WO2000042673A1 - Method for charging secondary cell and charger - Google Patents

Method for charging secondary cell and charger Download PDF

Info

Publication number
WO2000042673A1
WO2000042673A1 PCT/JP1999/000124 JP9900124W WO0042673A1 WO 2000042673 A1 WO2000042673 A1 WO 2000042673A1 JP 9900124 W JP9900124 W JP 9900124W WO 0042673 A1 WO0042673 A1 WO 0042673A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
current value
battery
charge
current
Prior art date
Application number
PCT/JP1999/000124
Other languages
French (fr)
Japanese (ja)
Inventor
Tamotsu Yamamoto
Hiroshi Horiuchi
Kensuke Yoshida
Masami Tsutsumi
Tsutomu Miyashita
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP1999/000124 priority Critical patent/WO2000042673A1/en
Publication of WO2000042673A1 publication Critical patent/WO2000042673A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method and a device for charging a secondary battery used as a power source for driving a notebook computer or portable electronic device.
  • non-aqueous electrolyte secondary batteries using lithium metal or lithium alloy for the negative electrode have an extremely high energy density, and are attracting attention as batteries suitable for miniaturization and weight reduction. Research is being done.
  • lithium on the negative electrode becomes lithium ions and moves to the positive electrode side in the electrolytic solution, and when charging, on the contrary, lithium escapes from the positive electrode and deposits on the negative electrode. Since lithium is very active, if lithium precipitates coarsely during charging and the surface area increases, it tends to react with the components in the electrolyte, and an irreversible film (called dead lithium; ), which leads to a reduction in the charge and discharge cycle life.
  • Japanese Patent Application Laid-Open No. 7-123604 discloses a charging method capable of shortening the charging time of a secondary battery. According to one embodiment of this charging method, the charging current at the initial stage of charging is increased, and the charging current is reduced as the charging end period is approached. ing. However, in such a charging method, since the current value at the initial stage of charging is high, lithium is coarsely precipitated, and there is a problem that the cycle life when charging and discharging are repeated is shortened. Disclosure of the invention
  • a main object of the present invention is to provide a method of charging a secondary battery capable of achieving a longer life or a shorter charging time when charging and discharging are repeated, or both. It is in.
  • Another object of the present invention is to provide a charging device suitable for performing such a charging method.
  • the charging process is divided into a plurality of stages having different charging current values, The charging current value at the charging stage at the start of charging is set relatively small, and the charging current value at each subsequent charging stage is set to be larger than the charging current value at the start of charging.
  • a method for charging a secondary battery is provided.
  • the present invention is based on the following operation principle.
  • the form of lithium deposition depends not only on the charging current but also on the amount of charge.
  • the charging current value at the start of charging i.e., the average current value in consideration of the duty ratio when charging is performed using the pulse current
  • the charging current value at the start of charging is set to be relatively small.
  • Japanese Patent Application Laid-Open No. 8-182152 discloses a method of charging a secondary battery using a pulse current in order to perform appropriate charging without overcharging or insufficient charging regardless of the battery history.
  • the difference between the pulse-on voltage and the pulse-off voltage (the internal resistance of the battery It is disclosed that the charging current is controlled so as to decrease the charging current value in inverse proportion to the charging current value. Therefore, because the history of the battery that happened to be charged happens to be special, if the differential voltage at the beginning of charging is high and the differential voltage at the end of charging is low, the charging current value at the beginning of charging is low, The charging current value of the battery may be high (page 8, right column, lines 29 to 47 of the same publication).
  • switching from a relatively low charging current value to a relatively high charging current value is performed by determining the amount of charge from the start of charging.
  • charging at a relatively low charging current value is preferably performed until the charged amount from the start of charging reaches 17 to 80% of the battery capacity. If the charge at a relatively low charge current value is smaller than 17% of the battery capacity, the tendency of the deposited lithium to become coarse increases, and the cycle life when repeating charge and discharge is shortened. Conversely, if the charge at a relatively low charge current value is greater than 80% of the battery capacity, the cycle life when repeating charge / discharge becomes longer, but the charge time for each charge / discharge cycle becomes longer.
  • the state of the battery differs depending on the depth of discharge at the start of charging.
  • the depth of discharge before the start of charging is shallow, the state where lithium on a smooth surface easily precipitates has already been completed, and when the depth of discharge is deep, lithium tends to precipitate coarsely. I have. Therefore, it is preferable to set the charge amount of charging performed at a relatively low charging current value according to the discharge depth at the start of charging.
  • the charging current value immediately after the start of charging is set to 0.4 mA (0.05 C: 1 C corresponds to 8 mA) or less.
  • 0.05 C: 1 C corresponds to 8 mA
  • the relatively high charging current value used in the subsequent charging phase is set to 2 to 5 times the charging current value at the start of charging to minimize the charging time. No.
  • the charging method of the present invention can be applied to a secondary battery typically using lithium metal or lithium alloy as a negative electrode active material.
  • a phenomenon similar to that of the lithium secondary battery is observed in the nickel-cadmium battery and the lead-acid battery, and therefore, the present invention may be used as a method for charging these batteries.
  • a charging device for a secondary battery wherein a metal is used as a negative electrode active material and the metal is precipitated during charging, a power supply circuit for supplying a direct current for charging the battery.
  • a current control circuit for controlling a charging current value; a timer for measuring a charging time; and a charging amount based on a charging current value from the current control circuit and a charging time from the timer.
  • a voltage measuring device for measuring the voltage of the battery, and supplying the battery to the battery via the current control circuit based on the charge amount from the computing device and the battery voltage from the voltage measuring device.
  • a current judging unit for judging a charging current value to be supplied and stopping supply of the charging current wherein the current judging unit sets the current until the charged amount from the start of charging reaches a predetermined value.
  • Control circuit The charging current value supplied to the battery is set relatively small, and after the charging amount from the start of charging reaches the predetermined value, the charging current value is set to be smaller than the charging current value at the start of charging.
  • a charging device for a secondary battery wherein the charging device is set to be large.
  • FIG. 1 is a cross-sectional view showing the structure of a coin-type lithium secondary battery as a typical example to which the charging method according to the present invention can be applied.
  • FIG. 2 is a half sectional view showing a configuration of a cylindrical lithium secondary battery as another typical example to which the charging method according to the present invention can be applied.
  • FIG. 3 is a fragmentary perspective view showing a positive electrode-negative electrode-separator laminate used for producing the cylindrical lithium secondary battery shown in FIG.
  • FIG. 4 is a process diagram showing a charging device used to carry out the charging method according to the present invention.
  • FIG. 5 is a graph showing a preferred embodiment of the charging method according to the present invention.
  • FIG. 6 is a graph showing another preferred embodiment of the charging method according to the present invention.
  • FIG. 7 is a graph showing still another preferred embodiment of the charging method according to the present invention.
  • FIG. 8 is a graph showing still another preferred embodiment of the charging method according to the present invention.
  • FIG. 9 is a graph showing still another preferred embodiment of the charging method according to the present invention.
  • FIG. 10 is a graph showing the relationship between the charging current and the charge / discharge cycle life of the battery.
  • FIG. 1 shows a so-called coin battery
  • FIG. 2 shows a cylindrical battery
  • FIG. 3 is a fragmentary view of the positive electrode-negative electrode-separate overnight laminate used to construct the cylindrical battery of FIG. 2 in a partially separated and developed state.
  • the coin-type lithium secondary battery shown in FIG. 1 has a positive electrode 1 made of, for example, LiCo 2 (lithium cobaltate) as an active material, a negative electrode 2 made of, for example, lithium foil, And a separator 3 made of, for example, a porous film made of polypropylene interposed between the negative electrodes 2.
  • the positive electrode 1 is formed on a positive electrode current collector 4 made of, for example, aluminum, and the positive electrode current collector 4 is fixed to an inner surface of a positive electrode can 5 made of, for example, stainless steel.
  • the negative electrode 2 is formed on a negative electrode current collector 6 made of, for example, nickel, and the negative electrode current collector 6 is fixed to an inner surface of a negative electrode can 7 made of, for example, stainless steel.
  • the space formed between the positive electrode can 5 and the negative electrode can 7 is filled with an electrolytic solution for allowing movement of lithium ions between the positive electrode 1 and the negative electrode 2. Then, the space between the positive electrode can 5 and the negative electrode can 7 is sealed with, for example, a packing 8 made of polypropylene to complete the battery.
  • the positive electrode 1 is a mixture including a positive electrode active material capable of inserting and extracting lithium ions, a conductive agent having a function of supplementing the conductivity of the positive electrode, and a binder for bonding the positive electrode active material and the conductive agent. is there.
  • L i N i 0 2 lithium nickel oxide
  • L i Mn0 2 lithium manganate
  • L i Mn 2 O 4 spinel
  • V 2 0 5 vanadium pentoxide
  • the conductive agent acetylene black or graphite can be used, but is not limited thereto.
  • the binder for example, polyvinylidene fluoride resin (PVDF), Teflon resin, ethylene-propylene-gene terpolymer, etc. can be used.
  • a lithium plate or a lithium alloy plate for example, a lithium-aluminum alloy, a lithium-tin alloy, a lithium-lead alloy) or the like may be used.
  • L i PF 6 lithium hexafluorophosphate
  • L i BF 4 lithium tetrafluoroborate
  • L i C 10 4 lithium perchlorate lithium ion conductivity
  • PC propylene carbonate
  • T HF tetrahydrofuran
  • EC ethylene carbonate
  • DME 1,2-dimethoxyethane
  • DEC dimethyl carbonate
  • a non-aqueous electrolyte prepared by dissolving in an organic solvent such as —Me THF) and dimethyl carbonate (DMC) can be used.
  • the cylindrical lithium secondary battery shown in FIG. 2 also includes, for example, a positive electrode 1 ′ using Li CoO 2 (lithium cobalt oxide) as an active material, a negative electrode 2 ′ including lithium foil, for example, and these positive electrodes 1 and And a separator 3 ′ made of, for example, a porous film made of polypropylene interposed between the negative electrodes 2 ′.
  • a positive electrode 1 ′ using Li CoO 2 (lithium cobalt oxide) as an active material
  • a negative electrode 2 ′ including lithium foil for example
  • a separator 3 ′ made of, for example, a porous film made of polypropylene interposed between the negative electrodes 2 ′.
  • the laminate of the positive electrode 1 ′, the negative electrode 2, and the separator 3 is formed by winding a long strip in a spiral around the center pin 9 ′ (FIG. 2).
  • the wound laminate is housed in a cylindrical negative electrode can 7 'made of, for example, stainless steel.
  • the positive electrode 1, for example, is formed by applying a positive electrode mixture to both surfaces of an aluminum foil as a positive electrode current collector and rolling.
  • the negative electrode 2 ′ is formed, for example, by sandwiching a copper foil as a negative electrode current collector from both sides with a lithium foil as a negative electrode active material. It has a configuration.
  • the negative electrode 1 ' has a negative electrode lead tab 10', which extends beyond the lower insulating plate 11 'and is welded to the inner bottom surface of the negative electrode can 7'.
  • the positive electrode 1 ' is electrically connected to the positive electrode lead tab 12'.
  • the positive electrode lead tab 12' extends through the upper insulating plate 13 'and is electrically connected to the positive electrode lid 5' via the positive electrode lead pin 14 '. .
  • the negative electrode can 7' electrode lid 5 into the space formed between the, for example if L i PF 6 a (lithium hexafluorophosphate) ethylene carbonate (EC) and Jefferies Chiruka one Poneto (DEC) A non-aqueous electrolyte prepared by dissolving in a mixed organic solvent is filled. Then, the space between the positive electrode lid 5 'and the negative electrode can 7, is sealed with, for example, a packing 8' made of polypropylene to complete the battery.
  • L i PF 6 a lithium hexafluorophosphate
  • EC ethylene ethylene carbonate
  • DEC Jefferies Chiruka one Poneto
  • FIG. 4 is a block diagram showing the configuration of the charging device according to the preferred embodiment.
  • the charging device includes a power supply circuit 20 for supplying a DC current capable of charging the battery B, a current control circuit 21 for controlling a charging current value, and an evening circuit for measuring a charging time.
  • a computing unit 23 for calculating the amount of charge based on the charging current value from the current control circuit 21 and the charging time from the evening control 22, and a voltage measuring device 24 for measuring the voltage of the battery B.
  • a current judging unit 25 To determine the value of the charging current to be supplied to the battery B via the current control circuit 21 based on the charge amount from the arithmetic unit 23 and the battery voltage from the voltage measuring device 24, or to stop the supply of the charging current.
  • a current judging unit 25 for supplying a DC current capable of charging the battery B, a current control circuit 21 for controlling
  • the computing unit 23 calculates a charge amount by adding a multiplying unit 23 a for integrating the charging time from the timer 22 and the charging current value from the current control circuit 21 and an output from the multiplying unit 23 a. And a storage unit 23c for storing the calculated charge amount and performing feedback for addition in the addition unit 23b.
  • charging when charging a lithium secondary battery as shown in FIG. 1 or FIG. 2, charging is divided into a plurality of stages, and a charging current value is relatively set in an initial stage after the start of charging. Set the charging current to a small value, and set the charging current value relatively high at the stage of charging near the end of charging, to extend the battery life or shorten the charging time or Both are achieved.
  • the number of steps for switching the charging current value is not particularly limited, but usually, two steps are sufficient.
  • FIG. 5 is a graph showing the switching state of the charging current value in one embodiment of the charging method according to the present invention.
  • the vertical axis shows the charging current value
  • the horizontal axis shows the ratio of the charged amount to the battery capacity.
  • a small first charging of 0.354 mA 0.044 C: 1 C is equivalent to 8 mA; the same applies hereinafter.
  • Charging is performed at the current value, and when the charged amount reaches 50% of the battery capacity, the charging current value rapidly increases to, for example, a second charging current value of 1.062 mA (0.133 C). After that, the second charge current value is maintained until charging is completed (full charge state).
  • the current control circuit 21 controls the charging current from the power supply circuit 20 to the first charging current value simultaneously with the start of charging, and Ima 2 2 starts timing.
  • the computing unit 23 calculates the amount of charge based on the timing information from the timer 22 and the current value from the current control circuit 21, and outputs it to the current determination unit 25.
  • a predetermined value for example, an amount corresponding to 50% of the initial battery capacity
  • An instruction is issued to the current control unit 21 to increase the charging current value to a second charging current value higher than the first charging current value. Thereby, the battery B is charged at the second charging current value until the charging ends.
  • the voltage measuring device 24 constantly monitors the voltage of the battery B and outputs it to the current judging unit 25.
  • the measured voltage is a predetermined charge cut-off voltage (a battery voltage at which charging should be terminated, for example, lithium
  • the current judging unit 25 issues a command to the current control unit 21 to stop supplying current to the battery B.
  • charging of the battery B is completed.
  • the determination of switching from the first charging current value to the second charging current value by the current determination unit 25 based on the charge amount by the computing unit 23 is based on the battery state at the start of charging. This is because it is difficult to determine the switching of the charging current value with the battery voltage because the voltage is different. Therefore, in the charging device according to the present embodiment, the measurement of the battery voltage by the voltage measuring device 24 is used only for determining the end of charging.
  • a coin-type lithium secondary battery having a configuration shown in FIG. 1 (diameter: 20 mm, thickness: 3.2 mm, capacity: using a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte specified below) 8 mAh) was prepared and a charge / discharge cycle test was performed under the conditions described below.
  • L i Co_ ⁇ 2 (lithium cobaltate) 90% as a positive electrode active material, ⁇ cetirizine Ren black as a conductive agent 2.5% and graphite 2.5%, 5% polyvinylidene fluoride resin (PVDF) as a binder
  • PVDF polyvinylidene fluoride resin
  • a lithium foil was used as the negative electrode.
  • a polyethylene porous film was used for the separation.
  • a charge / discharge cycle test was performed on the lithium secondary battery with the above configuration using a charging device with the configuration shown in Fig. 4 under the following conditions.
  • charging starts at the first charging current value of 0.354mA (0.044C), and when charging reaches 4mAh (equivalent to 50% of the initial battery capacity), 1 Switched to the second charge current value of 062mA (0.14C) and continued charging until the end of charging.
  • the charge cutoff voltage (the battery voltage at which charging is completed) was set to 4.2V.
  • the discharge cutoff voltage battery voltage at which discharge ends
  • the discharge depth discharge at each charge / discharge cycle 100% capacity when discharged to cut-off voltage Then, it was discharged to 100%.
  • the rest time after discharge was set to 1 minute after charge.
  • charging starts at the first charging current value of 0.354 mA (0.044 C), and when charging reaches 2.5 mAh, the second charging of 1.062 mA (0.14 C) starts. Switching to the charging current value, charging was continued until charging was completed. At this time, as in Example 1, the charge cutoff voltage was set to 4.2 V.
  • Example 1 the discharge was performed at a constant current of 1.77 mA (0.22 C) with a discharge cutoff voltage of 3.0 V to a discharge depth of 100%.
  • the battery performance was evaluated in the same manner as in Example 1. As shown in Table 1, the cycle life was 59 times and the charging time (representative value) was 12.2 hours. Was.
  • charging starts at the first charging current value of 0.354 mA (0.044 C), and when the charging amount reaches 0.2 mAh, the second charging of 1.062 mA (0.14 C) Switching to the current value, charging was continued until charging was completed.
  • the charge cutoff voltage was set to 4.2 V.
  • the battery performance was evaluated in the same manner as in Example 1. As shown in Table 1, the cycle life was 215 times and the charging time (representative value) was 4.1 hours.
  • charging starts at the first charging current value of 0.354 mA (0.044C), and when the charging amount reaches 2.0 mAh, the second charging of 1.062 mA (0.14C) starts. Switching to the current value, charging was continued until charging was completed. At this time, as in Example 1, the charge cutoff voltage was set to 4.2 V.
  • the discharge was performed at a constant current of 1.77 mA (0.22 C) to a depth of discharge of 50%.
  • the battery performance was evaluated in the same manner as in Example 1. As shown in Table 1, the cycle life was 210 times and the charging time (representative value) was 7.5 hours.
  • Example 1 In order to compare the charging method of the present invention with the conventional charging method, the same configuration as in Example 1 was used. The following charge / discharge cycle test was performed using the coin-type lithium secondary battery.
  • charging was performed at a constant current of 0.531 mA (0.056 C) up to a charge cutoff voltage of 4.2 V.
  • Example 1 the discharge was performed at a constant current of 1.77 mA (0.22 C) with a discharge cutoff voltage of 3.0 V to a discharge depth of 100%.
  • the battery performance was evaluated in the same manner as in Example 1. As shown in Table 1, the cycle life was 58 times and the charging time (representative value) was 15.1 hours. Was.
  • Example 1 When this comparative example is compared with Example 1, the charging time is the same at 15.1 hours in both cases, but the cycle life of Example 1 is approximately doubled. This confirms the life improvement effect of the present invention.
  • charging was performed at a constant current of 0.654 mA (0.082 C) up to a charge cutoff voltage of 4.2 V.
  • Example 1 the discharge was performed at a constant current of 1.77 mA (0.22 C) with a discharge cutoff voltage of 3.0 V to a discharge depth of 100%.
  • the battery performance was evaluated in the same manner as in Example 1. As shown in Table 1, the cycle life was 45 times and the charging time (representative value) was 12.2 hours. Was.
  • Example 2 When this comparative example is compared with Example 2, the charging time is the same at 12.2 hours in both cases, but the cycle life of Example 2 is about 1.3 times longer than that of Example 2. From this Can also confirm the life improvement effect of the present invention ⁇ Table 1
  • FIG. 6 is a pulse characteristic graph showing a charging method according to another embodiment of the present invention, in which the vertical axis represents a current value and the horizontal axis represents time.
  • the minimum current value was 0 and the maximum current value was 0.708 mA (0.089 C), and the average current value was 0.354 mA. (0.044 C) at a duty ratio of 1/2, and when the charge reaches 4 mAh, the average current value is 1.062 mA (0.
  • the maximum pulse current was switched to 2.124 mA (0.27C) (the minimum current and the duty ratio were maintained) so that the charging was completed, and charging was continued until the end of charging.
  • the charge cutoff voltage was set to 4.2 V, as in the first embodiment.
  • Example 1 the discharge was performed at a constant current of 1.77 mA (0.22 C) with a discharge cutoff voltage of 3.0 V to a discharge depth of 100%.
  • Example 3 Three In this example, the battery performance was evaluated in the same manner as in Example 1. As a result, the cycle life and the charging time were almost the same as those in Example 1.
  • FIG. 7 is a pulse characteristic graph showing a charging method according to still another embodiment of the present invention, wherein the vertical axis represents a current value and the horizontal axis represents time.
  • the pulse current having the minimum current value of 0 and the maximum current value of 2.124 mA (0.27 C) was converted to the average current value of 0.354 mA. (0.044 C) at a duty ratio of 1 Z6.
  • the average current value is 1.062 mA (0.14 C )
  • the duty ratio of the pulse current was switched to 1 to 2 so that the minimum current value and the maximum current value were maintained, and charging was continued until charging was completed.
  • the charge cutoff voltage was set to 4.2 V.
  • Example 1 the discharge was performed at a constant current of 1.77 mA (0.22 C) with a discharge cut-off voltage of 3.0 V to a discharge depth of 100%. .
  • Example 1 the battery performance was evaluated in the same manner as in Example 1. As a result, the cycle life and the charging time were almost the same as those in Example 1.
  • FIG. 8 is a pulse characteristic graph showing a charging method according to still another embodiment of the present invention, in which the vertical axis represents a current value and the horizontal axis represents time.
  • Example 7 As shown in the graph of FIG. 8, in Example 7, as the first charging stage, a pulse current having a minimum current value of 0 and a maximum current value of 2.124 mA (0.27 C) was converted to an average current value of 0.354 mA. (0.044 C) at a duty ratio of 1/6 When the amount of charge reaches 4 mAh, as the second charging stage, the minimum current value of the pulse current is set to 1.264 mA (0.158 C) so that the average current value becomes 1.062 mA (0.14 C). ) (The maximum current value and duty ratio are maintained), and charging was continued until charging was completed. At this time, the charge cutoff voltage was set to 4.2 V, as in the first embodiment.
  • Example 1 the discharge was performed at a constant current of 1.77 mA (0.22 C) with a discharge cutoff voltage of 3.0 V to a discharge depth of 100%.
  • Example 1 the battery performance was evaluated in the same manner as in Example 1. As a result, the cycle life and the charging time were almost the same as those in Example 1.
  • FIG. 9 is a graph showing a charging method according to still another embodiment of the present invention, in which the vertical axis indicates the charging current value, and the horizontal axis indicates the ratio of the charging amount to the battery capacity.
  • Example 8 As shown in the graph of FIG. 9, in Example 8, as the first charging stage, charging was performed at the first charging current value of 0.354 mA (0.044 C), and when the charged amount reached 4 mAh.
  • the battery voltage is switched to 4.2 V by switching to the second charging current value of 1.062 mA (0.14 C), and then, in the third charging stage, the 4.2 V Constant voltage charging was performed until the final current value decreased to 0.354 mA (0.044C). That is, this embodiment is the same as the first embodiment up to the second charging stage, but differs from the first embodiment in that a third charging stage is added.
  • the reason for adding the third charging stage in this way is that at the end of charging, the battery voltage is actually slightly lower than the charge cutoff voltage due to the voltage drop due to polarization. Charge it.
  • Example 1 the discharge was performed at a constant current of 1.77 mA (0.22 C) with a discharge cutoff voltage of 3.0 V to a discharge depth of 100%.
  • the battery performance was evaluated in the same manner as in Embodiment 1.
  • the charging time was about 3% longer than that in Embodiment 1 by the addition of the third charging stage, but the cycle life was longer.
  • the result was about 10% longer than that of Example 1, and more than the increase in the charging time was obtained.
  • the charging current value in the first charging stage In order to study how much it is preferable to set the average current value when using the luster current), the relationship between the charging current value and the cycle life of the lithium secondary battery was examined. The results are shown in the graph of FIG. In the graph, the vertical axis represents the cycle life of the battery, and the horizontal axis represents the charging current value.
  • the charge current value of the first charging stage is less than 0.4 mA (0.05 C).
  • the charging current in the first charging stage may be set slightly higher, and generally 0. If it is less than 8 mA (0.1 C), it is within the allowable range.
  • increasing the charging current value is for shortening the charging time, so it is necessary to increase the charging current value to a certain extent in order to achieve its purpose. It is preferable that the charge current value is 2 to 5 times the one-stage charge current value.
  • the use of the charging method and the charging device of the present invention makes it possible to extend the cycle life of the secondary battery and / or to increase the charging life compared to the conventional charging method and the charging device. Time can be reduced.
  • Examples 1 to 8 all relate to a coin-type lithium secondary battery, similar effects can be obtained by applying the present invention to a cylindrical battery (FIGS. 2 and 3) or a square battery. Further, the present invention is not limited to the lithium secondary battery, and the present invention can be applied to a secondary battery (for example, a nickel-cadmium battery or a lead-acid battery) using a metal as a negative electrode active material and depositing the metal during charging.
  • a secondary battery for example, a nickel-cadmium battery or a lead-acid battery

Abstract

A method for charging a secondary cell, particularly a lithium secondary cell, whose negative active material is a metal which is deposited during the charging. In this charging method, the charging is performed in multiple steps. The value of the charging current is small at the start of the charging, and those at the other steps than the start are larger than that at the start.

Description

明細書 二次電池の充電方法及び充電装置 技術分野  Description Method and apparatus for charging a secondary battery
本発明は、 ノ一卜ブック型パーソナルコンピュータや携帯用電子機器の駆動用 電源として用いられる二次電池の充電方法及び充電装置に関する。 背景技術  The present invention relates to a method and a device for charging a secondary battery used as a power source for driving a notebook computer or portable electronic device. Background art
最近、 ノートブック型パーソナルコンピュータや携帯電話の普及により、 充放 電可能な二次電池に対する需要が急速に高まっている。 とりわけ、 負極にリチウ ム金属又はリチウム合金を用いた非水電解液二次電池は、 非常に高いエネルギー 密度を有していることから、小型軽量化に適した電池として注目されており、種々 な研究がなされている。  Recently, with the spread of notebook personal computers and mobile phones, demand for rechargeable and rechargeable batteries has been rapidly increasing. In particular, non-aqueous electrolyte secondary batteries using lithium metal or lithium alloy for the negative electrode have an extremely high energy density, and are attracting attention as batteries suitable for miniaturization and weight reduction. Research is being done.
リチウム二次電池は、 放電時には、 負極のリチウムがリチウムイオンとなって 電解液中を正極側に移動し、 充電時には、 逆に正極からリチウムが抜けて負極に 析出する。 リチウムは非常に活性なため、 充電時にリチウムが粗く析出して表面 積が大きくなると、 電解液中の成分と反応し易く、 不可逆性の被膜 (死リチウム と呼ばれ、 電解液中の成分とリチウムとの反応生成物である) を生成することか ら、 充放電のサイクル寿命の低下をもたらす。  In a lithium secondary battery, when discharging, lithium on the negative electrode becomes lithium ions and moves to the positive electrode side in the electrolytic solution, and when charging, on the contrary, lithium escapes from the positive electrode and deposits on the negative electrode. Since lithium is very active, if lithium precipitates coarsely during charging and the surface area increases, it tends to react with the components in the electrolyte, and an irreversible film (called dead lithium; ), Which leads to a reduction in the charge and discharge cycle life.
この点に関し、 充電電流を小さくすれば、 リチウムが緻密に析出して表面が滑 らかになり、 サイクル寿命を改善できることが知られている。 そのため、 従来は 一定の小さい充電電流で充電を行うことにより、 サイクル寿命の延長を図ってい た。 しかしながら、 充電電流は充電時間と反比例するため、 充電電流が小さいほ ど充電時間が長くなる。 このため、 充電電流を小さくするには自ずと限界があつ た。  In this regard, it is known that if the charging current is reduced, lithium is deposited densely, the surface becomes smooth, and the cycle life can be improved. For this reason, conventionally, the cycle life was extended by charging with a constant small charging current. However, since the charging current is inversely proportional to the charging time, the smaller the charging current, the longer the charging time. For this reason, there were naturally limits to reducing the charging current.
特開平 7— 1 2 3 6 0 4号公報には、 二次電池の充電時間を短縮することので きる充電方法が開示されている。 この充電方法の一つの実施形態によれば、 充電 初期の充電電流を高くし、 充電終期に近づくと充電電流を減少させるようになつ ている。 しかしながら、 このような充電方法では、 充電初期の電流値が高いため、 リチウムが粗く析出することになり、 充放電を繰り返す場合のサイクル寿命が短 くなるという問題がある。 発明の開示 Japanese Patent Application Laid-Open No. 7-123604 discloses a charging method capable of shortening the charging time of a secondary battery. According to one embodiment of this charging method, the charging current at the initial stage of charging is increased, and the charging current is reduced as the charging end period is approached. ing. However, in such a charging method, since the current value at the initial stage of charging is high, lithium is coarsely precipitated, and there is a problem that the cycle life when charging and discharging are repeated is shortened. Disclosure of the invention
そこで、 本発明の主たる目的は、 充放電を繰り返した場合の寿命を長くするか、 又は充電時間を短縮するか、 又はその両方を達成することのできる二次電池の充 電方法を提供することにある。  Therefore, a main object of the present invention is to provide a method of charging a secondary battery capable of achieving a longer life or a shorter charging time when charging and discharging are repeated, or both. It is in.
本発明の他の目的は、 このような充電方法を実施するのに適した充電装置を提 供することにある。  Another object of the present invention is to provide a charging device suitable for performing such a charging method.
本発明の第 1の側面によれば、 金属を負極活物質とし、 充電時に当該金属の析 出を伴う二次電池の充電方法において、 充電過程を充電電流値の異なる複数の段 階に分け、 充電開始時の充電段階における充電電流値を相対的に小さく設定し、 それ以降の各充電段階における充電電流値を充電開始時の充電電流値よりも大き くなるようにしたことを特徴とする、 二次電池の充電方法が提供される。  According to a first aspect of the present invention, in a method for charging a secondary battery that uses a metal as a negative electrode active material and deposits the metal during charging, the charging process is divided into a plurality of stages having different charging current values, The charging current value at the charging stage at the start of charging is set relatively small, and the charging current value at each subsequent charging stage is set to be larger than the charging current value at the start of charging. A method for charging a secondary battery is provided.
本発明は、 次のような作用原理に基づいている。 すなわち、 リチウムの析出形 態は、 充電電流のみならず、 充電量にも依存しており、 充電量が小さい初期の段 階では負極に析出するリチウムの表面が粗くなり (すなわち、 電解液との反応面 積が大きくなり) 、 充電量が大きくなるに従い析出リチウムの表面が滑らかにな つていく。 そこで、 本発明の充電方法では、 充電開始時の充電電流値 ひ、 °ルス電 流を用いて充電する場合には、 デューティ比を考慮した平均電流値をいう) を相 対的に小さく設定して、 リチウムが粗く析出するのを極力抑制し、 充電がある程 度進んだ段階で充電電流値を大きくして、 全体としての充電時間を短縮させるの である。 この場合、 充電開始時の相対的に低い充電電流値のままで比較的長く充 電を行うと、 全体としての充電時間もその分長くなるが、 その反面、 充放電を繰 り返す際のサイクル寿命を長くすることができる。  The present invention is based on the following operation principle. In other words, the form of lithium deposition depends not only on the charging current but also on the amount of charge. In the initial stage where the amount of charge is small, the surface of the lithium deposited on the negative electrode becomes rough (that is, the lithium deposits on the negative electrode). The reaction area increases), and the surface of the deposited lithium becomes smoother as the charge amount increases. Therefore, in the charging method of the present invention, the charging current value at the start of charging (i.e., the average current value in consideration of the duty ratio when charging is performed using the pulse current) is set to be relatively small. Thus, coarse deposition of lithium is suppressed as much as possible, and the charging current value is increased when charging has progressed to some extent, thereby shortening the overall charging time. In this case, if charging is performed for a relatively long time while maintaining a relatively low charging current value at the start of charging, the overall charging time will be correspondingly longer, but on the other hand, the cycle when charging and discharging are repeated is repeated. Life can be extended.
なお、 特開平 8— 1 8 2 2 1 5号公報には、 パルス電流による二次電池の充電 方法において、 電池の履歴を問わず過充電や充電不足のない適正な充電を行うた めに、 パルスオン時の電圧とパルスオフ時の電圧との差電圧 (電池の内部抵抗に 比例する) に逆比例させて充電電流値を低くなるよう充電電流を制御することが 開示されている。 従って、 たまたま充電を行うことになつた電池の履歴が特殊な ため、 充電初期の差電圧が高く、 充電終期の差電圧が低くなる場合には、 充電初 期の充電電流値が低く、 充電終期の充電電流値が高くなることがあり得る (同公 報の頁 8、 右欄、 行 2 9〜4 7 ) 。 しかしながら、 このような電流制御態様は電 池の履歴が特殊な場合に偶然に起こり得ることであるに過ぎない。 本発明の充電 方法は、 電池の履歴に関係なく、 充電開始時の充電電流値は常に相対的に低くし、 その後の充電段階での充電電流値をそれよりも高くするものであるから、 上記公 報の充電方法とは基本的に相違している。 Japanese Patent Application Laid-Open No. 8-182152 discloses a method of charging a secondary battery using a pulse current in order to perform appropriate charging without overcharging or insufficient charging regardless of the battery history. The difference between the pulse-on voltage and the pulse-off voltage (the internal resistance of the battery It is disclosed that the charging current is controlled so as to decrease the charging current value in inverse proportion to the charging current value. Therefore, because the history of the battery that happened to be charged happens to be special, if the differential voltage at the beginning of charging is high and the differential voltage at the end of charging is low, the charging current value at the beginning of charging is low, The charging current value of the battery may be high (page 8, right column, lines 29 to 47 of the same publication). However, such a mode of current control can only happen by accident when the history of the battery is special. According to the charging method of the present invention, regardless of the history of the battery, the charging current value at the start of charging is always relatively low, and the charging current value in the subsequent charging stage is higher than that. It is fundamentally different from the public charging method.
本発明の好適な実施形態によれば、 相対的に低い充電電流値から相対的に高い 充電電流値への切替えは、 充電開始からの充電量を判定して行うようにする。 こ の場合、 相対的に低い充電電流値での充電は、 充電開始からの充電量が電池容量 の 1 7〜8 0 %になるまで行うのが好ましい。 相対的に低い充電電流値での充電 が電池容量の 1 7 %よりも小さいと、 析出リチウムが粗くなる傾向が強まり、 充 放電を繰り返す際のサイクル寿命が短くなる。 逆に、 相対的に低い充電電流値で の充電が電池容量の 8 0 %よりも大きいと、 充放電を繰り返す際のサイクル寿命 が長くなる反面、 各充放電サイクルごとの充電時間が長くなる。  According to a preferred embodiment of the present invention, switching from a relatively low charging current value to a relatively high charging current value is performed by determining the amount of charge from the start of charging. In this case, charging at a relatively low charging current value is preferably performed until the charged amount from the start of charging reaches 17 to 80% of the battery capacity. If the charge at a relatively low charge current value is smaller than 17% of the battery capacity, the tendency of the deposited lithium to become coarse increases, and the cycle life when repeating charge and discharge is shortened. Conversely, if the charge at a relatively low charge current value is greater than 80% of the battery capacity, the cycle life when repeating charge / discharge becomes longer, but the charge time for each charge / discharge cycle becomes longer.
本発明の充電方法を適用するに際し、 充電開始時の放電深度によっては電池の 状態が異なっている。 すなわち、 充電開始前の放電深度が浅い場合には、 滑らか な表面のリチウムが析出し易い状態が既にできあがつており、 放電深度が深い場 合にはリチウムが粗く析出し易い状態になっている。 従って、 相対的に低い充電 電流値で行う充電の充電量を、 充電開始時の放電深度に応じて設定するのが好ま しい。  When applying the charging method of the present invention, the state of the battery differs depending on the depth of discharge at the start of charging. In other words, when the depth of discharge before the start of charging is shallow, the state where lithium on a smooth surface easily precipitates has already been completed, and when the depth of discharge is deep, lithium tends to precipitate coarsely. I have. Therefore, it is preferable to set the charge amount of charging performed at a relatively low charging current value according to the discharge depth at the start of charging.
本発明の好適な実施形態によれば、充電開始直後の充電電流値を 0 . 4 mA ( 0 . 0 5 C: 1 Cは 8 mAに対応する) 以下に設定する。 本発明において、 充電開始 直後の充電は粗いリチウムの析出を抑制するためであるから、 充電時間が不当に 長くならない範囲でできるだけ小さい電流値で充電を行った方が有利だからであ る。 逆に、 その後の充電段階に用いられる相対的に高い充電電流値を充電開始時 の充電電流値の 2〜 5倍に設定して、 充電時間をできるだけ短縮するのが好まし い。 According to a preferred embodiment of the present invention, the charging current value immediately after the start of charging is set to 0.4 mA (0.05 C: 1 C corresponds to 8 mA) or less. In the present invention, since charging immediately after the start of charging is for suppressing coarse lithium deposition, it is advantageous to perform charging with a current value as small as possible within a range that does not unduly lengthen the charging time. Conversely, it is preferable to set the relatively high charging current value used in the subsequent charging phase to 2 to 5 times the charging current value at the start of charging to minimize the charging time. No.
本発明の充電方法が適用できるのは、 典型的にはリチウム金属又はリチウム合 金を負極活物質とする二次電池である。 しかしながら、 リチウム二次電池と同様 の現象は、 ニッケル一カドミウム電池ゃ鉛畜電池でもみられるので、 これらの電 池の充電方法として本発明を用いてもよい。  The charging method of the present invention can be applied to a secondary battery typically using lithium metal or lithium alloy as a negative electrode active material. However, a phenomenon similar to that of the lithium secondary battery is observed in the nickel-cadmium battery and the lead-acid battery, and therefore, the present invention may be used as a method for charging these batteries.
本発明の第 2の側面によれば、 金属を負極活物質とし、 充電時に当該金属の析 出を伴う二次電池の充電装置において、 前記電池を充電する直流電流を供給する ための電源回路と、 充電電流値を制御するための電流制御回路と、 充電時間を測 定するための夕イマと、 前記電流制御回路からの充電電流値及び前記夕イマから の充電時間に基づき充電量を算出するための演算器と、 前記電池の電圧を測定す るための電圧測定器と、 前記演算器からの充電量及び前記電圧測定器からの電池 電圧に基づき前記電流制御回路を介して前記電池に供給すべき充電電流値を判断 するとともに、 充電電流の供給を停止させるための電流判断部と、 を備え、 前記 電流判断部は、 充電開始からの充電量が所定値に到達するまでは、 前記電流制御 回路を介して前記電池に供給される充電電流値を相対的に小さく設定し、 充電開 始からの充電量が前記所定値に到達した後は、 充電電流値を充電開始時の充電電 流値よりも大きくなるように設定することを特徴とする、 二次電池の充電装置が 提供される。  According to a second aspect of the present invention, there is provided a charging device for a secondary battery, wherein a metal is used as a negative electrode active material and the metal is precipitated during charging, a power supply circuit for supplying a direct current for charging the battery. A current control circuit for controlling a charging current value; a timer for measuring a charging time; and a charging amount based on a charging current value from the current control circuit and a charging time from the timer. A voltage measuring device for measuring the voltage of the battery, and supplying the battery to the battery via the current control circuit based on the charge amount from the computing device and the battery voltage from the voltage measuring device. A current judging unit for judging a charging current value to be supplied and stopping supply of the charging current, wherein the current judging unit sets the current until the charged amount from the start of charging reaches a predetermined value. Control circuit The charging current value supplied to the battery is set relatively small, and after the charging amount from the start of charging reaches the predetermined value, the charging current value is set to be smaller than the charging current value at the start of charging. Provided is a charging device for a secondary battery, wherein the charging device is set to be large.
本発明のその他の目的、 特徴及び利点は、 添付図面に基づいて行う詳細な説明 から明らかとなろう。 図面の簡単な説明  Other objects, features and advantages of the present invention will become apparent from the detailed description given with reference to the accompanying drawings. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係る充電方法を適用できる代表的な一例であるコィン型リチ ゥム二次電池の構造を示す断面図である。  FIG. 1 is a cross-sectional view showing the structure of a coin-type lithium secondary battery as a typical example to which the charging method according to the present invention can be applied.
図 2は、 本発明係る充電方法を適用できる代表的な他の例である円筒型リチウ ムニ次電池の構成を示す半断面図である。  FIG. 2 is a half sectional view showing a configuration of a cylindrical lithium secondary battery as another typical example to which the charging method according to the present invention can be applied.
図 3は、 図 2に示す円筒型リチウム二次電池を作製するのに用いられる正極— 負極ーセパレー夕積層体を分離展開して断片的に示す斜視図である。  FIG. 3 is a fragmentary perspective view showing a positive electrode-negative electrode-separator laminate used for producing the cylindrical lithium secondary battery shown in FIG.
図 4は、 本発明に係る充電方法を実施するのに用いられる充電装置を示すプロ ック図である。 FIG. 4 is a process diagram showing a charging device used to carry out the charging method according to the present invention. FIG.
図 5は、 本発明に係る充電方法の好適な実施形態を示すグラフである。  FIG. 5 is a graph showing a preferred embodiment of the charging method according to the present invention.
図 6は、 本発明に係る充電方法の他の好適な実施形態を示すグラフである。 図 7は、 本発明に係る充電方法のさらに別の好適な実施形態を示すグラフであ る。  FIG. 6 is a graph showing another preferred embodiment of the charging method according to the present invention. FIG. 7 is a graph showing still another preferred embodiment of the charging method according to the present invention.
図 8は、 本発明に係る充電方法のさらに別の好適な実施形態を示すグラフであ る。  FIG. 8 is a graph showing still another preferred embodiment of the charging method according to the present invention.
図 9は、 本発明に係る充電方法のさらに別の好適な実施形態を示すグラフであ る。  FIG. 9 is a graph showing still another preferred embodiment of the charging method according to the present invention.
図 1 0は、 充電電流と電池の充放電サイクル寿命との関係を示すグラフである。 発明を実施するための最良の形態  FIG. 10 is a graph showing the relationship between the charging current and the charge / discharge cycle life of the battery. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好適な実施形態を添付図面を参照しつつ説明する。  Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
添付図面の図 1〜 3は、 本発明に係る充電方法が好適に適用できるリチウムニ 次電池の代表的な 2つの形態を示している。 このうち図 1は、 いわゆるコイン型 電池を示し、 図 2は円筒型電池を示している。 また、 図 3は図 2の円筒型電池を 構成するのに用いる正極一負極ーセパレ一夕積層体を部分的に分離展開した状態 で断片的に示すものである。  1 to 3 of the accompanying drawings show two typical forms of lithium secondary batteries to which the charging method according to the present invention can be suitably applied. Among them, FIG. 1 shows a so-called coin battery, and FIG. 2 shows a cylindrical battery. FIG. 3 is a fragmentary view of the positive electrode-negative electrode-separate overnight laminate used to construct the cylindrical battery of FIG. 2 in a partially separated and developed state.
まず、 図 1に示したコイン型リチウム二次電池は、例えば L i C o 0 2 (コバル 卜酸リチウム) を活物質とする正極 1と、 例えばリチウム箔からなる負極 2と、 これら正極 1及び負極 2の間に介在させられた例えばポリプロピレン製多孔質フ イルムからなるセパレー夕 3とを含んでいる。 正極 1は例えばアルミニウム製の 正極集電体 4上に形成されており、 この正極集電体 4は例えばステンレス鋼製の 正極缶 5の内面に固着されている。 同様に、 負極 2は例えばニッケル製の負極集 電体 6上に形成されており、 この負極集電体 6は例えばステンレス鋼製の負極缶 7の内面に固着されている。 また、 正極缶 5と負極缶 7との間に形成される空間 内には、 正極 1と負極 2との間でのリチウムィオンの移動を許容するための電解 液が充填されている。 そして、 正極缶 5と負極缶 7との間を例えばポリプロピレ ン製のパッキング 8で封止して、 電池を完成している。 正極 1は、 リチウムイオンを吸蔵及び放出可能な正極活物質と、 正極の導電率 を補う機能を有する導電剤と、 正極活物質及び導電剤を接着するための結着剤と を含む合剤である。 正極活物質としては、 上述した L i CoO 2の他に、 L i N i 02 (ニッケル酸リチウム) 、 L i Mn02 (マンガン酸リチウム) 、 L i Mn 2 O 4 (スピネル) 、 V 205 (五酸化バナジウム) を例示できるが、 これらに限定 されない。 また、 導電剤としては、 アセチレンブラックやグラフアイトを用いる ことができるが、 これらに限定されない。 さらに、 結着剤としては、 例えばポリ フッ化ビニリデン樹脂 (PVDF) 、 テフロン樹脂、 エチレン一プロピレン一ジ ェン三元共重合体などを使用できる。 First, the coin-type lithium secondary battery shown in FIG. 1 has a positive electrode 1 made of, for example, LiCo 2 (lithium cobaltate) as an active material, a negative electrode 2 made of, for example, lithium foil, And a separator 3 made of, for example, a porous film made of polypropylene interposed between the negative electrodes 2. The positive electrode 1 is formed on a positive electrode current collector 4 made of, for example, aluminum, and the positive electrode current collector 4 is fixed to an inner surface of a positive electrode can 5 made of, for example, stainless steel. Similarly, the negative electrode 2 is formed on a negative electrode current collector 6 made of, for example, nickel, and the negative electrode current collector 6 is fixed to an inner surface of a negative electrode can 7 made of, for example, stainless steel. In addition, the space formed between the positive electrode can 5 and the negative electrode can 7 is filled with an electrolytic solution for allowing movement of lithium ions between the positive electrode 1 and the negative electrode 2. Then, the space between the positive electrode can 5 and the negative electrode can 7 is sealed with, for example, a packing 8 made of polypropylene to complete the battery. The positive electrode 1 is a mixture including a positive electrode active material capable of inserting and extracting lithium ions, a conductive agent having a function of supplementing the conductivity of the positive electrode, and a binder for bonding the positive electrode active material and the conductive agent. is there. As the positive electrode active material, in addition to L i CoO 2 described above, L i N i 0 2 (lithium nickel oxide), L i Mn0 2 (lithium manganate), L i Mn 2 O 4 ( spinel), V 2 0 5 (vanadium pentoxide) can be exemplified, but not limited thereto. As the conductive agent, acetylene black or graphite can be used, but is not limited thereto. Further, as the binder, for example, polyvinylidene fluoride resin (PVDF), Teflon resin, ethylene-propylene-gene terpolymer, etc. can be used.
負極 2としては、上述したリチウム箔以外に、リチウム板やリチウム合金板(例 えば、 リチウム—アルミニウム合金、 リチウム—錫合金、 リチウム—鉛合金) な どを用いてもよい。  As the negative electrode 2, other than the above-described lithium foil, a lithium plate or a lithium alloy plate (for example, a lithium-aluminum alloy, a lithium-tin alloy, a lithium-lead alloy) or the like may be used.
さらに、 電解液としては、 L i PF 6 (六フッ化リン酸リチウム) 、 L i BF4 (四フッ化ホウ酸リチウム) 、 L i C 104 (過塩素酸リチウム) などのリチウム イオン導電性溶質を、 プロピレン力一ポネート (PC)、テトラヒドロフラン(T HF) 、 エチレン力一ポネート (EC) 、 1, 2—ジメトキシェタン (DME) 、 ジェチルカ一ボネート (DEC) 、 2—メチルーテトラヒドロフラン (2—Me THF) 、 ジメチルカ一ポネート (DMC) などの有機溶媒に溶かして調製され た非水電解液を用いることができる。 Further, as the electrolyte solution, L i PF 6 (lithium hexafluorophosphate), L i BF 4 (lithium tetrafluoroborate), L i C 10 4 (lithium perchlorate) lithium ion conductivity such as The solutes were converted to propylene carbonate (PC), tetrahydrofuran (T HF), ethylene carbonate (EC), 1,2-dimethoxyethane (DME), dimethyl carbonate (DEC), 2-methyl-tetrahydrofuran (2 A non-aqueous electrolyte prepared by dissolving in an organic solvent such as —Me THF) and dimethyl carbonate (DMC) can be used.
一方、 図 2に示した円筒型リチウム二次電池も、例えば L i Co02 (コバルト 酸リチウム) を活物質とする正極 1' と、 例えばリチウム箔からなる負極 2' と、 これら正極 1, 及び負極 2' の間に介在させられた例えばポリプロピレン製多孔 質フィルムからなるセパレータ 3' とを含んでいる。 図 3に示すように、 これら 正極 1' 、 負極 2, 及びセパレ一夕 3, の積層体は、 帯状の長いものをセンタピ ン 9' (図 2) を中心として螺旋状に巻回して構成されており、 この巻回積層体 が、 例えばステンレス鋼製の円筒状負極缶 7' 内に収納されている。 なお、 図 2 及び図 3には現れていないが、 正極 1, は、 例えば正極集電体としてのアルミ二 ゥム箔の両面に正極合剤を塗付圧延して構成されている。 また、 負極 2' は、 例 えば負極集電体としての銅箔を負極活物質としてのリチウム箔で両面から挟んだ 構成を有している。 On the other hand, the cylindrical lithium secondary battery shown in FIG. 2 also includes, for example, a positive electrode 1 ′ using Li CoO 2 (lithium cobalt oxide) as an active material, a negative electrode 2 ′ including lithium foil, for example, and these positive electrodes 1 and And a separator 3 ′ made of, for example, a porous film made of polypropylene interposed between the negative electrodes 2 ′. As shown in FIG. 3, the laminate of the positive electrode 1 ′, the negative electrode 2, and the separator 3 is formed by winding a long strip in a spiral around the center pin 9 ′ (FIG. 2). The wound laminate is housed in a cylindrical negative electrode can 7 'made of, for example, stainless steel. Although not shown in FIGS. 2 and 3, the positive electrode 1, for example, is formed by applying a positive electrode mixture to both surfaces of an aluminum foil as a positive electrode current collector and rolling. Further, the negative electrode 2 ′ is formed, for example, by sandwiching a copper foil as a negative electrode current collector from both sides with a lithium foil as a negative electrode active material. It has a configuration.
負極 1 ' は、 負極リードタブ 10' を備えており、 この負極リードタブ 10' が下部絶縁板 11' を越えて延びて負極缶 7' の内底面に溶接されている。 また、 正極 1' は正極リードタブ 12' に導通しており、 この正極リードタブ 12' は 上部絶縁板 13' を貫通して延びて、 正極リードピン 14' を介して正極蓋 5' に導通している。 正極蓋 5' と負極缶 7' との間に形成される空間内には、 例え ば L i PF 6 (六フッ化リン酸リチウム) をエチレンカーボネート (EC) とジェ チルカ一ポネート (DEC) との混合有機溶媒に溶かして調製された非水電解液 が充填されている。 そして、 正極蓋 5' と負極缶 7, との間を例えばポリプロピ レン製のパッキング 8' で封止して、 電池を完成している。 The negative electrode 1 'has a negative electrode lead tab 10', which extends beyond the lower insulating plate 11 'and is welded to the inner bottom surface of the negative electrode can 7'. The positive electrode 1 'is electrically connected to the positive electrode lead tab 12'.The positive electrode lead tab 12' extends through the upper insulating plate 13 'and is electrically connected to the positive electrode lid 5' via the positive electrode lead pin 14 '. . 'And the negative electrode can 7' electrode lid 5 into the space formed between the, for example if L i PF 6 a (lithium hexafluorophosphate) ethylene carbonate (EC) and Jefferies Chiruka one Poneto (DEC) A non-aqueous electrolyte prepared by dissolving in a mixed organic solvent is filled. Then, the space between the positive electrode lid 5 'and the negative electrode can 7, is sealed with, for example, a packing 8' made of polypropylene to complete the battery.
次に、 本発明の充電方法を実施するのに用いられる充電装置の好適な実施形態 について説明する。 図 4は、 好適な実施形態に係る充電装置の構成を示すブロッ ク図である。  Next, a preferred embodiment of a charging device used to carry out the charging method of the present invention will be described. FIG. 4 is a block diagram showing the configuration of the charging device according to the preferred embodiment.
図 4に示すように、 充電装置は、 電池 Bを充電できる直流電流を供給するため の電源回路 20と、 充電電流値を制御するための電流制御回路 21と、 充電時間 を測定するための夕イマ 22と、 電流制御回路 21からの充電電流値及び夕イマ 22からの充電時間に基づき充電量を算出するための演算器 23と、 電池 Bの電 圧を測定するための電圧測定器 24と、 演算器 23からの充電量及び電圧測定器 24からの電池電圧に基づき電流制御回路 21を介して電池 Bに供給すべき充電 電流値を判断したり、 充電電流の供給を停止させたりするための電流判断部 25 と、 を備えている。 演算器 23は、 タイマ 22からの充電時間及び電流制御回路 21からの充電電流値を積算するための乗算部 23 aと、 この乗算部 23 aから の出力を加算して充電量を算出するための加算部 23 と、 算出された充電量を 記憶するとともに加算部 23bでの加算のためにフィ一ドバックするための記憶 部 23 cと、 を含んでいる。  As shown in FIG. 4, the charging device includes a power supply circuit 20 for supplying a DC current capable of charging the battery B, a current control circuit 21 for controlling a charging current value, and an evening circuit for measuring a charging time. A computing unit 23 for calculating the amount of charge based on the charging current value from the current control circuit 21 and the charging time from the evening control 22, and a voltage measuring device 24 for measuring the voltage of the battery B. To determine the value of the charging current to be supplied to the battery B via the current control circuit 21 based on the charge amount from the arithmetic unit 23 and the battery voltage from the voltage measuring device 24, or to stop the supply of the charging current. And a current judging unit 25. The computing unit 23 calculates a charge amount by adding a multiplying unit 23 a for integrating the charging time from the timer 22 and the charging current value from the current control circuit 21 and an output from the multiplying unit 23 a. And a storage unit 23c for storing the calculated charge amount and performing feedback for addition in the addition unit 23b.
本発明によれば、 図 1又は図 2に示したようなリチウム二次電池に充電を行う 場合において、 充電を複数の段階に分け、 充電開始後の初期の段階では充電電流 値を相対的に小さく設定し、 充電途中から充電終了に近づく段階では充電電流値 を相対的に大きく設定することにより、 電池寿命の延長又は充電時間の短縮又は その両方が達成される。 充電電流値を切替える段階数は特に制限されないが、 通 常は 2段階に分ければ充分である。 According to the present invention, when charging a lithium secondary battery as shown in FIG. 1 or FIG. 2, charging is divided into a plurality of stages, and a charging current value is relatively set in an initial stage after the start of charging. Set the charging current to a small value, and set the charging current value relatively high at the stage of charging near the end of charging, to extend the battery life or shorten the charging time or Both are achieved. The number of steps for switching the charging current value is not particularly limited, but usually, two steps are sufficient.
図 5は、 本発明に係る充電方法の一実施形態における充電電流値の切替え状態 を示すグラフであり、 縦軸は充電電流値を示し、 横軸は電池容量に対する充電量 の比率を示す。 同グラフに示すように、 充電開始時の初期の段階では、 例えば 0 . 3 5 4 mA ( 0 . 0 4 4 C: 1 Cは 8 mAに相当する。 以下、 同じ。 ) の小さな 第 1充電電流値で充電を行い、 充電量が電池容量の 5 0 %に到達した時点で充電 電流値を例えば 1 . 0 6 2 mA ( 0 . 1 3 3 C) の第 2充電電流値まで急激に増 加させ、 その後充電終了 (満充電状態) までこの第 2充電電流値を維持する。 図 4に示す充電装置で図 5に示すような充電方法を実施する場合、 充電開始と 同時に電流制御回路 2 1が電源回路 2 0からの充電電流を第 1充電電流値に制御 するとともに、 夕イマ 2 2が計時を開始する。 また、 演算器 2 3は夕イマ 2 2か らの計時情報及び電流制御回路 2 1からの電流値に基づき充電量を算出して電流 判断部 2 5に出力する。 そして、 電流判断部 2 5が演算器 2 3からの出力に基づ き、 充電量が所定の値 (例えば、 初期電池容量の 5 0 %に相当する量) に到達し たことを判断すると、 電流制御部 2 1に対して充電電流値を第 1充電電流値より も高い第 2充電電流値に増加させるように命令を発する。 これにより、 充電終了 に至るまで電池 Bは第 2充電電流値にて充電される。  FIG. 5 is a graph showing the switching state of the charging current value in one embodiment of the charging method according to the present invention. The vertical axis shows the charging current value, and the horizontal axis shows the ratio of the charged amount to the battery capacity. As shown in the graph, in the initial stage at the start of charging, for example, a small first charging of 0.354 mA (0.044 C: 1 C is equivalent to 8 mA; the same applies hereinafter). Charging is performed at the current value, and when the charged amount reaches 50% of the battery capacity, the charging current value rapidly increases to, for example, a second charging current value of 1.062 mA (0.133 C). After that, the second charge current value is maintained until charging is completed (full charge state). When the charging method shown in FIG. 5 is performed by the charging device shown in FIG. 4, the current control circuit 21 controls the charging current from the power supply circuit 20 to the first charging current value simultaneously with the start of charging, and Ima 2 2 starts timing. The computing unit 23 calculates the amount of charge based on the timing information from the timer 22 and the current value from the current control circuit 21, and outputs it to the current determination unit 25. When the current determination unit 25 determines that the charged amount has reached a predetermined value (for example, an amount corresponding to 50% of the initial battery capacity) based on the output from the arithmetic unit 23, An instruction is issued to the current control unit 21 to increase the charging current value to a second charging current value higher than the first charging current value. Thereby, the battery B is charged at the second charging current value until the charging ends.
一方、 電圧測定器 2 4は電池 Bの電圧を常時モニタして電流判断部 2 5に出力 しており、 測定電圧が所定の充電カットオフ電圧 (充電を終了すべき電池電圧を いい、 例えばリチウム電池の場合は 4. 2 V) に到達すると、 電流判断部 2 5が 電流制御部 2 1に対して電池 Bへの電流供給を停止するよう命令を発する。 これ により、 電池 Bの充電が終了する。  On the other hand, the voltage measuring device 24 constantly monitors the voltage of the battery B and outputs it to the current judging unit 25. The measured voltage is a predetermined charge cut-off voltage (a battery voltage at which charging should be terminated, for example, lithium When the current reaches 4.2 V for batteries, the current judging unit 25 issues a command to the current control unit 21 to stop supplying current to the battery B. Thus, charging of the battery B is completed.
以上のように、 電流判断部 2 5による第 1充電電流値から第 2充電電流値への 切替え判定を演算器 2 3による充電量に基づいて行うのは、 充電開始時の電池の 状態により電池電圧が異なり、 電池電圧をもつて充電電流値の切替え判定を行う ことが困難だからである。 従って、 本実施形態に係る充電装置においては、 電圧 測定器 2 4による電池電圧の測定は充電終了の判定にのみ利用している。  As described above, the determination of switching from the first charging current value to the second charging current value by the current determination unit 25 based on the charge amount by the computing unit 23 is based on the battery state at the start of charging. This is because it is difficult to determine the switching of the charging current value with the battery voltage because the voltage is different. Therefore, in the charging device according to the present embodiment, the measurement of the battery voltage by the voltage measuring device 24 is used only for determining the end of charging.
次に、 本発明の実施例を比較例とともに説明する。 P TJP990 【実施例 1】 Next, examples of the present invention will be described together with comparative examples. P TJP990 [Example 1]
本実施例においては、 以下に特定する正極、 負極、 セパレー夕及び非水電解液 を用いて図 1に示す構成を有するコイン型リチウム二次電池 (直径: 20mm、 厚さ: 3. 2mm, 容量 8mA h) を作成し、 後述する条件にて充放電サイクル 試験を行った。  In this example, a coin-type lithium secondary battery having a configuration shown in FIG. 1 (diameter: 20 mm, thickness: 3.2 mm, capacity: using a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte specified below) 8 mAh) was prepared and a charge / discharge cycle test was performed under the conditions described below.
(正極)  (Positive electrode)
正極活物質として L i Co〇2 (コバルト酸リチウム) 90%、導電剤としてァ セチレンブラック 2. 5%及びグラフアイト 2. 5%、 結着剤としてポリフッ化 ビニリデン樹脂 (PVDF) 5%を均一に混合してなる正極合剤を正極集電体に 塗布して正極とした。 L i Co_〇 2 (lithium cobaltate) 90% as a positive electrode active material, § cetirizine Ren black as a conductive agent 2.5% and graphite 2.5%, 5% polyvinylidene fluoride resin (PVDF) as a binder The positive electrode mixture obtained by uniformly mixing was applied to a positive electrode current collector to obtain a positive electrode.
(負極)  (Negative electrode)
負極としては、 リチウム箔を用いた。  A lithium foil was used as the negative electrode.
(セパレー夕)  (Separate evening)
セパレ一夕としては、 ポリエチレン製多孔質フィルムを用いた。  A polyethylene porous film was used for the separation.
(電解液)  (Electrolyte)
電解液としては、 L i PF6 (六フッ化リン酸リチウム) をエチレン力一ポネ一 ト (EC) とジェチルカーポネート (DEC) の 1 : 1混合溶媒に 1モルの割合 で溶解したものを用いた。 As an electrolytic solution, 1 L i PF 6 ethylene force scratch (lithium hexafluorophosphate) port ne one preparative (EC) and oxygenate chill Capo sulfonate (DEC): was dissolved in 1 molar ratio of the 1 mixed solvent Was used.
(充放電サイクル試験)  (Charge / discharge cycle test)
以上のような構成のリチウム二次電池について、 図 4に示すような構成の充電 装置を用い、 次のような条件で充放電サイクル試験を行った。  A charge / discharge cycle test was performed on the lithium secondary battery with the above configuration using a charging device with the configuration shown in Fig. 4 under the following conditions.
充電については、 図 5に示すように、 0. 354mA (0. 044C) の第 1 充電電流値で充電を開始し、 充電量が 4mAh (初期電池容量の 50 %相当) に 到達した時点で 1. 062mA (0. 14C) の第 2充電電流値に切替えて、 充 電終了まで充電を継続した。 この際、 充電カットオフ電圧 (充電を終了する電池 電圧) を 4. 2Vとした。  As shown in Fig. 5, charging starts at the first charging current value of 0.354mA (0.044C), and when charging reaches 4mAh (equivalent to 50% of the initial battery capacity), 1 Switched to the second charge current value of 062mA (0.14C) and continued charging until the end of charging. At this time, the charge cutoff voltage (the battery voltage at which charging is completed) was set to 4.2V.
一方、 放電については、 放電電流値 1. 77mA (0. 22 C) の定電流放電 にて、 放電カットオフ電圧 (放電を終了する電池電圧) 3. 0Vとして放電深度 (各充放電サイクルで放電カツトオフ電圧まで放電したときの容量を 100%と して、 それに対して放電した割合) 100%まで放電した。 On the other hand, for discharge, the discharge cutoff voltage (battery voltage at which discharge ends) is 3.0 V at a constant current discharge of 1.77 mA (0.22 C), and the discharge depth (discharge at each charge / discharge cycle) 100% capacity when discharged to cut-off voltage Then, it was discharged to 100%.
なお、 以上の充放電サイクルにおいて、 充電後 放電後の休止時間はすべて 1 分間とした。  In the above charge / discharge cycle, the rest time after discharge was set to 1 minute after charge.
以上の充放電サイクルを繰り返し、 放電容量が第 1回目のサイクルの 60%未 満になるまでに経過したサイクル数をもってサイクル寿命とした。 併せて、 各サ ィクルごとにおける充電時間を記録した。 この結果、 後に掲載する表 1 (後述の 比較例 2の説明後に掲載) に示すように、 サイクル寿命は 113回であり、 充電 時間 (代表値) は 15. 1時間であった。  The above charge / discharge cycle was repeated, and the cycle life was defined as the number of cycles elapsed until the discharge capacity was less than 60% of the first cycle. At the same time, the charging time for each cycle was recorded. As a result, the cycle life was 113 times and the charging time (representative value) was 15.1 hours, as shown in Table 1 (later described in Comparative Example 2 described later).
【実施例 2】  [Example 2]
本実施例においては、 実施例 1と同様の構成のコイン型リチウム二次電池を用 いて、 以下に述べる充放電サイクル試験を行った。  In the present example, a charge / discharge cycle test described below was performed using a coin-type lithium secondary battery having the same configuration as in Example 1.
すなわち、 充電については、 0. 354 mA (0. 044 C) の第 1充電電流 値で充電を開始し、 充電量が 2. 5mAhに到達した時点で 1. 062mA (0. 14C) の第 2充電電流値に切替えて、 充電終了まで充電を継続した。 この際、 実施例 1と同様に、 充電カットオフ電圧を 4. 2Vとした。  That is, for charging, charging starts at the first charging current value of 0.354 mA (0.044 C), and when charging reaches 2.5 mAh, the second charging of 1.062 mA (0.14 C) starts. Switching to the charging current value, charging was continued until charging was completed. At this time, as in Example 1, the charge cutoff voltage was set to 4.2 V.
一方、 放電については、 実施例 1と同様に、 放電電流値 1. 77mA (0. 2 2 C) の定電流放電にて、 放電カットオフ電圧 3. 0 Vとして放電深度 100% まで放電した。  On the other hand, as in Example 1, the discharge was performed at a constant current of 1.77 mA (0.22 C) with a discharge cutoff voltage of 3.0 V to a discharge depth of 100%.
また、 本実施例においても実施例 1と同様に電池性能の評価を行ったところ、 表 1に示すように、 サイクル寿命は 59回であり、 充電時間 (代表値) は 12. 2時間であった。  In this example, the battery performance was evaluated in the same manner as in Example 1. As shown in Table 1, the cycle life was 59 times and the charging time (representative value) was 12.2 hours. Was.
【実施例 3】  [Embodiment 3]
本実施例においては、 実施例 1と同様の構成のコイン型リチウム二次電池を用 レ ^て、 以下に述べる充放電サイクル試験を行った。  In this example, the following charge / discharge cycle test was performed using a coin-type lithium secondary battery having the same configuration as that of Example 1.
すなわち、 充電については、 0. 354mA (0. 044 C) の第 1充電電流 値で充電を開始し、 充電量が 0. 2mAhに到達した時点で 1. 062mA (0. 14C) の第 2充電電流値に切替えて、 充電終了まで充電を継続した。 この際、 実施例 1と同様に、 充電カットオフ電圧を 4. 2Vとした。  In other words, for charging, charging starts at the first charging current value of 0.354 mA (0.044 C), and when the charging amount reaches 0.2 mAh, the second charging of 1.062 mA (0.14 C) Switching to the current value, charging was continued until charging was completed. At this time, as in Example 1, the charge cutoff voltage was set to 4.2 V.
一方、 放電については、 放電電流値 1. 77mA (0. 22 C) の定電流放電 にて、 放電深度 50 %まで放電した。 本実施例では、 放電深度が 50%であるこ とから、 電池電圧は実施例 1でいう放電カットオフ電圧 3. 0Vに到達する前に 放電を終了し、 その後の充電は電池容量が約半分残った状態から開始するのであ る。 そのため、 充電時における第 1充電電流値から第 2充電電流値への切替えは、 第 1充電電流値での充電量が 0. 2 mAhと少ない段階で行い、 全体としての充 電時間が短くなるようにしているのである。 On the other hand, for discharge, a constant current discharge of 1.77 mA (0.22 C) was performed. At, discharge was performed to a discharge depth of 50%. In this example, since the depth of discharge is 50%, the battery voltage ends discharging before reaching the discharge cutoff voltage of 3.0 V in Example 1, and about half of the battery capacity remains in subsequent charging. It starts from the state where it was set. Therefore, switching from the first charging current value to the second charging current value during charging is performed when the charge amount at the first charging current value is as small as 0.2 mAh, and the overall charging time is shortened That's how it works.
本実施例においても実施例 1と同様に電池性能の評価を行ったところ、 表 1に 示すように、 サイクル寿命は 215回であり、 充電時間 (代表値) は 4. 1時間 であった。  In this example, the battery performance was evaluated in the same manner as in Example 1. As shown in Table 1, the cycle life was 215 times and the charging time (representative value) was 4.1 hours.
【実施例 4】  [Example 4]
本実施例においては、 実施例 1と同様の構成のコイン型リチウム二次電池を用 いて、 以下に述べる充放電サイクル試験を行った。  In the present example, a charge / discharge cycle test described below was performed using a coin-type lithium secondary battery having the same configuration as in Example 1.
すなわち、 充電については、 0. 354mA (0. 044C) の第 1充電電流 値で充電を開始し、 充電量が 2. 0 mAhに到達した時点で 1. 062mA (0. 14C) の第 2充電電流値に切替えて、 充電終了まで充電を継続した。 この際、 実施例 1と同様に、 充電カットオフ電圧を 4. 2Vとした。  In other words, for charging, charging starts at the first charging current value of 0.354 mA (0.044C), and when the charging amount reaches 2.0 mAh, the second charging of 1.062 mA (0.14C) starts. Switching to the current value, charging was continued until charging was completed. At this time, as in Example 1, the charge cutoff voltage was set to 4.2 V.
一方、 放電については、 放電電流値 1. 77mA (0. 22 C) の定電流放電 にて、 放電深度 50%まで放電した。  On the other hand, the discharge was performed at a constant current of 1.77 mA (0.22 C) to a depth of discharge of 50%.
本実施例においても実施例 1と同様に電池性能の評価を行ったところ、 表 1に 示すように、 サイクル寿命は 210回であり、 充電時間 (代表値) は 7. 5時間 であった。  In this example, the battery performance was evaluated in the same manner as in Example 1. As shown in Table 1, the cycle life was 210 times and the charging time (representative value) was 7.5 hours.
なお、 本実施例及び実施例 3は、 放電深度を 50%に設定したため、 サイクル 寿命が 200回以上と非常に長く、 充電時間も短い。 また、 本実施例を実施例 3 と比較すると、 放電深度が浅い場合には、 残存電池容量が大きく充電時に析出す るリチウム金属の表面に粗くなりにくい状態になっているため、 第 1充電電流値 での充電量を少なくしても、 サイクル寿命は充分長く、 むしろ充電時間を短くで きる点で有利になることが分かる。  In this example and Example 3, since the depth of discharge was set to 50%, the cycle life was very long, 200 times or more, and the charging time was short. Also, when this embodiment is compared with Embodiment 3, when the depth of discharge is shallow, the remaining battery capacity is large, and the surface of the lithium metal deposited during charging is not easily roughened. It can be seen that even if the charge amount is reduced, the cycle life is sufficiently long, and it is rather advantageous in that the charge time can be shortened.
【比較例 1】  [Comparative Example 1]
本発明の充電方法を従来の充電方法と比較するために、 実施例 1と同様の構成 のコイン型リチウムニ次電池を用いて、 以下に述べる充放電サイクル試験を行つ た。 In order to compare the charging method of the present invention with the conventional charging method, the same configuration as in Example 1 was used. The following charge / discharge cycle test was performed using the coin-type lithium secondary battery.
すなわち、 充電については、 0. 531mA (0. 066 C) の一定電流にて、 充電カットオフ電圧 4. 2 Vまで充電を行った。  That is, charging was performed at a constant current of 0.531 mA (0.056 C) up to a charge cutoff voltage of 4.2 V.
一方、 放電については、 実施例 1と同様に、 放電電流値 1. 77mA (0. 2 2 C) の定電流放電にて、 放電カットオフ電圧 3. 0 Vとして放電深度 100% まで放電した。  On the other hand, as in Example 1, the discharge was performed at a constant current of 1.77 mA (0.22 C) with a discharge cutoff voltage of 3.0 V to a discharge depth of 100%.
また、 本比較例においても実施例 1と同様に電池性能の評価を行ったところ、 表 1に示すように、 サイクル寿命は 58回であり、 充電時間 (代表値) は 15. 1時間であった。  In this comparative example, the battery performance was evaluated in the same manner as in Example 1. As shown in Table 1, the cycle life was 58 times and the charging time (representative value) was 15.1 hours. Was.
本比較例を実施例 1と比較すると、 充電時間は双方とも 15. 1時間で同じで あるが、 サイクル寿命は実施例 1の方が約 2倍に増えている。 このことより、 本 発明による寿命改善効果が確認できる。  When this comparative example is compared with Example 1, the charging time is the same at 15.1 hours in both cases, but the cycle life of Example 1 is approximately doubled. This confirms the life improvement effect of the present invention.
一方、 本比較例を実施例 2と比較すると、 両者のサイクル寿命はほぼ等しいが、 充電時間は本比較例の 15. 1時間に対して、 実施例 2では 12. 2時間に短縮 されている。 このことより、 本発明の充電時間短縮効果が確認できる。  On the other hand, when this comparative example is compared with Example 2, the cycle life of both is almost equal, but the charging time is reduced to 12.2 hours in Example 2 from 15.1 hours in this comparative example. . From this, the effect of shortening the charging time of the present invention can be confirmed.
【比較例 2】  [Comparative Example 2]
本比較例においては、 実施例 1と同様の構成のコイン型リチウム二次電池を用 いて、 以下に述べる充放電サイクル試験を行った。  In this comparative example, a charge / discharge cycle test described below was performed using a coin-type lithium secondary battery having the same configuration as in Example 1.
すなわち、 充電については、 0. 654mA (0. 082 C) の一定電流にて、 充電カットオフ電圧 4. 2 Vまで充電を行った。  That is, charging was performed at a constant current of 0.654 mA (0.082 C) up to a charge cutoff voltage of 4.2 V.
一方、 放電については、 実施例 1と同様に、 放電電流値 1. 77mA (0. 2 2C) の定電流放電にて、 放電カットオフ電圧 3. 0Vとして放電深度 100% まで放電した。  On the other hand, as in Example 1, the discharge was performed at a constant current of 1.77 mA (0.22 C) with a discharge cutoff voltage of 3.0 V to a discharge depth of 100%.
また、 本比較例においても実施例 1と同様に電池性能の評価を行ったところ、 表 1に示すように、 サイクル寿命は 45回であり、 充電時間 (代表値) は 12. 2時間であった。  In this comparative example, the battery performance was evaluated in the same manner as in Example 1. As shown in Table 1, the cycle life was 45 times and the charging time (representative value) was 12.2 hours. Was.
本比較例を実施例 2と比較すると、 充電時間は双方とも 12. 2時間で同じで あるが、 サイクル寿命は実施例 2の方が約 1. 3倍に増えている。 このことから も、 本発明による寿命改善効果が確認できる < 表 1 When this comparative example is compared with Example 2, the charging time is the same at 12.2 hours in both cases, but the cycle life of Example 2 is about 1.3 times longer than that of Example 2. From this Can also confirm the life improvement effect of the present invention <Table 1
Figure imgf000015_0001
Figure imgf000015_0001
【実施例 5】 [Example 5]
本実施例においては、 実施例 1と同様の構成のコィン型リチウム二次電池を用 いて、 以下に述べる充放電サイクル試験を行った。  In the present example, a charge / discharge cycle test described below was performed using a coin-type lithium secondary battery having the same configuration as in Example 1.
すなわち、 充電については、 図 6に示すようなパルス電流を供給することによ り行った。 図 6は本発明の他の実施形態に係る充電方法を示すパルス特性グラフ であって、 縦軸は電流値を表し、 横軸は時間を表す。  That is, charging was performed by supplying a pulse current as shown in FIG. FIG. 6 is a pulse characteristic graph showing a charging method according to another embodiment of the present invention, in which the vertical axis represents a current value and the horizontal axis represents time.
図 6のグラフに示すように、 実施例 5では、 第 1充電段階として、 最低電流値 が 0で最高電流値が 0. 708mA (0. 089 C) のパルス電流を平均電流値 が 0. 354mA (0. 044 C) になるようにデュ一ティ比 1 / 2にて充電を 行い、 充電量が 4mA hに到達した時点で、 第 2充電段階として、 平均電流値が 1. 062mA (0. 14 C) なるようにパルス電流の最高電流値を 2. 124 mA (0. 27C) に切替えて (最低電流値及びデューティ比は維持) 、 充電終 了まで充電を継続した。 この際、 実施例 1と同様に、 充電カットオフ電圧を 4. 2 Vとした。  As shown in the graph of FIG. 6, in Example 5, as the first charging stage, the minimum current value was 0 and the maximum current value was 0.708 mA (0.089 C), and the average current value was 0.354 mA. (0.044 C) at a duty ratio of 1/2, and when the charge reaches 4 mAh, the average current value is 1.062 mA (0. The maximum pulse current was switched to 2.124 mA (0.27C) (the minimum current and the duty ratio were maintained) so that the charging was completed, and charging was continued until the end of charging. At this time, the charge cutoff voltage was set to 4.2 V, as in the first embodiment.
一方、 放電については、 実施例 1と同様に、 放電電流値 1. 77mA (0. 2 2 C) の定電流放電にて、 放電カットオフ電圧 3. 0 Vとして放電深度 100% まで放電した。  On the other hand, as in Example 1, the discharge was performed at a constant current of 1.77 mA (0.22 C) with a discharge cutoff voltage of 3.0 V to a discharge depth of 100%.
3 本実施例においても実施例 1と同様に電池性能の評価を行ったところ、 サイク ル寿命及び充電時間は実施例 1と同程度の結果が得られた。 Three In this example, the battery performance was evaluated in the same manner as in Example 1. As a result, the cycle life and the charging time were almost the same as those in Example 1.
【実施例 6】  [Example 6]
本実施例においては、 実施例 1と同様の構成のコイン型リチウム二次電池を用 いて、 以下に述べる充放電サイクル試験を行った。  In the present example, a charge / discharge cycle test described below was performed using a coin-type lithium secondary battery having the same configuration as in Example 1.
すなわち、 充電については、 図 7に示すようなパルス電流を供給することによ り行った。 図 7は本発明のさらに別の実施形態に係る充電方法を示すパルス特性 グラフであって、 縦軸は電流値を表し、 横軸は時間を表す。  That is, charging was performed by supplying a pulse current as shown in FIG. FIG. 7 is a pulse characteristic graph showing a charging method according to still another embodiment of the present invention, wherein the vertical axis represents a current value and the horizontal axis represents time.
図 7のグラフに示すように、 実施例 6では、 第 1充電段階として、 最低電流値 が 0で最高電流値が 2. 124mA (0. 27 C) のパルス電流を平均電流値が 0. 354mA (0. 044 C) になるようにデュ一ティ比 1 Z 6にて充電を行 レ 充電量が 4mAhに到達した時点で、 第 2充電段階として、 平均電流値が 1. 062mA (0. 14C) なるようにパルス電流のデューティ比 1ノ 2に切替え て (最低電流値及び最高電流値は維持) 、 充電終了まで充電を継続した。 この際、 実施例 1と同様に、 充電カットオフ電圧を 4. 2Vとした。  As shown in the graph of FIG. 7, in Example 6, as the first charging stage, the pulse current having the minimum current value of 0 and the maximum current value of 2.124 mA (0.27 C) was converted to the average current value of 0.354 mA. (0.044 C) at a duty ratio of 1 Z6.When the charge reaches 4 mAh, the average current value is 1.062 mA (0.14 C ) The duty ratio of the pulse current was switched to 1 to 2 so that the minimum current value and the maximum current value were maintained, and charging was continued until charging was completed. At this time, as in Example 1, the charge cutoff voltage was set to 4.2 V.
一方、 放電については、 実施例 1と同様に、 放電電流値 1. 77mA (0. 2 2 C) の定電流放電にて、 放電カツ卜オフ電圧 3. 0 Vとして放電深度 100% まで放電した。  On the other hand, as in Example 1, the discharge was performed at a constant current of 1.77 mA (0.22 C) with a discharge cut-off voltage of 3.0 V to a discharge depth of 100%. .
本実施例においても実施例 1と同様に電池性能の評価を行ったところ、 サイク ル寿命及び充電時間は実施例 1と同程度の結果が得られた。  In this example, the battery performance was evaluated in the same manner as in Example 1. As a result, the cycle life and the charging time were almost the same as those in Example 1.
【実施例 7】  [Example 7]
本実施例においては、 実施例 1と同様の構成のコイン型リチウム二次電池を用 いて、 以下に述べる充放電サイクル試験を行った。  In the present example, a charge / discharge cycle test described below was performed using a coin-type lithium secondary battery having the same configuration as in Example 1.
すなわち、 充電については、 図 8に示すようなパルス電流を供給することによ り行った。 図 8は本発明のさらに別の実施形態に係る充電方法を示すパルス特性 グラフであって、 縦軸は電流値を表し、 横軸は時間を表す。  That is, charging was performed by supplying a pulse current as shown in FIG. FIG. 8 is a pulse characteristic graph showing a charging method according to still another embodiment of the present invention, in which the vertical axis represents a current value and the horizontal axis represents time.
図 8のグラフに示すように、 実施例 7では、 第 1充電段階として、 最低電流値 が 0で最高電流値が 2. 124mA (0. 27 C) のパルス電流を平均電流値が 0. 354mA (0. 044 C) になるようにデューティ比 1 / 6にて充電を行 レ、 充電量が 4mA hに到達した時点で、 第 2充電段階として、 平均電流値が 1. 062mA (0. 14 C) なるようにパルス電流の最低電流値を 1. 264mA (0. 158 C) に切替えて (最高電流値及びデューティ比は維持) 、 充電終了 まで充電を継続した。 この際、 実施例 1と同様に、 充電カットオフ電圧を 4. 2 Vとした。 As shown in the graph of FIG. 8, in Example 7, as the first charging stage, a pulse current having a minimum current value of 0 and a maximum current value of 2.124 mA (0.27 C) was converted to an average current value of 0.354 mA. (0.044 C) at a duty ratio of 1/6 When the amount of charge reaches 4 mAh, as the second charging stage, the minimum current value of the pulse current is set to 1.264 mA (0.158 C) so that the average current value becomes 1.062 mA (0.14 C). ) (The maximum current value and duty ratio are maintained), and charging was continued until charging was completed. At this time, the charge cutoff voltage was set to 4.2 V, as in the first embodiment.
一方、 放電については、 実施例 1と同様に、 放電電流値 1. 77mA (0. 2 2 C) の定電流放電にて、 放電カットオフ電圧 3. 0 Vとして放電深度 100% まで放電した。  On the other hand, as in Example 1, the discharge was performed at a constant current of 1.77 mA (0.22 C) with a discharge cutoff voltage of 3.0 V to a discharge depth of 100%.
本実施例においても実施例 1と同様に電池性能の評価を行ったところ、 サイク ル寿命及び充電時間は実施例 1と同程度の結果が得られた。  In this example, the battery performance was evaluated in the same manner as in Example 1. As a result, the cycle life and the charging time were almost the same as those in Example 1.
【実施例 8】  [Embodiment 8]
本実施例においては、 実施例 1と同様の構成のコイン型リチウム二次電池を用 いて、 以下に述べる充放電サイクル試験を行った。  In the present example, a charge / discharge cycle test described below was performed using a coin-type lithium secondary battery having the same configuration as in Example 1.
すなわち、 本実施例では図 9に示すような充電方法を採用した。 なお、 図 9は、 本発明のさらに別の実施形態に係る充電方法を示すグラフであり、 縦軸は充電電 流値を示し、 横軸は電池容量に対する充電量の比率を示す。  That is, in the present embodiment, a charging method as shown in FIG. 9 was employed. FIG. 9 is a graph showing a charging method according to still another embodiment of the present invention, in which the vertical axis indicates the charging current value, and the horizontal axis indicates the ratio of the charging amount to the battery capacity.
図 9のグラフに示すように、 実施例 8では、 第 1充電段階として、 0. 354 mA (0. 044 C) の第 1充電電流値で充電を行い、 充電量が 4mA hに到達 した時点で、 第 2充電段階として、 1. 062mA (0. 14C) の第 2充電電 流値に切替えて電池電圧を 4. 2 Vまで充電を行い、 さらに第 3充電段階として、 4. 2 Vのまま最終の電流値が 0. 354mA (0. 044C) に減少するまで 定電圧充電を行った。 すなわち、 本実施例は第 2充電段階までは実施例 1と同じ であるが、 第 3充電段階を付加した点で実施例 1と異なる。 このように第 3充電 段階を付加したのは、 充電終期になると、 分極による電圧降下のために電池電圧 は実際には充電カットオフ電圧よりも若干低めとなるため、 これを補うために定 電圧充電を行うのである。  As shown in the graph of FIG. 9, in Example 8, as the first charging stage, charging was performed at the first charging current value of 0.354 mA (0.044 C), and when the charged amount reached 4 mAh. In the second charging stage, the battery voltage is switched to 4.2 V by switching to the second charging current value of 1.062 mA (0.14 C), and then, in the third charging stage, the 4.2 V Constant voltage charging was performed until the final current value decreased to 0.354 mA (0.044C). That is, this embodiment is the same as the first embodiment up to the second charging stage, but differs from the first embodiment in that a third charging stage is added. The reason for adding the third charging stage in this way is that at the end of charging, the battery voltage is actually slightly lower than the charge cutoff voltage due to the voltage drop due to polarization. Charge it.
一方、 放電については、 実施例 1と同様に、 放電電流値 1. 77mA (0. 2 2 C) の定電流放電にて、 放電カットオフ電圧 3. 0 Vとして放電深度 100% まで放電した。 本実施例においても実施例 1と同様に電池性能の評価を行ったところ、 第 3充 電段階を付加した分だけ充電時間は実施例 1よりも約 3 %長くなつたが、 サイク ル寿命は実施例 1よりも約 1 0 %伸び、 充電時間の伸びを補って余りある結果が 得られた。 On the other hand, as in Example 1, the discharge was performed at a constant current of 1.77 mA (0.22 C) with a discharge cutoff voltage of 3.0 V to a discharge depth of 100%. In this embodiment, the battery performance was evaluated in the same manner as in Embodiment 1. The charging time was about 3% longer than that in Embodiment 1 by the addition of the third charging stage, but the cycle life was longer. The result was about 10% longer than that of Example 1, and more than the increase in the charging time was obtained.
【その他】  [Other]
本発明の充電方法において、 第 1充電段階の充電電流値 ひ、。ルス電流を用いる 場合には、 平均電流値をいう) をどの程度に設定するのが好ましいのかを検討す るために、 充電電流値とリチウム二次電池のサイクル寿命との関係を調べた。 そ の結果を図 1 0のグラフに示す。 同グラフにおいて、 縦軸は電池のサイクル寿命 を表し、 横軸は充電電流値を示す。  In the charging method according to the present invention, the charging current value in the first charging stage. In order to study how much it is preferable to set the average current value when using the luster current), the relationship between the charging current value and the cycle life of the lithium secondary battery was examined. The results are shown in the graph of FIG. In the graph, the vertical axis represents the cycle life of the battery, and the horizontal axis represents the charging current value.
図 1 0のグラフから分かるように、 電池のサイクル寿命を 1 0 0回以上にする ためには第 1充電段階の充電電流値を 0 . 4 mA ( 0 . 0 5 C) 以下にするのが 好ましい。 伹し、 充電時間を短くすることを重視する場合や、 放電深度が浅い場 合があることも考慮すると、 第 1充電段階の充電電流を若干大き目に設定しても よく、 一般的には 0 . 8 mA ( 0 . 1 C) 以下であれば許容範囲内にある。 また、 第 2充電段階において、 充電電流値を大きくするのは、 充電時間を短縮 するためのものであるから、 その目的を達成する上で意義のある程度まで高める 必要があり、 一般的には第 1段階の充電電流値の 2〜 5倍にするのが好ましい。 【実施例のまとめ】  As can be seen from the graph of Fig. 10, in order to make the cycle life of the battery more than 100 times, it is necessary to make the charge current value of the first charging stage less than 0.4 mA (0.05 C). preferable. However, considering the importance of shortening the charging time and the fact that the depth of discharge may be shallow, the charging current in the first charging stage may be set slightly higher, and generally 0. If it is less than 8 mA (0.1 C), it is within the allowable range. Also, in the second charging stage, increasing the charging current value is for shortening the charging time, so it is necessary to increase the charging current value to a certain extent in order to achieve its purpose. It is preferable that the charge current value is 2 to 5 times the one-stage charge current value. [Summary of Examples]
以上の実施例及び比較例から分かるように、 本発明の充電方法及び充電装置を 用いれば、 従来の充電方法及び充電装置に比べて、 二次電池のサイクル寿命を長 期化及び /"又は充電時間の短縮を図ることが可能となる。  As can be seen from the above Examples and Comparative Examples, the use of the charging method and the charging device of the present invention makes it possible to extend the cycle life of the secondary battery and / or to increase the charging life compared to the conventional charging method and the charging device. Time can be reduced.
【変形の可能性】  [Possibility of deformation]
以上、 本発明の実施形態や実施例を説明したが、 本発明はこれらに限定される ものではない。 例えば、 実施例 1〜8は全てコイン型リチウム二次電池に関する ものであつたが、 本発明を筒型電池 (図 2及び 3 ) や角型電池に適用しても同様 の効果が得られる。 また、 リチウム二次電池に限らず、 金属を負極活物質とし、 充電時に当該金属の析出を伴う二次電池 (例えば、 ニッケル一カドミウム電池や 鉛畜電池など) であれば本発明を適用できる。  The embodiments and examples of the present invention have been described above, but the present invention is not limited to these. For example, while Examples 1 to 8 all relate to a coin-type lithium secondary battery, similar effects can be obtained by applying the present invention to a cylindrical battery (FIGS. 2 and 3) or a square battery. Further, the present invention is not limited to the lithium secondary battery, and the present invention can be applied to a secondary battery (for example, a nickel-cadmium battery or a lead-acid battery) using a metal as a negative electrode active material and depositing the metal during charging.

Claims

請求の範囲 The scope of the claims
1 . 金属を負極活物質とし、 充電時に当該金属の析出を伴う二次電池の充電方法 において、 充電過程を充電電流値の異なる複数の段階に分け、 充電開始時の充電 段階における充電電流値を相対的に小さく設定し、 それ以降の各充電段階におけ る充電電流値を充電開始時の充電電流値よりも大きくなるようにしたことを特徴 とする、 二次電池の充電方法。 1. In a method of charging a secondary battery that uses a metal as a negative electrode active material and deposits the metal during charging, the charging process is divided into a plurality of stages with different charging current values, and the charging current value at the charging stage at the start of charging is determined. A charging method for a secondary battery, characterized in that the charging current value is set to be relatively small and the charging current value in each subsequent charging step is larger than the charging current value at the start of charging.
2 . 前記相対的に低い充電電流値から前記相対的に高い充電電流値への切替えは、 充電開始からの充電量を判定して行うようにした、 請求項 1に記載の充電方法。 2. The charging method according to claim 1, wherein the switching from the relatively low charging current value to the relatively high charging current value is performed by determining a charge amount from the start of charging.
3 . 前記相対的に低い充電電流値での充電は、 充電開始からの充電量が電池容量 の 1 7〜8 0 %になるまで行う、 請求項 2に記載の充電方法。 3. The charging method according to claim 2, wherein the charging at the relatively low charging current value is performed until the charged amount from the start of charging becomes 17 to 80% of the battery capacity.
4. 前記相対的に低い充電電流値で行う充電の充電量を、 充電開始時の放電深度 に応じて設定する、 請求項 2に記載の充電方法。 4. The charging method according to claim 2, wherein a charging amount of the charging performed at the relatively low charging current value is set according to a discharge depth at the start of charging.
5 . 前記充電開始時の充電電流値を 0 . 4 mA以下に設定する、 請求項 1に記載 の充電方法。 5. The charging method according to claim 1, wherein the charging current value at the start of charging is set to 0.4 mA or less.
6 . 前記相対的に高い充電電流値を前記充電開始時の充電電流値の 2〜 5倍に設 定する、 請求項 1に記載の充電方法。 6. The charging method according to claim 1, wherein the relatively high charging current value is set to 2 to 5 times the charging current value at the start of charging.
7 . 充電対象が、 リチウム金属又はリチウム合金を負極活物質とする二次電池で ある、 請求項 1に記載の充電方法。 7. The charging method according to claim 1, wherein the charging target is a secondary battery using lithium metal or a lithium alloy as a negative electrode active material.
8 . 金属を負極活物質とし、 充電時に当該金属の析出を伴う二次電池の充電装置 において、 8. In a secondary battery charger that uses metal as the negative electrode active material and deposits the metal during charging,
前記電池を充電する直流電流を供給するための電源回路と、 充電電流値を制御するための電流制御回路と、 A power supply circuit for supplying a direct current for charging the battery, A current control circuit for controlling a charging current value;
充電時間を測定するためのタイマと、  A timer for measuring the charging time,
前記電流制御回路からの充電電流値及び前記タイマからの充電時間に基づき 充電量を算出するための演算器と、  A calculator for calculating a charge amount based on a charge current value from the current control circuit and a charge time from the timer;
前記電池の電圧を測定するための電圧測定器と、  A voltage measuring device for measuring the voltage of the battery,
前記演算器からの充電量及び前記電圧測定器からの電池電圧に基づき前記電 流制御回路を介して前記電池に供給すべき充電電流値を判断するとともに、 充電 電流の供給を停止させるための電流判断部と、 を備え、  A charge current value to be supplied to the battery through the current control circuit is determined based on a charge amount from the arithmetic unit and a battery voltage from the voltage measurement device, and a current for stopping supply of the charge current is determined. And a judgment unit.
前記電流判断部は、 充電開始からの充電量が所定値に到達するまでは、 前記 電流制御回路を介して前記電池に供給される充電電流値を相対的に小さく設定し、 充電開始からの充電量が前記所定値に到達した後は、 充電電流値を充電開始時の 充電電流値よりも大きくなるように設定することを特徴とする、 二次電池の充電 装置。  The current judging unit sets the charging current value supplied to the battery via the current control circuit to a relatively small value until the charging amount from the start of charging reaches a predetermined value. After the amount reaches the predetermined value, the charging current value is set so as to be larger than the charging current value at the start of charging.
8 8
PCT/JP1999/000124 1999-01-14 1999-01-14 Method for charging secondary cell and charger WO2000042673A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/000124 WO2000042673A1 (en) 1999-01-14 1999-01-14 Method for charging secondary cell and charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/000124 WO2000042673A1 (en) 1999-01-14 1999-01-14 Method for charging secondary cell and charger

Publications (1)

Publication Number Publication Date
WO2000042673A1 true WO2000042673A1 (en) 2000-07-20

Family

ID=14234724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000124 WO2000042673A1 (en) 1999-01-14 1999-01-14 Method for charging secondary cell and charger

Country Status (1)

Country Link
WO (1) WO2000042673A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7265520B2 (en) 2000-08-11 2007-09-04 Seiko Epson Corporation Electronic apparatus and method of controlling the electronic apparatus
JP2010034016A (en) * 2008-06-24 2010-02-12 Ricoh Co Ltd Evaluation device, evaluation method, and evaluation program
JP2010158129A (en) * 2008-12-28 2010-07-15 Starlite Co Ltd Charging method and charging device of secondary battery
US9520736B2 (en) 2011-07-27 2016-12-13 Mitsubishi Electric Corporation Charging control apparatus and charging control method for secondary battery
JP2020009724A (en) * 2018-07-12 2020-01-16 トヨタ自動車株式会社 Method for charging secondary battery
JP2020080603A (en) * 2018-11-13 2020-05-28 株式会社Plan Be Lead storage battery operation control method and micro-capacity charging device
WO2022065088A1 (en) * 2020-09-28 2022-03-31 パナソニックIpマネジメント株式会社 Secondary battery charging method and charging system
WO2023126674A1 (en) * 2021-12-27 2023-07-06 日産自動車株式会社 Method for charging secondary battery
WO2024018247A1 (en) * 2022-07-20 2024-01-25 日産自動車株式会社 Method for manufacturing lithium secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61290814A (en) * 1985-06-18 1986-12-20 Sharp Corp D-type flip-flop
JPH09283184A (en) * 1996-04-12 1997-10-31 Fujitsu Ltd Method for charging non-aqueous electrolyte secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61290814A (en) * 1985-06-18 1986-12-20 Sharp Corp D-type flip-flop
JPH09283184A (en) * 1996-04-12 1997-10-31 Fujitsu Ltd Method for charging non-aqueous electrolyte secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7265520B2 (en) 2000-08-11 2007-09-04 Seiko Epson Corporation Electronic apparatus and method of controlling the electronic apparatus
JP2010034016A (en) * 2008-06-24 2010-02-12 Ricoh Co Ltd Evaluation device, evaluation method, and evaluation program
JP2010158129A (en) * 2008-12-28 2010-07-15 Starlite Co Ltd Charging method and charging device of secondary battery
US9520736B2 (en) 2011-07-27 2016-12-13 Mitsubishi Electric Corporation Charging control apparatus and charging control method for secondary battery
JP2020009724A (en) * 2018-07-12 2020-01-16 トヨタ自動車株式会社 Method for charging secondary battery
JP2020080603A (en) * 2018-11-13 2020-05-28 株式会社Plan Be Lead storage battery operation control method and micro-capacity charging device
JP7213442B2 (en) 2018-11-13 2023-01-27 株式会社Plan Be Operation control method for lead-acid battery and micro-capacity charging device
WO2022065088A1 (en) * 2020-09-28 2022-03-31 パナソニックIpマネジメント株式会社 Secondary battery charging method and charging system
WO2023126674A1 (en) * 2021-12-27 2023-07-06 日産自動車株式会社 Method for charging secondary battery
WO2024018247A1 (en) * 2022-07-20 2024-01-25 日産自動車株式会社 Method for manufacturing lithium secondary battery

Similar Documents

Publication Publication Date Title
US8697288B2 (en) High energy lithium ion secondary batteries
JP5210776B2 (en) Charge / discharge control device for lithium ion secondary battery
JP2007095417A (en) Battery pack
WO2017122251A1 (en) Non-aqueous electrolyte secondary battery
JP2004213902A (en) Charging device of battery and charging method of battery
JP5092224B2 (en) Nonaqueous electrolyte secondary battery, its battery pack and electronic device
JP4412767B2 (en) Storage method of lithium secondary battery
WO2000042673A1 (en) Method for charging secondary cell and charger
JP2005502179A (en) Non-aqueous electrolyte
JP2001185213A (en) Nonaqueous electrolyte battery and manufacturing method therefor
JP5122899B2 (en) Discharge control device
JP2006318839A (en) Nonaqueous secondary battery
JP4661145B2 (en) Manufacturing method of lithium ion secondary battery
JP2005285557A (en) Flat battery and its manufacturing method
JPH11238500A (en) Roll type cylindrical battery
JPH113698A (en) Lithium ion secondary battery
JP2730641B2 (en) Lithium secondary battery
JP2001176559A (en) Method of measuring charged voltage of secondary battery
JP2004227931A (en) Nonaqueous electrolyte rechargeable battery
JP2007166698A (en) Charging type power unit
JPH1154122A (en) Lithium ion secondary battery
JP2004297974A (en) Charger
JP5197904B2 (en) Non-aqueous electrolyte secondary battery pack charging method
JPH05326017A (en) Nonaqueous solvent type lithium secondary battery
JP2002100409A (en) Nonaqueous secondary battery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642