WO2001034214A1 - Utilisation de derives de cellulose solubles rendus difficilement solubles dans l'eau et methode de preparation de ces derives - Google Patents

Utilisation de derives de cellulose solubles rendus difficilement solubles dans l'eau et methode de preparation de ces derives Download PDF

Info

Publication number
WO2001034214A1
WO2001034214A1 PCT/JP2000/005564 JP0005564W WO0134214A1 WO 2001034214 A1 WO2001034214 A1 WO 2001034214A1 JP 0005564 W JP0005564 W JP 0005564W WO 0134214 A1 WO0134214 A1 WO 0134214A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
cellulose derivative
soluble
soluble cellulose
tissue
Prior art date
Application number
PCT/JP2000/005564
Other languages
English (en)
French (fr)
Inventor
Yasukazu Himeda
Toshihiko Umeda
Original Assignee
Denki Kagaku Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo Kabushiki Kaisha filed Critical Denki Kagaku Kogyo Kabushiki Kaisha
Priority to CA002390556A priority Critical patent/CA2390556C/en
Priority to EP00953516A priority patent/EP1228771A4/en
Priority to AU65970/00A priority patent/AU782519B2/en
Priority to KR1020027005853A priority patent/KR20020062301A/ko
Priority to US10/129,751 priority patent/US7514097B1/en
Publication of WO2001034214A1 publication Critical patent/WO2001034214A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/28Polysaccharides or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/042Polysaccharides

Definitions

  • a tissue-coating medical material formed from a water-insoluble soluble cellulose derivative obtained by treating the derivative with an acid and (2) a group obtained by freezing and thawing an acidic aqueous solution of the soluble cellulose derivative.
  • the present invention relates to a manufacturing method for providing a woven covering medical material.
  • carboxymethylcellulose into which a carboxymethyl group is introduced (hereinafter, carboxymethylcellulose refers to sodium carboxymethylcellulose according to a general name) is a typical one, Utilizing its viscoelasticity, it is widely used in the food field and water-absorbing materials, and its use extends to the medical field.
  • JP-A-11-132,615 discloses carboxymethylcellulose and fibrin
  • JP-A-7-109220 describes carboxymethylcellulose.
  • German Patent No. 1,397,893 disclose a wound healing agent comprising carboxymethylcellulose and an anti-inflammatory agent.
  • Japanese Patent Application Laid-Open No. Hei 8-550258 and European Patent No. 47647 disclose wound dressings using crosslinked carboxymethylcellulose. All of these use soluble carboxymethylcellulose or carboxymethylcellulose cross-linked with a chemical cross-linking agent, etc., as in the case of the anti-adhesion material. No agent use is disclosed.
  • Japanese Patent Application Laid-Open No. 62-39506 discloses a porous material obtained by crosslinking chitin with a drug.
  • a sponge is disclosed.
  • JP-A-3-23864 discloses a block-like composite material composed of collagen sponge and polylactic acid
  • JP-A-7-550643 describes a sponge.
  • An excellent bone substitute consisting of hyaluronic acid ester having biocompatibility and bioabsorbability has been disclosed.
  • the porous sponge is non-absorbable in vivo and is not completely replaced by bone itself.Therefore, there is a risk of infection and the risk of detachment of the material itself. Had a problem that collagen of the mouth had some antigenicity.
  • the method of obtaining carboxymethyl cellulose which has become hardly water-soluble includes a method in which an acidic solution of carboxymethylcellulose is allowed to stand (Encyclopedia of Polymer Science & Technology, Vol. 3, 520-539 (1965)). A method in which a strong acid is added to calepo or xymetyl recellulose in the presence of methyl alcohol or ethyl alcohol (Colloid Polym. Sci., Vol. 267, 226-236 (1989)); And a method using an exchange resin (US Pat. No. 2,617,800). Also, a method of concentrating the acidic solution in the carboxymethyl cell mouth by ultracentrifugation or the like can be used.
  • the present inventors have diligently studied the physicochemical properties of the soluble cellulose derivative itself and its effects on living organisms in order to achieve the above object.
  • the soluble cellulose derivative hardly soluble in water obtained by acid treatment, which has been reported so far, has a high effect as a tissue covering medical material such as an anti-adhesion material and a wound dressing material. I found it.
  • the material produced by freezing and thawing a soluble cellulose derivative aqueous solution under acidic conditions which has not been studied so far, may cause fibrous or filled fine particles due to the effect of ice crystals formed during freezing. It was found to have a fine structure.
  • the water-insoluble soluble cellulose derivative obtained by freezing and thawing is more sheet-like than the water-insoluble soluble cellulose derivative prepared by a conventionally known acid treatment method. Not only is it easy to form into a film, sponge, etc., but also into a sheet, film, tube, etc. after being crushed using ultrasonic waves or a mixer. It is clear that the material has excellent material properties as a medical material, such as obtaining a uniform and uniform form.
  • the present invention provides: (1) a tissue-covering medical material for use for the purpose of being implanted in a body or pasting to a tissue, comprising (1) a water-insoluble soluble cellulosic derivative; (1) The method for producing a tissue-coating medical material according to (1), wherein the method comprises freezing and thawing an acidic solution of the soluble cellulose derivative. (3) The soluble cellulose derivative concentration is adjusted to 5% by mass or more. A tissue-coating medical material according to (1), wherein a water-insoluble soluble cellulose derivative obtained by mixing with an acid solution and leaving the mixture at a non-freezing temperature is used.
  • Tissue-coating medical material according to (1) characterized in that a water-insoluble soluble cellulose derivative obtained by allowing an acidic solution of the soluble cellulose derivative to stand is used.
  • the tissue-coated medical material according to 1 or 2 wherein (10) the solubility of the soluble cellulose derivative in a neutral aqueous solution at 60 ° C for 3 hours is 50% or less.
  • tissue-coating medical material described in (1) (11) the method for producing a tissue-coated medical material described in (2), wherein the solubility of the water-insoluble soluble cellulose derivative is controlled. 1 2) Soluble cellulose derivative with poor water solubility (1)
  • the soluble cellulose derivative according to any one of (1) to (12), (14) the tissue-covering medical material is an adhesion preventing material.
  • tissue covering medical material according to (1) or (12), and (15) the tissue covering medical material is a wound covering material, wherein the tissue covering property according to (1) or (12) is characterized.
  • FIG. 1 shows carboxymethyl cellulose which has been made hardly water soluble by freeze-thaw treatment
  • FIG. 2 shows carboxymethyl cellulose which has been made hardly water soluble by aging treatment with an acidic aqueous solution.
  • tissue refers to a tissue such as a mucous membrane, a blood vessel, a bone, a tendon, an organ such as a stomach or an intestine, or a skin on a body surface. It means that it is applied to the skin and mucous membrane. For example, it applies to surgical damage caused by general surgery, physical damage such as fracture, Achilles tendon rupture or bedsore, or chemical damage such as burns caused by chemicals.
  • the tissue-covering medical material means a biocompatible material used for coating a damaged or damaged tissue or organ, inside or outside the body.
  • the ability to use, as a soluble cellulose derivative, methylcellulose, ethylcellulose, hydroxyshethylcellulose, hydroxypropylcellulose, carboxymethylcellulose, carboxymethylethylcellulose, etc., at an industrial level The most preferred is readily available and inexpensive dexamethasyl cellulose.
  • the molecular weight of the soluble cellulose derivative used in the present invention is not particularly limited, and is preferably in the range of about 1 ⁇ 10 1 to about 5 ⁇ 10 5 daltons.
  • the degree of etherification which is another parameter of the soluble cellulose derivative, those having a range in which hardly water-soluble is caused by the following treatment can be used.
  • the soluble cellulose derivative referred to in the present invention is used in a concept that includes a metal salt of alkali metal, for example, a salt of sodium, potassium, and lithium.
  • modification as used in the present invention means to introduce a chemical crosslink or perform a chemical modification in order to make a water-soluble soluble cellulose derivative hardly water-soluble.
  • controlling the solubility refers to a method for controlling the solubility of a soluble cell in a phosphate buffered saline solution having a pH of 7.4 at 60 ° C., as described in Examples below. This means that the ratio of the soluble cellulosic derivative eluted in phosphate buffered saline after a certain period of time when the derivative is placed.
  • any acid can be used as long as it can adjust the pH to 3.5 or less.
  • a strong acid for example, hydrochloric acid, nitric acid, sulfuric acid and the like.
  • the pH of the acidic aqueous solution is selected based on the molecular weight of the soluble cellulose derivative used, the degree of etherification, the physical properties of the desired water-insoluble soluble cellulose derivative, and more preferably the pH. 2 or less.
  • Freezing and thawing are performed by placing an acidic aqueous solution of a soluble cell derivative in an optional container, freezing it at a predetermined temperature, and thawing at a predetermined temperature after freezing. Is also performed once.
  • the temperature and time for freezing and thawing are determined by the size and size of the container and the temperature and time for freezing and thawing the acidic aqueous solution of the soluble cellulose derivative, depending on the volume of the aqueous solution. Thaw temperatures above freezing are preferred.
  • a freezing temperature of 15 ° C or less and a thawing temperature of 5 ° C or more are selected because the freezing and thawing times can be shortened.
  • the time is not particularly limited as long as it is equal to or longer than the time at which freezing and thawing is completed at that temperature.
  • the number of repetitions of the operation of freezing and then thawing the adjusted acidic aqueous solution of the soluble cellulose derivative depends on the molecular weight of the soluble cellulose derivative to be used, the concentration of the aqueous solution, the pH of the aqueous solution, the temperature and time of freezing and thawing, and the production time. It is appropriately determined according to various properties such as the strength of the water-insoluble soluble cellulose derivative. Usually it is preferable to repeat at least once. The temperature and time of freezing and thawing may be changed each time the freezing and thawing operations are repeated.
  • the solubility of the resulting water-insoluble soluble cellulose derivative can be easily controlled by appropriately selecting the molecular weight of the soluble cellulose derivative to be used, the pH of the aqueous solution, the freezing temperature and time, and the like.
  • U beam dissolved in earthenware pots by to 1% by weight in distilled water
  • the pH of the aqueous solution is set to 1.5, and the resulting solution is frozen at ⁇ 20 ° C. and thawed at room temperature, the longer the freezing time, the more difficult it is to dissolve.
  • an aqueous solution of sodium carboxymethylcellulose prepared at the same concentration and having a different molecular weight at pH 1.5 was frozen at 120 ° C for a certain period of time, and further thawed at room temperature. The higher the molecular weight of the rim, the less water-soluble carboxymethylcellulose that is less soluble is obtained.
  • any acid can be used for mixing.
  • a strong acid for example, hydrochloric acid, nitric acid, sulfuric acid and the like.
  • Mixing and standing are as follows: After placing the soluble cellulose derivative and the acid solution in an arbitrary container, mixing them until they are sufficiently uniform, and after mixing, leave the mixture at a predetermined temperature. Do it twice. Is the temperature and time for mixing and standing determined by the size and capacity of the container? Generally, mixing temperatures below room temperature are preferred. Further, the leaving time is not particularly limited as long as the operation is completed or longer.
  • a conventionally known method of allowing a soluble cellulose derivative acidic solution to stand is to dissolve the soluble cellulose derivative in water and acidify the aqueous solution by adding hydrochloric acid, nitric acid, sulfuric acid, or the like. Any method can be used as long as an acidic aqueous solution of a soluble cellulose derivative can be obtained, such as a method of dissolving a soluble cellulose derivative.
  • the content is preferably 5% by mass or less, and more preferably 1% by mass or less.
  • the pH of the acidic aqueous solution is selected from the molecular weight of the soluble cellulose derivative used, the degree of etherification, the physical properties of the desired water-insoluble soluble cellulose derivative, etc., and is preferably pH 3.5 or less. Preferably it is pH 2 or less.
  • the ability to obtain a water-insoluble soluble cellulose derivative by allowing the prepared acidic solution of the soluble cellulose derivative to stand still ⁇ ', and the standing time is the same as the pH of the acidic solution.
  • the degree of etherification, the degree of etherification, the physical properties of the water-soluble soluble cellulose derivative desired to be hardly soluble, and the like are selected.
  • the temperature at the time of standing is not particularly limited as long as the above operation is completed, but is generally preferably room temperature or lower, and more preferably 5 ° C or lower. This is the temperature at which the derivative acidic aqueous solution does not freeze.
  • the poorly water-soluble soluble cellulose derivative can be obtained by mixing an acidic aqueous solution of the soluble cellulose derivative with a polar organic solvent such as methanol or ethanol.
  • concentration of the soluble cellulose derivative in the acidic solution is not particularly limited, but is preferably 5% by mass or less, more preferably 1% by mass or less.
  • the pH is 5 ', preferably pH 3.5 or less, which is selected from the molecular weight of the soluble cellulose derivative used, the degree of etherification, the physical properties of the desired water-insoluble soluble cellulose derivative, and the like. More preferably, it is pH 2 or less.
  • Polar organic solvents are polar solvents that are completely compatible with water, and that a mixed solvent of the polar organic solvent and water can dissolve the soluble cellulose derivative at room temperature or above room temperature to form a solution.
  • a water-soluble organic compound having the formula:
  • the polar organic solvent used in the present invention is not particularly limited as long as a soluble cellulose derivative hardly soluble in water can be obtained.
  • a lower alcohol-based solvent such as methanol and ethanol, glycerin / ethylene glycol and the like can be used.
  • Alcoholic solvents, ketone solvents such as acetone and methylethyl ketone, ether solvents such as dioxane and tetrahydrofuran, formamide, N, N-dimethylformamide Solvents such as amides, sulfoxide solvents such as dimethyl sulfoxide and tetrahydrothiophene-11, and amide solvents such as hexamethylphosphoric triamide. , Acetonitrile, etc.
  • the polar organic solvent may be used alone or in combination of two or more. These polar organic solvents may be added at once, or may be a water-insoluble soluble solvent. It may be further added to the acidic solution after recovering the hydrophilic cellulose derivative, and the method of addition is not limited at all. Alternatively, an acidic aqueous solution of the soluble cellulose derivative may be prepared, and an appropriate amount of a polar organic solvent may be added to the aqueous solution.However, after dissolving the soluble cellulose derivative powder directly in a mixed solvent of the polar organic solvent and water, May be acidified.
  • a column filled with a strong ionic ion exchange resin is used.
  • concentration of the soluble cellulose derivative is selected depending on the molecular weight, the degree of etherification, and the like of the soluble cellulose derivative, but is preferably 1% by mass or less, and more preferably 0.5% by mass or less.
  • the ion exchange resin to be used is not particularly limited as long as it has a capability of exchanging sodium of a soluble cellulose derivative with hydrogen, and a strong ionizable cation exchange resin having a sulfon group and 5 'is preferable.
  • examples of the concentrating method include ultracentrifugation, ventilation drying, drying under reduced pressure, and freeze drying.
  • the concentration of the soluble cellulose derivative in the acidic aqueous solution before the concentration is preferably 5% by mass or less, more preferably 1% by mass or less, because it is easy to handle.
  • the forming process of a soluble cellulose derivative that has been made hardly water-soluble when it is applied as a medical material will be described. First, it is necessary to remove and wash the acid used for adaptation to the living body.
  • the acid is removed by replacing the liquid around the soluble cellulose derivative that has been rendered poorly water-soluble with a neutral buffer, and if the mixing of buffer components becomes inconvenient, replacement with purified water is performed to remove the acid. A soluble cellulose derivative is obtained.
  • the neutral buffer used is not particularly limited, as long as it does not impair the function of the soluble cellulose derivative hardly soluble in water.
  • a pharmacologically acceptable phosphate buffer is used.
  • the neutralization method is not particularly limited, but usually, a batch method, a filtration method, a method of filling a column or the like and passing the solution, or the like is used.
  • These neutralization conditions include conditions such as the amount of the neutralization solution, the number of times, etc. If so, it can be appropriately selected depending on the form and use of the soluble cellulose derivative which has been rendered hardly water-soluble.
  • the water-insoluble soluble cellulose derivative thus obtained may be subjected to treatment such as immersion in a solvent, wet state containing a solvent, ventilation drying, drying under reduced pressure or freeze drying, depending on the purpose of use. It is provided in a dry state after passing through.
  • Processing such as molding of the water-insoluble soluble cellulose derivative may be performed in the form of a sheet by selecting the soluble cellulosic derivative and the prepared soluble cellulosic acid acidic aqueous solution container or method at the time of preparation. It is possible to prepare a water-insoluble soluble cellulose derivative in a desired form in the form of a film, a crush, a sponge, a lump, a fiber, and a tube. Examples of processing after the production of the water-insoluble soluble cellulose derivative include fine crushing by mechanical pulverization, film formation by rolling, and spinning.
  • a square or circular sheet, film, sponge, or other water-insoluble soluble cellulose derivative can be obtained by freezing, for example, by using a square or circular container. be able to.
  • the water-insoluble soluble cellulose derivative obtained once is crushed by a mixer or the like in distilled water or physiological saline, etc. to form a water-insoluble water-soluble soluble cellulose derivative suspension or a suspension. It can be dried in various containers to form sheets, films, or blocks.
  • the soluble cellulose derivative made hardly soluble in water by the freeze-thaw method has a fibrous or film-like structure, the suspension is sufficiently fine to capture the soluble cellulose derivative made hardly soluble in water. It can be easily formed into a uniform sheet or film by spreading it on a filter having holes and drying it.
  • a polymer compound can be mixed with the water-insoluble soluble cellulose derivative according to the present invention.
  • the polymer compound can be used regardless of a natural polymer compound, a synthetic polymer compound, a water-soluble polymer compound, or a water-insoluble polymer compound. There is no restriction if you do not have one. These are soluble cell mouths that have been made hardly water soluble.
  • it may be mixed with an acidic solution of the soluble cellulose derivative, or may be mixed with the prepared soluble cellulose derivative having poor water solubility. There is no particular limitation as long as the method does not hinder solubilization.
  • polysaccharides selected from the group consisting of polysaccharides, proteins, nucleic acids, and synthetic polymers, but are not limited thereto.
  • polysaccharides include glycosaminoglycans other than hyaluronic acid or hyaluronate (eg, heparin, heparan sulfate, dermatan sulfate), and chondroitin sulfate (eg, And keratin sulfate, arginic acid and its biologically acceptable salts, cellulose, chitin, chitosan, dextran, starch, amylose, polylactic acid, carrageenan, etc. Is mentioned.
  • glycosaminoglycans other than hyaluronic acid or hyaluronate eg, heparin, heparan sulfate, dermatan sulfate
  • chondroitin sulfate eg, And keratin sulfate, arginic acid and its biologically acceptable salts, cellulose, chitin, chitosan, dextran, starch, am
  • proteins include collagen, gelatin, albumin, elastin, various globulins, casein, gluten, and the like, and biologically acceptable synthetic derivatives thereof.
  • Examples of the synthetic polymer include polyvinyl alcohol, polyethylene glycol, polyglycolic acid, polyacrylic acid, polymer acrylic acid, polylactic acid, copolymers thereof, and acrylic acid. Derivatives such as poly (uric acid or hydroxymethyl) ester, poly (acrylic amide), polyvinyl alcohol, and copolymers of maleic acid and fumaric acid. .
  • the present invention is not limited to these polymer compounds.
  • the sterilization treatment required for medical devices is described. Since the sugar chain structure of soluble cellulose derivatives is relatively stable to heat, radiation, etc., tissue-coated medical materials composed of soluble cellulose derivatives that have been rendered sparingly soluble in water are sterilized by y-ray, electron beam, and ethylene oxide gas. Various sterilization methods such as plasma gas sterilization can be adopted. A phenomenon in which the solubility of the soluble cell mouth derivative, which has become poorly water-soluble due to such harsh treatment, is confirmed to change. The force is more stable in advance by changing the manufacturing conditions such as the freezing time in the freeze-thaw method. Manufactures the best materials It is also possible to control the in-vivo storage.
  • the anti-adhesion material of the soluble cellulose derivative hardly water-soluble obtained in the present invention may be in the form of sheet, film, crushed, sponge, lump, fibrous, fluid, or tubular. Can be used for surgery. It is preferable to apply it directly to the surgical site in the form of a film or a sheet, or to use it in the form of a finely crushed or flowing fluid using a syringe or the like. It is preferably applied to It can also be used for laparoscopic surgery.
  • the wound dressing material of the water-insoluble soluble cellulose derivative obtained in the present invention may be in the form of sheet, film, crushed, sponge, lump, fibrous, fluid, tube or the like. Used.
  • the form to be used can be appropriately selected depending on the force 'which is preferably applied directly to the affected part as a film or sheet, and the shape and size of the wound.
  • Example 2 After mixing with 1 N nitric acid at room temperature to cormorants it'll become a carboxymethyl chill cellulose used in Example 1 to 2 0 mass 0/0, and stored in a refrigerator at 4 ° C for 3 days. Thereafter, neutralization was carried out with water and a phosphate buffer (pH 6.8) having a concentration of 100 mM to obtain a lumpy water-insoluble carboxymethyl cellulose. The water-insoluble carboxymethylcellulose is stretched by applying a pressure of about 30 NZ cm 2 and dried at about 50 ° C. to obtain about 1.5 mg Z cm 2 . The film was included.
  • a phosphate buffer pH 6.8
  • the poorly water-soluble carboxymethylcellulose is suspended in physiological saline, and the suspension is then poly- After casting in a styrene container, it was dried at about 50 ° C. to obtain a film containing about 1.5 mg / cm 2 .
  • Example 5 Was dissolved in earthenware pots by becomes 0.3 mass 0/0 in distilled water carboxymethylcellulose used in Example 1.
  • TSKgel SP-Toyono packed in a glass column approximately 5 cm id, approximately 15 cm long packed with 550 ml and equilibrated with 0.5 mm o 1/1 phosphoric acid did.
  • the prepared carboxymethylcellulose solution was injected into the ion-exchange column using a liquid chromatograph pump P-500, and 0.5 mm 01-phosphate was added at a flow rate of 0.5 ml / min. The solution was passed through to obtain a viscous carboxymethylcellulose solution made hardly soluble in water.
  • a water-insoluble carboxymethylcellulose solution obtained after sufficient dialysis against water and a phosphate buffer (pH 6.8) at a concentration of 100 mM was added to a polystyrene container.
  • a phosphate buffer pH 6.8
  • An anesthetic (ketamine solution) was intramuscularly injected into the rat (SD, female, 9 weeks of age or older), anesthetized, fixed on the back, disinfected the abdominal skin with isodine, and then shaved.
  • the rat abdominal muscle was opened along the midline, the cecum was removed from the abdominal cavity, and the cecum was fixed with a perforated (? 5 16 mm) tephron sheet.
  • a rotating rod (13 mm) covered with gauze was pressed against the cecal part exposed from the hole, and rubbed about 120 times (two places on one side).
  • Example 8 Microscopic Observation of Carboxymethyl Cellulose Made Insoluble in Water
  • the carboxymethyl cellulose made hardly soluble in water obtained in Examples 1 to 4 was mixed with water and a phosphate buffer (pH 6. After being neutralized by 8), it was dried at about 50 ° C.
  • Digital microscope (Ki-en) (VH-70000 type, manufactured by K.K.). As a result, a fibrous structure or a film-like structure was recognized only in the water-insoluble carboxymethyl cellulose obtained in Example 1.
  • the figure (photograph) of the hardly water-soluble carboxymethylcellulose obtained in Example 1 and the poorly water-soluble carboxymethylcellulose obtained in Example 3 as a control is shown.
  • the obtained water-insoluble carboxymethylcellulose is slurried in distilled water by crushing with a microhomogenizer (NISSEI EXCEL AUTO HOMOGENIZAER), then spread on a screen for printing and dried. Into a film shape. A uniform film was obtained with the poorly water-soluble carboxymethyl cellulose obtained in Example 1 in Fig. 1, whereas the other poorly water-soluble carboxymethyl cellulose was obtained as shown in Fig. 2. Lumuka? It became uneven.
  • the pH of the aqueous solution thus prepared was adjusted to 1.5 with 1N nitric acid, and 15 ml of the acidic aqueous solution was placed in a 30 ml polystyrene container and set at 120 ° C. Into a freezer. After allowing to stand for 1 day, it was thawed at 25 ° C. Thereafter, neutralization was carried out with water and a phosphate buffer (pH 6.8) at a concentration of 100 mM to obtain a carboxymethyl cellulose in the form of a water-insoluble sponge.
  • a phosphate buffer pH 6.8
  • Example 1 1 The standing period at 120 ° C. in Example 10 was set to 3 days to obtain a carboxymethyl cellulose in the form of a sponge which was made hardly water-soluble.
  • Example 1 the aqueous solution of carboxymethylcellulose was left without acidification. As a result, carboxymethylcellulose made hardly soluble in water was not obtained. This aqueous solution was freeze-dried to form a sponge.
  • Example 10 the aqueous solution of carboxymethylcellulose was left without acidification. As a result, carboxymethyl cellulose made hardly soluble in water was not obtained. This aqueous solution was freeze-dried to form a sponge.
  • Example 12 Solubility test of carboxymethyl cellulose made hardly soluble in water A phosphate buffered saline having a pH of 7.4 and having the following composition was prepared.
  • the concentration of carboxymethylcellulose in phosphate buffered saline was determined from the peak area of the differential refractive index detector using GPC. That is, phosphate buffered saline collected over time was filtered through a 0.45 m filter and injected into GPC.
  • Example 10 The storage period at 120 ° C. in Example 10 was set to one day to obtain a carboxymethyl cellulose in the form of a water-insoluble sponge. This poorly water-soluble carboxymethylcellulose was lyophilized into a sheet containing about 2.0 mg / cm 2 .
  • Example 15 The water-insoluble carboxymethylcellulose sheet obtained in Example 13 was sterilized at 25 kGy with a cobalt 60 as a radiation source.
  • Example 15 The water-insoluble carboxymethylcellulose sheet obtained in Example 13 was sterilized at 25 kGy with a cobalt 60 as a radiation source.
  • Example 10 The standing period at 120 ° C. in Example 10 was set to 7 days to obtain a carboxymethyl cellulose in the form of a water-insoluble sponge. About 2 Ri by the sparingly water-solubilized mosquito Le ball carboxymethylcellulose to lyophilization. After the O mg / cm 2 a includes sheet-like, of 2 5 k G y of the cobalt 6 0 the radiation source A-line sterilization was performed.
  • Example 17 After Example 1 0 freeze carboxymethylcellulose were poorly water-soluble reduction obtained in forming dry by Ri about 2 to. 0 mg / cm 2 sheet shape comprising, for the Le bets 6 0 the radiation source A 25 kG y line sterilization was performed.
  • Example 17
  • Example 11 The water-insoluble carboxymethyl cellulose obtained in Example 11 was freeze-dried to form a sheet containing about 2.0 mg / cm 2 , and then Kovar 60 was used as a radiation source. Y-ray sterilization of 25 kG y was performed.
  • Example 1 Water-insoluble carboxymethyl cell mouth subjected to 7-line sterilization
  • Example 12 a solubility test was performed on the carboxymethyl cellulose sheet obtained in Examples 13 to 16, which had been subjected to sterilization by aerial radiation and made hardly water-soluble. Table 3 shows the results.
  • Example 11 Steam water was added to the poorly water-soluble carboxymethylcellulose obtained in Example 11 so that the carboxymethylcellulose concentration became 1%, and then the mixture was treated with a microhomogenizer (NISSEI EXCEL AUTO HOMOGENIZAER). The slurry was crushed to obtain a slurry of carboxymethylcellulose that had become hardly water-soluble. The slurry was spread on a printing screen and dried at about 40 ° C to make it hardly water-soluble. It was made into a film containing about 2.0 mg / cm 2 of carboxymethyl cellulose. Further, this film was subjected to 25 kGy y-ray sterilization using a control 60 as a radiation source.
  • a microhomogenizer NISSEI EXCEL AUTO HOMOGENIZAER
  • Example 20 Anti-adhesion test of hardly water-soluble dextrin cellulose obtained by freeze-thaw method
  • Example 7 the sheet or film obtained in Example 13, Example 16, or Example 19 was subjected to an adhesion prevention test.
  • a commercially available sepra film manufactured by Jenzym was used. Table 4 shows the results.
  • Example 2 3 A saline solution was added to the poorly water-soluble carboxymethylcellulose obtained in Example 15 so that the carboxymethylcellulose concentration became 1% by mass, followed by crushing with a microhomogenizer (NISSEI EXCEL AUTO HOMOGENIZAER). A slurry containing about 3% by mass of solubilized carboxymethyl cellulose was obtained.
  • Example 22 and Example 23 were subjected to the following tests.
  • As a control an untreated group to which only physiological saline was administered was set.
  • Example 23 The group was treated with the slurry and the untreated group. Implantation was performed by cutting the hair of the rabbit's head, creating a bone defect (5 mm in diameter) using a microdrill on the skull under ether anesthesia, and applying various water-insoluble carboxymethyl cellulose to the bone. It was performed by filling and suturing the defect.
  • Example 1 The carboxymethylcellulose used in Example 1 and chondroitin 6—sulfuric acid (manufactured by Seikagaku Corporation) having a molecular weight of about 3.5 ⁇ 10 4 daltons were added to distilled water in amounts of 0.5 mass. was dissolved in a jar'll become to 0/0. The pH of the prepared aqueous solution was adjusted to pH 1.5 with 1 N nitric acid, and 15 ml of this acidic aqueous solution was placed in a 30 ml polystyrene container, and a freezer set at 20 ° C was used. Put in. After standing for 5 days, it was thawed at 25 ° C. Thereafter, neutralization was carried out with water and a phosphate buffer (pH 6.8) having a concentration of 100 mM to obtain a carboxymethylcellulose sponge-like hardly water-soluble composition.
  • a phosphate buffer pH 6.8
  • the carboxymethylcellulose and polyvinyl alcohol (polymerization degree: 1500, manufactured by Wako Pure Chemical Industries) used in Example 10 were dissolved in distilled water so as to be 0.5% by mass and 10% by mass, respectively. . Adjust the pH of the prepared aqueous solution with 1 N nitric acid. The pH was adjusted to HI.5, and 15 ml of this acidic aqueous solution was placed in a 30 ml polystyrene container, and then placed in a freezer set at 20 ° C. After standing for 5 days, it was thawed at 25 ° C. Thereafter, neutralization was carried out with water and a phosphate buffer (pH 6.8) having a concentration of 100 mM to obtain a sponge-like hardly water-soluble ruboxymethylcellulose composition.
  • a phosphate buffer pH 6.8 having a concentration of 100 mM
  • Example 0 The carboxymethylcellulose and sodium alginate (manufactured by Funakoshi) used in Example 0 were dissolved in distilled water so as to be 0.5% by mass.
  • the pH of the prepared aqueous solution was adjusted to 1.5 with 1N nitric acid, and 15 ml of this acidic aqueous solution was placed in a 30 ml polystyrene container, and the temperature was raised to 20 ° C. Placed in the set freezer. After standing for 7 days, it was thawed at 25 ° C. Thereafter, neutralization was performed with water and a phosphate buffer (pH 6.8) having a concentration of 100 mM to obtain a carboxymethylcellulose composition having a water-insoluble and sponge shape.
  • a phosphate buffer pH 6.8 having a concentration of 100 mM
  • the carboxymethylcellulose and chitosan (manufactured by Wako Pure Chemical Industries) used in Example 10 were dissolved in distilled water so as to be 1.0% by mass and 0.1% by mass, respectively.
  • the pH of the prepared aqueous solution is adjusted to pH 1.5 with 1N nitric acid, and 15 ml of this acidic aqueous solution is placed in a 30 ml polystyrene container and set at 20 ° C. And put them in a freezer. After standing for 5 days, it was thawed at 25 ° C. Thereafter, neutralization was carried out with water and a phosphate buffer (pH 6.8) having a concentration of 100 mM to obtain a carboxymethylcellulose composition in the form of a sponge, which was made hardly soluble in water.
  • a phosphate buffer pH 6.8 having a concentration of 100 mM
  • Example 29 Cytotoxicity test of carboxymethyl cellulose made water-insoluble in water The water-solubility obtained in Examples 1 to 6, Example 9, Example 11, and Examples 14 to 17 was obtained. Cytotoxicity tests were carried out on carboxymethyl cellulose and the water-insoluble water-soluble propyloxymethyl cellulose compositions obtained in Examples 25 to 28.
  • Water insolubilization obtained by the present invention in fibroblast cultures derived from normal human skin The non-contacted lipoxymethylcells were coexisted, and their cytotoxicity was evaluated by observing the cell growth behavior.
  • the preparation was immersed in phosphate buffered saline and then freeze-dried. Twenty mg of the freeze-dried product was mechanically pulverized, placed in a Falcon Cell Culture Insert (pore size: 3 m), and immersed in a medium in which cells were seeded. The culture in the absence of carboxymethylcellulose, which was made hardly water-soluble, was used as a control.
  • Seeding cell number 1 X 1 0 4 or Z Ueru
  • a poorly water-soluble soluble cell mouth derivative comprising a soluble cellulose derivative can be obtained without using any chemical crosslinking agent or chemical modifier. It is useful for medical materials because it avoids the adverse effects on biocompatibility caused by the use of chemical cross-linking agents and chemical modifiers and easily controls solubility.

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Materials Engineering (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)
  • Paints Or Removers (AREA)

Description

明細書 水難溶性化した可溶性セルロース誘導体の用途及びその製造方法 技術分野
( 1 ) 組織治癒を補助 ·促進する目的で使用するために癒着防止材ゃ創傷被 覆材と して用いる、化学的架橋剤やその他の化学的修飾剤を一切使用せずに 可溶性であるセルロース誘導体を酸処理する事によ り得られる水難溶性化 した可溶性セルロース誘導体で形成された組織被覆性医療材料と ( 2 ) 可溶 性セルロース誘導体の酸性水溶液を凍結解凍させることによ り得られる組 織被覆性医療材料を提供するための製造方法に関する も のである。 背景技術
可溶 '性セル口—ス霍秀導体は、 メ チルセル口一ス、 ヒ ドロキシェチルセル口 —ス、 カルボキシ メ チルセルロース、 カルボキシメ チルェチルセルロース等 が知られている。 その中でカルボキシメ チル基が導入されたカルボキシメ チ ルセルロース (以後、 一般的呼称に準じてカルボキシメ チルセルロースは力 ルボキシメ チルセルロースナ ト リ ウム を指す) は代表的なものであ り 、 その 粘弾性を利用 して食品分野や吸水材等で広く利用されており、その用途は医 療分野にも及んでいる。
医療分野へのカルボキシメ チルセルロースの応用に関 しては、 カルボキシ メチルセルロース水溶液やそれを乾燥させて成形したものを用いた癒着防 止材と しての効果確認に関する報告がなされている力 、十分な効果は得られ ていない (American Journal of Surgery, Vol . 1 69, 1 54- 1 59 ( 1 995) ) 。 特開平 1 一 3 0 1 6 2 4号や米国特許第 5 9 0 6 9 9 7号等には化学的架橋剤又は 化学的修飾剤を用いた力ルポキシメ チルセル口ース組成物の癒着防止材が 開示されており、 また特表平 5 — 5 0 8 1 6 1号、 特表平 6 — 5 0 8 1 6 9 号を基に開発されたヒ アルロ ン酸と カルボキシメチルセルロース をカルボ ジィ ミ ドで修飾したものからなる組成物でフィ ルム状の癒着防止剤「セブラ フ ィ ルム」 (Genzyme社製) が市販されている。
しかしながら、実質的に改質されていない水難溶性化した力ルボキシメチ ルセルロースを癒着防止材に用いる例は見当たらない。
創傷被覆剤について見てみると、特開平 1 1 一 3 2 2 6 1 5号にはカ ルボ キシメチルセルロース と フ イ ブリ ン、 特開平 7 — 1 0 9 2 2 0号にはカルボ キシメ チルセルロース と各種消毒剤、独国特許第 1 3 9 7 8 9 3号にはカ ル ボキシメチルセルロース と抗炎症剤からなる創傷治癒剤が開示されている。 また、特表平 8 — 5 0 5 2 5 8号や欧州特許第 4 7 6 4 7号では架橋された カルボキシメチルセルロースを用いた創傷被覆剤が開示されている。 これら はいずれも可溶性であるカルボキシメチルセルロース又は化学的架橋剤等 で架橋されたカルボキシメ チルセルロースを用いており、癒着防止材の場合 と同様に改質されていない水難溶性化したカルボキシメチルセルロースの 創傷被覆剤用途は開示されていない。
一方、 骨修復を目的と して用いられるブロ ッ ク状の充填材と しては、 例え ば、特開昭 6 2 — 3 9 5 0 6号には薬剤によ り キチンを架橋した多孔質スポ ンジが開示されており 、特開平 3 — 2 3 8 6 4号にはコラーゲンスボンジと ポリ乳酸からなるプロ ッ ク状の複合材料が、 また特表平 7 — 5 0 5 6 4 3号 はヒアルロ ン酸エステルからなる生体適合性と生体吸収性を有する優れた 骨置換剤が開示されている。 しかしながら、 多孔質スポンジは生体内で非吸 収性であるため骨自身に完全に置換されないので、感染の危険性および材料 自体が離脱してしま う危険性があ り、 またコラーゲンを用いる場合にはァテ 口コラーゲンに若干の抗原性がある という不具合があつた。
その他薬剤担体 (Pharm. Develop. Tech., Vol.4, 55-63(1999)) 、 細胞培養 基材 (J. M. S. - Pure Appl. Chem., Vol. A33, 1875-1884(1996)) 、 ポリべプチ ド増殖因子含有ゲル組成物 (米国特許第 5 7 0 5 4 8 5号) 等が報告または 開示されているが、 いずれの場合においても用いられるカルボキシメチルセ ルロースは本発明による ものとは異なる ものである。 これまで、例えばカルボキシメチルセルロースの粘弾性等の材料特性を向 上させるために特開平 1 0 — 2 5 1 4 4 7号記載のグリ オキサールによる 化学架橋力ルポキシメチルセルロース、特開昭 6 3 - 3 7 1 4 3号記載の多 価金属イ オ ン との混合をおこ なったカルボキシメチルセルロースゲル、特開 平 7 — 0 9 0 1 2 1号記載の二価、又は三価金属塩による力ルポキシメチル セルロースゲル、 さ らには特開平 1 1 — 1 0 6 5 6 1号記載の塩基性酢酸ァ ルミ 二ゥムの添加によるカルボキシメ チルセルロースゲルなどが考案され ている。 しかし、 こ う した修飾カルボキシメ チルセルロースは、 化学架橋剤 の使用や金属ィォンが添加がされており、医療品と して用いる場合には安全 性の観点からこれらを含まない材料が望まれていた。
水難溶性化したカルボキシメ チルセルロースの取得方法には、 力ルボキシ メチルセルロースの酸性溶液を静置する方法 (Encyclopedia of Polymer Science & Technology, Vol. 3, 520-539 ( 1965) ) 、 粒: i犬のカ レポ、キシメ チリレセ ルロースにメ チルアルコールやエチルアルコール存在下で強酸を添加する 方法 (Colloid Polym. Sci ., Vol . 267, 226- 236 ( 1989) ) 、 強イ オ ン性陽イ オ ン交 換樹脂を用いる方法 (米国特許第 2 6 1 7 8 0 0号) 等が挙げられる。 また カルボキシメ チルセル口一スの酸性溶液を超遠心処理等によ り濃縮する方 法も用いることができる。 しかしこれらの方法は、 水難溶性化したカルボキ シメ チルセルロースを得るまでの操作性、 時間や収量、 また得られた水難溶 性化したカルボキシメチルセルロースをシー ト状、 フ ィ ルム状、 スポンジ状 あるいはチューブ状等に成形し難いという問題があつた。
本発明者らは、 上記目的を達成するために、 可溶性セルロース誘導体自体 の物理化学的性質と生体に対する効果を鋭意検討してきた。 その結果、 従来 よ り報告等がなされている酸処理によって得られる水難溶化した可溶性セ ルロ—ス誘導体が癒着防止材ゃ創傷被覆材等の組織被覆性医療材料と して 高い効果を持つことを見出した。 また、 特にこれまで検討されてこなかった 可溶性セルロース誘導体水溶液を酸性条件下で凍結 ·解凍する手法によ り製 造される材料が、凍結時に形成される氷晶の効果で繊維状またはフィル状微 細構造を有することを見出した。凍結解凍によ り得られる水難溶性化した可 溶性セルロース誘導体は、従来から知られている酸処理法によ り調製された 水難溶性化した可溶性セル口ース誘導体と比較して、シー ト状、フィ ルム状、 スボンジ状等の成形が容易であるばかりでな く 、超音波やミ キサー等を用い て破砕状と した後にシー ト状、 フ ィ ルム状、 チューブ状等にも成形し易く か つ均一な形態のものが得られるなど、医療材料と して優れた材料特性を有す る ものである こ と明らカ こ した。
更に、 生体用途への適応性に関しては、 重要な物性である溶解性を制御で き、制御したも のの中から非常に高い癒着防止効果と生体適合性を有する候 補を見出すことができ、 本発明を完成させるに至った。 発明の開示
すなわち本発明は、 ( 1 ) 水難溶性化した可溶性セル口ース誘導体からな る、体内へ埋め込む又は組織に貼付する目的で使用するための組織被覆性医 療材料、 ( 2 ) 水難溶性化する方法と して、 可溶性セルロース誘導体の酸性 溶液の凍結 · 解凍を用いることを特徴とする ( 1 ) 記載の組織被覆性医療材 料の製造方法、 ( 3 ) 可溶性セルロース誘導体濃度を 5質量%以上になるよ う に酸溶液と混和し、非凍結温度下で放置することによ り得られる水難溶性 化した可溶性セルロース誘導体を用いることを特徴とする ( 1 ) 記載の組織 被覆性医療材料、 ( 4 ) 可溶性セルロース誘導体の酸性溶液を静置すること によ り得られる水難溶性化した可溶性セルロース誘導体を用いること を特 徴とする ( 1 ) 記載の組織被覆性医療材料、 ( 5 ) 可溶性セルロース誘導体 の酸性溶液と極性有機溶媒を混合することによ り得られる水難溶性化した 可溶性セルロース誘導体を用いることを特徴とする ( 1 ) 記載の組織被覆性 医療材料、 ( 6 ) 陽イ オ ン交換カ ラムに可溶性セルロース誘導体溶液を通液 させることによ り得られる水難溶性化した可溶性セルロース誘導体を用い ることを特徴とする ( 1 ) 記載の組織被覆性医療材料、 ( 7 ) 可溶性セル口 —ス誘導体の酸性溶液を濃縮するこ と によ り得られる水難溶性化した可溶 性セルロース誘導体を用いることを特徴とする ( 1 ) 記載の組織被覆性医療 材料、 ( 8 ) 可溶性セルロース誘導体からなり、 実質的には化学的架橋剤ま たは化学的修飾剤等によ り改質されていない ( 1 ) 記載の水難溶性化した可 溶性セルロース誘導体、 ( 9 ) 水難溶性化した可溶性セル口ース誘導体が繊 維状またはフ ィ ルム状構造を有することを特徴とする請求項 1又は 2記載 の組織被覆性医療材料、 ( 1 0 ) 中性の 6 0 °Cの水溶液中で 3時間での可溶 性セルロース誘導体の溶解率が 5 0 %以下であること を特徴とする ( 1 ) 記 載の組織被覆性医療材料、 ( 1 1 ) 水難溶性化した可溶性セルロース誘導体 の溶解性を制御すること を特徴とする ( 2 ) 記載の組織被覆性医療材料の製 造方法、 ( 1 2 ) 水難溶性化した可溶性セルロース誘導体と ヒアルロン酸又 はヒアルロ ン酸塩を除く他の高分子からなるこ とを特徴とする ( 1 ) 記載の 組織被覆性医療材料、 ( 1 3 ) 可溶性セルロース誘導体が力ルボキシメ チル セルロースである ( 1 ) 〜 ( 1 2 ) のいずれかに記載の可溶性セルロース誘 導体、 ( 1 4 ) 組織被覆性医療材料が癒着防止材であるこ と を特徴とする
( 1 ) 又は ( 1 2 ) 記載の組織被覆性医療材料、 ( 1 5 ) 組織被覆性医療材 料が創傷被覆材であるこ とを特徴とする ( 1 ) 又は ( 1 2 ) 記載の組織被覆 性医療材料、 ( 1 6 ) 組織被覆性医療材料が骨再生用被覆材であるこ と を特 徴とする ( 1 ) 又は ( 1 2 ) 記載の組織被覆性医療材料である。 図面の簡単な説明
図 1 は、 凍結解凍処理によ り得られる水難溶性化したカルボキシメチルセ ルロースを示し、 図 2は、 酸性水溶液熟成処理よ り得られる水難溶性化した カルボキシメ チルセルロースを示す。 発明を実施を実施するための最良の形態
以下、 本発明を詳細に説明する
本発明でいう体内へ埋め込むまたは組織に貼付する とは、 生体内の粘膜、 血管、 骨、 腱のよ う な組織や胃あるいは腸のよ う な臓器、 または体表面の皮 膚ゃ粘膜に適用することを意味する。 例えば、 一般的な手術の際に引き起こ される外科的損傷、 骨折、 アキレス腱断裂や床ずれ等に見られる物理的損傷 あるいは化学薬品による火傷等の化学的損傷に対して適用するこ と を指す。 また組織被覆性医療材料とは、 体内、 体外を問わず損傷あるいは障害を受け た組織または臓器を被覆する際に用いる生体適合性の材料であるこ とを意 味する。
本発明では可溶性セルロース誘導体と してメ チルセルロース、 ェチルセル ロース、 ヒ ドロキシェチルセルロース、 ヒ ドロキシプロ ピルセルロース、 力 ルボキシメ チルセルロース、 カルボキシメ チルェチルセルロース等を用いる ことができる力 、工業レベルでの入手が容易であり安価である力ルボキシメ チルセルロースが最も好ま しい。
本発明に用いられる可溶性セル口ース誘導体の分子量は、特に規定される ものではない力 s、約 1 X 1 0 1〜約 5 X 1 0 5 ダル ト ンの範囲内のものが好ま しい。
また、上記範囲内の分子量をもつものであれば、よ り高分子量のも のから、 加水分解処理等を して得たものでも同様に好ま しく使用できる。 また、 可溶 性セルロース誘導体のも う ひとつのパラメ一ターであるエーテル化度につ いては、 以下の処理で水難溶性化が起こる範囲のものが利用できる。
なお、 本発明にいう可溶性セル口ース誘導体は、 そのアル力 リ金属塩、 例 えば、ナ ト リ ウム、カ リ ウム、 リチウムの塩をも包含する概念で使用される。 本発明にいう改質とは、 本来、 水溶性である可溶性セル口ース誘導体を水 難溶性とするために化学的架橋を導入した り化学的修飾を行ったりするこ とを意味する。
本発明にいう溶解性を制御する とは、 以降の実施例で説明するよ う に、 6 0 °Cの p H 7 . 4のリ ン酸緩衝生理食塩水中に水難溶性化した可溶性セル口 ース誘導体を置く と き、一定時間後にリ ン酸緩衝生理食塩水中に溶出してく る可溶性セル口ース誘導体の割合を変えるこ とを意味する。
凍結解凍法による可溶性セルロース誘導体の製造について述べる。可溶性 セルロース誘導体の水溶液の p Hを調整するために使用する酸は、 p H 3 . 5以下に調整できる酸であれば、 いずれの酸も使用するこ とができる。 酸の 使用量を低減するために、 好ま しく は強酸、 例えば、 塩酸、 硝酸、 硫酸等を 使用することが望ま しい。 なお、 酸性水溶液の p Hは用いる可溶性セルロー ス誘導体の分子量、 エーテル化度、 目的とする水難溶性化した可溶性セル口 —ス誘導体の物性等から選ばれるが、 さ らに好ま し く は p H 2以下である。 凍結、 解凍は可溶性セル口 —ス誘導体の調整された酸性水溶液を、 任意の 容器に入れた後、 所定の温度で凍結させ、 凍結が終わった後、 所定の温度で 解凍させる操作を少な く と も 1 回行う。 凍結、 解凍の温度と時間は、 容器の 大き さ、 水溶液量によ り可溶性セルロース誘導体の酸性水溶液が凍結、 解凍 する温度と時間の範囲内で適宜決められる力 、 一般には、 氷点以下の凍結温 度、 氷点以上の解凍温度が好ま しい。
凍結、 解凍時間を短く できることから、 更に好ま しく は一 5 °C以下の凍結 温度、 5 °C以上の解凍温度が選ばれる。 また、 時間は、 その温度で凍結、 解 凍が終了する時間以上であれば特に制限されない。
可溶性セルロース誘導体の調整された酸性水溶液を凍結し、次いで解凍す る操作の繰り返し回数は、 使用する可溶性セルロース誘導体の分子量、 水溶 液濃度、 水溶液の p H、 凍結及び解凍の温度と時間、 並びに生成する水難溶 性化した可溶性セルロース誘導体の強さ等の諸特性によ り適宜決められる。 通常は 1 回以上繰り返すことが好ま しい。 また、 凍結、 解凍の操作を繰り返 すごとに、 その凍結、 解凍の温度及び時間を変えても構わない。
得られる水難溶性化した可溶性セルロース誘導体の溶解性は、用いる可溶 性セルロース誘導体の分子量、 水溶液の p H、 凍結温度と時間等を適宜選択 することによ り制御することが容易である。 例えば、 換算分子量 1 . 2 8 X 1 0 5〜 ; I . 3 5 X 1 0 5 ダル ト ンのカルボキシメ チルセルロースナ ト リ ウ ムを蒸留水に 1 質量%になる よ う に溶解し、 水溶液の p Hを 1 . 5 と し、 こ れをー 2 0 °Cで凍結、 室温で解凍した場合、 凍結時間が長いほど溶解しにく い水難溶性化したカルボキシメチルセルロースが得られる。 また、同濃度で調製した分子量の異なるカルボキシメチルセルロースナ ト リ ウムの p H l . 5の水溶液を一 2 0 °Cで一定時間凍結し、 さらに室温で解 凍した場合、 カルボキシメ チルセルロースナ ト リ ゥムの分子量が大きいほど 溶解しにく い水難溶性化したカルボキシメ チルセルロースが得られる。
さらに、 カルボキシメチルセルロースナ ト リ ゥム水溶液の p Hだけを変化 させ、 p H l . 5及び p H 2 の場合を比較してみると、 p Hが低い方が水難 溶性化したカルボキシメ チルセルロースが溶解しに く い。
次に、可溶性セルロース誘導体を 5質量%以上の濃度で酸溶液と混合する 方法について述べる。 混合に供する酸は、 いずれの酸も使用することができ る。 酸の使用量を低減するために、 好ま し く は強酸、 例えば、 塩酸、 硝酸、 硫酸等を使用することが望ま しい。 混合 · 放置は、 可溶性セルロース誘導体 と酸溶液とを、 任意の容器に入れた後、 十分に均一になるまで混合し、 混合 が終わった後、 所定の温度で放置させる操作を少な く と も 1 回行う。 混合、 放置の温度と時間は、 容器の大き さ、 容量によ り適宜決められる力?、 一般に は、 室温以下の混和温度が好ま しい。 また放置時間は、 これらの操作が完了 する時間以上であれば特に制限されない。
次に、他の製造法による水難溶性化した可溶性セル口ース誘導体の製造法 について述べる。従来よ り知られている可溶性セルロース誘導体酸性溶液を 放置する方法では、 可溶性セルロース誘導体を水に溶解し、 この水溶液に例 えば塩酸, 硝酸, 硫酸等を添加して酸性化する方法、 酸溶液に可溶性セル口 ース誘導体を溶解する方法等可溶性セルロース誘導体の酸性水溶液が得ら れる方法であればいずれの方法を用いるこ とができる。
酸性溶液中の可溶性セルロース誘導体の濃度は特に制限されない力?、粘性 を有する溶液となることから好ま し く は 5質量%以下、 さ らに好ま しく は 1 質量%以下である。酸性水溶液の p Hは用いる可溶性セルロース誘導体の分 子量、 エーテル化度、 目的とする水難溶性化した可溶性セルロース誘導体の 物性等から選ばれるが、 好ま しく は p H 3 . 5以下であり、 さらに好ま し く は p H 2以下である。 調製した可溶性セルロース誘導体の酸性溶液を静置するこ と によ り水難 溶性化した可溶性セルロース誘導体が得られる力 ^ '、静置する時間は酸性溶液 の p Hと同様に用いる可溶性セルロース誘導体の分子量、 エーテル化度、 目 的とする水難溶性化した可溶性セルロース誘導体の物性等から選ばれる。
また、静置する際の温度は上記の操作が完了する温度であれば特に制限さ れないが、 一般には室温以下が好ま しく 、 さ らに好ま し く は 5 °C以下で可溶 性セルロース誘導体酸性水溶液が凍結しない温度である。
水難溶性化した可溶性セルロース誘導体は、 また可溶性セルロース誘導体 の酸性水溶液とメ タノール、ェタノール等の極性有機溶媒を混合することに よ り取得することができる。酸性溶液中の可溶性セル口ース誘導体の濃度は 特に制限されないが、 好ま し く は 5質量%以下、 さ らに好ま し く は 1 質量% 以下である。 またその p Hは用いる可溶性セルロース誘導体の分子量、 エー テル化度, 目的とする水難溶性化した可溶性セルロース誘導体の物性等から 選ばれる力5'、 好ま し く は p H 3 . 5以下であり、 さ らに好ま し く は p H 2以 下である。
極性有機溶媒とは、 水と完全に相溶し、 かつ、 その極性有機溶媒と水との 混合溶媒が可溶性セルロース誘導体を室温又は室温以上の温度で溶解し、溶 液を形成することができる極性を有する水溶性有機化合物を意味する。
本発明に用いる極性有機溶媒は、水難溶性化した可溶性セルロース誘導体 が取得できる ものであれば特に制限されないカ^ メ タ ノール、 エタノール等 の低級アルコール系溶媒、 グリ セリ ンゃエチレ ングリ コール等の多価アルコ ール系溶媒、ァセ ト ン、メ チルェチルケ ト ン等のケ ト ン系溶媒、ジォキサン、 テ ト ラ ヒ ドロフラ ン等のエーテル系溶媒、 ホルムア ミ ド、 N, N—ジメ チル ホルムア ミ ド等のア ミ ド系溶媒、 ジメ チルスルホキシ ド、 テ ト ラ ヒ ドロチォ フェ ン一 1 等のスルホキシ ド系溶媒、へキサメ チルホスホ リ ッ ク ト リ ア ミ ド 等のリ ン酸ァミ ド系溶媒、 ァセ トニ ト リ ル等を使用するこ とができる。 該極 性有機溶媒は、 1種類のみを使用しても または 2種類以上を併用 しても よい, これらの極性有機溶媒は一度に添加しても よ く 、 また水難溶性化した可溶 性セルロース誘導体を回収した後の酸性溶液にさらに添加しても よ く 、添加 方法について何ら制限される も のではない。 また、 可溶性セルロース誘導体 を酸性水溶液を調製し、 該水溶液に極性有機溶媒を適量添加しても よいが、 極性有機溶媒と水との混合溶媒中に可溶性セルロース誘導体の粉末を直接 溶解させた後に溶液を酸性化しても構わない。
可溶性セル口ース誘導体水溶液を陽ィォ ン交換力 ラムに通液する方法で は、 例えば強ィォン性陽イ オ ン交換樹脂を充填したカ ラムを用いる。 可溶性 セルロース誘導体濃度は可溶性セルロース誘導体の分子量、エーテル化度等 によ り選択されるが、好ま し く は 1 質量%以下であり、さ らに好ま し く は 0 . 5質量%以下である。
用いるィォン交換樹脂は可溶性セルロース誘導体のナ ト リ ウムを水素と 交換できる能力を有する ものであれば特に制限されない力5'、 スルホ ン基を有 する強ィォン性陽ィォン交換樹脂が好ま しい。
可溶性セルロース誘導体の酸性水溶液を濃縮する場合には、濃縮方法と し て超遠心分離, 通風乾燥, 減圧乾燥, 凍結乾燥などがあげられる。 濃縮前の 酸性水溶液中の可溶性セルロース誘導体濃度は、 一般的には、 扱いやすいと 言う点で 5質量%以下が好ま しく 、 さらには 1 質量 %以下がよ り好ま しい。 次に、医療材料と して適応する場合の水難溶性化した可溶性セルロース誘 導体の成形加工等について述べる。 まず、 生体に適応するために用いた酸を 除去 · 洗诤する操作を行う ことが必要である。 酸の除去は、 中性緩衝液によ る水難溶性化した可溶性セルロース誘導体周囲の液の置換によ り行い、更に 緩衝液成分の混入が不都合になるならば精製水による置換を行い、水難溶性 可溶性セルロース誘導体を得る。用いる中性緩衝液は水難溶性化した可溶性 セルロース誘導体の機能を損なわないものであれば特に制限はない力 、例え ば薬理学的に許容される リ ン酸緩衝液が用いられる。
また、 中和方法は特に制限はないが、 通常は、 バッチ法、 濾過法、 カ ラム 等に充填して通液する方法等が用いられる。これらの中和条件は、中和液量、 回数等を含めて、酸性に調製するために用いた酸等の成分を中和できる条件 であればよ く 、水難溶性化した可溶性セルロース誘導体の形態や用途によ り 適宜選択する ことが可能である。
このよう にして得られた水難溶性化した可溶性セルロース誘導体は、 その 使用目的に応じて、 溶媒中に浸潰した状態、 溶媒を含ませた湿潤状態、 通風 乾燥、 減圧乾燥あるいは凍結乾燥等の処理を経た乾燥状態で供される。
水難溶性化した可溶性セルロース誘導体の成形加工等の処理は、作製時に は、可溶性セル口ース誘導体及び調製された可溶性セル口 ース誘導体酸性水 溶液の容器や手法の選択によ り シー ト状、フ ィ ルム状、破砕状、スポン ジ状、 塊状、 繊維状、 及びチューブ状の所望の形態の水難溶性化した可溶性セル口 ース誘導体の作製が可能である。水難溶性化した可溶性セルロース誘導体の 作製後の加工と しては、機械的粉砕による微細な破砕状や圧延によるフ ィ ル ム化、 紡糸等が可能である。
凍結解凍法について見てみる と、凍結時に例えば角形または円形の容器を 用いるこ とによ り角形または円形のシー ト状、 フ ィ ルム状、 スポンジ状等の 水難溶性化した可溶性セルロース誘導体を得るこ とができ る。 また一度得ら れた水難溶性化した可溶性セルロース誘導体を蒸留水や生理食塩水等の中 でミ キサー等によ り破砕し水難溶性化した可溶性セルロース誘導体懸濁液 状態と したり、 懸濁液を種々の容器中で乾燥させ、 シー ト状、 フ ィ ルム状、 塊状等とするこ と も可能である。 さ らに、 凍結解凍法による水難溶性化した 可溶性セルロース誘導体は、繊維状またはフ ィ ルム状の構造を有するこ とか ら、 その懸濁液を水難溶性化した可溶性セルロース誘導体を捕らえるに十分 な細孔を有するフ ィ ルタ一等の上に展開し、 これを乾燥することによ り均一 なシー ト状、 フ ィ ルム状に成形すること も容易である。
さ らに本発明による水難溶性化した可溶性セルロース誘導体に高分子合 化物を混合して用いるこ とができる。 高分子化合物は、 天然高分子化合物、 合成高分子化合物、 水溶性高分子化合物、 非水溶性高分子化合物を問わず用 いるこ とができ、組織への炎症性や障害性等の有害作用を有さないも のであ れば何ら制限される ものではない。 これらは水難溶性化した可溶性セル口一 ス誘導体を調製する際に可溶性セルロース誘導体の酸性溶液中に混合させ ても よ く 、 あるいは調製された水難溶性化した可溶性セル口ース誘導体と混 合しても よ く 、可溶性セルロース誘導体の水難溶性化を妨げない方法であれ ば特に制限されない。
混合して用いられる高分子化合物の代表例と しては、 多糖類、 蛋白質、 核 酸類、及び合成高分子類からなる群から選択されるがこれによ り何ら制限さ れないものである。
多糖類の例と しては、 ヒアルロ ン酸又はヒアルロ ン酸塩を除く グリ コサミ ノ グリ カ ン類 (へパリ ン、 へパラ ン硫酸、 デルマタ ン硫酸等) 、 コ ン ドロイ チン硫酸塩 (コ ン ドロ イ チン一 6 —硫酸等) 、 ケラチン硫酸塩、 ァルギン酸 及びその生物学的に受容な塩、 セルロース、 キチン、 キ トサン、 デキス ト ラ ン、 澱粉、 ア ミ ロース、 ポリ乳酸、 カラギーナン等が挙げられる。
また、 蛋白質の例と しては、 コラーゲン、 ゼラチン、 アルブミ ン、 エラス チン、 種々のグロブリ ン、 カゼイ ン、 グルテン等、 及びそれらの生物学的に 受容な合成誘導体等が挙げられる。
また、 合成高分子の例と しては、 ポリ ビニルアルコール、 ポリエチレング リ コール、 ポリ グルコール酸、 ポリ アク リ ル酸、 ポリ メ 夕 ク リ ル酸、 ポリ乳 酸、 それらのコポリマー、 及びアク リ ル酸も しく はメ タ ク リ ル酸ポリ (ヒ ド 口キシェチル) エステル、 ポリ アク リ ルア ミ ド等、 ポリ ビニルアルコール、 マレイ ン酸ゃフマール酸のコポリマー等のよ う な誘導体等が挙げられる。
なお、 本発明は、 これらの高分子化合物に何ら制限されないものである。 次に、 医療用具と して必要な滅菌処理について述べる。 可溶性セルロース 誘導体の糖鎖構造は熱や放射線等に比較的安定であるために、水難溶性化し た可溶性セルロース誘導体からなる組織被覆性医療材料には y線滅菌、電子 線滅菌、 エチレンォキサイ ドガス滅菌、 プラズマガス滅菌などの種々の滅菌 方法が採用できる。 こう した過酷な処理によ り水難溶性化した可溶性セル口 一ス誘導体の溶解性が変化する現象が確認される力^凍結解凍法における凍 結時間などの製造条件を変化させてあらかじめよ り安定な材料を製造して おき、 生体内での貯留性を制御すること も可能である。
次に、 本発明の医用材料のう ち癒着防止材について説明する。
本発明で得られた水難溶性化した可溶性セルロース誘導体の癒着防止材 は、 シー ト状、 フ ィ ルム状、 破砕状、 スポン ジ状、 塊状、 繊維状、 流動状又 はチューブ状等の形態で外科手術に用いるこ とができる。用いられる形態と しては、 フ ィ ルム状又はシー ト状と して外科手術部位に直接貼付するのが好 ま し く 、 または、 微細破砕状、 流動状と して注射器等で外科手術部位に塗布 するのが好ま しい。 また、 腹腔鏡の手術にも使用することができる。
次に、 本発明の医療材料のう ち創傷被覆材について説明する。
本発明で得られた水難溶性化した可溶性セルロース誘導体の創傷被覆材 は、 シー ト状、 フ ィ ルム状、 破砕状、 スポン ジ状、 塊状、 繊維状、 流動状又 はチューブ状等の形態で用いられる。 用いられる形態と しては、 フ ィ ルム状 又はシー ト状と して患部に直接貼付するのが好ま しい力'、創傷の形状や大き さ等によ り適宜選択することができる。
以下、 実施例によ り本発明をさ らに詳し く説明する。 なお、 本発明はこれ らによ り限定される も のではない。
実施例 1
2 5 °Cでの 1 %粘度が 1 5 0 〜 2 5 0 m P a · s のカルボキシメチルセル ロースナ ト リ ウム (エーテル化度 0 . 6 2 〜 0 . 6 8 、 換算分子量 1 . 2 8 X I 0 5〜 1 . 3 5 X 1 0 5ダル ト ン、 第一工業製薬製) を蒸留水に 1 質量0 /0 になるよ う に溶解した。 こう して調製された水溶液の p Hを 1 N硝酸で 1 . 5 に調整し、 酸性水溶液 1 5 m 1 を 3 0 m 1 のポリ スチ レ ン製容器に入れ、 一 2 0 °Cに設定した冷凍庫に入れた。 3 日間放置した後、 2 5 °Cで解凍した。 その後、 水及び 1 0 0 m M濃度のリ ン酸緩衝液 ( p H 6 . 8 ) によ り 中和を 行い、 スポンジ状の水難溶性化したカルボキシメチルセルロースを得た。 こ の水難溶性化したカルボキシメ チルセルロースを凍結乾燥するこ と によ り 約 1 . 5 m g Z c m 2を含むシー ト状と した。
実施例 2 実施例 1 で用いたカルボキシメ チルセルロースを 2 0質量0 /0になる よ う に 1 N硝酸と室温で混和した後、 3 日間 4 °Cの冷蔵庫で保管した。 その後水 及び 1 0 0 m M濃度のリ ン酸緩衝液 ( p H 6 . 8 ) によ り 中和を行い、 塊状 の水難溶性化したカルボキシメ チルセルロースを得た。 この水難溶性化した カルボキシメ チルセルロースを約 3 0 N Z c m 2の圧力を力 ナて延伸し、 さ らに約 5 0 °Cで乾燥するこ とによ り約 1 . 5 m g Z c m 2を含むフ ィ ルム状 と した。
実施例 3
実施例 1 で用いたカルボキシメ チルセルロース を蒸留水に 1 質量0 /0にな るよ う に溶解した。 こう して調製された水溶液の p Hを 1 N硝酸で 1 . 0 に 調整し、 酸性水溶液 3 リ ツ ト ルを 4 リ ツ ト ルの容器に入れ、 4 0 日間 4 °Cの 冷蔵庫で保管した。析出した水難溶性化したカルボキシメ チルセルロースを 遠心分離によ り 回収し、 水及び 1 0 0 m M濃度のリ ン酸緩衝液 ( p H 6 . 8 ) によ り 中和を行い、塊状の水難溶性化したカルボキシメチルセルロースを得 た。 この水難溶性化したカルボキシメ チルセルロース を生理食塩水に懸濁し ポリ スチレ ン製容器内にキャステ ィ ングした後約 5 0 °Cで乾燥する こ と に よ り約 1 . 5 m g Z c m 2を含むフ ィ ルム状と した。
実施例 4
実施例 1 で用いたカルボキシメ チルセルロースを蒸留水に 1 質量0 /0にな る よ う に溶解した。 水溶液の p Hを 1 N硝酸で 1 . 0 に調整し、 ジメ チルス ホキシ ドが 5質量%となるよ う に添加した。 この溶液 1 0 0 m l を 2 0 0 m 1 のガラス ビンに入れ、 1 0 日間 4 °Cの冷凍庫で保管し、 きめの細かい粒状 の水難溶性化したカルボキシメ チルセルロースを得た。水及び 1 0 0 m M濃 度のリ ン酸緩衝液 ( p H 6 . 8 ) によ り 中和を行なった後に、 この水難溶性 化したカルボキシメ チルセルロースを生理食塩水に懸濁し、 ポリ スチレ ン製 容器内にキャステ ィ ングした後約 5 0 °Cで乾燥する こ と によ り約 1 . 5 m g / c m 2を含むフ ィ ルム状と した。
実施例 5 実施例 1 で用いたカルボキシメチルセルロースを蒸留水に 0. 3質量0 /0に なるよ う に溶解した。 TSKgel SP - ト ヨノ、'一ル 5 5 0 を充填した内径約 5 c m、 長さ約 1 5 c mのガラス製カラムに充填し、 0. 5 mm o 1 / 1 リ ン酸 によ り平衡化した。調製したカルボキシメ チルセルロース溶液を液体クロマ ト グラフ用ポンプ P— 5 0 0 を用いてイオン交換カラムに注入し、 0. 5 m m 0 1 ノ 1 リ ン酸を 0. 5 m l /分の流速で通液し、 粘性のある水難溶性化 したカルボキシメ チルセルロース溶液を得た。水及び 1 0 0 m M濃度のリ ン 酸緩衝液 ( p H 6. 8 ) に対して十分に透析を行った後に得られた水難溶性 化したカルボキシメ チルセルロース溶液をポリ スチ レ ン製容器に入れ、凍結 乾燥によ り約 1 . 2 m g / c m 2を含むシー ト状と した。
実施例 6
実施例 1 で用いたカルボキシメ チルセルロースを蒸留水に 2質量0 /0にな るよ う に溶解した。 この水溶液の p Hを 1 N硝酸で 1 . 5 に調整し、 酸性水 溶液 1 5 m 1 を 3 0 m 1 の容器に入れ、 8 0 °Cに設定した減圧乾燥で乾燥し . フ ィ ルム状の水難溶性化したカルボキシメ チルセルロース を得た。 この水難 溶性化したカルボキシメチルセルロースを水及び 1 0 0 m M濃度のリ ン酸 緩衝液 ( p H 6. 8 ) によ り 中和した後に再度約 5 0 °Cで乾燥する こ と によ り約 1 . 8 m g Z c m2を含むフ ィ ルム状と した。
実施例 7 ラ ッ ト盲腸擦過モデルのおける癒着防止試験
癒着誘導法
ラ ッ ト ( S D、 メ ス、 9週齢以上) に麻酔剤 (ケタ ミ ン溶液) を筋注し麻酔 後、 仰向けに固定してイ ソジンにて腹部皮膚を消毒後、 剪毛を行った。 ラ ッ ト腹筋を正中線に沿つて開腹し、盲腸を腹腔内から取り だし、盲腸を有孔(?5 1 6 mm) テフロ ンシー 卜で固定した。 孔から露出した盲腸部分にガーゼを かぶせた回転棒( 1 3 m m )を押し当て約 1 2 0回擦過した(片面 2 力所)。 擦過部に実施例 1 から 6で得られた水難溶性化したカルボキシメチルセル ロース約 4 c m X 4 c m片をあて、 盲腸を元に戻して縫合を行った。 また、 癒着防止材を適用せず、 そのま ま盲腸を戻した も のをコ ン ト ロールと した。 こう した処置はコン ト口ールを含めた各実験で 7〜 1 0匹づつのラッ ト を 用いた。術後一週間程度で剖検し、以下の判定基準(Fertility and Sterility 66, 5, 814-821) によ りス コ ア リ ングを行い、 癒着防止効果を評価した。 結 果を表 1 に示す。
判定基準
0 癒着無し
1 容易に確認できる面を持つフィ ルム状の癒着
2 自由に剥離できる面を有する軽い癒着
3 面の剥離が困難な中程度の癒着
4 剥離不可能な面を有する密集した癒着
表 1
Figure imgf000018_0001
表 1 よ り 、 コ ン ト ロールの癒着ス コア 1. 7に対し、 実施例 1 〜 6で得ら れたシー ト またはフ ィ ルムのス コアは 0. 6〜 1 . 3であ り 、 水難溶性化し たカルボキシメチルセルロースによる癒着防止効果が見出された。
実施例 8 水難溶性化したカルボキシメ チルセルロースの顕微鏡観察 実施例 1から 4で得られた水難溶性化したカルボキシメ チルセルロース を水及び 1 0 0 mM濃度のリ ン酸緩衝液 ( p H 6. 8 ) によ り 中和した後に 約 5 0 °Cで乾燥した。 それぞれにっきデジタルマイクロスコープ (キーェン ス社製 ; V H— 7 0 0 0型) を用い観察を行った。 その結果、 実施例 1 で得 られた水難溶性化したカルボキシメ チルセルロースにのみ繊維状構造また はフ ィ ルム状構造が認められた。実施例 1 で得られた水難溶性化したカルボ キシメ チルセルロース及び対照と して実施例 3で得られた水難溶性化した カルボキシメチルセルロースの図 (写真) を示す。
得られた水難溶性化したカルボキシメチルセルロースを蒸留水中でマイ ク ロホモジナイザー (NISSEI EXCEL AUTO HOMOGENIZAER ) での破砕に よ り ス ラ リ ー と した後、印刷用ス ク リ ー ン上に展開し乾燥してフ ィ ルム状と した。図 1 の実施例 1 で得られた水難溶性化したカルボキシメ チルセルロー スでは均一なフ ィ ルムが得られたのに対し、 図 2 の様に他の水難溶性化した カルボキシメ チルセルロースではフ ィ ルムカ?不均一となった。
実施例 9
実施例 1 で用いたカルボキシメ チルセルロース を蒸留水に 1 質量0 /0にな るよ う に溶解した。 こう して調製された水溶液の p Hを 1 N硝酸で 1 . 5 に 調整し、 酸性水溶液 1 5 m l を 3 0 m l のポリ スチレン製容器に入れ、 一 2 0 °Cに設定した冷凍庫に入れた。 5 日間放置した後、 2 5 °Cで解凍した。 そ の後水及び 1 0 0 m M濃度のリ ン酸緩衝液( p H 6 . 8 )によ り 中和を行い、 スポンジ状の水難溶性化したカルボキシメチルセルロースを得た。
実施例 1 0
2 5 °〇での 1 %粘度 1 0 0 0 〜 2 8 0 0 m P a · s のカルボキシメ チルセ ルロースナ ト リ ウム (エーテル化度 0 . 6 5 〜 0 . 9 5、 換算分子量約 3 . 0 X 1 0 5ダル ト ン、 ハーキュレス社製) を蒸留水に 1 質量%になるよ う に 溶解した。 こう して調製された水溶液の p Hを 1 N硝酸で 1 . 5 に調整し、 酸性水溶液 1 5 m 1 を 3 0 m 1 のポリ スチレ ン製容器に入れ、 一 2 0 °Cに設 定した冷凍庫に入れた。 1 日間放置した後、 2 5 °Cで解凍した。 その後水及 び 1 0 0 m M濃度のリ ン酸緩衝液 ( p H 6 . 8 ) によ り 中和を行い、 スポン ジ状の水難溶性化したカルボキシメ チルセルロースを得た。
実施例 1 1 実施例 1 0 における一 2 0 °Cでの放置期間を 3 日間と し、 スポンジ状の水 難溶性化したカルボキシメチルセルロースを得た。
比較例 1
実施例 1 においてカルボキシメ チルセルロースの水溶液を酸性化するこ と な く放置した。 その結果、 水難溶性化したカルボキシメ チルセルロースは 得られなかった。 この水溶液を凍結乾燥しスポンジ状と した。
比較例 2
実施例 1 0 においてカルボキシメチルセルロースの水溶液を酸性化する こ とな く放置した。その結果水難溶性化したカルボキシメ チルセルロースは 得られなかった。 この水溶液を凍結乾燥しスポンジ状と した。
実施例 1 2 水難溶性化したカルボキシメ チルセルロースの溶解性試験 次の組成からなる p H 7 . 4のリ ン酸緩衝生理食塩水を調製した。
リ ン酸緩衝生理食塩水
塩化力リ ウム 0 . 0 2質量0 /0 リ ン酸一カ リ ウム 0 . 0 2質量0 /0 リ ン酸ニナ ト リ ウム 1 2水和物 0 . 2 9質量0 /0 塩化ナ ト リ ウム 0 . 8 1 質量0 /0 得られた水難溶性化したカルボキシメ チルセルロース を、乾燥重量で 5 0 m gのカルボキシメチルセルロース を含む水難溶性化したカルボキシ メ チ ルセルロースに対して 5 0 m 1 のリ ン酸緩衝生理食塩水の割合で、 リ ン酸緩 衝生理食塩水中に浸潰した。 また、 比較例 1 及び比較例 2 で得られたスポン ジ状カルボキシメチルセルロースについても、 それぞれ 5 0 m g を 5 0 m 1 のリ ン酸緩衝生理食塩水の割合で、 リ ン酸緩衝生理食塩水中に浸潰した。 6 0 °Cの静置下でリ ン酸緩衝生理食塩水中に溶出するカルボキシメチルセル ロースの割合を、 リ ン酸緩衝生理的食塩水中のカルポキシメチルセルロース 濃度から求めた。
従って、 中性の 6 0 °Cの水溶液中での水難溶性化したカルボキシメ チルセル ロースの溶解性は、 上記試験によ り規定される ものである。 カルボキシメチルセルロース濃度の測定
リ ン酸緩衝生理食塩水中のカルボキシメ チルセルロースの濃度は、 G P C を使って、 示差屈折率検出器のピーク面積から求めた。 すなわち経時的に採 取したリ ン酸緩衝生理食塩水を 0 . 4 5 mのフィルターでろ過後 GPCに注入し た。
その結果を表 2に示す。
表 2
Figure imgf000021_0001
例えば、 実験 No. 8の実施例 1 で得られた水難溶性化したカルボキシメチ ルセルロース については、 カ ルボキシメ チルセルロースの溶解率が 3時間後 では 2 4 %、 5時間後では 3 5 %、 1 0時間後では 5 5 %であった。 すなわ ち 3時間後においては 7 6 % 、 5時間後においても 6 5 %が水難溶性化し たカルボキシメチルセルロースと して残存していた。他の実施例で得られた 水難溶性化したカルボキシメチルセルロース についても同様であり、いずれ の水難溶性化したカルボキシメチルセルロース も溶解性試験において 3時 間後のカルボキシメチルセルロースの溶解率が 5 0 %以下であった。
これに対し、水難溶性化したカルボキシメチルセルロースが得られなかつ た比較例 1 及び比較例 2 においては、 3時間後のカルボキシメチルセルロー スの溶解率は 9 0 %以上であった。
さらに、 実験 No. 8 と実験 No. 1 4 の比較、 実験 No. 1 5 と実験 No. 1 6 の比較、あるいは実験 No. 8 と実験 No. 1 5 の比較、実験 No. 1 4 と実験 No. 1 6の比較から、酸性条件下で凍結解凍することによ り得られた水難溶性化 したカルボキシメチルセルロース については、選択する調製条件によ り溶解 性が制御できることが明らかとなつた。
実施例 1 3
実施例 1 0 における一 2 0 °Cでの放置期間を 1 日間と し、 スポンジ状の水 難溶性化したカルボキシメチルセルロースを得た。 この水難溶性化したカル ボキシメチルセルロースを凍結乾燥することによ り約 2 . 0 m gノ c m 2を 含むシー ト状と した。
実施例 1 4
実施例 1 3で得られた水難溶性化したカルボキシメ チルセルロースシー ト に対しコバル ト 6 0 を放射線源とする 2 5 k G yのァ線滅菌を行った。 実施例 1 5
実施例 1 0 における一 2 0 °Cでの放置期間を 7 日間と し、スポンジ状の水 難溶性化したカルボキシメ チルセルロースを得た。 この水難溶性化したカ ル ボキシメチルセルロースを凍結乾燥することによ り約 2 . O m g / c m 2を 含むシー ト状と した後、 コバル ト 6 0 を放射線源とする 2 5 k G yのァ線滅 菌を行った。
実施例 1 6
実施例 1 0で得られた水難溶性化したカルボキシメチルセルロースを凍 結乾燥することによ り約 2 . 0 m g / c m 2を含むシー ト状と した後、 コノ ル ト 6 0 を放射線源とする 2 5 k G y のァ線滅菌を行った。 実施例 1 7
実施例 1 1 で得られた水難溶性化したカルボキシメチルセルロースを凍 結乾燥すること によ り約 2 . 0 m g / c m 2を含むシー ト状と した後、 コバ ル ト 6 0 を放射線源とする 2 5 k G yの y線滅菌を行った。
実施例 1 8 7線滅菌を行つた水難溶性化したカルボキシメ チルセル口
一スの溶解性試験
実施例 1 2 に従い、実施例 1 3 〜 1 6で得られたァ線滅菌を行った水難溶 性化したカルボキシメ チルセルロースシー トの溶解性試験を行った。結果を 表 3 に示す。
表 3
Figure imgf000023_0001
実験 No. 1 9 と実験 No. 2 0 の比較から、 y線滅菌によ り溶解性が変化す ることが明らかとなつた。 しかしながら、 実験 No. 2 0から実験 No. 2 3 の 結果に示されるよ う に、酸性条件下での凍結解凍法において凍結時間を変化 させてあらかじめよ り安定な水難溶性化したカルボキシメチルセルロース を製造しておき、 溶解性を制御するこ と も可能であるこ とが判明した。
実施例 1 9
実施例 1 1 で得られた水難溶性化したカルボキシメチルセルロースに蒸 田水をカルボキシメ チルセルロース濃度が 1 %と なる よ う に加えた後、 マイクロホモジナイザ ( NISSEI EXCEL AUTO HOMOGENIZAER) よる 破砕を行い、水難溶性化したカルボキシメ チルセルロースのス ラ リ ーを得た このスラ リ ーを印刷用ス ク リ ー ン上に展開し、約 4 0 °Cでの乾燥によ り水難 溶性化したカルボキシメ チルセルロース約 2 . 0 m g / c m 2を含むフ ィ ル ム状と した。 さ らにこのフ ィ ルムに対し、 コ ノ ル ト 6 0 を放射線源とする 2 5 k G yの y線滅菌を行った。
実施例 2 0 凍結解凍法によ り得られた水難溶性化した力ルボシキメ チ ルセルロースの癒着防止試験
実施例 7 に従い、 実施例 1 3 、 実施例 1 6及び実施例 1 9 で得られたシ一 ト またはフ ィ ルムにつき癒着防止試験を行った。 なお、 対照と して、 市販さ れているセプラ フ イ ルム (ジェ ンザィ ム社製) を用いた。 結果を表 4 に示す 表 4
Figure imgf000024_0001
表 4 よ り、 コ ン ト ロールの癒着ス コ ア 1 . 6 に対し、 本発明で得られた水 難溶性化したカ ルボキシメ チルセルロースに癒着防止効果が見出された。 実施例 2 1 ラ ッ ト皮膚欠損モデルによ る創傷治療効果試験
7週齢 (約 2 0 0 g ) のウ ィ スター (Wister) 系、 雄性ラ ッ トの背部の毛を 刈り、エーテル麻酔下で眼科用ハサミ を用いて背部皮膚部分を直径 2 c mの 円状に取り除き、 完全皮膚欠損創を作製した。 医療用不織布ガーゼ ( 4 0 X 4 0 m m : 2枚重ね) のみを適用した無処置群、 実施例 1 、 実施例 9、 実施 例 1 5、 実施例 1 7、 実施例 1 9及び比較例 2で調製したシー ト またはフ ィ ルム ( 3 0 X 3 0 m m ) を創面に被覆後、 医療用不織布ガーゼ ( 4 0 X 4 0 m m : 2枚重ね)を適用した処置群を設定した。各群 6匹のラ ッ ト を用いた。 医療用不織布ガーゼは粘着包帯で固定し、 さ らにテーピングテープで固定し た。
治療効果は、 創面積の経時的変化を測定するこ とで比較した。 すなわち、 初期創面の面積に対する面積比を次の式によつて求め、 その経時的変化を調 ベた。 その結果を表 5 に示す。
面積比 (%)
= 〔 (観察日の創面の長径 X短径) / (初期創面の長径 X短径) 〕 X 1 0 0 表 5
実験 No. 面積比 ( % ) 備考
0 曰 2 曰 3 曰 7 曰 1 0 曰
2 9 1 0 0 9 0 7 8 5 3 4 2 実施例 1
3 0 1 0 0 8 5 7 4 4 9 3 7 実施例 9
3 1 1 0 0 8 5 7 2 4 0 3 1 実施例 1 5
3 2 1 0 0 8 8 7 6 3 9 3 4 実施例 1 9
3 3 1 0 0 9 1 8 0 6 2 5 5 比較例 2
3 4 1 0 0 9 2 8 3 6 9 6 1 コ ン ト ロール 表 5 よ り、 コ ン ト ロールの面積比の経時的変化に対し、 本発明で得られた 水難溶性化したカ ルボキシメ チルセルロースによる経時変化は大き く 、創傷 治癒効果が確認された。 なお、 比較例 2で得られたカ ルボキシメ チルセル口 ースのスポン ジによる面積比の変化はコ ン トロールと比較して幾分大き力、 つた力5、水難溶性化したカルボキシメチルセルロースによる変化に比べて小 さ く 、 創傷治癒効果は弱いものと考えられた。
実施例 2 2
実施例 1 5 で得られた水難溶性化したカルボキシメ チルセルロースを凍 結乾燥することによ り 5 . O m g Z c m 2を含むシー ト状と した。
実施例 2 3 実施例 1 5で得られた水難溶性化したカルボキシメチルセルロースに生 理食塩水をカルボキシメチルセルロース濃度が 1 質量%となるよう に加え た後、 マイ クロホモジナイザー (NISSEI EXCEL AUTO HOMOGENIZAER ) による破砕を行い、 水難溶性化したカルボキシメチルセルロースを約 3質 量%含むスラ リ一を得た。
実施例 2 4 水難溶性化したカルボキシメチルセルロースの家兎頭蓋骨 欠損モデルによ る骨修復
実施例 2 2及び実施例 2 3 で得られたシー ト状(直径 1 c m、高さ 3 m m ) 及びスラ リ 一状の水難溶性化したカルボキシメ チルセルロース について、 以 下の試験に供した。 またコン トロ一ルと して、 生理食塩水のみを投与する無 処置群を設定した。
治療効果試験
日本白色種家兎 (約 2 . 5 k g ) 1 5羽をそれぞれ 5羽ずつ 3群に分け、 実 施例 2 2 のシー ト状水難溶性化したカルボキシメ チルセルロース適用群、実 施例 2 3のス ラ リ一適用群、 及び無処置群と した。 埋め込みは、 家兎の頭部 の毛を刈 り 、 エーテル麻酔下で頭蓋骨にマイ クロ ドリ ルを用い骨欠損部 (直 径 5 m m ) を作製し、 各種水難溶性化したカルボキシメ チルセルロースを骨 欠損部に充填し縫合するこ と によ り行った。
埋め込みから 9週後に、 難溶解性ヒアル口ン酸埋め込み家兎と、 凍結乾燥 ヒアルロ ン酸埋め込み家兎をと殺後、 頭部を切開し、 埋め込み部の状態の観 察を行い、 骨欠損部 (直径 5 m m ) が再生され、 頭蓋骨が結合された ものを 修復したと した。 水難溶性化したカルボキシメ チルセルロースの残存率を 埋め込んだ適用物中のカルボキシメチルセルロースを基準と して算出し、埋 め込み部の状態の観察を併せて行った。 結果を表 6 に示す。 表 6
Figure imgf000027_0001
表 6 よ り 、 どの家兎も正常に生育した力'、 組織の状態は水難溶性化した力 ルポキシメ チルセルロースでは埋め込み局所の組織状態に異常は見られな かったのに対し、 無処置群では組織の軽微な炎症が認められた。 また水難溶 性化したカルボキシメチルセルロース適用群では骨修復の促進が確認され た。
実施例 2 5
実施例 1 で用いたカルボキシメ チルセルロース と分子量が約 3 . 5 X 1 0 4 ダル ト ンのコ ン ドロ イ チン 6 —硫酸 (生化学工業製) を蒸留水にそれぞ れ 0 . 5質量0 /0になるよ う に溶解した。 調製された水溶液の p Hを、 1 N硝 酸で p H 1 . 5 に調整し、 この酸性水溶液 1 5 m l を 3 0 m l のポリ スチレ ン製容器に入れ、 2 0 °Cに設定した冷凍庫に入れた。 5 日間放置した後、 2 5 °Cで解凍した。 その後水及び 1 0 0 m M濃度のリ ン酸緩衝液 ( p H 6 . 8 ) によ り 中和を行い、 スポンジ状の水難溶性化したカルボキシメチルセル 口ース組成物を得た。
実施例 2 6
実施例 1 0 で用いたカ ルボキシメチルセルロース と ポリ ビニルアルコー ル (重合度 1 5 0 0、 和光純薬製) を蒸留水にそれぞれ 0 . 5 質量%及び 1 0質量%となるよう に溶解した。 調製された水溶液の p Hを、 1 N硝酸で p H I . 5 に調整し、 この酸性水溶液 1 5 m l を 3 0 m l のポリ スチレ ン製容 器に入れ、 2 0 °Cに設定した冷凍庫に入れた。 5 日間放置した後、 2 5 °C で解凍した。 その後水及び 1 0 0 m M濃度のリ ン酸緩衝液 ( p H 6 . 8 ) に よ り 中和を行い、 スポンジ状の水難溶性化した力ルボキシメチルセルロース 組成物を得た。
実施例 2 7
実施例 】 0で用いたカルボキシメチルセルロースとアルギン酸ナ ト リ ゥ ム(フナコシ社製)を蒸留水にそれぞれ 0 . 5質量%になるよ う に溶解した。 調製された水溶液の p Hを、 1 N硝酸で p H 1 . 5 に調整し、 この酸性水溶 液 1 5 m 1 を 3 0 m 1 のポリ スチ レ ン製容器に入れ、 2 0 °Cに設定した冷 凍庫に入れた。 7 日間放置した後、 2 5 °Cで解凍した。 その後水及び 1 0 0 m M濃度のリ ン酸緩衝液 ( p H 6 . 8 ) によ り 中和を行い、 スポン ジ状の水 難溶性化したカルボキシメチルセルロース組成物を得た。
実施例 2 8
実施例 1 0で用いたカルボキシメチルセルロースとキ トサン (和光純薬 製) を蒸留水にそれぞれ 1 . 0質量%、 0 . 1 質量%となるよ う に溶解した。 調製された水溶液の p Hを、 1 N硝酸で p H 1 . 5 に調整し、 この酸性水溶 液 1 5 m 1 を 3 0 m 1 のポリ スチレ ン製容器に入れ、 2 0 °Cに設定した冷 凍庫に入れた。 5 日間放置した後、 2 5 °Cで解凍した。 その後水及び 1 0 0 m M濃度のリ ン酸緩衝液 ( p H 6 . 8 ) によ り 中和を行い、 スポンジ状の水 難溶性化したカルボキシメチルセルロース組成物を得た。
実施例 2 9 水難溶性化したカルボキシメ チルセルロースの細胞毒性試 実施例 1 〜実施例 6、 実施例 9 、 実施例 1 1 及び実施例 1 4 〜実施例 1 7 で得られた水難溶性化したカルボキシメ チルセルロース、 ならびに実施例 2 5〜実施例 2 8で得られた水難溶性化した力ルポキシメ チルセルロース組 成物について細胞毒性試験を行った。
正常ヒ ト皮膚由来線維芽細胞培養において本発明で得られた水難溶性化 した力ルポキシメチルセル口一ス類を非接触下で共存させ、細胞増殖挙動の 観察によ り その細胞毒性を評価した。調製品をリ ン酸緩衝生理食塩水に浸漬 したのち凍結乾燥体と した。その凍結乾燥体を機械的に粉砕したもの 2 0 m g をファルコ ン社製のセルカルチャーイ ンサー ト (ポアサイズ : 3 m ) 中 に入れ、 細胞を播種した培地に浸した。 また、 水難溶性化したカルボキシメ チルセルロース非共存下での培養をコ ン トロールと した。
培養条件 プレー ト : 細胞培養用 1 2 ゥヱルプレー ト
培地 : D M E M培地 + 1 0 %ゥシ胎児血清, 2 m 1 7ゥエル 温度 : 3 7 °C ( 5 % C 0 2下)
播種細胞数 : 1 X 1 0 4個 Zゥエル
培養開始後 2 日、 5 日及び 8 日後に、 細胞密度を倒立顕微鏡を用いて観察 した。水難溶性化したカルボキシメチルセルロースが共存していても コ ン ト ロールと同様に良好な増殖を示し、本発明で得られた水難溶性化したカルボ キシメチルセル口ース及びその組成物には細胞毒性作用がないことが見出 された。 産業上の利用可能性
以上、 本発明によれば、 なんら化学的架橋剤や化学的修飾剤を使用するこ とな く 、可溶性セルロース誘導体からなる水難水溶性化した可溶性セル口一 ス誘導体が得られる。化学的架橋剤や化学的修飾剤を使用することに起因す る生体適合性への悪影響が避けられ、 また溶解性の制御が容易なため医用材 料に有用である。

Claims

請求の範囲
1 . 水難溶性化した可溶性セルロース誘導体からなる、 体内へ埋め込む又は 組織に貼付する目的で使用するための組織被覆性医療材料。
2 . 水難溶性化する方法と して、 可溶性セルロース誘導体の酸性溶液の凍 結 · 解凍を用いることを特徴とする請求の範囲 1記載の組織被覆性医療材料 の製造方法。
3 · 可溶性セルロース誘導体濃度を 5質量%以上になるよ う に酸溶液と混和 し、非凍結温度下で放置するこ と によ り得られる水難溶性化した可溶性セル ロース誘導体を用いることを特徴とする請求の範囲 1記載の組織被覆性医療 材料。
4 . 可溶性セルロース誘導体の酸性溶液を静置するこ とによ り得られる水難 溶性化した可溶性セルロース誘導体を用いることを特徴とする請求の範囲 1 記載の組織被覆性医療材料。
5 . 可溶性セルロース誘導体の酸性溶液と極性有機溶媒を混合するこ とによ り得られる水難溶性化した可溶性セルロース誘導体を用いるこ とを特徴と する請求の範囲 1記載の組織被覆性医療材料。
6 . 陽ィ ォ ン交換カ ラム に可溶性セルロース誘導体溶液を通液させる こ と に よ り得られる水難溶性化した可溶性セルロース誘導体を用いるこ とを特徴 とする請求の範囲 I記載の組織被覆性医療材料。
7 . 可溶性セルロース誘導体の酸性溶液を濃縮するこ と によ り得られる水難 溶性化した可溶性セルロース誘導体を用いるこ とを特徴とする請求の範囲 1 記載の組織被覆性医療材料。
8 . 可溶性セルロース誘導体からな り、 実質的には化学的架橋剤または化学 的修飾剤等によ り改質されていない請求の範囲 1記載の水難溶性化した可 溶性セルロース誘導体。
9 .水難溶性化した可溶性セルロース誘導体が繊維状構造またはフィ ルム状 構造を有することを特徴とする請求の範囲 1 又は 2記載の組織被覆性医療 材料。
1 0 . 中性の 6 0 °Cの水溶液中で 3時間での可溶性セルロース誘導体の溶解 率が 5 0 %以下であることを特徴とする請求の範囲 1記載の組織被覆性医 療材料。
1 1 .水難溶性化した可溶性セルロース誘導体の溶解性を制御することを特 徴とする請求の範囲 2記載の組織被覆性医療材料の製造方法。
1 2 .水難溶性化した可溶性セルロース誘導体と ヒアルロ ン酸又はヒアルロ ン酸塩を除く他の高分子からなることを特徴とする請求の範囲 1 記載の組 織被覆性医療材料。
1 3 . 可溶性セルロース誘導体がカルボキシメ チルセルロースである請求の 範囲 1 〜 1 2のいずれか 1 項記載の可溶性セル口ース誘導体。
1 4 . 組織被覆性医療材料が癒着防止材であることを特徴とする請求の範囲 1 又は 1 2記載の組織被覆性医療材料。
1 5 . 組織被覆性医療材料が創傷被覆材であること を特徴とする請求の範囲 1 又は 1 2記載の組織被覆性医療材料。
1 6 . 組織被覆性医療材料が骨再生用被覆材であるこ とを特徴とする請求の 範囲 1 又は 1 2記載の組織被覆性医療材料。
PCT/JP2000/005564 1999-11-09 2000-08-18 Utilisation de derives de cellulose solubles rendus difficilement solubles dans l'eau et methode de preparation de ces derives WO2001034214A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002390556A CA2390556C (en) 1999-11-09 2000-08-18 Use of soluble cellulose derivative having been made hardly soluble in water and method for producing it
EP00953516A EP1228771A4 (en) 1999-11-09 2000-08-18 USE OF SOLUBLE CELLULOSE DERIVATIVES MADE DIFFICULTLY SOLUBLE IN WATER AND METHOD OF PREPARING SUCH DERIVATIVES
AU65970/00A AU782519B2 (en) 1999-11-09 2000-08-18 Use of soluble cellulose derivative having been made hardly soluble in water and process for producing the same
KR1020027005853A KR20020062301A (ko) 1999-11-09 2000-08-18 수난용성화된 가용성 셀룰로오스 유도체의 용도 및 그제조방법
US10/129,751 US7514097B1 (en) 1999-11-09 2000-08-18 Use of soluble cellulose derivative having been made hardly soluble in water and process for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11/318587 1999-11-09
JP31858799 1999-11-09
JP2000/39244 2000-02-17
JP2000039244 2000-02-17

Publications (1)

Publication Number Publication Date
WO2001034214A1 true WO2001034214A1 (fr) 2001-05-17

Family

ID=26569417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005564 WO2001034214A1 (fr) 1999-11-09 2000-08-18 Utilisation de derives de cellulose solubles rendus difficilement solubles dans l'eau et methode de preparation de ces derives

Country Status (7)

Country Link
US (1) US7514097B1 (ja)
EP (1) EP1228771A4 (ja)
KR (1) KR20020062301A (ja)
CN (1) CN100379462C (ja)
AU (1) AU782519B2 (ja)
CA (1) CA2390556C (ja)
WO (1) WO2001034214A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005000512A (ja) * 2003-06-13 2005-01-06 Yasuharu Noisshiki 管腔形成誘導性材料
WO2005000374A1 (ja) * 2003-06-30 2005-01-06 Denki Kagaku Kogyo Kabushiki Kaisha 脊椎・脊髄手術用癒着防止材
JP2006525836A (ja) * 2003-05-09 2006-11-16 ブリストル−マイヤーズ スクイブ カンパニー 褥瘡治療における創傷被覆材の使用
WO2007015579A1 (ja) 2005-08-04 2007-02-08 Teijin Limited セルロース誘導体
JP2008013510A (ja) * 2006-07-07 2008-01-24 Seikagaku Kogyo Co Ltd 水難溶性組成物並びにその製造方法及び用途
JP2010285440A (ja) * 2002-08-06 2010-12-24 Mytogen Inc 治療複合物
WO2011121858A1 (ja) 2010-03-31 2011-10-06 株式会社ホギメディカル 癒着防止材
JP2017036235A (ja) * 2015-08-10 2017-02-16 日立化成株式会社 ナノ薄膜転写シート及びその製造方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100459494B1 (ko) * 2002-12-12 2004-12-03 한국원자력연구소 상처 치료용 수화겔의 제조방법
CN1220528C (zh) * 2003-08-19 2005-09-28 大连永兴医用材料有限公司 羧甲基壳聚糖/羧甲基纤维素防手术粘连膜及其制备方法
KR100605382B1 (ko) * 2004-05-03 2006-07-31 이석근 멍게 또는 미더덕-유래 셀룰로오스 막을 포함하는 피부상처 보호막 및 골형성 유도막
US8313762B2 (en) 2006-07-05 2012-11-20 Medtronic Xomed, Inc. Flexible bioresorbable hemostatic packing and stent
EP2291524A2 (en) 2008-04-24 2011-03-09 Medtronic, Inc Rehydratable thiolated polysaccharide particles and sponge
EP2310002B1 (en) 2008-04-24 2016-11-02 Medtronic, Inc Protective gel based on chitosan and oxidized polysaccharide
CN106046396B (zh) * 2008-04-24 2019-02-22 麦德托尼克公司 可再水化的多糖颗粒和海绵体
WO2009132228A1 (en) 2008-04-24 2009-10-29 Medtronic, Inc. Chitosan-containing protective composition
CN101381975B (zh) * 2008-10-15 2010-08-25 中国印钞造币总公司 一种透明纤维及其制备方法和含有该纤维的纸制品
WO2013003619A1 (en) 2011-06-29 2013-01-03 Tyco Healthcare Group Lp Dissolution of oxidized cellulose
KR101461652B1 (ko) * 2011-12-16 2014-11-21 주식회사 삼양바이오팜 유착방지용 조성물, 이를 포함하는 유착방지기능을 갖는 수술용 메쉬 복합체 및 이의 제조 방법
US9271937B2 (en) 2012-05-31 2016-03-01 Covidien Lp Oxidized cellulose microspheres
US9499636B2 (en) 2012-06-28 2016-11-22 Covidien Lp Dissolution of oxidized cellulose and particle preparation by cross-linking with multivalent cations
US10413566B2 (en) 2013-03-15 2019-09-17 Covidien Lp Thixotropic oxidized cellulose solutions and medical applications thereof
KR101318421B1 (ko) * 2013-04-08 2013-10-16 한국생산기술연구원 지혈 및 상처치유용 카복시메틸셀룰로오스 폼 및 그의 제조방법
KR101841469B1 (ko) * 2015-01-30 2018-03-23 (주)메디팁 바이오폴리머를 이용한 창상 피복재의 제조방법 및 이를 이용하여 제조된 바이오폴리머를 이용한 창상 피복재
CN110496240B (zh) * 2019-09-28 2022-08-23 浙江美华鼎昌医药科技有限公司 一种可溶解的纤维素鼻敷料的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2617800A (en) * 1949-06-10 1952-11-11 Phillips Petroleum Co Purification of carboxymethyl cellulose by ion exchange resins
JPS62183768A (ja) * 1986-02-10 1987-08-12 テルモ株式会社 生体適合性材料およびその製造方法
US5017229A (en) * 1990-06-25 1991-05-21 Genzyme Corporation Water insoluble derivatives of hyaluronic acid
WO1992020349A1 (en) * 1991-05-20 1992-11-26 Genzyme Corporation Water insoluble derivatives of polyanionic polysaccharides
JPH07179649A (ja) * 1991-01-23 1995-07-18 Snow Brand Milk Prod Co Ltd 植物繊維とキトサンの複合多孔質体の調製方法
EP0705878A2 (en) * 1994-10-06 1996-04-10 Genzyme Corporation Compositions containing polyanionic polysaccharides and hydrophobic bioabsorbable polymers
US5906997A (en) * 1997-06-17 1999-05-25 Fzio Med, Inc. Bioresorbable compositions of carboxypolysaccharide polyether intermacromolecular complexes and methods for their use in reducing surgical adhesions
JP2000178304A (ja) * 1998-12-15 2000-06-27 Denki Kagaku Kogyo Kk ヒアルロン酸ゲルの製造方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US261780A (en) 1882-07-25 stevens
DE1397893U (ja)
US3064313A (en) * 1960-06-14 1962-11-20 Hercules Powder Co Ltd Preparation of free acid cellulose ether films
DE1239284B (de) 1963-01-23 1967-04-27 Vaessen Schoemaker Holding Bv Verfahren zur Herstellung von in Wasser leicht gelierbaren Carboxymethylderivaten der Amylose oder der Staerke
GB1086323A (en) 1963-07-18 1967-10-11 Courtaulds Ltd Derivative of carboxy methyl cellulose
SE430609B (sv) * 1976-12-21 1983-11-28 Sca Development Ab Sett att ur cellulosaderivat framstella absorberande material
EP0010519A1 (fr) 1978-10-12 1980-04-30 Battelle Memorial Institute Procédé pour réticuler la carboxyméthyl-cellulose et produits obtenus suivant ce procédé
FR2489145A1 (fr) 1980-09-04 1982-03-05 Geistlich Soehne Ag Compositions pharmaceutiques accelerant la guerison de blessures
US4521594A (en) 1983-05-20 1985-06-04 Daicel Chemical Industries, Ltd. Process for producing sodium carboxymethylcellulose
JPS6239506A (ja) 1985-08-14 1987-02-20 Unitika Ltd 抜歯窩充填物
SE452469B (sv) 1986-06-18 1987-11-30 Pharmacia Ab Material bestaende av en tverbunden karboxylgrupphaltig polysackarid och forfarande vid framstellning av detsamma
JP2538213B2 (ja) 1986-07-31 1996-09-25 ダイセル化学工業株式会社 高吸水性組成物
GB8708960D0 (en) * 1987-04-14 1987-05-20 Shell Int Research Preparation of polymer-grafted cellulose fibres
US5705485A (en) 1987-09-18 1998-01-06 Ethicon, Inc. Gel formulations containing growth factors
IT1219942B (it) 1988-05-13 1990-05-24 Fidia Farmaceutici Esteri polisaccaridici
IT1219587B (it) 1988-05-13 1990-05-18 Fidia Farmaceutici Polisaccaridi carbossiilici autoreticolati
JPH01301624A (ja) 1988-05-31 1989-12-05 Nippon Zeon Co Ltd 癒着防止材
FI103583B (fi) 1989-02-10 1999-07-30 Alko Yhtioet Oy Vesiliukoisesta karboksimetyyliselluloosasta entsymaattisesti valmiste ttu hydrolysaatti
JP2805086B2 (ja) 1989-06-20 1998-09-30 グンゼ株式会社 生体組織用充填材
IT1259090B (it) 1992-04-17 1996-03-11 Fidia Spa Biomaterialli per protesi d'osso
GB9219457D0 (en) 1992-09-15 1992-10-28 Fisons Plc Reducing interferences in plasma source mass spectrometers
GB9301258D0 (en) 1993-01-22 1993-03-17 Courtaulds Plc Use of absorbent fibre
GB2276819B (en) 1993-03-23 1996-12-11 Johnson & Johnson Medical Aqueous wound treatment composition comprising a polysaccharide and hexylene glycol
JPH0790121A (ja) 1993-09-22 1995-04-04 Dai Ichi Kogyo Seiyaku Co Ltd カルボキシメチルセルロースナトリウム塩のゲル状物の製造方法
DK0892863T3 (da) 1996-04-12 2001-09-24 Bristol Myers Squibb Co Sammensatte fibre, forbindinger indeholdende sådanne fibre og fremgangsmåde til fremstilling deraf
GB2318577B (en) * 1996-10-28 2000-02-02 Johnson & Johnson Medical Solvent dried polysaccharide sponges
JP3792824B2 (ja) 1997-03-07 2006-07-05 第一工業製薬株式会社 水性ゲル基材の製法およびそれによって得られた水性ゲル基材
AU7908798A (en) * 1997-07-02 1999-01-25 Coloplast A/S A method for preparing a non-fibrous porous material
JP3981448B2 (ja) 1997-10-03 2007-09-26 ダイセル化学工業株式会社 新規なカルボキシメチルセルロースナトリウム塩含有水性ゲル組成物及びその製造法
JP3578627B2 (ja) 1998-05-15 2004-10-20 株式会社ホギメディカル 創傷患部の治癒を促進する組織シーラント
NZ513517A (en) * 1999-02-19 2003-08-29 Denki Kagaku Kogyo Kk Hyaluronic acid gel composition containing a polymer for use as a wound dressing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2617800A (en) * 1949-06-10 1952-11-11 Phillips Petroleum Co Purification of carboxymethyl cellulose by ion exchange resins
JPS62183768A (ja) * 1986-02-10 1987-08-12 テルモ株式会社 生体適合性材料およびその製造方法
US5017229A (en) * 1990-06-25 1991-05-21 Genzyme Corporation Water insoluble derivatives of hyaluronic acid
JPH07179649A (ja) * 1991-01-23 1995-07-18 Snow Brand Milk Prod Co Ltd 植物繊維とキトサンの複合多孔質体の調製方法
WO1992020349A1 (en) * 1991-05-20 1992-11-26 Genzyme Corporation Water insoluble derivatives of polyanionic polysaccharides
EP0705878A2 (en) * 1994-10-06 1996-04-10 Genzyme Corporation Compositions containing polyanionic polysaccharides and hydrophobic bioabsorbable polymers
US5906997A (en) * 1997-06-17 1999-05-25 Fzio Med, Inc. Bioresorbable compositions of carboxypolysaccharide polyether intermacromolecular complexes and methods for their use in reducing surgical adhesions
JP2000178304A (ja) * 1998-12-15 2000-06-27 Denki Kagaku Kogyo Kk ヒアルロン酸ゲルの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAKERT H. ET AL.: "Rheological and electron microscopic characterization of aquerous carboxymethyl cellulose gels part I: Rheological aging of aquerous gels of carboxymethyl cellulose in the free acid form(HCMC)", COLLOID & POLYM. SCI., vol. 267, 1989, pages 226 - 229, XP002934246 *
MUELLER T. ET AL.: "Rheological and electron microscopic characterization of aquerous carboxymethyl cellulose gels part II: Visualization of the gel structure by freeze-fracturing", COLLOID & POLYM. SCI., vol. 267, 1989, pages 230 - 236, XP002934247 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285440A (ja) * 2002-08-06 2010-12-24 Mytogen Inc 治療複合物
JP4759703B2 (ja) * 2003-05-09 2011-08-31 コンバテック・テクノロジーズ・インコーポレイテッド 褥瘡治療における創傷被覆材の使用
JP2006525836A (ja) * 2003-05-09 2006-11-16 ブリストル−マイヤーズ スクイブ カンパニー 褥瘡治療における創傷被覆材の使用
JP2005000512A (ja) * 2003-06-13 2005-01-06 Yasuharu Noisshiki 管腔形成誘導性材料
JPWO2005000374A1 (ja) * 2003-06-30 2006-08-03 電気化学工業株式会社 脊椎・脊髄手術用癒着防止材
US20090226503A1 (en) * 2003-06-30 2009-09-10 Hirotaka Haro Adhesion inhibiting material for vertebral/spinal operation
WO2005000374A1 (ja) * 2003-06-30 2005-01-06 Denki Kagaku Kogyo Kabushiki Kaisha 脊椎・脊髄手術用癒着防止材
JP4690892B2 (ja) * 2003-06-30 2011-06-01 電気化学工業株式会社 脊椎・脊髄手術用癒着防止材
WO2007015579A1 (ja) 2005-08-04 2007-02-08 Teijin Limited セルロース誘導体
US8378091B2 (en) 2005-08-04 2013-02-19 Teijin Limited Cellulose derivative
JP2008013510A (ja) * 2006-07-07 2008-01-24 Seikagaku Kogyo Co Ltd 水難溶性組成物並びにその製造方法及び用途
WO2011121858A1 (ja) 2010-03-31 2011-10-06 株式会社ホギメディカル 癒着防止材
JP2017036235A (ja) * 2015-08-10 2017-02-16 日立化成株式会社 ナノ薄膜転写シート及びその製造方法

Also Published As

Publication number Publication date
US7514097B1 (en) 2009-04-07
CA2390556C (en) 2009-05-19
KR20020062301A (ko) 2002-07-25
CN100379462C (zh) 2008-04-09
CN1423568A (zh) 2003-06-11
EP1228771A1 (en) 2002-08-07
AU782519B2 (en) 2005-08-04
AU6597000A (en) 2001-06-06
CA2390556A1 (en) 2001-05-17
EP1228771A4 (en) 2003-01-29

Similar Documents

Publication Publication Date Title
WO2001034214A1 (fr) Utilisation de derives de cellulose solubles rendus difficilement solubles dans l'eau et methode de preparation de ces derives
AU725479B2 (en) Bioabsorbable medical devices from oxidized polysaccharides
AU2008293135B2 (en) Surgical hydrogel
AU716142B2 (en) Bioresorbable oxidized cellulose composite material for prevention of postsurgical adhesions
AU773826B2 (en) Hyaluronic acid gel composition, process for producing the same, and medical material containing the same
JP3359909B2 (ja) ヒアルロン酸ゲルとその製造方法及びそれを含有する医用材料
US6565878B2 (en) Method for preparing a non-fibrous porous material
US20030073663A1 (en) Bioabsorbable medical devices from oxidized polysaccharides
KR20030031480A (ko) 폴리산 및 폴리알킬렌 옥사이드의 지혈 조성물 및 이들의이용 방법
AU2005283282A1 (en) Photoreactive polysaccharide, photocrosslinked polysaccharide products, the method of making them and medical materials therefrom
Mehrabi et al. In-situ forming hydrogel based on thiolated chitosan/carboxymethyl cellulose (CMC) containing borate bioactive glass for wound healing
CN107519541B (zh) 一种预防腹腔术后粘连的水凝胶及其制备方法和应用
WO2024140931A1 (zh) 多糖基高分子交联剂、多糖基生物材料及制备方法与应用
WO2005000374A1 (ja) 脊椎・脊髄手術用癒着防止材
JP2004051531A (ja) 水難溶性化したカルボキシメチルセルロースを含有する癒着防止材
JP2003019194A (ja) ヒアルロン酸とカルボキシメチルセルロースからなる共架橋ゲル組成物
JP2000191702A (ja) 成形物の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 536209

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 65970/00

Country of ref document: AU

Ref document number: 1020027005853

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2000953516

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 518832

Country of ref document: NZ

Ref document number: 2390556

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10129751

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 008182973

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027005853

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000953516

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 65970/00

Country of ref document: AU