WO2001011723A1 - Procede de traitement de la bande de base faisant intervenir une antenne intelligente et l'annulation des interferences - Google Patents

Procede de traitement de la bande de base faisant intervenir une antenne intelligente et l'annulation des interferences Download PDF

Info

Publication number
WO2001011723A1
WO2001011723A1 PCT/CN2000/000169 CN0000169W WO0111723A1 WO 2001011723 A1 WO2001011723 A1 WO 2001011723A1 CN 0000169 W CN0000169 W CN 0000169W WO 0111723 A1 WO0111723 A1 WO 0111723A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
interference cancellation
smart antenna
user
signals
Prior art date
Application number
PCT/CN2000/000169
Other languages
English (en)
French (fr)
Inventor
Feng Li
Original Assignee
China Academy Of Telecommunications Technology, Mii
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy Of Telecommunications Technology, Mii filed Critical China Academy Of Telecommunications Technology, Mii
Priority to EP00938466A priority Critical patent/EP1209761B1/en
Priority to DE60039769T priority patent/DE60039769D1/de
Priority to BRPI0013123A priority patent/BRPI0013123B1/pt
Priority to AU53872/00A priority patent/AU776615B2/en
Priority to MXPA02001462A priority patent/MXPA02001462A/es
Priority to CA002381383A priority patent/CA2381383C/en
Priority to JP2001516279A priority patent/JP4563635B2/ja
Publication of WO2001011723A1 publication Critical patent/WO2001011723A1/zh
Priority to US10/073,709 priority patent/US7130365B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • H01Q3/2611Means for null steering; Adaptive interference nulling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects

Definitions

  • the present invention relates to a technology for processing interference cancellation signals in a base station of a wireless communication system using a smart antenna (Smar t Antenna), and more particularly to a baseband processing method based on a smart antenna and interference cancellation .
  • a smart antenna Smar t Antenna
  • a base station structure of a wireless communication system using a modern smart antenna includes an antenna array composed of one or more antenna elements, corresponding radio frequency feeding cables and a set of coherent radio frequency transceivers.
  • the baseband processor obtains the spatial feature vector of the signal and the signal arrival direction (D0A), and then uses the corresponding algorithm to implement the receiving antenna beamforming . Any one of the antenna units, the corresponding radio frequency feeder cable and the relevant radio frequency transceiver is called a link.
  • the weight of each link obtained from the uplink receive beamforming is used for the downlink transmit beamforming.
  • the main body of modern wireless communication is mobile communication. Since the mobile communication system is a communication system that operates in a complex and changing mobile environment (refer to ITU Recommendation M1225), it must consider the effects of severe time-varying and multipath propagation. In the above-mentioned patent documents and multiple published technical documents, the study of beamforming algorithms for smart antennas is involved. The conclusion is that the stronger the function, the more complicated the algorithm. However, in the mobile communication environment, beamforming must be completed in real time, and the time required to complete the algorithm is in the microsecond range.
  • DSP digital signal processor
  • ASIC Application-specific chips
  • Rake receiver technology synthesizes the main multipath components of the user, but it will destroy the phase relationship of the antenna elements of the antenna array. And because of the limitation of the Rake receiver principle, the number of users is similar to the spreading factor. The same, and can not work in the case of full yards.
  • the object of the present invention is to design a baseband processing method based on a smart antenna and interference cancellation.
  • a new digital signal processing method a code division multiple access mobile communication system or other wireless communication system to which this method is applied, When using a smart antenna, it can solve interference such as multipath propagation and obtain good results.
  • a further object of the present invention is to provide a new set of digital signal processing methods, which can be applied to code division multiple access mobile communication systems or other wireless communication systems.
  • the system uses smart antennas while solving various interferences such as multipath propagation. And get good results.
  • a baseband based on a smart antenna and interference cancellation The processing method is characterized by:
  • A Using known user training sequences, perform channel estimation on the sampled data output signals from each link antenna unit and radio frequency receiver to obtain the responses of all users on all channels;
  • the step A is completed by a channel estimation module, and the channel response includes a matrix related to a training sequence of each user, and the matrix is calculated and stored in advance.
  • the step B includes: using a power estimation module to perform power estimation on the responses of all users on all channels, calculating the power distribution of the main and multipaths of all users in the search window; and sending the calculated power distribution to the signal
  • the signal generation in the generator includes: calculating the point where the maximum peak power of each user is located; storing the position of the peak point in the power point; using a smart antenna algorithm at the power point to obtain the despreading of all signals at that point result.
  • the adjustment parameter is sent to its sending module.
  • the step B further includes: sending the despreading result to the signal-to-noise ratio estimation module at the same time, estimating the signal-to-noise ratio of all users, and the users with a low signal-to-noise ratio continue to perform steps C, D, and E, and High users directly output user signal results.
  • the estimation of the user's signal-to-noise ratio includes: calculating the user's power; determining that the power exceeds a certain domain value as effective power; finding the variance of all effective power signals at the points of their corresponding constellation diagrams; the variance is greater than a given value When the domain value of the user is determined, the user's signal-to-noise ratio is low, and when the variance is less than the given domain value, the user's signal-to-noise ratio is determined to be high.
  • step C the original signal is reconstructed in a signal reconstruction module, and all user signals and multipath components on each antenna unit are obtained.
  • the step D is to perform interference cancellation in an interference cancellation module.
  • the step E is performed in a judgment module.
  • the interference cancellation is stopped, and the result of the restoration signal is output.
  • the step E is performed in a judgment module.
  • the interference cancellation is stopped, and the result of the recovered signal is output.
  • the process of repeatedly performing steps B to D in step E is at most the length of the search window.
  • the essence of the method of the present invention is to shape each multipath of each channel within the search window length, extract useful signals, and then superimpose these useful signals, thereby maximizing the benefits of space diversity and time diversity, so that The system has good results even in the presence of severe multipath interference and white noise interference.
  • the calculation amount of this method is limited, and it can be used at present Commercial digital signal processor (DSP) or field programmable logic gate array (FPGA).
  • DSP digital signal processor
  • FPGA field programmable logic gate array
  • the method of the present invention is mainly directed to a code division multiple access wireless communication system, including a time division duplex (TDD) and a frequency division duplex (FDD) CDMA wireless communication system.
  • Figure 1 is a block diagram of a wireless communication base station using a smart antenna
  • Figure 2 is a schematic diagram of the implementation structure of a smart antenna and interference cancellation method
  • Figure 3 is a block diagram of the implementation process of a smart antenna and interference cancellation method
  • FIG. 1 shows the structure of a base station in the system. It mainly includes N identical antenna units 201A, 201B, ⁇ .., 20 ⁇ ,..., 201N, N near-identical feeder cables 202A, 202B,..., 20 ⁇ , 202N, N RF transceivers 203A, 203B, ⁇ .., 203 i, ..., 203N, and baseband processor 204. All radio frequency transceivers 203 use the same local oscillator signal source 208 to ensure that each radio frequency transceiver in a base station works coherently.
  • Each RF transceiver is provided with an analog-to-digital converter (ADC) and a digital-to-analog converter (DAC). Therefore, the baseband input and output of all RF transceivers 203 are digital signals, and they and the baseband processor 204 through a high speed
  • the digital bus 209 is connected. 100 in the figure indicates a base station device.
  • the smart antenna system consists of N antenna units, N feeder cables, and N radio frequency transceivers, that is, there are N links in total.
  • the output data sampled by the analog-to-digital converter of its RF receiver in each receiving link is 3 1 (11), S 2 (n), ..., Si (n), ... S N (n), n is the nth chip (Chip), taking the data Si (n) from the i-th receiving link and sampled by the analog-to-digital converter of the 203i RF receiver as an example, Si ( n) Enter the baseband processor 204 as an input signal.
  • the baseband processor 204 includes N radio frequency transceivers 203A, 203B,..., 203i,..., 203N corresponding to N links.
  • the channel estimation modules 210A, 210B,..., 210i, 210N, and the smart antenna interfere with each other.
  • Pin modules 211, output data Si (n), S 2 (n), ..., Si (n), ... S N (n) of the N links are sent to the corresponding channel estimation modules 210A, 210B, ..., 210i, ..., 2 ION offset interference, and transmitting smart antenna module 211, each of the channel estimation module 210A, 210B, ..., 210i, ..., 210N output signal channel response, h 2, ..., ...
  • the smart antenna interference cancellation module 211 outputs the synchronization adjustment parameter S S (K) to the downlink transmitting module, and outputs the result of the smart antenna interference cancellation S ea + 1 , K (d) to Channel decoding module, where hiD u, ..., h i; k ] 0
  • the Si (n) signal enters the channel estimation module 210i, and the training sequence (pilot (Pilot) or Midamble).
  • K channel impulse responses can be obtained, denoted as hi, k , where i is the i-th antenna element and k is the k-th channel.
  • the specific processing process is as follows:
  • the training sequence of the k-th user is known as m k
  • the value of the training sequence received on the i-th antenna is e P
  • ⁇ ⁇ ) mk ⁇ n -w- ⁇ - ⁇
  • n is the nth chip
  • w is the search window length
  • white noise received by the ith antenna is the white noise received by the ith antenna.
  • M is a matrix only related to the training sequence of each user, which can be calculated and stored in advance. Since it does not need to be calculated in real time, the speed of channel estimation can be greatly accelerated.
  • the responses of all users on all channels are calculated separately, and the results obtained are input to the smart antenna interference cancellation module 211, and the signals of all users are recovered after further processing.
  • the channel response k calculated by the channel estimation module 210i is first sent to the power estimation module 220 for power estimation, and the main paths and multipaths of ⁇ users (same K channels) are calculated in the search window.
  • the obtained power_abs is sent to the signal generator 221 for signal generation, and at the same time sent to the signal generator 221 are each channel estimation module 21 OA, 210B,..., 210i,. .., 210N output channel response signals h ⁇ h ⁇ ... ⁇ , ... h N (for vector), and output data of N links (n), S 2 (n), ⁇ .., S, (n), ⁇ S N (n).
  • C q and k are the spreading codes of the k-th user
  • pn_code (l) is the scrambling code
  • S ea and k (d) are the results of the last interference cancellation.
  • the initial values S Q and k (d ) 0, the output result Sea + 1 , K (d) is symbolic. Obviously, because the users are not completely synchronized, and there are serious multipath interference and white noise in the system, Sea + 1 at the beginning, K (d) is a rough result.
  • the function of the signal-to-noise ratio estimation module 224 is to estimate the signal-to-noise ratio of each user.
  • the signal generated by the signal generator 221 is already a signal that is descrambled, despread, and demodulated. There are many ways, one of which is: first calculate its power for the kth user, expressed as equation (7):
  • the variance of all signals with effective power at the points of their corresponding constellation diagram is calculated. If the variance is greater than the given domain value, the user's signal-to-noise ratio is compared. Low, its value of Sea + 1 , K (d) is unreliable, and interference cancellation is needed. Conversely, if the variance is less than a given domain value, the user's signal-to-noise ratio is higher, and its Sea + 1 , K The value of (d) is reliable and no interference cancellation is required.
  • the purpose of using the signal-to-noise ratio estimation module is to simplify the calculation of interference cancellation, and it is not necessary to eliminate interference for trusted signals.
  • the signal reconstruction module 222 reconstructs the original signal by using Sea + 1 K (d). The reconstructed signal is chip-level and is expressed as formula (8):
  • Function block 301 calculates the channel estimated power by the power estimation module 220; function blocks 303 and 304 find the maximum value of the power by the signal generation module 221, calculate the deviation, and set this value to 0, and at its deviation point Despread, perform beamforming, obtain the results and send the signal-to-noise ratio judgment module 225 and the signal reconstruction module 222 through the judgment module 225; function block 302, send the synchronization adjustment amount Ss (k); function block 308, repeat Construct the data, and find the components of the reconstructed data on the 8 antennas; function block 309, subtract the components of the reconstructed data on the 8 antennas from the received data (receive_data), and the obtained result is still stored in the receive_data, and repeat Hold Line function boxes 303 to 309.
  • the function block 305 determines that the signal-to-noise ratio is large or small through the signal-to-noise ratio determination module 224, and the function block 306 determines that the signal-to-noise ratio is cyclic, the interference cancellation is ended when the specified number of cycles or the signal-to-noise ratios of all users meet the requirements Function block 307 outputs the recovered signal result.
  • the present invention is mainly directed to a code division multiple access wireless communication system, including time division duplex (TDD) and frequency division duplex (FDD) code division multiple access wireless communication systems.
  • TDD time division duplex
  • FDD frequency division duplex

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Transceivers (AREA)
  • Lock And Its Accessories (AREA)

Description

基于智能天线和干扰抵销的基带处理方法 技术领域
本发明涉及一种在使用智能天线(Smar t Ant enna)的无线通信***基 站中, 对干扰抵销信号的处理技术, 更确切地说是涉及一种基于智能天 线和干扰抵销的基带处理方法。 发明背景
在现代无线通信***特别是在码分多址(CDMA)无线通信***中, 为 了提高***容量, 提高***灵敏度, 和在较低发射功率下获得较远的通 信距离, 一般都采用智能天线技术。
在名称为 "具有智能天线的时分汉工同步码分多址无线通信***" 的发明专利技术中(ZL 97 1 04039. 7), 公开了一种采用现代智能天线 的无线通信***的基站结构, 包括由一个或多个天线单元组成的天线阵 列、 相应的射频馈电电缆和一组相干的射频收发信机。 根据天线阵列中 各天线单元所接收到的来自用户终端的信号的不同反应, 由基带处理器 获得此信号的空间特征矢量和信号到达方向(D0A) , 再使用相应的算法 实现接收天线波束赋形。 其中任一个天线单元、 相应的射频馈电电缆及 相干的射频收发信机称为一条链路。 将从上行接收波束赋形中获得的每 一条链路的权重用于下行发射波束赋形, 在对称的电波传播条件下, 可 实现智能天线的全部功能。 现代无线通信的主体是移动通信。 由于移动通信***是一种在复杂 多变的移动环境下工作的通信***(参照 ITU建议 M1225 ), 因此必须考 虑严重的时变和多径传播的影响。 在上述专利文件及多篇公开发表的技 术文献中, 都涉及到对智能天线的波束赋形算法的研究, 其结论是功能 越强则算法越复杂。 然而在移动通信环境下, 波束赋形必须实时完成, 且完成算法的时间是微秒级的, 而受现代微电子技术水平的限制, 在如 此短的时间内, 数字信号处理器(DSP)或专用芯片(ASIC)还不能实现过 于复杂的实时处理。 面对上述矛盾, 在此移动通信环境下, 智能天线的 筒单、 实时算法也并不能解决多径传播问题, 也就不能彻底解决 CDMA ***容量问题。
而另一方面,为解决多径传播产生的干扰问题,人们深入研究了 Rake 接收机和联合检测(Joint Detect ion)或称多用户检测(Mul t i User Detect ion)等技术, 并将其广泛用于码分多址移动通信***中。 但对使 用了智能天线技术的无线通信***来说, 却并不便于直接使用上述 Rake 接收机或多用户检测技术。 其主要原因是: 多用户检测技术是对多码道 的 CDMA信号进行处理, 经信道估计和匹配滤波器后, 通过矩阵求逆直 接将所有用户的信息一次解出, 而智能天线技术是对每一条 CDMA码道 分开进行波束赋形, 它难以利用用户多径带来的分集的好处; Rake接收 机技术对用户的主要多径分量进行合成, 但它将破坏天线阵列各天线单 元的相位关系, 且由于受 Rake 接收机原理所限, 用户数与扩频系数相 同, 而无法工作在满码道的情况下。
有一种正处于研究阶段的二维智能天线技术, 其算法还不成熟且相 当复杂。
还有一种方法是在使用智能天线后进行多用户检测处理, 但此时因 每一条码道已经分开, 则必须对每一条码道分别进行处理, 其结果不但 不能充分发挥多用户检测的功能, 反而大大增加了基带信号处理的复杂 度。 发明内容
为了使 CDMA 无线通信***具有更高的容量和更好的性能, 必须找 到一种简单、 实时工作且便于在基于智能天线的 CDMA无线通信***中使 用的干扰抵销方法。
本发明的目的是设计一种基于智能天线和干扰抵销的基带处理方 法, 通过设计一种新的数字信号处理方法, 使应用此方法的码分多址移 动通信***或其它无线通信***, 在使用智能天线的同时, 能解决多径 传播等干扰, 并获得良好的效果。
本发明进一步的目的是提供一套新的数字信号处理方法, 可以应用 于码分多址移动通信***或其它无线通信***中, 在***使用智能天线 的同时可解决各种多径传播等干扰, 并获得良好的效果。
本发明的目的是这样实现的: 一种基于智能天线和干扰抵销的基带 处理方法, 其特征在于包括:
A.利用已知的用户训练序列, 对来自每一链路天线单元及射频收信 机的采样数据输出信号进行信道估计, 得到所有用户在所有信道上的响 应;
B.在信道估计的基础上, 利用智能天线波束赋形, 从所述的釆样数 据输出信号中提取有用的符号级信号;
C.对获得的有用的符号级信号进行数据重构, 并加扰码, 得到码片 级的重构信号;
D.从所述的采样数据输出信号中减去重构信号;
E.反复执行步骤 B至 D, 恢复所有用户信号结果。
所述的步骤 A是由信道估计模块完成的, 所述的信道响应中含有与 各用户的训练序列有关的矩阵, 该矩阵是提前计算并存储的。
所述的步骤 B 包括: 利用功率估计模块对所有用户在所有信道上的 响应进行功率估计, 计算所有用户的主径与多径在搜索窗中的功率分布 情况; 将计算的功率分布情况送信号生成器中进行信号生成, 包括: 计 算每个用户的最大峰值功率的所在点; 将峰值点的位置存储在功率点 中; 在功率点上用智能天线算法获得所有信号在该点上的解扩结果。
所述的在计算每个用户的最大峰值功率的所在点时, 对于最强径不 与其它用户在同一点上的与基站不同步的用户, 向其发送模块送调整参 数。 所述的步骤 B还包括: 将解扩结果同时送信噪比估计模块, 估计所 有用户的信噪比, 信噪比低的用户则继续执行所述的步骤 C、 D、 E, 信 噪比高的用户直接输出用户信号结果。
所述的估计用户的信噪比包括: 计算用户的功率; 将功率超过一定 域值的判断为有效功率; 对所有有效功率的信号在它们对应的星座图的 点上求方差; 方差大于给定的域值时, 判断用户的信噪比低, 方差小于 给定的域值时, 判断用户的信噪比高。
所述的步骤 C是在信号重构模块中对原始信号进行重构, 求出所有 用户信号及多径在各天线单元上的分量。
所述的步骤 D是在干扰消除模块中进行干扰消除的。
所述的步骤 E是在判断模块中进行的, 当干扰消除的循环次数达到 预设的小于或等于搜索窗长度的次数时, 停止干扰消除, 输出恢复信号 的结果。
所述的步骤 E是在判断模块中进行的, 当所有信号的信噪比大于给 定域值时, 停止干扰消除, 输出恢复信号的结果。
所述步骤 E反复执行步骤 B至 D的过程最多为搜索窗的长度。
本发明方法的实质是为每一个信道在搜索窗长度内的每一条多径进 行赋形, 提取有用信号, 再将这些有用信号叠加, 从而最大限度地利用 了空间分集和时间分集的好处, 使***即使在有严重多径干扰和白噪声 干扰的情况下, 仍有良好的结果。 本方法计算量有限, 完全可以用目前 商用的数字信号处理器(DSP)或现场可编程逻辑门阵列 (FPGA ) 来实现。 本发明的方法主要针对码分多址的无线通信***, 包括时分双工 ( TDD )和频分双工 ( FDD ) 的 CDMA无线通信***。 附图简要说明
图 1是使用智能天线的无线通信基站结构框图
图 2是智能天线和干扰抵销方法的实施结构示意图
图 3是智能天线和干扰抵销方法的实施流程框图 实施本发明的方式
下面通过实施例及附图对本说明进行详细阐述。
参见图 1 , 本发明所涉及的***是具有智能天线和干扰抵销的移动 通信***, 或无线用户环路***等无线通信***, 图 1 示出***中的基 站结构。主要包括 N个全同的天线单元 201A, 201B, ·.. , 20Π , …, 201N, N条接近全同的馈电电缆 202A, 202B, …, 20Π , 202N, N 个射频 收发信机 203A, 203B, ·.., 203 i, ... , 203N, 和基带处理器 204。 所有 的射频收发信机 203 使用同一个本振信号源 208, 以保证一基站中的各 个射频收发信机是相干工作的。 各射频收发信机中均设有模拟至数字变 换器(ADC)和数字至模拟变换器(DAC) , 因此所有的射频收发信机 203 的 基带输入、 输出均为数字信号, 它们与基带处理器 204 间通过一条高速 数字总线 209连接。 图中 100表示基站设备。
本发明仅讨论图 1 所示结构的基带处理中对接收信号的干扰抵销方 法, 不考虑其发信信号的处理。 实现智能天线和干扰抵销的工作方式是 在基带处理器 204中完成的。
假设该 CDMA 无线通信***共设计有 K 个码道 (信道), 智能天线系 统由 N个天线单元、 N条馈电电缆和 N个射频收发信机组成, 即共有 N 条链路。 每条接收链路中经其射频收信机的模拟至数字变换器采样后的 输出数据为 31 (11), S2(n) , .·., Si(n) , ...SN(n), n为第 n个码片(Chip) , 以来自第 i 条接收链路、 经第 203i 射频收信机的模拟至数字变换器采 样后的数据 Si (n)为例, Si (n)作为输入信号进入基带处理器 204。 基带 处理器 204 包括有与 N条链路的 N个射频收发信机 203A, 203B, …, 203i, …, 203N相对应的信道估计模块 210A, 210B, …, 210i, 210N, 和智能天线干扰抵销模块 211, N条链路的输出数据 Si (n) , S2 (n) , ... , Si(n), ...SN(n)分别送对应的信道估计模块 210Α, 210B, ... , 210i, ..., 2 ION和送智能天线干扰抵销模块 211, 各信道估计模块 210A, 210B, …, 210i, …, 210N输出信道响应信号 ,h2, … , ...1½至智能天线干扰 抵销模块 211, 智能天线干扰抵销模块 211输出同步调整参数 SS(K)至下 行发送模块 , 和输出智能天线干扰抵销的结果 Sea+1K (d)至信道译码模块 , 其中 hiD u, ...,hi;k]0
Si (n)信号进入信道估计模块 210i, 通过预先知道的训练序列(导频 (Pilot)或 Midamble) , 对 K个信道情况进行估计, 可以获得 K个信道沖 击响应, 表示为 hi,k, 其中 i表示为第 i个天线单元, k表示第 k个信道。
其具体处理过程是: 已知的第 k个用户的训练序列为 mk, 第 i根天 线上接收到的训练序列的数值为 eP 则有公式(1 ): βϊ{ή) = mk{n -w-\- \) , k(w) + ioi (1) 其中 n为第 n个码片, w为搜索窗长, 为第 i根天线接收到的白 噪声。 可将公式(1)进一步改写为公式(2):
Figure imgf000010_0001
则对信道的估计可以表示为公式( 3 ):
h,,k = (G*T GylG*T ei = Md (3)
其中 M是一个仅与各个用户训练序列有关的矩阵, 可以提前计算并存储 下来, 由于不必对其作实时计算, 就可大大加快信道估计的速度。
按上述过程分别计算所有用户在所有信道上的响应, 得到的 结 果输入智能天线干扰抵销模块 211, 经其进一步处理将所有用户的信号 恢复出来。
参见图 2, 图中示出天线干扰抵销模块 211对干扰抵销的处理过程。 由信道估计模块 210i计算出的信道响应 k首先被送到功率估计模块 220 中进行功率估计, 计算 κ个用户(同 K个信道)的主径与多径在搜索窗中 的功率分布情况, 表示为公式(4): power _usen(m) =
Figure imgf000011_0001
(4) 然后计算每个用户的最大峰值功率的所在点, 如果有的用户的最强径与 其它用户的最强径不在同一点上, 则说明此用户与基站不同步, 基站将 在下行信道中通知此用户, 令其调整, 以与其它用户同步, 这个调整参 数即为前述的 SS(K)。
再计算第 k 个用户的主径与多径在搜索窗中总功率的分布情况, 表 示为公式( 5 ):
N K
power― abs(m) = H bs(h, k(m)) (5)
'=1 k=)
其中 m是搜索窗中的一个点, 所获得的 power_abs送信号生成器 221中, 进行信号生成, 同时送入信号生成器 221中的还有各信道估计模块 21 OA, 210B, …, 210i, ..·, 210N输出的信道响应信号 h^h^ …^, ...hN (为 矢量), 和 N条链路的输出数据 (n), S2(n), ·.., S, (n) , 〜SN(n)。
信号生成器 221首先计算 power_abs 中的峰值点的位置, 将计算出 的结果存在 power—point中, 同时令 power—abs (power— point) = 0, 以便 在下次做干扰时不再计算这一点, 再在 power— point 点上用智能天线算 法, 得到所有信号在这一点解扩的结果, 表示为公式 (6): S,({d -l)Q + q)Cq, φη一 codeil) + Sca,k{d) (6)
Figure imgf000012_0001
其中, Cqk是第 k 个用户的扩语码, pn— code(l)是扰码, Sea,k(d)是上一 次干扰抵销的结果, 初始值 SQk(d)=0, 输出结果 Sea+1,K(d)是符号级的。 显然, 由于用户不完全同步, 且***中有严重的多径干扰及白噪声, 开 始时的 Sea+1K(d)是一个粗略结果。
将 Sea+1,K(d)送到信噪比估计模块 224 和信号重构模块 222。 信噪比 估计模块 224的作用是估计各个用户的信噪比, 经信号生成器 221生成 后的信号已经是解扰、 解扩及解调过的信号, 此时估计各个用户的信噪 比可以有很多种方法, 其中之一的方法是: 对第 k 个用户首先计算它的 功率, 表示为公式(7):
power一 K - (Sk(d)) (7)
Figure imgf000012_0002
若功率超过一定的域值, 则称为有效功率, 对所有具有有效功率的信号 在它们对应的星座图的点上求方差, 如果方差大于给定的域值, 则此用 户的信噪比比较低, 其 Sea+1K(d)的值不可信, 需要做干扰消除; 反之, 如果方差小于给定的域值, 则此用户的信噪比比较高, 其 Sea+1K(d)的值 可信, 不需要做干扰消除。 使用信噪比估计模块的目的是为了简化干扰 抵销的计算, 对于可信信号则不必做干扰消除。 信号重构模块 222 是利用 Sea+1 K(d)对原始信号进行重构, 重构的信 号是码片级的, 表示为公式(8 ):
Sea + uk(Q(d -\) + q) = Sea + i,k(d)Cq,kpn_code(l) (8) 然后求 K个用户信号在 N根天线上的分量, 表示为公式(9 ):
S in) = &α + n)h (9)
N个天线恢复的结果送到干扰消除模块 223, 进行干扰消除, 表示为公式 ( 10 ):
& (") = &(")— S'c+ i,,(") (10)
图中判断模块 225 的作用是用于判断干扰消除何时停止的, 共有两个判 断条件: 1 )所有信号的信噪比大于给定域值; 2 ) 干扰消除的循环次数 达到设定的次数, 该次数小于或等于搜索窗长度, 在这个范围内, 循环 次数是由数字信号处理器和 FPGA等芯片的处理能力决定的。 只要满足上 述两个条件中的任何一个条件, 智能天线干扰抵销方法处理过程就结 束, 输出恢复信号结果 Sca+1k (d)。 参见图 3, 图中以 8 根天线(N = 8 )为例说明智能天线干扰抵销方 法的处理流程。 功能框 301 , 由功率估计模块 220计算信道估计的功率; 功能框 303、 304 , 由信号生成模块 221寻找功率中的最大值, 计算偏差, 并将此值设 为 0 , 和在它的偏差点上解扩, 进行波束赋形, 获得结果并同时送信噪 比判断模块 225和通过判断模块 225送信号重构模块 222; 功能框 302, 送出同步调整量 Ss (k); 功能框 308 , 重构数据, 求这些重构数据在 8根 天线上的分量; 功能框 309 , 从接收数据 (receive_data ) 中减去重构 数据在 8根天线上的分量, 所得结果仍存入 receive_data中, 并重复执 行功能框 303至 309。 当功能框 305经信噪比判断模块 224判断出信噪 比大、 小, 和经功能框 306 判断模块 225 , 在循环到指定次数或者所有 用户的信噪比都满足要求时, 结束干扰消除, 由功能框 307 输出恢复的 信号结果。
本发明主要针对码分多址无线通信***, 包括时分双工(TDD)和频 分双工(FDD)的码分多址无线通信***。 任何从事无线通信***开发的工 程师, 只要知道智能天线的基本原理, 具有数字信号处理的基本知识, 都可以使用本发明的方法来设计一个高质量的智能天线***, 并将其用 于各种移动通信或无线用户环路***, 使之获得高性能。

Claims

权利要求书
1.一种基于智能天线和干扰抵销的基带处理方法, 其特征在于包 括:
A.利用已知的用户训练序列, 对来自每一链路天线单元及射频收信 机的采样数据输出信号进行信道估计, 得到所有用户在所有信道上的响 应;
B. 在信道估计的基础上, 利用智能天线波束赋形, 从所述的采样 数据输出信号中提取有用的符号级信号;
C.对获得的有用的符号级信号进行数据重构, 并加扰码, 得到码片 级的重构信号;
D.从所述的釆样数据输出信号中减去重构信号;
E.反复执行步骤 B至 D, 恢复所有用户信号结果。
2.根据权利要求 1 所述的基于智能天线和干扰抵销的基带处理方 法, 其特征在于: 所述的步骤 A是由信道估计模块完成的, 所述的信道 响应中含有与各用户的训练序列有关的矩阵, 该矩阵是提前计算并存储 的。
3.根据权利要求 1 所述的基于智能天线和干扰抵销的基带处理方 法, 其特征在于: 所述的步骤 B 包括: 利用功率估计模块对所有用户在 所有信道上的响应进行功率估计, 计算所有用户的主径与多径在搜索窗 中的功率分布情况; 将计算的功率分布情况送信号生成器中进行信号生 成, 包括: 计算每个用户的最大峰值功率的所在点; 将峰值点的位置存 储在功率点中; 在功率点上用智能天线算法获得所有信号在该点上的解 扩结果。
4.根据权利要求 3 所述的基于智能天线和干扰抵销的基带处理方 法, 其特征在于: 所述的在计算每个用户的最大峰值功率的所在点时, 对于最强径不与其它用户在同一点上的与基站不同步的用户, 向其发送 模块送同步调整参数。
5.根据权利要求 1 所述的基于智能天线和干扰抵销的基带处理方 法, 其特征在于: 所述的步骤 B还包括: 将解扩结果同时送信噪比估计 模块, 估计所有用户的信噪比, 信噪比低的用户则继续执行所述的步骤 C、 D、 E, 信噪比高的用户则直接输出用户信号结果。
6.根据权利要求 5 所述的基于智能天线和干扰抵销的基带处理方 法, 其特征在于: 所述的估计用户的信噪比包括: 计算用户的功率; 将 功率超过一定域值的判断为有效功率; 对所有有效功率的信号在它们对 应的星座图的点上求方差; 方差大于给定的域值时, 判断用户的信噪比 低, 方差小于给定的域值时, 判断用户的信噪比高。
7.根据权利要求 1 所述的基于智能天线和干扰抵销的基带处理方 法, 其特征在于: 所述的步骤 C是在信号重构模块中对原始信号进行重 构, 求出所有用户信号及多径在各天线单元上的分量。
8.根据权利要求 1 所述的基于智能天线和干扰抵销的基带处理方 法, 其特征在于: 所述的步骤 D是在干扰消除模块中进行干扰消除的。
9.根据权利要求 1 所述的基于智能天线和干扰抵销的基带处理方 法, 其特征在于: 所述的步骤 E是在判断模块中进行的, 当干扰消除的 循环次数达到预设的小于或等于搜索窗长度的次数时, 停止干扰消除, 输出恢复信号的结果。
1 0.根据权利要求 1 所述的基于智能天线和干扰抵销的基带处理方 法, 其特征在于: 所述的步骤 E是在判断模块中进行的, 当所有信号的 信噪比大于给定域值时, 停止干扰消除, 输出恢复信号的结果。
11.根据权利要求 1 所述的基于智能天线和干扰抵销的基带处理方 法, 其特征在于: 所述步骤 E反复执行步骤 B至 D的过程最多为搜索窗 的长度。
PCT/CN2000/000169 1999-08-10 2000-06-22 Procede de traitement de la bande de base faisant intervenir une antenne intelligente et l'annulation des interferences WO2001011723A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP00938466A EP1209761B1 (en) 1999-08-10 2000-06-22 Baseband processing method based on smart antenna and interference cancellation
DE60039769T DE60039769D1 (de) 1999-08-10 2000-06-22 Verfahren zur basisbandverarbeitung, basierend auf intelligenter antenne und interferenzauslöschung
BRPI0013123A BRPI0013123B1 (pt) 1999-08-10 2000-06-22 método de processamento de banda base com base em antena inteligente e cancelamento de interferência
AU53872/00A AU776615B2 (en) 1999-08-10 2000-06-22 Baseband processing method based on smart antenna and interference cancellation
MXPA02001462A MXPA02001462A (es) 1999-08-10 2000-06-22 Metodo de procesamiento de banda basica en antena inteligente y cancelacion de interferencia.
CA002381383A CA2381383C (en) 1999-08-10 2000-06-22 Baseband processing method based on smart antenna and interference cancellation
JP2001516279A JP4563635B2 (ja) 1999-08-10 2000-06-22 スマート・アンテナおよび干渉キャンセレーションに基づいたベースバンド処理方法
US10/073,709 US7130365B2 (en) 1999-08-10 2002-02-11 Baseband processing method based on smart antenna and interference cancellation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN99111349A CN1118200C (zh) 1999-08-10 1999-08-10 基于智能天线和干扰抵销的基带处理方法
CN99111349.7 1999-08-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/073,709 Continuation US7130365B2 (en) 1999-08-10 2002-02-11 Baseband processing method based on smart antenna and interference cancellation

Publications (1)

Publication Number Publication Date
WO2001011723A1 true WO2001011723A1 (fr) 2001-02-15

Family

ID=5275032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2000/000169 WO2001011723A1 (fr) 1999-08-10 2000-06-22 Procede de traitement de la bande de base faisant intervenir une antenne intelligente et l'annulation des interferences

Country Status (14)

Country Link
US (1) US7130365B2 (zh)
EP (1) EP1209761B1 (zh)
JP (1) JP4563635B2 (zh)
KR (1) KR100591979B1 (zh)
CN (1) CN1118200C (zh)
AT (1) ATE403954T1 (zh)
AU (1) AU776615B2 (zh)
BR (1) BRPI0013123B1 (zh)
CA (1) CA2381383C (zh)
DE (1) DE60039769D1 (zh)
HK (1) HK1035463A1 (zh)
MX (1) MXPA02001462A (zh)
RU (1) RU2265929C2 (zh)
WO (1) WO2001011723A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7327800B2 (en) 2002-05-24 2008-02-05 Vecima Networks Inc. System and method for data detection in wireless communication systems
US7327795B2 (en) 2003-03-31 2008-02-05 Vecima Networks Inc. System and method for wireless communication systems

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA05000828A (es) * 2002-07-19 2005-04-19 Interdigital Tech Corp Cancelacion de interferencia sucesiva por grupos para bloquear transmision con diversidad de recepcion.
CN101471139A (zh) * 2002-11-25 2009-07-01 张国飙 三维存储器之设计
CN100576772C (zh) * 2002-12-27 2009-12-30 Nxp股份有限公司 具有智能天线的移动终端及其方法
KR101050569B1 (ko) * 2004-01-13 2011-07-19 삼성전자주식회사 스마트 안테나를 이용한 이동통신 시스템에서 순방향 빔폭 조절 방법 및 장치
US7430440B2 (en) * 2004-02-06 2008-09-30 Interdigital Technology Corporation Method and apparatus for reducing transient impacts of beam switching in a switched beam antenna system
US7158814B2 (en) * 2004-06-10 2007-01-02 Interdigital Technology Corporation Method and system for utilizing smart antennas establishing a backhaul network
US8995921B2 (en) * 2004-09-10 2015-03-31 Interdigital Technology Corporation Measurement support for a smart antenna in a wireless communication system
CN100382633C (zh) * 2004-11-30 2008-04-16 中兴通讯股份有限公司 一种基于软件无线电的智能天线实现方法
JP4425283B2 (ja) * 2005-01-24 2010-03-03 株式会社エヌ・ティ・ティ・ドコモ 移動通信端末およびマルチパス干渉除去装置の起動を制御する方法
WO2006079253A1 (fr) * 2005-01-31 2006-08-03 Zte Corporation Procede de traitement de bande de base base sur un double echantillonnage
US7512199B2 (en) * 2005-03-01 2009-03-31 Broadcom Corporation Channel estimation method operable to cancel a dominant disturber signal from a received signal
US8594252B2 (en) * 2005-08-22 2013-11-26 Qualcomm Incorporated Interference cancellation for wireless communications
US8743909B2 (en) * 2008-02-20 2014-06-03 Qualcomm Incorporated Frame termination
US9071344B2 (en) * 2005-08-22 2015-06-30 Qualcomm Incorporated Reverse link interference cancellation
US8611305B2 (en) * 2005-08-22 2013-12-17 Qualcomm Incorporated Interference cancellation for wireless communications
US8630602B2 (en) * 2005-08-22 2014-01-14 Qualcomm Incorporated Pilot interference cancellation
US8385388B2 (en) * 2005-12-06 2013-02-26 Qualcomm Incorporated Method and system for signal reconstruction from spatially and temporally correlated received samples
CN101072066B (zh) * 2006-05-08 2011-05-11 中兴通讯股份有限公司 一种码分多址通信***的智能天线实现方法
CN101072059B (zh) * 2006-05-08 2010-12-08 中兴通讯股份有限公司 一种平滑融合发射的智能天线与空间分集发射方法
KR100824581B1 (ko) * 2006-10-31 2008-04-23 삼성전자주식회사 다중 입출력 시스템에서 수신신호 복호 방법 및 장치
WO2008098416A1 (fr) * 2007-02-14 2008-08-21 Zte Corporation Dispositif de réception rake multi-utilisateur éliminant les interférences et procédé correspondant
US8995417B2 (en) 2008-06-09 2015-03-31 Qualcomm Incorporated Increasing capacity in wireless communication
US9237515B2 (en) 2008-08-01 2016-01-12 Qualcomm Incorporated Successive detection and cancellation for cell pilot detection
US9277487B2 (en) 2008-08-01 2016-03-01 Qualcomm Incorporated Cell detection with interference cancellation
ES2353481B1 (es) * 2009-02-05 2012-01-13 Vodafone España, S.A.U Procedimiento de gestión de recursos de banda base en redes de comunicaciones móviles que implementan técnicas de cancelación de interferencia.
US9160577B2 (en) 2009-04-30 2015-10-13 Qualcomm Incorporated Hybrid SAIC receiver
US8787509B2 (en) 2009-06-04 2014-07-22 Qualcomm Incorporated Iterative interference cancellation receiver
US8831149B2 (en) 2009-09-03 2014-09-09 Qualcomm Incorporated Symbol estimation methods and apparatuses
JP6091895B2 (ja) 2009-11-27 2017-03-08 クゥアルコム・インコーポレイテッドQualcomm Incorporated 無線通信における容量の増加
CN102668628B (zh) 2009-11-27 2015-02-11 高通股份有限公司 增加无线通信中的容量的方法和装置
CN102340327B (zh) * 2011-09-23 2016-04-13 中兴通讯股份有限公司 干扰消除方法及装置
US8938038B2 (en) * 2012-02-02 2015-01-20 Telefonaktiebolaget L M Ericsson (Publ) Extending the set of addressable interferers for interference mitigation
CN104662843B (zh) * 2012-05-17 2018-06-15 香港科技大学 用于无线网状网络的联合频道及路由分配的***和方法
CN104378172B (zh) * 2013-08-14 2019-07-26 中兴通讯股份有限公司 数据信道干扰抵消的方法和***
CN103501187B (zh) * 2013-10-10 2015-06-03 中国人民解放军理工大学 一种基于干扰抵消的短波多径信号同步方法
US9966983B2 (en) * 2014-08-15 2018-05-08 Huawei Technologies Co., Ltd. Interference cancellation in MIMO same channel full-duplex transceivers
CN105099643B (zh) * 2015-08-18 2019-03-01 北京科技大学 一种全双工无线通信的方法、天线装置及***
CN105743555B (zh) * 2016-03-25 2018-08-14 四川大学 一种分程式分布天线发射波束优化形成方法
US9860848B2 (en) 2016-05-31 2018-01-02 Apple Inc. Baseband power estimation and feedback mechanism
JP7498274B2 (ja) * 2019-11-12 2024-06-11 エヌイーシー アドバンスト ネットワークス, インク. フェーズドアレイ送受信装置における送信信号のキャンセル
CN113691990A (zh) * 2021-07-16 2021-11-23 德清阿尔法创新研究院 一种基于信噪比冗余和干扰消除技术的异构网络智能共存方法
CN116319187B (zh) * 2023-02-20 2023-10-17 中国人民解放军军事科学院***工程研究院 一种用于卫星物联网***的数据处理方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0647979A2 (en) * 1993-08-12 1995-04-12 Nortel Networks Corporation Base station antenna arrangement
WO1995022210A2 (en) * 1994-02-14 1995-08-17 Qualcomm Incorporated Dynamic sectorization in a spread spectrum communication system
CN1220562A (zh) * 1997-08-30 1999-06-23 三星电子株式会社 使用cdma移动通信***导频信号的灵巧天线接收机及其方法
CN1053313C (zh) * 1997-04-21 2000-06-07 北京信威通信技术有限公司 具有智能天线的时分双工同步码分多址无线通信***及其通信方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621752A (en) * 1994-06-23 1997-04-15 Qualcomm Incorporated Adaptive sectorization in a spread spectrum communication system
DE19639414C2 (de) * 1996-09-25 1998-10-01 Siemens Ag Verfahren zur Parametrisierung einer Empfangsstation mit adaptiven Antenneneinrichtungen und adaptives Filter für zeitveränderliche Kanäle
JPH10190495A (ja) * 1996-12-20 1998-07-21 Fujitsu Ltd 干渉キャンセラ
US6314147B1 (en) * 1997-11-04 2001-11-06 The Board Of Trustees Of The Leland Stanford Junior University Two-stage CCI/ISI reduction with space-time processing in TDMA cellular networks
JP2991179B2 (ja) * 1998-01-08 1999-12-20 日本電気株式会社 Cdmaマルチユーザ受信装置
US5982327A (en) * 1998-01-12 1999-11-09 Motorola, Inc. Adaptive array method, device, base station and subscriber unit
EP0964530A1 (en) * 1998-06-05 1999-12-15 Siemens Aktiengesellschaft Radio communications receiver and interference cancellation method
EP0975100A1 (en) * 1998-07-23 2000-01-26 Siemens Aktiengesellschaft Receiver and method of recovering data from radio signals
US6188718B1 (en) * 1998-08-21 2001-02-13 Lucent Technologies Inc. Methods and apparatus for reducing cochannel interference in a mixed-rate communication system
JP2000138605A (ja) * 1998-10-30 2000-05-16 Nec Corp マルチユーザ受信装置
JP2991236B1 (ja) * 1999-01-21 1999-12-20 株式会社ワイ・アール・ピー移動通信基盤技術研究所 直接拡散受信デ―タの誤り推定装置および直接拡散受信装置
JP3641961B2 (ja) * 1999-02-01 2005-04-27 株式会社日立製作所 アダプティブアレイアンテナを使用した無線通信装置
US6141393A (en) * 1999-03-03 2000-10-31 Motorola, Inc. Method and device for channel estimation, equalization, and interference suppression
US6351499B1 (en) * 1999-12-15 2002-02-26 Iospan Wireless, Inc. Method and wireless systems using multiple antennas and adaptive control for maximizing a communication parameter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0647979A2 (en) * 1993-08-12 1995-04-12 Nortel Networks Corporation Base station antenna arrangement
WO1995022210A2 (en) * 1994-02-14 1995-08-17 Qualcomm Incorporated Dynamic sectorization in a spread spectrum communication system
CN1053313C (zh) * 1997-04-21 2000-06-07 北京信威通信技术有限公司 具有智能天线的时分双工同步码分多址无线通信***及其通信方法
CN1220562A (zh) * 1997-08-30 1999-06-23 三星电子株式会社 使用cdma移动通信***导频信号的灵巧天线接收机及其方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7327800B2 (en) 2002-05-24 2008-02-05 Vecima Networks Inc. System and method for data detection in wireless communication systems
US7327795B2 (en) 2003-03-31 2008-02-05 Vecima Networks Inc. System and method for wireless communication systems

Also Published As

Publication number Publication date
EP1209761B1 (en) 2008-08-06
EP1209761A4 (en) 2003-03-19
CA2381383C (en) 2008-06-03
CN1283936A (zh) 2001-02-14
DE60039769D1 (de) 2008-09-18
KR20020019961A (ko) 2002-03-13
AU5387200A (en) 2001-03-05
KR100591979B1 (ko) 2006-06-20
US7130365B2 (en) 2006-10-31
BRPI0013123B1 (pt) 2015-10-27
US20020111143A1 (en) 2002-08-15
JP2003506994A (ja) 2003-02-18
EP1209761A1 (en) 2002-05-29
CN1118200C (zh) 2003-08-13
BR0013123A (pt) 2002-04-30
HK1035463A1 (en) 2001-11-23
CA2381383A1 (en) 2001-02-15
RU2265929C2 (ru) 2005-12-10
ATE403954T1 (de) 2008-08-15
AU776615B2 (en) 2004-09-16
JP4563635B2 (ja) 2010-10-13
MXPA02001462A (es) 2003-07-21

Similar Documents

Publication Publication Date Title
WO2001011723A1 (fr) Procede de traitement de la bande de base faisant intervenir une antenne intelligente et l'annulation des interferences
JP4615170B2 (ja) スマート・アンテナに基づく干渉キャンセレーション方法
US6725028B2 (en) Receiving station with interference signal suppression
JP2771757B2 (ja) スペクトル拡散通信用受信装置のデータ復調回路
JP3202754B2 (ja) 複数の多重アクセス伝送の処理方法
EP2230772A2 (en) Interference cancellation in a spread sprectrum communication system
JP3967452B2 (ja) スペクトラム拡散無線伝送受信装置
US6700880B2 (en) Selection mechanism for signal combining methods
US8565287B2 (en) Method and system for per-cell interference estimation for interference suppression
JPH08509592A (ja) 多重アクセスディジタル伝送装置と無線基地局およびそのような装置に用いるための受信機
US8369384B2 (en) Method and system for processing signals utilizing a programmable interference suppression module
KR20020093185A (ko) 적응 안테나 어레이가 구비된 cdma 시스템에서의 신호처리 방법 이를 위한 시스템
US8498321B2 (en) Method and system for optimizing programmable interference suppression
Ramos et al. Low-complexity space-time processor for DS-CDMA communications
US8116353B2 (en) Spread spectrum modulator and demodulator
WO2007086703A1 (en) Apparatus and method for controlling dynamic range of weight vectors according to combining methods in a mobile station equipped with multiple antennas in high rate packet data system using code division multiple access scheme
TWI261976B (en) Rake-based CDMA receivers for multiple receiver antennas
JP4188242B2 (ja) シンボルレートとチップレートを混用してウェイティングするフィンガーとそれを利用した復調装置及び方法{fingerusingmixedweighting、anditsapplicationfordemodulationapparatusandmethod}
KR100677699B1 (ko) 스마트 안테나 기지국 송수신 장치 및 순방향 링크의고정빔 형성 방법
JP4267811B2 (ja) アンテナダイバーシチ受信装置
CN200987169Y (zh) 一种闭环波束成型的发射和接收装置
Du et al. Performance of multiuser detection schemes for CDMA systems using antenna arrays

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000938466

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2001/01203/DE

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020027001456

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2381383

Country of ref document: CA

Ref document number: PA/a/2002/001462

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 10073709

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 53872/00

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2002 2002106107

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020027001456

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000938466

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 53872/00

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1020027001456

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2000938466

Country of ref document: EP