WO2000013347A1 - Commutateur optique - Google Patents

Commutateur optique Download PDF

Info

Publication number
WO2000013347A1
WO2000013347A1 PCT/JP1999/004682 JP9904682W WO0013347A1 WO 2000013347 A1 WO2000013347 A1 WO 2000013347A1 JP 9904682 W JP9904682 W JP 9904682W WO 0013347 A1 WO0013347 A1 WO 0013347A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
working
input
optical
output
Prior art date
Application number
PCT/JP1999/004682
Other languages
English (en)
French (fr)
Inventor
Aritomo Uemura
Hiroshi Ichibangase
Takashi Mizuochi
Tadayoshi Kitayama
Shu Yamamoto
Tetsuya Miyazaki
Takatomi Kabashima
Naoki Kobayashi
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Kdd Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha, Kdd Corporation filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to DE69942662T priority Critical patent/DE69942662D1/de
Priority to US09/530,448 priority patent/US6434288B1/en
Priority to EP99940561A priority patent/EP1028550B1/en
Publication of WO2000013347A1 publication Critical patent/WO2000013347A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0297Optical equipment protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0283WDM ring architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0289Optical multiplex section protection
    • H04J14/0291Shared protection at the optical multiplex section (1:1, n:m)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0293Optical channel protection
    • H04J14/0294Dedicated protection at the optical channel (1+1)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0024Construction using space switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0043Fault tolerance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/009Topology aspects
    • H04Q2011/0092Ring

Definitions

  • the present invention relates to an optical switching device for switching a route of a network in which a plurality of nodes are connected by a working route and a protection route by using an optical signal.
  • FIG. 1 is a rewrite of the figure shown on page 739 of B-9-10-2 "Basic Experiments on WDM 4 Fiber Ring" in the Proceedings of the 1997 IEICE General Conference.
  • FIG. 2 is a configuration diagram showing an optical switching device studied in the past, and FIG. 2 is a rewritten operation diagram showing a path switching operation when a failure occurs described in the above-mentioned paper.
  • reference numeral 101 denotes an acoustic optical filter having a function of separating an arbitrary wavelength component
  • 102 denotes a 4 ⁇ 4 light connecting four optical inputs to four output ports with arbitrary patterns.
  • a spatial switch 103 is a converging element that merges optical signals
  • 104 is an optical amplifier that amplifies wavelength multiplexed light collectively
  • 105 is a terminal device that transmits and receives optical signals
  • 106 is between nodes.
  • AST side spare I / O port hereinafter referred to as “PRT inZ out port”
  • 109 connects spare path between nodes This is the PRT in / out port on the west side to perform.
  • reference numerals 111 to 114 each denote a node corresponding to the optical switching device shown in FIG. 1, and 115 denotes an inner transmission line for transmitting optical signals in both directions. It is used as an active path connecting between the two.
  • Reference numeral 116 denotes an outer transmission line for transmitting optical signals in both directions, and is used as a backup route connecting nodes.
  • Reference numeral 117 denotes a 4 ⁇ 4 optical space switch inside the node
  • reference numeral 118 denotes an active terminal equipment connected to each node
  • reference numeral 119 denotes a protection terminal equipment.
  • the transmission lines 115, 116 connecting between the nodes 111 to 114 are wavelength-multiplexed, and the WRK in / of the optical switching device in FIG. Out ports 106 and 107 are connected to PRT inZ out ports 108 and 109.
  • the acousto-optic filter 101 supplies a drive signal to selectively separate only a specific wavelength signal and connects it to the optical space switch 102, while the other wavelength signals remain unchanged. Is transmitted. If no drive signal is given, optical signals of all wavelengths pass through the acoustic optical filter 101 as they are. In other words, the acousto-optic filter 101 is used as switching means for switching whether or not the corresponding wavelength is excluded from the transmission line by a drive signal (hereinafter, referred to as “Drop”).
  • Drop drive signal
  • the signal selectively output from each acousto-optic filter 101 is connected to an appropriate terminal device 105 by an optical space switch 102 and received.
  • Four terminal devices 105 are connected to each node, and are connected to the WRK In / out port and the PRT In / out port on the East side and the West side, respectively.
  • An optical signal input to this optical switching device via each terminal device 105 is coupled to an appropriate output port by an optical space switch 102. After being distributed to 103 and being combined with an optical signal of another wavelength transmitted through the acousto-optic filter 101, it is output as a wavelength multiplexed signal from each output port to an adjacent node.
  • the optical space switch 102 switches the communication of the active system to the converging element 103 in the same direction or the reverse direction in accordance with the failure pattern when a failure occurs in the transmission path.
  • the communication of the active system is rescued at the expense of the communication of the standby system.
  • An optical switching device having the above functions is provided at a node of a transmission line, and the transmission lines are connected in a ring to form a network.
  • communication can be performed using the working route and the protection route as shown in (1) of Fig. 2, and it is connected to nodes 111 and 113.
  • the active terminal equipment 1 18 is connected bidirectionally via the working path 1 15, and the terminal equipment 1 19 connected to the nodes 113 and 114 is connected to each other. They are connected in both directions via the backup route 1 16.
  • the node 1 Switch the input / output port for transmission and reception by the optical space switch 1 17 of 1 1 and node 1 13 to the spare path side in the opposite direction, and divert the signal to the transmission line 1 16 that goes around the network in reverse. Prevent disconnection of the working route. At this time, the communication connected between the nodes 113 and 114 using the transmission line 116 when there is no failure is disconnected in order to prevent the transmission path of the working path from being disconnected.
  • FIG. 3 shows the diagram shown on page 384 of "Proposal of Node Configuration in OADM Ring System" in the collection of papers published at the IEICE Communications Society Conference, 1997
  • FIG. 9 is a configuration diagram showing another optical switching device which has been rewritten and studied conventionally.
  • reference numeral 122 denotes an optical switching device for accommodating the working signal and switching the optical signal path to a transmission line on the side where no failure has occurred in the event of a transmission line failure.
  • An optical switching device for backup which is used as a substitute when a part of the device 122 fails, ⁇ (1) to ⁇ ( ⁇ + 1) are optical signals of different wavelengths, and 127 to 12
  • Reference numeral 8 denotes a terminal station connected to the optical switching devices 122 and 122 for transmitting and receiving optical signals ⁇ (1) to ⁇ ( ⁇ + 1) having different wavelengths, respectively.
  • Wavelength demultiplexing means for input to the optical switching device 131 is an intra-office interface for inputting a signal to be transmitted to the transmission line, and 132 is an intra-office interface for outputting a signal received from the transmission line.
  • n electric switch means for replacing a transmission / reception signal with a device corresponding to the wavelength to a device corresponding to the (n + 1) th wavelength for backup and recovering from a failure.
  • reference numeral 24 denotes a transmission unit provided in each optical switching device 121
  • reference numeral 23 denotes a reception unit provided in each optical switching device 121
  • reference numeral 11 denotes a working system provided in each transmission unit 24.
  • Transmission light branching means 22 is a working reception light selecting means provided in each receiving section 23.
  • This conventional example is premised on application to a ring-shaped network using a bidirectional transmission line, and the bidirectional transmission line has a configuration in which individual communication can be performed for each wavelength by wavelength multiplexing technology.
  • the communication path of the optical signal of each wavelength is composed of the terminal equipment 127 to 128, the optical switching equipment 121, 122, and the wavelength multiplexing means 123, 124, and the wavelength demultiplexer.
  • the connection is made to the transmission line by means 125 and 126.
  • n intra-station interfaces 13 1 and 13 2 for inputting and outputting optical signals to be transmitted and received n + 1 wavelengths are provided. It has a 1: n configuration with spare channels.
  • n electrical switch means 1 129, 130 Perform failure recovery for equipment failure.
  • the failure When a failure occurs in the transmission line, the failure is recovered by switching the optical switching devices 121 and 122. In the transmission section of the optical switching devices 12 1 and 12 2 of each wavelength, the transmission signal is split into two by the active transmission light splitting means 11 and sent out to both of the two transmission paths.
  • the receiving unit selects one of the optical signals input from the two receiving paths by the active system receiving light selecting means 22. Configuration. If a failure occurs on one of the transmission lines, the working reception light selection means 22 selects a normal reception path and recovers from the transmission line failure.
  • the conventional example of the paper B-1 0-2 30 shown in Figs. 1 and 2 shows that when no fault occurs in the network.
  • waveguides As the 4X4 optical space switches 102 and 117, these are used in terms of characteristics such as extinction ratio and loss, reliability, and power consumption. There was a problem that it did not reach the practical level.
  • each terminal device 105, 118, 119 since all the transmission and reception signals connected to each terminal device 105, 118, 119 are connected to one optical space switch 102, 117, If the 4 ⁇ 4 optical space switch 102, 117 of a certain node fails and needs to be replaced, each terminal device 105, 118, 119 connected to that node is required. There was a problem in that all communications via the service were disconnected during maintenance work.
  • the optical switching device Output signals from the devices 121 and 122 are split into two transmission paths, and the same signal is sent out on two paths. For this reason, the same signal is always transmitted on two paths on the network, and there is a problem that the use efficiency of the transmission path is limited to 1Z2.
  • the present invention has been made to solve the above-described problems. By reducing the number of necessary optical space switches, the mounting size can be reduced while maintaining the characteristics and reliability of the optical space switches. It is an object of the present invention to provide an optical switching device with high transmission line utilization efficiency without disconnecting all communication even when a switch failure occurs and maintenance work such as component replacement is required. Disclosure of the invention
  • An optical switching device receives an optical signal input from a working system input port and a protection system input port, and outputs the two inputs as two output signals in a spatially switched or through state.
  • One of the two output signals is a receiving light switching means connected to the working drop port, and a standby system which turns on and off the other output signal of the receiving light switching means and outputs the signal to the spare drop port.
  • a receiving unit having receiving optical gate means is provided.
  • the transmitting unit is provided with the active transmitting light branching unit and the standby transmitting light selecting unit
  • the receiving unit is provided with the receiving light switching unit and the standby receiving optical gate unit.
  • the system receiving optical gate means can be used even if a failure occurs in the working path and a failure switch is performed when a signal different from that of the working system such as extra traffic is flowing through the protection path without failure.
  • the optical signal output to the standby drop port can be cut off so that the signal of the active system is not connected to the standby drop port by mistake, causing a problem. You. For this reason, when there is no failure, the entire transmission capacity of the working path and the protection path can be used for communication, and the efficiency of using the transmission path can be improved.
  • the switch configuration of the receiving unit can be configured with one 2 ⁇ 2 optical space switch and one optical gate switch, which has the effect of reducing the mounting scale. Since the number of switches is small, even a mechanical optical switch that is useful in characteristics and functions can be mounted in a sufficiently realistic size.
  • the transmission unit configuration it is possible to physically separate the optical component through which the working system signal passes and the optical component through which the standby system signal passes, which has the advantage of improving reliability in terms of equipment maintenance. is there.
  • the switch configuration of the transmission unit can be configured with one power bracket and one IX2 optical space switch, which has the effect of reducing the mounting scale. Since the number of switches is small, there is an effect that a mechanical optical switch that is useful in characteristics and functions can be mounted in a sufficiently realistic size.
  • An optical switching device receives an optical signal input from a standby input port, spatially switches the input path to two outputs, and outputs one of the two outputs.
  • the standby receiving light switching means connected to the standby drop port, the other output of the standby receiving light switching means and the optical signal input from the working input port are used as inputs, and one of these two inputs is selected.
  • an active system receiving light selecting means for outputting to the active system drop port.
  • the receiving unit is configured to provide the standby system receiving light switching unit and the working system receiving light selecting unit
  • the working system receiving light selecting unit generates a failure in the working receiving path
  • the standby receiving optical switching means is used when the failure is switched. Do not output optical signal to For this reason, when there is no failure, the entire transmission capacity of the working path and the protection path can be used for communication, and the use efficiency of the transmission path can be improved.
  • the board on which the optical switch is mounted can be divided and mounted on the working path and the backup path.
  • the switch configuration of the receiving unit can be composed of two 1 ⁇ 2 optical space switches, which has the effect of reducing the mounting scale. Since the number of switches is small, even a mechanical optical switch that is useful in terms of characteristics and functions can be mounted with a sufficiently realistic size.
  • the switch configuration of the transmission unit can be configured with one power switch and one 1X2 optical space switch, which has the effect of reducing the mounting scale. Since the number of switches is small, there is an effect that a mechanical optical switch that is useful in characteristics and functions can be mounted in a sufficiently realistic size.
  • the optical switching device includes: a standby receiving optical branching unit that splits the optical signal input from the standby input port into two outputs; and one of two outputs of the standby receiving optical branching unit. And the optical signal input from the working system input port, and selects one of the two inputs and outputs the selected signal to the working system drop port. Standby system output that turns on / off the other output and outputs to the standby system drop port And a receiving section having communication gate means.
  • the standby receiving light gate means is provided with the active receiving path.
  • the input optical signal is cut off and no optical signal is output to the standby drop port. Therefore, when there is no failure, the entire transmission capacity of the working path and the protection path can be used for communication, and the use efficiency of the transmission path can be improved.
  • the board on which the optical switch is mounted can be divided and mounted on the working path and the backup path.
  • the switch configuration of the receiving unit can be configured with one power bracket, one 1X2 optical space switch, and one optical gate switch, which has the effect of reducing the mounting scale. Since the number of switches is small, even a mechanical optical switch that is useful in terms of characteristics and functions can be mounted in a sufficiently realistic size.
  • the transmission unit configuration can physically separate the optical component through which the working system signal passes and the optical component through which the standby system signal passes, thereby improving reliability in terms of equipment maintenance. There is.
  • the switch configuration of the transmission unit can be configured with one power bracket and one 1X2 optical space switch, which has the effect of reducing the mounting scale. Since the number of switches is small, there is an effect that a mechanical optical switch that is useful in characteristics and functions can be mounted in a sufficiently realistic size.
  • An optical switching device comprises a working system input port and a working system.
  • Two-input two-output working-system add / drop switching means for passing through or switching the optical signal input to each of the input ports and outputting them to the transmission unit and reception unit of the optical switching device, respectively, and the standby input port and standby system It is provided with a two-input, two-output backup add / drop switching means for switching an optical signal input to each of the add ports or switching the optical signal to each of a transmitting unit and a receiving unit of the optical switching device.
  • the head Z-drop switching means is configured by two 2 ⁇ 2 optical switches. Drop switching can be easily realized, and an optical switching device applied to a ring network can be configured with a small number of unit optical switches, which has the effect of reducing the mounting size.
  • the entire transmission capacity of the working path and the protection path can be used, so that the transmission path utilization efficiency can be improved.
  • optical switching device it is possible to connect bidirectionally between arbitrary nodes in a ring network in which a plurality of nodes are connected, thereby improving the flexibility of the network.
  • the optical switching device according to the present invention is provided for each group, one by one.
  • the input and output optical signals of the working system input / output port and the protection system input / output port are switched or input / output through.
  • Span switching means for switching between the working route and the protection route within the same section, one set of protection system add port, one set of working system input port, one set of working system drop port and one set of protection system A first ring switching means for switching the input / output signal of the system drop port or connecting through to one set of span switching means; and Of the working system Atsu Dopoto, the other set of backup system Atsu Dopo Switching the input / output signals of the other system's active port and the other group's standby port, or connecting the second ring to the other group's span switching means through Means.
  • the ring switching means since the span switching means and the first and second ring switching means are provided for each of the two sets, the ring switching means includes a current path and a backup path in a section of the ring network.
  • a spare path around the ring can be constructed.
  • the span switching means can cause only the active route in a certain section to be in a failure state and, when the spare route is normal, route a signal to the spare route in the same section.
  • both the ring switching means and the span switching means are constituted by optical space switches, the number of optical switches required is small, and there is an advantage that mounting can be reduced in size.
  • FIG. 1 is a configuration diagram showing an example of a conventional optical switching device.
  • FIG. 2 is an operation diagram showing a path switching operation when a failure occurs in a conventional optical switching device.
  • FIG. 3 is a configuration diagram showing another example of the conventional optical switching device.
  • FIG. 4 is a configuration diagram showing an optical switching device according to Embodiment 1 of the present invention.
  • FIG. 5 shows an optical switching device according to Embodiment 2 of the present invention. It is a block diagram.
  • FIG. 6 is a configuration diagram showing an optical switching device according to Embodiment 3 of the present invention.
  • FIG. 7 is a configuration diagram showing an optical switching device according to Embodiment 4 of the present invention.
  • FIG. 8 is a diagram showing an example of a connection form of a ring network formed using the optical switching device according to the fourth embodiment.
  • FIG. 9 is a diagram illustrating an example of a switching pattern when a failure occurs in an active transmission path of a ring network formed using the optical switching device according to the fourth embodiment.
  • FIG. 10 is a diagram showing an example of a switching pattern when a failure occurs in an active reception path of a ring network formed using the optical switching device according to the fourth embodiment.
  • FIG. 11 is a configuration diagram showing an optical switching device according to Embodiment 5 of the present invention.
  • FIG. 12 is a diagram showing an example of a switching state at the time of ring switching in a ring network using the optical switching device according to the fifth embodiment.
  • FIG. 4 is a configuration diagram showing an optical switching device according to Embodiment 1 of the present invention.
  • 1 is a working input port (hereinafter referred to as “WRK in port”) of the optical switching device of the first embodiment
  • 2 is a working output port (hereinafter referred to as “WRK out port”).
  • 3 is a standby input port (hereinafter referred to as “PRT in port”)
  • 4 is a protection system output port (hereinafter referred to as “PRT out port”)
  • 5 is a working system input port (hereinafter, “PRT out port”) for inserting or transmitting a signal to a transmission line via an optical switching device 18.
  • An “Add (WRK) port”) 6 is an active drop port (hereinafter, “Drop (WRK) port” for removing or receiving a signal from the transmission line via the optical switching device 18. ), 7 is a standby add port (hereinafter, referred to as “Add (PRT) port”), and 8 is a standby drop port (hereinafter, “Drop (PRT) port”) To do).
  • Drop (WRK) port 6 is an active drop port (hereinafter, “Drop (WRK) port” for removing or receiving a signal from the transmission line via the optical switching device 18. )
  • 7 is a standby add port (hereinafter, referred to as “Add (PRT) port”)
  • 8 is a standby drop port (hereinafter, “Drop (PRT) port”) To do).
  • Reference numerals 18 and 26 denote the optical switching devices according to the first embodiment.
  • Reference numeral 24 denotes an input optical signal of the Add (WRK) port 5 to the WRK out port 2 and an Add (PRT) port 7 when no failure occurs.
  • the input optical signal is output to PRT out port 4, and when a failure occurs on the working path of the transmitting side that outputs the optical signal from WRK out port 2, the ADDR (WRK) port 5
  • the transmitter has the function of transmitting the input optical signal to both the WRK out port 2 and the PRT out port 4.23 is an input optical signal of WRK in port 1 to Drop (WR K) port 6 and PRT
  • the input optical signal of port 3 is output to the Drop (PRT) port 8 and WR K in PRT in when a failure occurs in the working path of the receiving side that transmits the optical signal to port 1 This is a receiver that outputs the input signal of port 3 to Drop (WRK) port 6.
  • 9 is a received light that spatially switches optical signals input from WR K in port 1 and PRT in port 3 and outputs one output light to Dr 0 p (WR K) port 6.
  • a switching means 10 is disposed between the other output light of the reception light switching means 9 and the Drop (PRT) port 8, and is a standby reception light gate means for switching light transmission or non-transmission.
  • the switching unit 9 and the standby receiving optical gate unit 10 are provided in the receiving unit 23.
  • 11 is a working transmission optical branching means that branches the optical signal input to the Add (WR K) port 5 into two and outputs one of them to the WR K out port 2, and 12 is a working transmission light.
  • Standby transmission light selection means for selecting one of the other output light of the optical branching means 1 and the optical signal input from the Add (PRT) port 7 and outputting it to the PRT out port 4.
  • the system transmission light branching unit 11 and the standby system transmission light selection unit 12 are provided in the transmission unit 24.
  • 13 and 19 are working terminal devices that communicate via the working route when the transmission path is free from failure
  • 14 and 20 are spare terminal devices that also communicate via the protection route
  • 1 5 is a working reception path connecting the WR K in port 1 of the optical switching device 18 to the WR K out port of the optical switching device
  • 16 is the PRT out port 4 of the optical switching device 18 and the optical switching device
  • a spare transmission path connecting the PRT in port of 26 a spare transmission path connecting the PRT in port 3 of the optical switching device 18 to the PRT out port of the optical switching device
  • an optical switching device 25 This is a working transmission path connecting the WRK out port 2 of the switching device 18 and the WRK in port of the optical switching device 26.
  • two opposing optical switching devices 18 and 26 are connected via a working transmission path 25 and a working reception path 15 and a protection transmission path 16 and a protection reception path 17.
  • Each of the optical switching devices 18 and 26 is connected to working terminal devices 13 and 19 and protection terminal devices 14 and 20.
  • the optical signal output from the working terminal device 13 is input to the optical switching device 18 from the Add (WRK) port 5, and the working transmission optical branching means 11 and WR It reaches the working terminal device 19 via the K out port 2, the working transmission path 25, and the optical switching device 26.
  • the working optical signal output from the working terminal equipment 19 is transmitted to the optical switching apparatus 26, the working reception path 15, and the reception light switching means of the optical switching apparatus 18 via the WRK in port 1. It is incident on 9.
  • the receiving light switching means 9 is used to switch the receiving path by setting the internal optical transmission path to a cross state when a failure occurs in the working receiving path 15, but is in a through state when there is no failure.
  • the signal from WRK in port 1 reaches working terminal device 13 via Drop (WRK) port 6, and a bidirectional communication path is established between working terminal devices 13 and 19. You.
  • the optical signal input from the standby terminal device 14 to the optical switching device 18 is transmitted to the standby transmission light selecting means 12 set to the through state, the PRT out port 4, the standby transmission path 16 and the optical switching.
  • the terminal device 20 reaches the standby terminal device 20 via the device 26.
  • the optical signal transmitted from the standby terminal device 20 is input to the PRT in port 3 via the optical switching device 26 and the standby reception path 17 and is transmitted from the through-connection reception optical switching unit 9 to the standby system.
  • the optical switching devices 18 and 26 are switched to detour the communication using the working path to the protection path side and rescue the communication.
  • the transmission optical signal is branched into two in the optical switching apparatus 26, and is sent out to both the working reception path 15 and the standby reception path 17. At this time, the transmission signal from standby terminal device 20 is discarded.
  • the signal from the protection reception path 17 is connected to the working terminal apparatus 13. Switch the switching means 9 to the cross state to recover from the failure.
  • the optical signal from the active reception path 15 is switched to the non-transparent protection reception light gate means 10 and the protection reception light gate means 10 gate function. Discarded by This is because the standby terminal device 14 that had received the optical signal from the standby terminal device 20 at the time of no failure has been switched from the active terminal device 19 with the restoration of the failure in the active reception path 15. This is to prevent receiving an optical signal.
  • This gate function is indispensable to avoid erroneous connection, especially when there is no communication between the active terminal devices 13 and 19 and the standby terminal devices 14 and 20 when there is no failure. Becomes Next, consider a case where a failure has occurred in the active transmission path 25 connected to the WRK out port 2.
  • the transmission unit 24 of the optical switching device 18 sets the protection system transmission light selection means 12 to the through state when there is no failure, and the protection terminal device input from the Add (PRT) port 7 to the PRT oUt port 4 Although the transmission signal of (14) is output to the protection transmission path (16), if a failure occurs in the working transmission path (25), the protection of the protection terminal equipment (1) is required to rescue the communication of the working terminal equipment (13). Discard the transmission signal of 4.
  • the protection transmission light selecting means 12 By setting the protection transmission light selecting means 12 to the cross state, the transmission signal of the working terminal device 13 branched by the working transmission light branching means 11 is transmitted to the WR K out port 2 and the PRT out port. Transmit to both of the 4th (bridge operation).
  • the optical signal passing through the protection transmission path 16 is selected in the optical switching device 26, and the working terminal equipment is selected. By being connected to 19, the communication between the working terminal devices 13 and 19 due to the failure of the working transmission path 25 is restored.
  • the number of optical spatial switches required in the first embodiment is such that one 1 ⁇ 2 optical spatial switch (standby transmission light selecting means 12) is provided in the transmitting section 24 and 2 ⁇ 2 optical switches are provided in the receiving section 23. There is only one space switch (reception light switching means 9) and one light gate switch (stand-by reception light gate means 10), so that the mounting size can be reduced.
  • FIG. 5 is a configuration diagram showing an optical switching device according to Embodiment 2 of the present invention.
  • the same components as those of the embodiments described earlier are assigned the same reference numerals, and descriptions thereof will be omitted.
  • reference numeral 21 denotes a standby receiving light switching means for spatially switching an optical signal input from a PRT in port 3 and outputting one output light to a Drop (PRT) port 8
  • 2 2 are the other of the standby receiving light switching means 2 1
  • Active reception light selection means that selects one of the output light and the optical signal input from WR K in port 1 and outputs it to Drop (WR K) port 6.
  • 23a is a receiving section comprising the standby system receiving light switching means 21 and the active system receiving light selecting means 22, and 18a is the transmitting section 24, receiving section 23a, WR K in port l. , WRK out port 2, PRT in port 3, PRT out port 4, Add (WRK) port 5, Drop (WRK) port 6, Add (PRT) port 7, and Drop
  • the optical switching device includes a (PRT) port 8.
  • the optical switching device 18a uses the entire transmission capacity of the working transmission path 25, the working reception path 15 and the protection transmission path 16 and the protection reception path 17 for communication when no failure occurs.
  • the switching function is exactly the same as that of the optical switching device of the first embodiment, including the functions that can be performed and the function of shutting off the light so that erroneous connection does not occur in the standby terminal device 14 during failure switching. Only the configuration of is different.
  • the receiving section 23a is composed of two 2X1 optical space switches (standby receiving light switching means 21 and working receiving light selecting means 22). First, when there is no failure, both the protection system reception light switching means 21 and the working system reception light selection means 22 are in a single connection state, and are connected between WRK in port l ZDrop (WR K) port 6 and PRT in port. 3 ZDrop (PRT) Port 8 is connected.
  • both the protection reception light switching means 21 and the working reception light selection means 22 become cross-connected, and the PRT in port 3 and the Drop (WRK) port 6 Is connected.
  • the optical signal input from the WR K in port 1 is not output from the active system receiving light selection means 22 and is sent to the Drop (PRT) port 8 to which the standby terminal device 14 is connected. Does not output an optical signal. In this way, when a failure occurs in the working reception path 15, it is possible to prevent a signal from the working terminal station 19 from being connected to the protection terminal station 14, and to avoid erroneous connection.
  • the transmission of all of the working transmission path 25, the working reception path 15 and the protection transmission path 16 and the protection reception path 17 is performed.
  • the capacity can be used for communication, and if a failure occurs in the path through which the working signal passes, the protection system communication flowing through the protection transmission path 16 and the protection reception path 17 is discarded and the protection system is discarded. By bypassing this communication to the spare transmission path 16 and the spare reception path 17, the effect of rescuing the active communication can be obtained.
  • the required number of optical space switches is one 1 ⁇ 2 optical space switch in the transmitter (standby transmission light selection means 12), and two 1 ⁇ 2 optical space switches in the receiver (backup).
  • the system receiving light switching means 21 and the working system receiving light selecting means 22) are less effective, and the effect that the mounting size can be reduced can be obtained.
  • each signal path at the time of no failure can be mounted on a separate board, and it is possible to prevent all services from being shut down during maintenance such as board replacement. Assuming that the standby system receive light switching means 2
  • FIG. 6 is a configuration diagram showing an optical switching device according to Embodiment 3 of the present invention.
  • 31 is a standby receiving optical branching means for splitting the optical signal input from the PRT Tin port 3 into two
  • 32 is a standby receiving optical splitting means.
  • the active system receiving light selecting means 22 selects one of the other output light of the standby system receiving light branching means 31 and the optical signal input from the WRK in port 1. Drop (WRK) This is arranged to output to port 6.
  • 23 b is a receiving section composed of the standby receiving light branching means 31, the standby receiving light gate means 32, and the active receiving light selecting means 22, and 18 b is the transmitting section 24, Part 2 3b, WRK in port 1, WRK out port 2, PRT in port 3, PRT out port 4, Add (WRK) port 5, Drop (WRK) port 6, Add (PRT)
  • the optical switching device according to the third embodiment includes a port 7 and a drop (PRT) port 8.
  • the optical switching device 18b of the third embodiment uses the entire transmission capacity of the working transmission path 25, the working reception path 15, the protection transmission path 16 and the protection reception path 17 for communication when there is no failure.
  • the switching function is exactly the same as that of the optical switching devices of Embodiments 1 and 2, including the function that can be performed and the function of shutting off the light so as to prevent erroneous connection at the standby terminal device 14 during failure switching. Only the configuration of 3 is different.
  • the optical signal input to PRT in port 3 from the standby reception path 17 is It is split by the standby receiving light splitting means 31.
  • the active-system receiving light selection means 2 2 can select one of the optical signals from WRK in port 1 or PRT in port 3 and output it to Drop (WRK) port 6;
  • the optical signal from either the working reception path 15 or the protection reception path 17 can be connected to the device 13.
  • all transmission capacities of the working transmission path 25, the working reception path 15, the protection transmission path 16, and the protection reception path 17 in the failure-free state. Can be used for communication, and if a failure occurs in the path through which the working signal passes, the protection system communication flowing through the protection transmission path 16 and protection reception path 17 is discarded and the protection system path is discarded.
  • the number of optical switches required is one 1 ⁇ 2 optical space switch in the transmitting section 24 (standby transmission light selecting means 12), and 1 ⁇ 2 optical spatial switch in the receiving section 23 b.
  • One (the active receiving light selection means 22) and one optical gate switch (the standby receiving optical gate means 32) are small, so that the effect that the mounting size can be reduced can be obtained.
  • FIG. 7 is a configuration diagram showing an optical switching device according to Embodiment 4 of the present invention.
  • reference numeral 41 denotes a 2 ⁇ 2 active system A / D drop switching means.
  • the two inputs on the input side are connected to the WRK in port 1 and the Add (WRK) port 5, respectively, and the output side.
  • the two inputs are connected to the active system receiving light selection means 22 and the active system transmitting light branching means 11, respectively.By taking a through or cross state, the input 2 input is connected to the output 2 input through or switching. I do.
  • 4 2 is a 2 x 2 standby system Add / Drop switching means, two inputs on the input side are connected to PRT in port 3 and Add (PRT) port 7, respectively, and two inputs on the output side are spare It is connected to the system reception light branching means 31 and the protection system transmission light selection means 12 respectively, and takes the through or cross state to connect the input 2 input to the output 2 input either through or switching.
  • Embodiments 1, 2, and 3 switching of the transmission path between two opposing optical switching devices has been described. However, the switching of the transmission line between the two opposing optical switching devices is the same as in the conventional example shown in FIGS.
  • an Add / Drop ring network two or more devices are connected in a ring, and signals are inserted or transmitted into the network transmission path (hereinafter this operation is referred to as “Add”) or A device that does not remove or receive (drop) the signal from the transmission path is placed in a pass-through state in which the optical signal is transmitted as it is, so that communication between any two optical switching devices that perform Add / Drop You have set a route.
  • Add the network transmission path
  • Drop the present invention is applied to an Add ZDrop ring network.
  • WR K in port 1 and WRK out port 2 PRT in port 3 and PRT out port 4 are interconnected, and WRK in port 1 is connected to Drop (WR K) port 6 and A dd (WR K) port 5 to WR K out port 2, PRT in port 3 to Drop (PRT) port 8, A dd (PRT) port 7 to PRT out port 4 A pass-through state without connection is realized.
  • Fig. 8 shows an example of a ring network connection configuration.
  • reference numerals 51 to 54 denote working terminal devices
  • 55 denotes a bidirectional working path which is a working transmission / reception path
  • 56 denotes a bidirectional protection path which is a protection transmission / reception path.
  • the Add / Drop ring network is composed of four optical switching devices 18c. Bidirectional communication is performed between the working terminal device 51 and the working terminal device 52 via the working path 55.
  • the optical switching device 18c accommodating the working terminal devices 51 and 52 involved in the communication is in an Add / Drop state where signals are transmitted / received to / from the working route 55, and is involved in the communication.
  • the optical switching device 18c accommodating the other working terminal devices 5 3 and 5 4 that are not connected is a pass-through state in which the working routes in both directions and the protection route 56 are connected, and the Add Z Drop connection is not performed. It is.
  • the two optical switching devices 18c in the Add Z Drop state perform failure switching. Implement and switch the communication route to the backup route 56 to rescue communication. At this time, the optical switching device 18c accommodating the working terminal devices 53 and 54 not involved in the communication continues in the pass-through state.
  • the switching of the optical switching device 18 c between the pass-through state and the Add ZDrop state is performed by using the active AdZDrop state in FIG.
  • the switching is performed by the switching unit 41 and the standby system Add ZDrop switching unit 42.
  • the active Add / Dr0 switching means 41 and the standby Add / Drop switching means 42 are in the cross state, the light input to WR K in port 1 and PRT in port 3 It passes through the Add ZDrop switching means 41 and 42 and is input to the transmission unit 24.
  • the standby transmission light selection means 12 is in the through state, each input signal is output to WRK out port 2 and PRT out port 4, and WRK in port 1, WRK out port 2, and PRT in port.
  • Port 3 and the PRT out port 4 are connected to each other, and the optical switching device 18c enters a pass-through state.
  • each of the Add / D Rop switching means 41 and 42 is set to the through state.
  • the switching of the active system A dd / ⁇ r ⁇ ⁇ switching means 4 1 enables switching of the A dd ZD ro state and the Z pass-through state of the working system signal, and the switching of the standby system A dd / Drop switching means 42 switches the standby system.
  • a d ⁇ / ⁇ rop state of signal Z state can be switched.
  • Fig. 9 shows an example of a switching pattern when a failure occurs on the active transmission path 25
  • Fig. 10 shows an example of a switching pattern when a failure occurs on the reverse active reception path 15.
  • different operations of the switching patterns can be realized by switching between the protection system transmission light selection means 12 and the working system reception light selection means 22.
  • the optical signal is received by the working terminal apparatus 13 via the protection reception path 17.
  • the incoming optical signal is received from the PRT in port 3, and the spare A dd Z drop switching means 42, the standby receiving light splitting means 31 1, the working receiving light selecting means 22 2, Drop (WR T) It is received by the working terminal equipment 13 via port 6.
  • the working terminal device 13 sends an Add (WRK) port 5, a working Add / Drop switching unit 41, a working transmission optical branching unit 11, and a WR K out port. 2 to the active transmission path 2 5 or from the protection terminal device 14 to the Add (PRT) port 7, protection A dd ZDrop switching means 4 2, protection transmission light selection means 1 2, sent out to the spare transmission path 16 via PRT out port 4.
  • the receiving section 23 b of the third embodiment is used as the configuration of the receiving section.
  • the configuration of the receiving section 23 3 or 23 b according to the first or second embodiment is used.
  • a similar operation can be realized.
  • the optical switching device 18c can be configured by adding the dd ZDrop switching means 41 and the standby A dd ZD Iop switching means 42), and the number of unit switches is smaller than that of the conventional example 1 and mounting is possible. The effect that the size can be reduced can also be obtained.
  • the working Add / Drop switching means 41 and the protection Add / Drop switching means 42 added to add the Add ZDrop function are divided into the working system and the protection system. It is composed of individual optical space switches corresponding to each other, and can be mounted on separate boards for the active system and the standby system. For this reason, even if a failure occurs in one of the Add / Drop switches and maintenance that requires removal of the board is required, it is not necessary to remove the optical space switch that supports the other path, and the failure occurs. This also has the effect of avoiding service disruption in a non-system.
  • Embodiment 5 Embodiment 5.
  • FIG. 11 is a configuration diagram showing an optical switching device according to Embodiment 5 of the present invention.
  • 18 d is an optical switching device according to the fifth embodiment
  • 81 is a span switching means for switching between a working route and a protection route in the same section of the West-side transmission line
  • 82 is a span on the East side.
  • Switching means, 83 and 84 are ring switching means (first and second ring switching means) for switching the section of the transmission line itself
  • 85 and 86 are working terminal devices
  • 87 is the West side PRT in.
  • 88 is West side WRK in / out port
  • 89 is East side PRT in / out port
  • 90 is East side WRK in / out port
  • 91 is West side Add / Drop (PRT) port (Add (PRT) port, Drop (PRT) port)
  • 92 is West side Add ZDrop ( WR K) port (Add (WRK) port, Drop (WRK) port)
  • 93 is East side Add ZDrop
  • PT add (PRT) port, Drop (PRT) port
  • 94 East side Add ZDrop (WRK) port (Add (WRK) port, Drop (WRK) port)
  • 95 is a working route
  • 96 is a backup route.
  • the working terminal device 85 connected to the West-side Add ZDrop (WRK) port 92 of the optical switching device 18 d and the working terminal device 86 are connected to each other.
  • the ring switching means 83, the west-side span switching means 81 and the working path 95 are bidirectionally connected via the working terminal equipment 85 and the optical switching apparatus 18d connected to the working equipment 18d and the working If a failure occurs on the working route 95 between the optical switching devices 18 d connected to the terminal device 86, if the spare route 96 in the same section is normal, the operation is executed by the span switching means 81.
  • Span switching is performed according to the procedure described in modes 1 to 4. Span switching can be performed between two optical switching devices 18d sandwiching a faulty section.
  • span switching can be performed in each section. Thus, the failure can be recovered.
  • the path is switched at the end node which is performing communication. In this case, for example, if a failure occurs in transmission line 1 15 between nodes 1 1 3 and 1 1 2 and in transmission line 1 16 between nodes 1 1 2 and 1 1 1, node 1 1 2 The communication path via It can no longer be secured.
  • span switching is individually performed for each route between adjacent nodes, there is an advantage that a restoration route can be secured even in the above-described failure pattern.
  • FIG. 12 shows an example of a switching state at the time of ring switching. If a failure occurs simultaneously in the working route 95 and the spare route 96 in the same area, the ring switching means 83 switches to the spare route 96 in the opposite direction, and communication is rescued.
  • This ring switching function is equivalent to the switching of the conventional example shown in (3) of Fig. 2.
  • the optical switching device provides a transmitting unit provided with a standby transmitting light selecting unit and a working transmitting light branching unit that can be realized by an IX2 optical space switch, and a 2 ⁇ 2 Since there is provided a receiving light switching means that can be realized with an optical spatial switch and a standby receiving optical gate means that can be realized with a 1x2 optical spatial switch, it can be used without using a 4x4 optical spatial switch. It is possible to switch between the system and the standby system, and it can be suitably used for switching of a network in which a plurality of nodes are connected by using an optical signal and an active route and a standby route.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

明 細 書 光スィツチング装置 技術分野
この発明は、 複数のノード間を光信号を用いて現用経路と予備経路で 接続したネッ トワークの経路切替を行う光スイッチング装置に関するも のである。 背景技術
第 1図は、 1 9 9 7年電子情報通信学会総合大会発表論文集の B— 1 0 - 2 3 0 「WD M 4ファイバリングの基礎実験」 7 3 9頁に示された 図を書き直した従来検討された光スィツチング装置を示す構成図であり 、 第 2図は上記論文に記載された障害発生時の経路切替動作を示した動 作図を書き直したものである。
第 1図において、 1 0 1は任意の波長成分を分離する機能を有する音 響光学フィル夕、 1 0 2は 4つの光入力を 4つの出力ポートへ任意のパ ターンで接続する 4 X 4光空間スィッチ、 1 0 3は光信号を合流させる 合流素子、 1 0 4は波長多重光を一括して増幅する光アンプ、 1 0 5は 光信号を送受信する端局装置、 1 0 6はノード間の現用経路を接続する ためのイース ト側 (以下、 「E a s t側」 と表記する) の現用入出力ポ ート (以下、 「WR K i n Z o u tポート」 と表記する) 、 1 0 7はノ ード間の現用経路を接続するためのウェス ト側 (以下、 「W e s t側」 と表記する) の WRK i n / o u tポート、 1 0 8はノード間の予備経 路を接続するための E a s t側の予備入出力ポート (以下、 「P R T i nZ o u tポート」 と表記する) 、 1 0 9はノード間の予備経路を接続 するための W e s t側の P R T i n / o u tポートである。
第 2図において、 1 1 1〜 1 1 4はそれぞれが第 1図に示した光スィ ツチング装置に相当するノード、 1 1 5は双方向に光信号を伝送する内 側の伝送路で、 ノード間を接続する現用経路として用いられている。 1 1 6は双方向に光信号を伝送する外側の伝送路で、 ノード間を接続する 予備経路として用いられる。 1 1 7はノード内部の 4 X 4光空間スイツ チ、 1 1 8は各ノードに接続されている現用系端局装置、 1 1 9は予備 系端局装置である。
次に動作について説明する。
第 2図において、 各ノ一ド 1 1 1〜 1 1 4の間を接続している伝送路 1 1 5, 1 1 6は波長多重されており、 第 1図の光スイッチング装置の WRK i n / o u tポート 1 0 6 , 1 0 7 と、 P R T i nZ o u tポ一 ト 1 0 8, 1 0 9に接続されている。 音響光学フィル夕 1 0 1は、 駆動 信号を与えることで、 特定の波長信号のみを選択分離して光空間スィッ チ 1 0 2に接続し、 他の波長信号はそのまま音響光学フィル夕 1 0 1 を 透過する。 駆動信号を与えなければすべての波長の光信号はそのまま音 響光学フィルタ 1 0 1 を透過する。 つまり、 音響光学フィル夕 1 0 1 は 、 駆動信号によって該当波長を伝送路から排除 (以下、 「D r o p」 と 表記する) するか否かを切り替える切替手段として使用している。
各音響光学フィルタ 1 0 1から選択出力された信号は、 光空間スイツ チ 1 0 2で適切な端局装置 1 0 5に接続され受信される。 各ノードには 端局装置 1 0 5が 4台接続されていて、 それぞれ E a s t側および W e s t側の WRK i n / o u tポートと P R T i n / o u tポートへ接続 される。
また、 この光スイッチング装置に各端局装置 1 0 5を介して入力され た光信号は光空間スィッチ 1 0 2によって適切な出力ポートの合流素子 1 0 3に振り分けられ、 音響光学フィル夕 1 0 1 を透過してきた他の波 長の光信号と合流された後に、 波長多重信号として各出力ポートから隣 接ノードへと出力される。
光空間スィッチ 1 0 2は、 伝送路に何らかの障害が発生したときに障 害のパターンに応じて、 現用系の通信を同一方向もしくは逆方向の予備 経路の合流素子 1 0 3へと切り替えることにより、 予備系の通信を犠牲 にして現用系の通信を救済する。
以上のような機能を持つ光スイッチング装置を伝送路のノードに設け 、 伝送路をリング状に接続してネッ トワークが形成されている。
次に、 第 2図を用いてネッ トワーク障害時における切替動作の一例に つき説明する。
障害が発生していない通常運用時には第 2図の ( 1 ) に示すように、 現用経路および予備経路を用いて通信を行うことが可能であり、 ノード 1 1 1 とノード 1 1 3に接続された各現用系端局装置 1 1 8間は現用経 路 1 1 5を経由して双方向で接続され、 ノード 1 1 3 とノード 1 1 4に 接続された各端局装置 1 1 9間は予備経路 1 1 6を経由して双方向で接 続されている。
ノード 1 1 1 とノード 1 1 3を接続する現用経路 1 1 5に障害が発生 し、 かつ同一ルートを流れる予備経路が無障害状態の時には、 第 2図の ( 2 ) に示すように、 送受信を行っているノー ド 1 1 1およびノード 1 1 3において光空間スィッチ 1 1 7が同一方向の予備経路へ切り替わる ことにより、 現用系端局装置 1 1 8が使用する通信経路を同一ルートを 流れる予備経路側へ切り替え、 伝送路 1 1 5を流れていた信号を伝送路 1 1 6へ迂回させることにより伝送路の断絶を防止する。
また、 ノ一ド間を接続していた伝送路 1 1 5および 1 1 6の両方に同 時に障害が発生した場合には、 第 2図の ( 3 ) に示すように、 ノード 1 1 1およびノード 1 1 3の光空間スィ ッチ 1 1 7によって送受信する入 出力ポー トを逆方向の予備経路側へ切り替え、 ネッ トワークを逆回りす る伝送路 1 1 6へ信号を迂回させ、 現用経路の断絶を防止する。 この時 、 無障害時に伝送路 1 1 6を用いてノード 1 1 3 とノード 1 1 4の間で 接続されていた通信は現用経路の伝送路断絶の防止のため、 接続が切断 される。
第 3図は、 1 9 9 7年電子情報通信学会通信ソサイエティ大会発表論 文集の B— 1 0 - 8 5 「OADMリ ングシステムにおけるノー ド構成の 提案」 3 8 4頁に示された図を書き直した従来検討された他の光スィ ッ チング装置を示す構成図である。
第 3図において、 1 2 1 は現用信号を収容し伝送路障害時に光信号の 経路を障害のおきていない側の伝送路へ切り替えるための光スィッチン グ装置、 1 2 2は複数ある前記光スイッチング装置 1 2 1の一部が故障 したときに代替して用いるためのバックアップ用の光スイ ッチング装置 、 λ ( 1 ) 〜え ( η + 1 ) は異なる波長の光信号、 1 2 7〜 1 2 8は光 スイ ッチング装置 1 2 1, 1 2 2に接続されてそれぞれ異なる波長の光 信号 λ ( 1 ) 〜え ( η + 1 ) を送受信する端局装置、 1 2 3 と 1 2 4は 前記各端局装置 1 2 7〜 1 2 8から送信される波長の異なる光信号 λ ( 1 ) 〜え (η + 1 ) を波長多重し送信経路へ送出する波長多重手段、 1 2 5と 1 2 6は受信経路から入力される波長多重信号を波長毎に分離し 異なる波長の光信号え ( 1 ) 〜え ( η + 1 ) として各波長に対応した光 スイ ッチング装置に入力する波長分離手段、 1 3 1 は伝送路へ送信する ための信号を入力するための局内イ ンタフェース、 1 3 2は伝送路から 受信した信号を出力するための局内イン夕フェース、 1 2 9 と 1 3 0は η波長分用意されている端局装置 1 2 7〜 1 2 8や光スイ ッチング装置 1 2 1のうち特定の波長に対応する装置に障害が発生したときに、 障害 波長に対応する装置との送受信信号をバックアップ用の (n + 1 ) 番目 の波長に対応する装置へ代替して障害復旧するための (n + 1 ) : n電 気スィッチ手段である。
また、 2 4は各光スイッチング装置 1 2 1 に設けられた送信部、 2 3 は各光スィツチング装置 1 2 1 に設けられた受信部、 1 1は各送信部 2 4に設けられた現用系送信光分岐手段、 2 2は各受信部 2 3に設けられ た現用系受信光選択手段である。
次に動作について説明する。
この従来例は双方向伝送路を用いたリング状のネッ トワークに適用す ることを前提としており、 双方向伝送路は波長多重技術によって波長毎 に個別の通信を行える構成となっている。 各波長の光信号の通信経路は 、 端局装置 1 2 7〜 1 2 8、 光スイッチング装置 1 2 1, 1 2 2で構成 されていて、 波長多重手段 1 2 3 , 1 2 4および波長分離手段 1 2 5 , 1 2 6で伝送路へ接続される。 送受信する光信号を入出力するための n 個の局内イン夕フェース 1 3 1, 1 3 2に対しては、 波長が n + 1個用 意されており、 n個の現用チャンネルに対して 1個の予備チャンネルを もつ 1 : n構成をとつている。
ある波長の端局装置もしくは光スイッチング装置に障害が発生したと きには、 該当する局内インタフェースを ( n + 1 ) : n電気スィッチ手 段 1 2 9, 1 3 0によって予備チャンネルへ接続し、 装置障害に対する 障害復旧を行う。
伝送路に障害が発生したときには光スィツチング装置 1 2 1, 1 2 2 の切替によって障害を復旧する。 各波長の光スイッチング装置 1 2 1, 1 2 2の送信部では送信信号を現用系送信光分岐手段 1 1で 2分岐し、 2つの送信経路の両方へ送出している。 また、 受信部は 2つの受信経路 から入力された光信号のうち一方を現用系受信光選択手段 2 2で選択す る構成となっている。 片側の伝送路で障害が発生したときは現用系受信 光選択手段 2 2で正常な受信経路を選択して、 伝送路障害に対する障害 復旧を行う。
従来の光スイッチング装置は以上のように構成されているので、 第 1 図, 第 2図に示した B — 1 0 — 2 3 0論文の従来例では、 ネッ トワーク に障害が発生していないときは現用経路と予備経路の両方の経路を別の 通信に利用し、 障害時に現用信号を予備経路へ迂回させるため、 経路切 替用に 4 X 4の光空間スィッチ 1 0 2, 1 1 7を使用しているが、 4 X 4光空間スィッチ 1 0 2, 1 1 7 として導波路を用いたものを利用する と、 これらは消光比や損失等の特性や、 信頼性、 消費電力の面で実用レ ベルに達していないという課題があった。
一方、 4 X 4光空間スィッチ 1 0 2 , 1 1 7 として機械式光空間スィ ツチを用いると、 これらは特性は十分で、 信頼性も実用レベルに有り、 ラッチ機能を有するものでは状態保持のために電力を必要としないなど の利点があるが、 1単位スィツチ部品の機能が 1 X 2もしくは 2 X 2に 限定され、 仮に 2 X 2の単位スィ ッチを組み合わせて 4 X 4光空間スィ ツチ 1 0 2, 1 1 7 としての機能を実現する場合、 1 6個の単位スイツ チを組み合わせる必要があり、 実装サイズが大きくなつてしまうという 課題があつた。
また、 この従来例では、 各端局装置 1 0 5, 1 1 8, 1 1 9に接続さ れるすべての送受信信号が 1つの光空間スィッチ 1 0 2, 1 1 7に接続 されているため、 仮にあるノードの 4 X 4光空間スィッチ 1 0 2, 1 1 7が故障して交換を必要とする場合、 そのノードに接続された各端局装 置 1 0 5 , 1 1 8 , 1 1 9を介するすべての通信が保守作業中切断され てしまうという課題があつた。
第 3図に示した論文 B — 1 0 — 8 5の従来例では、 光スイッチング装 置 1 2 1, 1 2 2からの出力信号を 2つの送信経路へ分岐し、 2経路で 同一信号を送出している。 このため、 ネッ トワーク上には常に 2つの経 路で同じ信号が伝送されることになり、 伝送路の使用効率が 1 Z 2に限 定されるという課題があった。
この発明は上記のような課題を解決するためになされたもので、 必要 な光空間スィッチ数を削減することにより光空間スィツチの特性および 信頼性を確保したまま実装サイズをコンパク トにし、 光空間スィッチに 障害が起きて部品交換などの保守作業が必要となったときにもすベての 通信を切断することなく、 伝送路の使用効率の高い光スイッチング装置 を得ることを目的とする。 発明の開示
この発明に係る光スイッチング装置は、 現用系入力ポートと予備系入 力ポートから入力された光信号を入力とし、 この 2つの入力を空間的に 経路を切り替え又はスルー状態で 2つの出力信号として出力し、 この 2 つの出力信号のうち一方の出力信号は現用系ドロップポートへ接続する 受信光切替手段と、 受信光切替手段の他方の出力信号をオンオフして予 備系ドロップポートへ出力する予備系受信光ゲート手段とを有する受信 部を備えたものである。
この発明によれば、 送信部に現用系送信光分岐手段と予備系送信光選 択手段を設け、 受信部に受信光切替手段と予備系受信光ゲート手段を設 けるように構成したので、 予備系受信光ゲート手段は、 無障害時に予備 経路にエキス トラ トラフィ ックなどの現用系と異なる信号を流している 場合に、 現用経路に障害が発生して障害切替が行われたときにも、 予備 系ドロップポー卜へ現用系の信号が誤接続されてしまい問題が起きない よう、 予備系ドロップポートへ出力される光信号を切断することができ る。 このため、 無障害時には現用経路、 予備経路の全伝送容量を通信に 使用することができ、 伝送路の使用効率を高めることができるという効 果がある。
また、 受信部のスィッチ構成は 2 X 2光空間スィ ッチ 1個と光ゲート スィッチ 1個で構成でき、 実装規模の削減が図れる効果がある。 スイツ チ数が少ないことから、 特性、 機能面で有用な機械式光スィッチでも十 分現実的な大きさで実装することが可能となる。
さらに、 送信部構成では、 現用系の信号が通る光部品と予備系の信号 が通る光部品を物理的に分割することが可能となり、 装置保守の面で信 頼性が向上するメリ ッ 卜がある。
さらに、 また、 送信部のスィッチ構成は力ブラ 1個、 I X 2光空間ス イッチ 1個で構成でき、 実装規模の削減が図れる効果がある。 スィッチ 数が少ないことから、 特性、 機能面で有用な機械式光スィッチでも十分 現実的な大きさで実装することが可能となる効果がある。
この発明に係る光スイッチング装置は、 予備系入力ポートから入力さ れた光信号を入力とし、 この入力を空間的に経路を切り替えて 2つの出 力とし、 この 2つの出力のうち一方の出力は予備系ドロップポートへ接 続する予備系受信光切替手段と、 予備系受信光切替手段の他方の出力と 現用系入力ポートから入力された光信号を入力とし、 この 2つの入力の 一方を選択して現用系ドロップポー卜へ出力する現用系受信光選択手段 とを有する受信部を備えたものである。
この発明によれば、 受信部に予備系受信光切替手段と現用系受信光選 択手段を設けるように構成したので、 現用系受信光選択手段は、 現用受 信経路にて障害が発生し、 予備受信経路からの光信号を選択するように 切替えたとき、 入力されている現用受信経路からの光信号を遮断する働 きがあり、 予備系受信光切替手段は障害切替時に予備系ド口ップポート へ光信号を出力しない。 このため、 無障害時には現用経路、 予備経路の 全伝送容量を通信に使用することができ、 伝送路の使用効率を高めるこ とができる。
また、 無障害時に現用経路の信号が通過する光部品と、 予備経路の信 号が通過する光部品を物理的に分離することが可能となる。 この効果に より、 光スィ ッチを搭載する基板を現用経路と予備経路で分割実装する ことが可能である。 光スイ ツチ素子等に故障が発生したときには例えば 予備経路をつないだまま現用経路の乗った実装基板だけを交換するとい つた保守が可能となるケースがあり、 装置の信頼性向上が図れる。
さらに、 受信部のスィ ッチ構成は 1 X 2光空間スィ ッチ 2個で構成で き、 実装規模の削減が図れる効果がある。 スィ ッチ数が少ないことから 、 特性、 機能面で有用な機械式光スィ ッチでも十分現実的な大きさで実 装することが可能となる。
さらに、 送信部構成では、 現用系の信号が通る光部品と予備系の信号 が通る光部品を物理的に分割することが可能となり、 装置保守の面で信 頼性が向上するメ リ ッ 卜がある。
さらに、 送信部のスィ ッチ構成は力ブラ 1個、 1 X 2光空間スィ ッチ 1個で構成でき、 実装規模の削減が図れる効果がある。 スィ ッチ数が少 ないことから、 特性、 機能面で有用な機械式光スィ ッチでも十分現実的 な大きさで実装することが可能となるなどの効果がある。
この発明に係る光スイ ッチング装置は、 予備系入力ポー トから入力さ れた光信号を 2分岐して出力する予備系受信光分岐手段と、 予備系受信 光分岐手段の 2つの出力のうち一方の出力と現用系入力ポートから入力 された光信号を入力とし、 この 2つの入力の一方を選択して現用系 ドロ ップポー トへ出力する現用系受信光選択手段と、 予備系受信光分岐手段 の他方の出力をオンオフして予備系 ドロップポートへ出力する予備系受 信光ゲ一ト手段とを有する受信部を備えたものである。
この発明によれば、 受信部に予備系受信光分岐手段, 現用系受信光選 択手段及び予備系受信光ゲー ト手段を設けるように構成したので、 予備 系受信光ゲート手段は、 現用受信経路にて障害が発生し現用受信経路か らの光信号が入力されてきたとき、 入力されている光信号を遮断し予備 系ドロップポートへ光信号を出力しない。 このため、 無障害時には現用 経路、 予備経路の全伝送容量を通信に使用することができ、 伝送路の使 用効率を高めることができる。
また、 無障害時に現用経路の信号が通過する光部品と、 予備経路の信 号が通過する光部品を物理的に分離することが可能となる。 この効果に より、 光スィ ツチを搭載する基板を現用経路と予備経路で分割実装する ことが可能である。 光スィ ツチ素子等に故障が発生したときには例えば 予備経路をつないだまま現用経路の乗った実装基板だけを交換するとい つた保守が可能となるケースがあり、 装置の信頼性向上が図れる。
さらに、 受信部のスィ ッチ構成は力ブラ 1個、 1 X 2光空間スィ ッチ 1個、 光ゲートスィッチ 1個で構成でき、 実装規模の削減が図れる効果 がある。 スィッチ数が少ないことから、 特性、 機能面で有用な機械式光 スィッチでも十分現実的な大きさで実装することが可能となる。
さらに、 送信部構成では、 現用系の信号が通る光部品と予備系の信号 が通る光部品を物理的に分割することが可能となり、 装置保守の面で信 頼性が向上するメ リ ッ トがある。
また、 送信部のスィ ッチ構成は力ブラ 1個、 1 X 2光空間スィ ッチ 1 個で構成でき、 実装規模の削減が図れる効果がある。 スィ ッチ数が少な いことから、 特性、 機能面で有用な機械式光スィ ッチでも十分現実的な 大きさで実装することが可能となるなどの効果がある。
この発明に係る光スイ ッチング装置は、 現用系入力ポー ト及び現用系 アツ ドポートにそれぞれ入力された光信号をスルー又は切り替えて光ス ィツチング装置の送信部及び受信部にそれぞれ出力する 2入力 2出力の 現用系アツ ド /ドロップ切替手段と、 予備系入力ポート及び予備系アツ ドポートにそれぞれ入力された光信号をスル一又は切り替えて光スイツ チング装置の送信部及び受信部にそれぞれ出力する 2入力 2出力の予備 系アツ ド/ドロップ切替手段とを備えたものである。
この発明によれば、 現用系アツ ド Zドロップ切替手段と予備系アツ ド /ドロップ切替手段を設けるように構成したので、 アツ ド Zドロップ切 替手段は、 2 X 2光スィッチ 2個でアツ ド ドロップ切替えを簡易に実 現でき、 リ ングネッ トワークへ適用する光スイッチング装置を少ない単 位光スィツチ数で構成することが可能で、 実装サイズを小さくできる効 果がある。
また、 無障害時には現用経路、 予備経路の全伝送容量を利用すること ができるため、 伝送路の利用効率を高めることができる。
さらに、 この光スイッチング装置の適用により、 複数のノードが接続 されたリ ングネッ 卜ワークにおいて任意のノ一ド間を双方向に接続する ことが可能となり、 ネッ トワークの柔軟性が向上するなどの効果がある この発明に係る光スィッチング装置は、 各組にそれぞれ 1個ずつ設け られ、 それぞれ、 現用系入出力ポート及び予備系入出力ポートの入出力 光信号を切り替えて又はスルーで入出力することにより同一区間内で現 用経路と予備経路を切り替えるスパン切替手段と、 一方の組の予備系ァ ッ ドポート、 一方の組の現用系アツ ドポート、 一方の組の現用系ドロッ プポート及び一方の組の予備系ドロップポートの入出力信号を切り替え て又はスルーで一方の組のスパン切替手段に接続する第 1のリング切替 手段と、 他方の組の現用系アツ ドポート、 他方の組の予備系アツ ドポー ト、 他方の組の現用系ド口ップポ一ト及び他方の組の予備系ド口ップポ 一卜の入出力信号を切り替えて又はスルーで他方の組のスパン切替手段 に接続する第 2のリング切替手段とを備えたものである。
この発明によれば、 2つの各組毎にスパン切替手段と第 1及び第 2の リング切替手段とを設けるように構成したので、 リング切替手段はリン グネッ トワークのある区間の現用経路と予備経路が同時に障害状態にな つたときにリング逆周りの予備経路を構築することができる。 スパン切 替手段はある区間の現用経路のみが障害状態になり、 予備経路が正常で あるときに同一区間の予備経路に信号を迂回させる事ができる。 2つの 切替モードを持つことによってネッ トワークの信頼性が向上するメリ ッ 卜がある。
さらに、 リング切替手段とスパン切替手段は共に、 光空間スィッチで 構成されているため、 必要となる光スィッチ数が少なく、 実装を小型化 できるメリ ッ 卜がある。
また、 無障害時には現用経路、 予備経路の全伝送容量を利用すること ができるため、 伝送路の利用効率を高めることができるなどの効果があ る。 図面の簡単な説明
第 1図は、 従来の光スイッチング装置の一例を示す構成図である。 第 2図は、 従来の光スイッチング装置における障害発生時の経路切替 動作を示した動作図である。
第 3図は、 従来の光スイッチング装置の他の例を示す構成図である。 第 4図は、 この発明の実施の形態 1 による光スイッチング装置を示す 構成図である。
第 5図は、 この発明の実施の形態 2による光スイッチング装置を示す 構成図である。
第 6図は、 この発明の実施の形態 3による光スイッチング装置を示す 構成図である。
第 7図は、 この発明の実施の形態 4による光スイッチング装置を示す 構成図である。
第 8図は、 実施の形態 4による光スイッチング装置を用いて形成した リングネッ トワークの接続形態の一例を示す図である。
第 9図は、 実施の形態 4による光スイッチング装置を用いて形成した リングネッ トワークの現用送信経路に障害が発生した場合の切替えパ夕 一ンの例を示す図である。
第 1 0図は、 実施の形態 4による光スイッチング装置を用いて形成し たリングネッ トワークの現用受信経路で障害が発生した場合の切替えパ ターン例を示す図である。
第 1 1図は、 この発明の実施の形態 5による光スイッチング装置を示 す構成図である。
第 1 2図は、 実施の形態 5による光スイッチング装置を用いたリング ネッ トワークにおけるリング切替時の切替状態の一例を示す図である。 発明を実施するための最良の形態
以下、 この発明の実施の一形態を説明する。
実施の形態 1 .
第 4図はこの発明の実施の形態 1による光スイッチング装置を示す構 成図である。 図において、 1はこの実施の形態 1の光スイッチング装置 の現用系の入力ポート (以下、 「W R K i nポート」 と表記する) 、 2 は現用系の出力ポート (以下、 「W R K o u tポート」 と表記する) 、 3は予備系の入力ポート (以下、 「P R T i nポート」 と表記する) 、 4は予備系の出力ポート (以下、 「P R T o u tポート」 と表記する) 、 5は光スイッチング装置 1 8を介して伝送路に信号を挿入または送信 するための現用系のアツ ドポー ト (以下、 「A d d (WRK) ポート」 と表記する) 、 6は光スイッチング装置 1 8を介して伝送路から信号を 排除または受信するための現用系のドロップポート (以下、 「D r o p (WR K) ポート」 と表記する) 、 7は予備系のアツ ドポート (以下、 「A d d (P R T) ポート」 と表記する) 、 8は予備系のドロップポー ト (以下、 「D r o p (P R T) ポート」 と表記する) である。
また、 1 8及び 2 6はこの実施の形態 1の光スイッチング装置、 2 4 は無障害時には A d d (WRK) ポート 5の入力光信号を WR K o u t ポート 2へ、 A d d (P R T) ポート 7の入力光信号を P R T o u tポ ート 4へ出力しておき、 WRK o u tポート 2から光信号を出力してい る送信側の現用経路で障害が発生したときに、 A d d (WRK) ポート 5の入力光信号を WRK o u tポート 2 と P R T o u tポート 4の両方 へ送信する機能を持つ送信部、 2 3は無障害時には WRK i nポート 1 の入力光信号を D r o p (WR K) ポート 6へ、 P R T i nポート 3の 入力光信号を D r o p (P R T) ポート 8へ出力しておき、 WR K i n ポート 1へ光信号を伝送してくる受信側の現用経路で障害が発生したと きに、 P R T i nポート 3の入力信号を D r o p (WRK) ポート 6へ 出力する受信部である。
さらに、 9は WR K i nポート 1 と P R T i nポート 3から入力され た光信号を空間的に経路切替して一方の出力光を D r 0 p (WR K) ポ ート 6へ出力する受信光切替手段、 1 0は受信光切替手段 9のもう一方 の出力光と D r o p (P R T) ポート 8の間に配置され、 光の透過、 不 透過を切り替える予備系受信光ゲート手段であり、 受信光切替手段 9及 び予備系受信光ゲート手段 1 0は受信部 2 3に設けられている。 さらに、 1 1は A d d (WR K) ポート 5に入力された光信号を 2分 岐してその一方を WR K o u tポート 2に出力する現用系送信光分岐手 段、 1 2は現用系送信光分岐手段 1 1のもう一方の出力光と A d d ( P R T) ポート 7から入力される光信号の一方を選択して P R T o u tポ ―ト 4へ出力する予備系送信光選択手段であり、 現用系送信光分岐手段 1 1 と予備系送信光選択手段 1 2 とは送信部 2 4に設けられている。 さらに、 1 3 と 1 9は伝送路が無障害の時に現用経路を介して通信を 行う現用端局装置、 1 4と 2 0は同じく予備経路を介して通信を行う予 備端局装置、 1 5は光スイッチング装置 1 8の WR K i nポート 1 と光 スイッチング装置 2 6の WR K o u tポートとを接続する現用受信経路 、 1 6は光スィツチング装置 1 8の P R T o u tポート 4と光スィッチ ング装置 2 6の P R T i nポートとを接続する予備送信経路、 1 7は光 スイッチング装置 1 8の P R T i nポート 3 と光スイッチング装置 2 6 の P R T o u tポートとを接続する予備受信経路、 2 5は光スィッチン グ装置 1 8の WRK o u tポート 2 と光スイッチング装置 2 6の WR K i nポートとを接続する現用送信経路である。
次に動作について説明する。
この実施の形態 1においては、 対向する 2つの光スイッチング装置 1 8 , 2 6が現用送信経路 2 5 , 現用受信経路 1 5 と予備送信経路 1 6 , 予備受信経路 1 7を介して接続されており、 各光スイッチング装置 1 8 , 2 6には現用端局装置 1 3, 1 9 と予備端局装置 1 4, 2 0が接続さ れている。
障害が発生していないときは、 現用端局装置 1 3から出力された光信 号は A d d (WR K) ポート 5から光スイッチング装置 1 8へ入力され 、 現用系送信光分岐手段 1 1 、 WR K o u tポート 2、 現用送信経路 2 5、 光スイッチング装置 2 6を介して現用端局装置 1 9へ到達する。 逆 に、 現用端局装置 1 9から出力された現用光信号は、 光スイ ッチング装 置 2 6、 現用受信経路 1 5、 WRK i nポート 1 を介して光スィ ッチン グ装置 1 8の受信光切替手段 9に入射する。 受信光切替手段 9は現用受 信経路 1 5に障害が発生したときに内部の光伝送路をクロス状態にして 受信経路を切り替えるためのものであるが、 無障害時にはスルー状態と なっており、 WRK i nポー ト 1からの信号は D r o p (WR K) ポー 卜 6を介して現用端局装置 1 3へ到達し、 現用端局装置 1 3 , 1 9間に 双方向の通信経路が設定される。
一方、 無障害時には予備送信経路 1 6 , 予備受信経路 1 7を使用して 予備端局装置 1 4, 2 0間にも通信経路を設定することが可能である。 予備端局装置 1 4から光スィ ツチング装置 1 8へ入力された光信号は、 スルー状態に設定された予備系送信光選択手段 1 2、 P R T o u tポー 卜 4、 予備送信経路 1 6、 光スイッチング装置 2 6を介して予備端局装 置 2 0へ到達する。 逆に予備端局装置 2 0から送出される光信号は、 光 スイッチング装置 2 6、 予備受信経路 1 7を介して P R T i nポート 3 へ入力され、 スルー接続状態の受信光切替手段 9から予備系受信光ゲー ト手段 1 0へ接続され、 透過状態の予備系受信光ゲー ト手段 1 0を透過 して予備端局装置 1 4へ到達することで、 予備端局装置 1 4 , 2 0間に 双方向の通信経路が設定される。 予備端局装置 1 4 , 2 0間では現用端 局装置 1 3 , 1 9間の通信とは異なる信号を送受信することが可能なた め、 無障害時には現用送信経路 2 5, 現用受信経路 1 5 と予備送信経路 1 6, 予備受信経路 1 7双方の伝送容量をすベて活用することが可能と なる。
現用経路の伝送路に障害が発生した場合は、 光スイ ッチング装置 1 8 , 2 6を切替えて、 現用経路を使用していた通信を予備経路側へ迂回し 、 通信を救済する。 始めに、 WRK i nポート 1 に接続されている現用受信経路 1 5に障 害が発生したケースを考える。
対向局である現用端局装置 1 9側では送出光信号を光スイッチング装 置 2 6において 2分岐し、 現用受信経路 1 5および予備受信経路 1 7の 両方へ送出する。 この時、 予備端局装置 2 0からの送信信号は廃棄され る。 光スイッチング装置 1 8の受信部 2 3では、 現用受信経路 1 5から の信号が障害状態にあるため、 予備受信経路 1 7側からの信号を現用端 局装置 1 3に接続するため、 受信光切替手段 9をクロス状態とし、 障害 を復旧する。
受信光切替手段 9の切替に伴い、 現用受信経路 1 5からの光信号が不 透過状態の予備系受信光ゲ一ト手段 1 0へ経路切替され、 予備系受信光 ゲート手段 1 0のゲート機能によって廃棄される。 これは、 無障害時に 予備端局装置 2 0からの光信号を受信していた予備端局装置 1 4が、 現 用受信経路 1 5における障害の復旧に伴って現用端局装置 1 9からの光 信号を受信してしまうことを防ぐためである。 とく に、 無障害時に現用 端局装置 1 3, 1 9間と予備端局装置 1 4 , 2 0間で異なる通信を行つ ている場合には、 本ゲート機能は誤接続を避けるために必須となる。 次に WRK o u tポート 2に接続されている現用送信経路 2 5に障害 が発生したケースを考える。 光スイッチング装置 1 8の送信部 2 4は無 障害時には予備系送信光選択手段 1 2をスルー状態とし、 P R T o U t ポート 4へは A d d (P R T) ポート 7から入力される予備端局装置 1 4の送出信号を予備送信経路 1 6に出力しているが、 現用送信経路 2 5 に障害が発生した場合は、 現用端局装置 1 3の通信を救済するために、 予備端局装置 1 4の送出信号を廃棄する。 予備系送信光選択手段 1 2を クロス状態とすることで、 現用系送信光分岐手段 1 1で分岐された現用 端局装置 1 3の送出信号を WR K o u tポート 2および P R T o u tポ ー ト 4の両方へ送出する (ブリ ッジ動作) 。 現用送信経路 2 5 と予備送 信経路 1 6の両経路で送信された光信号は、 光スイ ッチング装置 2 6 に おいて予備送信経路 1 6 を経由した光信号が選択され、 現用端局装置 1 9へ接続されることで、 現用送信経路 2 5の障害による現用端局装置 1 3 , 1 9間の通信は復旧される。
以上のように、 この実施の形態 1 によれば、 無障害状態においては現 用送信経路 2 5 , 現用受信経路 1 5 と予備送信経路 1 6, 予備受信経路 1 7のすベての伝送容量を通信に使用することが可能で、 現用信号が通 つている現用送信経路 2 5又は現用受信経路 1 5 に障害が発生したとき には、 予備送信経路 1 6 , 予備受信経路 1 7 に流れていた予備系の通信 を廃棄して現用系の通信を予備送信経路 1 6 , 予備受信経路 1 7 に迂回 させることで、 現用系の通信を救済できるという効果が得られる。
また、 この実施の形態 1で必要となる光空間スィツチ数は送信部 2 4 に 1 X 2光空間スィツチ (予備系送信光選択手段 1 2 ) が 1つ、 受信部 2 3 に 2 X 2光空間スィッチ (受信光切替手段 9 ) が 1つ、 光ゲ一トス イ ッチ (予備系受信光ゲー ト手段 1 0 ) が 1つと少なく、 実装サイズを 小さく抑えることが可能であるという効果が得られる。 実施の形態 2 .
第 5図はこの発明の実施の形態 2 による光スイ ッチング装置を示す構 成図である。 なお、 以下の実施の形態に関する図面において、 それより 前に説明した実施の形態の構成要素と同一の構成要素には同一の参照番 号を付けてその説明を省略する。
第 5図において、 2 1 は P R T i nポー ト 3から入力された光信号を 空間的に経路切替して一方の出力光を D r o p ( P R T ) ポー ト 8へ出 力する予備系受信光切替手段、 2 2は予備系受信光切替手段 2 1 のもう 一方の出力光と WR K i nポート 1から入力される光信号の一方を選択 して D r o p (WR K) ポート 6へ出力する現用系受信光選択手段であ る。 また、 2 3 aは予備系受信光切替手段 2 1及び現用系受信光選択手 段 2 2からなる受信部、 1 8 aは送信部 2 4、 受信部 2 3 a、 WR K i nポー ト l 、 WR K o u tポート 2、 P R T i nポー ト 3、 P R T o u tポー ト 4、 A d d (WRK) ポー ト 5、 D r o p (WRK) ポ一 卜 6 、 A d d ( P R T) ポー ト 7、 及び D r o p (P R T) ポート 8を備え たこの実施の形態 2の光スイッチング装置である。
次に動作について説明する。
この実施の形態 2の光スイ ッチング装置 1 8 aは、 無障害時に現用送 信経路 2 5, 現用受信経路 1 5と予備送信経路 1 6, 予備受信経路 1 7 の全伝送容量を通信に使用できること、 障害切替時に予備端局装置 1 4 で誤接続が生じないよう光を遮断する機能を含め、 切替機能は実施の形 態 1の光スィ ツチング装置と全く同じであり、 受信部 2 3 aの構成のみ が異なる。
受信部 2 3 aは 2つの 2 X 1光空間スィ ッチ (予備系受信光切替手段 2 1 と現用系受信光選択手段 2 2 ) によって構成される。 まず、 無障害 時には予備系受信光切替手段 2 1, 現用系受信光選択手段 2 2双方とも スル一接続状態にあり、 WRK i nポート l ZD r o p (WR K) ポー ト 6間、 P R T i nポー ト 3 ZD r o p (P R T) ポート 8間が接続さ れている。
現用受信経路 1 5で障害が発生すると、 予備系受信光切替手段 2 1 , 現用系受信光選択手段 2 2は双方ともクロス接続状態となり、 P R T i nポー 卜 3 と D r o p (WRK) ポー ト 6が接続される。 WR K i nポ 一ト 1から入射される光信号は現用系受信光選択手段 2 2から出力され ず、 予備端局装置 1 4が接続されている D r o p ( P R T) ポー ト 8へ は光信号は出力されない。 こう して現用受信経路 1 5で障害が発生した ときに予備端局装置 1 4へ現用端局装置 1 9からの信号が接続されるこ とを防ぎ、 誤接続を回避することができる。
以上のように、 この実施の形態 2 によれば、 無障害状態においては現 用送信経路 2 5, 現用受信経路 1 5 と予備送信経路 1 6, 予備受信経路 1 7のすベて経路の伝送容量を通信に使用することが可能で、 現用信号 が通っている経路に障害が発生したときには、 予備送信経路 1 6 , 予備 受信経路 1 7に流れていた予備系の通信を廃棄して現用系の通信を予備 送信経路 1 6 , 予備受信経路 1 7 に迂回させることで、 現用系の通信を 救済できる効果が得られる。
また、 必要となる光空間スィッチ数は送信部に 1 X 2光空間スィ ッチ が 1つ (予備系送信光選択手段 1 2 ) 、 受信部に 1 X 2光空間スィ ツチ が 2つ (予備系受信光切替手段 2 1 , 現用系受信光選択手段 2 2 ) と少 なく、 実装サイズも小さく抑えることが可能であるという効果が得られ る。
さらに、 光スイッチング装置 1 8 a内部で各ポー トから入出力される 光信号が通過する光部品を追うと、 無障害時にはすベての光部品が一つ の光信号のみを透過していることが判る。 例えば、 現用系送信光分岐手 段 1 1 は A d d ( W R K ) ポート 5からの入力信号のみを透過し、 現用 系受信光選択手段 2 2は W R K i nポー ト 1からの入力信号のみを透過 している。 このことから、 無障害時の各信号経路は、 別々の基板に実装 することが可能となり、 基板交換などの保守時にすべてのサービスが断 状態になることを回避することができる。 仮に予備系受信光切替手段 2
1 と現用系受信光選択手段 2 2 を別基板に実装し、 予備系受信光切替手 段 2 1 のみが故障して取り替えが必要となった場合、 故障基板を抜去し ても現用系受信光選択手段 2 2は残るため現用受信経路 1 5 までが切断 されてしまう ことを回避できるという効果も得られる。 実施の形態 3.
第 6図はこの発明の実施の形態 3による光スイ ッチング装置を示す構 成図である。 図において、 3 1は P R T i nポート 3から入力された光 信号を 2分岐する予備系受信光分岐手段、 3 2は予備系受信光分岐手段
3 1の一方の出力光と D r o p (P R T) ポート 8の間に配置され、 光 の透過、 不透過を切り替える予備系受信光ゲート手段である。 この実施 の形態 3においては、 現用系受信光選択手段 2 2は予備系受信光分岐手 段 3 1のもう一方の出力光と WRK i nポー ト 1から入力される光信号 の一方を選択して D r o p (WRK) ポート 6へ出力するように配置さ れている。 また、 2 3 bは予備系受信光分岐手段 3 1 , 予備系受信光ゲ ート手段 3 2 , 及び現用系受信光選択手段 2 2から成る受信部、 1 8 b は送信部 2 4、 受信部 2 3 b、 WR K i nポート 1、 WRK o u tポー ト 2、 P R T i nポート 3、 P R T o u tポート 4、 A d d (WRK) ポート 5、 D r o p (WR K) ポー ト 6、 A d d (P R T) ポー ト 7、 及び D r o p ( P R T) ポー ト 8を備えたこの実施の形態 3の光スイ ツ チング装置である。
次に動作について説明する。
この実施の形態 3の光スイ ッチング装置 1 8 bは、 無障害時に現用送 信経路 2 5 , 現用受信経路 1 5 と予備送信経路 1 6, 予備受信経路 1 7 の全伝送容量を通信に使用できること、 障害切替時に予備端局装置 1 4 で誤接続が生じないよう光を遮断する機能を含め、 切替機能は実施の形 態 1および 2の光スイ ッチング装置と全く同じであり、 受信部 2 3 の 構成のみが異なる。
予備受信経路 1 7からの P R T i nポート 3へ入力された光信号は、 予備系受信光分岐手段 3 1で分岐される。 現用系受信光選択手段 2 2は WR K i nポート 1 または P R T i nポー ト 3からの光信号の一方を選 択して D r o p (WRK) ポー ト 6へ出力することができ、 現用端局装 置 1 3へは現用受信経路 1 5 もしく は予備受信経路 1 7のどちらからの 光信号も接続することが可能である。 また、 D r o p ( P R T) ポー ト 8へは、 P R T i nポート 3へ入力された信号を接続するか、 予備系受 信光ゲート手段 3 2を断状態として光信号を出力しないかを選択するこ とができる。 よって、 無障害時には予備受信経路 1 7からの光信号を接 続し、 現用受信経路 1 5の障害時には光信号を断状態とすることで、 予 備端局装置 1 4へ現用端局装置 1 9からの信号を誤接続してしまう こと を避けることができる。
以上のように、 この実施の形態 3によれば、 無障害状態においては現 用送信経路 2 5 , 現用受信経路 1 5 と予備送信経路 1 6, 予備受信経路 1 7のすベての伝送容量を通信に使用することが可能で、 現用信号が通 つている経路に障害が発生したときには、 予備送信経路 1 6 , 予備受信 経路 1 7に流れていた予備系の通信を廃棄して現用系の通信を予備送信 経路 1 6 , 予備受信経路 1 7に迂回することで、 現用系の通信を救済で きるという効果が得られる。
また、 必要となる光スィッチ数は送信部 2 4に 1 X 2光空間スィ ッチ が 1つ (予備系送信光選択手段 1 2 ) 、 受信部 2 3 bに 1 X 2光空間ス ィツチが 1つ (現用系受信光選択手段 2 2 ) 、 光ゲ一 トスイ ツチが 1つ (予備系受信光ゲート手段 3 2 ) と少なく、 実装サイズも小さく抑える ことが可能であるという効果も得られる。
さらに、 光スイ ッチング装置 1 8 b内部で各ポー トから入出力される 光信号が通過する光部品を追う と、 無障害時にはすベての光部品が一つ の光信号のみを透過しているため、 無障害時の各信号経路は別々の基板 に実装することが可能となり、 基板交換などの保守時にすべてのサービ スが断状態になることを回避することができるという効果も得られる。 実施の形態 4.
第 7図はこの発明の実施の形態 4による光スイッチング装置を示す構 成図である。 第 7図において、 4 1 は 2 X 2の現用系 A d dノ D r o p 切替手段であり、 入力側の 2入力は WRK i nポート 1及び A d d (W RK) ポート 5 とそれぞれ接続され、 出力側 2入力は現用系受信光選択 手段 2 2及び現用系送信光分岐手段 1 1 とそれぞれ接続され、 スルー又 はクロス状態を取ることにより入力側 2入力を出力側 2入力とスルー又 は切り替えて接続する。 4 2は 2 X 2の予備系 A d d /D r o p切替手 段であり、 入力側の 2入力は P R T i nポート 3及び A d d (P RT) ポート 7 とそれぞれ接続され、 出力側 2入力は予備系受信光分岐手段 3 1及び予備系送信光選択手段 1 2 とそれぞれ接続され、 スルー又はクロ ス状態を取ることにより入力側 2入力を出力側 2入力とスル一又は切り 替えて接続する。
次に動作について説明する。
実施の形態 1 , 実施の形態 2, および実施の形態 3では対向する 2つ の光スイッチング装置間の伝送路切替について説明してきたが、 第 1図 , 第 2図に示した従来例の様な A d d /D r o p リ ングネッ トワークで は 2つ以上の装置がリング状に接続され、 信号をネッ 卜ワークの伝送路 状に挿入または送出 (以下、 この動作を 「A d d」 と表記する) 又は伝 送路から信号を排除ないしは受信 (D r o p ) しない装置はそのまま光 信号を透過するパススルー状態とすることで、 A d d /D r o pを行つ ている任意の 2個の光スイッチング装置間の通信経路を設定している。 この実施の形態 4では、 A d d ZD r o p リングネッ トワークに適用す ることを目的としており、 WR K i nポート 1 と WRK o u tポート 2 、 P RT i nポート 3 と P R T o u tポート 4を相互接続し、 WRK i nポート 1 を D r o p (WR K) ポート 6に、 また A d d (WR K) ポ ート 5を WR K o u tポート 2に、 さらに P R T i nポート 3を D r o p (P R T) ポ一卜 8に、 A d d (P R T) ポート 7を P R T o u tポ ート 4にそれぞれ接続しないパススルー状態を実現する。
第 8図にリングネッ トワークの接続形態の一例を示す。 図において、 5 1〜 5 4は現用端局装置、 5 5は現用の送受信経路である双方向現用 経路、 5 6は予備の送受信経路である双方向予備経路である。 この接続 形態では A d d / D r o p リ ングネッ トワークが 4つの光スイッチング 装置 1 8 cで構成されている。 現用端局装置 5 1 と現用端局装置 5 2の 間では、 現用経路 5 5を介して双方向の通信が行われている。
通信に関与している現用端局装置 5 1および 5 2 を収容している光ス ィツチング装置 1 8 cは現用経路 5 5へ信号を送受信している A d d Z D r o p状態であり、 通信に関与していないそれ以外の現用端局装置 5 3 , 5 4を収容する光スイッチング装置 1 8 cは両方向の現用経路同士 および予備経路 5 6同士を接続し A d d ZD r o p接続を行わないパス スルー状態である。
仮に現用端局装置 5 1 と現用端局装置 5 2の間を結ぶ現用経路 5 5に 障害が発生した場合は、 A d d ZD r o p状態にある 2つの光スィツチ ング装置 1 8 cが障害切替えを実施し、 通信経路を予備経路 5 6側へ切 替えることで通信を救済する。 この時、 通信に関与していない現用端局 装置 5 3, 5 4を収容している光スイッチング装置 1 8 cはパススルー 状態を継続する。
光スィツチング装置 1 8 c をパススル一状態とするか、 A d d ZD r o p状態とするかの切替えは、 第 7図における現用系 A d d ZD r o p 切替手段 4 1 と、 予備系 A d d ZD r o p切替手段 4 2で行う。 現用系 A d d /D r 0 切替手段 4 1 と、 予備系 A d d /D r o p切替手段 4 2がクロス状態のときは、 WR K i nポー ト 1および P R T i nポー 卜 3へ入力した光は各 A d d ZD r o p切替手段 4 1 , 4 2 を透過し、 送 信部 2 4へ入力される。 予備系送信光選択手段 1 2がスルー状態であれ ば、 各入力信号は WR K o u t ポート 2 と P R T o u t ポー ト 4へ出力 され、 WR K i nポー ト 1 と WR K o u t ポート 2、 P R T i nポー ト 3 と P R T o u t ポート 4の各ポー 卜がそれぞれ接続され、 光スィ ツチ ング装置 1 8 c はパススルー状態となる。
光スイ ッチング装置 1 8 c を A d d ZD r o p状態とするためには各 A d d /D r o p切替手段 4 1 , 4 2 をスルー状態とする。 現用系 A d d /Ό r ο ρ切替手段 4 1 の切替えによって現用系信号の A d d ZD r o 状態 Zパススルー状態を切替えることができ、 予備系 A d d /D r o p切替手段 4 2の切替えによって予備系信号の A d ά /Ό r o p状態 Zパススルー状態を切替えることができる。
このようなリ ング状のネッ トワークにおいて障害が発生した場合、 障 害発生の位置によって切替えのパターンを変化させる必要がある。 第 9 図には現用送信経路 2 5 に障害が発生した場合の切替えパターン例を、 第 1 0図には逆の現用受信経路 1 5で障害が発生した場合の切替えパ夕 一ン例を示す。 いずれも、 予備系送信光選択手段 1 2 と、 現用系受信光 選択手段 2 2の切替えによって、 切替パターンの異なる動作が実現でき る。
すなわち、 第 9図に示すように、 現用送信経路 2 5 に障害が発生した 場合に現用端局装置 1 3から光信号を送信するには、 A d d (WR K) ポート 5, 現用系 A d d ZD r 0 p切替手段 4 1 , 現用系送信光分岐手 段 1 1 , 予備系送信光選択手段 1 2, P R T o u t ポー 卜 4を介して予 備送信経路 1 6に光信号を送出し、 光信号を受信するには、 現用受信経 路 1 5から, WRK i nポー ト 1 , 現用系 A d d /D r o p切替手段 4 1 , 現用系受信光選択手段 2 2 , D r o p (WRK) ポー ト 6を介して 現用端局装置 1 3に受信するか、 あるいは、 予備受信経路 1 7から、 P R T i nポート 3 , 予備系 A d d /D r o p切替手段 4 2, 予備系受信 光分岐手段 3 1 , 予備系受信光ゲー ト手段 3 2, D r o p (P R T) ポ —卜 8を介して予備端局装置 1 4に受信する。
また、 第 1 0図に示すように、 現用受信経路 1 5に障害が発生した場 合に現用端局装置 1 3で光信号を受信するには、 予備受信経路 1 7を介 して伝送されてくる光信号を、 P R T i nポート 3から受け入れて、 予 備系 A d d ZD r o p切替手段 4 2 , 予備系受信光分岐手段 3 1, 現用 系受信光選択手段 2 2 , D r o p (WR T) ポー ト 6を介して現用端局 装置 1 3で受信する。 また、 光信号を送信するには、 現用端局装置 1 3 から A d d (WRK) ポート 5 , 現用系 A d d /D r o p切替手段 4 1 , 現用系送信光分岐手段 1 1, WR K o u tポート 2を介して現用送信 経路 2 5に送出するか、 あるいは、 予備端局装置 1 4から A d d (P R T) ポー ト 7 , 予備系 A d d ZD r o p切替手段 4 2 , 予備系送信光選 択手段 1 2, P R T o u tポー ト 4を介して予備送信経路 1 6に送出す る。
なお、 この実施の形態 4においては、 受信部の構成として実施の形態 3の受信部 2 3 bを用いたが、 実施の形態 1 または 2による受信部 2 3 , または 2 3 bの構成を用いても同様の動作を実現することができる。 以上のように、 この実施の形態 4によれば、 無障害時には現用送信経 路 2 5, 現用受信経路 1 5 と予備送信経路 1 6 , 予備受信経路 1 7の全 伝送容量を利用することができ、 障害発生時には予備送信経路 1 6又は 予備受信経路 1 7へ現用送信経路 2 5 , 現用受信経路 1 5の通信を迂回 させることにより通信を救済することが可能であるという効果が得られ る。
また、 この実施の形態 4で A d d ZD r o p機能を付加しても、 実施 の形態 1〜 3で必要であった光空間スィッチ数に加え、 2 X 2光空間ス イッチ 2個 (現用系 A d d ZD r o p切替手段 4 1, 予備系 A d d ZD I· o p切替手段 4 2 ) の追加で光スイッチング装置 1 8 cを構成する事 ができ、 従来例 1に比し単位スィッチ数が小さく、 実装を小型化するこ とができる効果も得られる。
さらに、 この実施の形態 4において、 A d d ZD r o p機能付加のた めに追加した現用系 A d d /D r o p切替手段 4 1, 予備系 A d d /D r o p切替手段 4 2は現用系と予備系に対応した個別の光空間スィッチ によって構成されており、 現用系と予備系で別基板に実装することが可 能である。 このため、 片系の A d d ZD r o p切替手段で故障が発生し 、 基板抜去を伴う保守が必要となった場合にも、 他方の経路をサポート する光空間スィッチまで抜く必要がなく、 故障していない系でのサ一ビ ス断を回避することができる効果も得られる。 実施の形態 5.
第 1 1図はこの発明の実施の形態 5による光スイッチング装置を示す 構成図である。 図において、 1 8 dはこの実施の形態 5の光スィッチン グ装置、 8 1は W e s t側の伝送路の同一区間で現用経路と予備経路を 切り替えるスパン切替手段、 8 2は E a s t側のスパン切替手段、 8 3 と 8 4は伝送路の区間自体を切り替えるリング切替手段 (第 1, 第 2の リング切替手段) 、 8 5 , 8 6は現用端局装置、 8 7は W e s t側 P R T i n / o u tポー ト、 8 8は W e s t側 WR K i n / o u tポー ト、 8 9は E a s t側 P R T i n / o u tポー ト、 9 0は E a s t側 W R K i n/ o u tポート、 9 1は W e s t側 A d d /D r o p (P R T) ポ ート (A d d (P R T) ポート, D r o p ( P RT) ポート) 、 9 2は We s t側A d d ZD r o p (WR K) ポート (A d d (WRK) ポー 卜、 D r o p (WRK) ポート) 、 9 3は E a s t側 A d d ZD r o p
(P T) ポート (A d d (P R T) ポート、 D r o p (P R T) ポー ト) 、 9 4は E a s t側 A d d ZD r o p (WRK) ポート (A d d ( WRK) ポート、 D r o p (WRK) ポート) 、 9 5は現用経路、 9 6 は予備経路である。
次に動作について説明する。
この実施の形態 5においては、 光スイッチング装置 1 8 dの W e s t 側 A d d ZD r o p (WR K) ポート 9 2に接続されている現用端局装 置 8 5と、 現用端局装置 8 6が、 リング切替手段 8 3 , W e s t側スパ ン切替手段 8 1および現用経路 9 5を経由して双方向で接続されている 現用端局装置 8 5の接続された光スイッチング装置 1 8 dと現用端局 装置 8 6の接続された光スィッチング装置 1 8 dの間の現用経路 9 5で 障害が発生した場合は、 同一区間の予備経路 9 6が正常であればスパン 切替手段 8 1において実施の形態 1〜 4で説明した手順によってスパン 切替が実施される。 スパン切替は障害区間を挟む 2つの光スイッチング 装置 1 8 d間で実行する事ができ、 通信を行うエンドノード間で複数の 現用経路障害が起きた場合にも該当区間でそれぞれスパン切替を行うこ とで障害の復旧が可能である。 第 2図の ( 2 ) に示した従来例では、 伝 送路 1 1 5のみに障害が発生した際に、 通信を行っているエンドノード において経路切替をおこなっていた。 この場合たとえばノード 1 1 3 と 1 1 2の間では伝送路 1 1 5に、 ノード 1 1 2 と 1 1 1 の間では伝送路 1 1 6に障害が発生してしまうと、 ノード 1 1 2を経由した通信経路は 確保できなくなってしまう。 この実施の形態 5では隣接ノード間の経路 毎にスパン切替を個別に実施するため、 上記のような障害パターンにお いても復旧経路の確保が可能となる利点がある。
第 1 2図にリ ング切替時の切替状態の一例について図示する。 同一区 間の現用経路 9 5 と予備経路 9 6 に同時に障害が発生すれば、 リ ング切 替手段 8 3 において逆周りの予備経路 9 6への切替が実施され、 通信が 救済される。 このリ ング切替機能は第 2図の ( 3 ) に示した従来例の切 替と同等である。 産業上の利用可能性
以上のように、 この発明に係る光スイ ッチング装置は、 送信部に I X 2光空間スィ ツチで実現できる予備系送信光選択手段及び現用系送信光 分岐手段を設け、 受信部に、 2 X 2光空間スィ ッチで実現できる受信光 切替手段及び 1 X 2光空間スィ ッチで実現できる予備系受信光ゲート手 段を設けているので、 4 X 4光空間スィ ッチを用いることなく現用系と 予備系との切替が可能となり、 複数のノー ド間を光信号を用いて現用経 路と予備経路で接続したネッ トワークの経路切替などにおいて好適に利 用することができる。

Claims

請 求 の 範 囲
1 . 現用送信経路を接続する現用系出力ポートと、 現用受信経路を接続 する現用系入力ポートと、 予備送信経路を接続する予備系出力ポー卜と 、 予備受信経路を接続する予備系入力ポートと、 現用端局装置の送信部 を接続する現用系アツ ドポートと、 前記現用端局装置の受信部を接続す る現用系ドロップポートと、 予備端局装置の送信部を接続する予備系ァ ッ ドポートと、 予備端局装置の受信部を接続する予備系ド口ップポート を有する光スイッチング装置において、
前記現用系アツ ドポートへ入力された光信号を前記現用系出力ポート と前記予備系出力ポートへ分岐出力する現用系送信光分岐手段と、 前記 予備系出力ポ一トへ該現用系送信光分岐手段の一方の出力または前記予 備系アツ ドポー卜へ入力された光信号の一方を選択して出力するための 予備系送信光選択手段とを有する送信部と、
前記現用系入力ポートと前記予備系入力ポートから入力された光信号 を入力とし、 2つの該入力を空間的に経路を切り替え又はスルー状態で 2つの出力信号として出力し、 該 2つの出力信号のうち一方の出力信号 は前記現用系ド口ップポー卜へ接続する受信光切替手段と、 該受信光切 替手段の他方の出力信号をオンオフして前記予備系ドロップポートへ出 力する予備系受信光ゲート手段とを有する受信部とを備えたことを特徴 とする光スィツチング装置。
2 . 現用系入力ポート及び現用系アツ ドポートにそれぞれ入力された光 信号をスルー又は切り替えて光スィツチング装置の送信部及び受信部に それぞれ出力する 2入力 2出力の現用系アツ ド Zドロップ切替手段と、 予備系入力ポート及び予備系アツ ドポートにそれぞれ入力された光信 号をスルー又は切り替えて前記光スィ ツチング装置の前記送信部及び前 記受信部にそれぞれ出力する 2入力 2出力の予備系アツ ド Zドロップ切 替手段とを備えたことを特徴とする請求の範囲第 1項記載の光スィ ッチ ング装置。
3 . 現用送信経路を接続する現用系出力ポートと、 現用受信経路を接続 する現用系入力ポートと、 予備送信経路を接続する予備系出力ポートと 、 予備受信経路を接続する予備系入力ポートと、 現用端局装置の送信部 を接続する現用系アツ ドポートと、 前記現用端局装置の受信部を接続す る現用系 ドロップポートと、 予備端局装置の送信部を接続する予備系ァ ッ ドポー トと、 前記予備端局装置の受信部を接続する予備系 ド口ップポ — 卜を有する光スイ ッチング装置において、
前記現用系アツ ドポー トへ入力された光信号を前記現用系出力ポー ト と前記予備系出力ポー トへ分岐出力する現用系送信光分岐手段と、 前記 予備系出力ポートへ該現用系送信光分岐手段の一方の出力または予備系 アツ ドポー ト入力信号の一方を選択して出力するための予備系送信光選 択手段とを有する送信部と、
前記予備系入力ポー トから入力された光信号を入力とし、 該入力を空 間的に経路を切り替えて 2つの出力とし、 該 2つの出力のうち一方の出 力は前記予備系 ドロップポー 卜へ接続する予備系受信光切替手段と、 該 予備系受信光切替手段の他方の出力と前記現用系入力ポー トから入力さ れた光信号を入力とし、 2つの該入力の一方を選択して前記現用系 ドロ ップポー トへ出力する現用系受信光選択手段とを有する受信部とを備え たことを特徴とする光スイ ッチング装置。
4 . 現用系入力ポー ト及び現用系ァッ ドポートにそれぞれ入力された光 信号をスルー又は切り替えて光スィ ツチング装置の送信部及び受信部に それぞれ出力する 2入力 2出力の現用系アツ ド/ドロップ切替手段と、 予備系入力ポート及び予備系アツ ドポートにそれぞれ入力された光信 号をスルー又は切り替えて前記光スイ ッチング装置の前記送信部及び前 記受信部にそれぞれ出力する 2入力 2出力の予備系アツ ド Zドロップ切 替手段とを備えたことを特徴とする請求の範囲第 3項記載の光スィ ッチ ング装置。
5 . 現用送信経路を接続する現用系出力ポー トと、 現用受信経路を接続 する現用系入力ポー トと、 予備送信経路を接続する予備系出力ポートと 、 予備受信経路を接続する予備系入力ポー トと、 現用端局装置の送信部 を接続する現用系アツ ドポー トと、 前記現用端局装置の受信部を接続す る現用系 ドロップポー トと、 予備端局装置の送信部を接続する予備系ァ ッ ドポートと、 前記予備端局装置の受信部を接続する予備系ド口ップポ —卜とを有する光スイ ッチング装置において、
前記現用系アツ ドポー トへ入力された光信号を前記現用系出力ポー ト と前記予備系出力ポ一 卜へ分岐出力する現用系送信光分岐手段と、 前記 予備系出力ポー トへ該現用系送信光分岐手段の一方の出力または前記予 備系アツ ドポートへ入力された光信号の一方を選択して出力するための 予備系送信光選択手段とを有する送信部と、
前記予備系入力ポー トから入力された光信号を 2分岐して出力する予 備系受信光分岐手段と、 該予備系受信光分岐手段の 2つの出力のうち一 方の出力と前記現用系入力ポー トから入力された光信号を入力とし、 該 2つの入力の一方を選択して前記現用系ドロップポートへ出力する現用 系受信光選択手段と、 前記予備系受信光分岐手段の他方の出力をオンォ フして前記予備系 ドロップポー トへ出力する予備系受信光ゲー ト手段と を有する受信部とを備えたことを特徴とする光スイ ッチング装置。
6 . 現用系入力ポー ト及び現用系アツ ドポー トにそれぞれ入力された光 信号をスルー又は切り替えて光スイ ッチング装置の送信部及び受信部に それぞれ出力する 2入力 2出力の現用系アツ ド Zドロップ切替手段と、 予備系入力ポート及び予備系アツ ドポー トにそれぞれ入力された光信 号をスルー又は切り替えて前記光スイッチング装置の前記送信部及び前 記受信部にそれぞれ出力する 2入力 2出力の予備系アツ ド Zドロップ切 替手段とを備えたことを特徴とする請求の範囲第 5項記載の光スィ ッチ ング装置。
7 . 現用経路が接続される 2つの現用系入出力ポー ト、 予備経路が接続 され、 各現用系入出力ポー ト毎に設けられて 2つの組を組成する予備系 入出力ポー ト、 現用端局装置の送信部を接続する現用系アツ ドポー ト、 前記現用端局装置の受信部を接続する現用系 ドロップポー ト、 予備端局 装置の送信部を接続する予備系アツ ドポー ト、 前記予備端局装置の受信 部を接続する予備系 ドロップポー トを有する光スイ ッチング装置におい て、
前記各組にそれぞれ 1個ずつ設けられ、 それぞれ、 前記現用系入出力 ポート及び前記予備系入出力ポートの入出力光信号を切り替えて又はス ルーで入出力することにより同一区間内で前記現用経路と前記予備経路 を切り替えるスパン切替手段と、
前記一方の組の予備系アツ ドポー ト、 前記一方の組の現用系アツ ドボ 一卜、 前記一方の組の現用系 ド口ップポー ト及び前記一方の組の予備系 ドロップポー トの入出力信号を切り替えて又はスルーで前記一方の組の スパン切替手段に接続する第 1 のリ ング切替手段と、 前記他方の組の現用系アツ ドボ一 卜、 前記他方の組の予備系アツ ドボ 一ト、 前記他方の組の現用系 ド口ップポー ト及び前記他方の組の予備系 ドロップポー トの入出力信号を切り替えて又はスルーで前記他方の組の スパン切替手段に接続する第 2のリ ング切替手段とを備えたことを特徴 とする光スィ ツチング装置。
PCT/JP1999/004682 1998-08-31 1999-08-30 Commutateur optique WO2000013347A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69942662T DE69942662D1 (de) 1998-08-31 1999-08-30 Optischer schalter
US09/530,448 US6434288B1 (en) 1998-08-31 1999-08-30 Optical switching system
EP99940561A EP1028550B1 (en) 1998-08-31 1999-08-30 Optical switch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/245795 1998-08-31
JP24579598A JP3553385B2 (ja) 1998-08-31 1998-08-31 光スイッチング装置

Publications (1)

Publication Number Publication Date
WO2000013347A1 true WO2000013347A1 (fr) 2000-03-09

Family

ID=17138955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004682 WO2000013347A1 (fr) 1998-08-31 1999-08-30 Commutateur optique

Country Status (5)

Country Link
US (1) US6434288B1 (ja)
EP (2) EP1926342A3 (ja)
JP (1) JP3553385B2 (ja)
DE (1) DE69942662D1 (ja)
WO (1) WO2000013347A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6721508B1 (en) 1998-12-14 2004-04-13 Tellabs Operations Inc. Optical line terminal arrangement, apparatus and methods
WO2001030006A1 (en) * 1999-10-18 2001-04-26 Nortel Networks Limited Communication network for transmitting and restoring an optical signal
JP3686824B2 (ja) * 2000-05-29 2005-08-24 株式会社日立コミュニケーションテクノロジー 光1:1切替装置
JP4592170B2 (ja) * 2000-10-18 2010-12-01 株式会社東芝 光伝送装置
DE10104704A1 (de) * 2001-02-02 2002-09-26 Siemens Ag Verfahren und elektro-optische Schaltungsanordnung zur Leitungsprotektion in einer WDM-Datenübertragungsstrecke
US6832014B1 (en) * 2002-02-08 2004-12-14 Marconi Communications, Inc. Backplane wire and noise eliminator tube
GB2386804A (en) * 2002-03-22 2003-09-24 Motorola Inc Communications network node access switches
US7116905B2 (en) * 2002-03-27 2006-10-03 Fujitsu Limited Method and system for control signaling in an open ring optical network
US7231148B2 (en) * 2002-03-28 2007-06-12 Fujitsu Limited Flexible open ring optical network and method
US7336901B1 (en) * 2004-02-24 2008-02-26 Avanex Corporation Reconfigurable optical add-drop multiplexers employing optical multiplex section shared protection
JP4593267B2 (ja) * 2004-12-28 2010-12-08 富士通株式会社 光ノードおよび光分岐挿入装置
JP5682353B2 (ja) * 2011-02-14 2015-03-11 富士通株式会社 伝送装置およびネットワークプロテクション方法
US9170377B2 (en) * 2011-07-18 2015-10-27 Hewlett-Packard Development Company, L.P. Optical interconnect
US9519019B2 (en) * 2013-04-11 2016-12-13 Ge Aviation Systems Llc Method for detecting or predicting an electrical fault
CN108007481B (zh) * 2017-12-07 2020-06-05 上海第二工业大学 一种利用光学非互易器件进行光传感的***
CN111856481B (zh) * 2020-07-29 2021-07-06 杭州视光半导体科技有限公司 一种扫描器以及应用该扫描器的同轴和非同轴雷达***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08149088A (ja) * 1994-11-17 1996-06-07 Nippon Telegr & Teleph Corp <Ntt> 光多重通信網およびノード装置
JPH08293854A (ja) * 1995-04-24 1996-11-05 Kokusai Denshin Denwa Co Ltd <Kdd> 波長多重による予備回線を有する光海底ケーブル装置およびその通信方法
JPH10112700A (ja) * 1996-10-04 1998-04-28 Nec Corp リング構成の波長分割多重光伝送装置
JPH11127183A (ja) * 1997-10-20 1999-05-11 Fujitsu Ltd リングネットワークにおける伝送装置
JPH11289296A (ja) * 1998-04-02 1999-10-19 Fujitsu Ltd 光伝送装置、光伝送システム及び光端局

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442623A (en) * 1992-08-17 1995-08-15 Bell Communications Research, Inc. Passive protected self healing ring network
JPH06209284A (ja) * 1993-01-12 1994-07-26 Nippon Telegr & Teleph Corp <Ntt> 光スイッチングモジュール
BR9608792A (pt) * 1995-06-26 1999-02-17 Ericsson Telefon Ab L M Nó de comunicação e de multiplexador ótico de soma/redução sistema de rede de comunicação e processo para restauração de um sistema de rede de comunicação
JPH10126350A (ja) * 1996-10-15 1998-05-15 Nec Corp 光ネットワーク、光分岐挿入ノードおよび障害回復方式
WO1998034363A1 (en) * 1997-01-31 1998-08-06 Telefonaktiebolaget Lm Ericsson (Publ) Wdm traffic protection
US5986783A (en) * 1997-02-10 1999-11-16 Optical Networks, Inc. Method and apparatus for operation, protection, and restoration of heterogeneous optical communication networks
JP2000112700A (ja) * 1998-10-05 2000-04-21 Canon Inc データベース化装置、印刷システム、印刷装置の状態変化表示方法、及びコンピュータ読み取り可能な記憶媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08149088A (ja) * 1994-11-17 1996-06-07 Nippon Telegr & Teleph Corp <Ntt> 光多重通信網およびノード装置
JPH08293854A (ja) * 1995-04-24 1996-11-05 Kokusai Denshin Denwa Co Ltd <Kdd> 波長多重による予備回線を有する光海底ケーブル装置およびその通信方法
JPH10112700A (ja) * 1996-10-04 1998-04-28 Nec Corp リング構成の波長分割多重光伝送装置
JPH11127183A (ja) * 1997-10-20 1999-05-11 Fujitsu Ltd リングネットワークにおける伝送装置
JPH11289296A (ja) * 1998-04-02 1999-10-19 Fujitsu Ltd 光伝送装置、光伝送システム及び光端局

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1028550A4 *

Also Published As

Publication number Publication date
JP3553385B2 (ja) 2004-08-11
EP1028550A4 (en) 2004-09-08
EP1028550A1 (en) 2000-08-16
EP1926342A2 (en) 2008-05-28
DE69942662D1 (de) 2010-09-23
EP1028550B1 (en) 2010-08-11
US6434288B1 (en) 2002-08-13
EP1926342A3 (en) 2008-11-26
JP2000078080A (ja) 2000-03-14

Similar Documents

Publication Publication Date Title
US6701085B1 (en) Method and apparatus for data transmission in the wavelength-division multiplex method in an optical ring network
US6915075B1 (en) Protection of WDM-channels
JP4638754B2 (ja) 光装置および光クロスコネクト装置
JP3362228B2 (ja) 光通信システム用故障切替えノード、光通信システム、及び光通信システムにおける故障切替え方法
CA2254606C (en) Ring network for sharing protection resource by working communication paths
WO2000013347A1 (fr) Commutateur optique
JP2004254317A (ja) 保護切替えアーキテクチャおよび使用方法
JPH09163413A (ja) 光通信ネットワーク装置と光伝送方式と光通信ネットワーク
JP2005521330A (ja) 光ネットワークシステムにおける監督チャネル
JP2006217010A (ja) 光波長挿入分岐装置およびそれを用いた光ネットワーク装置
JPH11252016A (ja) 光通信用ノード及びこれにより構成されるリング構成の波長分割多重光伝送装置
JP2004140789A (ja) 2×2スイッチ機能を使用した予備用光スイッチを用いたネットワークノード
JP2004215272A (ja) 波長分割多重方式の双方向自己回復環状光通信網
JP2001268011A (ja) 光ノードシステム、及び、スイッチの接続方法
EP1064739B1 (en) Protection of wdm-channels
JP2010041602A (ja) 波長分割多重装置及び波長分割多重ネットワークにおける再生中継方法
JP4287382B2 (ja) 端局中継装置、中継方法本発明は、ネットワークの端局中継装置に関するものである。
WO2007071200A1 (fr) Procede, equipement et systeme de partage de protection de canaux optiques groupes
JP4676657B2 (ja) 光アド・ドロップ多重化装置
JP2012004800A (ja) 光ネットワークシステムのノード装置および冗長切替方法
JP4903571B2 (ja) 光通信網用のノード
US7020078B2 (en) Communication network system and communication network node for use in the same communication network system
WO2002043286A1 (fr) Circuit pour la commutation de trajets optiques
JP2003046456A (ja) 光伝送ネットワークシステムおよび光伝送ネットワークシステムの障害監視方法
JP2004513534A (ja) 光分岐挿入装置における光チャネルスイッチングのための方法及び装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1999940561

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09530448

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999940561

Country of ref document: EP