).
  • Anode half-shell 8 and cathode half-shell 10 are liquid-tight with each other connected and form a single element (electrolysis cell). When squeezing the electrolyzer compresses many such individual elements, wherein the respective next anode half-shell 8 'of adjacent individual elements on the Cathode half-shell 10 and the next cathode half-shell 10 'of an adjacent Single element on the other side of the single element on the anode half-shell 8 Press.
  • the spacer elements 1a, 1b themselves are tapered at the top and below provided with a corresponding dovetail structure (Fig. 1). you will be above with a pin or a push-button-like holding device 13 on the horizontal boundary 12 of the gas pocket 15 attached.
  • the dovetail of the Spacer 1b engages over the top of the next below Distance element 1a and is so clearly positioned. At the same time allows one defined gap between the spacer elements 1a, 1b whose free thermal Expansion, which, due to the material, is greater than that of the metallic structures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Secondary Cells (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

Die Erfindung betrifft eine Elektrochemische Zelle für Elektrolyseure mit Einzelelementtechnik für das Membranelektrolyseverfahren nach dem Oberbegriff des Anspruches 1. Die Zelle besteht wenigstens aus 2 Halbschalen, die einen Anolytraum und einen Kathodenraum mit dazwischen angeordneter Membran umgeben, einer Anode im Anolytraum, wobei der Kathodenraum mit einer Sauerstoffverzehrkathode, mit mehreren übereinander angeordneten druckkompensierten Gastaschen, einem Katholytspalt und gegebenenfalls einem Rückraum versehen ist, wobei elektrisch leitende Stützelemente im Anolytraum und Stützelemente im Kathodenraum auf gleicher einander gegenüberliegender Position vorgesehen sind.
Elektrolyseure z.B. für die NaCl-Elektrolyse sind für die bipolare Fahrweise in zwei grundsätzlich bekannten Basistechniken bekannt.
Bei der Filterpressentechnik sind die Zellenelemente innerhalb des Rahmens halbschalig Rücken an Rücken verschweißt angeordnet, wobei Anode und Kathode jeweils freistehend außen liegen und die zwischen zwei Elemente eingelegte Ionenaustauschermembran die elektrochemische Zelle bildet. Der Strom von Zelle zu Zelle fließt hier über die Schweißnähte zwischen den Halbschalen.
Bei der Einzelelementtechnik wird die elektrochemische Zelle durch zwei einzelne Elektrodenhalbschalen, zwischen die eine Membran gelegt wird, und die dann zu einem Einzelelement verschraubt werden, gebildet. Die elektrische Kontaktierung von Einzelelement zu Einzelelement erfolgt hier durch Zusammenpressen eines Pakets von Einzelelementen, die über geeignete Kontaktstreifen elektrisch mit einander verbunden werden. Die von außen wirkenden Presskräfte müssen hierbei innerhalb der Elementstrukturen weitergeleitet werden.
Der Einsatz von Sauerstoffverzehrkathoden im Druckkompensationsbetrieb mit sog. Gastaschen, wie in der Patentschrift US 5 963 202 im Grundprinzip sowie in der Deutschen Offenlegungsschrift DE 196 22 744 A1 für aktiv gasdurchströmte Gastaschen beschrieben, erfolgt mit einem Elektrolytspalt zwischen Sauerstoffverzehrkathode und Membran. Gleichzeitig stellt die Gastasche selbst ein Leervolumen dar. Beide für die Kraftdurchleitung undefinierte Strukturen müssen mit einem für die Durchleitung der Spannkräfte geeigneten System überbrückt werden. Gleichzeitig soll die Spannkraft für eine weitere Verbesserung der Stromverteilung in die Sauerstoffverzehrkathode über Presskontakte genutzt werden. Aus DE-A-196 41 125 ist ein Elektrolyseapparat zur Herstellung von Halogengasen aus wässriger Alkalihalogenidlösung mit mehreren nebeneinander in einem Stapel angeordneten und in elektrischem Kontakt stehenden plattenförmigen Elektrolysezellen bekannt. Mittels metallischer Versteifungen in Form von Stegen, welche mit an der Rückwand des Gehäuses angeordneten Kontaktstreifen fluchten, sind die Anode und Kathode mit der jeweils zugeordneten Rückwand elektrisch leitend verbunden, wodurch eine ungleiche Stromverteilung vermieden werden soll.
Die Gastaschen mit den Sauerstoffverzehrkathoden erstrecken sich üblicherweise über die gesamte Breite der Elektrolysezelle. Die Strukturen zur Durchleitung der Spannkräfte sind wie bei der wasserstoffproduzierenden Elektrolyse aus hydraulischen Gründen vertikal angeordnet. Für die sich hierbei kreuzenden Funktionen musste eine pragmatisch einfache Lösung gefunden werden, die sowohl in neue Elektrolyseelemente von vorneherein integriert werden kann, als auch eine Nachrüstung von derzeit im Wasserstoffbetrieb arbeitenden Elektrolysen ermöglicht.
Die Aufgabe wird erfindungsgemäß gelöst durch eine elektrochemische Zelle für das Membranelektrolyseverfahren, bestehend wenigstens aus 2 Halbschalen, die einen Anolytraum und einen Kathodenraum mit dazwischen angeordneter Membran umgeben, einer Anode im Anolytraum, wobei der Kathodenraum mit einer Sauerstoffverzehrkathode, mit mehreren übereinander angeordneten druckkompensierten Gastaschen, einem Katholytspalt und gegebenenfalls einem Rückraum versehen ist, dadurch gekennzeichnet, dass elektrisch leitende Stützelemente im Anolytraum und Stützelemente im Kathodenraum auf gleicher einander gegenüberliegender Position vorgesehen sind, welche sich gegenseitig abstützen, wobei die Abstützung im Kathodenraum mittels eines mehrteiligen Stützelementes erfolgt mit einem Stützteil im Katholytspalt, einem weiteren Stützteil in der Gastasche, welches an ausgewählten Stellen, insbesondere im oberen und unteren Bereich der jeweiligen Gastasche Durchbrüche oder Durchgänge (aufweist, und bei Anwesenheit eines Rückraums einem dritten Stützteil im Rückraum hinter den Gastaschen.
Die Rückseite der Gastaschen ist insbesondere mit den vertikalen Stützelementen zur Kraft- und Stromdurchleitung verschweißt. In die Gastasche werden bevorzugt über diese Schweißnähte beispielsweise Strukturbalken oder andersartige, vertikal verlaufende Strukturbrücken als Stützelemente eingeschweißt, die so hoch sind, dass sie mit dem umlaufenden Außenrand der Gastasche das gleiche Niveau haben.
Ungeachtet der gewählten Ausführungsform müssen diese Einbauten einen horizontalen Gasdurchfluss durch die Gastasche sowie am unteren Rand auch einen horizontalen Abfluss von möglichem Kondensat ermöglichen.
Nach Einbau der Sauerstoffverzehrkathoden liegen diese zum Beispiel flach auf den Strukturbalken bzw. -brücken und dem Rand der Gastaschen auf und bilden eine ebene Fläche über die volle Breite sowie die jeweilige Höhe der Gastasche.
Zur Überbrückung des Katholytspaltes zwischen Sauerstoffverzehrkathode und Membran wird insbesondere ein Stützelement als Stützelement aus elektrolyt- und wärmebeständigem Material als Gegenstück zu den o.g. Strukturbalken bzw. -brücken eingebaut, der sich einerseits über die Sauerstoffverzehrkathode sowie andererseits über die Membran an der in diesem Bereich ebenfalls unterstützten Anodenstruktur abstützt und so die Kraftdurchleitung durch die elektrochemische Zelle ermöglicht.
Das Stützelement (Abstandshalter) wird aus folgenden Gründen bevorzugt nicht in einem Stück in die Zelle eingebaut. Erstens ist eine sichere Positionierung gegenüber den o.g. Strukturbalken bzw. -brücken über die volle Höhe nicht sichergestellt, wobei schon kleine seitliche Verbiegungen zu einem Abrutschen mit der Gefahr der Zerstörung der Sauerstoffverzehrkathode führen kann und zweitens unterscheiden sich die thermischen Ausdehnungskoeffizienten so sehr, dass ein seitliches Ausbie gen
Das zweite Stützteil ist besonders bevorzugt entweder als massiver elektrisch leitender Barren oder als U-Profil ausgebildet, oder aber als entsprechende vertikale Prägung der Rückseite der Gastasche ausgeführt. Aus diesem Grund ist es vorteilhaft, das Stützelement zu stückeln und in Segmente zu unterteilen, die der Höhe der jeweiligen einzelnen Gastaschen entsprechen. Die Segmente der Stützelemente werden insbesondere oben und unten nach folgendem Schema befestigt bzw. geführt: am oberen Ende werden sie am Rand der Gastasche befestigt. Dies kann entweder über einen Stift oder eine Art Druckknopf entweder am Abstandshalter oder aber am oberen Rand der Gastasche erfolgen, wobei das jeweils gegenüberliegende Teil eine entsprechend Bohrung enthalten muss.
Eine bevorzugte Variante der Erfindung ist folglich dadurch gekennzeichnet, dass das Stützteil im Katholytspalt aus mehreren senkrecht übereinander angeordneten Barren gebildet wird, die gegebenenfalls an ihrem oberen Ende mit einem lösbaren Verbindungsmittel, zum Beispiel einem Schnappverbinder an Querstreben befestigt sind, die die Elektrode tragen.
Am unteren Ende läuft das Stützelement in eine schwalbenschwanzförmige Struktur aus, die das spitz auslaufende obere Ende des darunterliegenden nächsten Stützelements umschließt und so die horizontale Positionierung des Stützelements sicherstellt. Der Spalt zwischen diesen beiden Segmenten wird zweckmäßigerweise so gewählt, dass die größere thermische Dehnung des Stützelements gegenüber den metallischen Strukturen kompensiert wird.
In einer bevorzugten Variante der elektrochemischen Zelle sind daher die jeweils angrenzenden Enden der Stützteile als Nut-Federkombination ausgebildet, wobei das obere Ende des jeweils unteren Stützteils insbesondere als Feder ausgebildet ist.
Eine gute Kraftverteilung ergibt sich in der Zelle, wenn die Stützelemente sich über die gesamte Höhe der Halbschalen ausdehnen.
Um eine noch sicherere Positionierung des Stützelements zu gewährleisten, können die Strukturbalken bzw. -brücken mit leichten vertikalen Aufwölbungen entweder rechts und links oder aber in der Mitte versehen werden, denen eine entsprechende Formgebung der Stützelemente entspricht, so dass dieser beim Verspannen des Elektrolyseurs immer wieder auf die gegenüberliegende Struktur zentriert wird.
Die Sauerstoffverzehrkathode sollte auf ihrer Rückseite insbesondere elektrisch leitend sein. Hierdurch wird neben der metallischen Verbindung der Sauerstoffverzehrkathode mit dem Rand der Gastasche eine weitere elektrische Verbindung durch Presskontakt über die elektrisch leitenden Stützelemente geschaffen, die zu einer weiteren Minimierung der ohmschen Verluste führt. Darüber hinaus verhindert der Einsatz des Stützelements ein großflächiges Ausbeulen der Sauerstoffverzehrkathode in den Katholytspalt mit der Gefahr der lokalen Blockade des Katholytdurchflusses durch Kontakt mit der Membran. Dies gilt insbesondere bei der o.g. Strukturierung der Stützelemente, durch die die Sauerstoffverzehrkathode gespannt wird.
Die Stützelemente im Katholytspalt werden insbesondere im Fall der Chloralkalielektrolyse zweckmäßigerweise aus ECTFE, FEP, MFA oder PFA gefertigt, während die elektrisch leitenden Stützelemente, zum Beispiel Strukturbalken bzw. -brücken aus Nickel oder einer anderen laugebeständigen Metaillegierung bestehen sollten oder unmittelbar aus der Rückwand der Gastasche herausgeprägt sind.
Für den Fall einer auf ihrer Vorderseite metallisch oder elektrisch leitenden Sauerstoffverzehrkathode können die Stützelemente im Katholytspalt auf der der Sauerstoffverzehrkathode zugewandten Seite metallisch sein, um über den Presskontakt eine Verbesserung der Stromverteilung in die Sauerstoffverzehrkathode hinein zu erhalten. Vorzugsweise werden in diesem Fall die Stützelemente zweischichtig aufgebaut, wobei die der Membran zugewandte Seite aus ECTFE, FEP, MFA oder PFA besteht, während der metallische Teil aus laugenbeständigem Metall besteht.
Die Anwendung der beschriebenen Kraftdurchleitung in der Einzelelementtechnik ist nicht nur auf die Chlor-Alkali-Elektrolyse beschränkt, sie ist vielmehr auf alle Elektrolysen mit Gasdiffusionselektroden im direkten Kontakt mit flüssigen Elektrolyten, die eine Druckkompensation benötigen, anwendbar, wie z.B.
  • Wasserstoff-Peroxid-Produktion mit Sauerstoffverzehrkathode,
  • Natriumdichromatelektrolyse mit Wasserstoff verzehrender Anode und Sauerstoffverzehrelektrode
  • Alkalische Brennstoffzellen zur Natronlaugenanreicherung
  • Salzsäureelektrolyse mit Sauerstoffverzehrkathode
Die Erfindung wird nachstehend anhand der Figuren beispielsweise näher erläutert. In den Figuren zeigen:
Fig. 1
einen Längsschnitt durch eine Kathodenhalbschale einer erfindungsgemäßen Zelle als Ausschnitt der linken oberen Ecke.
Fig. 2
einen Querschnitt entsprechend der Linie A-A' in Fig. 1 durch die elektrochemische Zelle
Fig. 3
einen Längsschnitt durch eine Kathodenhalbschale entsprechend der Linie B-B' in Fig. 1
Beispiele
In Figur 1 ist der Blick auf die Kathodenhalbschale mit der linken oberen Ecke als Ausschnitt gezeigt, in Figur 2 ein horizontaler Schnitt A-A' durch eine Gastasche 15. In der Kathodenhalbschale 10 wird die Gastaschenstruktur mit der Rückwand 11 und der seitlichen Umrandung 9 über die Tragestruktur 3 getragen.
Der vertikale Strukturbalken 2a bzw., gemäß einer in derselben Fig. 2 bzw. 3 gezeigten Variante, die vertikale Strukturbrücke 2b sind in die Gastasche 15 eingeschweißt. Um den Sauerstoffquertransport in der Gastasche 15 sicherzustellen sind beide Strukturen durchbrochen und stehen nicht auf der horizontalen Begrenzung 12 der Gastasche 15 auf, um ein Abfließen möglicherweise anfallenden Kondensates aus der Sauerstoffverzehrkathode zu ermöglichen. Die Sauerstoffverzehrkathode 4 ist auf und an der seitlichen Umrandung 9 sowie der horizontalen Begrenzung 12 elektrisch leitfähig und gasdicht befestigt und liegt auf den Strukturbalken bzw. -brücken auf. Der Katholytspalt 14 zwischen Membran 5 und Sauerstoffverzehrkathode 4 wird durch die Abstandselemente 1 definiert, die sich wiederum über die Membran an der Anode 6 abstützen, die in der Anodenhalbschale 8 über die Tragestruktur 7 definiert gehaltert wird (vergl. Fig.2).
Anodenhalbschale 8 und Kathodenhalbschale 10 werden flüssigkeitsdicht miteinander verbunden und bilden ein Einzelelement (Elektrolysezelle). Beim Zusammenpressen des Elektrolyseurs werden viele solcher Einzelelemente zusammengepresst, wobei die jeweils nächste Anodenhalbschale 8' benachbarter Einzelelemente auf die Kathodenhalbschale 10 und die nächste Kathodenhalbschale 10' eines benachbarten Einzelelementes auf der anderen Seite des Einzelelementes auf die Anodenhalbschale 8 drücken. Die Zusammenpressung des Einzelelements belastet über die Kathodenhalbschale 10 die Tragestruktur 3, den vertikalen Strukturbalken 2a bzw. die vertikale Strukturbrücke 2b und den Abstandshalter 1, der einerseits gegen die Sauerstoffverzehrkathode 4 und andererseits über die Membran 5 gegen die Anode 6 drückt. Diese gibt Spannkräfte über die Tragestruktur 7 an die Anodenhalbschale 8 weiter. Durch Anpressen an die Kontaktstreifen 21a und 21b erfolgt die elektrische Kontaktierung von Einzelelement zu Einzelelement.
Die Abstandselemente 1a, 1b selbst sind oben spitz zulaufend ausgebildet und unten mit einer entsprechenden Schwalbenschwanzstruktur versehen (Fig. 1). Sie werden oben mit einem Stift oder einer Druckknopf-ähnlichen Haltevorrichtung 13 an der horizontalen Begrenzung 12 der Gastasche 15 befestigt. Der Schwalbenschwanz des Abstandselementes 1b greift über die Spitze des darunterliegenden nächsten Abstandselementes 1a und wird so eindeutig positioniert. Gleichzeitig ermöglicht ein definierter Spalt zwischen den Abstandselementen 1a, 1b deren freie thermische Ausdehnung, die, materialbedingt, größer als die der metallischen Strukturen ist.

Claims (9)

  1. Elektrochemische Zelle für das Membranelektrolyseverfahren, bestehend wenigstens aus 2 Halbschalen (8, 10), die einen Anolytraum (16) und einen Kathodenraum (22) mit dazwischen angeordneter Membran (5) umgeben, einer Anode (6) im Anolytraum (16), wobei der Kathodenraum (22) mit einer Sauerstoffverzehrkathode (4), mit mehreren übereinander angeordneten druckkompensierten Gastaschen (15), einem Katholytspalt (14) und gegebenenfalls einem Rückraum (19) versehen ist, dadurch gekennzeichnet, dass elektrisch leitende Stützelemente (7) im Anolytraum (16) und Stützelemente (3, 2, 1) im Kathodenraum (22) auf gleicher einander gegenüberliegender Position vorgesehen sind, welche sich gegenseitig abstützen, wobei die Abstützung im Kathodenraum (22) mittels eines mehrteiligen Stützelementes (3, 2, 1) erfolgt mit einem Stützteil (1) im Katholytspalt (14), einem weiteren Stützteil (2a; 2b) in der Gastasche (15), welches an ausgewählten Stellen, insbesondere im oberen und unteren Bereich der jeweiligen Gastasche (15) Durchbrüche (22a, 22b, 23a) oder Durchgänge (24) aufweist, und bei Anwesenheit eines Rückraums (19) einem dritten Stützteil (3) im Rückraum (19) hinter den Gastaschen (15).
  2. Elektrochemische Zelle nach Anspruch 1, dadurch gekennzeichnet, dass das Stützteil (1) im Katholytspalt (14) aus mehreren senkrecht übereinander angeordneten Barren (1) gebildet wird, die gegebenenfalls an ihrem oberen Ende mit einem lösbaren Verbindungsmittel (13), zum Beispiel einem Schnappverbinder (13) an Querstreben (12) befestigt sind, die die Elektrode (4) tragen.
  3. Elektrochemische Zelle nach Anspruch 2, dadurch gekennzeichnet, dass die jeweils angrenzenden Enden der Stützteile (1a, 1b) als Nut-Federkombination ausgebildet sind, wobei das obere Ende des jeweils unteren Stützteils (1a) insbesondere als Feder ausgebildet ist.
  4. Elektrochemische Zelle nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Stützelemente (3, 2, 1) sich über die gesamte Höhe der Halbschale (10) ausdehnen, denen ein durchgehendes Stützelement 7 in der zweiten Halbschale 8 gegenübersteht.
  5. Elektrochemische Zelle nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das zweite Stützteil (2) entweder als massiver elektrisch leitender Barren (2a) oder als U-Profil (2b) ausgebildet ist.
  6. Elektrochemische Zelle nach Anspruch 5, dadurch gekennzeichnet, dass das U-Profil (2b) aus der Rückwand der Gastasche herausgeprägt ist und das Stützelement (3) in die Basis des geprägten U-Profils (2b) hineinreicht und so unmittelbar die Kraftdurchleitung bewirkt.
  7. Elektrochemische Zelle nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Stützelemente (7, 3 und 2) aus laugebeständigen Metallen oder Legierungen, insbesondere aus Nickel oder aus säurefesten Metallen oder Legierungen, insbesondere aus Titan oder Legierungen aus Titan und Palladium hergestellt sind.
  8. Elektrochemische Zelle nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Stützelemente (1, 1a bzw. 1b) aus einem temperatur- und elektrolytbeständigen Kunststoff bestehen.
  9. Elektrochemische Zelle nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Stützelemente (1, 1a, 1b) auf der der Sauerstoffverzehrkathode (4) zugewandten Seite metallisch leitend ausgeführt sind.
EP00976055A 1999-12-01 2000-11-20 Elektrochemische zelle für elektrolyseure mit einzelelementtechnik Expired - Lifetime EP1242653B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19959079A DE19959079A1 (de) 1999-12-01 1999-12-01 Elektrochemische Zelle für Elektrolyseure mit Einzelelementtechnik
DE19959079 1999-12-01
PCT/EP2000/011531 WO2001040549A1 (de) 1999-12-01 2000-11-20 Elektrochemische zelle für elektrolyseure mit einzelelementtechnik

Publications (2)

Publication Number Publication Date
EP1242653A1 EP1242653A1 (de) 2002-09-25
EP1242653B1 true EP1242653B1 (de) 2005-04-06

Family

ID=7931798

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00976055A Expired - Lifetime EP1242653B1 (de) 1999-12-01 2000-11-20 Elektrochemische zelle für elektrolyseure mit einzelelementtechnik

Country Status (22)

Country Link
US (1) US6984296B1 (de)
EP (1) EP1242653B1 (de)
JP (1) JP2003515677A (de)
KR (1) KR20020059830A (de)
CN (1) CN1258619C (de)
AT (1) ATE292695T1 (de)
AU (1) AU775645B2 (de)
BR (1) BR0015952A (de)
CA (1) CA2394835A1 (de)
CZ (1) CZ20021886A3 (de)
DE (2) DE19959079A1 (de)
ES (1) ES2240198T3 (de)
HK (1) HK1054412A1 (de)
HU (1) HUP0203519A3 (de)
MX (1) MXPA02005480A (de)
NO (1) NO20022575L (de)
PL (1) PL355720A1 (de)
PT (1) PT1242653E (de)
RU (1) RU2002118331A (de)
WO (1) WO2001040549A1 (de)
YU (1) YU39402A (de)
ZA (1) ZA200203202B (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20021524A1 (it) * 2002-07-11 2004-01-12 De Nora Elettrodi Spa Cella con elettrodo a letto in eruzione per elettrodeposiwione di metalli
JP4899294B2 (ja) * 2004-06-10 2012-03-21 株式会社日立製作所 水素燃料製造システム,水素燃料製造方法および水素燃料製造プログラム
DE102005003527A1 (de) * 2005-01-25 2006-07-27 Uhdenora S.P.A. Elektrolysezelle mit erweiterter aktiver Membranfläche
IT1391774B1 (it) * 2008-11-17 2012-01-27 Uhdenora Spa Cella elementare e relativo elettrolizzatore modulare per processi elettrolitici
DE102020206448A1 (de) * 2020-05-25 2021-11-25 Siemens Aktiengesellschaft Vorrichtung zum Befestigen einer Elektrode
DE102020206449A1 (de) 2020-05-25 2021-11-25 Siemens Aktiengesellschaft Verfahren zum Befestigen einer Elektrode

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3655167A (en) * 1970-08-18 1972-04-11 Peter W Skille Fence corner
DE4444114C2 (de) 1994-12-12 1997-01-23 Bayer Ag Elektrochemische Halbzelle mit Druckkompensation
DE19622744C1 (de) 1996-06-07 1997-07-31 Bayer Ag Elektrochemische Halbzelle mit Druckkompensation
DE19641125A1 (de) * 1996-10-05 1998-04-16 Krupp Uhde Gmbh Elektrolyseapparat zur Herstellung von Halogengasen
DE19715429A1 (de) * 1997-04-14 1998-10-15 Bayer Ag Elektrochemische Halbzelle
DE19859882A1 (de) * 1998-12-23 1999-12-09 W Strewe Ionenaustauschermembranzelle für hohe Produktleistungen
US6283162B1 (en) * 1999-09-09 2001-09-04 Boyd L. Butler Thin boom tube exhaust pipes, method of sheet metal construction thereof, and exhaust systems which utilize such exhaust pipes for increased ground clearance on race cars

Also Published As

Publication number Publication date
AU775645B2 (en) 2004-08-12
CN1258619C (zh) 2006-06-07
NO20022575D0 (no) 2002-05-30
YU39402A (sh) 2004-12-31
HUP0203519A2 (hu) 2003-03-28
KR20020059830A (ko) 2002-07-13
PT1242653E (pt) 2005-08-31
ES2240198T3 (es) 2005-10-16
CZ20021886A3 (cs) 2002-10-16
CN1408032A (zh) 2003-04-02
US6984296B1 (en) 2006-01-10
MXPA02005480A (es) 2002-12-13
RU2002118331A (ru) 2004-03-27
EP1242653A1 (de) 2002-09-25
CA2394835A1 (en) 2001-06-07
DE19959079A1 (de) 2001-06-07
AU1396001A (en) 2001-06-12
HUP0203519A3 (en) 2003-04-28
DE50010013D1 (de) 2005-05-12
JP2003515677A (ja) 2003-05-07
WO2001040549A1 (de) 2001-06-07
ATE292695T1 (de) 2005-04-15
BR0015952A (pt) 2002-08-06
HK1054412A1 (zh) 2003-11-28
PL355720A1 (en) 2004-05-17
ZA200203202B (en) 2003-04-23
NO20022575L (no) 2002-05-30

Similar Documents

Publication Publication Date Title
DE2930609C2 (de)
EP0717130B1 (de) Druckkompensierte elektrochemische Zelle
DE2435185C3 (de) Elektrolysezelle
EP0189535B1 (de) Elektrolyseapparat
EP0182114B1 (de) Elektrolyseapparat mit horizontal angeordneten Elektroden
DD243516A5 (de) Monopolare und bipolara chlorzellen und elektrodenstrukturen fuer diese
DE69015518T2 (de) Elektrode für Elektrolyse.
DE60302610T2 (de) Ionenaustauschmembran-Elektrolyseur
DD211130A5 (de) Elektrodenbauteil
EP1417356B1 (de) Elektrolysezelle, insbesondere zur elektrochemischen herstellung von chlor
DE2856882C2 (de)
DE4306889C1 (de) Elektrodenanordnung für gasbildende elektrolytische Prozesse in Membran-Zellen und deren Verwendung
DE3025662A1 (de) Elektrolytische zelle
DE69007205T2 (de) Rahmen für Elektrolyseur der Filterpressenbauart und monopolarer Elektrolyseur der Filterpressenbauart.
EP0095039A2 (de) Membran-Elektrolysezelle
EP1242653B1 (de) Elektrochemische zelle für elektrolyseure mit einzelelementtechnik
DE69405047T2 (de) Elektrolyseur
DE2538000B2 (de) Bipolare Elektrodenkonstruktion für eine membranlose Elektrolysezelle
DE69213362T2 (de) Elektrolyseur und Herstellung davon
DE2923818A1 (de) Elektrodenabteil
EP1285103B1 (de) Bipolare mehrzweckelektrolysezelle für hohe strombelastungen
DE3808495C2 (de)
DE69607197T2 (de) Elektrodenanordnung fuer elektrolyseur der filterpressenbauart
DE69005804T2 (de) Elektrolytische Zelle für Gas-Herstellung, die ein Stapel von senkrechten Rahmen enthält.
DE2818939A1 (de) Flexible elektrodenanordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20021028

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER MATERIALSCIENCE AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050406

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050406

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050406

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50010013

Country of ref document: DE

Date of ref document: 20050512

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050706

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050706

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050706

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050727

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Effective date: 20050614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20051014

Year of fee payment: 6

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2240198

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20051116

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051120

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20060110

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070521

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20070521

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20061120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081030

Year of fee payment: 9

Ref country code: NL

Payment date: 20081103

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20081216

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081128

Year of fee payment: 9

Ref country code: BE

Payment date: 20081110

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081112

Year of fee payment: 9

BERE Be: lapsed

Owner name: *BAYER MATERIALSCIENCE A.G.

Effective date: 20091130

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100601

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100601

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091121