WO2001036592A1 - Sterilized microbial cells - Google Patents

Sterilized microbial cells Download PDF

Info

Publication number
WO2001036592A1
WO2001036592A1 PCT/JP2000/007969 JP0007969W WO0136592A1 WO 2001036592 A1 WO2001036592 A1 WO 2001036592A1 JP 0007969 W JP0007969 W JP 0007969W WO 0136592 A1 WO0136592 A1 WO 0136592A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
killed
surfactant
cell according
killing
Prior art date
Application number
PCT/JP2000/007969
Other languages
French (fr)
Japanese (ja)
Inventor
Fumiaki Watanabe
Hanako Okazaki
Yasuteru Abe
Wataru Mizunashi
Makoto Kanou
Kouzo Murao
Original Assignee
Mitsubishi Rayon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co., Ltd. filed Critical Mitsubishi Rayon Co., Ltd.
Priority to JP2001538471A priority Critical patent/JP3973423B2/en
Priority to EP00974940.9A priority patent/EP1233057B1/en
Publication of WO2001036592A1 publication Critical patent/WO2001036592A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/005Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor after treatment of microbial biomass not covered by C12N1/02 - C12N1/08
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/16Enzymes or microbial cells immobilised on or in a biological cell

Definitions

  • the present invention relates to a killed microbial cell obtained by killing a microbial cell contained in a microbial catalyst.
  • microbial cells When microbial cells are used industrially, there is a concern that they may cause microbial contamination secondary to leakage during production, contamination of products, or handling after use.
  • the reaction is performed in a closed system using highly safe cells, the ability to remove the cells by filtration using an auxiliary agent such as diatomaceous earth from the reaction solution, and the bacterium by immobilizing the cells. It is common to take measures to minimize body leakage. In this case, complete killing was not considered important because of the use of highly safe cells, but in recent years, attention has been paid to manufacturer responsibilities. It is required to eliminate the leakage of viable cells.
  • transgenics when using transgenics, it is required by various guidelines to completely kill microbial cells when operating in a system other than a closed system.
  • a killing method for example, heat treatment under conditions that do not cause inactivation of the target enzyme or the like, or crushing of the cells and use as a crude enzyme solution is common.
  • a surfactant is generally used, and the surfactant destroys the cell membrane of bacteria or denatures enzyme proteins that are important for life support. Is achieved. Particularly when a cationic surfactant or an amphoteric surfactant is used, a high bactericidal effect is exhibited.
  • the sterilization method using an ionic surfactant is well known, but generally has a disinfecting effect of sterilizing a low-concentration microorganism group, and it is completely known that the high-concentration microbial cells of the present invention can be killed. I didn't.
  • the prior art Japanese Patent Application Laid-Open No. 61-152,776 is a treatment method applied only to Escherichia coli. Further, since the bioactive substance is applied in the extraction and purification processes, the destruction and aggregation of the cells do not matter, but the killed cells obtained by the present invention can be used as they are or after immobilization. It is used as a reaction catalyst for substance production. Therefore, the destruction or aggregation of the cells is a disadvantage for industrial use because it causes a decrease in enzyme activity and reactivity and a trouble during immobilization. Disclosure of the invention
  • the present inventors have found that under relatively mild conditions, live cells that have produced highly versatile, industrially useful enzymes and the like in their cells can be killed without deactivating the enzyme activities and the like. After examining the method of causing the microbial cells to survive, it was found that by treating the microbial cells in the presence of a surfactant, the killing of the microbial cells could be achieved without inactivation of industrially useful enzymes. The invention has been completed.
  • the term “killing the cells” as used in the present invention means that the viable cell count of the bacteria in the suspension of the cells at a relatively high concentration is substantially reduced to zero.
  • the survival rate of the microbial cells is meant to be a 1 Z 1 0 one 5 or less.
  • the survival rate is expressed as the ratio of the number of viable cells in the cell suspension to the number of viable cells in the cell suspension after killing.
  • the viable cell count is determined by diluting the cell suspension to be measured to a predetermined concentration, then spreading the cell suspension on a solid medium on which the cells can grow, and growing the cells on the solid medium. It is calculated from the number and the dilution ratio.
  • the present invention provides a method for killing live cells produced by producing an industrially useful enzyme or the like in a cell without deactivating the activity of the enzyme or the like. And a method for producing the same.
  • the present invention includes the following (1) to (14).
  • a killed microbial cell obtained by treating a microbial catalyst having a dry cell weight of 5 g / L to 200 g / L in an aqueous medium containing a surfactant.
  • the cationic surfactant is at least one selected from the group consisting of benzethonium chloride, cetylpyridinium chloride, methylstearoyl chloride and cetyltrimethylammonium bromide. Bacteria.
  • a killed microbial cell that has been killed by treating a microbial catalyst in an aqueous medium containing a surfactant and dataraldehyde.
  • the cationic surfactant is at least one selected from the group consisting of benzenetonium chloride, cetylpyridinium chloride, methylstearoyl chloride, and cetyltrimethylammonium bromide (6) to (8) )
  • the killed cell according to any one of the above.
  • the microbial catalyst is nitrile hydratase, nitrilase, amidase, humalase, aspartase and ethylenediamine-N, N'-disuccinic acid:
  • the killed cell according to any one of (1) to (11), which has at least one enzyme activity selected from rangeamine lyase.
  • the microbial catalyst targeted in the present invention is not particularly limited, but includes microbial cells used as a biocatalyst when producing chemicals and the like, and particularly includes genetically modified organisms.
  • Microbial cells include, for example, R h 0 d0 c 0 ccusrhodochrous J-1, a nitritol rehydratase-producing bacterium that converts acrylonitrile to acrylamide, and a recombinant R into which the nitril hydratase gene is introduced.
  • EA4 rhodochrous ATCC 1 2674 / p KNH2, R hodococcuss P.
  • SK92 a nitrilase-producing bacterium that converts acrylonitrile to acrylic acid, Rhodococcussp. Bacillus subtilis ATCC 6051, Bacillus stear mouth S. mofilus ATCC 1 20 16 and Rhodococcus rhodochrous ATCC 1 2674, fumalase-producing bacteria that convert fumaric acid to malic acid, fumaric acid and ammonia to L-aspartic acid Recombinant Rhodococcus rhodochrous transfected with the aspartase gene to be converted ATCC1 2674 pAR016, fumaric acid
  • the Jiamin such a genetic recombinant that was introduced enzyme gene into a polyamino acids, Rh odococcusrhdochrous ATCC 1 7895 / SE 00 1, and the like.
  • Rhodococcusrhodochrous J-1 above was submitted as FE RM BP-1478 to the Life Science and Industrial Technology Research Institute, Ministry of International Trade and Industry, Ministry of International Trade and Industry on September 18, 1987 (1-3 1-3 Higashi, Tsukuba City, Ibaraki Prefecture). Deposited internationally under the Convention.
  • the above R. rhodochrous AT CC 1 267 4 p KNH 2 is referred to as FERM BP-3733 on March 1, 1991, by the Ministry of International Trade and Industry, Ministry of Industry and Technology, Institute of Biotechnology and Industrial Technology (1-1-1 Higashi, Tsukuba, Ibaraki, Japan). No. 3) It has been deposited internationally under the Budapest Treaty.
  • SK 92 was submitted to FERM BP-3324 by the Ministry of International Trade and Industry, National Institute of Advanced Industrial Science and Technology, Biotechnology and Industrial Technology Research Institute (1-3 1-3, Higashi, Tsukuba City, Ibaraki Prefecture) on February 21, 1990. Deposited internationally under the Convention.
  • the above-mentioned R hodococcussp. EA4 was signed as F ERM BP-6231 on March 28, 1991 by the Ministry of International Trade and Industry, Ministry of International Trade and Industry, Institute of Biotechnology and Industrial Technology (1-3 1-3 Tsukuba East, Ibaraki Prefecture). Has been deposited internationally.
  • Rhodococcusrhdochrous ATCC 1 7895ZP SE 00 1 was designated as F ERM BP-6548 on September 18, 1997 by the Ministry of International Trade and Industry (METI), Institute of Biotechnology and Industrial Technology (1-1-3 Higashi, Tsukuba City, Ibaraki Prefecture, Japan). No.) has been internationally deposited under the Budapest Treaty.
  • the method for preparing the recombinant without the deposit number is shown below.
  • Other bacteria are known and can be easily obtained from the American Type Culture Collection (ATCC).
  • ATCC American Type Culture Collection
  • the recombinant Rhodococcus rhodochrous ATCC 12674 / pARO 16 used in the production of L-aspartic acid from fumaric acid and ammonia was prepared by the method described in JP-A-10-337185. .
  • Rhodococcus rhodochrous ATC C17895 pSE011 (FERM BP-6548), used for producing polyaminocarboxylic acids from fumaric acid and diamines, was prepared as follows.
  • Plasmid P ED020 (described in Japanese Patent Application Laid-Open No. 10-21084), 2 ⁇ l, 2 ⁇ l of 10-fold concentration restriction enzyme buffer, 15 ⁇ l of sterilized water, 15 ⁇ l of restriction enzyme, Xho I ⁇ ⁇ ⁇ was added and reacted at 37 ° C for 2 hours. Recover the lysamide by ethanol precipitation and dry.15 ⁇ 1 sterile water, 2 ⁇ I 10 times concentration ⁇ 1e ⁇ 0 wragment buffer, 2 ⁇ l l OmM d NTP The solution and 1 ⁇ l of K 1 enowfra gent were added and reacted at 37 ° C. for 2 hours.
  • the DNA fragment is recovered by ethanol precipitation, dried, and then sterilized with 8 pieces of sterilized water, 11 pieces of 13 & 1 phosphoric acid solution, 16 Atl Ligation kit (TaKaRa Shuzo Co., Ltd.) ) Solution A and 4 ⁇ l of solution B were added and reacted at 16 ° C for 4 hours, and then transformed into JM109.
  • Plasmid was prepared from the obtained recombinant to obtain a plasmid in which the Xh0I site of pEDO20 was converted to an XbaI site.
  • To the resulting plasmid 21 add 10-fold concentration buffer for restriction enzyme 21 and sterile water 15 ⁇ l, add restriction enzyme Eco RV ⁇ , and react at 37 ° C for 2 hours.
  • pSJ034 was prepared from the plasmid pSJ023 (described in the specification of Japanese Patent Application No. 9-65618) by the process shown in FIG.
  • the cells in the logarithmic growth phase of R hodococcusrhodochrous ATCC 187895 were collected by centrifugation, washed three times with ice-cold sterile water, and suspended in sterile water. 1 ⁇ l of plasmid pSEOOl and 10 ⁇ l of cell suspension were mixed and cooled on ice. A suspension of DNA and cells was placed in a cuvette, and subjected to electric pulse treatment with a gene transfer device Gene Pu 1 ser (BIO RAD) at 2.0 KV and 200 OHMS.
  • Gene Pu 1 ser BIO RAD
  • the electropulsed solution was allowed to stand for 10 minutes under ice-cooling, subjected to a heat shock at 37 ° C for 10 minutes, and then subjected to MYK medium (polypeptone 5 gZL, Parkinist extract 3 g / L, Bacto malt extract 3 g).
  • the term “killing treatment” means a treatment in which a surfactant and / or glutaraldehyde act on microbial cells contained in a microbial catalyst.
  • the killing treatment involves dissolving a surfactant and, if necessary, other additives in a suspension of the microbial cells, and dissolving the microbial cells and the surfactant, or the microbial cells and the surfactant. This is the process of bringing the agent into contact with the additive. It is preferable that this killing process be performed while keeping the temperature cool or warm. By performing the killing process at a predetermined temperature, the ability as a microbial catalyst can be maintained at a high level. Further, the killing treatment may be performed with stirring.
  • a culture solution obtained by washing the culture solution with an appropriate buffer or the like, or a processed product thereof can be used.
  • the bacterial cell concentration at the time of the killing treatment is not particularly limited, but is preferably higher than the bacterial concentration of the culture solution. From the viewpoint of industrial use, dry cells are better at 5 g / L or more. In addition, the cell concentration at the time of the killing treatment is preferably 200 gZL or less for dry cells. ADVANTAGE OF THE INVENTION According to this invention, a killing process can be performed reliably with respect to the microbial cell suspension of high concentration. However, when the concentration of the dried cells exceeds 200 gZL, the fluidity of the cell suspension generally decreases significantly depending on the type and properties of the microorganisms, and the dispersion of surfactants etc. It may not be possible to efficiently kill microbial cells due to poor solubility and solubility. Therefore, it is preferable that the cell concentration during the killing treatment be 5 to 200 g ZL.
  • the temperature at which the cells are killed can be from the freezing temperature to 80 ° C, preferably from 0 to 70 ° C.
  • the temperature is not particularly limited, but can be arbitrarily set according to the stability of the target enzyme or the like.
  • the surfactant to be added when killing the bacterial cells is not particularly limited, but may be a cationic surfactant, an anionic surfactant, a nonionic surfactant, or both. Any substance such as a nonionic surfactant can be used.
  • nonionic surfactants for example, KS604 (manufactured by Shin-Etsu Chemical Co., Ltd.), pull mouth nick L61, LG126 (manufactured by Asahi Denka Kogyo Co., Ltd.), Emulgen 109P ( Kao Corporation), Triton X—100, and the like.
  • Examples of the cationic surfactant include benzenetonium chloride, cetylpyridinium chloride, methylstearoyl chloride, cetyltrimethylammonium bromide, and the like.
  • Examples of the amphoteric surfactant include carboxybetaine type, aminocarboxylate and the like.
  • a cationic surfactant or an amphoteric surfactant is known to have a high bactericidal effect, and is preferable because it can effectively kill cells at a low concentration. Further, in the killing treatment of the cells, if necessary, a single agent or a mixture of two or more surfactants can be used.
  • the concentration of the surfactant at the time of killing the cells is preferably from 0.01 to 20%, more preferably from 0.05 to 10%. If the concentration of the surfactant is too low, a sufficient effect on killing the cells is not expected. If the concentration is too high, problems such as treatment of waste liquid after treatment and inactivation of industrially useful enzymes and the like are caused. Therefore, it is desirable to select an optimum concentration in consideration of the stability of the microorganism cells to be used and the target enzyme and the like.
  • ionic surfactant when using an ionic surfactant, if a high-concentration solution is used at the time of addition, lysis, destruction, and aggregation of microbial cells may be caused during the killing treatment. It is effective to add a surfactant at a low concentration.
  • concentration is 0.5 to 15%, preferably about 1 to 8%.
  • the pH of the treatment solution is 4 to 11, preferably 5 to 10.
  • the pH at the time of the treatment is desirably selected in consideration of the stability of the target enzyme and the like. It is also effective to add various additives for the purpose of improving the effect of the killing treatment. Examples include alcohols such as ethanol, thiols such as 2-mercaptoethanol, amines such as ethylenediamine, amino acids such as cysteine, ordinine and citrulline, and aldehydes such as dartaraldehyde.
  • a substrate of the enzyme or the like, a product It is also effective to add an inhibitor or the like.
  • examples include various nitriles, various amides, various organic acids, amino acids, polyaminocarboxylic acids, and the like. It is desirable to select the optimum combination and the optimum concentration of these additives alone or in combination of two or more in consideration of the stability of the target enzyme and the like.
  • FIG. 1 is a diagram showing a method for producing plasmid pSJ034. BEST MODE FOR CARRYING OUT THE INVENTION
  • MYK-Km medium (MYK medium containing 50 mg / L kanamycin) was inoculated into 200 ml and pre-cultured at 30 ° C for 72 hours.
  • This culture using 3 0 L jars, glucose 1 5 GZL, sodium glutamate 1 0 GZL, Bakutoi one Sutoekisu 1 gZ L, KH 2 P 0 4 0. 5 g ZL, K 2 HP 0 4 0. 5 g / L, magnesium sulfate 0.5 g / L, and 50 mg / L kanamycin in 20 L (pH 7.2), followed by aeration and agitation culture at 30 ° C for 60 hours.
  • Concentration was performed by circulating 20 L of the obtained culture solution through a hollow fiber membrane cross-floor SFFILTERKL-F-8102 (manufactured by Kuraray Co., Ltd.) using a monopump (1 ms). After 10 L of culture filtrate has been discharged, 2 L of 100 mM borate buffer (pH 9.2) is added every 2 L of culture filtrate, and a total of 20 L of buffer is added. Continuous washing was performed using the solution to prepare 10 kg of washed cells. The bacterial concentration of the obtained washed cells was 42 gZL for the dried cells.
  • the cells were washed twice with the same volume of 1 O OmM borate buffer (pH 9.2) as the washed cells used, and suspended to the same volume as the washed cells. 0.1 ml of each suspension was applied to MYK-Km agar medium, and cultured at 30 ° C for 3 days to determine the number of viable cells.
  • a 2.5% benzenetonium chloride solution was added at a concentration shown in Table 2 at 10 ° C or 30 ° C. The treatment was carried out for 8 hours, and the number of viable bacteria after treatment and the residual activity of EDDase were determined.
  • Glucose 1 0 gZL, K 2 HP 0 4 0. 5 gZL, KH 2 PO 4 0. 5 g / L, M g S 0 4 ⁇ 7 H 2 0 0. 5 g / L, yeast extract 1 g L, Bae Prepare a medium (pH 7.2) consisting of 7.5 g ZL of ptone, dispens 100 ml of these into a 500 ml Erlenmeyer flask, and autoclave at 120 ° C for 15 minutes. And sterilized. This medium was inoculated with R. rhodochrous J-1 (FE RM BP-1 478) and cultured with shaking at 28 ° C for 3 days.
  • a 1.5% benzethonium chloride solution and / or a 0.25% daltaraldehyde solution was added to a concentration shown in Table 5 and the mixture was killed for 30 t: 5 hours. Processing was performed. As a comparison, a phosphate buffer was added in place of the 1.5% benzethonium chloride solution and / or the 0.25% daltaraldehyde solution, and a similar killing treatment was performed.
  • the nitrile hydratase activity was measured using a reaction mixture containing 1 M acrylonitrile 1.0 Oml, 0.1 M potassium phosphate buffer (PH 7.0) 0.5 ml, and washed cells after killing. After reacting for 2 m1 at 10 ° C for a predetermined time, adding 0.2 ml of 1N HC1 to stop the reaction, and then the amount of acrylamide produced by gas chromatography was determined by analyzing.
  • a medium (pH 7.2) consisting of 10 gZL of glycerol, 5 gZL of polypeptone, 3 gL of yeast extract, and 3 gZL of malt extract, dispensed 100 ml into a 500 ml Erlenmeyer flask, The solution was sterilized by autoclaving at 15 ° C for 15 minutes.
  • This medium was inoculated with R. rhodochrous ATCC 12674-p KNH 2 (FE RM BP—3733) and cultured with shaking at 25 ° C. for 2 days.
  • 1 ml of this culture is inoculated into the same medium (20 Erlenmeyer flasks) and Isopyronitrile and isoptilamide were added to each at 1 gZL, and the cells were cultured at 25 ° C under light irradiation for 3 days.
  • the cells collected by centrifugation were washed with the same amount of 50 mM phosphate buffer (pH 7.7) as the culture solution, and suspended in 200 ml of the same buffer to prepare washed cells.
  • the bacterial concentration of the obtained washed cells was 32 gZL for dried cells.
  • a 1.5% benzenetonium chloride solution was added so as to have a concentration shown in Table 5, and a killing treatment was performed at 30 ° C for 5 hours.
  • a similar killing treatment was performed by adding a phosphate buffer instead of a 1.5% benzethonium chloride solution.
  • the cells were washed three times with the buffer used when the washed cells were prepared, and suspended in the same buffer to make the same volume as in the killing treatment, and 0.1 ml of each suspension was added. It was spread on MYK-Km agar medium and cultured at 30 ° C for 3 days to check the viable cell count.
  • the nitrile hydratase activity was measured using a reaction mixture containing 1.0 ml of 1 M acrylonitrile, 0.5 ml of 0.1 M potassium phosphate buffer (pH 7.0), 0.5 ml and the washed cells after killing. After reacting 2 ml of the solution at 10 ° C for a predetermined time, the reaction was stopped by adding 0.2 ml of 1N HC1, and the acrylamide produced by gas chromatography was It was determined by analyzing the amount.
  • Rhodoccoccussp.SK92 (FERM BP— 3324
  • GZL polypeptone 5 gZL, KH 2 PO 4 1 g / L, K 2 HP0 4 1 g / L, M g S 0 4 ⁇ 7 H 2 0 l consisting GZL medium (p H 7. 2) These were poured into a 500 ml 1-volume Erlenmeyer flask for 100 ml for 1 minute, and sterilized by autoclaving at 120 ° C. for 15 minutes. This medium is inoculated with R hodocoecuss p.SK 92 (FERM B P-3324) and incubated at 30 ° C for 3 hours. Shaking culture was performed for one day.
  • the cells recovered by centrifugation were washed with the same amount of 50 mM phosphate buffer (pH 7.7) as the culture solution, and then suspended in 200 ml of the same buffer to prepare washed cells.
  • the bacterial concentration of the obtained washed cells was 36 gZL for the dried cells.
  • a 1.5% benzenetonium chloride solution was added so as to have a concentration shown in Table 5, and a killing treatment was performed at 30 for 5 hours.
  • a similar killing treatment was performed by adding a phosphate buffer instead of a 1.5% benzethonium chloride solution.
  • the nitrilase activity was measured using a reaction mixture containing 1.0 ml of 1 M acrylonitrile, 0.1 ml of 0.1 M potassium phosphate buffer (PH 7.0), 0.5 ml, and washed cells after killing. After reacting the mixture at 2 ° C for 1 hour at 10 ° C, the reaction was stopped by adding 0.2 ml of lNHC1, and the amount of acrylic acid generated by liquid chromatography was measured. It was measured by analysis.
  • Rhodoccoccssp.EA4 (FERM BP—6 2 3 1) 1. Culture
  • Glycerol 5 GZL, yeast extract 0. OZ gZl ⁇ Mg S OA ' T Hz O 0. 5 g / L, KH 2 P 0 4 1 g / L, K 2 HP0 4 l consisting GZL culture locations (p H 7. 0) was prepared, and these were poured into a 500 ml 1-volume Erlenmeyer flask for 100 ml for 1 minute and sterilized by autoclaving at 120 ° C for 15 minutes.
  • Add R h 0 d 0 Coccussp.EA4 (FERMBP-6231) was inoculated and cultured with shaking at 30 ° C for 3 days. 1 ml of this culture was inoculated into the same medium (20 Erlenmeyer flasks), and 5 gZL of acetoamide was added thereto, followed by shaking culture at 30 ° C for 48 hours.
  • the cells recovered by centrifugation were washed with 5 OmM phosphate buffer (pH 7.7) in the same amount as the culture solution, and suspended in 200 ml of the same buffer to prepare washed cells.
  • the bacterial concentration of the obtained washed cells was 36 g of dried cells.
  • a 1.5% benzenetonium chloride solution was added so as to have a concentration shown in Table 5, and a killing treatment was performed at 30 ° C for 5 hours.
  • a similar killing treatment was performed by adding a phosphate buffer instead of a 1.5% benzethonium chloride solution.
  • the amidase activity was as follows: 1 ml of a reaction mixture containing 0.5 ml of a 0.05 M potassium phosphate buffer (pH 7.7) containing 0.2 M glycine amide and 0.5 ml of the washed cells after killing. After the reaction was carried out at 30 ° C. for a predetermined time, the bacterial cells were removed by centrifugation, and then the amount of glycine produced was analyzed by liquid chromatography to measure the amount.
  • MYK-Km medium 100 ml of MYK-Km medium was inoculated with Rhodococcusrhodochrous ATCC 12274 / pAR016 and cultured at 30 ° C for 72 hours.
  • the main culture was performed in 5 L of the same medium (100 ml of the medium was placed in a 500 ml Erlenmeyer flask), inoculated at 1% from the preculture, and cultured at 30 ° C for 96 hours.
  • the recovered cells were washed with 10 OmM phosphate buffer (pH 8.0) in the same amount as the culture solution, and suspended in 50 Om1 of the same buffer to prepare washed cells.
  • the bacterial concentration of the obtained washed cells was 42 g / L for the dried cells.
  • a 1.5% benzenetonium chloride solution was added so as to have a concentration shown in Table 5, and a killing treatment was performed at 30 ° C for 5 hours.
  • a similar killing treatment was performed by adding a phosphate buffer instead of a 1.5% benzethonium chloride solution.
  • the suspension 1 mM 1 0 OmM phosphate buffer containing MgC 1 2 after (p H 8. 0) 3 times with wash with the same buffer so as to be the same as the capacity at the time of cell treatment did.
  • the cells were applied to K-Km agar medium, cultured at 30 ° C for 3 days, and the viable cell count was examined.
  • Asuparutaze activity the reaction mixture containing of 1 M fumaric acid Anmoniumu and 1 mM Mg C l 2 0. 05 M phosphate Kariumu buffer containing (pH 8. 0) 0. 5m l and washed cells after sterilization treatment After reacting 1 ml of the solution at 30 ° C. for a predetermined time, the bacterial cells were removed by centrifugation, and the amount of aspartic acid produced was analyzed by liquid chromatography to measure the amount.
  • Glucose 5 g / L, yeast extract 0. 02 g / L, Mg SO 4 '7 H 2 O 0. 5 gZL, KH 2 P0 4 1 g / L, K 2 HP 0 4 l consisting GZL medium (p H 7.0) was prepared, and these were poured into a 500 ml 1-volume Erlenmeyer flask at 100 ml for 1 minute, and sterilized by autoclaving at 120 ° C for 15 minutes. This culture medium was inoculated with Mouth Dococcus Mouth Mouth ATCC 12674, and cultured with shaking at 30 ° C for 3 days.
  • a 1.5% benzethonium chloride solution was added to a concentration shown in Table 5 and killed at 30 ° C. for 5 hours.
  • a similar killing treatment was performed by adding a phosphate buffer instead of a 1.5% benzethonium chloride solution.
  • the fumalase activity was as follows: 0.5 M potassium phosphate buffer containing 0.2 M fumaric acid (pH 7.7) 0.5 m1 and reaction mixture 1 m containing washed cells after killing 1 was reacted at 30 ° C. for a predetermined time, and after removing the cells by centrifugation, the amount of malic acid produced was analyzed by liquid chromatography and analyzed.
  • the present invention microbial cells that have been killed without deactivating industrially useful enzymes and the like can be produced. Secondary contamination due to 'leakage of the body' can be avoided. Especially when a recombinant is used, the killing treatment according to the present invention simplifies the handling of bacterial cells in subsequent steps, and is industrially useful, such as requiring no special equipment. Means can be provided.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Sustainable Development (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Sterilized microbial cells having been sterilized by adding a surfactant in the process of sterilizing vital cells, which contain an industrially useful enzyme or the like produced therein, without inactivating the enzyme or the like.

Description

明 細 書 死滅化菌体 技術分野  Technical description
本発明は、 微生物触媒中に含まれる微生物菌体を死滅化させてなる死滅化菌体 に関する。 背景技術  The present invention relates to a killed microbial cell obtained by killing a microbial cell contained in a microbial catalyst. Background art
微生物菌体を工業的に使用する場合、 製造中の漏出、 製品への混入、 あるいは 使用後の取り扱い等で二次的に微生物汚染を引き起こす可能性が危惧される。 通 常は安全性の高い菌体を用いて閉鎖系で反応を行い、 反応液から珪藻土等の助剤 を用い、 菌体をろ過により除去する力、 菌体を固定化することによリ菌体の漏洩 を最小限にする措置を取るのが一般的である。 この場合、 安全性の高い菌体を用 いるために完全な死滅化は重要視されていなかったが、 近年、 製造者責任につい て注目を集める中、 安全性の高い菌体を用いる場合においても生菌体の漏洩をな くすことが求められている。  When microbial cells are used industrially, there is a concern that they may cause microbial contamination secondary to leakage during production, contamination of products, or handling after use. Normally, the reaction is performed in a closed system using highly safe cells, the ability to remove the cells by filtration using an auxiliary agent such as diatomaceous earth from the reaction solution, and the bacterium by immobilizing the cells. It is common to take measures to minimize body leakage. In this case, complete killing was not considered important because of the use of highly safe cells, but in recent years, attention has been paid to manufacturer responsibilities. It is required to eliminate the leakage of viable cells.
また、 遺伝子組換え体を使用する場合には、 各種ガイ ドラインにより閉鎖系以 外での操作の場合には、 微生物菌体の完全死滅化が要求されている。 死滅化法と して、 例えば、 目的とする酵素等の失活が起こらない条件での熱処理、 あるいは 菌体を破砕して粗酵素液として使用するのが一般的である。 薬剤等を用いて、 微 生物を死滅化する方法としては、 一般に界面活性剤が用いられ、 界面活性剤が細 菌の細胞膜を破壊する、 あるいは生命維持に重要な酵素タンパク質を変性させる 等により死滅化が達成される。 特に陽イオン界面活性剤、 両性イオン界面活性剤 を用いた場合、 高い殺菌効果を発揮する。  In addition, when using transgenics, it is required by various guidelines to completely kill microbial cells when operating in a system other than a closed system. As a killing method, for example, heat treatment under conditions that do not cause inactivation of the target enzyme or the like, or crushing of the cells and use as a crude enzyme solution is common. As a method for killing microorganisms using drugs, etc., a surfactant is generally used, and the surfactant destroys the cell membrane of bacteria or denatures enzyme proteins that are important for life support. Is achieved. Particularly when a cationic surfactant or an amphoteric surfactant is used, a high bactericidal effect is exhibited.
先行技術として、 塩化ベンザルコニゥムを添加することにより、 大腸菌組換え 体を死滅化させる方法が開示されている。 (特開昭 6 1 - 1 5 2 2 7 6号参照) 死滅化法として、 熱処理の場合は、 目的の酵素等が熱に耐性を有していないと 使用できない。 また、 菌体を破砕して粗酵素液とする場合には、 煩雑な操作によ リ粗酵素液を製造しなければならず、 反応液からの酵素の分離操作が菌体を用い る場合に比べて非常に負荷の高いものとなる。 よって、 工業的な利用の観点から は多くの問題がある。 As a prior art, a method for killing Escherichia coli recombinants by adding benzalkonium chloride has been disclosed. (See Japanese Patent Application Laid-Open No. 61-152,776) In the case of heat treatment, if the target enzyme etc. does not have heat resistance, I can not use it. In addition, when the cells are crushed to obtain a crude enzyme solution, a crude enzyme solution must be produced by a complicated operation, and when the operation of separating the enzyme from the reaction solution uses the cells, The load becomes very high in comparison. Therefore, there are many problems from the viewpoint of industrial use.
イオン系界面活性剤による殺菌方法は、 周知であるが、 一般に低濃度の微生物 群を殺菌する除菌効果であり、 本発明でいう高濃度の微生物菌体の死滅化を達成 できることは全く知られていなかった。  The sterilization method using an ionic surfactant is well known, but generally has a disinfecting effect of sterilizing a low-concentration microorganism group, and it is completely known that the high-concentration microbial cells of the present invention can be killed. I didn't.
また、 先行技術 (特開昭 6 1 - 1 5 2 2 7 6号) は、 大腸菌のみに実施された 処理法である。 また、 生理活性物質を抽出、 精製過程において適用されることか ら、 菌体の破壊、 凝集等は問題にならないが、 本発明で得られる死滅化菌体は、 そのまま、 あるいは固定化した後、 物質生産の反応触媒として用いるものである。 したがって、 菌体の破壊や凝集等は、 酵素活性、 反応性の低下及び固定化時のト ラブルの原因となリ、 工業的利用に極めて不利である。 発明の開示  The prior art (Japanese Patent Application Laid-Open No. 61-152,776) is a treatment method applied only to Escherichia coli. Further, since the bioactive substance is applied in the extraction and purification processes, the destruction and aggregation of the cells do not matter, but the killed cells obtained by the present invention can be used as they are or after immobilization. It is used as a reaction catalyst for substance production. Therefore, the destruction or aggregation of the cells is a disadvantage for industrial use because it causes a decrease in enzyme activity and reactivity and a trouble during immobilization. Disclosure of the invention
本発明者らは、 比較的穏和な条件で、 汎用性が高く、 且つ工業的に有用な酵素 等を菌体内に生産させた生菌体を、 該酵素活性等を失活させることなしに死滅さ せる手法に関して検討したところ、 界面活性剤の存在下で微生物菌体を処理する ことにより、 工業的に有用な酵素失活等を伴うことなく、 微生物菌体の死滅化を 達成できることを見いだし本発明を完成するに至った。 本発明でいう菌体の死滅 化とは、 比較的高濃度の菌体懸濁中の当該細菌の生菌数を実質的に零にすること である。 ここで、 生菌数が実質的に零とは、 微生物菌体の生存率が 1 Z 1 0一5 以下となることを意味する。 生存率は、 菌体懸濁液中の生菌数と死滅化処理後に 菌体懸濁液に生存する生菌数との比で表される。 生菌数は、 計測対象の菌体懸濁 液を所定の濃度に希釈した後、 菌体が生育可能な固体培地上に当該菌体懸濁液を 撒き、 当該固体培地上に生育した菌体数と希釈倍率とから算出される。 DISCLOSURE OF THE INVENTION The present inventors have found that under relatively mild conditions, live cells that have produced highly versatile, industrially useful enzymes and the like in their cells can be killed without deactivating the enzyme activities and the like. After examining the method of causing the microbial cells to survive, it was found that by treating the microbial cells in the presence of a surfactant, the killing of the microbial cells could be achieved without inactivation of industrially useful enzymes. The invention has been completed. The term “killing the cells” as used in the present invention means that the viable cell count of the bacteria in the suspension of the cells at a relatively high concentration is substantially reduced to zero. Here, the number of viable bacteria is substantially zero, the survival rate of the microbial cells is meant to be a 1 Z 1 0 one 5 or less. The survival rate is expressed as the ratio of the number of viable cells in the cell suspension to the number of viable cells in the cell suspension after killing. The viable cell count is determined by diluting the cell suspension to be measured to a predetermined concentration, then spreading the cell suspension on a solid medium on which the cells can grow, and growing the cells on the solid medium. It is calculated from the number and the dilution ratio.
すなわち、 本発明は、 工業的に有用な酵素等を菌体内に生産させた生菌体を、 該酵素等の活性を失活させることなしに死滅化させる工程において、 界面活性剤 を添加することによリ死滅化させた微生物菌体及びその製造法である。 本発明は、 以下の ( 1 ) 〜 ( 14) を包含する。 That is, the present invention provides a method for killing live cells produced by producing an industrially useful enzyme or the like in a cell without deactivating the activity of the enzyme or the like. And a method for producing the same. The present invention includes the following (1) to (14).
( 1 ) 乾燥菌体重量が 5g/L〜200g/Lである微生物触媒を界面活性剤を含む水性媒 体中で処理することにより死滅させた死滅化菌体。  (1) A killed microbial cell obtained by treating a microbial catalyst having a dry cell weight of 5 g / L to 200 g / L in an aqueous medium containing a surfactant.
(2) 界面活性剤が陽イオン系界面活性剤又は両性イオン性界面活性剤である ( 1 ) 記載の死滅化菌体。  (2) The killed bacterial cell according to (1), wherein the surfactant is a cationic surfactant or a zwitterionic surfactant.
(3) 陽イオン系界面活性剤が、 塩化べンゼトニゥム、 塩化セチルピリジニゥム 、 塩化メチルステアロイル及び臭化セチルトリメチルアンモニゥムの群から選択 される少なくとも 1つである (2) 記載の死滅化菌体。  (3) The cationic surfactant is at least one selected from the group consisting of benzethonium chloride, cetylpyridinium chloride, methylstearoyl chloride and cetyltrimethylammonium bromide. Bacteria.
(4) 界面活性剤を 15%以下の溶液として添加し、 処理することにより死滅させ た ( 1 ) 〜 (3) いずれか 1に記載の死滅化菌体。  (4) The killed bacterial cell according to any one of (1) to (3), wherein the killed bacterial cell is killed by adding a surfactant as a solution of 15% or less and treating.
(5) 塩化べンゼトニゥムの濃度が、 0.05〜5%である (3) 又は (4) に記載 の死滅化菌体。  (5) The killed cell according to (3) or (4), wherein the concentration of benzetonium chloride is 0.05 to 5%.
(6) 微生物触媒を界面活性剤及びダルタルアルデヒドを含む水性媒体中で処理 することにより死滅させた死滅化菌体。  (6) A killed microbial cell that has been killed by treating a microbial catalyst in an aqueous medium containing a surfactant and dataraldehyde.
(7) 微生物触媒の乾燥菌体重量が 5g/L〜200g/Lである (6) 記載の死滅化菌体  (7) The dead bacterial cell according to (6), wherein the microbial catalyst has a dry bacterial cell weight of 5 g / L to 200 g / L.
(8) 界面活性剤が陽イオン系界面活性剤又は両性イオン性界面活性剤である ( 6) 又は (7) に記載の死滅化菌体。 (8) The killed cell according to (6) or (7), wherein the surfactant is a cationic surfactant or a zwitterionic surfactant.
(9) 陽イオン系界面活性剤が、 塩化べンゼトニゥム、 塩化セチルピリジニゥム 、 塩化メチルステアロイル、 臭化セチルトリメチルアンモニゥムの群から選択さ れる少なくとも 1つである (6) 〜 (8) いずれか 1に記載の死滅化菌体。  (9) The cationic surfactant is at least one selected from the group consisting of benzenetonium chloride, cetylpyridinium chloride, methylstearoyl chloride, and cetyltrimethylammonium bromide (6) to (8) ) The killed cell according to any one of the above.
( 1 0) 塩化べンゼトニゥムの濃度が、 0.05〜5%である (9) 記載の死滅化菌 体。  (10) The killed cell according to (9), wherein the concentration of benzetonium chloride is 0.05 to 5%.
( 1 1 ) ダルタルアルデヒドの濃度が、 0·05〜5%である (6) 〜 ( 1 0) いず れか 1に記載の死滅化菌体。  (11) The killed cell according to any one of (1) to (10), wherein the concentration of dartartaldehyde is 0.05 to 5%.
( 1 2) 微生物触媒が、 二トリルヒドラターゼ、 ニトリラ一ゼ、 ァミダ一ゼ、 フ マラ一ゼ、 ァスパルタ一ゼ及びエチレンジァミン一N, N'—ジコハク酸 : ェチ レンジアミンリァーゼから選ばれる少なくとも 1の酵素活性を有するものである ( 1 ) 〜 ( 1 1 ) いずれか 1に記載の死滅化菌体。 (12) The microbial catalyst is nitrile hydratase, nitrilase, amidase, humalase, aspartase and ethylenediamine-N, N'-disuccinic acid: The killed cell according to any one of (1) to (11), which has at least one enzyme activity selected from rangeamine lyase.
( 1 3) 微生物触媒が、 遺伝子組換え体細菌を含むものである ( 1 2) 記載の死 滅化菌体。  (13) The killed cell according to (12), wherein the microbial catalyst includes a transgenic bacterium.
( 1 4) 遺伝子組換え体細菌が、 ロドコッカス (Rohodococcus) 属細菌である ( 1 3 ) 記載の死滅化菌体。  (14) The killed cell according to (13), wherein the recombinant bacterium is a bacterium belonging to the genus Rhodococcus.
本発明で対象となる微生物触媒は、 特に限定されないが、 化学品等を製造する 際に生体触媒として使用する微生物菌体、 特に遺伝子組換え体を含むものである 。 微生物菌体としては、 例えば、 アクリロニトリルをアクリルアミ ドに変換する 二トリノレヒドラターゼ生産菌である R h 0 d 0 c 0 c c u s r h o d o c h r o u s J— 1、 二トリルヒドラタ一ゼ遺伝子を導入した遺伝子組換え体 R. r h o d o c h r o u s ATCC 1 2674/p KNH 2, アクリロニトリル をァクリル酸に変換する二トリラ一ゼ生産菌である R h o d o c o c c u s s P. SK92、 グリシンアミ ドをグリシンに変換するアミダ一ゼ生産菌である Rh o d o c o c c u s s p . EA4、 フマル酸をリンゴ酸に変換するフマラ ーゼ生産菌であるバチルス サチルス AT CC 605 1、 バチルス ステア口 サ一モフィルス AT CC 1 20 1 6及びロドコッカス ロドクロウス ATCC 1 2674、 フマル酸とアンモニアを Lーァスパラギン酸に変換するァスパル ターゼ遺伝子を導入した遺伝子組換え体ロドコッカス ロドクロウス ATCC 1 2674 p AR 0 1 6、 フマル酸とジァミン類をポリアミノカルボン酸類に 変換する酵素遺伝子を導入した遺伝子組換え体である、 Rh o d o c o c c u s r h d o c h r o u s ATCC 1 7895/ S E 00 1等が挙げられる。 上記 Rh o d o c o c c u s r h o d o c h r o u s J一 1は、 F E RM B P— 1478として、 昭和 62年 9月 1 8日付けで通産省工業技術院生命ェ 学工業技術研究所 (茨城県つくば市東 1丁目 1番 3号) にブタペスト条約に基づ き国際寄託されている。 上記 R. r h o d o c h r o u s AT C C 1 26 7 4 p KNH 2は、 FERM B P— 37 3 3として、 平成 3年 3月 1 日付けで 通産省工業技術院生命工学工業技術研究所 (茨城県つくば市東 1丁目 1番 3号) にブタぺスト条約に基づき国際寄託されている。 上記 R h o d o c o c c u s s p . SK 92は、 FERM B P— 3324として、 平成 2年 2月 2 1日付 けで通産省工業技術院生命工学工業技術研究所 (茨城県つくば市東 1丁目 1番 3 号) にブタぺスト条約に基づき国際寄託されている。 上記 R h o d o c o c c u s s p . EA4は、 F ERM B P— 623 1 として、 平成 3年 3月 28日付 けで通産省工業技術院生命工学工業技術研究所 (茨城県つくば巿東 1丁目 1番 3 号) にブタペスト条約に基づき国際寄託されている。 上記 Rh o d o c o c c u s r h d o c h r o u s ATCC 1 7895ZP S E 00 1は、 F ERM BP— 6 548として、 平成 9年 9月 1 8日付けで通産省工業技術院生命工学ェ 業技術研究所 (茨城県つくば市東 1丁目 1番 3号) にブタペスト条約に基づき国 際寄託されている。 The microbial catalyst targeted in the present invention is not particularly limited, but includes microbial cells used as a biocatalyst when producing chemicals and the like, and particularly includes genetically modified organisms. Microbial cells include, for example, R h 0 d0 c 0 ccusrhodochrous J-1, a nitritol rehydratase-producing bacterium that converts acrylonitrile to acrylamide, and a recombinant R into which the nitril hydratase gene is introduced. EA4, rhodochrous ATCC 1 2674 / p KNH2, R hodococcuss P. SK92, a nitrilase-producing bacterium that converts acrylonitrile to acrylic acid, Rhodococcussp. Bacillus subtilis ATCC 6051, Bacillus stear mouth S. mofilus ATCC 1 20 16 and Rhodococcus rhodochrous ATCC 1 2674, fumalase-producing bacteria that convert fumaric acid to malic acid, fumaric acid and ammonia to L-aspartic acid Recombinant Rhodococcus rhodochrous transfected with the aspartase gene to be converted ATCC1 2674 pAR016, fumaric acid The Jiamin such a genetic recombinant that was introduced enzyme gene into a polyamino acids, Rh odococcusrhdochrous ATCC 1 7895 / SE 00 1, and the like. The Rhodococcusrhodochrous J-1 above was submitted as FE RM BP-1478 to the Life Science and Industrial Technology Research Institute, Ministry of International Trade and Industry, Ministry of International Trade and Industry on September 18, 1987 (1-3 1-3 Higashi, Tsukuba City, Ibaraki Prefecture). Deposited internationally under the Convention. The above R. rhodochrous AT CC 1 267 4 p KNH 2 is referred to as FERM BP-3733 on March 1, 1991, by the Ministry of International Trade and Industry, Ministry of Industry and Technology, Institute of Biotechnology and Industrial Technology (1-1-1 Higashi, Tsukuba, Ibaraki, Japan). No. 3) It has been deposited internationally under the Budapest Treaty. The above-mentioned R hodococcussp. SK 92 was submitted to FERM BP-3324 by the Ministry of International Trade and Industry, National Institute of Advanced Industrial Science and Technology, Biotechnology and Industrial Technology Research Institute (1-3 1-3, Higashi, Tsukuba City, Ibaraki Prefecture) on February 21, 1990. Deposited internationally under the Convention. The above-mentioned R hodococcussp. EA4 was signed as F ERM BP-6231 on March 28, 1991 by the Ministry of International Trade and Industry, Ministry of International Trade and Industry, Institute of Biotechnology and Industrial Technology (1-3 1-3 Tsukuba East, Ibaraki Prefecture). Has been deposited internationally. The above Rhodococcusrhdochrous ATCC 1 7895ZP SE 00 1 was designated as F ERM BP-6548 on September 18, 1997 by the Ministry of International Trade and Industry (METI), Institute of Biotechnology and Industrial Technology (1-1-3 Higashi, Tsukuba City, Ibaraki Prefecture, Japan). No.) has been internationally deposited under the Budapest Treaty.
また、 寄託番号の記載のない組換え体に関しては、 その作成法を以下に示した 。 その他の菌は公知であり、 アメリカンタイプカルチャーコレクション (ATC C) から容易に入手することができる。 フマル酸とアンモニアから L—ァスパラ ギン酸を製造する際に使用される遺伝子組換え体ロドコッカス ロドクロウス ATCC 1 2674/pARO 1 6は、 特開平 1 0— 337 1 85号明細書記載 の方法で作製した。  In addition, the method for preparing the recombinant without the deposit number is shown below. Other bacteria are known and can be easily obtained from the American Type Culture Collection (ATCC). The recombinant Rhodococcus rhodochrous ATCC 12674 / pARO 16 used in the production of L-aspartic acid from fumaric acid and ammonia was prepared by the method described in JP-A-10-337185. .
フマル酸とジアミン類からポリアミノカルボン酸類を製造する際に使用される 遺伝子組換え体、 ロドコッカス ロドクロウス ATC C 1 7895 p S E 0 0 1 (FERM B P— 6548 ) は、 以下のようにして作製した。  A recombinant, Rhodococcus rhodochrous ATC C17895 pSE011 (FERM BP-6548), used for producing polyaminocarboxylic acids from fumaric acid and diamines, was prepared as follows.
プラスミ ド P ED 020 (特開平 1 0— 2 1 0984号明細書記載) 、 2 μ 1 に対し、 1 0倍濃度制限酵素用緩衝液 2 μ 1、 滅菌水 1 5 μ 1、 制限酵素 Xh o I Ι μ ΐ を添加し、 37°Cにて 2時間反応させた。 エタノール沈殿によリブラ スミ ドを回収し、 乾燥後 1 5 ^ 1の滅菌水、 2 μ Iの 1 0倍濃度 Κ 1 e η 0 w r a gme n t用緩衝液、 2 μ 1の l OmM d NT P溶液、 1 μ 1の K 1 e n o w f r a gm e n tを添加して 37°Cにて 2時間反応させた。 エタノール 沈殿により DN A断片を回収し、 乾燥後 8 の滅菌水、 1 1の 13 & 1 リン 力一溶液、 1 6 At lの L i g a t i o n k i t (T a K a R a酒造株式会社製 ) 溶液 A及び 4 μ 1の溶液 Bを添加して 1 6 °Cにて 4時間反応させた後, J M 1 0 9に形質転換させた。 得られた組換え体よりプラスミ ドを調製して、 p E D O 2 0の X h 0 I部位が X b a I部位に変換されたプラスミ ドを得た。 得られたプ ラスミ ド 2 1 に対し、 1 0倍濃度制限酵素用緩衝液 2 1、 滅菌水 1 5 μ し 制限酵素 E c o RV Ι μ ΐ を添加し、 3 7 °Cにて 2時間反応させた。 エタノー ル沈殿により D N A断片を回収し、 乾燥後 8 1の滅菌水、 1 μ 1の S s e 8 3 8 7 I リンカー溶液、 1 6 μ 1の L i g a t i o n k i t (T a K a R a酒造 株式会社製) 溶液 A及び 4 1の溶液 Bを添加して 1 6 °Cにて 4時間反応させた 後 J M 1 0 9に形質転換させた。 得られた組換え体よりプラスミ ドを調製し、 E c o RV部位が S s e 8 3 8 7 I部位に変換されたプラスミ ドを得た。 得られた プラスミ ド 2 μ 1 に対し、 1 0倍濃度制限酵素用緩衝液 2 1、 滅菌水 1 4 μ 1 、 制限酵素 X b a I 1 1及び S s e 8 3 8 7 I 1 β 1 を添加し、 3 7 °Cに て 2時間反応させた。 その後、 0. 7 %ァガロース電気泳動で分離し 1 . 7 K b のバンドを回収し口ドコッカス細菌のプロモーターを有するプラスミ ド p S J 0 3 4の X b a l — S s e 8 3 8 7 I部位に揷入し、 組換え体プラスミ ド p S E 0 0 1 を作成した。 Plasmid P ED020 (described in Japanese Patent Application Laid-Open No. 10-21084), 2 μl, 2 μl of 10-fold concentration restriction enzyme buffer, 15 μl of sterilized water, 15 μl of restriction enzyme, Xho I Ι μ ΐ was added and reacted at 37 ° C for 2 hours. Recover the lysamide by ethanol precipitation and dry.15 ^ 1 sterile water, 2μI 10 times concentration Κ 1e η0 wragment buffer, 2μl l OmM d NTP The solution and 1 μl of K 1 enowfra gent were added and reacted at 37 ° C. for 2 hours. The DNA fragment is recovered by ethanol precipitation, dried, and then sterilized with 8 pieces of sterilized water, 11 pieces of 13 & 1 phosphoric acid solution, 16 Atl Ligation kit (TaKaRa Shuzo Co., Ltd.) ) Solution A and 4 μl of solution B were added and reacted at 16 ° C for 4 hours, and then transformed into JM109. Plasmid was prepared from the obtained recombinant to obtain a plasmid in which the Xh0I site of pEDO20 was converted to an XbaI site. To the resulting plasmid 21, add 10-fold concentration buffer for restriction enzyme 21 and sterile water 15 μl, add restriction enzyme Eco RV Ιμΐ, and react at 37 ° C for 2 hours. I let it. The DNA fragment was recovered by ethanol precipitation, dried, and then dried.81 sterile water, 1 μl Sse 83887 I linker solution, 16 μl Ligation kit (TaKaRa Shuzo Co., Ltd.) ) Solution A and solution B of 41 were added, reacted at 16 ° C for 4 hours, and then transformed into JM109. Plasmid was prepared from the obtained recombinant to obtain a plasmid in which the Eco RV site was converted to a Sse8387I site. To 2 μl of the obtained plasmid, add 10-fold concentration buffer solution for restriction enzyme 21, sterile water 14 μl, restriction enzyme XbaI11 and Sse8387I1β1 Then, the mixture was reacted at 37 ° C. for 2 hours. Then, it was separated by 0.7% agarose gel electrophoresis, and the 1.7 Kb band was recovered. Then, recombinant plasmid pSE001 was prepared.
p S J 0 3 4はプラスミ ド p S J 0 2 3 (特願平 9— 6 5 6 1 8号明細書記載 ) より図 1に示した工程によリ作成した。  pSJ034 was prepared from the plasmid pSJ023 (described in the specification of Japanese Patent Application No. 9-65618) by the process shown in FIG.
R h o d o c o c c u s r h o d o c h r o u s AT C C 1 7 8 9 5株の 対数増殖期の細胞を遠心分離機によリ集菌し、 氷冷した滅菌水にて 3回洗浄し、 滅菌水に懸濁した。 プラスミ ド p S E O O l 1 μ 1 と菌体懸濁液 1 0 μ 1 を混 合し氷冷した。 キュベットに D NAと菌体の懸濁液を入れ、 遺伝子導入装置 G e n e P u 1 s e r (B I O RAD) により 2. 0 KV、 2 0 0 O HM Sで 電気パルス処理を行った。 電気パルス処理液を氷冷下、 1 0分間静置し、 3 7 °C で 1 0分間ヒートショックを行い、 MYK培地 (ポリペプトン 5 gZL、 パク トイ一ストエキス 3 g/L、 バクトモルトエキス 3 g /L、 K2 H P 04 2 g/L, KH 2 P 04 2 g/L) 5 0 0 μ 1 を加え、 3 0° (:、 5時間静置し た後、 5 0 m gZLカナマイシン入り ΜΥ Κ寒天培地に塗布し、 3 0 °C、 3日間 培養して糸且換え体 R h o d o c o c c u s r h o d o c h r o u s AT C C 1 7 89 5 p S E 00 1 (F ERM B P - 6548 ) を作製した。 The cells in the logarithmic growth phase of R hodococcusrhodochrous ATCC 187895 were collected by centrifugation, washed three times with ice-cold sterile water, and suspended in sterile water. 1 μl of plasmid pSEOOl and 10 μl of cell suspension were mixed and cooled on ice. A suspension of DNA and cells was placed in a cuvette, and subjected to electric pulse treatment with a gene transfer device Gene Pu 1 ser (BIO RAD) at 2.0 KV and 200 OHMS. The electropulsed solution was allowed to stand for 10 minutes under ice-cooling, subjected to a heat shock at 37 ° C for 10 minutes, and then subjected to MYK medium (polypeptone 5 gZL, Parkinist extract 3 g / L, Bacto malt extract 3 g). / L, K 2 HP 0 4 2 g / L, KH 2 P 0 4 2 g / L) for 5 0 0 mu 1 was added, 3 0 ° (:, after standing 5 hours, 5 0 m GZL kanamycin ΜΥ 塗布 Apply to agar medium, 30 ° C, 3 days The cells were cultured to prepare a recombinant R hodococcusrhodochrous ATCC 17895 pSE001 (FERM BP-6548).
本発明において、 死滅化処理とは、 微生物触媒中に含まれる微生物菌体に対し て界面活性剤及び/又はグルタルアルデヒドを作用させる処理を意味する。 具体 的に、 死滅化処理とは、 微生物菌体懸濁液に界面活性剤及び必要に応じてその他 の添加剤を溶解し、 微生物菌体と界面活性剤とを、 又は微生物菌体と界面活性剤 と添加剤とを接触させる処理である。 この死滅化処理に際しては、 保冷或いは保 温しながら行うことが好ましい。 死滅化処理を所定の温度に維持した状態で行う ことによって、 微生物触媒としての能力を高く維持することができる。 さらに、 死滅化処理は、 攪拌しながら行っても良い。  In the present invention, the term “killing treatment” means a treatment in which a surfactant and / or glutaraldehyde act on microbial cells contained in a microbial catalyst. Specifically, the killing treatment involves dissolving a surfactant and, if necessary, other additives in a suspension of the microbial cells, and dissolving the microbial cells and the surfactant, or the microbial cells and the surfactant. This is the process of bringing the agent into contact with the additive. It is preferable that this killing process be performed while keeping the temperature cool or warm. By performing the killing process at a predetermined temperature, the ability as a microbial catalyst can be maintained at a high level. Further, the killing treatment may be performed with stirring.
菌体を処理する際、 培養液、 該培養液を適当な緩衝液等で洗浄した洗浄菌体、 又はその処理物を用いることができる。 また、 死滅化処理に際しては、 例えば、 洗浄性向上、 細胞膜の透過性向上及び菌体の安定性向上等を目的として、 薬剤処 理、 菌体破砕処理等を予め施すことが好ましい。  When treating the cells, a culture solution, washed cells obtained by washing the culture solution with an appropriate buffer or the like, or a processed product thereof can be used. In addition, at the time of the killing treatment, for example, it is preferable to perform a chemical treatment, a crushing treatment of the cells, and the like in advance for the purpose of improving the washing property, the permeability of the cell membrane, and the stability of the cells.
死滅化処理時の菌体濃度は、 特に限定されないが、 培養液の菌濃度以上が望ま しい。 工業的な利用の観点からは、 乾燥菌体で 5 g/L以上が良い。 また、 死滅 化処理時の菌体濃度は、 乾燥菌体で 200 gZL以下であることが好ましい。 本 発明によれば、 高濃度の微生物菌体懸濁液に対して確実に死滅化処理を行うこと ができる。 しかしながら、 乾燥菌体で 200 gZLを越える菌体濃度である場合 には、 微生物の種類及び性質によるが、 一般的に菌体懸濁液の流動性が著しく低 下し、 界面活性剤等の分散性及び溶解性が悪くなリ、 微生物菌体の死滅化を効率 よく行えない虞がある。 したがって、 死滅化処理時の菌体濃度は、 5〜 200 g ZLであることが好ましい。  The bacterial cell concentration at the time of the killing treatment is not particularly limited, but is preferably higher than the bacterial concentration of the culture solution. From the viewpoint of industrial use, dry cells are better at 5 g / L or more. In addition, the cell concentration at the time of the killing treatment is preferably 200 gZL or less for dry cells. ADVANTAGE OF THE INVENTION According to this invention, a killing process can be performed reliably with respect to the microbial cell suspension of high concentration. However, when the concentration of the dried cells exceeds 200 gZL, the fluidity of the cell suspension generally decreases significantly depending on the type and properties of the microorganisms, and the dispersion of surfactants etc. It may not be possible to efficiently kill microbial cells due to poor solubility and solubility. Therefore, it is preferable that the cell concentration during the killing treatment be 5 to 200 g ZL.
菌体を死滅化処理する際の処理温度は氷結温度から 80°C、 好ましくは 0〜 7 0 °Cで行うことができる。 温度に関しては、 特に限定されないが、 目的とする酵 素等の安定性に応じて任意に設定することができる。  The temperature at which the cells are killed can be from the freezing temperature to 80 ° C, preferably from 0 to 70 ° C. The temperature is not particularly limited, but can be arbitrarily set according to the stability of the target enzyme or the like.
菌体を死滅化処理する際に添加する界面活性剤としては、 特に限定されないが 陽イオン系界面活性剤、 陰イオン系界面活性剤、 非イオン系界面活性剤及び両 性ィォン性界面活性剤等何でも用いることができる。 非イオン系界面活性剤とし て、 例えば、 K S 6 0 4 (信越化学工業株式会社製) 、 プル口ニック L 6 1、 L G 1 2 6 (旭電化工業株式会社製) 、 ェマルゲン 1 0 9 P (花王株式会社製) 、 トリ トン X— 1 0 0等が挙げられる。 また、 陽イオン系界面活性剤としては、 例 えば、 塩化べンゼトニゥム、 塩化セチルピリジニゥム、 塩化メチルステアロイル 、 臭化セチルトリメチルアンモニゥム等が挙げられる。 両性イオン性界面活性剤 としては、 カルボキシベタイン型、 アミノカルボン酸塩等が挙げられる。 陽ィォ ン系界面活性剤や両性ィォン性界面活性剤は殺菌効果が高いことが知られておリ 、 低濃度で効果的に菌体を死滅化させることができるので好ましい。 また、 菌体 の死滅化処理には、 必要に応じて単独あるいは 2種類以上の界面活性剤を混合し て用いることができる。 The surfactant to be added when killing the bacterial cells is not particularly limited, but may be a cationic surfactant, an anionic surfactant, a nonionic surfactant, or both. Any substance such as a nonionic surfactant can be used. As nonionic surfactants, for example, KS604 (manufactured by Shin-Etsu Chemical Co., Ltd.), pull mouth nick L61, LG126 (manufactured by Asahi Denka Kogyo Co., Ltd.), Emulgen 109P ( Kao Corporation), Triton X—100, and the like. Examples of the cationic surfactant include benzenetonium chloride, cetylpyridinium chloride, methylstearoyl chloride, cetyltrimethylammonium bromide, and the like. Examples of the amphoteric surfactant include carboxybetaine type, aminocarboxylate and the like. A cationic surfactant or an amphoteric surfactant is known to have a high bactericidal effect, and is preferable because it can effectively kill cells at a low concentration. Further, in the killing treatment of the cells, if necessary, a single agent or a mixture of two or more surfactants can be used.
菌体を死滅化処理する際の界面活性剤の濃度は、 0 . 0 1〜 2 0 %好ましくは 0 . 0 5〜 1 0 %が良い。 界面活性剤の濃度は、 低すぎると菌体の死滅化に充分 な効果が期待されず、 また、 高すぎると処理後の廃液の処理の問題や工業的に有 用な酵素等の失活等の問題が生じるため使用する微生物菌体及び目的とする酵素 等の安定性等を考慮して最適な濃度を選択することが望ましい。  The concentration of the surfactant at the time of killing the cells is preferably from 0.01 to 20%, more preferably from 0.05 to 10%. If the concentration of the surfactant is too low, a sufficient effect on killing the cells is not expected. If the concentration is too high, problems such as treatment of waste liquid after treatment and inactivation of industrially useful enzymes and the like are caused. Therefore, it is desirable to select an optimum concentration in consideration of the stability of the microorganism cells to be used and the target enzyme and the like.
また、 イオン系界面活性剤を使用する際、 添加時に高濃度溶液を使用すると、 死滅化処理時に微生物菌体の溶菌、 破壊及び凝集を引き起こす場合がある。 界面 活性剤は、 低濃度で添加することが有効である。 濃度としては、 0 . 5〜 1 5 % 、 好ましくは 1〜 8 %程度で添加するのが良い。  In addition, when using an ionic surfactant, if a high-concentration solution is used at the time of addition, lysis, destruction, and aggregation of microbial cells may be caused during the killing treatment. It is effective to add a surfactant at a low concentration. The concentration is 0.5 to 15%, preferably about 1 to 8%.
死滅化処理する際、 処理液の p Hは 4〜 1 1、 好ましくは 5〜 1 0が良い。 処 理の際の p Hは、 目的とする酵素等の安定性を考慮して選択するのが望ましい。 死滅化処理の際に、 その効果を向上させる目的で各種の添加剤を添加すること も有効である。 例えば、 エタノール等のアルコール類、 2—メルカプトエタノー ル等のチオール類、 エチレンジァミン等のアミン類、 システィン、 オル二チン及 びシトルリン等のアミノ酸類、 ダルタルアルデヒド等のアルデヒド類が挙げられ る。  At the time of the killing treatment, the pH of the treatment solution is 4 to 11, preferably 5 to 10. The pH at the time of the treatment is desirably selected in consideration of the stability of the target enzyme and the like. It is also effective to add various additives for the purpose of improving the effect of the killing treatment. Examples include alcohols such as ethanol, thiols such as 2-mercaptoethanol, amines such as ethylenediamine, amino acids such as cysteine, ordinine and citrulline, and aldehydes such as dartaraldehyde.
また、 目的とする酵素等の安定性を向上させる目的で該酵素等の基質、 生成物、 阻害剤等を添加することも有効である。 例えば、 各種二トリル、 各種アミ ド、 各 種有機酸、 アミノ酸、 ポリアミノカルボン酸等が挙げられる。 これらの添加剤は、 目的とする酵素等の安定性を考慮して単独であるいは 2種類以上混合して最適な 組み合わせ及び最適な濃度を選択するのが望ましい。 図面の簡単な説明 Further, for the purpose of improving the stability of the target enzyme or the like, a substrate of the enzyme or the like, a product, It is also effective to add an inhibitor or the like. Examples include various nitriles, various amides, various organic acids, amino acids, polyaminocarboxylic acids, and the like. It is desirable to select the optimum combination and the optimum concentration of these additives alone or in combination of two or more in consideration of the stability of the target enzyme and the like. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 プラスミ ド p S J 0 3 4の作製方法を示す図である。 発明を実施するための最良の形態  FIG. 1 is a diagram showing a method for producing plasmid pSJ034. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 実施例により本発明をさらに具体的に説明する。 但し、 本発明は、 これ ら実施例にその技術的範囲を限定するものではない。  Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention does not limit the technical scope to these examples.
〔実施例 1〕  (Example 1)
R h o d o c o c c u s r h o d o c h r o u s AT C C 1 7 8 9 5 / p S E 0 0 1 (F E RM B P— 6 5 4 8 )  R h o d o c o c c u s r h o d o c h r o u s AT C C 17 8 9 5 / p S E 0 0 1 (F E RM B P—6 5 4 8)
1. 培養  1. Culture
MY K— Km培地 (MY K培地に 5 0 m gノ L カナマイシン含有) 2 0 0 m 1 に接種し、 3 0°C、 7 2時間前培養した。 この培養物を 3 0 Lジャーを用いて 、 グルコース 1 5 gZL、 グルタミン酸ナトリウム 1 0 gZL、 バクトイ一 ストエキス 1 gZ L、 KH 2 P 04 0. 5 g Z L、 K 2 H P 04 0. 5 g / L、 硫酸マグネシウム 0. 5 g/L、 5 0 m g/L カナマイシンからなる培 地 2 0 L (p H 7. 2 ) に加え、 3 0 °C、 6 0時間通気撹拌培養を行った。 得ら れた培養液 2 0 Lを中空糸膜クロスフ口一 S F F I L T E R K L - F - 8 1 0 2 (クラレ株式会社製) 中をモ一ノポンプ ( 1 m s ) で循環することにより 濃縮を行った。 培養ろ液が 1 0 L排出された後、 培養ろ液が 2 L排出されるごと に 1 0 0 mMホウ酸緩衝液 (p H 9. 2 ) を 2 L添加し、 合計 2 0 Lの緩衝液を 用いて連続洗浄を行い、 洗浄菌体 1 0 k gを作製した。 得られた洗浄菌体の菌濃 度は、 乾燥菌体で 4 2 gZLであった。 MYK-Km medium (MYK medium containing 50 mg / L kanamycin) was inoculated into 200 ml and pre-cultured at 30 ° C for 72 hours. This culture using 3 0 L jars, glucose 1 5 GZL, sodium glutamate 1 0 GZL, Bakutoi one Sutoekisu 1 gZ L, KH 2 P 0 4 0. 5 g ZL, K 2 HP 0 4 0. 5 g / L, magnesium sulfate 0.5 g / L, and 50 mg / L kanamycin in 20 L (pH 7.2), followed by aeration and agitation culture at 30 ° C for 60 hours. Concentration was performed by circulating 20 L of the obtained culture solution through a hollow fiber membrane cross-floor SFFILTERKL-F-8102 (manufactured by Kuraray Co., Ltd.) using a monopump (1 ms). After 10 L of culture filtrate has been discharged, 2 L of 100 mM borate buffer (pH 9.2) is added every 2 L of culture filtrate, and a total of 20 L of buffer is added. Continuous washing was performed using the solution to prepare 10 kg of washed cells. The bacterial concentration of the obtained washed cells was 42 gZL for the dried cells.
2. 死滅化処理 該洗浄菌体 50m l を用いて、 表 1に示す 5 %界面活性剤溶液をそれぞれ 1 m 1添加して 45 °Cで処理を行った。 2. Killing process Using 50 ml of the washed cells, 1 ml of each of the 5% surfactant solutions shown in Table 1 was added, and the mixture was treated at 45 ° C.
3. 生菌数の測定  3. Measurement of viable cell count
菌体処理終了後、 使用した洗浄菌体と同容量の 1 O OmM ホウ酸緩衝液 (p H 9. 2) で 2回洗浄を行い、 洗浄菌体と同容量になるよう懸濁した。 各々の懸 濁液を 0. 1 m 1ずつ MY K— Km寒天培地に塗布し、 30°C、 3日間培養して 生菌数を調べた。  After completion of the bacterial cell treatment, the cells were washed twice with the same volume of 1 O OmM borate buffer (pH 9.2) as the washed cells used, and suspended to the same volume as the washed cells. 0.1 ml of each suspension was applied to MYK-Km agar medium, and cultured at 30 ° C for 3 days to determine the number of viable cells.
4. 酵素活性測定  4. Enzyme activity measurement
各死滅化菌体 1 m 1 を 342 mMフマル酸と 1 7 1 mMエチレンジアミンを含 む pH 8. 0の水溶液 5 Om 1に懸濁し 24時間反応させた。 反応液から遠心分 離により菌体を除いた後、 上清のエチレンジァミン—N, N' ージコハク酸量を HPLCを用いて分析し、 エチレンジァミン一N, N' —ジコハク酸: エチレン ジァミンリアーゼ (以下、 E DD Sァ一ゼと略す) 活性を調べた。 (カラム ; W AKO S I L 5 C 8 (和光純薬株式会社製) 、 溶出液; 1 0mM水酸化テトラ — n—ブチルアンモニゥムと 0. 4mM C u S〇 4を含む 50 mM燐酸 p H 2. 0) 死滅化処理を行っていない洗浄菌体の ED D Sァ一ゼ活性を 1 00とし て、 処理後の EDD Sァ一ゼ活性残存率を求めた。 1 ml of each killed cell was suspended in 5 Om1 of a pH 8.0 aqueous solution containing 342 mM fumaric acid and 17 1 mM ethylenediamine, and reacted for 24 hours. After removing cells from the reaction solution by centrifugation, the amount of ethylenediamine-N, N 'disuccinic acid in the supernatant was analyzed using HPLC, and ethylenediamine-N, N'-disuccinic acid: ethylenediamine lyase (hereinafter referred to as E The activity was examined. (Column: WAKO SIL 5C8 (manufactured by Wako Pure Chemical Industries, Ltd.); Eluent: 50 mM phosphoric acid pH 2 containing 10 mM tetra-n-butylammonium hydroxide and 0.4 mM CuS u4 .0) With the EDDSase activity of the washed cells not subjected to the killing treatment set to 100, the residual ratio of EDDase activity after the treatment was determined.
表 1 table 1
Figure imgf000012_0001
Figure imgf000012_0001
〔実施例 2〕 (Example 2)
実施例 1の方法で作製した洗浄菌体 5 Om 1 を用いて、 表 2に示す濃度となる ように、 2. 5 %塩化べンゼトニゥム溶液を添加し、 1 0°C又は 3 0°Cで 8時間 、 処理を行い、 処理後の生菌数及び EDD Sァ一ゼの活性残存率を求めた。 Using 5 Om 1 of the washed cells prepared by the method of Example 1, a 2.5% benzenetonium chloride solution was added at a concentration shown in Table 2 at 10 ° C or 30 ° C. The treatment was carried out for 8 hours, and the number of viable bacteria after treatment and the residual activity of EDDase were determined.
表 2 Table 2
Figure imgf000013_0001
Figure imgf000013_0001
〔実施例 3〕 (Example 3)
実施例 1の方法で作製した洗浄菌体 5 Om 1 を用いて表 3に示す濃度となるよ うに、 0. 6%、 1. 5%、 3 %の塩化べンゼトニゥムを含む 30 %エチレンジ ァミン— Ν, Ν'—ジコハク酸溶液 (p H 8. 5) を 1 0m l添加し、 3 0°C又 は 50°Cで 3時間菌体処理を行い、 処理後の生菌数及び EDD Sァ一ゼの活性残 存率を求めた。 30% ethylenediamine containing 0.6%, 1.5%, and 3% of benzethonium chloride was used to obtain the concentrations shown in Table 3 using 5 Om 1 of the washed cells prepared by the method of Example 1. Add 10 ml of Ν, Ν'-disuccinic acid solution (pH 8.5), treat the cells at 30 ° C or 50 ° C for 3 hours, and measure the viable cell count and EDD S The activity retention rate of Ize was determined.
表 3 Table 3
Figure imgf000014_0001
Figure imgf000014_0001
〔実施例 4〕 (Example 4)
実施例 1の方法で作製した培養液 5 Om 1 を用いて表 4に示す濃度になるよう に、 それぞれの 2 %界面活性剤溶液を添加し、 4°C又は 30°Cにて 3時間菌体処 理を行い、 処理後の生菌数及び EDD Sァーゼの活性残存率を求めた。 Using 5 Om 1 of the culture solution prepared by the method of Example 1, add each 2% surfactant solution to the concentration shown in Table 4 and incubate at 4 ° C or 30 ° C for 3 hours. Body treatment was performed, and the viable cell count after treatment and the residual activity of EDD Sase were determined.
表 4 Table 4
Figure imgf000015_0001
Figure imgf000015_0001
〔実施例 5〕 (Example 5)
{ I ) R h o d o c o c c u s r h o d o c h r o u s J— 1 ( F E RM B P - 1 4 7 8 )  (I) RhodococccusrhodosochrousJ-1 (FERMBP- 1 478)
1. 培養  1. Culture
グルコース 1 0 gZL、 K2H P 04 0. 5 gZL、 KH2 P O 4 0. 5 g/L, M g S 04 · 7 H20 0. 5 g/L, 酵母エキス 1 g L、 ぺプト ン 7. 5 gZLからなる培地 (p H 7. 2 ) を調製し、 これらを 5 0 0 m l 容 三角フラスコに 1 0 0 m l分注し、 1 2 0°Cにて 1 5分間オートクレープで滅菌 した。 この培地に R. r h o d o c h r o u s J - 1 ( F E RM B P— 1 4 7 8 ) を接種して 2 8°Cで 3 日間振盪培養を行った。 この培養液 l m l を同じ培 地 (三角フラスコ 2 0本) に接種し、 同時に尿素 1 5 g/L、 C o C l 2 1 0 m gZLを添加して 2 8°Cで 9 6時間振盪培養した。 遠心分離によって回収した 菌体を培養液と同量の 50 mMリン酸緩衝液 ( p H 7. 7 ) で洗浄後、 1 00m 1の同緩衝液に懸濁し、 洗浄菌体を作製した。 得られた洗浄菌体の菌濃度は、 乾 燥菌体で 1 05 g / Lであった。 Glucose 1 0 gZL, K 2 HP 0 4 0. 5 gZL, KH 2 PO 4 0. 5 g / L, M g S 0 4 · 7 H 2 0 0. 5 g / L, yeast extract 1 g L, Bae Prepare a medium (pH 7.2) consisting of 7.5 g ZL of ptone, dispens 100 ml of these into a 500 ml Erlenmeyer flask, and autoclave at 120 ° C for 15 minutes. And sterilized. This medium was inoculated with R. rhodochrous J-1 (FE RM BP-1 478) and cultured with shaking at 28 ° C for 3 days. Inoculated with this culture solution lml the same culture ground (Erlenmeyer flasks 2 0 present), simultaneously urea 1 5 g / L, C o C l 2 1 0 m gZL by adding 9 6 hours shaking culture at 2 8 ° C did. Collected by centrifugation The cells were washed with the same amount of 50 mM phosphate buffer (pH 7.7) as the culture solution, and then suspended in 100 ml of the same buffer to prepare washed cells. The bacterial concentration of the obtained washed cells was 105 g / L for the dried cells.
2. 死滅化処理  2. Killing process
該洗浄菌体を用いて、 表 5に示す濃度となるように 1. 5%塩化べンゼトニゥ ム溶液及び/又は 0. 2 5 %ダルタルアルデヒド溶液を添加し、 30t:、 5時間 、 死滅化処理を行った。 また、 比較として、 1. 5%塩化べンゼトニゥム溶液及 び/又は 0. 2 5 %ダルタルアルデヒド溶液に代えて、 リン酸緩衝液を添加し、 同様な死滅化処理も行った。  Using the washed cells, a 1.5% benzethonium chloride solution and / or a 0.25% daltaraldehyde solution was added to a concentration shown in Table 5 and the mixture was killed for 30 t: 5 hours. Processing was performed. As a comparison, a phosphate buffer was added in place of the 1.5% benzethonium chloride solution and / or the 0.25% daltaraldehyde solution, and a similar killing treatment was performed.
3. 生菌数の測定  3. Measurement of viable cell count
処理後、 洗浄菌体を作製した際に用いた緩衝液で 3回洗浄し、 死滅化処理時と 同じ容量になるよう同緩衝液で懸濁し、 各々の懸濁液を 0. 1 m lずつ MY K寒 天培地に塗布し 30°Cで 3日間培養して生菌数を調べた。  After the treatment, wash the cells three times with the buffer used to prepare the washed cells, suspend them in the same buffer so that they have the same volume as at the time of the killing treatment, and add 0.1 ml of each suspension to MY. The cells were plated on K agar medium and cultured at 30 ° C for 3 days to determine the viable cell count.
4. 酵素活性測定  4. Enzyme activity measurement
二トリルヒドラタ一ゼ活性は、 1 Mアクリロニトリル 1. Om l、 0. 1 Mリ ン酸カリウム緩衝液 (P H 7. 0) 0. 5m 1及び死滅化処理後の洗浄菌体を含 む反応混合液 2 m 1について 1 0°Cで所定時間反応を行わせてから 0. 2 m 1の 1 N HC 1 を添加して反応を停止させた後、 ガスクロマトグラフィーにより生 成したアクリルアミ ドの量を分析することにより測定した。  The nitrile hydratase activity was measured using a reaction mixture containing 1 M acrylonitrile 1.0 Oml, 0.1 M potassium phosphate buffer (PH 7.0) 0.5 ml, and washed cells after killing. After reacting for 2 m1 at 10 ° C for a predetermined time, adding 0.2 ml of 1N HC1 to stop the reaction, and then the amount of acrylamide produced by gas chromatography Was determined by analyzing.
(2) R. r h o d o c h r o u s ATCC 1 2674/p NH 2 ( F E RM BP— 37 33)  (2) R.rhodochrouus ATCC 1 2674 / p NH2 (FERM BP—37 33)
1.  1.
グリセロール 1 0 gZL、 ポリペプトン 5 gZL、 酵母エキス 3 g L 、 マルツエキス 3 gZLからなる培地 (p H 7. 2) を調製し、 これらを 50 0 m l容三角フラスコに 1 00m l分注して 1 20°Cにて 1 5分間ォ一トクレ一 プで滅菌した。 この培地に R. r h o d o c h r o u s ATCC 1 26 74ノ p KNH 2 (F E RM B P— 37 33) を接種して 25 °Cで 2日間振盪培養を 行った。 この培養液 1 m 1 を同じ培地 (三角フラスコ 20本) に接種し、 同時に ィソプチロニトリル、 ィソプチルァミ ドをそれぞれ 1 gZLとなるように添加し て 25°Cで光照射下、 3日間培養を行った。 遠心分離によって回収した菌体を、 培養液と同量の 50 mMリン酸緩衝液 ( p H 7. 7 ) で洗浄後、 200 m 1の同 緩衝液に懸濁し、 洗浄菌体を作製した。 得られた洗浄菌体の菌濃度は、 乾燥菌体 で 32 gZLであった。 Prepare a medium (pH 7.2) consisting of 10 gZL of glycerol, 5 gZL of polypeptone, 3 gL of yeast extract, and 3 gZL of malt extract, dispensed 100 ml into a 500 ml Erlenmeyer flask, The solution was sterilized by autoclaving at 15 ° C for 15 minutes. This medium was inoculated with R. rhodochrous ATCC 12674-p KNH 2 (FE RM BP—3733) and cultured with shaking at 25 ° C. for 2 days. 1 ml of this culture is inoculated into the same medium (20 Erlenmeyer flasks) and Isopyronitrile and isoptilamide were added to each at 1 gZL, and the cells were cultured at 25 ° C under light irradiation for 3 days. The cells collected by centrifugation were washed with the same amount of 50 mM phosphate buffer (pH 7.7) as the culture solution, and suspended in 200 ml of the same buffer to prepare washed cells. The bacterial concentration of the obtained washed cells was 32 gZL for dried cells.
2. 死滅化処理  2. Killing process
該洗浄菌体を用いて、 表 5に示す濃度となるように 1. 5%塩化べンゼトニゥ ム溶液を添加し、 30°C、 5時間、 死滅化処理を行った。 また、 比較として、 1 . 5 %塩化べンゼトニゥム溶液に代えて、 リン酸緩衝液を添加し、 同様な死滅化 処理も行った。  Using the washed cells, a 1.5% benzenetonium chloride solution was added so as to have a concentration shown in Table 5, and a killing treatment was performed at 30 ° C for 5 hours. For comparison, a similar killing treatment was performed by adding a phosphate buffer instead of a 1.5% benzethonium chloride solution.
3. 生菌数の測定  3. Measurement of viable cell count
処理後、 洗浄菌体を作製した際に用いた緩衝液で 3回洗浄し、 死滅化処理時と 同じ容量になるよう同緩衝液で懸濁し、 各々の懸濁液を 0. 1 m lずつ、 MYK 一 Km寒天培地に塗布し、 30°Cで 3日間培養して生菌数を調べた。  After the treatment, the cells were washed three times with the buffer used when the washed cells were prepared, and suspended in the same buffer to make the same volume as in the killing treatment, and 0.1 ml of each suspension was added. It was spread on MYK-Km agar medium and cultured at 30 ° C for 3 days to check the viable cell count.
4. 酵素活性測定  4. Enzyme activity measurement
二トリルヒドラターゼ活性は、 1 Mアクリロニトリル 1. 0 m 1、 0. 1 Mリ ン酸カリウム緩衝液 (P H 7. 0) 0. 5m 1及び死滅化処理後の洗浄菌体を含 む反応混合液 2 m 1について 1 0°Cで所定時間反応を行わせてから 0. 2 m 1の 1 N HC 1 を添加して反応を停止させた後、 ガスクロマトグラフィーにより生 成したアクリルアミ ドの量を分析することにより測定した。  The nitrile hydratase activity was measured using a reaction mixture containing 1.0 ml of 1 M acrylonitrile, 0.5 ml of 0.1 M potassium phosphate buffer (pH 7.0), 0.5 ml and the washed cells after killing. After reacting 2 ml of the solution at 10 ° C for a predetermined time, the reaction was stopped by adding 0.2 ml of 1N HC1, and the acrylamide produced by gas chromatography was It was determined by analyzing the amount.
( 3 ) Rh o d o c o c c u s s p . S K 92 (FERM BP— 3324 (3) Rhodoccoccussp.SK92 (FERM BP— 3324
) )
1. 培養  1. Culture
シユークロース 20 gZL、 ポリペプトン 5 gZL、 KH2PO4 1 g /L, K2HP04 1 g/L, M g S 04 · 7 H20 l gZLからなる培地 ( p H 7. 2 ) を調製し、 これらを 500m 1容三角フラスコに 1 00m 1分注し て 1 20°Cにて 1 5分間オートクレープで滅菌した。 この培地に R h o d o c o e c u s s p. SK 92 (FERM B P- 3324) を接種して 30 °Cで 3 日間振盪培養を行った。 この培養液 1 m 1 を同じ培地 (三角フラスコ 20本) に 接種し、 同時にエチレンシアンヒドリン 2 m 1 を添加して 30°Cで 20時間振盪 培養した後、 エチレンシアンヒドリンを 3 m 1添加してさらに 3日間培養を行つ た。 Shiyukurosu 20 Preparation GZL, polypeptone 5 gZL, KH 2 PO 4 1 g / L, K 2 HP0 4 1 g / L, M g S 0 4 · 7 H 2 0 l consisting GZL medium (p H 7. 2) These were poured into a 500 ml 1-volume Erlenmeyer flask for 100 ml for 1 minute, and sterilized by autoclaving at 120 ° C. for 15 minutes. This medium is inoculated with R hodocoecuss p.SK 92 (FERM B P-3324) and incubated at 30 ° C for 3 hours. Shaking culture was performed for one day. 1 ml of this culture was inoculated into the same medium (20 Erlenmeyer flasks), 2 ml of ethylene cyanide was added at the same time, and the mixture was cultured at 30 ° C with shaking for 20 hours. After the addition, the cells were further cultured for 3 days.
遠心分離によって回収した菌体を、 培養液と同量の 50 mMリン酸緩衝液 (p H 7. 7) で洗浄後、 200 m 1の同緩衝液に懸濁し、 洗浄菌体を作製した。 得ら れた洗浄菌体の菌濃度は、 乾燥菌体で 36 gZLであった。 The cells recovered by centrifugation were washed with the same amount of 50 mM phosphate buffer (pH 7.7) as the culture solution, and then suspended in 200 ml of the same buffer to prepare washed cells. The bacterial concentration of the obtained washed cells was 36 gZL for the dried cells.
2. 死滅化処理  2. Killing process
該洗浄菌体を用いて、 表 5に示す濃度となるように 1. 5%塩化べンゼトニゥ ム溶液を添加し、 30で、 5時間、 死滅化処理を行った。 また、 比較として、 1 . 5%塩化べンゼトニゥム溶液に代えて、 リン酸緩衝液を添加し、 同様な死滅化 処理も行った。  Using the washed cells, a 1.5% benzenetonium chloride solution was added so as to have a concentration shown in Table 5, and a killing treatment was performed at 30 for 5 hours. For comparison, a similar killing treatment was performed by adding a phosphate buffer instead of a 1.5% benzethonium chloride solution.
3. 生菌数の測定  3. Measurement of viable cell count
処理後、 洗浄菌体を作製した際に用いた緩衝液で 3回洗浄し、 死滅化処理時と 同じ容量になるよう同緩衝液で懸濁し、 それぞれの懸濁液を 0. 1 m 1ずつ、 M YK— Km寒天培地に塗布し、 30°Cで 3日間培養して生菌数を調べた。  After the treatment, wash the cells three times with the buffer used to prepare the washed cells, suspend them in the same buffer so that they have the same volume as at the time of the killing treatment, and add 0.1 ml of each suspension. MYK-Km agar medium, and cultured at 30 ° C for 3 days to determine the viable cell count.
4. 酵素活性測定  4. Enzyme activity measurement
二トリラーゼ活性は、 1 Mァクリロ二トリリレ 1. 0 m 1、 0. 1 Mリン酸カリ ゥム緩衝液 (PH 7. 0) 0. 5m 1及び死滅化処理後の洗浄菌体を含む反応混 合液 2 m 1について 1 0°Cで所定時間反応を行わせてから 0. 2m lの l N H C 1 を添加して反応を停止させた後、 液体クロマトグラフィ一により生成したァ クリル酸の量を分析することによリ測定した。  The nitrilase activity was measured using a reaction mixture containing 1.0 ml of 1 M acrylonitrile, 0.1 ml of 0.1 M potassium phosphate buffer (PH 7.0), 0.5 ml, and washed cells after killing. After reacting the mixture at 2 ° C for 1 hour at 10 ° C, the reaction was stopped by adding 0.2 ml of lNHC1, and the amount of acrylic acid generated by liquid chromatography was measured. It was measured by analysis.
(4) Rh o d o c o c c u s s p . E A 4 (FERM B P— 6 2 3 1 ) 1. 培養  (4) Rhodoccoccssp.EA4 (FERM BP—6 2 3 1) 1. Culture
グリセロール 5 gZL、 酵母エキス 0. O Z gZl^ Mg S OA ' T Hz O 0. 5 g/L, KH2 P 04 1 g/L, K2HP04 l gZLからなる培 地 (p H 7. 0) を調製し、 これらを 500 m 1容三角フラスコに 1 00 m 1分 注して 1 20°Cにて 1 5分間ォートクレープで滅菌した。 この培地に R h 0 d 0 c o c c u s s p . E A4 (F E RM BP— 623 1 ) を接種して 30 °Cで 3日間振盪培養を行った。 この培養液 1 m 1 を同じ培地 (三角フラスコ 20本) に接種し、 同時にァセトアミ ド 5 gZLを添加して 30°Cで 48時間振盪培養し た。 Glycerol 5 GZL, yeast extract 0. OZ gZl ^ Mg S OA ' T Hz O 0. 5 g / L, KH 2 P 0 4 1 g / L, K 2 HP0 4 l consisting GZL culture locations (p H 7. 0) was prepared, and these were poured into a 500 ml 1-volume Erlenmeyer flask for 100 ml for 1 minute and sterilized by autoclaving at 120 ° C for 15 minutes. Add R h 0 d 0 Coccussp.EA4 (FERMBP-6231) was inoculated and cultured with shaking at 30 ° C for 3 days. 1 ml of this culture was inoculated into the same medium (20 Erlenmeyer flasks), and 5 gZL of acetoamide was added thereto, followed by shaking culture at 30 ° C for 48 hours.
遠心分離によって回収した菌体を、 培養液と同量の 5 OmMリン酸緩衝液 (p H 7. 7) で洗浄後、 200m 1の同緩衝液に懸濁し、 洗浄菌体を作製した。 得 られた洗浄菌体の菌濃度は、 乾燥菌体で 36 gかしであった。  The cells recovered by centrifugation were washed with 5 OmM phosphate buffer (pH 7.7) in the same amount as the culture solution, and suspended in 200 ml of the same buffer to prepare washed cells. The bacterial concentration of the obtained washed cells was 36 g of dried cells.
2. 死滅化処理  2. Killing process
該洗浄菌体を用いて、 表 5に示す濃度となるように 1. 5%塩化べンゼトニゥ ム溶液を添加し、 30°C、 5時間、 死滅化処理を行った。 また、 比較として、 1 . 5 %塩化べンゼトニゥム溶液に代えて、 リン酸緩衝液を添加し、 同様な死滅化 処理も行った。  Using the washed cells, a 1.5% benzenetonium chloride solution was added so as to have a concentration shown in Table 5, and a killing treatment was performed at 30 ° C for 5 hours. For comparison, a similar killing treatment was performed by adding a phosphate buffer instead of a 1.5% benzethonium chloride solution.
3, 生菌数の測定  3. Measurement of viable cell count
処理後、 洗浄菌体を作製した際に用いた緩衝液で 3回洗浄し、 死滅化処理時と 同じ容量になるよう同緩衝液で懸濁し、 それぞれの懸濁液を 0. 1 m 1ずつ MY K寒天培地に塗布し、 30°Cで 3日間培養して生菌数を調べた。  After the treatment, wash the cells three times with the buffer used to prepare the washed cells, suspend them in the same buffer so that they have the same volume as at the time of the killing treatment, and add 0.1 ml of each suspension. It was spread on MYK agar medium and cultured at 30 ° C for 3 days, and the number of viable cells was examined.
4. 酵素活性測定  4. Enzyme activity measurement
アミダ一ゼ活性は、 0. 2 Mグリシンアミ ドを含む 0. 05 Mリン酸カリウム 緩衝液 (p H 7. 7 ) 0. 5m 1及び死滅化処理後の洗浄菌体を含む反応混合液 1 m lについて 30°Cで所定時間反応を行わせてから遠心分離によリ菌体を除去 した後、 液体クロマトグラフィーにより生成したグリシンの量を分析することに よリ測定した。  The amidase activity was as follows: 1 ml of a reaction mixture containing 0.5 ml of a 0.05 M potassium phosphate buffer (pH 7.7) containing 0.2 M glycine amide and 0.5 ml of the washed cells after killing. After the reaction was carried out at 30 ° C. for a predetermined time, the bacterial cells were removed by centrifugation, and then the amount of glycine produced was analyzed by liquid chromatography to measure the amount.
( 5 ) R. r h o d o c h r o u s ATCC 1 2674/pARO 1 6 1. 培養  (5) R. rhodochrouus ATCC 1 2674 / pARO 16 1. Culture
MYK-K m培地 1 00m lに Rh o d o c o c c u s r h o d o c h r o u s AT C C 1 2674/p AR 0 1 6を接種し、 30°Cで 72時間培養した 。 本培養は、 同培地 5 L ( 500m l容三角フラスコに 1 00m lずつ培地を入 れた) で行い、 前培養から 1 %接種し、 30°Cで 96時間培養した。 遠心分離に よって回収した菌体を、 培養液と同量の 1 0 OmMリン酸緩衝液 (p H 8. 0) で洗浄後、 50 Om 1の同緩衝液に懸濁して洗浄菌体を作製した。 得られた洗浄 菌体の菌濃度は、 乾燥菌体で 42 g/Lであった。 100 ml of MYK-Km medium was inoculated with Rhodococcusrhodochrous ATCC 12274 / pAR016 and cultured at 30 ° C for 72 hours. The main culture was performed in 5 L of the same medium (100 ml of the medium was placed in a 500 ml Erlenmeyer flask), inoculated at 1% from the preculture, and cultured at 30 ° C for 96 hours. For centrifugation Thus, the recovered cells were washed with 10 OmM phosphate buffer (pH 8.0) in the same amount as the culture solution, and suspended in 50 Om1 of the same buffer to prepare washed cells. The bacterial concentration of the obtained washed cells was 42 g / L for the dried cells.
2. 死滅化処理  2. Killing process
該洗浄菌体を用いて、 表 5に示す濃度となるように 1. 5%塩化べンゼトニゥ ム溶液を添加し、 30°C、 5時間、 死滅化処理を行った。 また、 比較として、 1 . 5 %塩化べンゼトニゥム溶液に代えて、 リン酸緩衝液を添加し、 同様な死滅化 処理も行った。  Using the washed cells, a 1.5% benzenetonium chloride solution was added so as to have a concentration shown in Table 5, and a killing treatment was performed at 30 ° C for 5 hours. For comparison, a similar killing treatment was performed by adding a phosphate buffer instead of a 1.5% benzethonium chloride solution.
3. 生菌数の測定  3. Measurement of viable cell count
処理後、 1 mMの MgC 1 2を含有する 1 0 OmMリン酸緩衝液 (p H 8. 0 ) で 3回洗浄後、 菌体処理時の容量と同じになるように同緩衝液で懸濁した。 処理後、 洗浄菌体を作製した際に用いた緩衝液で 3回洗浄し、 死滅化処理時と 同じ容量になるよう同緩衝液で懸濁し、 それぞれの懸濁液を 0. 1 m lずつ MY K一 Km寒天培地に塗布し 30°Cで 3日間培養して生菌数を調べた。 After treatment, the suspension 1 mM 1 0 OmM phosphate buffer containing MgC 1 2 after (p H 8. 0) 3 times with wash with the same buffer so as to be the same as the capacity at the time of cell treatment did. After the treatment, wash the cells three times with the buffer used to prepare the washed cells, suspend them in the same buffer so that they have the same volume as in the killing treatment, and add 0.1 ml of each suspension to MY. The cells were applied to K-Km agar medium, cultured at 30 ° C for 3 days, and the viable cell count was examined.
4. 酵素活性測定  4. Enzyme activity measurement
ァスパルターゼ活性は、 1 Mフマル酸アンモニゥム及び 1 mM Mg C l 2を 含む 0. 05 Mリン酸カリゥム緩衝液 (pH 8. 0) 0. 5m l及び死滅化処理 後の洗浄菌体を含む反応混合液 1 m 1について 30°Cで所定時間反応を行わせて から遠心分離によリ菌体を除去した後、 液体クロマトグラフィ一により生成した ァスパラギン酸の量を分析することにより測定した。 Asuparutaze activity, the reaction mixture containing of 1 M fumaric acid Anmoniumu and 1 mM Mg C l 2 0. 05 M phosphate Kariumu buffer containing (pH 8. 0) 0. 5m l and washed cells after sterilization treatment After reacting 1 ml of the solution at 30 ° C. for a predetermined time, the bacterial cells were removed by centrifugation, and the amount of aspartic acid produced was analyzed by liquid chromatography to measure the amount.
(6) ロドコッカス ロドクロウス ATCC 1 2674  (6) Rhodococcus rhodochrous ATCC 1 2674
1. 培養  1. Culture
グルコース 5 g/L、 酵母エキス 0. 02 g/L、 Mg S O4 ' 7 H2O 0. 5 gZL、 KH2 P04 1 g/L, K2H P 04 l gZLからなる培地 (p H 7. 0) を調製し、 これらを 500 m 1容三角フラスコに 1 00 m 1分注 して 1 20°Cにて 1 5分間ォートクレープで滅菌した。 この培地に口ドコッカス 口ドク口ウス ATCC 1 2674を接種して 30°Cで 3日間振盪培養を行つ た。 この培養液 1 m 1 を 1 0 g/Lのフマル酸を含む同じ培地 (三角フラスコ 2 0本) に接種し、 3 0°Cで 4 8時間振盪培養した。 遠心分離によって回収した菌 体を、 培養液と同量の 50mMリン酸緩衝液 ( p H 7. 7 ) で洗浄後、 20 0 m 1の同緩衝液に懸濁し、 洗浄菌体を作製した。 得られた洗浄菌体の菌濃度は、 乾 燥菌体で 3 1 g/Lであった。 Glucose 5 g / L, yeast extract 0. 02 g / L, Mg SO 4 '7 H 2 O 0. 5 gZL, KH 2 P0 4 1 g / L, K 2 HP 0 4 l consisting GZL medium (p H 7.0) was prepared, and these were poured into a 500 ml 1-volume Erlenmeyer flask at 100 ml for 1 minute, and sterilized by autoclaving at 120 ° C for 15 minutes. This culture medium was inoculated with Mouth Dococcus Mouth Mouth ATCC 12674, and cultured with shaking at 30 ° C for 3 days. 1 ml of this culture was added to the same medium containing 10 g / L fumaric acid (Erlenmeyer flask 2 0) and cultured with shaking at 30 ° C. for 48 hours. The cells recovered by centrifugation were washed with the same amount of 50 mM phosphate buffer (pH 7.7) as the culture solution, and then suspended in 200 ml of the same buffer to prepare washed cells. The bacterial concentration of the obtained washed cells was 31 g / L for the dried cells.
2. 死滅化処理  2. Killing process
該洗浄菌体を用いて、 表 5に示す濃度となるように 1. 5 %塩化べンゼトニゥ ム溶液を添加し、 3 0°C、 5時間、 死滅化処理を行った。 また、 比較として、 1 . 5 %塩化べンゼトニゥム溶液に代えて、 リン酸緩衝液を添加し、 同様な死滅化 処理も行った。  Using the washed cells, a 1.5% benzethonium chloride solution was added to a concentration shown in Table 5 and killed at 30 ° C. for 5 hours. For comparison, a similar killing treatment was performed by adding a phosphate buffer instead of a 1.5% benzethonium chloride solution.
3. 生菌数の測定  3. Measurement of viable cell count
処理後、 1 mMの M g C 1 2を含有する 1 00 mMリン酸緩衝液 ( p H 8. 0 ) で 3回洗浄後、 菌体処理時の容量と同じになるように同緩衝液で懸濁した。 処理後、 洗浄菌体を作製した際に用いた緩衝液で 3回洗浄し、 死滅化処理時と 同じ容量になるよう同緩衝液で懸濁した懸濁液を 0. 1 m 1ずつ MY K寒天培地 に塗布し 30°Cで 3日間培養して生菌数を調べた。 After treatment, washed three times with 1 00 mM phosphate buffer containing M g C 1 2 of 1 mM (p H 8. 0) , with the same buffer so as to be the same as the capacity at the time of cell treatment Suspended. After the treatment, wash the cells three times with the buffer used to prepare the washed cells, and suspend the suspension with the same buffer to the same volume as in the killing treatment in 0.1 ml MY K The cells were spread on an agar medium and cultured at 30 ° C for 3 days, and the viable cell count was determined.
4. 酵素活性測定  4. Enzyme activity measurement
フマラ一ゼ活性は、 0. 2Mフマル酸を含む 0. 0 5Mリン酸カリウム緩衝液 (p H 7. 7) 0. 5 m 1及び死滅化処理後の洗浄菌体を含む反応混合液 1 m 1 について 30°Cで所定時間反応を行わせてから遠心分離により菌体を除去した後 、 液体クロマトグラフィーにより生成したリンゴ酸の量を分析することにより測 定した。 The fumalase activity was as follows: 0.5 M potassium phosphate buffer containing 0.2 M fumaric acid (pH 7.7) 0.5 m1 and reaction mixture 1 m containing washed cells after killing 1 was reacted at 30 ° C. for a predetermined time, and after removing the cells by centrifugation, the amount of malic acid produced was analyzed by liquid chromatography and analyzed.
表 5 Table 5
Figure imgf000022_0001
なお、 本明細書で引用した全ての刊行物、 特許及び特許出願をそのまま参考と して本明細書に取り入れるものとする。
Figure imgf000022_0001
All publications, patents, and patent applications cited in this specification are incorporated herein by reference as they are.
産業上の利用の可能性 Industrial applicability
本発明によれば、 工業的に有用な酵素等を失活させることなしに死滅させた微 生物菌体を製造することができるため、 微生物菌体を工業的に用いる場合、 生菌 体の漏洩'による二次的汚染を回避することができる。 特に遺伝子組換え体を使用 する場合、 本発明による死滅化処理を行うことにより、 後の工程での菌体の取り 扱いが簡便化されて、 特殊な設備を必要としない等の工業的に有用な手段を提供 することができる。 According to the present invention, microbial cells that have been killed without deactivating industrially useful enzymes and the like can be produced. Secondary contamination due to 'leakage of the body' can be avoided. Especially when a recombinant is used, the killing treatment according to the present invention simplifies the handling of bacterial cells in subsequent steps, and is industrially useful, such as requiring no special equipment. Means can be provided.

Claims

請 求 の 範 囲 The scope of the claims
1 . 乾燥菌体重量が 5g/L〜200g/Lである微生物触媒を界面活性剤を含む水性媒体 中で処理することにより死滅させた死滅化菌体。 1. Killed cells that have been killed by treating a microbial catalyst having a dry cell weight of 5 g / L to 200 g / L in an aqueous medium containing a surfactant.
2 . 界面活性剤が陽イオン系界面活性剤又は両性イオン性界面活性剤である請求 項 1記載の死滅化菌体。 2. The killed cell according to claim 1, wherein the surfactant is a cationic surfactant or a zwitterionic surfactant.
3 . 陽イオン系界面活性剤が、 塩化べンゼトニゥム、 塩化セチルピリジニゥム、 塩化メチルステアロイル及び臭化セチルトリメチルアンモニゥムの群から選択さ れる少なくとも 1つである請求項 2記載の死滅化菌体。  3. The killing method according to claim 2, wherein the cationic surfactant is at least one selected from the group consisting of benzenetonium chloride, cetylpyridinium chloride, methylstearoyl chloride, and cetyltrimethylammonium bromide. Fungi.
4 . 界面活性剤を 15 %以下の溶液として添加し、 処理することにより死滅させた 請求項 1〜 3いずれか 1項に記載の死滅化菌体。 4. The killed cell according to any one of claims 1 to 3, wherein the killed cell is killed by adding a surfactant as a solution of 15% or less and treating.
5 . 塩化べンゼトニゥムの濃度が、 0. 05〜5 %である請求項 3又は 4いずれか 1 項に記載の死滅化菌体。  5. The killed bacterial cell according to any one of claims 3 and 4, wherein the concentration of benzetonium chloride is 0.05 to 5%.
6 . 微生物触媒を界面活性剤及びダルタルアルデヒドを含む水性媒体中で処理す ることによリ死滅させた死滅化菌体。  6. Killed cells that have been killed by treating a microbial catalyst in an aqueous medium containing a surfactant and dartaraldehyde.
7 . 微生物触媒の乾燥菌体重量が 5g/L〜200g/Lである請求項 6記載の死滅化菌体  7. The killed cell according to claim 6, wherein the weight of the dried cell of the microbial catalyst is 5 g / L to 200 g / L.
8 . 界面活性剤が陽イオン系界面活性剤又は両性イオン性界面活性剤である請求 項 6又は 7記載の死滅化菌体。 8. The killed cell according to claim 6, wherein the surfactant is a cationic surfactant or a zwitterionic surfactant.
9 . 陽イオン系界面活性剤が、 塩化べンゼトニゥム、 塩化セチルピリジニゥム、 塩化メチルステアロイル、 臭化セチルトリメチルアンモニゥムの群から選択され る少なく とも 1つである請求項 8記載の死滅化菌体。 9. The killing according to claim 8, wherein the cationic surfactant is at least one selected from the group consisting of benzotonium chloride, cetylpyridinium chloride, methylstearoyl chloride, and cetyltrimethylammonium bromide. Bacteria.
1 0 . 塩化べンゼトニゥムの濃度が、 0. 05〜5 %である請求項 9記載の死滅化菌 体。  10. The killed cell according to claim 9, wherein the concentration of benzetonium chloride is 0.05 to 5%.
1 1 . グルタルアルデヒドの濃度が、 0. 05〜5 %である請求項 6〜 1 0いずれか 1 項に記載の死滅化菌体。  11. The killed bacterial cell according to any one of claims 6 to 10, wherein the concentration of glutaraldehyde is 0.05 to 5%.
1 2 . 微生物触媒が、 二トリルヒドラターゼ、 ニトリラーゼ、 ァミダ一ゼ、 フマ ラ一ゼ、 ァスパルタ一ゼ及びエチレンジァミン一 N, N '—ジコハク酸 : ェチレ ンジアミンリァ一ゼから選ばれる少なくとも 1の酵素活性を有するものである請 求項 1〜 1 1いずれか 1項に記載の死滅化菌体。 1 2. The microbial catalyst is nitrile hydratase, nitrilase, amidase, fumarase, aspartase and ethylenediamine N, N'-disuccinic acid The killed cell according to any one of claims 1 to 11, which has at least one enzyme activity selected from ammonia diamine.
1 3. 微生物触媒が、 遺伝子組換え体細菌を含むものである請求項 1 2記載の死 滅化菌体。  13. The killed cell according to claim 12, wherein the microbial catalyst includes a genetically modified bacterium.
1 4. 遺伝子組換え体細菌が、 ロドコッカス (Rohodococcus) 属細菌である請求 項 1 3記載の死滅化菌体。  14. The killed cell according to claim 13, wherein the recombinant bacterium is a bacterium belonging to the genus Rhodococcus.
PCT/JP2000/007969 1999-11-12 2000-11-10 Sterilized microbial cells WO2001036592A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001538471A JP3973423B2 (en) 1999-11-12 2000-11-10 Dead cells
EP00974940.9A EP1233057B1 (en) 1999-11-12 2000-11-10 Sterilized microbial cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP32283699 1999-11-12
JP11/322836 1999-11-12

Publications (1)

Publication Number Publication Date
WO2001036592A1 true WO2001036592A1 (en) 2001-05-25

Family

ID=18148157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007969 WO2001036592A1 (en) 1999-11-12 2000-11-10 Sterilized microbial cells

Country Status (5)

Country Link
EP (1) EP1233057B1 (en)
JP (1) JP3973423B2 (en)
KR (1) KR100501864B1 (en)
CN (1) CN100334196C (en)
WO (1) WO2001036592A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006512915A (en) * 2003-01-08 2006-04-20 ビーエーエスエフ アクチェンゲゼルシャフト Method for preserving and / or storing cells having nitrilase or nitrile hydratase activity
WO2009113617A1 (en) 2008-03-14 2009-09-17 ダイヤニトリックス株式会社 Method for stabilization of aqueous acrylamide solution
JP2015505677A (en) * 2011-12-23 2015-02-26 シージェイ チェルジェダン コーポレイション Cell killing method using polyethylene glycol nonionic surfactant
CN109652474A (en) * 2018-12-26 2019-04-19 安徽巨成精细化工有限公司 The method of biocatalysis acrylonitrile hydration reaction, the ablation method for producing nitrile bacterial strain

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7695945B2 (en) * 2007-10-31 2010-04-13 E. I. Du Pont De Nemours And Company Immobilized microbial nitrilase for production of glycolic acid
US7741088B2 (en) * 2007-10-31 2010-06-22 E.I. Dupont De Nemours And Company Immobilized microbial nitrilase for production of glycolic acid
CN101434926B (en) * 2008-10-31 2010-08-11 云南大学 A strain of Rhodococcus capable of metabolizing nicotine and use thereof
CN101390969A (en) * 2008-11-03 2009-03-25 中国人民解放军军事医学科学院生物工程研究所 Medicine capable of reducing uric acid content in blood
US11564408B2 (en) * 2016-10-26 2023-01-31 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Low sugar food products with high fiber content

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3282775A (en) 1963-05-10 1966-11-01 Ethicon Inc Sporicidal compositions comprising a saturated dialdehyde and a cationic surfactant
GB1174045A (en) 1966-12-05 1969-12-10 Bristol Myers Co A Fermentation Process
JPS523833A (en) * 1975-06-27 1977-01-12 Mototaka Ueno Process for preparing powder as raw material oa lotion which removes b ad odor from dusts and is germicidal, insecticipal and cleanable again st it, with fr agrance
BE858992A (en) * 1976-09-25 1978-03-23 Bayer Ag VACCINE PREPARATION PROCESS
JPS61152276A (en) 1984-12-27 1986-07-10 Suntory Ltd Sterilization of recombinant microorganism
EP0338439A1 (en) * 1988-04-18 1989-10-25 Katayama Chemical, Inc. A microbicidal/microbistatic composition
JPH0255794A (en) * 1988-08-22 1990-02-26 Asahi Denka Kogyo Kk Antibacterial lubricating agent composition
US4925801A (en) 1986-03-25 1990-05-15 Guillermo Bisso Process for preserving the phosphorylating activity of yeast, applied to the production of fructose-1,6-diphosphate
JPH0952804A (en) * 1995-06-06 1997-02-25 Takeda Chem Ind Ltd Sterlization process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0728720B2 (en) * 1984-12-27 1995-04-05 住友電気工業株式会社 Cell culture device
JPH02225794A (en) * 1989-02-28 1990-09-07 Komatsu Ltd Pushing-in method for pipe to be embedded
US5976462A (en) * 1995-11-03 1999-11-02 Stone; Ralph P. Compositions and method for disinfecting fabric
US5863547A (en) * 1997-02-25 1999-01-26 Healthpoint, Ltd. Glutaraldehyde plus alcohol product

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3282775A (en) 1963-05-10 1966-11-01 Ethicon Inc Sporicidal compositions comprising a saturated dialdehyde and a cationic surfactant
GB1174045A (en) 1966-12-05 1969-12-10 Bristol Myers Co A Fermentation Process
JPS523833A (en) * 1975-06-27 1977-01-12 Mototaka Ueno Process for preparing powder as raw material oa lotion which removes b ad odor from dusts and is germicidal, insecticipal and cleanable again st it, with fr agrance
BE858992A (en) * 1976-09-25 1978-03-23 Bayer Ag VACCINE PREPARATION PROCESS
JPS61152276A (en) 1984-12-27 1986-07-10 Suntory Ltd Sterilization of recombinant microorganism
US4925801A (en) 1986-03-25 1990-05-15 Guillermo Bisso Process for preserving the phosphorylating activity of yeast, applied to the production of fructose-1,6-diphosphate
EP0338439A1 (en) * 1988-04-18 1989-10-25 Katayama Chemical, Inc. A microbicidal/microbistatic composition
JPH0255794A (en) * 1988-08-22 1990-02-26 Asahi Denka Kogyo Kk Antibacterial lubricating agent composition
JPH0952804A (en) * 1995-06-06 1997-02-25 Takeda Chem Ind Ltd Sterlization process

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ROSA PALLANZA ET AL.: "In vitro activity of A-16686, a potential antiplaque agent", ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, vol. 26, no. 4, 1984, pages 462 - 465, XP002936587 *
See also references of EP1233057A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006512915A (en) * 2003-01-08 2006-04-20 ビーエーエスエフ アクチェンゲゼルシャフト Method for preserving and / or storing cells having nitrilase or nitrile hydratase activity
WO2009113617A1 (en) 2008-03-14 2009-09-17 ダイヤニトリックス株式会社 Method for stabilization of aqueous acrylamide solution
US8569012B2 (en) 2008-03-14 2013-10-29 Mitsubishi Rayon Co., Ltd. Method for stabilization of aqueous acrylamide solution
JP2015505677A (en) * 2011-12-23 2015-02-26 シージェイ チェルジェダン コーポレイション Cell killing method using polyethylene glycol nonionic surfactant
US9504271B2 (en) 2011-12-23 2016-11-29 Cj Cheiljedang Corporation Method for sterilizing microbial cells using polyethylene glycol-based nonionic surfactant
CN109652474A (en) * 2018-12-26 2019-04-19 安徽巨成精细化工有限公司 The method of biocatalysis acrylonitrile hydration reaction, the ablation method for producing nitrile bacterial strain

Also Published As

Publication number Publication date
KR100501864B1 (en) 2005-07-20
CN100334196C (en) 2007-08-29
CN1409756A (en) 2003-04-09
EP1233057A1 (en) 2002-08-21
EP1233057A4 (en) 2004-11-03
KR20020059714A (en) 2002-07-13
EP1233057B1 (en) 2015-03-04
JP3973423B2 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
EP1991659B1 (en) Induction and stabilization of enzymatic activity in microorganisms
Sifour et al. Production and Caracterization of Bacteriocin of Lactobacillus plantarum F12 with Inhibitory Activity against Listeria monocytogenes
Sharma et al. Production, partial purification and characterization of alkaline protease from Bacillus aryabhattai K3
CA2694869C (en) Bacterial isolate and methods for detoxification of trichothecene mycotoxins
WO2001036592A1 (en) Sterilized microbial cells
JP2013517777A (en) Induction and stabilization of enzyme activity in microorganisms
US7638600B2 (en) Lytic enzymes and spore surface antigen for detection and treatment of Bacillus anthracis bacteria and spores
US9107966B2 (en) Method for reducing the viral and microbial load of biological extracts containing solids
JPH03501086A (en) Parathion hydrolase analogs and their production and purification methods
US4954442A (en) Opine enhancement of vir gene induction
JPH11243961A (en) New catalase, gene of the same, and composition containing the same, and preparation of catalase by genetic engineering
JP2004350573A (en) Method for maintaining or improving nitrile hydratase activity
JP2001136958A (en) Killed cell
Fricke et al. Periplasmic aminopeptidases in Acinetobacter calcoaceticus and Pseudomonas aeruginosa
Lee et al. Genomic sequence of temperate phage 250 isolated from emetic B. cereus and cloning of putative endolysin
Giraffa et al. Lactic acid bacteria bacteriophages in dairy products: problems and solutions
Mahesh et al. Optimization for the production of extracellular alkaline phosphatase from Proteus mirabilis
JPH0642831B2 (en) Method for inactivating biological activity of DNA
JP3685814B2 (en) Aminopeptidase and production method thereof
JPS59113895A (en) Preparation of l-aspartic acid
JP3944716B2 (en) Microbial sterilization method
JP3554232B2 (en) Production method of anti-rot wine
Shankar et al. Purification, characterization and immobilization of alginase produced by bacillus sp associated with sargassum wightii
KR101249340B1 (en) Aerococcus sp. lk7 having antibacterial activity and antimicrobial agent comprising same
JP2020162539A (en) Method for producing killed microbe, method for producing s, s-ethylenediamine-n, n'-disuccinic acid or salt thereof, and bacterial cell fluid

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 538471

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020027006044

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10129116

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000974940

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 008170436

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027006044

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000974940

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020027006044

Country of ref document: KR