RU2265929C2 - Способ обработки основной полосы частот на основе интеллектуальной антенны и подавления помех - Google Patents

Способ обработки основной полосы частот на основе интеллектуальной антенны и подавления помех Download PDF

Info

Publication number
RU2265929C2
RU2265929C2 RU2002106107/09A RU2002106107A RU2265929C2 RU 2265929 C2 RU2265929 C2 RU 2265929C2 RU 2002106107/09 A RU2002106107/09 A RU 2002106107/09A RU 2002106107 A RU2002106107 A RU 2002106107A RU 2265929 C2 RU2265929 C2 RU 2265929C2
Authority
RU
Russia
Prior art keywords
signal
user
intelligent antenna
peak power
power value
Prior art date
Application number
RU2002106107/09A
Other languages
English (en)
Other versions
RU2002106107A (ru
Inventor
Фенг ЛИ (CN)
Фенг ЛИ
Original Assignee
Чайна Акэдеми Оф Телекоммьюникейшнс Текнолоджи
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Чайна Акэдеми Оф Телекоммьюникейшнс Текнолоджи filed Critical Чайна Акэдеми Оф Телекоммьюникейшнс Текнолоджи
Publication of RU2002106107A publication Critical patent/RU2002106107A/ru
Application granted granted Critical
Publication of RU2265929C2 publication Critical patent/RU2265929C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • H01Q3/2611Means for null steering; Adaptive interference nulling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Transceivers (AREA)
  • Lock And Its Accessories (AREA)

Abstract

Изобретение относится к технике связи и может быть использовано в базовой станции беспроводной системы связи с интеллектуальной антенной. Способ обработки основной полосы частот на основе интеллектуальной антенны и подавления помех заключается в выполнении оценки каналов для получения отклика всех пользователей на всех каналах, выборе сигнала с полезным символическим уровнем из принятого цифрового сигнала с помощью формирования луча интеллектуальной антенны на основе оценки каналов, в выполнении реконструкции сигнала с помощью полученного полезного сигнала и добавлении кода скремблирования для получение реконструированного сигнала на уровне элементарной посылки, в вычитании реконструированного сигнала из принятого цифрового сигнала, причем указанные действия выполняют повторно до восстановления сигналов всех пользователей. Технический результат - устранение различных помех многолучевого распространения в системе связи с интеллектуальной антенной. 9 з.п. ф-лы, 3 ил.

Description

Область техники, к которой относится изобретение
Данное изобретение относится в целом к способу подавления сигналов помехи, используемой в базовой станции беспроводной системы связи с интеллектуальной антенной, в частности к способу обработки основной полосы частот на основе интеллектуальной антенны и подавления помех.
Уровень техники
В современных беспроводных системах связи, в частности в беспроводной системе связи CDMA (множественный доступ с кодовым разделением каналов), для повышения пропускной способности системы, чувствительности системы и обеспечения большей дальности связи при низкой мощности излучения обычно используют интеллектуальные антенны.
В патенте Китая под названием "Система беспроводной связи множественного доступа с временным уплотнением каналов, дуплексной синхронизацией, с кодовым разделением каналов с интеллектуальной антенной" (CN 97 1 04039.7) раскрыта структура базовой станции беспроводной системы связи с интеллектуальной антенной. Она содержит интеллектуальную антенну, состоящую из одного или множества антенных модулей, соответствующих радиочастотных фидерных кабелей и ряда когерентных радиочастотных приемопередатчиков. В соответствии с различным для каждого антенного модуля откликом на сигнал, приходящий с терминалов пользователей, процессор обработки основной полосы частот получает вектор пространственных характеристик и направление прихода сигнала (DOA); затем с помощью соответствующего алгоритма применяют формирование приемного луча антенны. При этом антенный модуль, соответствующий фидерный кабель и когерентный радиочастотный приемопередатчик в совокупности называют линией связи. С помощью использования весовых коэффициентов, полученных из формирования приемного луча к центру каждой линии связи для формирования передающего луча линии связи от центра, можно использовать все функциональные возможности интеллектуальной антенны в условиях симметричного распространения волн.
Главной частью современных беспроводных систем связи является мобильная связь. Поскольку мобильная связь работает в сложных и изменяющихся условиях (смотри ITU, предложение М1225), то следует учитывать сильное влияние изменяющегося во времени и многолучевого распространения волн. В указанном выше патенте и в других технических публикациях, относящихся к алгоритму формирования луча интеллектуальной антенны, делается вывод, что чем более сложен алгоритм, тем больше функциональные возможности. Однако в условиях мобильной связи формирование луча должно быть закончено в реальном времени, и время на выполнение алгоритма имеет уровень микросекунд. Вследствие ограничений, накладываемых современной микроэлектронной техникой, цифровая обработка сигналов или применение специальных интегральных схем не обеспечивает выполнение слишком сложной обработки в реальном времени в течение такого короткого периода времени. С учетом указанного выше противоречия, в условиях мобильной связи простой и осуществляемый в реальном времени алгоритм интеллектуальной антенны не может решить не только проблему многолучевого распространения, но также не может удовлетворительно решить проблему пропускной способности системы мобильной связи CDMA.
С другой стороны, для решения проблемы помех многолучевого распространения интенсивно исследуются технологии, такие как приемник Rake и совместное обнаружение или обнаружение множества пользователей для их использования в системе мобильной связи множественного доступа с кодовым разделением каналов. Однако приемник Rake или технологии обнаружения множества пользователей, указанные выше, нельзя непосредственно использовать в системе мобильной связи с интеллектуальной антенной. Основными причинами этого являются: техника обнаружения множества пользователей обрабатывает сигнал CDMA множества кодовых каналов, после оценки каналов и фильтрации совпадений все данные пользователей вычисляются с помощью матрицы инверсии, однако в технологии интеллектуальной антенны, где необходимо по отдельности формировать луч для каждого кодового канала, трудно использовать преимущество разновременности, обеспечиваемое многолучевым распространением радиоволн от пользователей; в технологии приемника Rake создают главный многолучевой компонент пользователя, однако это разрушает фазовое соотношение между антенными модулями антенной решетки, кроме того, ограничение, накладываемое принципом работы приемника Rake, согласно которому число пользователей равно коэффициенту разнесения сигнала по спектру, делает невозможным работу в условиях всех кодовых каналов.
Имеется технология двумерной интеллектуальной антенны, однако она находится в стадии исследований и ее алгоритм является недоработанным и сложным.
Существует другой способ, в котором выполняют обработку обнаружения множества пользователей после использования интеллектуальной антенны; однако после разделения каждого кодового канала необходимо разделять обработку для каждого кодового канала; в результате не только нельзя использовать полностью функцию обнаружения множества пользователей, но и значительно усложняется обработка сигналов в основной полосе частот.
Сущность изобретения
Для обеспечения более высокой пропускной способности и более высоких характеристик системы мобильной связи CDMA необходимо найти более простой и выполняемый в реальном времени способ подавления помех, пригодный для использования в системе мобильной связи CDMA, основанный на интеллектуальной антенне.
Поэтому задачей изобретения является создание способа обработки основной полосы частот, основанного на интеллектуальной антенне и подавлении помех. За счет создания нового способа цифровой обработки сигналов система мобильной связи CDMA или другие беспроводные системы связи, использующие этот способ, могут использовать интеллектуальную антенну и одновременно решать проблему помех из-за многолучевого распространения волн.
Другой задачей изобретения является создание ряда новых способов цифровой обработки сигналов, которые можно использовать в системе мобильной связи CDMA или в другой беспроводной системе связи и которые позволяют решать различные проблемы помех из-за многолучевого распространения с одновременным использованием интеллектуальной антенны.
Способ обработки основной полосы частот, согласно изобретению, на основе интеллектуальной антенны и подавления помех, при этом антенный модуль, соответствующий фидер и когерентный радиочастотный приемопередатчик образуют линию связи, содержит этапы:
А) выполнение с помощью матрицы, которая относится к каждой последовательности обучения пользователей, оценки каналов для выходных сигналов дискретных данных с каждой линии связи соответственно, и затем получение отклика всех каналов; и дополнительно содержит этапы: В) вычисление распределения мощности распространения каждого канала в окне поиска, получение положения пиковой величины мощности каждого канала; осуществление настройки синхронизации для каналов, если все положения максимальной пиковой величины мощности указанных каналов не синхронизированы; и далее вычисление распределения полной мощности распространения каждого канала в окне поиска; С) определение положения текущей пиковой величины мощности в указанной полной мощности распространения и исключение из вычислений при последующих определениях положения максимальной пиковой величины мощности; D) с использованием алгоритма формирования луча интеллектуальной антенны и отклика каналов, полученного на этапе А, осуществление формирования луча для сигнала, полученного сжатием распределенного спектра и дескремблированием сигнала дискретных данных в положении текущей пиковой величины мощности с получением текущего демодулированного сигнала в положении текущей пиковой величины мощности, и последнего демодулированного сигнала к текущему демодулированному сигналу, и далее получение восстановленного сигнала; Е) определения необходимости подавления помех для восстановленного сигнала, и, в случае необходимости переход на этап F, в другом случае, осуществление вывода восстановленного сигнала и окончание обработки; F) осуществление реконструкции данных для восстановленного сигнала и вычисление компонентов принимаемого сигнала каждого антенного модуля; и G) вычитания компонентов принимаемого сигнала каждого антенного модуля из сигнала дискретных данных соответственно, и далее получение сигнала дискретных данных, смещенного к сигналу наиболее мощного в данный момент луча распространения, и далее возврат к выполнению этапа С.
Согласно изобретению матрица, которая относится к каждой последовательности обучения пользователя, вычисляется и сохраняется заранее.
Согласно изобретению этап С дополнительно содержит: сохранение положения максимальной пиковой величины мощности в памяти, обозначаемой power_point, и исключение из вычислений положения максимальной пиковой величины мощности содержит: установление значения мощности в положении максимальной пиковой величины мощности на ноль.
Согласно изобретению настройка синхронизации на этапе В содержит: передачу параметра настройки синхронизации в передающий модуль этого пользователя с наиболее мощным лучом распространения не в одной точке с другим пользователями и без синхронизации с базовой станцией.
Согласно изобретению определение на этапе Е осуществляется путем определения удовлетворения отношения сигнал/шум заданным условиям; этап D дополнительно содержит: одновременное вычисление отношения сигнал/шум для восстановленного сигнала. При этом определение удовлетворения отношения сигнал/шум заданным условиям содержит: вычисление мощности пользователя для восстановленного сигнала; определение мощности, больше определенной величины поля, в качестве эффективной мощности; вычисление разности квадратов для всех сигналов с эффективной мощностью в соответствующей точке совокупной карты; определение восстановленного сигнала с неудовлетворительным низким отношением сигнал/шум, если их разница квадратов больше заданной величины, и восстановленного сигнала с удовлетворительным высоким отношением сигнал/шум, если их разница квадратов меньше заданной величины.
Согласно изобретению определение на этапе Е осуществляется путем определения достижения количества циклов подавления заданного числа. При этом максимальное количество циклов подавления равно длине окна поиска.
Для изобретения существенно, что формирование луча каждого многолучевого распространения внутри длины окна поиска выполняют для каждого канала, полезные сигналы отбирают и аккумулируют; тем самым максимально используются преимущества разнесения в пространстве и разнесения во времени; таким образом, даже при сильных помехах многолучевого распространения и в условиях помех белого шума можно получать лучшие результаты. Объем вычислений в способе ограничен и может быть выполнен с помощью коммерческих микросхем, таких как процессор цифровой обработки сигналов (DSP) или вентильная матрица, программируемая пользователем (FPGA).
Способ, согласно изобретению, относится главным образом к беспроводным системам связи множественного доступа с кодовым разделением каналов, включая дуплексную связь с разделением по времени (TDD) и дуплексную связь с разделением по частоте (FDD).
Краткое описание чертежей
На чертежах изображено:
фиг.1 - структура базовой станции беспроводной связи с интеллектуальной антенной;
фиг.2 - блок-схема интеллектуальной антенны и способа подавления помех;
фиг.3 - графическая схема интеллектуальной антенны и способа подавления помех.
Варианты выполнения изобретения
Ниже приводится подробное описание изобретения с помощью вариантов выполнения и чертежей. Как показано на фиг.1, системами, относящимися к изобретению, являются мобильная система связи с интеллектуальной антенной и подавлением помех или беспроводная система связи, такая как беспроводная кольцевая системы связи для пользователей. На фиг.1 показана структура базовой станции системы. Она содержит в основном N идентичных антенных модулей 201А, 201В,..., 201i,..., 201N; N почти идентичных фидеров 202А, 202В,..., 202i,... 202N; N радиочастотных приемопередатчиков 203А, 203В,..., 203i,..., 203N и процессор 204 основной полосы частот. Все приемопередатчики 203 используют один и тот же осцилятор 208 для гарантии того, что каждый радиочастотный приемопередатчик работает когерентно. В каждом радиочастотном приемопередатчике имеется аналого-цифровой преобразователь (ADC) и цифроаналоговый преобразователь (DAC), так что все входные и выходные сигналы радиочастотного приемопередатчика 203 являются цифровыми сигналами; они соединены с процессором основной полосы частот с помощью высокоскоростной цифровой шины 209. На фиг.1 блок 100 является базовой станцией.
Изобретение относится только к подавлению помех принятого сигнала при обработке в основной полосе частот, показанной на фиг.1, без обсуждения обработки передаваемых сигналов. Использование интеллектуальной антенны и подавление помех выполняется в процессоре 204 основной полосы частот.
Предположим, что беспроводная система связи CDMA имеет К проектных каналов, система интеллектуальной антенны состоит из N антенных модулей, N фидеров и N радиочастотных приемопередатчиков, т.е. N линий связи. В каждой приемной линии связи после дискретизации с помощью аналого-цифрового преобразователя в радиочастотном приемопередатчике ее выходными цифровыми сигналами являются S1(n), S2(n),..., Si(n),..., SN(n), где n означает n-ную микросхему. Если взять в качестве примера приемную линию связи i, то после дискретизации ее принятого сигнала с помощью аналого-цифрового преобразователя в радиочастотном приемопередатчике 203i его выходным цифровым сигналом является Si(n), который является входным сигналом процессора 204 основной полосы частот. Процессор 204 основной полосы частот содержит модули 210А, 210В,..., 210i,... 210N оценки каналов, которые соответствуют N радиочастотным приемопередатчикам 203А, 203В,..., 203i,..., 203N соответственно, N линий связи, и модуль 211 подавления помех интеллектуальной антенны; выходные цифровые сигналы N линий связи S1(n), S2(n),..., S1(n),..., SN(n) подаются в модуль 210А, 210В,..., 210i,..., 210N соответственно, а также они передаются в модуль 211 подавления помех интеллектуальной антенны; сигналы h1, h2,..., h1,..., h2 отклика каналов, которые соответствуют выходным сигналом модуля 210А, 210В,..., 210i,..., 210N соответственно, подаются в модуль 211 подавления помех интеллектуальной антенны; модуль 211 подавления помех интеллектуальной антенны выдает параметр Ss(K) синхронной настройки в передаточный модуль линии связи от центра и выдает результат Sca+1,k (d) подавления помех в декодирующий модуль канала, где h1=[hi1, hi2,..., hik].
Когда Si(n) попадает в модуль 210i оценки каналов с известной заранее последовательностью обучения (Пилот или Midamble), то выполняется оценка К каналов и получают импульсы hik откликов К каналов, где i обозначает антенный модуль i, a k обозначает канал k.
Специальная процедура обработки состоит в следующем. Предположим, что известной последовательностью обучения пользователя k является mk, принятой из антенны i, последовательностью обучения является еi, то справедлива формула (1)
Figure 00000002
где n является микросхемой n, w - длина окна поиска и noi - белый шум, принятый от антенны i. Формулу (1) можно записать в виде формулы (2)
Figure 00000003
тогда оценку канала можно выразить формулой (3)
Figure 00000004
где М является матрицей, которая соотносится только с последовательностью обучения каждого пользователя и может быть вычислена заранее; поскольку нет необходимости вычислять ее в реальном времени, то можно значительно увеличить скорость оценки каналов.
В соответствии с указанной выше процедурой можно вычислить отклики всех пользователей во всех каналах соответственно, подать результаты hi,k на вход модуля 211 подавления помех интеллектуальной антенны; после дальнейшей обработки восстанавливаются сигналы всех пользователей.
На фиг.2 показан процесс подавления помех в модуле 211 подавления помех интеллектуальной антенны. Сначала отклик hi,k канала, вычисленный с помощью модуля 210i оценки канала, подается в модуль 220 оценки мощности для оценки мощности; вычисляют распределение мощности главного и многолучевого распространения К пользователей (с К каналами) в окне поиска с помощью формулы (4)
Figure 00000005
Затем вычисляют точку максимальной пиковой мощности каждого пользователя; если наиболее мощный луч пользователя не находится в той же точке, что и наиболее мощный луч других пользователей, то это означает, что пользователь не синхронизуется с базовой станцией; базовая станция информирует пользователя в канале линии связи от центра выполнить настройку для поддержания синхронизации с другими пользователями; параметром настройки является указанный выше Ss(K).
И затем вычисляют распределение полной мощности главного и многолучевого распространения пользователя k в окне поиска в соответствии с формулой (5)
Figure 00000006
где m является точкой в окне поиска, мощность_abs подается в генератор 221 сигналов для генерирования сигнала; в то же время сигналы, переданные в генератор 221 сигналов, также имеют сигнал h1, h2,..., hi,..., hN (вектор) отклика каналов, выданный каждым модулем 201А, 201В,..., 201i,..., 201N соответственно, и выходные цифровые сигналы S1(n), S2(n),..., Si(n),..., SN(n) N линий связи.
В генераторе 221 сигналов сначала вычисляется положение точки пиковой величины в мощность_abs и сохраняется в мощность_точка; в то же время устанавливают мощность_abs (мощность_точка) = 0, что необходимо для вычисления этой точки при выполнении следующего подавления помех; затем результат сжатия распределенного спектра всех сигналов в этой точке получают с помощью алгоритма интеллектуальной антенны в мощность_точка в соответствии с формулой (6)
Figure 00000007
где Cq,k является кодом распределенного спектра пользователя k, pn_code(l) является кодом скремблирования, Sca,k(d) является результатом подавления помех последнего времени, при этом начальное значение S0,k(d)=0 и выходной сигнал Sca+1,k(d) является символическим уровнем. Очевидно, что поскольку пользователи не полностью синхронизованы и в системе имеются помехи от многолучевого распространения и белый шум, то Sca+1,k(d) является сначала грубым результатом.
Sca+1,k(d) подают в модуль 224 оценки отношения сигнал/шум и в модуль 222 реконструкции сигналов. Задачей модуля 224 оценки отношения сигнал/шум является оценка отношения сигнал/шум каждого пользователя; сигнал, созданный генератором 221 сигналов, является дескремблированным, сжатым из состояния расширенного спектра и демодулированным сигналом; в настоящее время имеется множество способов оценки отношения сигнал/шум каждого пользователя, один из них заключается в следующем: для пользователя k вычисляют сначала его мощность по формуле (7)
Figure 00000008
Если мощность больше, чем определенная величина поля, то она принимается за эффективную мощность; для всех сигналов с эффективной мощностью вычисляют разницу их квадратов в соответствующей точке совокупной карты; если разница квадратов больше заданной величины, то отношение сигнал/шум этого пользователя относительно мало и его Sca+1,k(d) является не достоверным, так что необходимо подавление помех; и наоборот, если разница квадратов меньше заданной величины, то отношение сигнал/шум этого пользователя является относительно большим и значение его Sca+1,k(d) является достоверным, так что нет необходимости в подавлении помех. Целью использования модуля отношения сигнал/шум является упрощение вычисления подавления помех, поскольку нет необходимости в подавлении помех для достоверных сигналов.
Модуль 222 реконструкции сигналов использует Sca+1,k(d) для реконструкции исходного сигнала, что выполняется на уровне микросхемы с помощью формулы (8)
Figure 00000009
Затем вычисляют компоненты К пользователей на N антеннах с помощью формулы
Figure 00000010
Результаты реконструкции N антенн подают в модуль 223 подавления помех для подавления помех по формуле (10)
Figure 00000011
На фиг.2 используется функция модуля 225 принятия решения для определения, когда необходимо остановить подавление помех на основе двух условий принятия решения: (1) отношение сигнал/шум всех сигналов больше заданной величины поля, (2) число циклов подавления помех достигло заданного числа, которое меньше или равно длине окна поиска, и внутри этого диапазона число циклов определяется производительностью обработки процессора обработки цифровых сигналов, микросхемой вентильной матрицы, программируемой пользователем (FPGA) и т.д. Если удовлетворяется одно из условий, то процедура обработки способа подавления помех интеллектуальной антенны заканчивается и выдается восстановленный сигнал Sca+1,k(d).
На фиг.3 показаны в качестве примера 8 антенн (N=8) для пояснения процедуры обработки способа подавления помех для интеллектуальной антенны.
На стадии 301 вычисляют оценочную мощность каналов с помощью модуля 220 оценки мощности; на стадиях 303 и 304 выполняют поиск максимального значения мощности с помощью модуля 221 генератора сигналов, вычисляют разницу и устанавливают величину на 0, сжимают распределенный спектр в точке образования разницы и выполняют формирование луча, затем направляют результат в одно и то же время в модуль 225 определения отношения сигнал/шум и в модуль 222 реконструкции сигналов (через модуль 225 принятия решения); на стадии 302 передают величину Ss(k) настройки синхронизации; на стадии 308 реконструируют сигнал и вычисляют его компоненты на этих 8 антеннах; на стадии 309 вычитают компоненты реконструированных данных на 8 антеннах из принятых данных, сохраняют результат в принятых данных, затем повторно выполняют стадии 303 - 309. Когда на стадии 305 будет с помощью модуля 224 определения отношения сигнал/шум установлено, что величина отношения сигнал/шум, и на стадии 306 с помощью модуля 225 принятия решения будет установлено, что число циклов или отношение сигнал/шум всех пользователей удовлетворяют заданным условиям, то подавление помех заканчивают и на стадии 307 выдают восстановленный сигнал.
Изобретение главным образом относится к беспроводной системе связи CDMA, включая беспроводную систему связи CDMA дуплексной связи с разделением во времени (TDD) и дуплексной связи с разделением по частоте (FDD). Любой инженер, который работает в области разработки беспроводной системы связи, знает принципы работы интеллектуальной антенны и обработки цифровых сигналов, может использовать способ, согласно изобретению, для создания высококачественной системы с интеллектуальной антенной, которую можно с большим успехом использовать в различных системах мобильной связи или в беспроводной системе кольцевой связи пользователей.

Claims (10)

1. Способ обработки основной полосы частот на основе интеллектуальной антенны и подавления помех, при этом антенный модуль, соответствующий фидер и когерентный радиочастотный приемопередатчик образуют линию связи, содержащий этапы: А) выполнение с помощью матрицы, которая относится к каждой последовательности обучения пользователей, оценки каналов для выходных сигналов дискретных данных с каждой линии связи соответственно, и затем получение отклика всех каналов, отличающийся тем, что дополнительно содержит этапы: В) вычисление распределения мощности распространения каждого канала в окне поиска, получение положения пиковой величины мощности каждого канала, осуществление настройки синхронизации для каналов, если все положения максимальной пиковой величины мощности указанных каналов не синхронизированы, и далее вычисление распределения полной мощности распространения каждого канала в окне поиска, С) определение положения текущей пиковой величины мощности в указанной полной мощности распространения и исключение из последующих определений положения максимальной пиковой величины мощности, D) с использованием алгоритма формирования луча интеллектуальной антенны и отклика каналов, полученного на этапе А), осуществление формирования луча для сигнала, полученного сжатием распределенного спектра и дескремблированием сигнала дискретных данных в положении текущей пиковой величины мощности с получением текущего демодулированного сигнала в положении текущей пиковой величины мощности, и добавления последнего демодулированного сигнала к текущему демодулированному сигналу, и далее получение восстановленного сигнала, Е) определения необходимости подавления помех для восстановленного сигнала, и, в случае необходимости, переход на этап F), в другом случае осуществление вывода восстановленного сигнала и окончание обработки, F) осуществление реконструкции данных для восстановленного сигнала и вычисление компонентов принимаемого сигнала каждого антенного модуля и G) вычитания компонентов принимаемого сигнала каждого антенного модуля из сигнала дискретных данных соответственно, и далее получение сигнала дискретных данных, смещенного к сигналу наиболее мощного в данный момент луча распространения, и далее возврат к выполнению этапа С).
2. Способ по п.1, отличающийся тем, что матрица, которая относится к каждой последовательности обучения пользователя, вычисляется и сохраняется заранее.
3. Способ по п.1, отличающийся тем, что этап С) дополнительно содержит сохранение положения максимальной пиковой величины мощности в памяти, обозначаемой power_point.
4. Способ по п.1, отличающийся тем, что настройка синхронизации на этапе В) содержит передачу параметра настройки синхронизации в передающий модуль этого пользователя с наиболее мощным лучом распространения не в одной точке с другим пользователем и без синхронизации с базовой станцией.
5. Способ по п.1, отличающийся тем, что определение на этапе Е) осуществляется путем определения удовлетворения отношения сигнал/шум заданным условиям, этап D) дополнительно содержит одновременное вычисление отношения сигнал/шум для восстановленного сигнала.
6. Способ по п.5, отличающийся тем, что определение удовлетворения отношения сигнал/шум заданным условиям содержит вычисление мощности пользователя для восстановленного сигнала, определение мощности, больше определенной величины поля, в качестве эффективной мощности, вычисление разности квадратов для всех сигналов с эффективной мощностью в соответствующей точке совокупной карты, определение восстановленного сигнала с неудовлетворительным низким отношением сигнал/шум, если их разница квадратов больше заданной величины, и восстановленного сигнала с удовлетворительным высоким отношением сигнал/шум, если их разница квадратов меньше заданной величины.
7. Способ по п.1, отличающийся тем, что определение на этапе Е) осуществляется путем определения достижения количества циклов подавления заданного числа.
8. Способ по п.1, отличающийся тем, что максимальное количество циклов подавления равно длине окна поиска.
9. Способ по п.1, отличающийся тем, что исключение из вычислений положения максимальной пиковой величины мощности содержит установление значения мощности в положении максимальной пиковой величины мощности на ноль.
10. Способ по п.1, отличающийся тем, что на этапе D) используют формулу
Figure 00000012
где Cq,k является кодом распределенного спектра k-го пользователя, pn_code(1) является кодом скремблирования, Sca,k(d) является результатом подавления помех последнего раза, при этом начальное значение So,k(d)=0 и выходной сигнал Sca+1,k(d) является символическим уровнем.
RU2002106107/09A 1999-08-10 2000-06-22 Способ обработки основной полосы частот на основе интеллектуальной антенны и подавления помех RU2265929C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN99111349A CN1118200C (zh) 1999-08-10 1999-08-10 基于智能天线和干扰抵销的基带处理方法
CN99111349.7 1999-08-10

Publications (2)

Publication Number Publication Date
RU2002106107A RU2002106107A (ru) 2003-09-10
RU2265929C2 true RU2265929C2 (ru) 2005-12-10

Family

ID=5275032

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002106107/09A RU2265929C2 (ru) 1999-08-10 2000-06-22 Способ обработки основной полосы частот на основе интеллектуальной антенны и подавления помех

Country Status (14)

Country Link
US (1) US7130365B2 (ru)
EP (1) EP1209761B1 (ru)
JP (1) JP4563635B2 (ru)
KR (1) KR100591979B1 (ru)
CN (1) CN1118200C (ru)
AT (1) ATE403954T1 (ru)
AU (1) AU776615B2 (ru)
BR (1) BRPI0013123B1 (ru)
CA (1) CA2381383C (ru)
DE (1) DE60039769D1 (ru)
HK (1) HK1035463A1 (ru)
MX (1) MXPA02001462A (ru)
RU (1) RU2265929C2 (ru)
WO (1) WO2001011723A1 (ru)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7327800B2 (en) 2002-05-24 2008-02-05 Vecima Networks Inc. System and method for data detection in wireless communication systems
WO2004010573A1 (en) * 2002-07-19 2004-01-29 Interdigital Technology Corporation Groupwise successive interference cancellation for block transmission with reception diversity
CN101471139A (zh) * 2002-11-25 2009-07-01 张国飙 三维存储器之设计
CN100576772C (zh) 2002-12-27 2009-12-30 Nxp股份有限公司 具有智能天线的移动终端及其方法
US7327795B2 (en) 2003-03-31 2008-02-05 Vecima Networks Inc. System and method for wireless communication systems
KR101050569B1 (ko) * 2004-01-13 2011-07-19 삼성전자주식회사 스마트 안테나를 이용한 이동통신 시스템에서 순방향 빔폭 조절 방법 및 장치
US7430440B2 (en) * 2004-02-06 2008-09-30 Interdigital Technology Corporation Method and apparatus for reducing transient impacts of beam switching in a switched beam antenna system
US7158814B2 (en) 2004-06-10 2007-01-02 Interdigital Technology Corporation Method and system for utilizing smart antennas establishing a backhaul network
US8995921B2 (en) 2004-09-10 2015-03-31 Interdigital Technology Corporation Measurement support for a smart antenna in a wireless communication system
CN100382633C (zh) * 2004-11-30 2008-04-16 中兴通讯股份有限公司 一种基于软件无线电的智能天线实现方法
CN101908907B (zh) * 2005-01-24 2012-07-25 株式会社Ntt都科摩 移动通信终端和控制多径干扰去除装置的起动的方法
CN101036402B (zh) * 2005-01-31 2010-11-10 中兴通讯股份有限公司 基于双倍采样的基带处理方法
US7512199B2 (en) * 2005-03-01 2009-03-31 Broadcom Corporation Channel estimation method operable to cancel a dominant disturber signal from a received signal
US8743909B2 (en) * 2008-02-20 2014-06-03 Qualcomm Incorporated Frame termination
US9071344B2 (en) * 2005-08-22 2015-06-30 Qualcomm Incorporated Reverse link interference cancellation
US8594252B2 (en) * 2005-08-22 2013-11-26 Qualcomm Incorporated Interference cancellation for wireless communications
US8630602B2 (en) * 2005-08-22 2014-01-14 Qualcomm Incorporated Pilot interference cancellation
US8611305B2 (en) * 2005-08-22 2013-12-17 Qualcomm Incorporated Interference cancellation for wireless communications
US8385388B2 (en) * 2005-12-06 2013-02-26 Qualcomm Incorporated Method and system for signal reconstruction from spatially and temporally correlated received samples
CN101072066B (zh) * 2006-05-08 2011-05-11 中兴通讯股份有限公司 一种码分多址通信***的智能天线实现方法
CN101072059B (zh) * 2006-05-08 2010-12-08 中兴通讯股份有限公司 一种平滑融合发射的智能天线与空间分集发射方法
KR100824581B1 (ko) * 2006-10-31 2008-04-23 삼성전자주식회사 다중 입출력 시스템에서 수신신호 복호 방법 및 장치
WO2008098416A1 (fr) * 2007-02-14 2008-08-21 Zte Corporation Dispositif de réception rake multi-utilisateur éliminant les interférences et procédé correspondant
US8995417B2 (en) 2008-06-09 2015-03-31 Qualcomm Incorporated Increasing capacity in wireless communication
US9237515B2 (en) 2008-08-01 2016-01-12 Qualcomm Incorporated Successive detection and cancellation for cell pilot detection
US9277487B2 (en) 2008-08-01 2016-03-01 Qualcomm Incorporated Cell detection with interference cancellation
ES2353481B1 (es) * 2009-02-05 2012-01-13 Vodafone España, S.A.U Procedimiento de gestión de recursos de banda base en redes de comunicaciones móviles que implementan técnicas de cancelación de interferencia.
US9160577B2 (en) 2009-04-30 2015-10-13 Qualcomm Incorporated Hybrid SAIC receiver
US8787509B2 (en) 2009-06-04 2014-07-22 Qualcomm Incorporated Iterative interference cancellation receiver
US8831149B2 (en) 2009-09-03 2014-09-09 Qualcomm Incorporated Symbol estimation methods and apparatuses
CN102668612B (zh) 2009-11-27 2016-03-02 高通股份有限公司 增加无线通信中的容量
EP2505017B1 (en) 2009-11-27 2018-10-31 Qualcomm Incorporated Increasing capacity in wireless communications
CN102340327B (zh) * 2011-09-23 2016-04-13 中兴通讯股份有限公司 干扰消除方法及装置
US8938038B2 (en) * 2012-02-02 2015-01-20 Telefonaktiebolaget L M Ericsson (Publ) Extending the set of addressable interferers for interference mitigation
US9585077B2 (en) * 2012-05-17 2017-02-28 The Hong Kong University Of Science And Technology Systems and methods facilitating joint channel and routing assignment for wireless mesh networks
CN104378172B (zh) 2013-08-14 2019-07-26 中兴通讯股份有限公司 数据信道干扰抵消的方法和***
CN103501187B (zh) * 2013-10-10 2015-06-03 中国人民解放军理工大学 一种基于干扰抵消的短波多径信号同步方法
US9966983B2 (en) * 2014-08-15 2018-05-08 Huawei Technologies Co., Ltd. Interference cancellation in MIMO same channel full-duplex transceivers
CN105099643B (zh) * 2015-08-18 2019-03-01 北京科技大学 一种全双工无线通信的方法、天线装置及***
CN105743555B (zh) * 2016-03-25 2018-08-14 四川大学 一种分程式分布天线发射波束优化形成方法
US9860848B2 (en) 2016-05-31 2018-01-02 Apple Inc. Baseband power estimation and feedback mechanism
WO2021096770A1 (en) * 2019-11-12 2021-05-20 Blue Danube Systems, Inc. Transmitter signal cancellation in phased array transceivers
CN113691990A (zh) * 2021-07-16 2021-11-23 德清阿尔法创新研究院 一种基于信噪比冗余和干扰消除技术的异构网络智能共存方法
CN116319187B (zh) * 2023-02-20 2023-10-17 中国人民解放军军事科学院***工程研究院 一种用于卫星物联网***的数据处理方法及装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0647979B1 (en) * 1993-08-12 2002-10-23 Nortel Networks Limited Base station antenna arrangement
ZA95797B (en) * 1994-02-14 1996-06-20 Qualcomm Inc Dynamic sectorization in a spread spectrum communication system
US5621752A (en) * 1994-06-23 1997-04-15 Qualcomm Incorporated Adaptive sectorization in a spread spectrum communication system
DE19639414C2 (de) * 1996-09-25 1998-10-01 Siemens Ag Verfahren zur Parametrisierung einer Empfangsstation mit adaptiven Antenneneinrichtungen und adaptives Filter für zeitveränderliche Kanäle
JPH10190495A (ja) * 1996-12-20 1998-07-21 Fujitsu Ltd 干渉キャンセラ
CN1053313C (zh) * 1997-04-21 2000-06-07 北京信威通信技术有限公司 具有智能天线的时分双工同步码分多址无线通信***及其通信方法
KR100239177B1 (ko) * 1997-08-30 2000-01-15 윤종용 씨디엠에이 이동통신시스템에서 파일럿 신호를 이용한 스마트안테나 수신장치 및 방법
US6314147B1 (en) * 1997-11-04 2001-11-06 The Board Of Trustees Of The Leland Stanford Junior University Two-stage CCI/ISI reduction with space-time processing in TDMA cellular networks
JP2991179B2 (ja) * 1998-01-08 1999-12-20 日本電気株式会社 Cdmaマルチユーザ受信装置
US5982327A (en) * 1998-01-12 1999-11-09 Motorola, Inc. Adaptive array method, device, base station and subscriber unit
EP0964530A1 (en) * 1998-06-05 1999-12-15 Siemens Aktiengesellschaft Radio communications receiver and interference cancellation method
EP0975100A1 (en) * 1998-07-23 2000-01-26 Siemens Aktiengesellschaft Receiver and method of recovering data from radio signals
US6188718B1 (en) * 1998-08-21 2001-02-13 Lucent Technologies Inc. Methods and apparatus for reducing cochannel interference in a mixed-rate communication system
JP2000138605A (ja) * 1998-10-30 2000-05-16 Nec Corp マルチユーザ受信装置
JP2991236B1 (ja) * 1999-01-21 1999-12-20 株式会社ワイ・アール・ピー移動通信基盤技術研究所 直接拡散受信デ―タの誤り推定装置および直接拡散受信装置
JP3641961B2 (ja) * 1999-02-01 2005-04-27 株式会社日立製作所 アダプティブアレイアンテナを使用した無線通信装置
US6141393A (en) * 1999-03-03 2000-10-31 Motorola, Inc. Method and device for channel estimation, equalization, and interference suppression
US6351499B1 (en) * 1999-12-15 2002-02-26 Iospan Wireless, Inc. Method and wireless systems using multiple antennas and adaptive control for maximizing a communication parameter

Also Published As

Publication number Publication date
BRPI0013123B1 (pt) 2015-10-27
CA2381383A1 (en) 2001-02-15
WO2001011723A1 (fr) 2001-02-15
CN1283936A (zh) 2001-02-14
KR100591979B1 (ko) 2006-06-20
EP1209761B1 (en) 2008-08-06
ATE403954T1 (de) 2008-08-15
AU776615B2 (en) 2004-09-16
EP1209761A4 (en) 2003-03-19
EP1209761A1 (en) 2002-05-29
DE60039769D1 (de) 2008-09-18
CN1118200C (zh) 2003-08-13
US7130365B2 (en) 2006-10-31
BR0013123A (pt) 2002-04-30
US20020111143A1 (en) 2002-08-15
JP2003506994A (ja) 2003-02-18
JP4563635B2 (ja) 2010-10-13
MXPA02001462A (es) 2003-07-21
CA2381383C (en) 2008-06-03
HK1035463A1 (en) 2001-11-23
KR20020019961A (ko) 2002-03-13
AU5387200A (en) 2001-03-05

Similar Documents

Publication Publication Date Title
RU2265929C2 (ru) Способ обработки основной полосы частот на основе интеллектуальной антенны и подавления помех
JP4615170B2 (ja) スマート・アンテナに基づく干渉キャンセレーション方法
US6128486A (en) Reception method and base station receiver
US7043275B2 (en) Radio communication apparatus using adaptive antenna
US4984247A (en) Digital radio transmission system for a cellular network, using the spread spectrum method
US8515355B2 (en) Method of realizing smart antenna based on software radio and system therefor
US8417207B2 (en) High-performance cellular telephone receiver
US6345046B1 (en) Receiver and demodulator applied to mobile telecommunications system
US8498321B2 (en) Method and system for optimizing programmable interference suppression
Jeong et al. A novel transmission diversity system in TDD-CDMA
CN113965248B (zh) 一种阵元级多用户干扰消除***
KR100329110B1 (ko) 칩 레벨 및 시간 기준 빔 형성 알고리즘을 적용한공간-시간 배열 수신시스템
US6552684B2 (en) Direction of arrival estimation method and radio reception apparatus
KR20020024876A (ko) 코드 분할 다중 접속 시스템을 위한 스위칭 빔 어레이시스템
JP3452253B2 (ja) アダプティブ・アレイを用いたcdma受信装置