WO1999029448A1 - Proceso para la fabricacion de espigas para conexiones de mangueras y producto obtenido - Google Patents

Proceso para la fabricacion de espigas para conexiones de mangueras y producto obtenido Download PDF

Info

Publication number
WO1999029448A1
WO1999029448A1 PCT/MX1998/000054 MX9800054W WO9929448A1 WO 1999029448 A1 WO1999029448 A1 WO 1999029448A1 MX 9800054 W MX9800054 W MX 9800054W WO 9929448 A1 WO9929448 A1 WO 9929448A1
Authority
WO
WIPO (PCT)
Prior art keywords
spike
neck
manufacture
hose
barb
Prior art date
Application number
PCT/MX1998/000054
Other languages
English (en)
French (fr)
Inventor
Eduardo Coronado Quintanilla
Original Assignee
Coflex, S.A. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from MXPA/A/1997/009798A external-priority patent/MXPA97009798A/es
Application filed by Coflex, S.A. De C.V. filed Critical Coflex, S.A. De C.V.
Publication of WO1999029448A1 publication Critical patent/WO1999029448A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/28Making tube fittings for connecting pipes, e.g. U-pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/20Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls
    • B21C37/205Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls with annular guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/14Making machine elements fittings
    • B21K1/16Making machine elements fittings parts of pipe or hose couplings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L33/00Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses

Definitions

  • the present invention relates to a Die Cutting Process (cold forging) for the Manufacture of Spikes for hose connections by means of which the required dimension, shape and body is given, according to the application to which it is also intended It refers to a novel spike structure which is used as a connecting and clamping element between the connecting parts of a flexible quick-connect hose.
  • the spike referred to in the present invention is a conductive element that comes into contact with fluids, either liquids or gases that are transported through a flexible hose or connector.
  • the pin is the key piece in flexible connectors, since on one end it allows the hose to be held and on the other, it retains the nut or connecting element, giving it freedom to turn freely and tighten to another external element.
  • a packing can be attached to the spike to ensure sealing in any type of joint.
  • the bidder has developed a process for manufacturing spikes by die cutting (cold forging), which is more efficient, by means of this process the required dimension, shape and body is given to the spike, of according to the applications to which it is submitted.
  • die cutting cold forging
  • the use of pins obtained by the die-cutting process in accordance with the present invention produces considerable benefits, as a sample of the aforementioned, a table in which clearly advantages of the processing process are clearly indicated. manufacturing that is claimed to obtain spikes, in relation to the processes known until now.
  • ** BASE 1
  • the pin punched by its characteristics can be used in a wide variety of fluid conduction applications, either in a liquid or gaseous state, being economical and safe.
  • the material to be used in the manufacture of die-cut pins can be any non-ferrous malleable material, such as copper, aluminum or its alloys, preferably copper and its alloys and optimally copper in tubular form.
  • the die-cut pin can also be finished with metal, such as nickel-plated, chrome-plated, tin-plated, etc., which help its use characteristics.
  • Figures 1 and 6 show a side view of the different sections of the die pin.
  • Figure 2 shows a combined side view, the upper part thereof refers to the external appearance of the spike, having a nut attached, while the lower part shows the same parts in a side sectional view.
  • Figures 3 and 7 also refer to a combined side view, showing the complete assembly of a flexible hose with a connector, the upper part of this figure illustrates as it would be seen from its external part, while the lower part of the Figure shows a side cut of said assembly.
  • Figures 4 and 5 refer to a schematic view of the three different stages of the spike manufacturing process, also illustrating the product obtained.
  • the spikes are manufactured in one piece, always hollow and with different external volumetry throughout it. Commonly to the sections that form a spike, they are known as head 110, body 120, step 130, wing 140 and neck 150, these parts are very clearly identified in the drawing of figure 1, in the drawing of figure 6, it is appreciated that the body 120 has a scale structure 170.
  • the function of each of the aforementioned parts of the spike is given below:
  • the part of the spike formed by the head 110 and the body 120 is the one that is inserted into the hose 210, until it meets the part called step 130, which is very clearly seen in Figures 3 and 7, the head serves as a retention part between the pin 100 and the hose 210, compressed by a splint 220 stapled around and along the body of the pin 100, the scales 170 are an element that allows a better retention between the hose 210 and the pin 100.
  • the step 130 of the pin 100 is housed in the retaining hole of the nut 230 or connecting element and serves as a turning element (center) thereof, as seen in Figures 2 and 7.
  • the function of the wing 140 of the pin 100 is to serve as a support base and prevent the nut 230 from leaving the assembly.
  • the neck 150 of the pin 100 is the part that is used to effect the union and seal with an external connecting element such as a nipple.
  • a package 240 can be housed thereon, or the seal made directly with the pin 100, giving a bevel finish, to the neck 50; the flake structure 170 allows better retention between the hose 210 and the pin 100.
  • the manufacturing process begins by selecting the tubular material in roll 70, for the manufacture of the spike 100, preferably being copper or its alloys.
  • the diameter of the tube is chosen based on the diameter required by the body of the pin 100 and the thickness is determined according to the volumetric requirement of the design of the pin 100, previously determined.
  • the tube is cut by a cutting machine 300 to a predetermined length, resulting in a cut section 80.
  • Second stage. In an hydraulic or pneumatic press 301, the expansion is carried out to the tube section 80 in order to give body and shape to the step 130 and to the neck 150, the expanded piece 90 being formed.
  • the expansion operation is carried out in the lower part of the tubular segment to form the spindle head 110 and in the upper part of the tubular segment the compression operation to obtain the size, shape and body of the wing 40 in the neck 150, which now forms the spike.
  • the product obtained corresponds to the die pin 100 which is shown in the upper right frame of Figure 4.
  • the process of the present invention produces spikes of tubular material unlike the spikes punched out of sheet, one of the advantages of the spike manufactured from tubular material with respect to those of sheet, is that as observed in the table on page 2, there is less waste in the process and on the other hand, due to the thickness of the sheet, it is not possible to produce the neck (150) to accommodate the packaging or make a seal With the conical design directly against the external connection element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

La presente invención se refiere a un Proceso de troquelado (forjado en frío) para la Fabricación de Espigas (100) para conexiones de mangueras por medio del cual se le da la dimensión, forma y cuerpo requerido, según la aplicación a la que se destina, asimismo se refiere a una estructura novedosa de espiga, la cual se utiliza como elemento de unión y sujeción entre las partes de conexión de una manguera flexible. El proceso de fabricación de la espiga consta esencialmente de tres etapas: la primera consiste en seleccionar el material tubular (70) para la fabricación de la espiga, en esta primera etapa se corta el tubo (70) a una longitud predeterminada. En una segunda etapa se procede a realizar la expansión del tramo (80) de tubo, mediante una prensa (301) hidráulica o neumática, a fin de dar cuerpo y forma a un escalón (130) y al cuello (150) de lo que será la espiga (100). La tercera etapa del proceso consiste en una operación de expansión y compresión, utilizando dos prensas (302, 303), formando simultáneamente un cabezal (110) con una de ellas y con la otra se le da tamaño, forma y cuerpo a una ala (140) en el cuello (150) de la espiga (100). La espiga obtenida es fabricada en una sola pieza, siempre hueca y con diferente volumetría exterior a lo largo de la misma, las secciones de que está formada son en sentido longitudinal: un cabezal (110), el cuerpo (120) de la espiga (100), un escalón (130), un cuello (150) y una ala (140) en el cuello de la espiga (100).

Description

PROCESO PARA LA FABRICACIÓN DE ESPIGAS PARA CONEXIONES DE
MANGUERAS Y PRODUCTO OBTENIDO
La presente invención se refiere a un Proceso de troquelado (forjado en frío) para la Fabricación de Espigas para conexiones de mangueras por medio del cual se le da la dimensión, forma y cuerpo requerida, según la aplicación a la que se destina, asimismo, se refiere a una estructura novedosa de espiga la cual se utiliza como elemento de unión y sujeción entre las partes de conexión de una manguera flexible de conexión rápida.
La espiga a la que se refiere la presente invención, es un elemento de conducción que entra en contacto con fluidos, ya sea líquidos o gases que se transportan a través de una manguera o conector flexible. La espiga es la pieza clave en conectores flexibles, ya que por un extremo permite la sujeción de la manguera y por el otro, retiene a la tuerca o elemento de conexión, dándole libertad para girar libremente y poder apretarse a otro elemento externo. Además, sobre la espiga se puede sujetar un empaque para asegurar el sellado en cualquier tipo de unión.
Las espigas que se conocen actualmente en el mercado, de acuerdo con los procesos de fabricación hasta ahora existentes, se obtienen mediante maquinado o inyección, estos procesos tienen entre otros inconvenientes los elevados desperdicios que generan, derivándose de esto, varios inconyenientes de carácter técnico, ecológico y económico.
Por otra parte, las espigβBiasta ahora conocidas presentan algunas deficiencias en su funcionamiento, debido a su estructura y diseño tales como un inapropiado sellado y sujeción a una manguera flexible, sin embargo los inconvenientes más señalados se refieren a los procesos de fabricación de las ntomas.
De acuerdo con la presente invención, la ^licitante ha desarrollado un proceso de fabricación de espigas por troquelado (forjado en frío), el cual resulta más eficiente, mediante este proceso se le da la dimensión, forma y cuerpo requeridos a la espiga, de acuerdo a las aplicaciones a las que se somete. El uso de espigas obtenidas por el proceso de troquelado de acuerdo con la presente invención, produce beneficios considerables, como una muestra de lo antes expresado, a continuación se da a conocer una tabla en la cual se indican de manera clara importantes ventajas del proceso de fabricación que se reclama para la obtención de espigas, con relación a los procesos hasta ahora conocidos.
Figure imgf000004_0001
**BASE=1 La espiga troquelada por sus características puede ser utilizada en una gran variedad de aplicaciones de conducción de fluidos, ya sea en estado líquido o gaseoso, siendo estas económicas y seguras.
El material a utilizarse en la fabricación de espigas troqueladas puede ser cualquier material maleable no ferroso, tal como cobre, aluminio o sus aleaciones preferentemente cobre y sus aleaciones y de manera óptima cobre en forma tubular.
De igual forma para aplicaciones específicas, se puede utilizar alguna aleación o material que por sus características responda mejor bajo las condiciones de dicha aplicación.
A la espiga troquelada se le pueden dar también terminados metálicos como lo son niquelados, cromados, estañados, etc., que le ayudan a sus características de uso.
Con objeto de ilustrar adecuadamente tanto el proceso de fabricación como el producto obtenido de acuerde a la presente invención, se acompaña a esta descripción de dibujos en los Quales: Las figura 1 y 6 muestran una vista lateral de las diferentes secciones de la espiga troquelada.
La figura 2, muestra una vista lateral combinada, la parte superior de la misma se refiere a la apariencia externa de la espiga, teniendo acoplada una tuerca, mientras que la parte inferior muestra las mismas partes en una vista en corte lateral.
Las figuras 3 y 7, se refieren también a una vista lateral combinada, mostrando el ensamble completo de una manguera flexible con un conector, la parte superior de esta figura ilustra tal como se vería por su parte externa, mientras que la parte inferior de la figura muestra un corte lateral de dicho ensamble.
Las figuras 4 y 5, se refieren a una vista esquemática de las tres diferentes etapas de que consta el proceso de fabricación de la espiga, ilustrándose también el producto obtenido.
En las figuras que se han mencionado anteriormente, se utilizan números de referencia para identificar, tanto a las diferentes partes de que está constituida la espiga, como a las diferentes etapas de fabricación de la misma.
Refiriéndonos a las figura 1 y 6, se tiene que las espigas son fabricadas en una sola pieza, siempre hueca y con diferente volumetría exterior a lo largo de la misma. Comúnmente a las secciones que forman una espiga, se les conoce como cabezal 110, cuerpo 120, escalón 130, ala 140 y cuello 150, estas partes se identifican muy claramente en el dibujo de la figura 1, en el dibujo de la figura 6, se aprecia que el cuerpo 120, tiene una estructura en escamas 170.
La función que tiene cada una de las partes de la espiga antes mencionadas se da a continuación: La parte de la espiga formada por el cabezal 110 y el cuerpo 120, es la que se introduce dentro de la manguera 210, hasta topar con la parte llamada escalón 130, lo cual se ve muy claramente en las figuras 3 y 7, el cabezal sirve como parte de retención entre la espiga 100 y la manguera 210, comprimida por una férula 220 grapada alrededor y a lo largo del cuerpo de la espiga 100, las escamas 170 son un elemento que permite una mejor retención entre la manguera 210 y la espiga 100. El escalón 130 de la espiga 100, se aloja en el barreno de retención de la tuerca 230 o elemento de conexión y sirve como elemento (centro) de giro del mismo, según se aprecia en las figuras 2 y 7.
La función del ala 140 de la espiga 100, es servir como base de apoyo y evitar que la tuerca 230 se salga del ensamble. El cuello 150 de la espiga 100, es la parte que se utiliza para efectuar la unión y sello con un elemento externo de conexión tal como un niple. Para lograr tal efecto, se puede alojar un empaque 240 sobre el mismo, o hacerse el sello directamente con la espiga 100, dándole un terminado en bisel, al cuello 50; la estructura en escamas 170 permite una mejor retención entre la manguera 210 y la espiga 100.
Con relación al proceso de fabricación de la espiga, refiriéndonos a la figura 4, se tiene que el mismo consta de tres etapas; cada una de las mismas se ilustra en sus respectivos cuadros de la figura 4, correspondiendo la primera etapa al cuadro izquierdo superior, pasando de acuerdo con el flujo que señalan las flechas de la primera hasta la tercera etapa del proceso, mostrándose en el cuadro superior derecho el producto terminado que corresponde a la espiga troquelada 100 de la presente invención.
A continuación se describen con detalle las etapas de que consta el proceso de la presente invención.
Primera etapa.- El proceso de fabricación se inicia seleccionando el material tubular en rollo 70, para la fabricación de la espiga 100, siendo preferentemente cobre o sus aleaciones. El diámetro del tubo se elige con base al diámetro requerido por el cuerpo de la espiga 100 y el espesor se determina según el requerimiento de volumetría del diseño de la espiga 100, previamente determinado.
En esta primera etapa, se corta el tubo mediante una maquina cortadora 300 a una longitud predeterminada, resultando un tramo cortado 80. Segunda etapa.- En una prensa hidráulica o neumática 301, se procede a realizar la expansión al tramo de tubo 80 a fin de dar cuerpo y forma al escalón 130 y al cuello 150, formándose la pieza expandida 90.
Describiendo con más detalle las operaciones de la segunda etapa, se tiene que mediante una prensa hidráulica o neumática 301, se procede al troquelado superior del tramo o segmento tubular 80, con objeto de lograr una expansión de dicho tubo en parte de la longitud del mismo, formándose así un escalón 130 originado por la variación en el diámetro exterior del segmento de tubo, quedando de mayor diámetro la parte superior que la inferior del mismo, formándose asimismo un cuello 150 que corresponde a la parte superior de la pieza expandida 90.
Tercera etapa - Como último paso de este proceso se lleva a cabo una operación de expansión y compresión, utilizando dos prensas 302 y 303, simultáneamente se forma el cabezal 110 con una de ellas que es la 302 y con la otra, que corresponde a la 303 se le da tamaño, forma y cuerpo al ala 140, obteniéndose el producto terminado que corresponde a la espiga troquelada de acuerdo a la presente invención.
En la operación de expansión y compresión, como antes se expresó, se utilizan dos prensas, llevándose a cabo un troquelado superior y uno inferior, la operación de expansión se efectúa en la parte inferior del segmento tubular para formar el cabezal 110 de la espiga y en la parte superior del segmento tubular la operación de compresión para obtener el tamaño, forma y cuerpo del ala 40 en el cuello 150, que ahora forma la espiga.
El producto obtenido corresponde a la espiga troquelada 100 la cual se muestra en el cuadro superior derecho de la figura 4.
Respecto a dicha tercera etapa se tiene que la misma se puede realizar también de acuerdo a lo que se muestra en la figura 5, cuadro inferior derecho, en esta se lleva a cabo una operación de doble prensado simultaneo, ejerciendo un efecto de presión y expansión a la vez sobre la pieza 90. Con la prensa 304 se comprime la pieza formando las escamas 170 sobre el cuerpo de la espiga y con la prensa 303 se logra un efecto de expansión formando el ala 140 y el cuello 150, obteniendo como producto la espiga 100. Los pasos antes descritos se pueden efectuar en un solo proceso continuo, simultaneo, en procesos combinados o en procesos aislados, siempre y cuando se obtenga el diseño y estructura de Ja espiga deseada.
Como se podrá determinar de la descripción anterior, el proceso de la presente invención produce espigas de material tubular a diferencia de las espigas troqueladas a partir de lámina, una de la ventajas de la espiga fabricada a partir de material tubular respecto a las de lámina, es que como se observa en la tabla de la página 2, se produce un menor desperdicio en el proceso y por otra parte, debido al espesor de la lámina, no es posible producir el cuello (150) para alojar el empaque o hacer un sello con el diseño cónico directamente contra el elemento externo de conexión.

Claims

REIVINDICACIONES
1. Proceso para la fabricación de espigas para conexiones de mangueras que transportan fluidos tanto en estado gaseoso como líquido, caracterizado porque comprende en una primera etapa, seleccionar un material tubular para la fabricación de la espiga, eligiendo el diámetro del tubo y el espesor del mismo, de acuerdo a los requerimientos de uso de la espiga; cortar una longitud predeterminada de tubo para producir segmentos del mismo; en una segunda etapa, llevar a cabo mediante una prensa hidráulica o neumática la expansión del segmento de tubo, con objeto de dar cuerpo y forma a un escalón y al cuello de lo que será la espiga, formándose una pieza expandida; en una tercera etapa, realizar una operación de expansión y compresión, utilizando dos prensas, para formar por una parte el cabezal o estructura en escamas con una de ellas y por otra parte, para dar tamaño, forma y cuerpo a una ala en el cuello de la espiga, obteniéndose así la espiga troquelada.
2. Proceso para la fabricación de espigas para conexiones de mangueras, de acuerdo con la reivindicación 1, caracterizado porque las etapas de este proceso se pueden efectuar como un solo proceso continuo, en procesos combinados o en procesos aislados, siempre y cuando se obtenga el diseño y estructura deseados de la espiga.
3. Proceso para la fabricación de espigas para conexiones de mangueras, de acuerdo con la reivindicación 1 , caracterizado porque mediante una prensa hidráulica o neumática se procede al troquelado superior del tramo o segmento tubular, con objeto de lograr una expansión de dicho tubo en parte de la longitud del mismo, formándose así un escalón originado por la variación en el diámetro exterior del segmento de tubo, quedando de mayor diámetro la parte superior que la inferior del mismo, formándose asimismo un cuello que corresponde a la parte superior de la pieza expandida.
4. Proceso para la fabricación de espigas para conexiones de mangueras, de acuerdo con la reivindicación 1, caracterizado porque se lleva a cabo una operación de expansión y compresión, utilizando dos prensas, llevándose a cabo un troquelado superior y uno lateral o inferior, la operación de expansión se efectúa en la parte inferior para formar el cabezal de la espiga o en su parte lateral como una compresión para formar una estructura en escamas en el cuerpo de la espiga y en la parte superior la operación de compresión para obtener el tamaño, forma y cuerpo de una ala en el cuello que se encuentra en la parte superior del segmento tubular que ahora forma la espiga.
5. Espigas para conexiones de mangueras que transportan fluidos tanto en estado gaseoso como líquido, caracterizadas porque son fabricadas por un proceso de troquelado, en una sola pieza, huecas y con diferente volumetría exterior a lo largo de la misma, comprendiendo en uno de sus extremos un cabezal, a continuación y en sentido longitudinal presentando una sección o cuerpo de la espiga, estas secciones pueden también estar configuradas con una estructura en escamas, enseguida un escalón debido a la diferencia en la magnitud del diámetro exterior de esta sección de la espiga, respecto al cuerpo de la misma, formando un segmento identificado como cuello y una ala o saliente formada en el cuello de la espiga.
6. Espigas para conexiones de mangueras de acuerdo con la reivindicación 1, caracterizadas porque comprenden un empaque alrededor del cuello de la espiga para lograr la unión y sello con un elemento de conexión extemo tal como un niple.
7. Espigas para conexiones de mangueras de acuerdo con la reivindicación 1, caracterizadas porque el cuello de la espiga tiene un terminado en bisel para permitir que dicha espiga haga sello con un elemento de conexión tal como una tuerca.
8. Espigas para conexiones de mangueras de acuerdo con la reivindicación 1, caracterizadas porque el cabezal y el cuerpo de la espiga o la sección en escamas, son las partes que se introducen en la manguera, hasta topar con la pared llamada escalón, sirviendo el cabezal o la sección con estructura en escamas como elemento de retención entre la espiga y la manguera, la cual es comprimida por una férula grapada alrededor y a lo largo del cuerpo de la espiga; el escalón de la espiga se aloja en el barreno de retención de un elemento de conexión tal como una tuerca y sirve como elemento (centro) de giro del mismo; el ala de la espiga sirve como base de apoyo y evita que el elemento de conexión se salga del ensamble y el cuello de la espiga es la parte que se utiliza para efectuar la unión y sello con el elemento extemo de conexión.
9. Espigas para conexiones de mangueras de acuerdo con la reivindicación 1 , caracterizadas porque se fabrican de cualquier material maleable no ferroso, tal como cobre, aluminio o sus aleaciones, preferentemente cobre y sus aleaciones y más preferentemente cobre en forma tubular.
PCT/MX1998/000054 1997-12-08 1998-12-08 Proceso para la fabricacion de espigas para conexiones de mangueras y producto obtenido WO1999029448A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXPA/A/1997/009798A MXPA97009798A (es) 1997-12-08 Proceso para la fabricacion de espigas para conexiones de mangueras y producto obtenido
MX979798 1997-12-08

Publications (1)

Publication Number Publication Date
WO1999029448A1 true WO1999029448A1 (es) 1999-06-17

Family

ID=19745003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX1998/000054 WO1999029448A1 (es) 1997-12-08 1998-12-08 Proceso para la fabricacion de espigas para conexiones de mangueras y producto obtenido

Country Status (1)

Country Link
WO (1) WO1999029448A1 (es)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE582238C (de) * 1928-11-14 1933-10-05 Ver Stahlwerke Akt Ges Verfahren zum Erzeugen von Doppelboerdeln aus der Wand von Rohren durch axialen Druck auf die Rohrstirnseite
EP0441174A2 (de) * 1990-02-09 1991-08-14 Metallwarenfabrik Schelklingen GmbH Verfahren und Formwerkzeug zum Anformen eines Nippels
EP0623404A2 (de) * 1993-04-26 1994-11-09 Robert Bosch Gmbh Rohr, Rohrverbindung und Verfahren zur Herstellung von Rohren für Rohrverbindungen sowie Vorrichtung zum Halten von Rohren
US5517844A (en) * 1994-09-08 1996-05-21 Yuan; Chin-Chen Method for forming threadings in a bushing which is used to secure a hose therein
GB2299776A (en) * 1995-04-14 1996-10-16 Nippon Denso Co Method for producing a pipe and apparatus for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE582238C (de) * 1928-11-14 1933-10-05 Ver Stahlwerke Akt Ges Verfahren zum Erzeugen von Doppelboerdeln aus der Wand von Rohren durch axialen Druck auf die Rohrstirnseite
EP0441174A2 (de) * 1990-02-09 1991-08-14 Metallwarenfabrik Schelklingen GmbH Verfahren und Formwerkzeug zum Anformen eines Nippels
EP0623404A2 (de) * 1993-04-26 1994-11-09 Robert Bosch Gmbh Rohr, Rohrverbindung und Verfahren zur Herstellung von Rohren für Rohrverbindungen sowie Vorrichtung zum Halten von Rohren
US5517844A (en) * 1994-09-08 1996-05-21 Yuan; Chin-Chen Method for forming threadings in a bushing which is used to secure a hose therein
GB2299776A (en) * 1995-04-14 1996-10-16 Nippon Denso Co Method for producing a pipe and apparatus for the same

Similar Documents

Publication Publication Date Title
KR940007199B1 (ko) 열교환기
US4799540A (en) Heat exchanger
ES2200906T3 (es) Pieza de empalme o herraje para establecer una union prensada con un extremo de tubo insertado.
ES2416205T3 (es) Diseño de anillo de sujeción
WO1999029448A1 (es) Proceso para la fabricacion de espigas para conexiones de mangueras y producto obtenido
WO2016033068A1 (en) Heat exchanger and method of assembling the same
ES2392922T3 (es) Macho de soporte y procedimiento para la producción de perfiles huecos
ES2364067T3 (es) Accesorio adaptador.
US3781959A (en) Method of fabricating a finned heat exchanger tube
ES2151714T5 (es) Racor a compresion.
CN104976903B (zh) 热交换器
ES2225332T3 (es) Radiador para vehiculos automoviles.
ES2300976T3 (es) Sistema de union/montaje rapido, para guias de ascensor.
KR100923709B1 (ko) 편수관용 박판형 압륜장치
US530314A (en) Frank arthur williams
MX9306123A (es) Intercambiador de calor con tubos provistos de un ensanchamiento.
US3136038A (en) Method of making a heat exchanger
US2226852A (en) Flaring tool
ES2554505T3 (es) Procedimiento para abocardar el extremo de un tubo
KR20100095055A (ko) 관 연결구 및 이의 제조 방법
US1763582A (en) Method for the manufacture of metal tubes
ES2270904T3 (es) Procedimiento para fijar una pieza en forma de barra en un soporte.
US3236104A (en) Tube expander
MXPA97009798A (es) Proceso para la fabricacion de espigas para conexiones de mangueras y producto obtenido
KR101224490B1 (ko) 엘보형 편수이음관, 및 편수이음관의 연결구조

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA DE ES JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA