JP2010034016A - Evaluation device, evaluation method, and evaluation program - Google Patents

Evaluation device, evaluation method, and evaluation program Download PDF

Info

Publication number
JP2010034016A
JP2010034016A JP2008228969A JP2008228969A JP2010034016A JP 2010034016 A JP2010034016 A JP 2010034016A JP 2008228969 A JP2008228969 A JP 2008228969A JP 2008228969 A JP2008228969 A JP 2008228969A JP 2010034016 A JP2010034016 A JP 2010034016A
Authority
JP
Japan
Prior art keywords
discharge
overcurrent
charge
current
delay time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008228969A
Other languages
Japanese (ja)
Other versions
JP5412771B2 (en
Inventor
Keiji Tsuda
敬二 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2008228969A priority Critical patent/JP5412771B2/en
Publication of JP2010034016A publication Critical patent/JP2010034016A/en
Application granted granted Critical
Publication of JP5412771B2 publication Critical patent/JP5412771B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation device, evaluation method and evaluation program for high precision measuring of a discharge overcurrent detection current value. <P>SOLUTION: The discharge overcurrent detection current value is measured through repetition of: a treatment of passing a discharge current at a value preset smaller than the discharge overcurrent value as an initial value, for a preset discharge period longer than a discharge overcurrent detection delay time, and, in case the discharge current is not shut down, a process of passing a discharge current with a preset incremental current added for a discharge conduction period, after an elapse of discharge quiescent time preset longer than a discharge overcurrent return delay period. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、Liイオン電池の保護機能を有する電池モジュールの過電流検出回路を評価する評価装置、評価方法および評価プログラムに関する。   The present invention relates to an evaluation apparatus, an evaluation method, and an evaluation program for evaluating an overcurrent detection circuit of a battery module having a Li ion battery protection function.

本発明に関連する技術を紹介する。特許文献1は、スイッチング電源を保護するスイッチング電源保護回路として、スイッチング電源を構成する各素子に過度の電流が流れた場合に過度電流検出信号を発する過電流検出器と、過電流検出器からの過度電流検出信号をサンプリングし所定期間ホールドして出力するホールド回路と、スイッチング電源の出力異常を検出して過負荷検出信号を発する過負荷検出器とを設け、この過負荷検出器からの過負荷検出信号とホールド回路からの過度電流検出信号との論理積をとることにより、スイッチング電源に対する保護処理を、両信号が所定時間持続して出力されるまで保留する構成とする。これにより、入力や負荷の変動によるスイッチング電源装置(スイッチングレギュレータ)の誤動作を効率的に防止する。   The technology related to the present invention will be introduced. Patent Document 1 discloses an overcurrent detector that generates an excessive current detection signal when an excessive current flows through each element constituting a switching power supply as a switching power supply protection circuit that protects the switching power supply. An overload detector is provided with a hold circuit that samples the excessive current detection signal, holds it for a predetermined period and outputs it, and an overload detector that detects an output abnormality of the switching power supply and generates an overload detection signal. By taking the logical product of the detection signal and the excessive current detection signal from the hold circuit, the protection processing for the switching power supply is suspended until both signals are output for a predetermined time. This effectively prevents malfunction of the switching power supply device (switching regulator) due to input and load fluctuations.

特許文献2は、従来の充電過電流検出回路、放電過電流検出回路、遅延手段、放電経路遮断手段(放電制御用FET)、充電経路遮断手段(充電制御用FET)と共に、遅延手段における遅延時間を短縮する短縮回路と、充電器マイナス端子の電位(V−)が、放電時に予め異常放電状態検出用に定められた閾値Vt(Vt>>Vh)よりも高くなること、あるいは、充電時に予め異常充電状態検出用に定められた閾値Ve(Ve<<Vj)よりも低くなることを検出する異常検出回路を設け、この異常検出回路で異常放電状態および異常充電状態を検出すると短縮回路を起動して放電電流経路および充電電流経路の遮断を早める。これにより、従来はテスト用に用いられていた、放電過電流状態および充電過電流状態のそれぞれの検出信号の遅延時間の短縮技術を、通常の放電時および充電時の保護機能に利用する。   Patent Document 2 discloses a delay time in a delay means together with a conventional charge overcurrent detection circuit, discharge overcurrent detection circuit, delay means, discharge path cutoff means (discharge control FET), charge path cutoff means (charge control FET). And the potential (V−) of the negative terminal of the charger becomes higher than a threshold value Vt (Vt >> Vh) previously determined for detecting an abnormal discharge state at the time of discharge, or An abnormality detection circuit is provided to detect that the threshold value Ve (Ve << Vj) set for detecting the abnormal charge state is lower, and when the abnormal discharge state and abnormal charge state are detected by this abnormality detection circuit, the shortening circuit is activated. Thus, the interruption of the discharge current path and the charge current path is accelerated. As a result, the technology for shortening the delay time of each detection signal in the discharge overcurrent state and the charge overcurrent state, which has been conventionally used for testing, is used for the protection function during normal discharge and charge.

また、上記文献と関連する技術について図8から図12を用いて説明する。図8において110は、Li電池の充放電制御を行うLi電池保護ICで100は前記Li電池の充放電制御IC110、充放電制御スイッチQ2,Q1、外付け抵抗R1,R2及ぶコンデンサC1を搭載したLi電池保護モジュールである。   Moreover, the technique relevant to the said literature is demonstrated using FIGS. 8-12. In FIG. 8, 110 is a Li battery protection IC that performs charge / discharge control of a Li battery, and 100 is equipped with a charge / discharge control IC 110 for the Li battery, charge / discharge control switches Q2, Q1, and external capacitors R1, R2 and a capacitor C1. Li battery protection module.

まず、Li電池保護モジュール100の放電制御について説明する。Li電池保護モジュール100の外部には端子CN1(BATT+)とCN2(BATT−)にリチウムイオン電池等の二次電池102が接続され端子CN4(OUT+)とCN3(OUT−)には携帯電話、ゲーム機器等の機能を構成する電気回路等が接続され、それを負荷103として表わす。   First, the discharge control of the Li battery protection module 100 will be described. A secondary battery 102 such as a lithium ion battery is connected to terminals CN1 (BATT +) and CN2 (BATT-) outside the Li battery protection module 100, and a mobile phone, a game is connected to terminals CN4 (OUT +) and CN3 (OUT-). An electric circuit or the like that constitutes a function of the device or the like is connected and represented as a load 103.

Li電池保護IC110の外付けの電流遮断用としての放電制御スイッチQ1及び充電制御スイッチQ2が接続されており端子CN1からR1を経由してLi電池保護IC110の端子TN1(Vdd)からLi電池保護IC 110に電源が供給されている。   A discharge control switch Q1 and a charge control switch Q2 for cutting off an external current of the Li battery protection IC 110 are connected to the Li battery protection IC from the terminal TN1 (Vdd) of the Li battery protection IC 110 via the terminals CN1 to R1. Power is supplied to 110.

Li電池保護IC 110内の充電過電流検出回路114及び放電過電流検出回路115にはそれぞれ基準電圧Vref_c、Vref_dが設定されている。一方Li電池保護IC 110の端子TN5(V−)には抵抗R2がLi電池保護モジュール 100の端子CN3(OUT−)及び充電制御スイッチQ2のソースの交点に接続されている。論理回路121、レベルシフト118はそれぞれLi電池保護IC 110の端子TN3(Dout)及びTN4(Cout)に接続されて両信号共“H”が出力されており放電制御スイッチQ1の制御端子(ゲート)及び充電制御スイッチQ2の制御端子(ゲート)が“H”となり放電制御スイッチQ1及び充電制御スイッチQ2がオンしている。   Reference voltages Vref_c and Vref_d are set in the charge overcurrent detection circuit 114 and the discharge overcurrent detection circuit 115 in the Li battery protection IC 110, respectively. On the other hand, the resistor R2 is connected to the terminal TN5 (V−) of the Li battery protection IC 110 at the intersection of the terminal CN3 (OUT−) of the Li battery protection module 100 and the source of the charge control switch Q2. The logic circuit 121 and the level shift 118 are connected to the terminals TN3 (Dout) and TN4 (Cout) of the Li battery protection IC 110, respectively, and both signals output “H”, and the control terminal (gate) of the discharge control switch Q1. In addition, the control terminal (gate) of the charge control switch Q2 becomes “H”, and the discharge control switch Q1 and the charge control switch Q2 are turned on.

Li電池保護モジュール100の端子CN4、CN3に前記負荷103を接続すると二次電池102から端子CN1、CN4、負荷103、CN3、充電制御スイッチQ2のソース、ドレイン、放電制御スイッチQ1のドレイン、ソース、端子CN2の順で矢印104の方向に放電電流が流れる。   When the load 103 is connected to the terminals CN4 and CN3 of the Li battery protection module 100, the secondary battery 102 is connected to the terminals CN1, CN4, the load 103, CN3, the source and drain of the charge control switch Q2, the drain and source of the discharge control switch Q1, A discharge current flows in the direction of the arrow 104 in the order of the terminal CN2.

負荷103に流れた放電電流Idと放電制御スイッチQ1のオン抵抗Ron_d及び充電制御スイッチQ2のオン抵抗Ron_cによるLi電池保護IC110の端子TN2(Vss)基準の正電圧が抵抗R2を経由してLi電池保護IC110の端子TN5(V−)に印加される。   The positive voltage based on the terminal TN2 (Vss) of the Li battery protection IC 110 by the discharge current Id flowing through the load 103, the ON resistance Ron_d of the discharge control switch Q1 and the ON resistance Ron_c of the charge control switch Q2 passes through the resistor R2 and the Li battery. The voltage is applied to the terminal TN5 (V−) of the protection IC 110.

この電圧が放電過電流検出回路115に印加され設定された前記基準電圧Vref_dより低い値となっている。負荷が小さくなった場合放電電流Idが大きくなり放電過電流値(Id_det)を超えた時放電過電流検出回路115の基準電圧Vref_dを前記正電圧が超えた時、動作開始信号が放電過電流検出回路115から発振回路113へ入力され所定の発振周波数で発振を開始する。発振回路の次段に接続されたカウンタ116からはあらかじめ設定しておいた時間(tId_delay)後に論理回路121に“H” が出力され論理回路121への他入力との論理和、論理積等の論理結果によりLi電池保護IC110の端子TN3(Dout)に“L”を出力し外付けの放電制御スイッチQ1の制御端子に“L”が出力され放電制御スイッチQ1がオフし放電電流Idが遮断される。   This voltage is lower than the reference voltage Vref_d set by being applied to the discharge overcurrent detection circuit 115. When the load decreases, the discharge current Id increases and exceeds the discharge overcurrent value (Id_det). When the positive voltage exceeds the reference voltage Vref_d of the discharge overcurrent detection circuit 115, the operation start signal is detected as a discharge overcurrent. It is input from the circuit 115 to the oscillation circuit 113 and starts oscillating at a predetermined oscillation frequency. “H” is output to the logic circuit 121 after a preset time (tId_delay) from the counter 116 connected to the next stage of the oscillation circuit, and the logical sum, logical product, etc. with the other input to the logic circuit 121 are output. According to the logic result, “L” is output to the terminal TN3 (Dout) of the Li battery protection IC 110, “L” is output to the control terminal of the external discharge control switch Q1, the discharge control switch Q1 is turned off, and the discharge current Id is cut off. The

負荷103がLi電池保護モジュール100の端子CN4(OUT+)、CN3(OUT−)から開放されると放電過電流(Id_det)検出状態より開放されあらかじめLi電池保護IC110の内部で設定された時定数後に抵抗R2経由で端子TN5(V−)の電位が放電過電流検出回路115の基準電圧Vref_d以下となる。その結果放電過電流検出回路115から論理回路121及び発振回路113へ“L” 信号が出力されあらかじめ設定されていた所定時間(tIdrel_delay)後にLi電池保護IC110の端子TN3(Dout)に“H” が出力され放電過電流状態から復帰する事となる。   When the load 103 is released from the terminals CN4 (OUT +) and CN3 (OUT−) of the Li battery protection module 100, it is released from the discharge overcurrent (Id_det) detection state, and after a time constant set in advance in the Li battery protection IC 110. The potential of the terminal TN5 (V−) becomes equal to or lower than the reference voltage Vref_d of the discharge overcurrent detection circuit 115 via the resistor R2. As a result, an “L” signal is output from the discharge overcurrent detection circuit 115 to the logic circuit 121 and the oscillation circuit 113, and “H” is output to the terminal TN3 (Dout) of the Li battery protection IC 110 after a predetermined time (tIdrel_delay). It will be output and return from the discharge overcurrent state.

次にLi電池保護モジュール100 の充電制御について図9に基づき説明する。放電制御時に説明したブロックで同一動作のものには同一番号を付与している。Li電池保護モジュール100の外部には端子CN1(BATT+)とCN2(BATT−)にリチウムイオン電池等の二次電池102が接続され端子CN4(OUT+)とCN3(OUT−)には二次電池を充電する為の充電器104が接続されている。Li電池保護IC110には外付けの電流遮断用としての放電制御スイッチQ1及び充電制御スイッチQ2が接続されており端子CN1(BATT+)よりR1を経由して端子TN1(Vdd)にはLi電池保護IC 110に電源が供給されている。   Next, charging control of the Li battery protection module 100 will be described with reference to FIG. The same numbers are given to the blocks described in the discharge control and having the same operation. A secondary battery 102 such as a lithium ion battery is connected to terminals CN1 (BATT +) and CN2 (BATT−) outside the Li battery protection module 100, and a secondary battery is connected to terminals CN4 (OUT +) and CN3 (OUT−). A charger 104 for charging is connected. A discharge control switch Q1 and a charge control switch Q2 for cutting off an external current are connected to the Li battery protection IC 110, and the Li battery protection IC is connected to the terminal TN1 (Vdd) from the terminal CN1 (BATT +) via R1. Power is supplied to 110.

Li電池保護IC 110内の充電過電流検出回路114及び放電過電流検出回路115にはそれぞれ基準電圧Vref_c、Vref_dが設定されている。Li電池保護モジュール 100の端子CN4(OUT+)、CN3(OUT−)に前記充電器104を接続すると充電器104から端子CN4、CN1、二次電池102、端子CN2、放電制御スイッチQ1のソース、ドレイン、充電制御スイッチQ2のドレイン、ソース、端子CN3の順で矢印106の方向に充電電流が流れる。充電器104より二次電池102に流れた充電電流Icと放電制御スイッチQ1のオン抵抗Ron_c及び充電制御スイッチQ2のオン抵抗Ron_cによるLi電池保護IC110の端子TN2(Vss)基準の負電圧が抵抗R2を経由してLi電池保護ICの端子TN5(V−)に印加される。この電圧が充電過電流検出回路114に設定された前記基準電圧Vref_cより絶対値で低い値となっている。二次電池102への充電電流Icが大きくなり充電過電流値(Ic_det)を超え充電過電流検出回路114の基準電圧Vref_cより前記負電圧が小さくなった時、動作開始信号が充電過電流検出回路114から発振回路113へ入力され所定の発振周波数で発振を開始する。発振回路の次段に接続されたカウンタ116からはあらかじめ設定しておいた時間(tIc_delay)後に論理回路117に“H”が出力され論理回路の他入力との論理和、論理積等の論理結果がレベルシフト118へ“L”を出力しLi電池保護IC110の端子TN4(Cout)に“L”を出力し、外付けの充電制御スイッチQ2の制御端子に“L”が出力され充電制御スイッチQ2がオフし充電電流Icが遮断される。   Reference voltages Vref_c and Vref_d are set in the charge overcurrent detection circuit 114 and the discharge overcurrent detection circuit 115 in the Li battery protection IC 110, respectively. When the charger 104 is connected to the terminals CN4 (OUT +) and CN3 (OUT−) of the Li battery protection module 100, the terminals CN4 and CN1, the secondary battery 102, the terminal CN2, and the source and drain of the discharge control switch Q1 are connected from the charger 104. The charging current flows in the direction of the arrow 106 in the order of the drain, source of the charging control switch Q2, and the terminal CN3. The negative voltage based on the terminal TN2 (Vss) of the Li battery protection IC 110 by the charging current Ic flowing from the charger 104 to the secondary battery 102, the ON resistance Ron_c of the discharging control switch Q1, and the ON resistance Ron_c of the charging control switch Q2 is the resistance R2. And applied to the terminal TN5 (V−) of the Li battery protection IC. This voltage is lower in absolute value than the reference voltage Vref_c set in the charge overcurrent detection circuit 114. When the charging current Ic to the secondary battery 102 increases and exceeds the charging overcurrent value (Ic_det), and the negative voltage becomes smaller than the reference voltage Vref_c of the charging overcurrent detection circuit 114, the operation start signal becomes the charge overcurrent detection circuit. 114 is input to the oscillation circuit 113 and starts oscillating at a predetermined oscillation frequency. “H” is output to the logic circuit 117 after a preset time (tIc_delay) from the counter 116 connected to the next stage of the oscillation circuit, and a logical result such as logical sum or logical product with other inputs of the logic circuit. Outputs "L" to the level shift 118, outputs "L" to the terminal TN4 (Cout) of the Li battery protection IC 110, and outputs "L" to the control terminal of the external charge control switch Q2, so that the charge control switch Q2 Is turned off and the charging current Ic is cut off.

充電器104が開放され端子TN4(OUT+)とTN3(OUT−)の間に負荷103が接続されると図8に示す状態となりLi電池102の正電圧が端子CN1(BATT+)、CN4(OUT+)、負荷103、CN3(OUT−)、抵抗R2経由で端子TN5(V−)に印加される事となり充電過電流検出回路114の基準電圧Vref_c以上となり充電過電流(Ic_det)状態より復帰する。   When the charger 104 is opened and the load 103 is connected between the terminals TN4 (OUT +) and TN3 (OUT−), the state shown in FIG. 8 is obtained, and the positive voltage of the Li battery 102 becomes the terminals CN1 (BATT +) and CN4 (OUT +). Then, the voltage is applied to the terminal TN5 (V−) via the load 103, CN3 (OUT−) and the resistor R2, and becomes equal to or higher than the reference voltage Vref_c of the charge overcurrent detection circuit 114, and returns from the charge overcurrent (Ic_det) state.

その結果、充電過電流検出回路114から論理回路117及び発振回路113へ“L”信号が出力されあらかじめ設定済の所定時間(tIcrel_delay)後にLi電池保護IC110の端子TN4(Cout)に“H”が出力され充電過電流状態から復帰する事となる。   As a result, an “L” signal is output from the charge overcurrent detection circuit 114 to the logic circuit 117 and the oscillation circuit 113, and “H” is applied to the terminal TN4 (Cout) of the Li battery protection IC 110 after a preset predetermined time (tIcrel_delay). It will be output and return from the charge overcurrent state.

上記記載の充放電検出動作機能を有するLi電池保護モジュール100の上記充放電検出電流値Ic_det及びId_detを計測するべく評価装置(図示せず)がLi電池保護モジュール100のCN3(OUT−)、CN2(BATT−)に接続されている。   In order to measure the charge / discharge detection current values Ic_det and Id_det of the Li battery protection module 100 having the above-described charge / discharge detection operation function, an evaluation device (not shown) determines CN3 (OUT−), CN2 of the Li battery protection module 100. Connected to (BATT-).

図10、11にて放電過電流検出電流値計測時の検査フローを説明する。   The inspection flow at the time of measuring the discharge overcurrent detection current value will be described with reference to FIGS.

まず、放電過電流値(Id_det)以下の放電電流初期値IdをLi電池保護モジュール100の端子CN3、CN2間に流す(ステップS−1)。   First, a discharge current initial value Id equal to or lower than the discharge overcurrent value (Id_det) is passed between the terminals CN3 and CN2 of the Li battery protection module 100 (step S-1).

次に、放電過電流検出遅延時間tId_delay+αとし放電過電流検出が確実に動作する時間の間待つ(ステップS−2)。その後、電流遮断しているかどうかを判断する(ステップS−3)。   Next, a discharge overcurrent detection delay time tId_delay + α is set, and the process waits for a time during which discharge overcurrent detection operates reliably (step S-2). Thereafter, it is determined whether or not the current is interrupted (step S-3).

電流遮断していれば(ステップS−3/YES)、処理を終了する。電流遮断していなければ(ステップS−3/NO)、放電電流をΔIdだけ増加させたId+ΔIdを流す(ステップS−4)。その後、ステップS−2の処理での待ち時間後、ステップS−3の処理で、電流遮断判断の繰返しループを実行し電流遮断するまで実行する。
ここでt_S-2、t_S-3、t_S-4は、ステップS−2、S−3、S−4を実現する為のプログラムステップに要する時間を表わす。
If the current is cut off (step S-3 / YES), the process is terminated. If the current is not interrupted (step S-3 / NO), Id + ΔId obtained by increasing the discharge current by ΔId is passed (step S-4). Then, after the waiting time in the process of step S-2, the process of step S-3 is executed until the current interruption determination repetitive loop is executed and the current is interrupted.
Here, t_S -2 , t_S -3 , and t_S -4 represent time required for the program steps for realizing steps S-2, S-3, and S-4.

この結果計測開始後の時間t1に放電過電流値を検出した場合放電制御スイッチQ1でのオン抵抗Ron_dでの熱損失は、[Ron1_d×Id+Ron2_d×(Id+ΔId)+Ron3_d×(Id+ΔId)+‥‥‥]×(tId_delay) (1)
となる。
As a result, when a discharge overcurrent value is detected at time t1 after the start of measurement, the heat loss at the on-resistance Ron_d in the discharge control switch Q1 is [Ron1_d × Id + Ron2_d × (Id + ΔId) + Ron3_d × (Id + ΔId) +. × (tId_delay) (1)
It becomes.

一方、充電制御スイッチQ2でのオン抵抗Ron_cによる熱損失は[Ron1_c ×Id + Ron2_c ×(Id+ΔId) + Ron3_c ×(Id+ΔId)+‥‥‥]×(tId_delay) (2)となる。
ここでRon_d及びRon_cは、周囲温度が高くなると大きくなる傾向の為上記熱損失による自己発熱によりRon_d及びRon_cは大きくなる。Ron_d及びRon_cが大きくなる事で放電制御スイッチQ1及び充電制御スイッチQ2のオン抵抗Ron_d及びRon_cと放電電流Idによる電圧降下が大きくなり上記抵抗R2を経由してLi電池保護IC110の端子TN5(V−)に印加される正電圧が大きくなる為に見かけ上放電過電流検出電流値の計測結果が小さくなる。同様に充電時の検出も図12にて充電過電流検出電流値計測時の検査フローで示しているように放電過電流検出電流値計測時と同等で有り放電制御スイッチQ1でのオン抵抗Ron_dによる熱損失及び充電制御スイッチQ2でのオン抵抗Ron_cによる熱損失は、それぞれ、以下のようになる。
[Ron4_d×Ic+Ron5_d×(Ic+ΔIc)+Ron6_d×(Ic+ΔIc)+‥‥]×(tIc_delay)‥‥‥‥‥‥‥‥‥‥‥‥‥‥(3)
[Ron4_c×Ic+Ron5_c×(Ic+ΔIc)+Ron6_c×(Ic+ΔIc)+‥‥]×(tIc_delay+α) (4)
On the other hand, the heat loss due to the on-resistance Ron_c in the charge control switch Q2 is [Ron1_c × Id + Ron2_c × (Id + ΔId) + Ron3_c × (Id + ΔId) +...] × (tId_delay) (2).
Here, since Ron_d and Ron_c tend to increase as the ambient temperature increases, Ron_d and Ron_c increase due to self-heating due to the heat loss. By increasing Ron_d and Ron_c, the voltage drop due to the on-resistances Ron_d and Ron_c of the discharge control switch Q1 and the charge control switch Q2 and the discharge current Id increases, and the terminal TN5 (V−) of the Li battery protection IC 110 passes through the resistor R2. ), The measurement result of the discharge overcurrent detection current value apparently decreases. Similarly, the detection at the time of charging is equivalent to that at the time of measuring the discharge overcurrent detection current value as shown in the inspection flow at the time of measurement of the charge overcurrent detection current value in FIG. The heat loss and the heat loss due to the on-resistance Ron_c at the charge control switch Q2 are as follows.
[Ron4_d × Ic + Ron5_d × (Ic + ΔIc) + Ron6_d × (Ic + ΔIc) +...] × (tIc_delay) ……………………………………………………………… (3)
[Ron4_c × Ic + Ron5_c × (Ic + ΔIc) + Ron6_c × (Ic + ΔIc) +...] × (tIc_delay + α) (4)

上記熱損失による自己発熱によりRon_d及びRon_cは大きくなる。Ron_d及びRon_cが大きくなる事で放電制御スイッチQ1及び充電制御スイッチQ2のオン抵抗Ron_d及びRon_cと充電電流Icによる電圧降下が大きくなり上記抵抗R2を経由してLi電池保護IC110の端子TN5(V−)に印加される負電圧が大きくなる為に見かけ上充電過電流検出電流値の計測結果が小さくなる。   Ron_d and Ron_c increase due to self-heating due to the heat loss. By increasing Ron_d and Ron_c, the voltage drop due to the on-resistances Ron_d and Ron_c of the discharge control switch Q1 and the charge control switch Q2 and the charging current Ic increases, and the terminal TN5 (V−) of the Li battery protection IC 110 passes through the resistor R2. ), The measurement result of the charge overcurrent detection current value apparently decreases.

上記熱損失を少なくさせる為には上記図11で記載した各フローステップS−2、S−3、S−4の実行プログラム数を少なくするか上記ステップを高速に処理させる事しか対応方法が無い。図10の時間αは、このプログラムステップ動作に消費される時間である。
特開2004−48884号公報 特開2006−262574号公報
The only way to reduce the heat loss is to reduce the number of execution programs in each of the flow steps S-2, S-3, and S-4 described in FIG. 11 or to process the steps at high speed. . The time α in FIG. 10 is the time consumed for this program step operation.
JP 2004-48884 A JP 2006-262574 A

しかし、上記のような充放電過電流検出電流値の計測方法では自己発熱によるオン抵抗増加による検出電流値が小さめに計測される。また、充放電過電流検出遅延時間の計測にはそれぞれ単独で計測する必要があり時間が約2倍かかってしまう。   However, in the method for measuring the charge / discharge overcurrent detection current value as described above, the detection current value due to an increase in on-resistance due to self-heating is measured to be smaller. Moreover, it is necessary to measure each charge / discharge overcurrent detection delay time independently, and the time is about twice as long.

本発明では、放電過電流値より小さく設定した放電電流値を初期値として放電電流を放電過電流検出遅延時間より長く設定した放電通電期間の間流し、放電電流が遮断しなかった場合、放電過電流復帰遅延時間より長く設定した放電休止時間経過後あらかじめ設定した増加幅電流を放電電流に加算した放電電流を放電通電期間の間流すことを繰り返す評価装置、評価方法および評価プログラムを提供することを目的とする。   In the present invention, when the discharge current is set to be longer than the discharge overcurrent detection delay time with the discharge current value set smaller than the discharge overcurrent value as an initial value and the discharge current is not interrupted, To provide an evaluation device, an evaluation method, and an evaluation program for repeatedly flowing a discharge current obtained by adding a preset increase width current to a discharge current after a discharge rest time set longer than a current return delay time for a discharge energization period. Objective.

上記の目的を達成するため、請求項1に記載の発明は、二次電池から負荷に流れる放電電流を制御する放電制御スイッチと、充電器から二次電池に流れる充電電流を制御する充電制御スイッチと、放電過電流復帰遅延時間後に前記放電制御スイッチの制御端子へ放電過電流復帰検出信号を送出することにより前記放電制御スイッチをオンし放電過電流から復帰させる二次電池の放電過電流復帰回路と、所定の充電過電流復帰遅延時間後に前記充電制御スイッチの制御端子へ充電過電流復帰信号を送出することにより前記充電制御スイッチをオンし充電過電流状態から復帰させる二次電池の充電過電流復帰回路とを備えたリチウム電池保護回路モジュールの充放電過電流検出電流値、充放電過電流検出遅延時間値、および、充放電過電流復帰遅延時間値の妥当性を評価する評価装置であって、放電過電流値より小さく設定した放電電流値を初期値として放電電流を放電過電流検出遅延時間より長く設定した放電通電期間の間流す処理と、放電電流が遮断しなかった場合、放電過電流復帰遅延時間より長く設定した放電休止時間経過後あらかじめ設定した増加幅電流を放電電流に加算した放電電流を放電通電期間の間流す処理とを繰り返し、前記放電過電流検出電流値を測定する評価装置であることを特徴とする。   In order to achieve the above object, the invention described in claim 1 includes a discharge control switch for controlling a discharge current flowing from the secondary battery to the load, and a charge control switch for controlling the charge current flowing from the charger to the secondary battery. And a discharge overcurrent return circuit for a secondary battery that turns on the discharge control switch to return from the discharge overcurrent by sending a discharge overcurrent return detection signal to the control terminal of the discharge control switch after the discharge overcurrent return delay time And a charge overcurrent of a secondary battery that turns on the charge control switch to return from the charge overcurrent state by sending a charge overcurrent return signal to the control terminal of the charge control switch after a predetermined charge overcurrent return delay time Charge / discharge overcurrent detection current value, charge / discharge overcurrent detection delay time value, and charge / discharge overcurrent return delay of a lithium battery protection circuit module equipped with a return circuit An evaluation device for evaluating the validity of a time value, wherein a discharge current value set smaller than a discharge overcurrent value is set as an initial value, and a discharge current is passed during a discharge energization period set longer than a discharge overcurrent detection delay time; If the discharge current is not interrupted, repeat the process of flowing the discharge current during the discharge energization period after adding the preset increase width current to the discharge current after the discharge pause time set longer than the discharge overcurrent recovery delay time The evaluation apparatus measures the discharge overcurrent detection current value.

請求項2に記載の発明は、請求項1に記載の評価装置において、放電通電期間と、放電休止期間とを合わせた時間が前記放電過電流検出遅延時間と、前記放電過電流復帰遅延時間とを合わせた時間を等しいことを特徴とする。   According to a second aspect of the present invention, in the evaluation apparatus according to the first aspect, a time obtained by combining a discharge energization period and a discharge rest period is the discharge overcurrent detection delay time, the discharge overcurrent return delay time, The combined time is equal.

請求項3に記載の発明は、請求項1に記載の評価装置において、前記充電過電流値より小さく設定した充電電流値を初期値として前記充電電流を前記充電過電流検出遅延時間より長く設定した充電通電期間の間流す処理と、充電電流が遮断しなかった場合、前記充電過電流復帰遅延時間より長く設定した前記充電休止時間、経過後あらかじめ設定した増加幅電流を前記充電電流に加算した充電電流を前記充電通電期間の間、流す処理とを繰り返し、充電過電流検出電流値を測定することを特徴とする。   According to a third aspect of the present invention, in the evaluation apparatus according to the first aspect, the charging current is set to be longer than the charging overcurrent detection delay time with a charging current value set smaller than the charging overcurrent value as an initial value. When the charging current is not interrupted during the charging energization period and the charging current is not interrupted, the charging pause time set longer than the charging overcurrent return delay time, and the charging current obtained by adding the increment current set in advance to the charging current. The process of flowing current during the charging energization period is repeated, and the charge overcurrent detection current value is measured.

請求項4に記載の発明は、請求項3に記載の評価装置において、充電通電期間と、充電休止期間とを合わせた時間が前記充電過電流検出遅延時間と、前記充電過電流復帰遅延時間とが等しいことを特徴とする。   According to a fourth aspect of the present invention, in the evaluation apparatus according to the third aspect, a time obtained by combining a charging energization period and a charging suspension period, the charging overcurrent detection delay time, and the charging overcurrent return delay time, Are equal to each other.

請求項5に記載の発明は、請求項4に記載の評価装置において、放電電流が遮断した事を判断し放電過電流検出電流値を計測完了した後、前記放電通電期間中に前記基準電圧より小さい放電電流を流し、前記放電過電流復帰遅延時間を測定することを特徴とする。   According to a fifth aspect of the present invention, in the evaluation device according to the fourth aspect, after determining that the discharge current has been interrupted and completing the measurement of the discharge overcurrent detection current value, the reference voltage is applied during the discharge energization period. A small discharge current is passed, and the discharge overcurrent recovery delay time is measured.

請求項6に記載の発明は、請求項5に記載の評価装置において、充電電流が遮断した事を判断し、充電過電流検出電流値を計測完了した後の前記充電通電期間中に前記基準電圧より小さい充電電流を流し、前記充電過電流復帰遅延時間を測定することを特徴とする。   According to a sixth aspect of the present invention, in the evaluation device according to the fifth aspect, the reference voltage is determined during the charging energization period after determining that the charging current is interrupted and completing the measurement of the charging overcurrent detection current value. A smaller charging current is passed, and the charging overcurrent recovery delay time is measured.

請求項7に記載の発明は、請求項1から6のいずれか1項に記載の評価装置において、放電過電流検出電流値、放電過電流検出遅延時間、放電過電流復帰遅延時間、および、充電過電流検出電流値、充電過電流検出遅延時間、充電過電流復帰遅延時間の順番で順じ繰返し測定することを特徴とする。   According to a seventh aspect of the present invention, in the evaluation device according to any one of the first to sixth aspects, the discharge overcurrent detection current value, the discharge overcurrent detection delay time, the discharge overcurrent return delay time, and the charging It is characterized by repeatedly measuring in order of an overcurrent detection current value, a charge overcurrent detection delay time, and a charge overcurrent recovery delay time.

請求項8に記載の発明は、請求項1から6のいずれか1項に記載の評価装置において、充電過電流検出電流値、充電過電流検出遅延時間、充電過電流復帰遅延時間、および、放電過電流検出電流値、放電過電流検出遅延時間、放電過電流復帰遅延時間の順番で順じ繰返し測定する事を特徴とする。   The invention according to claim 8 is the evaluation device according to any one of claims 1 to 6, wherein the charge overcurrent detection current value, the charge overcurrent detection delay time, the charge overcurrent return delay time, and the discharge It is characterized by repeatedly measuring in order of overcurrent detection current value, discharge overcurrent detection delay time, and discharge overcurrent recovery delay time.

請求項9に記載の発明は、二次電池から負荷に流れる放電電流を制御する放電制御スイッチと、充電器から二次電池に流れる充電電流を制御する充電制御スイッチと、放電過電流復帰遅延時間後に前記放電制御スイッチの制御端子へ放電過電流復帰検出信号を送出することにより前記放電制御スイッチをオンし放電過電流から復帰させる二次電池の放電過電流復帰回路と、所定の充電過電流復帰遅延時間後に前記充電制御スイッチの制御端子へ充電過電流復帰信号を送出することにより前記充電制御スイッチをオンし充電過電流状態から復帰させる二次電池の充電過電流復帰回路とを備えたリチウム電池保護回路モジュールの充放電過電流検出電流値、充放電過電流検出遅延時間値、および、充放電過電流復帰遅延時間値の妥当性を評価する評価方法であって、放電過電流値より小さく設定した放電電流値を初期値として放電電流を放電過電流検出遅延時間より長く設定した放電通電期間の間流す処理と、放電電流が遮断しなかった場合、放電過電流復帰遅延時間より長く設定した放電休止時間経過後あらかじめ設定した増加幅電流を放電電流に加算した放電電流を放電通電期間の間流す処理とを繰り返し、前記放電過電流検出電流値を測定する評価方法であることを特徴とする。   The invention according to claim 9 is a discharge control switch for controlling a discharge current flowing from the secondary battery to the load, a charge control switch for controlling a charge current flowing from the charger to the secondary battery, and a discharge overcurrent recovery delay time. A discharge overcurrent recovery circuit for a secondary battery that turns on the discharge control switch to return from the discharge overcurrent by sending a discharge overcurrent recovery detection signal to the control terminal of the discharge control switch later, and a predetermined charge overcurrent recovery A lithium battery comprising a secondary battery charge overcurrent return circuit that turns on the charge control switch to return from a charge overcurrent state by sending a charge overcurrent return signal to a control terminal of the charge control switch after a delay time Evaluate the validity of the charge / discharge overcurrent detection current value, charge / discharge overcurrent detection delay time value, and charge / discharge overcurrent recovery delay time value of the protection circuit module. A discharge current value set smaller than the discharge overcurrent value as an initial value, and a process in which the discharge current is set to be longer than the discharge overcurrent detection delay time and the discharge current is not interrupted The discharge overcurrent detection delay time is set to be longer than the discharge overcurrent return delay time, and a process of flowing a discharge current obtained by adding a preset increase current to the discharge current after the discharge rest time has elapsed, during the discharge energization period, It is the evaluation method which measures this.

請求項10に記載の発明は、二次電池から負荷に流れる放電電流を制御する放電制御スイッチと、充電器から二次電池に流れる充電電流を制御する充電制御スイッチと、放電過電流復帰遅延時間後に前記放電制御スイッチの制御端子へ放電過電流復帰検出信号を送出することにより前記放電制御スイッチをオンし放電過電流から復帰させる二次電池の放電過電流復帰回路と、所定の充電過電流復帰遅延時間後に前記充電制御スイッチの制御端子へ充電過電流復帰信号を送出することにより前記充電制御スイッチをオンし充電過電流状態から復帰させる二次電池の充電過電流復帰回路とを備えたリチウム電池保護回路モジュールの充放電過電流検出電流値、充放電過電流検出遅延時間値、および、充放電過電流復帰遅延時間値の妥当性の評価をコンピュータに実行させる評価プログラムであって、放電過電流値より小さく設定した放電電流値を初期値として放電電流を放電過電流検出遅延時間より長く設定した放電通電期間の間流す処理と、放電電流が遮断しなかった場合、放電過電流復帰遅延時間より長く設定した放電休止時間経過後あらかじめ設定した増加幅電流を放電電流に加算した放電電流を放電通電期間の間流す処理とを繰り返し、前記放電過電流検出電流値を測定する処理をコンピュータに実行させることを特徴とする。   The invention according to claim 10 is a discharge control switch for controlling a discharge current flowing from the secondary battery to the load, a charge control switch for controlling a charge current flowing from the charger to the secondary battery, and a discharge overcurrent recovery delay time. A discharge overcurrent recovery circuit for a secondary battery that turns on the discharge control switch to return from the discharge overcurrent by sending a discharge overcurrent recovery detection signal to the control terminal of the discharge control switch later, and a predetermined charge overcurrent recovery A lithium battery comprising a secondary battery charge overcurrent return circuit that turns on the charge control switch to return from a charge overcurrent state by sending a charge overcurrent return signal to a control terminal of the charge control switch after a delay time Evaluate the validity of the charge / discharge overcurrent detection current value, charge / discharge overcurrent detection delay time value, and charge / discharge overcurrent recovery delay time value of the protection circuit module. An evaluation program to be executed by a computer, in which a discharge current value set smaller than a discharge overcurrent value is set as an initial value, a process of flowing a discharge current for a discharge energization period set longer than a discharge overcurrent detection delay time, and a discharge current If not cut off, the discharge overcurrent is repeated for a duration of the discharge energization period after the discharge pause time set longer than the discharge overcurrent return delay time has elapsed and the discharge current obtained by adding the preset increase current to the discharge current is repeated. The computer is caused to execute processing for measuring a current detection current value.

本発明によれば、放電過電流値より小さく設定した放電電流値を初期値として放電電流を放電過電流検出遅延時間より長く設定した放電通電期間の間流し、放電電流が遮断しなかった場合、放電過電流復帰遅延時間より長く設定した放電休止時間経過後あらかじめ設定した増加幅電流を放電電流に加算した放電電流を放電通電期間の間流すことを繰り返し、放電過電流検出電流値を高精度に測定する評価装置、評価方法および評価プログラムの提供を可能とする。   According to the present invention, when the discharge current is set to be longer than the discharge overcurrent detection delay time with the discharge current value set smaller than the discharge overcurrent value as an initial value, and the discharge current is not interrupted, After the discharge pause time set longer than the discharge overcurrent recovery delay time has elapsed, a discharge current obtained by adding a preset increase current to the discharge current is repeatedly flowed during the discharge energization period, and the discharge overcurrent detection current value is accurately set. It is possible to provide an evaluation apparatus, an evaluation method, and an evaluation program for measurement.

本発明は、従来の充放電過電流検出電流値の計測方法では自己発熱によるオン抵抗増加による検出電流値が小さめに計測されるという問題点、充放電過電流検出遅延時間の計測にはそれぞれ単独で計測する必要があり時間が約2倍かかってしまうという問題点を解決し、放電過電流検出電流値を高精度に測定することができる。   The present invention has a problem that the conventional method for measuring the charge / discharge overcurrent detection current value measures a smaller detection current value due to an increase in on-resistance due to self-heating, and the charge / discharge overcurrent detection delay time is measured separately. This solves the problem that it takes about twice as long as the time required for the measurement, and the discharge overcurrent detection current value can be measured with high accuracy.

上記問題点を解決するのに好適な形態の一例を以下に示す。   An example of a preferred form for solving the above problems is shown below.

二次電池から負荷に流れる放電電流(IL)を半導体スイッチである放電制御スイッチ(FET_d)と、充電器から二次電池に流れる充電電流(Ic)を半導体スイッチである充電制御スイッチ(FET_c)と、所定の放電過電流検出遅延時間(tId_delay)後に前記放電制御スイッチの制御端子へ放電過電流検出信号を送出することにより前記放電制御スイッチをオフし、放電過電流を遮断させる機能と放電電流値が低減しこの低減した放電電流と放電制御スイッチ(FET_d)及び充電制御スイッチ(FET_c)での電圧降下の正電圧が前記基準電圧(Vref_d)より低くなる事で放電過電流検出状態から通常の放電電流状態(Idrel_det)に復帰したと判断して所定の放電過電流復帰遅延時間(tIdrel_delay)後に前記放電制御スイッチの制御端子へ放電過電流復帰検出信号を送出することにより前記放電制御スイッチをオンし放電過電流から復帰させる二次電池の放電過電流復帰回路とを備え、充電時充電電流による放電制御スイッチ(FET_d)と充電制御スイッチ(FET_c)での電圧降下の負電圧を監視して前記負電圧降下が所定の基準電圧(Vref_c)より低くなった時に充電過電流(Ic_det)状態と判断して所定の充電過電流検出遅延時間(tIc_delay)後に前記充電制御スイッチの制御端子へ充電過電流検出信号を送出することにより前記充電制御スイッチをオフし充電過電流を遮断させる機能と充電過電流検出電流値以下に充電電流値が低減しこの低減した充電電流と放電制御スイッチ(FET_d)及び充電制御スイッチ(FET_c)での電圧降下の負電圧が前記基準電圧(Vref_c)より高くなる事で充電過電流検出状態(Icrel_det)から復帰したと判断して所定の充電過電流復帰遅延時間(tIcrel_delay)後に前記充電制御スイッチの制御端子へ充電過電流復帰信号を送出することにより前記充電制御スイッチをオンし充電過電流状態から復帰させる二次電池の充電過電流復帰回路を備えたリチウム電池保護回路モジュールの充放電過電流検出電流値及び充放電過電流検出遅延時間値及び充放電過電流復帰遅延時間値の妥当性を評価する検査装置において放電過電流値より小さく設定した放電電流値を初期値として放電電流を放電過電流検出遅延時間より長く設定した放電通電期間の間流し、放電電流が遮断しなかった場合、放電過電流復帰遅延時間より長く設定した放電休止時間経過後あらかじめ設定した増加幅電流を放電電流に加算した放電電流を放電通電期間の間流す事を繰返す事によって上記放電過電流検出電流値を測定する。   A discharge control switch (FET_d), which is a semiconductor switch, discharge current (IL) flowing from the secondary battery to the load, and a charge control switch (FET_c), which is a semiconductor switch, charging current (Ic) flowing from the charger to the secondary battery. , A function of turning off the discharge control switch by sending a discharge overcurrent detection signal to the control terminal of the discharge control switch after a predetermined discharge overcurrent detection delay time (tId_delay) and cutting off the discharge overcurrent, and a discharge current value Is reduced and the positive voltage of the voltage drop at the discharge control switch (FET_d) and the charge control switch (FET_c) becomes lower than the reference voltage (Vref_d) so that the normal discharge is detected from the discharge overcurrent detection state. It is determined that the current state (Idrel_det) has been restored, and a predetermined discharge overcurrent return delay time (tIdr) l_delay), and a discharge overcurrent return circuit for a secondary battery that turns on the discharge control switch to return from the discharge overcurrent by sending a discharge overcurrent return detection signal to the control terminal of the discharge control switch after charging. The negative voltage of the voltage drop at the discharge control switch (FET_d) and the charge control switch (FET_c) due to the charge current is monitored, and the charge overcurrent (Ic_det) when the negative voltage drop becomes lower than the predetermined reference voltage (Vref_c) A function of turning off the charge control switch and cutting off the charge overcurrent by sending a charge overcurrent detection signal to the control terminal of the charge control switch after a predetermined charge overcurrent detection delay time (tIc_delay) after judging the state; The charge current value is reduced below the charge overcurrent detection current value. This reduced charge current and discharge control switch ( ET_d) and the negative voltage of the voltage drop at the charge control switch (FET_c) becomes higher than the reference voltage (Vref_c), so that it is determined that the charge overcurrent detection state (Icrel_det) has returned, and a predetermined charge overcurrent return delay Lithium having a charge overcurrent return circuit for a secondary battery that turns on the charge control switch to return from the charge overcurrent state by sending a charge overcurrent return signal to the control terminal of the charge control switch after time (tIcrel_delay) Discharge current set smaller than the discharge overcurrent value in the inspection device for evaluating the validity of the charge / discharge overcurrent detection current value, the charge / discharge overcurrent detection delay time value, and the charge / discharge overcurrent recovery delay time value of the battery protection circuit module Let the discharge current flow for the discharge energization period set longer than the discharge overcurrent detection delay time with the value as the initial value, When the discharge current is not interrupted, by repeating the flow of the discharge current during the discharge energization period after adding the preset increase current to the discharge current after the discharge pause time set longer than the discharge overcurrent recovery delay time The discharge overcurrent detection current value is measured.

また好ましくは、上記構成において、放電通電期間(Ton_d)と放電休止期間(Toff_d)を合わせた時間が上記放電過電流検出遅延時間(tId_delay)と上記放電過電流復帰遅延時間(tIdrel_delay)を合わせた時間を等しくする。   Preferably, in the above configuration, a time obtained by combining the discharge energization period (Ton_d) and the discharge rest period (Toff_d) is the same as the discharge overcurrent detection delay time (tId_delay) and the discharge overcurrent return delay time (tIdrel_delay). Make time equal.

また好ましくは、上記構成において、上記充電過電流(Ic_det)値より小さく設定した充電電流値を初期値として上記充電電流(Ic)を上記充電過電流検出遅延時間(tIc_delay)より長く設定した充電通電期間(Ton_c)の間流し、充電電流が遮断しなかった場合上記充電過電流復帰遅延時間(tIcrel_delay)より長く設定した前記充電休止時間(Toff_c)経過後あらかじめ設定した増加幅電流(ΔIc)を前記充電電流に加算した充電電流(Ic+ΔIc)を前記充電通電期間の間流す事を繰返す。
これによって放電制御スイッチ(FET_d)及び上記充電制御スイッチ(FET_c)の発熱を抑えることが出来、上記充電過電流検出電流値(Ic_det)を精度よく測定することができる。
Preferably, in the above configuration, charging energization in which the charging current (Ic) is set longer than the charging overcurrent detection delay time (tIc_delay) with a charging current value set smaller than the charging overcurrent (Ic_det) value as an initial value. When the charging current is not cut off during the period (Ton_c), the increase current (ΔIc) set in advance after the charging pause time (Toff_c) set longer than the charging overcurrent recovery delay time (tIcrel_delay) is The charging current (Ic + ΔIc) added to the charging current is repeatedly supplied during the charging energization period.
Accordingly, heat generation of the discharge control switch (FET_d) and the charge control switch (FET_c) can be suppressed, and the charge overcurrent detection current value (Ic_det) can be accurately measured.

また好ましくは、上記構成において、充電通電期間(Ton_c)と充電休止期間(Toff_c)を合わせた時間が上記充電過電流検出遅延時間(tIc_delay)と上記充電過電流復帰遅延時間(tIcrel_delay)とが等しくする。   Further preferably, in the above configuration, the charge overcurrent detection delay time (tIc_delay) and the charge overcurrent return delay time (tIcrel_delay) are equal to the total time of the charging energization period (Ton_c) and the charging suspension period (Toff_c). To do.

また、上記構成は、放電電流が遮断したことを判断し、放電過電流検出電流値を計測した時と同時に上記放電過電流検出遅延時間(tId_delay)の計測が放電電流遮断時に同時測定できる。   In addition, the above configuration can determine that the discharge current has been cut off and measure the discharge overcurrent detection current value simultaneously with the measurement of the discharge overcurrent detection delay time (tId_delay) when the discharge current is cut off.

また、上記構成は、充電電流が遮断した事を判断し充電過電流検出電流値を計測した時と同時に上記充電過電流検出遅延時間(tIc_delay)の計測が充電電流遮断時に同時測定できる。   In addition, the above configuration can simultaneously measure the charge overcurrent detection delay time (tIc_delay) when the charge current is cut off at the same time when it is determined that the charge current is cut off and the charge overcurrent detection current value is measured.

また好ましくは、上記構成において、放電電流が遮断した事を判断し放電過電流検出電流値を計測完了した後の上記放電通電期間中に上記基準電圧(Vref_d)より小さい放電電流を流す事により上記放電過電流復帰遅延時間(tIdrel_delay)を測定する。   Further preferably, in the above configuration, the discharge current smaller than the reference voltage (Vref_d) is allowed to flow during the discharge energization period after determining that the discharge current is interrupted and completing the measurement of the discharge overcurrent detection current value. The discharge overcurrent recovery delay time (tIdrel_delay) is measured.

また好ましくは、上記構成において、充電電流が遮断した事を判断し充電過電流検出電流値を計測完了した後の上記充電通電期間中に上記基準電圧(Vref_c)より小さい充電電流を流す事により上記充電過電流復帰遅延時間(tIcrel_delay)を測定する。   Further preferably, in the above configuration, the charging current is cut off and a charging current smaller than the reference voltage (Vref_c) is supplied during the charging energization period after the measurement of the charging overcurrent detection current value is completed. The charge overcurrent recovery delay time (tIcrel_delay) is measured.

また好ましくは、上記構成において、放電過電流検出電流値、放電過電流検出遅延時間、放電過電流復帰遅延時間及び充電過電流検出電流値、充電過電流検出遅延時間、充電過電流復帰遅延時間の順番で順じ繰返し測定する。   Preferably, in the above configuration, the discharge overcurrent detection current value, the discharge overcurrent detection delay time, the discharge overcurrent return delay time and the charge overcurrent detection current value, the charge overcurrent detection delay time, and the charge overcurrent return delay time Repeat in order.

また好ましくは、上記構成において、充電過電流検出電流値、充電過電流検出遅延時間、充電過電流復帰遅延時間及び放電過電流検出電流値、放電過電流検出遅延時間、放電過電流復帰遅延時間の順番で順じ繰返し測定する。   Preferably, in the above configuration, the charge overcurrent detection current value, the charge overcurrent detection delay time, the charge overcurrent recovery delay time and the discharge overcurrent detection current value, the discharge overcurrent detection delay time, and the discharge overcurrent recovery delay time Repeat in order.

上述した本発明を実施する実施の形態について以下に説明していく。   Embodiments for carrying out the present invention described above will be described below.

まず、図1を参照して本発明を説明する。   First, the present invention will be described with reference to FIG.

充放電検出動作機能を有するLi電池保護モジュール100の上記充電過電流検出電流値Ic_det及び放電過電流検出電流値Id_detを計測可能な評価装置200内の機能を説明する。   A function in the evaluation apparatus 200 capable of measuring the charge overcurrent detection current value Ic_det and the discharge overcurrent detection current value Id_det of the Li battery protection module 100 having the charge / discharge detection operation function will be described.

評価装置200の端子CN201とLi電池保護モジュール100の端子CN3が接続されグランド端子CN202とCN2が接続されている。抵抗Rsは電流検出用として挿入されておりQ201、Q202のPNP、NPNトランジスタ、電力増幅器205からなる回路よりプシュプル出力されている。201は電流、電圧フォースを切替える切替え回路、203は放電通電期間Ton_d、放電休止期間Toff_d及び充電通電期間Ton_c、充電休止期間Toff_cの時間を制御するPWM制御回路、202は放電電流Id、放電電流値の増加量ΔId及び充電電流Ic、充電電流値の増加量ΔIcを設定する電圧制御回路、204は203の電圧制御回路で設定した電圧値により、所望の電流値が流れているかを検出しまた電流遮断している事を検出する電流検出回路、電流印加開始から電流遮断までの時間を計測する時間計測回路206で構成されている。   The terminal CN201 of the evaluation device 200 and the terminal CN3 of the Li battery protection module 100 are connected, and the ground terminals CN202 and CN2 are connected. The resistor Rs is inserted for current detection, and is push-pull output from a circuit comprising the PNPs of Q201 and Q202, an NPN transistor, and a power amplifier 205. 201 is a switching circuit that switches between current and voltage force, 203 is a PWM control circuit that controls the time of the discharge energization period Ton_d, the discharge suspension period Toff_d and the charge energization period Ton_c, and the charge suspension period Toff_c, 202 is the discharge current Id, and the discharge current value A voltage control circuit for setting the increase amount ΔId and charging current Ic, the increase amount ΔIc of the charging current value, and 204 detects whether a desired current value is flowing based on the voltage value set by the voltage control circuit 203 and A current detection circuit that detects that the current is interrupted, and a time measurement circuit 206 that measures the time from the start of current application until the current is interrupted.

Ton_dの設定時間は放電過電流検出遅延時間(tId_delay)より長く設定されておりToff_dの設定時間は、放電過電流復帰遅延時間(tIdrel_delay)よりも長く設定されている。また、放電電流初期値Idは、放電過電流検出電流値(Id_det)より小さい電流値に設定されている。また、Ton_cの設定時間は、充電過電流検出遅延時間(tIc_delay)より長く設定されておりToff_cの設定時間は充電過電流復帰遅延時間(tIcrel_delay)よりも長く設定されている。また、充電電流初期値Icは充電過電流検出電流値(Ic_det)より小さい電流値に設定されている。   The set time of Ton_d is set longer than the discharge overcurrent detection delay time (tId_delay), and the set time of Toff_d is set longer than the discharge overcurrent return delay time (tIdrel_delay). The discharge current initial value Id is set to a current value smaller than the discharge overcurrent detection current value (Id_det). The set time of Ton_c is set longer than the charge overcurrent detection delay time (tIc_delay), and the set time of Toff_c is set longer than the charge overcurrent return delay time (tIcrel_delay). The charging current initial value Ic is set to a current value smaller than the charging overcurrent detection current value (Ic_det).

まず図2で時間t0で電圧制御回路202で設定された放電電流初期値Idが時間設定されたTon_dの期間、端子CN201より印加される。この時、時間計測回路206にて時間計測が開始される。   First, in FIG. 2, the discharge current initial value Id set by the voltage control circuit 202 at time t0 is applied from the terminal CN201 during the time period Ton_d. At this time, the time measurement circuit 206 starts time measurement.

放電電流がId<Id_detで有る為Ton_d時間後のt1で放電電流Idは設定したゼロとなる。この時、PWM制御回路203で設定したTon_d以内に電流遮断しない事を時間計測回路206が検出して時間計測を停止し計測値は破棄されリセットされる。   Since the discharge current is Id <Id_det, the discharge current Id is set to zero at t1 after Ton_d time. At this time, the time measurement circuit 206 detects that the current is not interrupted within Ton_d set by the PWM control circuit 203, stops the time measurement, and the measurement value is discarded and reset.

t1よりt2までの放電休止期間Toff_d後放電電流値をΔIdだけ増加させて時間t2よりId+ΔIdの放電電流を端子CN201よりCN3へ印加する。電流が印加された直後時間計測回路206にて時間計測が開始されるが、この時印加される放電電流値がId+ΔId<Id_detで有る為PWM制御回路203で設定したTon_d以内に電流遮断せずt3で放電電流値は、Id=0となり時間計測回路206で計測中の時間計測が停止し計測値が破棄、リセットされる。   After the discharge rest period Toff_d from t1 to t2, the discharge current value is increased by ΔId, and a discharge current of Id + ΔId is applied from terminal CN201 to CN3 from time t2. Immediately after the current is applied, the time measurement circuit 206 starts time measurement. Since the discharge current value applied at this time is Id + ΔId <Id_det, the current is not interrupted within Ton_d set by the PWM control circuit 203. Thus, the discharge current value becomes Id = 0, the time measurement during measurement by the time measurement circuit 206 is stopped, and the measurement value is discarded and reset.

その後、放電休止期間Toff_d後のt4より放電電流がId+ΔId+ΔIdに設定されCN3に印加されると共に時間計測回路206にて時間計測が開始される。この時、印加される放電電流値は、Id+2×ΔId>Id_detとなり、この放電電流値と放電電制御スイッチQ1及び充電制御スイッチQ2のオン抵抗で発生する正電圧が抵抗R2を経由してLi電池保護IC110の端子TN5(V−)に印加される。この印加された正電圧が前記放電電流検出回路115内の基準電圧Vref_dより大きい為放電過電流検出遅延時間(tId_delay)後に論理回路121より端子TN3(Dout)に“L”が出力され放電制御スイッチQ1の制御端子に印加され放電制御スイッチQ1がオフとなる。   Thereafter, the discharge current is set to Id + ΔId + ΔId from t4 after the discharge pause period Toff_d and applied to CN3, and the time measurement circuit 206 starts time measurement. At this time, the applied discharge current value is Id + 2 × ΔId> Id_det, and the positive voltage generated by the discharge current value and the on-resistance of the discharge control switch Q1 and the charge control switch Q2 passes through the resistor R2, and the Li battery. The voltage is applied to the terminal TN5 (V−) of the protection IC 110. Since the applied positive voltage is larger than the reference voltage Vref_d in the discharge current detection circuit 115, “L” is output from the logic circuit 121 to the terminal TN3 (Dout) after the discharge overcurrent detection delay time (tId_delay), and the discharge control switch. Applied to the control terminal of Q1, the discharge control switch Q1 is turned off.

このタイミングが図2のt5である。電流遮断した時間t5にて電流検出回路204で電流遮断を検出し放電過電流検出電流値Id_detが計測される事になる。   This timing is t5 in FIG. At time t5 when the current is cut off, the current detection circuit 204 detects the current cutoff and the discharge overcurrent detection current value Id_det is measured.

ここで放電過電流検出電流値Id_detをよぎった時の図2のB部の拡大図6について説明すると放電電流を初期値Idから開始し、放電電流値増加量ΔIdのステップで放電電流を増加させていく場合ΔIdの増加ステップの間隔内に放電過電流検出値Id_detが存在した場合を示しており、放電過電流値をよぎった瞬間から放電過電流検出遅延時間(tId_delay)後に放電電流が遮断する。   Here, the enlarged view 6 of FIG. 2B when the discharge overcurrent detection current value Id_det is crossed will be described. The discharge current is started from the initial value Id, and the discharge current is increased in steps of the discharge current value increase amount ΔId. This shows a case where the discharge overcurrent detection value Id_det exists within the interval of the increase step of ΔId, and the discharge current is cut off after the discharge overcurrent detection delay time (tId_delay) from the moment when the discharge overcurrent value is crossed. .

電流遮断したt5で時間計測回路206では、時間計測を終了し、放電過電流検出遅延時間(tId_delay)が同時に算出される。   At time t5 when the current is cut off, the time measurement circuit 206 ends the time measurement, and the discharge overcurrent detection delay time (tId_delay) is calculated simultaneously.

ここで放電過電流が検出されるまでの熱損失は放電制御スイッチQ1及び充電制御スイッチQ2のオン抵抗Ron_d、Ron_cと放電電流値、放電通電時間Ton_d、放電休止時間Toff_dで決定され以下の値となる。   Here, the heat loss until the discharge overcurrent is detected is determined by the ON resistances Ron_d and Ron_c of the discharge control switch Q1 and the charge control switch Q2 and the discharge current value, the discharge energization time Ton_d, and the discharge pause time Toff_d, and has the following values: Become.

PLoss1+PLoss2+PLoss3=[Id×(Ron_d+Ron_c)+(Id+ΔId)×(Ron_d+Ron_c)]×tId_delay+(Id+2ΔId)×(Ron_d+Ron_c)×tId_delay   PLoss1 + PLoss2 + PLoss3 = [Id × (Ron_d + Ron_c) + (Id + ΔId) × (Ron_d + Ron_c)] × tId_delay + (Id + 2ΔId) × (Ron_d + Ron_c) × tId_delay

次に放電過電流検出電流値Id_det及び充電過電流検出電流値Ic_detの同時計測について図3,4,5に基づいて説明する。   Next, simultaneous measurement of the discharge overcurrent detection current value Id_det and the charge overcurrent detection current value Ic_det will be described with reference to FIGS.

放電過電流検出電流値Id_det及び充電過電流検出電流値Ic_detの計測方法は上記放電過電流の検出方法と基本的に同一である。   The method for measuring the discharge overcurrent detection current value Id_det and the charge overcurrent detection current value Ic_det is basically the same as the method for detecting the discharge overcurrent.

放電電流初期値Id、充電電流初期値Icの設定値を初期値としてLi電池保護モジュール100の端子CN3に印加を開始する。   Application is started to the terminal CN3 of the Li battery protection module 100 using the set values of the discharge current initial value Id and the charge current initial value Ic as initial values.

t0〜t4までは放電電流及び充電電流は放電過電流検出電流値(Id_det)及び充電過電流検出電流値(Ic_det)より小さく設定されている為、放電通電期間Ton_d及び充電通電期間Ton_cの期間にて電流遮断は起こらない。時間t4にて放電電流をΔId増加させて印加するがId+ΔId<Id_detの条件の為やはり電流遮断はしない。時間t6より充電電流をΔIc増加させてIc+ΔIcをLi電池保護モジュール100の端子CN3へ印加する。この電流値はIc+ΔIc > Ic_det を満足する為充電電流値がIc_detの値をよぎった瞬間から充電過電流検出遅延時間(tIc_delay)後の時間t7でLi電池保護IC110の端子TN4(Cout)から“L”が出力され充電制御スイッチQ2の制御端子に印加され充電制御スイッチQ2がオフし電流遮断する。この時時間計測回路206にて充電過電流検出遅延時間(tIc_delay)が計測完了されている。   From t0 to t4, the discharge current and the charge current are set to be smaller than the discharge overcurrent detection current value (Id_det) and the charge overcurrent detection current value (Ic_det). Therefore, during the discharge energization period Ton_d and the charge energization period Ton_c Current interruption does not occur. At time t4, the discharge current is applied by increasing ΔId, but the current is not interrupted because of the condition of Id + ΔId <Id_det. The charging current is increased by ΔIc from time t6 and Ic + ΔIc is applied to the terminal CN3 of the Li battery protection module 100. Since this current value satisfies Ic + ΔIc> Ic_det, “L” from the terminal TN4 (Cout) of the Li battery protection IC 110 at the time t7 after the charging overcurrent detection delay time (tIc_delay) from the moment when the charging current value crosses the value of Ic_det. "Is output and applied to the control terminal of the charge control switch Q2, the charge control switch Q2 is turned off and the current is cut off. At this time, measurement of the charge overcurrent detection delay time (tIc_delay) is completed in the time measurement circuit 206.

時間t8の時点で評価装置200の端子CN201から電圧ゼロが出力され、充電過電流復帰遅延時間(tIcrel_delay)後にLi電池保護IC110の端子TN4(Cout)から“H”が出力され充電制御スイッチQ2がオンする。時間t7で電流遮断を時間計測回路206で検出後に時間計測結果を記憶装置(図示せず)に記録し時間計測回路206をリセット後に図7に示すように電圧制御回路202により充電電流値をIc_det以下のIc_relの電流が充電制御スイッチQ2がオンした時流れるような値に設定しLi電池保護モジュール100のCN3(OUT−)へ印加すると、充電過電流復帰遅延時間(tIcrel_delay)後のt7−1で充電制御スイッチQ2がオンするような設定も可能である。   At time t8, zero voltage is output from the terminal CN201 of the evaluation apparatus 200, and after charging overcurrent recovery delay time (tIcrel_delay), “H” is output from the terminal TN4 (Cout) of the Li battery protection IC 110, and the charging control switch Q2 is turned on. Turn on. After detecting the current interruption at time t7 by the time measurement circuit 206, the time measurement result is recorded in a storage device (not shown), and after resetting the time measurement circuit 206, the voltage control circuit 202 sets the charging current value to Ic_det as shown in FIG. When the current Ic_rel is set to a value that flows when the charge control switch Q2 is turned on and applied to CN3 (OUT−) of the Li battery protection module 100, t7-1 after the charge overcurrent return delay time (tIcrel_delay). Thus, it is possible to set so that the charging control switch Q2 is turned on.

もちろん時間計測回路206にて時間計測をt7で開始しており充電過電流復帰遅延時間(tIcrel_delay)も計測完了している。   Of course, the time measurement circuit 206 starts time measurement at t7, and the charge overcurrent return delay time (tIcrel_delay) is also measured.

t8〜t9の期間は、充電休止期間Toff_cを示しtoff_c>tIcrel_delayに設定されている為時間t9では、Li電池保護ジュール100は、通常動作状態に戻っている。   The period from t8 to t9 indicates the charging suspension period Toff_c and is set to toff_c> tIcrel_delay. Therefore, at time t9, the Li battery protection module 100 returns to the normal operation state.

充電過電流検出遅延時間(tIc_delay)の計測終了までの熱損失合計は、PdLoss1+PcLoss1+PdLoss2+PcLoss2={Id×(Ron_d+Ron_c)×Ton_d}+{Ic×(Ron_d+Ron_c)×Ton_c}+{(Id+ΔId)×(Ron_d+Ron_c)×Ton_d}+{(Ic+ΔIc)×(Ron_d+Ron_c)×tIc_delay}   The total heat loss until the end of the measurement of the charge overcurrent detection delay time (tIc_delay) is PdLoss1 + PcLoss1 + PdLoss2 = {Id × (Ron_d + Ron_c) × Ton_d} + {Ic × (Ron_d + Ron_c) × Ton_c + Ton_c + Ton_d} + {(Ic + ΔIc) × (Ron_d + Ron_c) × tIc_delay}

時間t9より放電電流値は、Id+2×ΔIdに設定されLi電池保護モジュール100の端子CN3より印加される。この放電電流値は、Id+2×ΔId>Id_detの値となっている為放電電流がId_detをよぎった瞬間から放電過電流検出遅延時間(tId_delay)後の時間t10でLi電池保護IC110の端子TN3(Dout)から“L”が出力され放電制御スイッチQ1の制御端子に印加され放電制御スイッチQ1がオフし電流遮断する。この瞬間時間計測回路206にて放電過電流検出遅延時間(tId_delay)が計測される。   From time t9, the discharge current value is set to Id + 2 × ΔId, and is applied from the terminal CN3 of the Li battery protection module 100. Since this discharge current value is a value of Id + 2 × ΔId> Id_det, the terminal TN3 (Dout) of the Li battery protection IC 110 at time t10 after the discharge overcurrent detection delay time (tId_delay) from the moment when the discharge current crosses Id_det. ) Is output and applied to the control terminal of the discharge control switch Q1, the discharge control switch Q1 is turned off and the current is cut off. The instantaneous time measurement circuit 206 measures the discharge overcurrent detection delay time (tId_delay).

放電過電流検出遅延時間(tId_delay)の計測終了までの熱損失合計は、以下のようになる。
PdLoss1+PcLoss1+PdLoss2+PcLoss2+PdLoss3={Id×(Ron_d+Ron_c)×Ton_d}+{Ic×(Ron_d+Ron_c)×Ton_c}+{(Id+ΔId)×(Ron_d+Ron_c)×Ton_d}+{(Ic+ΔIc)×(Ron_d+Ron_c)×tIc_delay}+{(Id+2+ΔId)×(Ron_d+Ron_c)×tId_delay}
時間t11の時点で評価装置200の端子CN201から電圧ゼロが出力され、放電過電流検出遅延時間(tIdrel_delay)後にLi電池保護モジュール100の端子TN3(Dout)から“H”が出力され放電制御スイッチQ1がオンする。
The total heat loss until the measurement of the discharge overcurrent detection delay time (tId_delay) ends is as follows.
PdLoss1 + PcLoss1 + PdLoss2 + PcLoss2 + PdLoss3 = {Id × (Ron_d + Ron_c) × Ton_d} + {Ic × (Ron_d + Ron_c) × Ton_c} + {(Id + ΔId) × (Ron_d + Ron_c) × Ton_d} + {(Ic + ΔIc) × (Ron_d + Ron_c) × tIc_delay} + {(Id + 2 + ΔId) × (Ron_d + Ron_c) × tId_delay}
At time t11, zero voltage is output from the terminal CN201 of the evaluation apparatus 200, and “H” is output from the terminal TN3 (Dout) of the Li battery protection module 100 after the discharge overcurrent detection delay time (tIdrel_delay), and the discharge control switch Q1. Turns on.

時間t10で放電電流遮断を時間計測回路206で検出後に時間計測結果を記憶装置(図示せず)に記録し時間計測回路206をリセット後に図5に示すように電圧制御回路202により放電電流値をId_det以下のId_relの電流が放電制御スイッチQ1がオンした時流れるような値に設定しLi電池保護モジュール100のCN3(OUT−)へ印加すると放電過電流復帰遅延時間(tIdrel_delay)後のt10−1で充電制御スイッチQ1がオンするような設定も可能である。もちろん時間計測回路206にて時間計測をt10で開始しており放電過電流復帰遅延時間(tIdrel_delay)も計測完了している。   After detecting the discharge current interruption at time t10 by the time measurement circuit 206, the time measurement result is recorded in a storage device (not shown), and after resetting the time measurement circuit 206, the voltage control circuit 202 sets the discharge current value as shown in FIG. When the current of Id_rel below Id_det is set to a value that flows when the discharge control switch Q1 is turned on and applied to CN3 (OUT−) of the Li battery protection module 100, t10-1 after the discharge overcurrent recovery delay time (tIdrel_delay) Thus, it is possible to set the charging control switch Q1 to be turned on. Of course, the time measurement circuit 206 starts time measurement at t10, and the discharge overcurrent return delay time (tIdrel_delay) is also measured.

本実施形態において、放電電流Id<Id_det(放電過電流検出電流値)の初期条件を満足し、放電通電時間をTon_d>tId_delay(放電過電流検出遅延時間)に設定し放電過電流検出電流値Id_detの計測を開始し初期条件にて放電過電流を検出しなかった場合、放電電流値をId=0の値に設定してToff_d>tIdrel_delay(放電過電流復帰遅延時間)の条件を満足する放電過電流休止期間Toff_dの期間流し、その後放電電流を:Id+ΔIdに増加させTon_dの期間流す事を繰返す事により放電過電流検電流値を計測するのでFET_c、FET_dの発熱を抑えて精度良く放電過電流検出電流値を計測する事が出来る。   In this embodiment, the initial condition of the discharge current Id <Id_det (discharge overcurrent detection current value) is satisfied, the discharge energization time is set to Ton_d> tId_delay (discharge overcurrent detection delay time), and the discharge overcurrent detection current value Id_det. When the discharge overcurrent is not detected in the initial condition, the discharge current value is set to Id = 0 and the discharge overcurrent satisfying the condition of Toff_d> tIdrel_delay (discharge overcurrent return delay time) is satisfied. The discharge overcurrent detection current value is measured by flowing the current rest period Toff_d and then increasing the discharge current to: Id + ΔId and repeating the flow for the period Ton_d. Therefore, the heat generation of the FET_c and FET_d is suppressed and the discharge overcurrent detection is performed with high accuracy. Current value can be measured.

本実施形態においては、放電通電期間(Ton_d)と放電休止期間(Toff_d)を合わせた時間が放電過電流検出遅延時間(tId_delay)と放電過電流復帰遅延時間(tIdrel_delay)を合わせた時間を等しくしたので放電過電流検出時間計測及び放電過電流復帰遅延時間の計測時間の短縮及び最適化が可能となる。   In the present embodiment, the total time of the discharge energization period (Ton_d) and the discharge pause period (Toff_d) is equalized to the total time of the discharge overcurrent detection delay time (tId_delay) and the discharge overcurrent return delay time (tIdrel_delay). Therefore, the measurement time of the discharge overcurrent detection time and the measurement time of the discharge overcurrent recovery delay time can be shortened and optimized.

本実施形態においては、充電電流Ic< Ic_det(充電過電流検出電流値)の初期条件を満足し、充電通電時間をTon_d > tIc_delay(充電過電流検出遅延時間) に設定し充電過電流検出電流値Ic_detの計測を開始し初期条件にて充電過電流を検出しなかった場合充電電流値をIc=0の値に設定してToff_c>tIcrel_delay(充電過電流復帰遅延時間)の条件を満足する充電過電流休止期間Toff_cの期間流しその後充電電流を:Ic+ΔIc増加させTon_dの期間流す事を繰返す事により充電過電流値を計測するのでFET_c、FET_dの発熱を抑えて精度良く放電過電流検出電流値を計測することができる。   In this embodiment, the initial condition of charging current Ic <Ic_det (charging overcurrent detection current value) is satisfied, the charging energization time is set to Ton_d> tIc_delay (charging overcurrent detection delay time), and the charging overcurrent detection current value When the measurement of Ic_det is started and the charge overcurrent is not detected in the initial condition, the charge overcurrent satisfying the condition of Toff_c> tIcrel_delay (charge overcurrent return delay time) is set by setting Ic = 0. The charge overcurrent value is measured by passing the current rest period Toff_c and then increasing the charge current: Ic + ΔIc and repeating the flow for Ton_d. Therefore, the heat generation of the FET_c and FET_d is suppressed and the discharge overcurrent detection current value is accurately measured. can do.

本実施形態においては、充電通電期間(Ton_c)と充電休止期間(Toff_c)を合わせた時間が充電過電流検出遅延時間(tIc_delay)と充電過電流復帰遅延時間(tIcrel_delay)を合わせた時間を等しくしたので充電過電流検出時間計測及び充電過電流復帰遅延時間の計測時間の短縮及び最適化が可能となる。   In the present embodiment, the time obtained by combining the charge energization period (Ton_c) and the charge suspension period (Toff_c) is made equal to the time obtained by combining the charge overcurrent detection delay time (tIc_delay) and the charge overcurrent return delay time (tIcrel_delay). Therefore, the measurement time of the charge overcurrent detection time and the measurement time of the charge overcurrent return delay time can be shortened and optimized.

本実施形態においては、放電電流が遮断した事を判断し放電過電流検出電流値を計測した時と同時に上記放電過電流検出遅延時間(tId_delay)の計測が放電電流遮断時に同時測定出来るようにしたので計測時間の短縮化が可能となる。   In this embodiment, it is determined that the discharge overcurrent detection delay time (tId_delay) can be simultaneously measured when the discharge current is interrupted at the same time when the discharge current is determined to be interrupted and the discharge overcurrent detection current value is measured. Therefore, the measurement time can be shortened.

本実施形態においては、充電電流が遮断した事を判断し充電過電流検出電流値を計測した時と同時に上記充電過電流検出遅延時間(Ic_delay)の計測が充電電流遮断時に同時測定出来るようにしたので計測時間の短縮化が可能となる。   In this embodiment, it is determined that the charge overcurrent detection delay time (Ic_delay) can be measured at the same time when the charge current is cut off at the same time when the charge overcurrent detection current value is measured by judging that the charge current is cut off. Therefore, the measurement time can be shortened.

本実施形態においては、放電過電流検出電流Id_detを計測した時に放電電流を放電過電流検出電流値(Id_det)以下に下げる事で放電過電流検出からの復帰遅延時間:放電過電流復帰遅延時間tIdrel_delayを計測可能としたので計測時間の短縮化が可能となる。   In the present embodiment, when the discharge overcurrent detection current Id_det is measured, the discharge current is lowered below the discharge overcurrent detection current value (Id_det) so that the return delay time from the discharge overcurrent detection: the discharge overcurrent return delay time tIdrel_delay Measurement time can be shortened.

本実施形態においては、充電過電流検出電流Ic_detを計測した時に充電電流を充電過電流検出電流値(Ic_det)以下に下げる事で充電過電流検出からの復帰遅延時間:充電過電流復帰遅延時間tIcrel_delayを計測可能としたので計測時間の短縮化が可能となる。   In this embodiment, when the charging overcurrent detection current Ic_det is measured, the charging current is lowered to the charging overcurrent detection current value (Ic_det) or less to thereby return the charging overcurrent detection delay time: charging overcurrent return delay time tIcrel_delay. Measurement time can be shortened.

本実施形態においては、放電過電流検出電流値、放電過電流検出遅延時間、放電過電流復帰遅延時間及び充電過電流検出電流値、充電過電流検出遅延時間、充電過電流復帰遅延時間の順番で順じ繰返し測定する事としたので計測時間の短縮化が可能となる。   In this embodiment, the discharge overcurrent detection current value, the discharge overcurrent detection delay time, the discharge overcurrent recovery delay time and the charge overcurrent detection current value, the charge overcurrent detection delay time, and the charge overcurrent recovery delay time Measurement time can be shortened because measurements are repeated in sequence.

本実施形態における評価装置を示す構成図である。It is a block diagram which shows the evaluation apparatus in this embodiment. 本実施形態において、放電過電流検出電流値の測定と時間との関係を示す図である。In this embodiment, it is a figure which shows the relationship between the measurement of discharge overcurrent detection electric current value, and time. 本実施形態において、放電過電流検出電流値および充電過電流検出電流値同時計測した場合の時間との関係を示す図である。In this embodiment, it is a figure which shows the relationship with the time at the time of measuring simultaneously a discharge overcurrent detection electric current value and a charge overcurrent detection electric current value. 図3におけるC部を拡大した図である。It is the figure which expanded the C section in FIG. 図3におけるD部を拡大した図である。It is the figure which expanded the D section in FIG. 図2のB部と、図10のA部とを拡大した図である。It is the figure which expanded the B section of FIG. 2, and the A section of FIG. 本実施形態において、放電過電流復帰遅延時間および放電過電流復帰遅延時間も計測したものを示す図である。In this embodiment, it is a figure which shows what measured discharge overcurrent return delay time and discharge overcurrent return delay time. 従来技術を説明するための図である。It is a figure for demonstrating a prior art. 従来技術を説明するための図である。It is a figure for demonstrating a prior art. 従来技術を説明するための図である。It is a figure for demonstrating a prior art. 従来技術を説明するための図である。It is a figure for demonstrating a prior art. 従来技術を説明するための図である。It is a figure for demonstrating a prior art.

符号の説明Explanation of symbols

100 Li電池保護モジュール
200 評価装置
201 切替え回路
202 電圧制御回路
203 PWM制御回路
204 電流制御回路
205 電力増幅器
206 時間計測回路
DESCRIPTION OF SYMBOLS 100 Li battery protection module 200 Evaluation apparatus 201 Switching circuit 202 Voltage control circuit 203 PWM control circuit 204 Current control circuit 205 Power amplifier 206 Time measurement circuit

Claims (10)

二次電池から負荷に流れる放電電流を制御する放電制御スイッチと、
充電器から二次電池に流れる充電電流を制御する充電制御スイッチと、
放電過電流復帰遅延時間後に前記放電制御スイッチの制御端子へ放電過電流復帰検出信号を送出することにより前記放電制御スイッチをオンし放電過電流から復帰させる二次電池の放電過電流復帰回路と、
所定の充電過電流復帰遅延時間後に前記充電制御スイッチの制御端子へ充電過電流復帰信号を送出することにより前記充電制御スイッチをオンし充電過電流状態から復帰させる二次電池の充電過電流復帰回路とを備えたリチウム電池保護回路モジュールの充放電過電流検出電流値、充放電過電流検出遅延時間値、および、充放電過電流復帰遅延時間値の妥当性を評価する評価装置であって、
放電過電流値より小さく設定した放電電流値を初期値として放電電流を放電過電流検出遅延時間より長く設定した放電通電期間の間流す処理と、
放電電流が遮断しなかった場合、放電過電流復帰遅延時間より長く設定した放電休止時間経過後あらかじめ設定した増加幅電流を放電電流に加算した放電電流を放電通電期間の間流す処理とを繰り返し、前記放電過電流検出電流値を測定することを特徴とする評価装置。
A discharge control switch for controlling a discharge current flowing from the secondary battery to the load;
A charge control switch for controlling a charging current flowing from the charger to the secondary battery;
A discharge overcurrent return circuit for a secondary battery that turns on the discharge control switch to return from the discharge overcurrent by sending a discharge overcurrent return detection signal to the control terminal of the discharge control switch after the discharge overcurrent return delay time;
A charge overcurrent return circuit for a secondary battery that turns on the charge control switch to return from the charge overcurrent state by sending a charge overcurrent return signal to the control terminal of the charge control switch after a predetermined charge overcurrent return delay time An evaluation device for evaluating the validity of a charge / discharge overcurrent detection current value, a charge / discharge overcurrent detection delay time value, and a charge / discharge overcurrent recovery delay time value of a lithium battery protection circuit module comprising:
A process of flowing a discharge current for a discharge energization period set longer than a discharge overcurrent detection delay time, with a discharge current value set smaller than the discharge overcurrent value as an initial value,
When the discharge current is not interrupted, repeat the process of flowing the discharge current for the discharge energization period after adding the increased width current set in advance to the discharge current after the discharge rest time set longer than the discharge overcurrent return delay time, An evaluation apparatus for measuring the discharge overcurrent detection current value.
放電通電期間と、放電休止期間とを合わせた時間が前記放電過電流検出遅延時間と、前記放電過電流復帰遅延時間とを合わせた時間を等しいことを特徴とする請求項1に記載の評価装置。   2. The evaluation apparatus according to claim 1, wherein a time obtained by combining a discharge energization period and a discharge rest period is equal to a time obtained by combining the discharge overcurrent detection delay time and the discharge overcurrent return delay time. . 前記充電過電流値より小さく設定した充電電流値を初期値として前記充電電流を前記充電過電流検出遅延時間より長く設定した充電通電期間の間流す処理と、
充電電流が遮断しなかった場合、前記充電過電流復帰遅延時間より長く設定した前記充電休止時間、経過後あらかじめ設定した増加幅電流を前記充電電流に加算した充電電流を前記充電通電期間の間、流す処理とを繰り返し、充電過電流検出電流値を測定することを特徴とする請求項2に記載の評価装置。
A process of flowing the charging current for a charging energization period set longer than the charging overcurrent detection delay time with a charging current value set smaller than the charging overcurrent value as an initial value;
When the charging current is not interrupted, the charging suspension time set longer than the charging overcurrent return delay time, a charging current obtained by adding an increase width current set in advance to the charging current after elapse, during the charging energization period, The evaluation apparatus according to claim 2, wherein a charging overcurrent detection current value is measured by repeating the flow process.
充電通電期間と、充電休止期間とを合わせた時間が前記充電過電流検出遅延時間と、前記充電過電流復帰遅延時間とが等しいことを特徴とする請求項3に記載の評価装置。   The evaluation apparatus according to claim 3, wherein the charging overcurrent detection delay time and the charging overcurrent return delay time are equal to a total time of a charging energization period and a charging suspension period. 放電電流が遮断した事を判断し放電過電流検出電流値を計測完了した後、前記放電通電期間中に前記基準電圧より小さい放電電流を流し、前記放電過電流復帰遅延時間を測定することを特徴とする請求項4に記載の評価装置。   After determining that the discharge current has been interrupted and completing the measurement of the discharge overcurrent detection current value, a discharge current smaller than the reference voltage is allowed to flow during the discharge energization period, and the discharge overcurrent return delay time is measured. The evaluation apparatus according to claim 4. 充電電流が遮断した事を判断し、充電過電流検出電流値を計測完了した後の前記充電通電期間中に前記基準電圧より小さい充電電流を流し、前記充電過電流復帰遅延時間を測定することを特徴とする請求項5に記載の評価装置。   It is determined that the charging current has been cut off, a charging current smaller than the reference voltage is passed during the charging energization period after the measurement of the charging overcurrent detection current value is completed, and the charging overcurrent return delay time is measured. The evaluation apparatus according to claim 5, wherein the evaluation apparatus is characterized. 放電過電流検出電流値、放電過電流検出遅延時間、放電過電流復帰遅延時間、および、充電過電流検出電流値、充電過電流検出遅延時間、充電過電流復帰遅延時間の順番で順じ繰返し測定することを特徴とする請求項1から6のいずれか1項に記載の評価装置。   Discharge overcurrent detection current value, discharge overcurrent detection delay time, discharge overcurrent recovery delay time, and charge overcurrent detection current value, charge overcurrent detection delay time, and charge overcurrent recovery delay time in order. The evaluation apparatus according to claim 1, wherein: 充電過電流検出電流値、充電過電流検出遅延時間、充電過電流復帰遅延時間、および、放電過電流検出電流値、放電過電流検出遅延時間、放電過電流復帰遅延時間の順番で順じ繰返し測定する事を特徴とする請求項1から6のいずれか1項に記載の評価装置。   Charge overcurrent detection current value, charge overcurrent detection delay time, charge overcurrent recovery delay time, and discharge overcurrent detection current value, discharge overcurrent detection delay time, discharge overcurrent recovery delay time in this order. The evaluation apparatus according to any one of claims 1 to 6, wherein: 二次電池から負荷に流れる放電電流を制御する放電制御スイッチと、
充電器から二次電池に流れる充電電流を制御する充電制御スイッチと、
放電過電流復帰遅延時間後に前記放電制御スイッチの制御端子へ放電過電流復帰検出信号を送出することにより前記放電制御スイッチをオンし放電過電流から復帰させる二次電池の放電過電流復帰回路と、
所定の充電過電流復帰遅延時間後に前記充電制御スイッチの制御端子へ充電過電流復帰信号を送出することにより前記充電制御スイッチをオンし充電過電流状態から復帰させる二次電池の充電過電流復帰回路とを備えたリチウム電池保護回路モジュールの充放電過電流検出電流値、充放電過電流検出遅延時間値、および、充放電過電流復帰遅延時間値の妥当性を評価する評価方法であって、
放電過電流値より小さく設定した放電電流値を初期値として放電電流を放電過電流検出遅延時間より長く設定した放電通電期間の間流す処理と、
放電電流が遮断しなかった場合、放電過電流復帰遅延時間より長く設定した放電休止時間経過後あらかじめ設定した増加幅電流を放電電流に加算した放電電流を放電通電期間の間流す処理とを繰り返し、前記放電過電流検出電流値を測定することを特徴とする評価方法。
A discharge control switch for controlling a discharge current flowing from the secondary battery to the load;
A charge control switch for controlling a charging current flowing from the charger to the secondary battery;
A discharge overcurrent return circuit for a secondary battery that turns on the discharge control switch to return from the discharge overcurrent by sending a discharge overcurrent return detection signal to the control terminal of the discharge control switch after the discharge overcurrent return delay time;
A charge overcurrent return circuit for a secondary battery that turns on the charge control switch to return from the charge overcurrent state by sending a charge overcurrent return signal to the control terminal of the charge control switch after a predetermined charge overcurrent return delay time An evaluation method for evaluating the validity of a charge / discharge overcurrent detection current value, a charge / discharge overcurrent detection delay time value, and a charge / discharge overcurrent return delay time value of a lithium battery protection circuit module comprising:
A process of flowing a discharge current for a discharge energization period set longer than a discharge overcurrent detection delay time, with a discharge current value set smaller than the discharge overcurrent value as an initial value,
When the discharge current is not interrupted, repeat the process of flowing the discharge current for the discharge energization period after adding the increased width current set in advance to the discharge current after the discharge rest time set longer than the discharge overcurrent return delay time, An evaluation method comprising measuring the discharge overcurrent detection current value.
二次電池から負荷に流れる放電電流を制御する放電制御スイッチと、
充電器から二次電池に流れる充電電流を制御する充電制御スイッチと、
放電過電流復帰遅延時間後に前記放電制御スイッチの制御端子へ放電過電流復帰検出信号を送出することにより前記放電制御スイッチをオンし放電過電流から復帰させる二次電池の放電過電流復帰回路と、
所定の充電過電流復帰遅延時間後に前記充電制御スイッチの制御端子へ充電過電流復帰信号を送出することにより前記充電制御スイッチをオンし充電過電流状態から復帰させる二次電池の充電過電流復帰回路とを備えたリチウム電池保護回路モジュールの充放電過電流検出電流値、充放電過電流検出遅延時間値、および、充放電過電流復帰遅延時間値の妥当性の評価をコンピュータに実行させる評価プログラムであって、
放電過電流値より小さく設定した放電電流値を初期値として放電電流を放電過電流検出遅延時間より長く設定した放電通電期間の間流す処理と、
放電電流が遮断しなかった場合、放電過電流復帰遅延時間より長く設定した放電休止時間経過後あらかじめ設定した増加幅電流を放電電流に加算した放電電流を放電通電期間の間流す処理とを繰り返し、前記放電過電流検出電流値を測定する処理をコンピュータに実行させることを特徴とする評価プログラム。
A discharge control switch for controlling a discharge current flowing from the secondary battery to the load;
A charge control switch for controlling a charging current flowing from the charger to the secondary battery;
A discharge overcurrent return circuit for a secondary battery that turns on the discharge control switch to return from the discharge overcurrent by sending a discharge overcurrent return detection signal to the control terminal of the discharge control switch after the discharge overcurrent return delay time;
A charge overcurrent return circuit for a secondary battery that turns on the charge control switch to return from the charge overcurrent state by sending a charge overcurrent return signal to the control terminal of the charge control switch after a predetermined charge overcurrent return delay time An evaluation program that causes a computer to evaluate the validity of the charge / discharge overcurrent detection current value, charge / discharge overcurrent detection delay time value, and charge / discharge overcurrent recovery delay time value of a lithium battery protection circuit module equipped with There,
A process of flowing a discharge current for a discharge energization period set longer than a discharge overcurrent detection delay time, with a discharge current value set smaller than the discharge overcurrent value as an initial value,
When the discharge current is not interrupted, repeat the process of flowing the discharge current for the discharge energization period after adding the increased width current set in advance to the discharge current after the discharge rest time set longer than the discharge overcurrent return delay time, An evaluation program for causing a computer to execute a process of measuring the discharge overcurrent detection current value.
JP2008228969A 2008-06-24 2008-09-05 Evaluation apparatus, evaluation method, and evaluation program Expired - Fee Related JP5412771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008228969A JP5412771B2 (en) 2008-06-24 2008-09-05 Evaluation apparatus, evaluation method, and evaluation program

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008165126 2008-06-24
JP2008165126 2008-06-24
JP2008228969A JP5412771B2 (en) 2008-06-24 2008-09-05 Evaluation apparatus, evaluation method, and evaluation program

Publications (2)

Publication Number Publication Date
JP2010034016A true JP2010034016A (en) 2010-02-12
JP5412771B2 JP5412771B2 (en) 2014-02-12

Family

ID=41738232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008228969A Expired - Fee Related JP5412771B2 (en) 2008-06-24 2008-09-05 Evaluation apparatus, evaluation method, and evaluation program

Country Status (1)

Country Link
JP (1) JP5412771B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9541975B2 (en) 2013-08-22 2017-01-10 Renesas Electronics Corporation Semiconductor device, battery pack and personal data assistant
US9759778B2 (en) 2013-11-14 2017-09-12 Renesas Electronics Corporation Semiconductor device, battery pack, and mobile terminal including voltage measurement, current measurement, and control
US9846197B2 (en) 2012-11-07 2017-12-19 Renesas Electronics Corporation Battery control IC and control method therefore
US10096866B2 (en) 2013-11-12 2018-10-09 Renesas Electronics Corporation Semiconductor device, battery pack, and mobile terminal

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042673A1 (en) * 1999-01-14 2000-07-20 Fujitsu Limited Method for charging secondary cell and charger
JP2001268810A (en) * 2000-03-24 2001-09-28 Ricoh Co Ltd Charge/discharge protection circuit, battery pack incorporating the same, electronic equipment using the same
JP2002176730A (en) * 2000-09-28 2002-06-21 Ricoh Co Ltd Charge/discharge protective circuit, battery pack incorporating the same, and electronic apparatus using the battery pack
JP2002199594A (en) * 2000-12-26 2002-07-12 Ricoh Co Ltd Charging/discharging protective circuit, battery pack with the charging/discharging protective circuit built-in, and electronic apparatus using the battery pack
JP2002238174A (en) * 2001-02-14 2002-08-23 Seiko Instruments Inc Charging/discharging control circuit and rechargeable power supply
JP2004171864A (en) * 2002-11-19 2004-06-17 Nec Corp Lithium ion secondary battery system, and operation method of lithium ion secondary battery
JP2004236402A (en) * 2003-01-29 2004-08-19 Komatsu Ltd Multi-stage charging device
JP2006340450A (en) * 2005-05-31 2006-12-14 Mitsumi Electric Co Ltd Battery protective circuit
JP2007124867A (en) * 2005-10-31 2007-05-17 Mitsumi Electric Co Ltd Battery protective device and circuit
JP2007311107A (en) * 2006-05-17 2007-11-29 Toshiba Corp Method for charging secondary cell
JP2008072800A (en) * 2006-09-13 2008-03-27 Ricoh Co Ltd Semiconductor device for protecting secondary battery, battery pack incorporating same, and electronic equipment

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042673A1 (en) * 1999-01-14 2000-07-20 Fujitsu Limited Method for charging secondary cell and charger
JP2001268810A (en) * 2000-03-24 2001-09-28 Ricoh Co Ltd Charge/discharge protection circuit, battery pack incorporating the same, electronic equipment using the same
JP2002176730A (en) * 2000-09-28 2002-06-21 Ricoh Co Ltd Charge/discharge protective circuit, battery pack incorporating the same, and electronic apparatus using the battery pack
JP2002199594A (en) * 2000-12-26 2002-07-12 Ricoh Co Ltd Charging/discharging protective circuit, battery pack with the charging/discharging protective circuit built-in, and electronic apparatus using the battery pack
JP2002238174A (en) * 2001-02-14 2002-08-23 Seiko Instruments Inc Charging/discharging control circuit and rechargeable power supply
JP2004171864A (en) * 2002-11-19 2004-06-17 Nec Corp Lithium ion secondary battery system, and operation method of lithium ion secondary battery
JP2004236402A (en) * 2003-01-29 2004-08-19 Komatsu Ltd Multi-stage charging device
JP2006340450A (en) * 2005-05-31 2006-12-14 Mitsumi Electric Co Ltd Battery protective circuit
JP2007124867A (en) * 2005-10-31 2007-05-17 Mitsumi Electric Co Ltd Battery protective device and circuit
JP2007311107A (en) * 2006-05-17 2007-11-29 Toshiba Corp Method for charging secondary cell
JP2008072800A (en) * 2006-09-13 2008-03-27 Ricoh Co Ltd Semiconductor device for protecting secondary battery, battery pack incorporating same, and electronic equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9846197B2 (en) 2012-11-07 2017-12-19 Renesas Electronics Corporation Battery control IC and control method therefore
US10222425B2 (en) 2012-11-07 2019-03-05 Renesas Electronics Corporation Battery control IC and control method therefore
US9541975B2 (en) 2013-08-22 2017-01-10 Renesas Electronics Corporation Semiconductor device, battery pack and personal data assistant
US10096866B2 (en) 2013-11-12 2018-10-09 Renesas Electronics Corporation Semiconductor device, battery pack, and mobile terminal
US10522882B2 (en) 2013-11-12 2019-12-31 Renesas Electronics Corporations Semiconductor device, battery pack, and mobile terminal with multi-speed CPU
US9759778B2 (en) 2013-11-14 2017-09-12 Renesas Electronics Corporation Semiconductor device, battery pack, and mobile terminal including voltage measurement, current measurement, and control

Also Published As

Publication number Publication date
JP5412771B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
US10522882B2 (en) Semiconductor device, battery pack, and mobile terminal with multi-speed CPU
US7511464B2 (en) Voltage regulator
US10429434B2 (en) On-chip reliability monitor and method
US9088210B2 (en) Dual mode power supply with inductor detection
CN101795128B (en) Detection circuit and sensor device
JP5412771B2 (en) Evaluation apparatus, evaluation method, and evaluation program
US8901891B2 (en) Voltage polarity determination circuit and charge amount measurement circuit
JP5396825B2 (en) Protection circuit
JPWO2008129625A1 (en) Leak current detection circuit, body bias control circuit, semiconductor device, and test method for semiconductor device
CN102955125A (en) Integrated circuit
JP4618149B2 (en) High side drive circuit
EP1612635B1 (en) Short-circuit detection with current-mirror
JP2002026099A (en) Circuit for evaluating electromigration
US9772365B2 (en) Detection circuit
JP2009031093A5 (en)
JP2007195351A (en) Storage battery device
TWI674722B (en) Detection circuit and switch module using the same
TW202125244A (en) Integrated circuit having trim function for component
JP2008140113A (en) Voltage regulator
US12027904B2 (en) Systems and methods for low current detection
US20230223780A1 (en) Systems and methods for low current detection
JP5347460B2 (en) Integrated circuit device for secondary battery protection and inspection method for integrated circuit device for secondary battery protection
US7131034B2 (en) On-chip measurement of signal state duration
US10247770B2 (en) Gate oxide soft breakdown detection circuit
JP4533554B2 (en) Charge / discharge current detection circuit, battery state monitoring circuit, secondary battery device, and charge / discharge current detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131028

R151 Written notification of patent or utility model registration

Ref document number: 5412771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees