WO2000027756A1 - Procede de traitement de l'eau - Google Patents

Procede de traitement de l'eau Download PDF

Info

Publication number
WO2000027756A1
WO2000027756A1 PCT/JP1998/004980 JP9804980W WO0027756A1 WO 2000027756 A1 WO2000027756 A1 WO 2000027756A1 JP 9804980 W JP9804980 W JP 9804980W WO 0027756 A1 WO0027756 A1 WO 0027756A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
membrane
water
filtration
raw water
Prior art date
Application number
PCT/JP1998/004980
Other languages
English (en)
French (fr)
Inventor
Yoshihiko Mori
Yasujiro Fujii
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Priority to KR10-2000-7007421A priority Critical patent/KR100384668B1/ko
Priority to AU97616/98A priority patent/AU737042B2/en
Priority to US09/582,033 priority patent/US6464877B1/en
Priority to DE69828821T priority patent/DE69828821T2/de
Priority to PCT/JP1998/004980 priority patent/WO2000027756A1/ja
Priority to EP98951694A priority patent/EP1044928B1/en
Priority to CNB98812937XA priority patent/CN1135206C/zh
Publication of WO2000027756A1 publication Critical patent/WO2000027756A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • B01D61/146Ultrafiltration comprising multiple ultrafiltration steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/16Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/22Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/06Specific process operations in the permeate stream
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/782Ozone generators
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/003Downstream control, i.e. outlet monitoring, e.g. to check the treating agents, such as halogens or ozone, leaving the process

Definitions

  • the present invention is, advanced treatment of drinking water and sewage secondary treatment water, and a water treatment method for industrial water or waste water. More specifically, in a membrane filtration method for water using ozone, a method for stably and efficiently supplying filtered water having a constant high water quality c Background art Conventional typical water purification method First, chlorine or sodium hypochlorite is added to the raw water that has been withdrawn to oxidize and insolubilize iron and manganese, prevent the growth of microorganisms and other adverse effects in the purification process, and then remove suspended solids.
  • a flocculant corresponding to the above is added, the suspended substance is flocculated and separated by sedimentation, the overflowed floc is separated in the next sand filtration step, and the raw water is clarified.
  • membrane filtration if membrane filtration is continued, membrane clogging will occur and the membrane filtration flux will gradually decrease, so chemical cleaning must be performed periodically. In order to reduce the frequency of chemical cleaning as much as possible, it is necessary to set a force for performing a heavy pretreatment such as coagulation sedimentation or to set a low membrane filtration flux. limited. Furthermore, membrane filtration removes protozoa such as kryptosporidium contained in the raw water completely, and makes the filtrate safe.However, these parasites are concentrated in the concentrated wastewater generated at the time of membrane filtration. Therefore, strict attention is required for its disposal.
  • US Pat. No. 5,271,830 and WO 97/10983 disclose injection of ozone upstream of a filtration membrane. It discloses a method of membrane filtration to prevent membrane clogging while improving water quality.
  • it is necessary to inject a large amount of ozone in anticipation of fluctuations in the quality of the raw water, resulting in poor economic efficiency.
  • by-products are generated, and ozone remaining in the filtrate reacts with activated carbon in a later step, for example, a step using activated carbon, to increase the load of activated carbon. Such undesired results.
  • An object of the present invention is to provide a membrane filtration treatment of water using ozone, which maintains a high filtration flux even when the water quality of the raw water fluctuates, and stably filters water having a constant high water quality. It is to provide a method that can be obtained.
  • Another object of the present invention is to provide a method for filtering water remaining in water by membrane filtration using ozone. It is an object of the present invention to provide a treatment method capable of keeping the ozone level low and effectively performing the subsequent water treatment.
  • the concentration of ozone present in the filtrate passing through the ozone-resistant membrane is detected, and the ozone concentration is determined to be a predetermined value.
  • the feature is that the amount of ozone injected into the raw water is continuously and automatically controlled so that the value becomes as follows.
  • the filtrate Prior to treating the filtrate with a reverse osmosis membrane, the filtrate is blown off, the filtrate is treated with activated carbon, or sodium thiosulfate is added to the filtrate.
  • FIG. 1 is a diagram showing a processing flow according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a processing flow of another embodiment of the present invention.
  • FIG. 3 is a diagram showing a processing port according to another embodiment of the present invention.
  • FIG. 4 is a diagram showing a processing flow of another embodiment of the present invention.
  • FIG. 5 is a graph showing the relationship between the ozone concentration of the filtrate permeating the ozone-resistant membrane and the membrane filtration flux in Example 1.
  • BEST MODE FOR CARRYING OUT THE INVENTION The present invention is basically a water treatment method in which ozone is added to raw water and filtration is performed using an ozone-resistant membrane.
  • 1 to 4 are examples of a water treatment flow showing an embodiment of the present invention.
  • Fig. 1 shows the basic flow of detecting the ozone concentration of the filtrate passing through the ozone-resistant membrane using an ozone concentration measurement device and automatically controlling the ozone amount of the ozone generator.
  • Fig. 2 shows the flow in the case of controlling the amount of ozone added to raw water in the water treatment process where the filtered water that has passed through the ozone-resistant membrane is further treated with an activated carbon treatment device.
  • FIG. 3 shows a flow in the case where the amount of ozone added to raw water is controlled in a water treatment step in which filtrate filtered through an ozone-resistant membrane is further treated with a reverse osmosis membrane.
  • FIG. 4 shows a flow in the case of adding a flocculant to raw water in the water treatment method of performing the activated carbon treatment of FIG. 2 or the reverse osmosis membrane treatment of FIG.
  • the raw water referred to in the present invention is water subject to advanced treatment of water supply, secondary treatment of sewage, and wastewater treatment, such as river water, lake water, groundwater, storage, secondary sewage treatment water, and plant wastewater. .
  • the amount of ozone added to raw water to improve water quality depends on the nature of the raw water and the purpose of water quality improvement, but the ozone concentration is in the range of 0.05 mgZ liter to 3 OmgZ liter. If the injection amount of ozone is too large, many by-products of oxidative decomposition due to ozone are generated, increasing the load on the subsequent by-product adsorption step, or manganese in raw water is overoxidized, and the membrane filtration method is used. It is not desirable because it cannot be removed effectively. It is not economical because excess ozone also increases. On the other hand, if the amount of injected ozone is too small, a sufficient water quality improvement effect cannot be obtained.
  • the relationship between the amount of ozone injected into the raw water and the membrane filtration flux also differs depending on the raw water quality.
  • the present inventors differ in the membrane filtration flux even when the same amount of ozone is injected into the same raw water when ozone remains on the filtration membrane surface and when ozone does not remain. It has been found that the filtration flux is high because the membrane surface is constantly washed.
  • the relationship between the ozone concentration of the filtrate and the membrane filtration flux was examined under the condition that ozone remains in the filtrate (the ozone remains on the filtration membrane surface). As a result, it was found that the ozone concentration of the drainage and the membrane filtration flux had a relationship as shown in Fig. 5. That is, the membrane filtration flux is almost constant when the residual ozone of the filtrate is 0.3 mg / liter or more, and the membrane filtration flux greatly depends on the filtrate ozone concentration when the residual ozone is less than 0.05 mgZ liter. The change is steep.
  • the ozone concentration of the filtrate is 0.3 mgZ liter or more, no further effect of increasing the membrane filtration flux can be expected, and if the ozone concentration is less than 0.05 mL, the change in the membrane filtration flux is large. It has been found difficult to obtain a stable drainage.
  • the amount of ozone to be injected into raw water is continuously and automatically controlled so that the ozone concentration in the filtrate becomes a predetermined value.
  • the raw water 1 is treated with ozone in the step of ozone treatment 2, and is subjected to membrane filtration in step 3 by an ozone-resistant membrane.
  • the ozone concentration in the filtrate passing through the membrane is constantly measured by the ozone concentration measuring device 4.
  • the ozone generation is performed so that the residual ozone concentration becomes a preset value in a range of, for example, 0.05 mg / L or more and less than 0.3 mg / liter.
  • the amount of ozone supplied from the machine 5 to the ozone treatment process is automatically adjusted.
  • an ultraviolet absorbance method, an electrode method, an iodine titration method, an indigible method, a fluorescence method, a coloring method, or the like can be used, but feedback control with high accuracy and in a short time can be performed.
  • the preferred method is to do so.
  • the measured value of the ozone concentration meter 4 is C P U
  • the ozone generator 5 increases or decreases the generated ozone concentration by means for controlling the current or voltage of the ozone generator, for example.
  • ozone added to raw water may be ozone alone or ozonized air.
  • the introduction of ozone into the raw water may be carried out via an air diffuser installed in a reaction tower provided in front of the raw water tank or an air diffuser installed at an appropriate position in the raw water tank.
  • a U-tube system can be used instead of a reaction tower using a diffuser tube.
  • another configuration for adding ozone includes a pipe for guiding raw water to an ozone resistant membrane. On the way, ozone may be added by an ejector method or a line mixing method.
  • a raw material for generating ozone in the case of discharge may be air or oxygen.
  • ozone generated by electrolysis of water may be used.
  • the ozone is supplied continuously into the raw water.
  • Addition of ozone can kill microorganisms living in the raw water 1, such as viruses, bacteria, molds, and protozoa.
  • suspended substances and organic substances in the raw water 1 can be decomposed, and at the same time, organic substances adhering to or clogged with an ozone-resistant membrane can be filtered while decomposing, so that an extremely high filtration flux can be obtained.
  • the organic matter attached to the membrane is repeatedly attacked by the ozone passing through the membrane, so that the filtration is performed while the membrane is constantly self-cleaning. As a result, a high filtration flux is obtained. Obtainable.
  • the membrane filtration device used in the present invention includes at least a tank or a tank for storing raw water (hereinafter referred to as a raw water tank), a membrane module, a means for sending raw water to the membrane module (such as a circulation pump), and a membrane filtration water.
  • a tank or tank hereinafter referred to as a drainage tank
  • a means for backwashing the membrane are provided.
  • a line is provided to return raw water (circulating water) that does not pass through the membrane to the raw water tank.
  • the ozone-resistant membrane is not particularly limited as long as it is a filtration membrane that is not deteriorated by ozone.
  • an inorganic membrane such as a ceramic having ozone resistance, a polyvinylidene fluoride (PVDF) membrane, a polytetrafluoroethylene (PTF E) )
  • PVDF polyvinylidene fluoride
  • PPF E polytetrafluoroethylene
  • a film an organic film such as a fluorine-based resin film such as an ethylene-tetrafluoroethylene copolymer (ETFE) film, a polyfluoroacrylate (PFA) film, or the like can be used. It is particularly preferable to use a polyvinylidene fluoride (PVDF) film.
  • ozone-resistant membranes those whose pore size range is from ultrafiltration (UF) membrane to precision filtration (MF) membrane can be used, but basically a precision membrane with a high ⁇
  • a filtration (MF) membrane is used.
  • a membrane having an average pore diameter of 0.001 to 1 m is preferable, and a membrane having an average pore diameter of 0.05 to 1 m is more preferable.
  • any shape such as a hollow fiber shape, a flat film shape, a pleated shape, a spiral shape, and a tubular shape can be used, and a hollow fiber shape having a large membrane area per unit volume is preferable.
  • filtration is performed using a module containing a membrane.
  • the filtration method may be either a full filtration method or a cross flow filtration method.
  • the air or oxygen in the injected ozone gas is returned to the raw water tank together with the circulating water and separated into gas and liquid.
  • the total filtration method it is necessary to remove unreacted gasified air that is present in the raw water side of the membrane module. For example, it is necessary to provide a gas-liquid separator above the membrane module.
  • a pressure filtration method or a negative pressure filtration method may be used, but a pressure filtration method is preferable because a higher filtration flux can be obtained.
  • Either internal pressure filtration or external pressure filtration may be used.
  • the backwashing is performed using the filtrate permeated through the ozone-resistant membrane.
  • Air bubbling may be used in combination with backwashing, or in the order of filtration and air bubbling-backwashing, or filtration and backwashing-air and bubbling or filtration (simultaneous backwashing with air and bubbling). You may go in order.
  • air bubbling may be performed while flowing raw water at the same time, or may be performed without flowing raw water. Alternatively, these may be alternately combined.
  • Air bubbling is preferably 1 second or more and 6 minutes or less. If the time is less than 1 second, the effect cannot be obtained, while if it exceeds 6 minutes, the time during which the filtration is stopped becomes longer, and the amount of the filtered water becomes longer. Less, not preferred.
  • the activated carbon treatment device 6 generates trace organic matter contained in the filtered water that has passed through the ozone-resistant membrane, a biodegradable organic substance formed by reaction with ozone, or a reaction with ozone.
  • the purpose is to obtain highly treated water, excluding by-products and the like.
  • Activated carbon treatment specifically involves draining the permeated water through the ozone-resistant membrane into a tank containing granular activated carbon and performing post-treatment.
  • biologically activated carbon biological activated carbon
  • BAC biological activated carbon
  • it is effective for removing easily decomposable organic substances generated by reacting humic substances with ozone.
  • ozone concentration in the filtrate from the ozone-resistant membrane low for the following reasons. If the ozone concentration in the filtered water is high, the activated carbon reacts with ozone, and oxygen gas is generated, causing an airlock phenomenon, which increases the water flow resistance and prevents water flow. This is particularly noticeable at ozone concentrations above 1.0 mg / litre. Also, when the ozone concentration is high, the load of the activated carbon in the activated carbon treatment process increases. Furthermore, ozone can kill microorganisms in biological activated carbon.
  • the ozone concentration in the drainage water is from 0.05 mg Z liter to 1.0 mg mg or less, more preferably from 0.05 mg zinc to 0.3 mg Z liter, and still more preferably. Should be in the range of 0.055 to 11.8 liters to 0.25 mg Z liters.
  • deozonization of the filtrate is performed to protect the reverse osmosis membrane that does not have ozone resistance. It is desirable to carry out.
  • a retention tank is provided, and the residual ozone is decomposed by removing the ozone from the drainage by means of a spike, a reducing agent such as sodium thiosulfate, or activated carbon treatment.
  • a coagulation sedimentation-sand filtration method or the like is provided as a pretreatment as a turbidity removal method.
  • the content value of the suspended substance contained in the pretreatment water of the reverse osmosis membrane, that is, the FI (filing index) value is set to 3 The following can be done, but it is still insufficient.
  • the FI value can be set to 1 or less because the ozone-resistant film blocks suspended substances and microorganisms in the raw water 1. Therefore, in the case of the flow shown in Fig. 3, in which the filtered water that has passed through the ozone-resistant membrane is further treated with a reverse osmosis membrane, the filtered water that has always stable water quality regardless of the water quality fluctuation, water quantity fluctuation, and water temperature fluctuation of the raw water 1 Can be sent to reverse osmosis membrane.
  • the membrane filtration method using an ozone-resistant membrane is basically used, the filtration flux is high and the efficiency is high, and as a result, the equipment cost of the entire process can be reduced.
  • the membrane filtration treatment 8 using a reverse osmosis membrane can remove even highly hydrophilic organic substances such as polysaccharides which are not digested by microorganisms and are hardly adsorbed on activated carbon by the biological activated carbon treatment.
  • the biological activated carbon treatment when the water temperature decreases, the biological activity decreases and the treatment capacity decreases.
  • the use of a reverse osmosis membrane has the advantage that the temperature dependence is small.
  • the reverse osmosis membrane is not particularly limited.
  • a low-pressure reverse osmosis membrane or a nanofilter can be used. It is preferable to use a low-pressure reverse osmosis membrane or a nanofilter suitable for low-pressure treatment because the filtration operation pressure can be increased and the filtration flux can be increased.
  • reverse osmosis membranes can also block micro-polyurethanes and inorganic salts such as soluble organic matter and pesticides, so that highly contaminated raw water or raw water with a high salt concentration can be used for drinking water or industrial water. It is effective when used.
  • FIG. 4 illustrates a flow in the case of using a flocculant.
  • the coagulant may be added to a storage tank such as a tank for storing the raw water 1, or may be added to an ozone-resistant film in the middle of a pipe for guiding the raw water 1 to a place where ozone is added or after ozone is added. May be added by a line mixing method in the middle of the tube for guiding the mixture.
  • the pH of the raw water may be adjusted with a chemical solution or the like as necessary.
  • the appropriate pH varies depending on the flocculant used, but the pH before, during or after the flocculant addition is between 2 and 8, preferably between 2 and 7.5.
  • the chemical solution for adjusting ⁇ ⁇ may be added prior to or simultaneously with the addition of the flocculant using the same method as that for adding the flocculant (addition to raw water tank, line mixing method, etc.).
  • the raw water is alkaline, it can be adjusted to a suitable acid with mineral acid such as hydrochloric acid, sulfuric acid, or nitric acid.
  • the raw water is acidic, it can be adjusted to an appropriate ⁇ with sodium hydroxide or hydroxide hydroxide.
  • the amount of the flocculant added must be such that the suspended solids contained in the raw water 1 can be flocculated. Generally, it is sufficient to add 1 to 100 mg to one liter of the raw water 1, and more preferably. In other words, 2 to 5 O mg may be added to one liter of raw water 1.
  • Example 1 (the present invention)
  • raw water 1 river surface water with turbidity of 3 to 4 degrees, chromaticity of 5 to 10 degrees, COD (chemical oxygen demand) of 6 to 8 mg / litre, and water temperature of 12 ° C is used.
  • raw water 1-ozone treatment 2 ⁇ membrane filtration treatment 3 using an ozone-resistant membrane was sequentially performed.
  • the ozone concentration of the filtrate that has passed through the ozone-resistant membrane is detected by the ozone concentration measuring device 4, and the amount of ozone generated from the ozone generator 5 is automatically increased / decreased via the CPU so that the value becomes a predetermined value. I let it.
  • MF hollow fiber microfiltration
  • PVDF polyvinylidene fluoride
  • PVC polyvinyl chloride
  • Filtration is performed by a cross-floor type, and the above-mentioned raw water 1 is supplied to the raw water tank, and constant pressure filtration is performed to supply the PVDF hollow fiber module to the PVDF hollow fiber module at a constant pressure by using a pump.
  • the amount of circulating water was adjusted to be one-to-one.
  • An ozone addition port of an ejector type was installed between the pump outlet and the module, and ozone was added using air as a raw material.
  • the value of the ozone generation amount control signal from the ozone concentration measuring device 4 to the ozone generator 5 is set so that the ozone concentration of the filtrate that has passed through the ozone resistant membrane becomes a predetermined value, and the membrane filtration operation described above is performed. For 50 hours. The membrane filtration flux after 50 hours was measured, and the value obtained by dividing by the value of the clarified water flux at the same membrane filtration pressure was obtained, and the result of FIG. 5 was obtained.
  • Example 1 the operation was performed so that the ozone concentration of the filtrate became 0.2 mg / liter, and the filtrate was passed through an activated carbon tank (flow in Fig. 2). Calgon F400 was used as activated carbon, and the design was such that the EB CT (superficial tower contact time) was 20 minutes.
  • the filtered water of the ozone-resistant membrane had a turbidity of 0.02 °, a chromaticity of 2 ° or less, and a value of 4 to 5.5 mgZ liter.
  • the water quality after the water was 0.02 ° turbidity, chromaticity of 1 ° or less, and a COD of 0.3 to 0.8 mg / litre.
  • Example 3 the present invention
  • raw water 1 As raw water 1, turbidity is 5 to 11 degrees, chromaticity is 18 to 20 degrees, COD is 20 to 30 mg norr, pH power, '7.2 to 7.6, water temperature is 23 to 25 °
  • raw water 1—ozone treatment 2 ⁇ membrane filtration treatment 3 using an ozone-resistant membrane 3 was sequentially performed as in Example 1, using the sewage secondary treatment water C.
  • the ozone concentration of the filtrate permeating the ozone-resistant membrane was set to 0.25 mgZ liter.
  • the quality of the drainage water was turbidity of less than 0.1 degrees, chromaticity of less than 2 degrees, and COD of 6-8 mgZ liter. Further, a part of the filtrate was collected, and residual microorganisms were detected by a provisional test method for detection of the agar medium and Cribtosporidium. As a result, no survival was confirmed.
  • the water treatment method of performing the reverse osmosis membrane treatment shown in Fig. 4 was performed. That is, raw water 1 ⁇ ⁇ ⁇ adjustment 9 ⁇ addition of flocculant 10-ozone treatment 2 membrane filtration treatment 3 with ozone-resistant membrane 3 was sequentially performed, and a part of the obtained filtrate was subjected to deozonization treatment 7. A membrane filtration treatment 8 using a reverse osmosis membrane was performed.
  • the pH was adjusted by installing a static mixer in the middle of a line that supplies raw water to a raw water tank (not shown) in an ozone-resistant membrane filtration device, adding sulfuric acid using a pump, and adjusting the pH. 6. Adjusted to 2-6.5. Thereafter stage, the further the static mixer between the raw water tank is provided after the addition at a rate of 3 5 mg to raw water 1 liter ferric chloride (F e C 1 3) as a flocculant, O Dzon treatment was performed. The ozone concentration of the filtrate that has passed through the ozone-resistant membrane is detected by the ozone concentration measuring device 4, and the amount of ozone generated from the ozone generator 5 is determined via the CPU so that the value becomes 0.05 mg norr. Automatically increased or decreased.
  • the quality of the filtered water that passed through the ozone-resistant membrane had a turbidity of 0.1 ° or less, a chromaticity of 1 ° or less, and a C0D of 4 to 6 mg Z liter.
  • sodium thiosulfate was added to the filtrate of the ozone-resistant membrane at a ratio of 0.15 mg to 1 liter of raw water to decompose residual ozone.
  • This aromatic polyamide composite membrane spiral type nanofilter had a NaC1 rejection of 65%, a MgC rejection of 50%, and a sucrose rejection of 99%.
  • the aromatic polyimide composite membrane spiral type nanofilters were arranged in a two-stage cascade type, with a 70% drainage recovery rate, and operated for 2 months at a filtration pressure of 40 kPa. Stable operation was performed over the entire period, and a filtration flow rate of 5 m 3 Z days was obtained. The TOC (total organic carbon) removal rate was stable at 90-97% over the entire period, and the quality of the treated water obtained was sufficient for reuse.
  • Example 5 (invention)
  • Filtration was carried out using the raw water of Example 1 by a constant-pressure filtration method. That is, the same amount of water as that of the filtrate was supplied to the raw water tank, and a gas-liquid separator was provided above the membrane module. The method of adding ozone, the ozone resistant film used, and the operating conditions are the same as in Example 1.
  • the amount of residual ozone in the filtered water can be kept low, and the subsequent water treatment can be performed effectively.
  • a water treatment method that can obtain a high-quality treatment liquid with a compact system and does not generate harmful waste can be realized.
  • treated water having good water quality is economically and stably supplied in advanced treatment of waterworks and sewage secondary treatment water, and industrial water or wastewater treatment. I can do it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

明細 : 水処理方法 技術分野 本発明は、 上水道や下水二次処理水の高度処理、 および工業用水または排水の 水処理方法に関する。 さらに詳しくは、 オゾンを用いた水の膜濾過処理方法にお いて、 一定の高水質を有する濾水を、 安定にかつ効率的に供給する方法に関する c 背景技術 従来の代表的な水の浄化方法は、 取水した原水にまず塩素または次亜塩素酸ナ トリウムを添加し、 鉄やマンガンを酸化不溶化し、 また浄化プロセス内での微生 物等の増殖及びその悪影響を阻止し、 次いで懸濁物質に対応する凝集剤を添加し、 懸濁物質をフロック化させて沈殿分離し、 そのオーバ一フローしたフロックを次 の砂濾過工程で分離し、 原水を清澄化する、 という凝集沈殿法である。 原水中の 懸濁物質が少ないときには、 凝集剤をラインミキシングして砂濾過する方法や、 加圧浮上させる方法もある。
しかしながら、 最近の半導体産業で要求される水の除濁のレベルや、 上水道で 要求される原虫類の除去レベルは、 従来の凝集沈殿法のみでは達成することが出 来ない。 また、 上水道における水処理では、 年々原水水質が悪化しつつあり、 こ れにともない、 原水からの色度成分や異臭味の除去、 農薬や環境ホルモンなどの 有害有機物の除去、 あるいはクリプトスポリジゥ厶ゃジアルジァ等の原虫類の除 去、 さらには塩素消毒副生成物である 卜リハロメタン類の低減等が求められてい る。 これに対応する為、 生物処理、 オゾン処理、 活性炭処理などの高度処理が行 われるようになってきている。
また、 最近では凝集沈殿法に比べ、 濁質成分や菌類、 原生虫のより高度な除濁 が可能で信頼性も高く、 S動遝転が可能なことから、 限外滤過股 ( U F ) や精密 濾過膜 (M F ) を用いた膜濾過法が簡易水道などで採用されつつあり、 さらには 前記高度処理と組み合わせた形での膜濾過処理も検討されつつある。
しかしながら、 膜濾過処理では、 膜濾過を継続して行うと膜の目詰まりが起こ り膜濾過流束が徐々に低下するため、 定期的に薬品洗浄を行う必要がある。 この 薬品洗浄頻度をできるだけ低くするために、 凝集沈殿のような重厚な前処理を行 う力、、 あるいは膜濾過流束を低く設定する必要があるため、 経済性の観点からそ の使用範囲が限られている。 さらには、 膜濾過により原水中に含まれるクリブト スポリジゥム等の原虫類は完全に排除され、 濾水は安全になるものの、 膜濾過時 に同時に生成する濃縮排水中にはこれら原虫が濃縮されているため、 その廃棄に は厳重な注意が必要となる。
これらの問題を解決する方法として、 例えば米国特許第 5 , 2 7 1 , 8 3 0号 公報や、 W O 9 7 / 1 0 8 9 3号公報は、 濾過膜の上流側にオゾンを注入して 膜濾過し、 膜の目詰まりを防止すると同時に水質を改善する方法を開示している。 しかしながら、 このような処理方式で充分な効果を得るためには、 原水の水質変 動を見込んでオゾンを多目に注入しなければならず、 経済性に劣る。 また、 ォゾ ン注入量を多くすることにより副生成物を生じたり、 濾液中に残存するオゾンが 後段の工程、 例えば活性炭を用いた工程の活性炭と反応して活性炭の負荷を大き くする、 というような好ましくない結果を招く。
一方、 原水へのオゾンの注入量が少ない場合は、 膜の目詰まりにより膜濾過流 束が低くなり、 水質の改善効果も不十分になる。 さらには、 原水水質が変動した 場合、 膜濾過流束が大きく変動すると共に、 処理水質も変動することになる。 従 つて、 常に一定の処理水量と処理水質を確保することが困難であった。 発明の開示 本発明の目的は、 オゾンを用いた水の膜濾過処理において、 原水の水質に変動 があっても高い濾過流束を維持しつつ、 一定の高水質を有する濾水を安定して得 ることができる方法を提供することにある。
本発明の他の目的は、 オゾンを用いた水の膜濾過処理において、 ^水中の残存 オゾン量を低く保ち、 後段の水処理を効果的に行うことのできる処理方法を提供 することにある。
さらにこの発明の目的は、 コンパク 卜なシステムで高水質の処理液が得られ、 かつ有害な廃棄物を生じな 処理方法を提供することにある。
この発明の水処理方法は、 原水にオゾンを添加し、 オゾン耐性膜を用いて濾過 する方法において、 オゾン耐性膜を透過した濾水中に存在するオゾンの濃度を検 知し、 そのオゾン濃度が所定の値になるように原水に注入するオゾンの量を連続 的に自動制御することを特徴とする。
この発明の水処理方法の実施態様の例をあげると、 上記した特徴を有する水処 理方法において、
•オゾン耐性膜を透過した濾水中に存在するオゾンの濃度を検知し、 そのオゾン 濃度が 0 . 0 5 m g /リッ トル以上 1 . O m g Zリ ッ トル以下の範囲の所定の値 になるように、 原水に注入するオゾンの量を連続的に自動制御する水処理方法、 •オゾン耐性膜を透過した濾水を、 さらに活性炭で処理する方法、
-オゾン耐性膜を透過した濾水を、 さらに逆浸透膜で処理する方法、
•濾水を逆浸透膜で処理するに先立ち、 濾水をバツキするか、 濾水を活性炭で処 理するか、 あるいは濾水にチォ硫酸ナ卜リゥムを添加する方法、
-オゾン耐性膜で濾過する以前に、 原水に凝集剤を添加する方法、
-凝集剤の効果を高めるために、 原水の p Hを調整する方法、
などである。 図面の簡単な説明 図 1は、 本発明の一実施形態の処理フローを示す図である。
図 2は、 本発明の他の実施形態の処理フローを示す図である。
図 3は、 本発明の他の実施形態の処理フ口一を示す図である。
図 4は、 本発明の他の実施形態の処理フローを示す図である。
図 5は、 実施例 1における、 オゾン耐性膜を透過した濾水のオゾン濃度と膜瀘 過流束の関係を示す図である。 発明を実施するための最良の形態 本発明は、 基本的に、 原水にオゾンを添加し、 オゾン耐性膜を用いて濾過する 水処理方法である。
図 1 ~ 4は、 本発明の実施態様を示す水処理フローの例である。
図 1は、 オゾン耐性膜を透過した濾水のオゾン濃度を、 オゾン濃度測定機を用 いて検知し、 オゾン発生機のオゾン量を自動制御する基本のフローを示す。 図 2は、 オゾン耐性膜を透過した濾水をさらに活性炭処理装置で処理する水処 理工程において、 原水へ添加するオゾン量をコントロールする場合のフローを示 す。
図 3は、 オゾン耐性膜を透過した濾水をさらに逆浸透膜で処理する水処理工程 において、 原水へ添加するオゾン量をコントロールする場合のフローを示す。 図 4は、 図 2の活性炭処理、 または図 3の逆浸透膜処理を行う水処理方法にお いて、 原水に凝集剤を添加する場合のフローを示す。
本発明でいう原水とは、 河川水、 湖沼水、 地下水、 貯水、 下水二次処理水、 ェ 場排水などの、 上水道、 下水二次処理水の高度処理、 排水処理の対象となる水で ある。
従来、 上記の様な原水をそのまま膜で濾過すると、 該原水中に含まれる懸濁物 質や使用する膜の孔径以上の大きさの有機物は膜で阻止され、 いわゆる濃度分極 ゃケ一ク層を形成すると同時に、 該原水中の有機物は膜を目詰まりさせたり、 あ るいは膜内部の網状組織に吸着する。 その結果、 原水を濾過した際の膜の濾過流 束は、 清澄水を濾過した際のそれに比べて数分の 1から数十分の 1にまで低下し てしまう。
しかしながら、 オゾン等の酸化剤の存在下で上記原水を膜で濾過すると、 膜に 付着または目詰まりしている有機物をオゾン等の酸化剤により分解しながら濾過 でき、 極めて高い瀘過流束を得ることができる。 即ち、 オゾン存在下での濾過膜 は、 膜を通過するオゾンが膜に付着した有機物を繰り返して攻撃するため、 常時 自己洗浄しながら濾過を行うことになり、 その結果高 L、濾過流束を ることがで きる濾過方法となる。
原水にオゾンを添加することにより、 上記のように膜濾過において高い濾過流 束が得られるという効果以外に、 色度除去、 異臭味除去等の水質改善の効果、 さ らには鉄およびマンガンを酸化し、 膜濾過法でこれらを効果的に除去する効果が 期待できる。 本発明では、 これらを同時に達成する量のオゾンを添加する必要が める。
水質向上のために原水に添加されるオゾン量は、 原水の性状、 水質改善目的に よっても異なるが、 オゾン濃度が 0. 05mgZリ ツ トル以上 3 OmgZリ ッ ト ル以下の範囲である。 オゾンの注入量が多すぎると、 オゾンによる酸化分解の副 生成物が多く生じ、 後段の副生成物吸着工程に対する負荷が大きくなり、 あるい は原水中のマンガンが過酸化され、 膜濾過法で効果的に除去できなくなり好まし くない。 また、 余剰のオゾンも増加するため経済的でない。 一方、 注入オゾン量 が少なすぎると、 十分な水質改善効果が得られない。
原水へのオゾン注入量と膜濾過流束の関係も原水水質により異なる。 本発明者 らは濾過膜面にオゾンが残留する場合と、 しない場合では、 同じ原水に同じォゾ ン量を注入した場合でも膜濾過流束は異なり、 濾過膜面にオゾンが残留する方が 膜面が常に洗浄されるため濾過流束が高くなることを見いだした。
そこで、 濾水にオゾンが残留 (濾過膜面にオゾンが残留) する条件で、 濾水の オゾン濃度と膜濾過流束の関係を検討した。 その結果、 濾水のオゾン濃度と膜濾 過流束には、 図 5に示すような関係があることを見いだした。 即ち、 濾水の残留 オゾンが 0. 3 m g /リ ッ トル以上では膜濾過流束はほぼ一定であり、 0. 05 mgZリ ツ トル未満では瀘水オゾン濃度に対し膜濾過流束は大きく依存し、 その 変化は急峻である。
即ち、 濾水オゾン濃度が 0. 3mgZリ ツ トル以上では膜濾過流束アップにさ らなる効果は期待できず、 また、 0. 0 5m リ ッ トル未満では膜濾過流束の 変化が大きく、 安定した濾水量を得るのが困難であることを見いだした。
—方、 濾水オゾン濃度が 0. 05 m gZリ ッ トル以上 1. OmgZリッ トル未 満になるように原水にオゾンを注入した場合には、 水質も十分に改善されること を見いだした。 g 以上のことから、 原水にオゾンを添加し、 オゾン耐性膜を用いて濾過する方法 に於いて、 必要かつ十分なオゾン処理効果を得るには、 オゾン耐性膜を透過した 濾水中に存在するオゾンの濃度が 0 . 0 5 m gノリ ツ トル以上 1 m g Zリ ツ トル 以下、 好ましくは 0 . 0 5 m g Zリ ッ トル以上 0 . 3 m g Zリ ッ トル未満の範囲 の所定の値になるように、 原水に注入するオゾンの量が制御される。
以下に、 各単位プロセスの詳細について説明する。
[オゾン量の制御]
本発明は原水にオゾンを添加し、 オゾン耐性膜を用いて濾過するに際し、 濾水 中のォゾン濃度が所定の値になるように、 原水に注入するォゾンの量を連続的に 自動制御することに特徴がある。
図 1〜 4のフローにおいて、 原水 1は、 オゾン処理 2の工程でオゾンによる処 理を受け、 工程 3でオゾン耐性膜により膜濾過処理される。 膜を透過した濾水中 のオゾン濃度は、 オゾン濃度測定機 4によって常時計測される。 そして、 計測さ れた値に基づいて、 残留オゾン濃度が例えば 0 . 0 5 m g Zリ ツ トル以上 0 . 3 m g /リ ッ トル未満の範囲のあらかじめ設定された値となるように、 オゾン発生 機 5からォゾン処理工程へ供給されるオゾン量が自動調整される。
オゾン濃度測定機 4としては、 紫外線吸光度法、 電極法、 ヨウ素滴定法、 イン ジゴブル一法、 蛍光法、 発色法などを用いることができるが、 高い精度で、 短時 間にフィ一ドバック制御を行う方法が好ましい。 測定値の演算処理が可能な紫外 線吸光度法あるいは電極法が好ましい。 オゾン濃度測定機 4の測定値は C P U
(中央演算処理装置) により演算処理され、 オゾン発生機 5に伝えられる。 その 信号に従い、 オゾン発生機 5では、 例えばオゾン発生機の電流、 あるいは電圧を 制御する手段により、 発生オゾン濃度を増加あるいは減少させる。
[オゾン処理]
オゾン処理 2において、 原水に添加するオゾンは、 オゾン単体でもオゾン化空 気でも良い。 原水へのオゾンの導入は、 原水槽の前に設けた反応塔内に設置した 散気管等あるいは原水槽内の適宜位置に設けた散気管等を介して行えば良い。 あ るいは散気管を用いた反応塔の代わりに Uチューブ方式を用いることもできる。 また、 オゾンを添加する他の構成として、 オゾン耐性膜に原水を誘導する管の 途中で、 ェジェクタ一方式またはラインミキシング方式でオゾンを添加しても良 い。
また、 オゾン発生方法として放電による場合のオゾン発生の原料は、 空気でも よく、 あるいは酸素でも良い。 さらには、 水の電気分解によって発生したオゾン でもよい。 好ましくは、 オゾンは原水中へ連続的に供給される。
オゾンの添加により、 原水 1中に棲息する微生物類、 例えばウィルス類、 バク テリア類、 カビ類、 原虫類を死滅させることが出来る。 さらには、 原水 1中の懸 濁物質や有機物を分解すると共に、 後述するオゾン耐性膜に付着または目詰まり している有機物を分解しながら濾過でき、 極めて高い濾過流束を得ることが出来 る。 即ち、 オゾン存在下にある濾過膜は、 膜を通過するオゾンによって膜に付着 した有機物が繰り返し攻撃されるため、 常時自己洗浄しながら瀘過を行うことに なり、 その結果、 高い濾過流束を得ることができる。
原水 1とオゾンとの接触時間に特に留意する必要はないが、 1秒〜 30分が一 般的である。
[膜濾過装置]
本発明に用いられる膜濾過装置は、 少なく とも原水を貯留する槽あるいは夕ン ク (以下原水槽という) 、 膜モジュール、 原水を膜モジュールへ送る手段 (循環 ポンプ等) 、 膜濾水を貯留する槽あるいはタンク (以下濾水槽という) 、 膜を逆 流洗浄する手段をそなえる。 また、 クロスフロー濾過方式の場合は、 膜を透過し ない原水 (循環水) を原水槽へ戻すライ ンを備える。
[オゾン耐性膜による膜濾過処理]
オゾン耐性膜としては、 オゾンにより劣化しない濾過膜なら特に限定されない が、 例えば、 オゾン耐性を有するセラミ ック等の無機膜、 ポリフッ化ビニリデン (PVD F) 膜、 ポリ 4フッ化工チレン (P TF E) 膜、 エチレン一テトラフル ォロエチレン共重合体 (E TF E) 膜、 ポリフルォロアクリ レー 卜 (P FA) 膜 等のフッ素系樹脂膜等の有機膜を適用することが出来る。 特にポリフッ化ビニリ デン (PVD F) 膜を使用すれば好ましい。
このようなオゾン耐性膜のうち、 その孔径領域が限外瀘過 (UF) 膜から精密 瀘過 (MF) 膜であるものが使用し得るが、 基本的に高い^過流量を有する精密 濾過 (M F ) 膜を使用するのが好ましい。 例えば、 平均孔径が 0 . 0 0 1〜 1 mの膜が好ましく、 平均孔径 0 . 0 5〜 1 mの膜がさらに好ましい。
オゾン耐性膜の形状としては、 中空糸状、 平膜状、 プリーツ状、 スパイラル状、 チューブラ一状など任意の形状を用いることができるカ^ 単位体積当たりの膜面 積が大きく とれる中空糸状が好ましい。 一般に、 濾過は膜を収納したモジュール を用いて行われる。
濾過方式としては、 全量濾過方式でもクロスフロー濾過方式でもよい。 クロス フロー濾過方式の場合、 注入されたオゾンガス中の空気あるいは酸素は、 循環水 とともに原水槽に返送され気液分離される。 これに対し、 全量濾過方式の場合に は、 膜モジユールの原水側におし、て未反応のガス状で存在するォゾン化空気を除 去する必要がある。 例えば、 膜モジュール上部に気液分離装置を設けるなどのェ 夫が必要がある。
また、 加圧濾過方式でも陰圧濾過方式でもよいが、 加圧濾過方式がより高い濾 過流束が得られるため好ましい。 また、 内圧濾過、 外圧濾過のどちらでもよい。 膜の濾過性能を維持するため、 定期的に膜モジュールの物理洗浄を行う。 物理 洗浄法としては、 主に逆流洗浄とエアーバブリングが効果的である。
逆流洗浄は、 オゾン耐性膜を透過した濾水を用いて行うのが好ましい。
エア一バブリングは、 一定時間の濾過の後、 濾過を中止して原水側の膜面に気 体を送り込み、 膜面を振動させることにより膜の洗浄を行うものである。 本発明 においては、 膜面に吸着する有機物がオゾンにより分解されて非吸着性物質とな るため、 膜の孔を閉塞する非吸着性の物質 (有機物、 無機物) カ^ エア一バブリ ングにより有効にふるい落とされ、 大きな洗浄効果が得られる。
エア一バブリングは、 逆流洗浄と併用してもよく、 濾過一エアーバブリング— 逆流洗浄の順でもよいし、 濾過一逆流洗浄—エア一バブリ ングぁるいは濾過一 (エア一バブリング同時逆流洗浄) の順で行っても良い。
さらに、 同時に原水を流しながらエア一バブリ ングを行っても良いし、 原水を 流さずに行っても良い。 あるいは、 これらを交互に組み合わせても良い。
エアーバブリングは 1秒以上 6分以内が好ましい。 1秒未満ではその効果が得 られず、 一方、 6分を超えると濾過を中止している時間が長くなつて瀘過水量が 少なくなり、 好ましくない。
[活性炭処理]
図 2のフローにおいて、 活性炭処理装置 6は、 オゾン耐性膜を透過した濾水中 に含まれる微量有機物、 オゾンと反応して生成した生物易分解性の有機物質、 あ るいはオゾンとの反応で生成した副生成物等を除き、 高度に処理された水を得る ためのものである。 活性炭処理は、 具体的には、 オゾン耐性膜を透過した濾水を、 粒状活性炭を含む槽に導き、 後処理することからなる。
活性炭としては、 生物活性炭 (バイオロジカルァクティべィテツ ドカーボン : B A C ) が好ましく使用できる。 特にフミ ン質等がオゾンと反応して生成する生 物易分解性の有機物の除去に有効である。
活性炭処理を行う場合は、 以下の理由により、 オゾン耐性膜からの濾水中のォ ゾン濃度を低く抑えることが重要である。 濾水中のオゾン濃度が高いと、 活性炭 がオゾンと反応し、 酸素ガスが発生してエアロック現象を起こし通水抵抗が増す 力、、 通水できなくなる。 1 . 0 m g /リ ッ トルを超えるオゾン濃度ではこれが頭 著になる。 また、 オゾン濃度が高いと、 活性炭処理工程における活性炭の負荷が 大きくなる。 さらにまた、 生物活性炭中の微生物がオゾンにより死滅する可能性 がある。 濾水中のオゾン濃度は 0 . 0 5 m g Zリ ッ トル以上 1 . O m gノリ ッ ト ル以下、 さらには 0 . 0 5 m gノリ ッ トル以上 0 . 3 m g Zリ ッ トル未満、 さら に好ましくは 0 . 0 5 111 8ノリ ッ トル〜0 . 2 5 m g Zリ ッ トルの範囲がよい。
[脱オゾン処理]
図 3の、 逆浸透膜による膜濾過処理を行うフローにおいては、 逆浸透膜による 膜濾過処理 8の前に、 オゾン耐性をもたない逆浸透膜を保護する目的で、 濾水の 脱オゾン処理を行うのが望ましい。 例えば、 滞留槽を設けてバツキにより濾水か らオゾンを除く力、、 チォ硫酸ナトリウム等の還元剤、 あるいは活性炭処理により 残留オゾンを分解させる。
[逆浸透膜による膜濾過処理]
一般的に、 逆浸透膜で水処理する方法においては、 前処理として凝集沈殿 -砂 濾過法等が除濁方法として設けられる。 これ等の方法は、 逆浸透膜の前処理水に 含まれる懸濁物質の含有値、 即ち、 F I (ファゥリ ング インデックス) 値を 3 以下には出来るが、 まだ不十分な値である。
オゾン耐性膜を用いる本発明に係る水処理方法では、 該オゾン耐性膜が原水 1 中の懸濁物質や微生物類等を阻止するため、 前記 F I値を 1以下とすることが出 来る。 したがって、 オゾン耐性膜を透過した濾水をさらに逆浸透膜により処理す る図 3のフローの場合、 原水 1の水質変動、 水量変動、 水温変動に関わらず、 常 に安定した水質の濾水を逆浸透膜へ送ることが出来る。 その結果、 逆浸透膜に負 荷がかからず、 処理能力が十分に維持され、 高い濾過流束を得ることが出来るの で、 逆浸透膜設備の小型化を図ることが出来る。 また、 供給圧力が低下出来るた めエネルギーコス 卜が低くてすむ。
さらに、 オゾン耐性膜を使用した膜濾過法を基本としているため、 濾過流束が 高く高効率であり、 結果として全プロセスの設備費を低減出来る。
また、 逆浸透膜による膜濾過処理 8によって、 例えば、 生物活性炭処理では微 生物に消化されず活性炭に吸着し難い多糖類等の親水性の高い有機物でも除去す ることが出来る。 また、 生物活性炭処理では、 水温が低くなると生物活性が低下 して処理能力が低下するが、 逆浸透膜の使用によると温度依存性が小さい利点が あ^
逆浸透膜としては特に制限されず、 通常の逆浸透膜の他、 低圧逆浸透膜やナノ フィルタ一を用いることができる。 低圧処理に向く低圧逆浸透膜やナノフィルタ 一を使用すれば、 濾過運転圧力を高くすることができ、 濾過流束を高めることが できるので好ましい。
また、 逆浸透膜は可溶性有機物や農薬等のマイクロポリユータン卜及び無機塩 を阻止することもできるので、 高度に汚染された原水や塩濃度の高い原水を飲料 水に用いる場合や、 工業用水に用いる場合に有効である。
[凝集剤添加]
オゾン耐性膜による膜濾過に際し、 膜の孔径が精密濾過 (M F ) 領域、 特に孔 径が大きい膜を用いる場合は、 原水 1中の懸濁物質 (S S ) やバクテリア等が膜 内に侵入する。 特に高粘性物による膜の目詰まりは、 通常の膜濾過運転方式では 洗浄が非常に困難である。
そこで、 孔径の大きな精密濾過 (M F ) 膜を使用する膜瀘過法では、 原水にポ リ塩化アルミニウム (P A C ) 、 硫酸バン土、 塩化第一鉄、 塩化第二鉄等の凝集 剤を添加することが好ましい。 凝集剤を使用する場合のフローを図 4に例示した。 凝集剤の添加は、 原水 1を貯めるタンク等の貯槽に添加しても良いし、 あるい は、 原水 1をオゾン添加を行う所に誘導する管の途中や、 あるいはオゾン添加後、 オゾン耐性膜に誘導する管の途中にラインミキシング方式で添加しても良い。 凝集剤の効果をより高める目的で、 必要に応じて薬液等で原水の p Hを調整し てもよい。 適切な p Hは用いる凝集剤によっても異なるが、 凝集剤添加前、 ある いは添加中あるいは添加後の P Hが 2から 8の間、 好ましくは 2から 7 . 5の間 に ^"る。
ρ Η調整の為の薬液は、 凝集剤の添加に先立って、 あるいは凝集剤と同時に、 凝集剤の添加と同様の方法 (原水タンクへの添加、 ラインミキシング方法等) を 用いて添加すればよい。 原水がアルカリ性の場合は、 塩酸、 硫酸、 硝酸などの鉱 酸で、 原水が酸性の場合は水酸化ナトリゥ厶ゃ水酸化力リウム等で適切な ρ Ηに 調整すればよい。
凝集剤を併用すると、 有機懸濁物質や高分子物質が凝集剤中に取り込まれ、 ォ ゾンとの接触が少なくなるので、 必要なオゾン量を略半減できる効果が期待でき る。
凝集剤の添加量は、 原水 1中に含まれる懸濁物質を凝集できる量である必要が あり、 一般に原水 1の 1 リ ツ トル中に 1〜 1 0 0 m g添加すれば良く、 さらに好 ましくは、 原水 1の 1 リッ トル中に 2〜 5 O m g添加すればよい。
以下に、 本発明の実施例を示す。 例 1 (本発明)
原水 1 として、 濁度が 3〜 4度、 色度が 5〜 1 0度、 C O D (化学的酸素要求 量) が 6〜 8 m g /リ ツ トル、 水温が 1 2 °Cの河川表流水を用い、 図 1に示すよ うに、 原水 1—オゾン処理 2→オゾン耐性膜による膜濾過処理 3を順次実施した。 ォゾン耐性膜を透過した瀘水のオゾン濃度をオゾン濃度測定機 4で検知し、 その 値が所定の値になるようにォゾン発生機 5からのオゾン発生量を、 C P Uを介し て自動的に増減させた。 オゾン耐性膜による膜濾過処理 3のオゾン耐性膜として、 特開平 3— 2 1 55 35号公報に基づいて作製した平均孔径 0. l ^m PVDF (ポリフッ化ビニ リデン) 製中空糸状精密濾過 (MF) 膜を使用した。 用いたモジュールは、 内径 が 0. 7mm0、 外径が 1. 25 mm 0の P V D F製中空糸状膜を 1 800本束 ねて 3インチ径の PVC (ポリ塩化ビニル) ケ一シングに納めた外圧型モジュ一 ルであって、 膜面積が 7. Om2 、 モジュール濾過圧が 50 k P aの時の清澄水 流束は毎時 1. 8 m3 である。
濾過はクロスフ口一方式で、 上記原水 1を原水槽へ供給し、 ポンプで前記 PV D F製中空糸モジュールに、 モジュール入り圧を一定にして供給する定圧濾過を 行い、 膜濾過水量と循環水量が 1対 1になるように、 循環水量を調整した。
ポンプの出口とモジュールの間にェジヱクタ一方式のオゾン添加口が取り付け られており、 空気を原料としたオゾンを添加した。
運転条件は、 濾過を 1 0分行った後、 濾水による逆流洗浄を 1 5秒間行うとい う操作を繰り返し、 1 2時間毎に毎時 2 Nm3 の空気をモジュール下部から供給 してエア一バブリ ングを 1 20秒間行った。
ォゾン耐性膜を透過した濾水のォゾン濃度が所定の値になるように、 オゾン濃 度測定機 4からのォゾン発生機 5へのォゾン発生量制御信号の値を設定し、 上記 の膜濾過運転を 5 0時間行った。 50時間後の膜濾過流束を測定し、 同一膜濾過 圧力での清澄水流束の値で除した値を求め、 図 5の結果を得た。
濾水の分析を行った結果、 濾水オゾン量が 0. 05 mgZリ ツ トル以上の場合 は、 濁度が 0. 0 2度、 色度は 2度以下で、 大腸菌、 一般細菌は全く検出されな かった。 一方、 濾水オゾン量が 0. 05 mgZリ ツ トル未満の場合は、 濁度は 0. 02度で大腸菌、 一般細菌も検出されなかったが、 色度は 5〜 7度であった。 例 2 (本発明)
例 1において、 濾水のオゾン濃度が 0. 2 mg/リ ッ トルになるように運転を 行うとともに、 濾水を活性炭槽に通水した (図 2のフロー) 。 活性炭としてカル ゴン社製 F 4 00を用い、 EB CT (空塔接触時間) が 20分になるように設計 した。 水質分析を行った結果、 オゾン耐性膜の濾過水は、 濁度が 0. 02度、 色度は 2度以下、 (: 00が4〜5. 5 mgZリ ッ トルであった。 さらに活性炭通水後の 水質は、 濁度が 0. 02度、 色度は 1度以下、 C ODが 0· 3〜0. 8mg/リ ッ トノレであつた。 例 3 (本発明)
原水 1として、 濁度が 5〜1 1度、 色度が 1 8〜20度、 CODが 20〜 30 m gノリッ トル、 p H力、' 7. 2〜 7. 6、 水温が 23〜 25 °Cの下水二次処理水 を用い、 例 1と同様に、 図 1に示すように、 原水 1—オゾン処理 2→オゾン耐性 膜による膜濾過処理 3を順次実施した。 なお、 オゾン耐性膜を透過した濾水のォ ゾン濃度が 0. 2 5 m gZリ ツ トルになるように設定した。
濾水の水質は、 濁度が 0. 1度以下、 色度は 2度以下、 CODが 6〜8mgZ リ ッ トルであった。 さらに濾水の一部を採取して寒天培地及びクリブトスポリジ ゥムォ一シス卜の検出のための暫定的試験法で残存微生物類を検出したところ、 全くその生存は確認されなかった。
また、 濃縮水の一部を取り同様に試験したが、 危険な残存 ·生存微生物類の存 在は確認できず、 濃縮排水についても安全であることを確認した。 例 4 (本発明)
例 3と同様の原水、 オゾン耐性膜モジュールを用いて、 図 4の逆浸透膜処理を 行う水処理方法を行った。 すなわち、 原水 1→ρ Η調整 9→凝集剤添加 1 0—ォ ゾン処理 2 ォゾン耐性膜による膜濾過処理 3を順次実施し、 得られた濾水の一 部を脱オゾン処理 7を行つた後、 逆浸透膜による膜濾過処理 8を行った。
p H調整は、 原水をオゾン耐性膜による膜濾過装置内の原水タンク (図示され ていない) へ供給するラインの途中に、 スタティ ック ミキサーを設け、 ポンプを 用いて硫酸を加え、 p Hが 6. 2-6. 5になるように調整した。 さらにその後 段、 原水タンクとの間にさらにスタティ ック ミキサーを設け、 凝集剤として塩化 第二鉄 (F e C 1 3 ) を原水 1 リッ トルに対し 3 5 mgの割合で添加した後、 ォ ゾン処理を行った。 ォゾン耐性膜を透過した濾水のォゾン濃度をォゾン濃度測定機 4で検知し、 そ の値が 0. 05 m gノリッ トルになるようにォゾン発生機 5からのォゾン発生量 を、 CPUを介して自動的に増減させた。
オゾン耐性膜を透過した濾水の水質は、 濁度が 0. 1度以下、 色度は 1度以下、 C 0 Dが 4〜 6 m g Zリツ トルであつた。
脱オゾン処理は、 オゾン耐性膜の濾水にチォ硫酸ナトリウムを原水 1 リッ トル に対し 0. 1 5 mgの割合で添加し、 残留オゾンを分解した。
次いで、 この処理水の一部を逆浸透膜である芳香族ポリアミ ド系複合膜スパイ ラル型ナノフィルターに供給した。 この芳香族ポリアミ ド系複合膜スパイラル型 ナノフィルタ一は、 N a C 1阻止率が 65 %、 Mg C し 阻止率が 50 %、 蔗糖 阻止率が 99 %であった。
上記芳香族ポリァミ ド系複合膜スパイラル型ナノフィルターを 2段カスケード 型に配列し、 濾水回収率を 70 %とし、 40 k P aの濾過圧で 2ヶ月間運転した。 全期間に亘つて安定な運転が行われ、 5m3 Z日の濾過流量が得られた。 また、 TOC (全有機炭素) 除去率は全期間に亘つて 90〜97%と安定であり、 得ら れた処理水の水質は再利用出来る程の十分な水質であった。 例 5 (本発明)
例 1の原水を用いて濾過を定圧濾過の全量濾過方式で行った。 すなわち、 原水 槽へは濾水と同量の水量を供給し、 膜モジュール上部に気液分離装置を設けた。 オゾンの添加方法、 用いたオゾン耐性膜、 運転条件は例 1と同様である。
濾水のオゾン濃度が 0. 2 SmgZリツ トルになるように運転を行った結果、 50時間後の膜濾過流束を同一膜濾過圧力での清澄水流速の値で除した値は 79 %と、 クロスフ口一方式の場合と同様であった。 さらに濾水の水質もクロスフ口 一の場合と同様で、 全量濾過方式とクロスフロー濾過方式で差は認められなかつ た。 産業上の利用の可能性 本発明によれば、 オゾンを用いた水の膜濾過処理において、 原水の水質に変動 があっても高い濾過流束を維持しつつ、 一定の高水質を有する瀘水を安定して得 ることができる。
また、 本発明によれば、 オゾンを用いた水の膜濾過処理において、 濾水中の残 存オゾン量を低く保ち、 後段の水処理を効果的に行うことができる。
さらに、 本発明によれば、 コンパク 卜なシステムで高水質の処理液が得られ、 かつ有害な廃棄物を生じない水処理方法を実現することが出来る。
したがって、 本発明の方法によれば、 上水道や下水二次処理水の高度処理、 お よび、 工業用水または排水処理等において、 良好な水質を有する処理水を経済的 に、 かつ安定して供給することが出来る。

Claims

求の範囲
1 . 原水にオゾンを添加し、 オゾン耐性膜を用いて濾過する方法において、 ォゾ ン耐性膜を透過した濾水中に存在するオゾンの濃度を検知し、 そのオゾン濃度が 所定の値になるように原水に注入するオゾンの量を連続的に自動制御することを 特徴とする水処理方法。
2 . 請求項 1記載の水処理方法において、 濾水中に存在するオゾン濃度が 0 . 0 5 m g /リツ トル以上 1 . 0 m g /リツ トル以下の範囲の所定の値になるように、 原水に注入するオゾンの量を制御する方法。
3 . 請求項 1記載の水処理方法において、 濾水をさらに活性炭で処理する方法。
4 . 請求項 1記載の水処理方法において、 濾水をさらに逆浸透膜で濾過する方法。
5 . 請求項 4記載の水処理方法において、 濾水を逆浸透膜で処理するに先立ち、 濾水をバツキするか、 濾水を活性炭で処理するか、 あるいは濾水にチォ硫酸ナト リウムを添加して、 残存オゾンを除去する方法。
6 . 請求項 1記載の水処理方法において、 原水にさらに凝集剤を添加する方法。
7 . 請求項 6記載の水処理方法において、 凝集剤を添加する前、 凝集剤を添加し た後、 あるいは凝集剤を添加すると同時に、 原水の p Hを 2〜 8に調整する方法。
PCT/JP1998/004980 1997-05-08 1998-11-05 Procede de traitement de l'eau WO2000027756A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR10-2000-7007421A KR100384668B1 (ko) 1998-11-05 1998-11-05 수처리 방법
AU97616/98A AU737042B2 (en) 1998-11-05 1998-11-05 Water treatment process
US09/582,033 US6464877B1 (en) 1997-05-08 1998-11-05 Water treating method
DE69828821T DE69828821T2 (de) 1998-11-05 1998-11-05 Wasserbehandlungsverfahren
PCT/JP1998/004980 WO2000027756A1 (fr) 1998-11-05 1998-11-05 Procede de traitement de l'eau
EP98951694A EP1044928B1 (en) 1998-11-05 1998-11-05 Water treating method
CNB98812937XA CN1135206C (zh) 1998-11-05 1998-11-05 水处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/004980 WO2000027756A1 (fr) 1998-11-05 1998-11-05 Procede de traitement de l'eau

Publications (1)

Publication Number Publication Date
WO2000027756A1 true WO2000027756A1 (fr) 2000-05-18

Family

ID=14209331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004980 WO2000027756A1 (fr) 1997-05-08 1998-11-05 Procede de traitement de l'eau

Country Status (7)

Country Link
US (1) US6464877B1 (ja)
EP (1) EP1044928B1 (ja)
KR (1) KR100384668B1 (ja)
CN (1) CN1135206C (ja)
AU (1) AU737042B2 (ja)
DE (1) DE69828821T2 (ja)
WO (1) WO2000027756A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000288587A (ja) * 1999-03-31 2000-10-17 Nkk Corp し尿系汚水の処理方法および処理装置
KR100384668B1 (ko) * 1998-11-05 2003-05-22 아사히 가세이 가부시키가이샤 수처리 방법
JP2007289940A (ja) * 2006-03-29 2007-11-08 Toray Ind Inc 中空糸膜モジュールの洗浄方法
JP2009509737A (ja) * 2005-09-30 2009-03-12 オテヴェ・ソシエテ・アノニム 高速沈降ステップと、続く精密濾過膜または限外濾過膜による直接の濾過ステップを含む水処理方法、および対応する装置
AU2002354050B2 (en) * 2002-05-06 2009-10-29 Debasish Mukhopadhyay Method and apparatus for fluid treatment by reverse osmosis under acidic conditions
WO2013055659A1 (en) * 2011-10-11 2013-04-18 Carter International, Llc Produced water treatment process
CN111807557A (zh) * 2020-07-23 2020-10-23 上海城市水资源开发利用国家工程中心有限公司 一种同步去除污染物并控制三卤甲烷生成的深度处理***及工艺

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2422608A1 (en) * 2002-05-10 2003-11-10 Maurice Lacasse Transportable water treatment apparatus
US8080163B2 (en) * 2002-12-04 2011-12-20 Blue Water Technologies, Inc. Water treatment method
US7445721B2 (en) * 2003-12-03 2008-11-04 Idaho Research Foundation, Inc. Reactive filtration
AU2003299642A1 (en) 2002-12-04 2004-06-23 Idaho Research Foundation, Inc. Reactive filtration
US8071055B2 (en) 2002-12-04 2011-12-06 Blue Water Technologies, Inc. Water treatment techniques
US20040222165A1 (en) * 2003-05-08 2004-11-11 Kraft Foods Holdings, Inc. Flexible film packaging for use with ozone sterilization applications
DE10324136A1 (de) * 2003-05-26 2004-12-16 Bergische Universität Wuppertal Vorrichtung zur Behandlung von Abwässern, insbesondere enthaltend Küpenfarbstoffe, hierbei eingesetzte Filtrationsmembran sowie Verfahren zur Behandlung von Abwässern unter Verwendung dieser Vorrichtung
US20050279686A1 (en) * 2004-06-21 2005-12-22 Maxwell Hsu Multifunctional oxygenaged water generation system
AT501991B1 (de) * 2005-06-10 2007-04-15 Adler Herwig Dipl Ing Verfahren zur behandlung von abwasser aus der olivenölproduktion
FR2904572B1 (fr) * 2006-08-01 2008-10-24 Otv Sa Reacteur membranaire pour le traitement d'effluents liquides comprenant une membrane de diffusion d'un gaz oxydant et une membrane selective definissant entre elles un espace de reaction
CN101495414B (zh) 2006-08-01 2011-09-28 美得华水务株式会社 废水再利用方法
DE102006060592B3 (de) * 2006-12-21 2008-04-30 Chmiel, Horst, Prof. Dr.-Ing. Hybridprozess zur Meerwasserentsalzung
KR100737352B1 (ko) 2006-12-27 2007-07-09 케미코아 주식회사 목욕탕 배출수를 재활용하기 위한 장치 및 방법
GR20070100189A (el) * 2007-03-28 2008-10-13 Νικολαος Πηττας Αυτοματη διαταξη επεξεργασιας εκροων βιολογικων σταθμων λυματων με εκπληρωση των προδιαγραφων του ποσιμου νερου
US8999154B2 (en) 2007-08-02 2015-04-07 Ecosphere Technologies, Inc. Apparatus for treating Lake Okeechobee water
US8721898B2 (en) * 2007-08-02 2014-05-13 Ecosphere Technologies, Inc. Reactor tank
CA2607713C (en) 2007-11-14 2009-05-26 Dagua Inc. Water treatment apparatus
US7713426B2 (en) * 2008-01-11 2010-05-11 Blue Water Technologies, Inc. Water treatment
KR20100127234A (ko) * 2008-03-21 2010-12-03 메타워터 가부시키가이샤 재생수의 제조 방법
US8741154B2 (en) 2008-10-17 2014-06-03 Remembrance Newcombe Water denitrification
WO2010115233A1 (en) * 2009-04-07 2010-10-14 Dewatering Filtration Technology Services Pty Ltd Process and system for producing potable water
CN102471101A (zh) * 2009-08-21 2012-05-23 东丽株式会社 造水方法
SG185671A1 (en) 2010-05-21 2012-12-28 Adrian Brozell Self-assembled surfactant structures
DE102010041827A1 (de) * 2010-09-30 2012-04-05 Krones Aktiengesellschaft Verfahren und Produktionsanlage zum Herstellen von Sterilwasser
CN102001798B (zh) * 2010-12-24 2012-08-29 清华大学深圳研究生院 采用耐氧化膜对饮用水深度净化的方法及***
WO2013078464A1 (en) 2011-11-22 2013-05-30 Znano Llc Self-assembled surfactant structures
EP2882691A4 (en) * 2012-08-10 2016-02-10 Xylem Water Solutions Zelienople Llc METHOD AND DEVICE FOR MONITORING AND CONTROLLING OZONATION AND VENTED FILTRATION BY UV AND MEASURING A VISIBLE SPECTRUM AND AN OXIDATION REDUCTION POTENTIAL
US10005686B2 (en) * 2013-11-01 2018-06-26 1934612 Ontario Inc. Fluid treatment system
AT519319B1 (de) * 2016-11-14 2020-09-15 Va Tech Wabag Gmbh Aufbereitung von Abwasser zu Trinkwasser mittels Ozon
CN106698638A (zh) * 2017-01-09 2017-05-24 北京林业大学 一种用于臭氧催化氧化工艺的催化剂优化投加控制方法
KR102027900B1 (ko) * 2017-09-20 2019-11-04 한국지역난방공사 전오존 처리를 적용한 수처리 장치 및 공법
DE202017106774U1 (de) 2017-09-27 2018-10-01 BLüCHER GMBH Anlage für die Behandlung und/oder Aufreinigung von Wasser
KR101935863B1 (ko) * 2018-07-03 2019-01-07 한창기전 주식회사 오존수 농도 제어기를 구비한 오존수 발생 시스템
WO2020023993A1 (en) * 2018-08-01 2020-02-06 Membrane Systems Australia Pty Ltd System and process for removing polyfluorinated pollutants from water
DE102018119771B4 (de) * 2018-08-14 2021-11-11 Jürgen Matzat Filtervorrichtung zur Behandlung von Trinkwasser
CZ2020544A3 (cs) * 2020-10-06 2022-04-13 Envi-Pur, S.R.O. Způsob úpravy vody a zařízení k provádění tohoto způsobu

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230599A (ja) * 1985-07-31 1987-02-09 Mitsubishi Heavy Ind Ltd 純水製造装置の前処理方法
JPH07256253A (ja) * 1993-11-30 1995-10-09 Otv Omnium De Traitement & De Valorisation Sa 沈めた濾過膜で水を飲用可能にする装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230599A (ja) 1986-03-31 1987-10-09 富士重工業株式会社 荷物移送装置
FR2655642B1 (fr) * 1989-12-11 1992-02-28 Anjou Rech Installation de traitement des eaux par une boucle de filtration tangentielle.
JPH0790219B2 (ja) * 1990-08-01 1995-10-04 日本錬水株式会社 純水製造装置及び製造方法
JP2621699B2 (ja) 1991-07-19 1997-06-18 日立プラント建設株式会社 汚水の処理方法及び装置
JP3220216B2 (ja) * 1992-03-31 2001-10-22 旭化成株式会社 水処理方法
JPH06230599A (ja) * 1993-02-05 1994-08-19 Kao Corp 画像形成方法
US5547584A (en) * 1994-03-17 1996-08-20 Electronic Drilling Control, Inc. Transportable, self-contained water purification system and method
US5466367A (en) * 1994-04-06 1995-11-14 Environmental Restoration Services, Inc. Industrial waste water treatment
US5645727A (en) * 1994-05-06 1997-07-08 Illinois Water Treatment, Inc. On-line ozonation in ultra pure water membrane filtration
US5514284A (en) * 1994-05-12 1996-05-07 Wheelabrator Engineered Systems Inc. Method and apparatus for water treatment
JP3251145B2 (ja) 1995-03-23 2002-01-28 東北電力株式会社 膜分離装置及び酸化剤添加量の制御方法
US5711887A (en) * 1995-07-31 1998-01-27 Global Water Industries, Inc. Water purification system
WO1997010893A1 (fr) * 1995-09-21 1997-03-27 Asahi Kasei Kogyo Kabushiki Kaisha Module a membranes a fibres creuses
US5741416A (en) * 1996-10-15 1998-04-21 Tempest Environmental Systems, Inc. Water purification system having plural pairs of filters and an ozone contact chamber
KR100254136B1 (ko) * 1997-05-29 2000-04-15 허목 생물막여과 및 오존탈질법에 의한 육상수조직 해산어류 양식시설의 순환여과시스템
JPH11277081A (ja) 1998-03-31 1999-10-12 Kurita Water Ind Ltd 浄水処理装置
JP3449248B2 (ja) 1998-10-05 2003-09-22 Jfeエンジニアリング株式会社 水処理方法およびその装置
KR100296887B1 (ko) * 1998-10-09 2001-10-26 조현서 해산어육상축양장의수질개선방법및그장치
CN1135206C (zh) * 1998-11-05 2004-01-21 旭化成株式会社 水处理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230599A (ja) * 1985-07-31 1987-02-09 Mitsubishi Heavy Ind Ltd 純水製造装置の前処理方法
JPH07256253A (ja) * 1993-11-30 1995-10-09 Otv Omnium De Traitement & De Valorisation Sa 沈めた濾過膜で水を飲用可能にする装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100384668B1 (ko) * 1998-11-05 2003-05-22 아사히 가세이 가부시키가이샤 수처리 방법
JP2000288587A (ja) * 1999-03-31 2000-10-17 Nkk Corp し尿系汚水の処理方法および処理装置
AU2002354050B2 (en) * 2002-05-06 2009-10-29 Debasish Mukhopadhyay Method and apparatus for fluid treatment by reverse osmosis under acidic conditions
JP2009509737A (ja) * 2005-09-30 2009-03-12 オテヴェ・ソシエテ・アノニム 高速沈降ステップと、続く精密濾過膜または限外濾過膜による直接の濾過ステップを含む水処理方法、および対応する装置
JP2007289940A (ja) * 2006-03-29 2007-11-08 Toray Ind Inc 中空糸膜モジュールの洗浄方法
WO2013055659A1 (en) * 2011-10-11 2013-04-18 Carter International, Llc Produced water treatment process
CN111807557A (zh) * 2020-07-23 2020-10-23 上海城市水资源开发利用国家工程中心有限公司 一种同步去除污染物并控制三卤甲烷生成的深度处理***及工艺

Also Published As

Publication number Publication date
CN1284933A (zh) 2001-02-21
EP1044928A4 (en) 2001-01-24
KR20010033860A (ko) 2001-04-25
KR100384668B1 (ko) 2003-05-22
DE69828821D1 (de) 2005-03-03
DE69828821T2 (de) 2005-11-17
AU9761698A (en) 2000-05-29
EP1044928B1 (en) 2005-01-26
US6464877B1 (en) 2002-10-15
AU737042B2 (en) 2001-08-09
EP1044928A1 (en) 2000-10-18
CN1135206C (zh) 2004-01-21

Similar Documents

Publication Publication Date Title
WO2000027756A1 (fr) Procede de traitement de l'eau
EP1900417B1 (en) Method of bacteriostasis or disinfection for permselective membrane
CN105384316B (zh) 一种电子工业含氟含氨氮废水的处理方法
CN106132518B (zh) 使用膜的水处理方法以及水处理装置
JP2007245078A (ja) 水処理装置及び水処理方法
JP6194887B2 (ja) 淡水製造方法
JP2007244979A (ja) 水処理方法および水処理装置
Guo et al. Effect of ozone on the performance of a hybrid ceramic membrane-biological activated carbon process
WO2014007301A1 (ja) 造水方法および造水装置
JP2001191086A (ja) 水処理装置
JP5103747B2 (ja) 水処理装置及び水処理方法
JPH07275671A (ja) 外圧型中空糸限外濾過膜モジュールの運転方法
JP5055746B2 (ja) 膜利用による水循環使用システム
JPH11239789A (ja) 高度水処理方法
WO2000027510A1 (en) Method for filtration with membrane
JP3552580B2 (ja) し尿系汚水の処理方法および処理装置
JP2005177744A (ja) 再生水の製造装置および再生水の製造方法
JP3697938B2 (ja) 用排水処理装置
JP3565083B2 (ja) し尿系汚水の処理方法および処理装置
JPH11165192A (ja) 下水、排水の高度処理方法
JPH11277060A (ja) マンガン含有水処理装置
Cromphout et al. Design and operation of an ultrafiltration plant for the production of drinking water out of the river Scheldt
JP3449247B2 (ja) 水処理方法およびその装置
JP2005040661A (ja) 淡水またはかん水の処理方法および処理装置
JP2000000566A (ja) 高度な水処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98812937.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 97616/98

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1998951694

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09582033

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020007007421

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998951694

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007007421

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 97616/98

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1020007007421

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998951694

Country of ref document: EP