WO1999035477A1 - Mikromechanisches bauelement - Google Patents

Mikromechanisches bauelement Download PDF

Info

Publication number
WO1999035477A1
WO1999035477A1 PCT/DE1998/003472 DE9803472W WO9935477A1 WO 1999035477 A1 WO1999035477 A1 WO 1999035477A1 DE 9803472 W DE9803472 W DE 9803472W WO 9935477 A1 WO9935477 A1 WO 9935477A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
glass wafer
component
component according
glass
Prior art date
Application number
PCT/DE1998/003472
Other languages
English (en)
French (fr)
Inventor
Horst Muenzel
Helmut Baumann
Eckhard Graf
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US09/600,038 priority Critical patent/US6465854B1/en
Priority to JP2000527812A priority patent/JP2002500961A/ja
Priority to KR1020007007531A priority patent/KR100574575B1/ko
Publication of WO1999035477A1 publication Critical patent/WO1999035477A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00269Bonding of solid lids or wafers to the substrate

Definitions

  • the invention relates to a component with at least one micromechanical surface structure structured on a silicon substrate and a protective cap that covers the at least one surface structure, and a method for producing the component.
  • Components of the generic type consist of a silicon substrate on the surface of which a poly-stable silicon layer is epitaxially grown using known methods.
  • Micromechanical structures for example seismic masses of sensor elements, actuators of micromotors or other movable structures, are generated in this silicon layer.
  • the structuring is achieved, for example, by means of defined etching attacks from the top of the polycrystalline silicon, it being possible to achieve structures which can be suspended by moving under certain areas.
  • a covering protective cap It is known here to produce this protective cap as a silicon wafer structured according to the component to be covered, which is bonded to the wafer having the surface structure.
  • the cap wafer is provided with a melting glass at the joints by means of screen printing. The cap wafer is then adjusted to the base wafer and the joints are subjected to pressure and temperature effects of approximately 400 ° C.
  • the components can only be produced by means of a relatively complex manufacturing process using screen-printed low-melting glass.
  • a particular disadvantage is that in the joining process following the screen printing of the melting glass, a certain amount of the melting glass is inevitably pressed out of the joint or joints between the cap wafer and the base wafer.
  • a relatively large contact or connection area between the cap wafer and the base wafer is required. If, for example, a connection area is printed with an approximately 500 ⁇ m wide glass layer, the subsequent joining process results in an actual requirement of approximately 700 ⁇ m due to the lateral deflection of the glass. This additional Space is not available for the arrangement of functional structures of the component, so that the known components have to be built accordingly large.
  • Another disadvantage of the known components is that a hermetically sealed closure of the components can be achieved only with great effort, since the connection of the cap wafer via joints of low-melting glass applied by screen printing only allows a limited vacuum.
  • a further disadvantage is that after the cap wafer has been joined to the base wafer, it is only possible to check the now encapsulated micromechanical surface structures by measuring. A visual check is not possible.
  • the component according to the invention with the features mentioned in claim 1 has the advantage that it can be produced with simple, safely controllable process steps. Because the cap is formed by a glass wafer, the joining of the covering glass wafer with the base wafer of the component can be achieved by robust methods suitable for mass production. In particular, if the surface of the base wafer facing the glass wafer is designed with a defined residual roughness, in particular of ⁇ 40 nm, a direct one can be provided without the provision of adhesion-promoting intermediate layers Apply the glass wafer to the base wafer.
  • the glass wafer is joined to the base wafer by anodic bonding.
  • relatively small connecting surfaces can be achieved, which require a correspondingly reduced space requirement on the component.
  • connection areas can be placed closer to the functional structures of the component, so that their total area requirement is reduced.
  • the glass wafer is optically transparent.
  • the micromechanical surface structures encapsulated by means of the glass wafer can be subjected to a visual inspection after the component has been finished.
  • a very advantageous Movements of the micromechanical structures are evaluated optically, for example by having active and / or passive optical elements by means of which optical signals can be evaluated through the transparent glass wafer.
  • the component according to the invention enables vacuum inclusions of in particular up to 1 mbar to be achieved.
  • the micromechanical structures can be used very advantageously as seismic masses of rotation rate sensors, in which a high-quality vacuum is necessary to achieve a sufficient vibration quality.
  • At least one electrode is arranged on the side of the glass wafer facing the micromechanical structures.
  • the electrode in addition to the capping of the micromechanical structures of the glass wafers, it can also be used to detect any deflections of the micromechanical structures, for example by the electrode being part of a capacitive evaluation means that detects changes in distance between the electrode of the glass wafer and at least one micromechanical structure.
  • the figure shows a component designated overall by 10, which comprises a base wafer 12 so-called and a cap wafer 14 arranged thereon.
  • the base wafer 12 consists of a silicon substrate 16, a silicon oxide SiO 2 layer 18 arranged thereon, and a polycrystalline silicon layer 20.
  • a micromechanical surface structure 22 which is only indicated here, is structured, which comprises, for example, spring-loaded seismic masses.
  • the cap wafer 14 consists of a glass wafer 24, for example of transparent Pyrex®
  • the surface structure 22 is structured in a recess 26 of the silicon layer 20 and is encompassed by a connection region 28 of the silicon layer 20.
  • a surface 30 of the silicon layer 20 is planarized to a high quality, at least in its connection region 28, and has a maximum roughness ⁇ 40 nm (P-Valley).
  • the glass wafer 24 forms a trough-shaped depression 32 which is encompassed by a connecting region 34.
  • the connection region 34 of the glass wafer 24 lies on the connection region 28 of the silicon layer 20. In this case, there is a direct joint connection between the connection areas 28 and 34 without the interposition of any adhesion promoters. The production of this joint connection will be explained.
  • the inside of the recess 32 carries at least one electrode 36, which is integrated into an electronic control or evaluation circuit via connecting lines (not shown in more detail).
  • the glass wafer 24 is transparent. As a result, the micromechanical surface structure 22 is visible through the glass wafer 24, so that on the one hand a visual inspection of the surface structures 22 can take place, while on the other hand the surface structures 22 can be integrated into optical components.
  • the transparent glass wafer 24 can be used to check for adhesion effects and mobility of the surface structures 22 and to carry out a general error analysis, for example checking the joint connection between the glass wafer 24 and the silicon layer 20.
  • the component 10 can be, for example, a rotation rate sensor or an acceleration sensor.
  • a rotation rate sensor or an acceleration sensor.
  • the electrode 36 which is preferably arranged in such a way that a visual inspection of the micromechanical surface structures 22 is not influenced, or is influenced only to an insignificant extent, can be very advantageously incorporated into a detection of a deflection of the surface structure 22 due to acceleration or rotational speed by a distance between the electrode 26 and the surface structure 22 can be evaluated via a change in capacitance.
  • a direct contact area between the glass wafer 24 and the silicon layer 20 is limited to a minimum width of, for example, 200 ⁇ m.
  • a minimum width of, for example, 200 ⁇ m.
  • firm joint connections between the glass wafer 24 and the silicon layer 20 can be achieved in such extremely small-area contact areas. This makes it possible, due to the relatively small space requirement for the actual joint, to structure the micromechanical surface structures 22 up to close to the joint. A high density of components of the component 10 can thus be achieved.
  • the component 10 is produced, for example, as follows:
  • the base wafer 12 having the sensing device is manufactured in a manner known per se.
  • the silicon oxide layer 18 is deposited on the silicon substrate 16, on which in turn the polycrystalline silicon layer 20 is epitaxially deposited is grown at temperatures of, for example, over 1000 ° C.
  • the micromechanical surface structures 22 are structured in the relatively thick polysilicon layer 20, including the silicon oxide intermediate layer 18.
  • Epitaxial growth of the polysilicon layer 20 is understood to mean that a process is used for the growth which is known, for example, from semiconductor production for producing single-crystalline silicon layers on a single-crystal silicon substrate. Such processes are able to deliver relatively large layer thicknesses, for example a few 10 ⁇ m, for the polysilicon layer 20. When using this process to achieve a polycrystalline silicon layer 20, a relatively large roughness forms on the surface 30.
  • the structuring of the surface structures 20 takes place by means of known methods of plasma etching technology, with the polysilicon layer 20 being partially underetched in order to achieve freely suspended surface structures 22 by partially removing the silicon oxide layer 18.
  • the silicon oxide layer 18 can be applied, for example, in a CVD process (chemical vapor deposition), the intermediate layer 18 being able to consist, for example, of a plurality of intermediate layers, on the uppermost intermediate layer of which polycrystalline silicon layer 20 is grown epitaxially.
  • CVD process chemical vapor deposition
  • the base wafer 12 is subsequently planarized on its surface 30.
  • an extremely high-quality planarization takes place using a CMP method, which leads to a residual roughness of ⁇ 40 nm.
  • the glass wafer 24 is processed by means of suitable processes, for example etching processes or ultrasonic removal processes, in such a way that the depression 32 and the connecting regions 34 are formed.
  • the glass wafer 24 can be provided with through openings. If appropriate, the at least one electrode 36 is applied to the recess 32, for example by vapor deposition of electrically conductive materials.
  • the base wafer 12 is joined to the cap wafer 14 by adjusting the connection areas 28 and 34 to one another.
  • the joining can be carried out by means of anodic bonding, in which the wafers 12 and 24 are connected to a voltage source, for example 100 to 1000 V, and at the same time there is a temperature effect of approximately 400 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)
  • Gyroscopes (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Die Erfindung betrifft ein Bauelement, mit wenigstens einer auf einer Silizium-Substrat strukturierten mikromechanischen Oberflächenstruktur und einem die wenigstens eine Oberflächenstruktur abdeckenden Kappenwafer. Es ist vorgesehen, daß der Kappenwafer (14) von einem Glaswafer (24) gebildet ist.

Description

Mikromechanisches Bauelement
Die Erfindung betrifft ein Bauelement, mit wenigstens einer, auf einem Silizium-Substrat strukturierten mikromechanischen Oberflachenstruktur und einer, die wenigstens eine Oberflachenstruktur abαeckenden Schutzkappe sowie ein Verfahren zur Herstellung des Bauelementes.
Stand der Technik
Bauelemente der gattungsgemaßen Art sind bekannt. Diese bestehen aus einem Silizium-Substrat auf dessen Oberflache mittels bekannter Verfahren eine poly- kπstallme Siliziumschicht epitaktisch aufgewachsen wird. In dieser Siliziumschicht werden mikromechanische Strukturen, beispielsweise seismische Massen von Sensorelementen, Aktoren von Mikromotoren oder andere bewegliche Strukturen erzeugt. Die Strukturierung wird beispielsweise über definierte Atzangriffe von der Oberseite des polykristallmen Siliziums erzielt, wobei durch bereichsweises Unteratzen beweg- lieh aufgehängte Strukturen erzielbar sind. Um beim bestim ungsgemaßen Einsatz der Bauelemente die mikromechanischen Strukturen vor äußeren Einflüssen zu schützen, ist bekannt, diese mit einer abdeckenden Schutzkappe zu versehen. Hier ist bekannt, diese Schutzkappe als, entsprechend des abzudeckenden Bauelementes strukturierten Siliziumwafer herzustellen, der mit dem die Oberflachenstruktur aufweisenden Wafer gefugt wird. Um diese Fugeverbindung zu erreichen, wird der Kappenwafer an den Fugestellen mittels Siebdruck mit einem niederschmelzenden Glas versehen. Anschließend erfolgt eine Justierung des Kappenwafers zu dem Grundwafer und das Fugen unter Druck und Temperatureinwirkung von circa 400°C.
Hierbei ist nachteilig, daß die Bauelemente nur mittels eines relativ aufwendigen Herstellungsprozesses unter Verwendung von siebgedrucktem niederschmelzenden Glas herstellbar sind. Insbesondere ist nachteilig, daß bei dem auf dem Siebdruck des niederschmel- zendem Glases folgenden Fugeprozeß unvermeidlich eine bestimmte Menge des niederschmelzenden Glases aus der beziehungsweise den Fugestellen zwischen dem Kappenwafer und dem Grundwafer herausgepreßt wird. Um eine Beeinflussung der mikromechanischen Strukturen durch dieses heraustretende Glas zu vermeiden, wird eine relativ große Kontakt- beziehungsweise Verbindungsflache zwischen dem Kappenwafer und dem Grundwafer benotigt. Wird beispielsweise ein Verbindungsbereich mit einer circa 500 μm breiten Glasschicht bedruckt, ergibt sich bei dem nachfolgenden Fugeprozeß, infolge des seitlichen Ausweichens des Glases, ein tatsachlicher Bedarf von circa 700 μm. Dieser zusatzliche Flachenbedarf steht nicht für die Anordnung von Funktionsstrukturen des Bauelementes zur Verfugung, so daß die bekannten Bauelemente entsprechend groß bauen müssen .
Nachteilig bei den bekannten Bauelementen ist ferner, daß sich ein hermetisch dichter Abschluß der Bauelemente nur sehr aufwendig erzielen laßt, da die Anbin- dung des Kappenwafers über Fugen von im Siebdruck aufgebrachtem niederschmelzenden Glas technisch nur ein beschranktes Vakuum zulaßt.
Ferner ist nachteilig, daß nach Fugen des Kappenwafers mit dem Grundwafer eine Überprüfung der nunmehr eingekapselten mikromechanischen Oberflachenstrukturen lediglich durch Ausmessen möglich ist. Eine optische Überprüfung ist nicht möglich.
Vorteile der Erfindung
Das erfindungsgemaße Bauelement mit den im Anspruch 1 genannten Merkmalen bietet den Vorteil, daß dieses mit einfachen, sicher beherrschbaren Prozeßschritten herstellbar sind. Dadurch, daß die Kappe von einem Glaswafer gebildet ist, laßt sich das Fugen des abdeckenden Glaswafers mit dem Grundwafer des Bauelementes über, für eine Massenproduktion geeignete, robuste Verfahren erzielen. Insbesondere, wenn die den Glaswafer zugewandte Oberflache des Grundwafers mit einer definierten Restrauhigkeit, insbesondere von < 40 nm ausgebildet ist, kann ohne Anordnung von haftvermittelnden Zwischenschichten ein direktes Aufbringen des Glaswafers auf den Grundwafer erfolgen.
Überraschenderweise wurde gefunden, daß Restrauhig- keiten < 40 nm beispielsweise mittels sogenannter CMP-Verfahren (chemical mechanical polishmg / chemisch-mechanisches Polieren) für polykristalline Siliziumschichten, in denen die mikromechanischen Oberflachenstrukturen angelegt sind, reproduzierbar erzielbar sind. Infolge einer derartig hochwertigen Planaπsierung der zum Glaswafer weisenden Oberseite lassen sich Fugetechniken nutzen, die ein mit den erwähnten Nachteilen behaftetes Zwischenanordnen eines zusatzlichen Haftvermittlers, insbesondere des in Siebdrucktechnik aufgebrachten niederschmelzenden Glases, überflüssig macht.
Insbesondere ist bevorzugt, wenn das Fugen des Glaswafers mit dem Grundwafer über ein anodisches Bonden erfolgt. Hierdurch lassen sich relativ kleine Verbindungsflachen erzielen, die einen entsprechend verringerten Platzbedarf auf dem Bauelement benotigen. Somit können die Verbindungsflachen naher an die Funktionsstrukturen des Bauelementes plaziert werden, so daß deren gesamter Flachenbedarf verringert ist.
In weiterer bevorzugter Ausgestaltung der Erfindung ist vorgesehen, daß der Glaswafer optisch transparent ist. Hierdurch lassen sich die mittels des Glaswafers gekapselten mikromechanischen Ober lachenstrukturen nach Endfertigung des Bauelementes einer Sichtprüfung unterziehen. Ferner kann so sehr vorteilhaft, eine Auswertung von Bewegungen der mikromechanischen Strukturen auf optischen Wege erfolgen, indem diese beispielsweise aktive und/oder passive optische Elemente aufweisen, mittels denen optische Signale durch den transparenten Glaswafer hindurch auswertbar sind.
Ferner ist bevorzugt, daß bei dem erfindungsgemäßen Bauelement die Erzielung von Vakuumeinschlüssen von insbesondere bis 1 mbar möglich wird. So können sehr vorteilhaft die mikromechanischen Strukturen als seismische Massen von Drehratensensoren genutzt werden, bei denen zur Erzielung einer ausreichenden Schwingergüte ein qualitativ hochwertiges Vakuum notwendig ist.
In weiterer bevorzugter Ausgestaltung der Erfindung ist vorgesehen, daß an der den mikromechanischen Strukturen zuwandten Seite des Glaswafers wenigstens eine Elektrode angeordnet ist. Hierdurch läßt sich neben der Abdeckelung der mikromechanischen Strukturen der Glaswafer gleichzeitig zur Detektion von etwaigen Auslenkungen der mikromechanischen Strukturen einsetzen, indem die Elektrode beispielsweise Bestandteil eines kapazitiven Auswertemittels ist, das Abstandsänderungen zwischen der Elektrode des Glaswafers und wenigstens einer mikromechanischen Struktur erfaßt.
Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen. Zeichnung
Die Erfindung wird nachfolgend in einem Ausführungsbeispiel anhand der zugehörigen Zeichnung, die sche- matisch eine Schnittdarstellung eines Bauelementes zeigt, näher erläutert.
Beschreibung des Ausführungsbeispiels
Die Figur zeigt ein insgesamt mit 10 bezeichnetes Bauelement, das einen so bezeichneten Grundwafer 12 und einen hierauf angeordneten Kappenwafer 14 umfaßt. Der Grundwafer 12 besteht aus einem Silizium-Substrat 16, einer hierauf angeordneten Siliziumoxid Siθ2~ Schicht 18 sowie einer polykristallinen Siliziumschicht 20. In der Siliziumschicht 20 ist eine hier lediglich angedeutete mikromechanische Oberflächenstruktur 22 strukturiert, die beispielsweise federn aufgehängte seismische Massen umfaßt.
Der Kappenwafer 14 besteht aus einem Glaswafer 24, beispielsweise aus transparentem Pyrex®-
Die Oberflächenstruktur 22 ist in einer Ausnehmung 26 der Siliziumschicht 20 strukturiert, und wird von einem Verbindungsbereich 28 der Siliziumschicht 20 umgriffen. Eine Oberfläche 30 der Siliziumschicht 20 ist zumindest in deren Verbindungsbereich 28 hochwertig planarisiert und besitzt eine maximale Rauhigkeit < 40 nm (P-Valley) . Der Glaswafer 24 bildet in seinem, den Oberflachenstrukturen 22 zugewandten Abschnitt eine wannenfor- ige Vertiefung 32 aus, die von einem Verbindungsbereich 34 umgriffen wird. Der Verbindungsbereich 34 des Glaswafers 24 liegt auf dem Verbindungsbereich 28 der Siliziumschicht 20 auf. Hierbei erfolgt eine unmittelbare Fugeverbindung zwischen den Verbindungsbereichen 28 und 34 ohne Zwischenschaltung etwaiger Haftvermittler. Die Herstellung dieser Fugeverbindung wird noch erläutert.
Die Innenseite der Vertiefung 32 tragt wenigstens eine Elektrode 36, die über nicht naher dargestellte Verbindungsleitungen in eine elektronische Ansteuer- beziehungsweise Auswerteschaltung eingebunden ist.
Der Glaswafer 24 ist transparent. Hierdurch ist die mikromechanische Oberflachenstruktur 22 durch den Glaswafer 24 hindurch sichtbar, so daß einerseits eine Sichtprüfung der Oberflachenstrukturen 22 erfolgen kann, wahrend andererseits die Oberflachenstrukturen 22 in optische Bauelemente einbindbar sind.
Durch den transparenten Glaswafer 24 kann insbeson- dere eine Prüfung auf Adhäsionseffekte und Beweglichkeit der Oberflächenstrukturen 22 und eine allgemeine Fehleranalyse, beispielsweise der Prüfung der Fugeverbindung zwischen dem Glaswafer 24 und der Siliziumschicht 20 erfolgen.
Das Bauelement 10 kann beispielsweise ein Drehratensensor oder ein Beschleunigungssensor sein. Durch die Anordnung der Elektrode 36, die bevorzugt so angeordnet ist, daß eine Sichtprüfung der mikromechanischen Oberflächenstrukturen 22 nicht oder nur unwesentlich beeinflußt wird, läßt sich diese so sehr vorteilhaft in eine Detektion einer beschleunigungs- oder dreh- ratenbedingten Auslenkung der Oberflächenstruktur 22 einbinden, indem ein Abstand zwischen der Elektrode 26 und der Oberflächenstruktur 22 über eine Kapazitätsänderung auswertbar ist.
Ein unmittelbarer Berührungsbereich zwischen dem Glaswafer 24 und der Siliziumschicht 20 ist auf eine Mindestbreite von beispielsweise 200 μm begrenzt. Infolge der Planarisierung der Oberfläche 30 mit einer Rauhigkeit < 40 nm lassen sich feste Fügeverbindungen zwischen dem Glaswafer 24 und der Siliziumschicht 20 in derart extrem kleinflächigen Berührungsbereichen erzielen. Hierdurch wird es möglich, aufgrund des relativ geringen Flächenbedarfs für die eigentliche Fügestelle die mikromechanischen Oberflächenstrukturen 22 bis nahe an die Fügestelle heran zu strukturieren. Somit läßt sich eine hohe Dichte von Komponenten des Bauelementes 10 erzielen.
Die Herstellung des Bauelementes 10 erfolgt beispielsweise folgendermaßen:
Zunächst wird in an sich bekannter Weise der die Sensiereinrichtung aufweisende Grundwafer 12 herge- stellt. Hierzu wird auf dem Silizium-Substrat 16 die Siliziumoxidschicht 18 abgeschieden, auf der wiederum die polykristalline Siliziumschicht 20 epitaktisch bei Temperaturen von beispielsweise über 1000°C aufgewachsen wird. Nach Aufwachsen der polykristallinen Siliziumschicht 20 erfolgt eine Strukturierung der mikromechanischen Oberflächenstrukturen 22 in der relativ dicken Polysiliziumschicht 20 unter Einbeziehung der Siliziumoxid-Zwischenschicht 18.
Unter epitaktisches Aufwachsen der Polysiliziumschicht 20 wird verstanden, daß zum Aufwachsen ein Prozeß verwendet wird, der beispielsweise aus der Halbleiterherstellung zur Erzeugung einkristalliner Siliziumschichten auf einem einkristallinen Silizium- Substrat bekannt ist. Derartige Prozesse sind in der Lage relativ große Schichtdicken, von beispielsweise einigen 10 μm für die Polysiliziumschicht 20 zu liefern. Beim Einsatz dieses Prozesses zum Erzielen einer polykristallinen Siliziumschicht 20 bildet sich eine relativ große Rauhigkeit an der Oberfläche 30 aus .
Die Strukturierung der Oberflächenstrukturen 20 erfolgt mittels bekannter Verfahren der Plasmaätztechnik, wobei zur Erzielung von frei aufgehängter Oberflächenstrukturen 22 eine teilweise Unterätzung der Polysiliziumschicht 20 erfolgt, indem die Siliziumoxidschicht 18 teilweise entfernt wird.
Die Siliziumoxidschicht 18 kann beispielsweise in einem CVD-Verfahren (chemical vapour deposition) aufgebracht sein, wobei die Zwischenschicht 18 beispielsweise aus mehreren Zwischenschichten bestehen kann, auf deren obersten Zwischenschicht dann die polykristalline Siliziumschicht 20 epitaktisch aufgewachsen wird.
Nachfolgend wird der Grundwafer 12 auf seiner Ober- fläche 30 planarisiert. Hierzu erfolgt beispielsweise mittels eines CMP-Verfahrens eine extrem hochwertige Planarisierung, die zu einer Restrauhigkeit von < 40 nm führt.
Der Glaswafer 24 wird mittels geeigneter Verfahren, beispielsweise Ätzverfahren oder Ultraschallabtragsverfahren, derart bearbeitet, daß es zur Ausbildung der Vertiefung 32 und der Verbindungsbereiche 34 kommt .
Nach weiteren Ausführungsbeispielen kann der Glaswafer 24, wenn keine druckdichte Anordnung der Oberflächenstrukturen 22 notwendig ist, mit Durchgangsöffnungen versehen sein. Gegebenenfalls wird in die Vertiefung 32 die wenigstens eine Elektrode 36, beispielsweise durch Aufdampfen elektrisch leitfähiger Materialien, aufgebracht.
Schließlich erfolgt ein Fügen des Grundwafers 12 mit dem Kappenwafer 14, indem die Verbindungsbereiche 28 und 34 zueinander justiert werden. Das Fügen kann mittels anodischen Bonden erfolgen, bei dem die Wafer 12 und 24 an eine Spannungsquelle, von beispielsweise 100 bis 1000 V angeschlossen werden und gleichzeitig eine Temperatureinwirkung von circa 400°C erfolgt.

Claims

Patentansprüche
1. Bauelement, mit wenigstens einer auf einer Silizium-Substrat strukturierten mikromechanischen Oberflächenstruktur und einem die wenigstens eine Ober- flächenstruktur abdeckenden Kappenwafer, dadurch gekennzeichnet, daß der Kappenwafer (14) von einem Glaswafer (24) gebildet ist.
2. Bauelement nach Anspruch 1, dadurch gekennzeich- net, daß der Glaswafer (24) optisch transparent ist.
3. Bauelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Glaswafer (24) Durchgangsöffnungen und/oder Vertiefungen (32) unter Belassung von Verbindungsbereichen (34) zur Verbindung mit einem Grundwafer (12) des Bauelementes (10) aufweist .
4. Bauelement nach einem der vorhergehenden Ansprü- ehe, dadurch gekennzeichnet, daß die Verbindungsbereiche (34) eine laterale Ausdehnung von < 200 μm aufweisen.
5. Bauelement nach einem der vorhergehenden Ansprü- ehe, dadurch gekennzeichnet, daß auf einer zum Grundwafer (12) weisenden Seite des Glaswafers (24), ins- besondere m einer Vertiefung (33) wenigstens eine Elektrode (36) angeordnet ist.
6. Bauelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die mikromechanischen Oberflachenstrukturen (22) m einer polykπ- stallmen Siliziumschicht (20) ausgebildet sind, deren Oberflache (30) dem Glaswafer (24) zugewandt
7. Bauelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Oberflache (30) auf eine Rauhigkeit < 40 nm planarisiert ist.
8. Bauelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Polysiliziumschicht (20) auf mindestens eine Zwischenschicht (18) epitaktisch aufgewachsen ist.
9. Bauelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Bauelement (10) ein Drehratensensor, Beschleunigungssensor oder dergleichen ist.
10. Verfahren zur Herstellung eines Bauelementes nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der Glaswafer (24) auf die polykristalline Siliziumschicht (20) des Grundwafers (12) ohne Zwischenschaltung eines Haftvermittlers gefugt wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß die Oberflache (30) der polykristallmen Siliziumschicht (20) vor dem Fugen mit dem Glaswafer (24) planarisiert wird.
12. Verfahren nach Anspruch 11, dadurch gekennzeich- net, daß die Planarisierung durch ein CMP-Verfahren
(chemical mechanical polishing) auf eine Rauhigkeit < 40 nm erfolgt.
13. Verfahren nach einem der vorhergehenden Ansprü- ehe, dadurch gekennzeichnet, daß der Glaswafer (24) mit dem Grundwafer (12) über anodisches Bonden verbunden wird.
14. Verfahren nach Anspruch 13, dadurch gekennzeich- net, daß das anodische Bonden bei einer Temperatur von circa 400°C und einer elektrischen Spannung zwischen 100 und 1000 V erfolgt.
15. Verfahren nach einem der vorhergehenden Ansprü- ehe, dadurch gekennzeichnet, daß die Durchgangsöffnungen und/oder Vertiefungen (32) im Glaswafer (24) durch ätzen erzeugt werden.
16. Verfahren nach einem der vorhergehenden Ansprü- ehe, dadurch gekennzeichnet, daß die Durchgangsöffnungen und/oder Vertiefungen (32) durch Ultraschallabtragsverfahren erzeugt werden.
PCT/DE1998/003472 1998-01-09 1998-11-26 Mikromechanisches bauelement WO1999035477A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/600,038 US6465854B1 (en) 1998-01-09 1998-11-26 Micromechanical component
JP2000527812A JP2002500961A (ja) 1998-01-09 1998-11-26 マイクロメカニックな構造エレメント
KR1020007007531A KR100574575B1 (ko) 1998-01-09 1998-11-26 마이크로메카니컬 컴포넌트 및 컴포넌트 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19800574.1 1998-01-09
DE19800574A DE19800574B4 (de) 1998-01-09 1998-01-09 Mikromechanisches Bauelement

Publications (1)

Publication Number Publication Date
WO1999035477A1 true WO1999035477A1 (de) 1999-07-15

Family

ID=7854233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/003472 WO1999035477A1 (de) 1998-01-09 1998-11-26 Mikromechanisches bauelement

Country Status (5)

Country Link
US (1) US6465854B1 (de)
JP (1) JP2002500961A (de)
KR (1) KR100574575B1 (de)
DE (1) DE19800574B4 (de)
WO (1) WO1999035477A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100757695B1 (ko) 1999-10-26 2007-09-13 프리스케일 세미컨덕터, 인크. 부품 및 이의 제조 방법

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002017677A2 (en) * 2000-08-24 2002-02-28 Fachhochschule Furtwangen Electrostatic electroacoustical transducer
DE10055081A1 (de) 2000-11-07 2002-05-16 Bosch Gmbh Robert Mikrostrukturbauelement
FR2834977B1 (fr) * 2002-01-18 2004-06-25 Tronic S Microsystems Composants miniaturises a element mobile et procede de realisation d'un tel composant
US6930368B2 (en) * 2003-07-31 2005-08-16 Hewlett-Packard Development Company, L.P. MEMS having a three-wafer structure
KR100541087B1 (ko) 2003-10-01 2006-01-10 삼성전기주식회사 마이크로 디바이스를 위한 웨이퍼 레벨 패키지 및 제조방법
JP2005172543A (ja) * 2003-12-10 2005-06-30 Mitsubishi Electric Corp 加速度センサおよび加速度センサの製造方法
US7816745B2 (en) * 2005-02-25 2010-10-19 Medtronic, Inc. Wafer level hermetically sealed MEMS device
JP4569322B2 (ja) * 2005-03-02 2010-10-27 株式会社デンソー 可動センサ素子
EP1798196B1 (de) * 2005-12-15 2017-08-09 Infineon Technologies AG Mehrlagiges Bauelement mit Reduzierung der UV-Stahlung während der Verkapselung
US8129801B2 (en) * 2006-01-06 2012-03-06 Honeywell International Inc. Discrete stress isolator attachment structures for MEMS sensor packages
DE102007001290A1 (de) * 2007-01-08 2008-07-10 Infineon Technologies Ag Halbleitermodul
US8201325B2 (en) * 2007-11-22 2012-06-19 International Business Machines Corporation Method for producing an integrated device
DE102007060785B4 (de) * 2007-12-17 2011-12-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines (Vielfach-) Bauelements auf Basis ultraplanarer Metallstrukturen
DE102008042366A1 (de) 2008-09-25 2010-04-01 Robert Bosch Gmbh Sensor und Verfahren zur Herstellung eines Sensors
US8304274B2 (en) * 2009-02-13 2012-11-06 Texas Instruments Incorporated Micro-electro-mechanical system having movable element integrated into substrate-based package
JP4784671B2 (ja) * 2009-03-13 2011-10-05 株式会社デンソー 振動型角速度センサ
US9837935B2 (en) * 2013-10-29 2017-12-05 Honeywell International Inc. All-silicon electrode capacitive transducer on a glass substrate
US9481572B2 (en) * 2014-07-17 2016-11-01 Texas Instruments Incorporated Optical electronic device and method of fabrication
DE102015101878B4 (de) * 2015-02-10 2021-08-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mit Aktivlot versiegelte Mikrosystemtechnik-Bauelemente, Komponenten hierfür und Lottransferverfahren zu ihrer Herstellung
DE102018219524A1 (de) 2018-11-15 2020-05-20 Robert Bosch Gmbh Verfahren zur Herstellung eines mikroelektromechanischen Sensors und mikroelektromechanischer Sensor
CN110690868B (zh) * 2019-09-27 2021-02-19 无锡市好达电子股份有限公司 一种滤波器的新型晶圆级封装方法
DE102021105476B3 (de) 2021-03-08 2022-03-17 Infineon Technologies Dresden GmbH & Co. KG Verfahren zur herstellung eines halbleiterbauelements und halbleiterbauelement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61230382A (ja) * 1985-04-05 1986-10-14 Yokogawa Electric Corp 半導体圧力センサ
JPH05273231A (ja) * 1992-03-27 1993-10-22 Toyoda Mach Works Ltd 容量型加速度センサ
EP0742581A2 (de) * 1995-04-12 1996-11-13 Sensonor A.S. Versiegelte Hohlraumanordnung

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544786A (en) * 1978-09-27 1980-03-29 Hitachi Ltd Pressure sensor
JPH0810170B2 (ja) * 1987-03-06 1996-01-31 株式会社日立製作所 半導体絶対圧力センサの製造方法
US5216490A (en) * 1988-01-13 1993-06-01 Charles Stark Draper Laboratory, Inc. Bridge electrodes for microelectromechanical devices
DE4107658A1 (de) * 1991-03-09 1992-09-17 Bosch Gmbh Robert Montageverfahren fuer mikromechanische sensoren
US5323051A (en) * 1991-12-16 1994-06-21 Motorola, Inc. Semiconductor wafer level package
US5483741A (en) * 1993-09-03 1996-01-16 Micron Technology, Inc. Method for fabricating a self limiting silicon based interconnect for testing bare semiconductor dice
US5774252A (en) * 1994-01-07 1998-06-30 Texas Instruments Incorporated Membrane device with recessed electrodes and method of making
JPH07221323A (ja) * 1994-02-07 1995-08-18 Mitsubishi Materials Corp 半導体センサおよびその製造方法
US5645684A (en) * 1994-03-07 1997-07-08 The Regents Of The University Of California Multilayer high vertical aspect ratio thin film structures
JP3329068B2 (ja) * 1994-04-28 2002-09-30 株式会社村田製作所 角速度センサ
US5640039A (en) * 1994-12-01 1997-06-17 Analog Devices, Inc. Conductive plane beneath suspended microstructure
JPH0952793A (ja) * 1995-08-11 1997-02-25 Hoya Corp 成膜方法
JPH09153480A (ja) * 1995-11-30 1997-06-10 Matsushita Electric Works Ltd シリコンのエッチング加工方法
US5637905A (en) * 1996-02-01 1997-06-10 New Jersey Institute Of Technology High temperature, pressure and displacement microsensor
JPH09210824A (ja) * 1996-02-07 1997-08-15 Fuji Electric Co Ltd 静電容量形圧力センサ
DE19647644C2 (de) * 1996-11-18 1999-04-15 Fraunhofer Ges Forschung Mikromechanische Transmissionsmeßzelle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61230382A (ja) * 1985-04-05 1986-10-14 Yokogawa Electric Corp 半導体圧力センサ
JPH05273231A (ja) * 1992-03-27 1993-10-22 Toyoda Mach Works Ltd 容量型加速度センサ
EP0742581A2 (de) * 1995-04-12 1996-11-13 Sensonor A.S. Versiegelte Hohlraumanordnung

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 011, no. 073 (E - 486) 5 March 1987 (1987-03-05) *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 045 (P - 1681) 24 January 1994 (1994-01-24) *
UEDA M ET AL: "DEVELOPMENT OF MICROMACHINED SILICON ACCELEROMETER", SUMITOMO ELECTRIC TECHNICAL REVIEW, no. 38, 1 June 1994 (1994-06-01), pages 72 - 77, XP000567200 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100757695B1 (ko) 1999-10-26 2007-09-13 프리스케일 세미컨덕터, 인크. 부품 및 이의 제조 방법

Also Published As

Publication number Publication date
DE19800574B4 (de) 2013-11-14
KR100574575B1 (ko) 2006-04-28
DE19800574A1 (de) 1999-07-15
JP2002500961A (ja) 2002-01-15
KR20010033947A (ko) 2001-04-25
US6465854B1 (en) 2002-10-15

Similar Documents

Publication Publication Date Title
WO1999035477A1 (de) Mikromechanisches bauelement
DE102005015584B4 (de) Verfahren zur Herstellung eines mikromechanischen Bauteils
DE4244450C2 (de) Verfahren zur Herstellung eines kapazitiven Drucksensors
EP1671924B1 (de) Mikromechanisches Bauelement sowie ein Verfahren zur Herstellung eines mikromechanischen Bauelements
DE19537814B4 (de) Sensor und Verfahren zur Herstellung eines Sensors
EP2773970B1 (de) Bauelement und verfahren zur herstellung eines bauelements
WO2005118463A1 (de) Mikromechanisches bauelement mit mehreren kammern und herstellungsverfahren
WO1995009366A1 (de) Mikromechanische vorrichtung und verfahren zu deren herstellung
DE102007030121A1 (de) Verfahren zur Herstellung eines Bauteils und Bauteil
DE69713433T2 (de) Wandler mit piezoresistivem Dehnungsmessstreifen und Herstellungsverfahren dazu
DE102015206069B4 (de) Verfahren zur Herstellung von feuchtigkeitsresistenten Sensoren
DE112011105884T5 (de) Verbundsensor und Verfahren zu seiner Herstellung
EP3526158B1 (de) Verfahren zum herstellen eines stressentkoppelten mikromechanischen drucksensors
WO1991013470A1 (de) Verfahren zum aufbau von mikromechanischen bauelementen in dickschichttechnik
DE4445177C2 (de) Verfahren zur Herstellung mikromechanischer Bauelemente mit freistehenden Mikrostrukturen
EP1537394A1 (de) Soi bauteil mit stegen zur vereinzelung
EP1406831B1 (de) Mikromechanische Kappenstruktur und entsprechendes Herstellungsverfahren
WO2018162188A1 (de) Verfahren zum herstellen einer mems-einrichtung für einen mikromechanischen drucksensor
DE19851055C2 (de) Verfahren zur Herstellung von monolithisch integrierten Sensoren
DE10231730B4 (de) Mikrostrukturbauelement
EP2714582B1 (de) Verfahren zur herstellung eines mos-transistors
DE102020123160B3 (de) Halbleiterdie mit Druck- und Beschleunigungssensorelement
DE102017213636A1 (de) Verfahren zur Herstellung von dünnen MEMS Chips auf SOI Substrat und mikromechanisches Bauelement
EP2121515B1 (de) Verfahren zur herstellung eines mikromechanischen bauelements mit einer partiellen schutzschicht
DE102018219537A1 (de) Verfahren zum Herstellen einer mikromechanischen Vorrichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020007007531

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09600038

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020007007531

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007007531

Country of ref document: KR