WO1998045342A1 - Herstellung von homo-, co- oder blockcopolymeren aus cycloolefinischen monomereinheiten - Google Patents

Herstellung von homo-, co- oder blockcopolymeren aus cycloolefinischen monomereinheiten Download PDF

Info

Publication number
WO1998045342A1
WO1998045342A1 PCT/EP1998/001803 EP9801803W WO9845342A1 WO 1998045342 A1 WO1998045342 A1 WO 1998045342A1 EP 9801803 W EP9801803 W EP 9801803W WO 9845342 A1 WO9845342 A1 WO 9845342A1
Authority
WO
WIPO (PCT)
Prior art keywords
elements
periodic table
additive
monomer units
units
Prior art date
Application number
PCT/EP1998/001803
Other languages
English (en)
French (fr)
Inventor
Michael GEPRÄGS
Joachim Queisser
Bernhard Rieger
Adnan S. Abu-Surrah
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to JP54232398A priority Critical patent/JP2001518955A/ja
Priority to AU72115/98A priority patent/AU7211598A/en
Priority to EP98919166A priority patent/EP0973813A1/de
Priority to US09/402,541 priority patent/US6262194B1/en
Publication of WO1998045342A1 publication Critical patent/WO1998045342A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F32/00Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system

Definitions

  • the present invention relates to processes for the production of homo-, co- or block copolymers from cycloolefinic monomer units.
  • the invention further relates to homo-, co- and block copolymers of cycloolefinic monomer units, the polymer chains of which have hydroxyl end groups.
  • the invention also relates to the use of a metal catalyst in the production of homo-, co- or block copolymers from cycloolefinic monomer units.
  • Cationic transition metal complexes in particular nickel complexes, are described by Goodall et al., Proceedings of the Sixth International Business Forum on Specialty Polyolefins (SPO '96) as highly active catalysts for the addition polymerization of norbornene.
  • SPO '96 Specialty Polyolefins
  • the object of the present invention was therefore to provide a process for the preparation of polymers from cycloolefinic monomer units which, with good reaction control and unproblematic catalyst handling, enables high yields and short reaction times while maintaining the ring structure.
  • M is a metal from Group VIII B of the Periodic Table of the Elements
  • E1, E2 independently of one another an element from group VA of the periodic table of the elements
  • a bridging structural unit consisting of one, two, three or four substructural units from elements of group IVA, VA, VIA of the periodic table of the elements,
  • Metal complexes which fall under the following general formula (I) are preferably used as catalysts for the processes according to the invention:
  • metal catalysts of the eighth subgroup of the Periodic Table of the Elements which are present as a defined metal complex (I) are suitable as polymerization catalysts.
  • a defined metal complex in the sense of the present invention should preferably be understood to mean a compound which is produced separately before being used in the polymerization process.
  • the active catalyst species can also be generated in-situ. If necessary, the
  • Metal compounds activating additives are added.
  • the metals M are preferably the metals nickel and palladium, palladium being particularly preferred.
  • the metals nickel, palladium and platinum are basically present in the complexes with two positive charges; Iron, ruthenium and osmium are generally charged positively and cobalt and rhodium are generally single or triple, preferably single, charged.
  • the elements E 1 , E 2 which interact coordinatively with the metal center in (I) are the elements of the 5th main group of the periodic system of the elements (group VA), that is to say nitrogen, phosphorus, arsenic, antimony or bismuth. Nitrogen or phosphorus, in particular nitrogen, are particularly suitable. In a metal complex, E 1 and E 2 do not necessarily have to be identical. However, E 1 and E 2 are preferably identical elements, nitrogen being preferred.
  • the bridging structural unit Z connects the two elements E 1 and E 2 to one another.
  • Z can be formed from interconnected substructure units each consisting of an atom from group IVA, VA, VIA of the periodic table of the elements, the possible free valences of these bridge atoms being able to be saturated in many ways, for example by sub- Stitution with hydrogen or with functional groups based on elements of groups IVA, VA, VIA or VIIA of the periodic table of the elements, such as silyl, alkyl, A ino, alkoxy groups or halogen.
  • the substituents can form ring structures with one another or with the bridge atom.
  • the bridging structural unit Z can represent, for example, a saturated or unsaturated carbon chain with up to four carbon atoms, it being possible for individual carbon atoms in the chain to be replaced by elements from groups IVA, VA or VIA of the periodic table of the elements.
  • elements from groups IVA, VA or VIA of the periodic table of the elements For example, ether, thioether, amino, phosphino, imino or silane-bridged systems Z are suitable.
  • heteroatom-terminated bridging structural units Z such as -0- (CH) -0- are possible.
  • the bridge structure Z can be terminated with non-identical substructure units, for example with an N and a C atom, as in -N (R * ) -CH- or -N (R * ) - (CH 2 ) - : (R * eg hydrogen, alkyl or aryl).
  • group IVA of the Periodic Table of the Elements such as methylene (-CH 2 -), 1,2-ethylene (-CH 2 CH 2 -), 1,3- Propylene
  • 1,2-Ethylene, 1,3-propylene and 1,4-butylene may be mentioned as particularly suitable bridging structural units, with 1,2-ethylene being particularly preferred.
  • Ar groups for example, aromatic rings fused to the heterocycle containing the bridge atom E 1 or E 2 , in particular ortho-fused aryl units, are suitable.
  • Ar can be a fused benzene ring, a fused naphthyl unit, or a fused pyrrolidine ring.
  • the radicals Ar can both be substituted, for example with functional groups based on the elements of groups IVA, VA, VIA, VIIA of the periodic table of the elements, such as silyl, alkyl, carboxy, ester, amide, amino, hydroxy , Alkoxy, phosphate groups or halogen, and also unsubstituted.
  • Ar is preferably an unsubstituted fused benzene ring.
  • the two aromatic units Ar present in the metal complex (I) preferably represent identical radicals.
  • Preferably used as chelate ligands, ie as units bonded to the metal M via E 1 and E 2 are 1,2-bis (N-indolinyethane or 1,2-bis (N-1,2,3,4- tetrahydroquinolinyl) ethane.
  • Lewis bases ie Lewis base compounds with at least one lone pair of electrons, preferably organic compounds or water, are generally suitable as formally uncharged ligands L 1 , L 2 .
  • Lewis bases whose free electron pair or whose free electron pairs are located on a nitrogen or oxygen atom, ie nitriles, ketones, ethers or preferably water, are particularly suitable.
  • Suitable Lewis bases include ci- to cio-nitriles such as
  • Acetonitrile, propionitrile, benzonitrile or C 3 - to C ⁇ o-ketones such as acetone, acetylacetone or C to Cio ethers such as dimethyl ether, diethyl ether or tetrahydrofuran.
  • ligands L 1 , L 2 in (I) are those of the formula (III)
  • T is an organic to C 5 to C 5 carbon organic radical provided with a Lewis base group.
  • Highly suitable organic to C 1 to C 1 carbon organic radicals are, for example, linear or also cyclic CH -) - n units, in which n is 1 to 10, ie methylene , 1,2-ethylene, 1,3-propylene, 1,4-butylene, 1,5-pentylene, 1,6-hexylene, 1,7-heptylene, 1,8-octylene, 1,9-nonylene or 1 , 10-decylene.
  • Suitable Lewis base groups are ethers, esters, ketones, amines, phosphines and in particular nitrile (-C ⁇ N) or tertiary amines.
  • R ' is Ci to Cio-alkyl or c 3 - to Cio-cycloalkyl, for example methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, cyclopentyl, Cyclohexyl.
  • R 'can also mean C ⁇ - to Cio-aryl, such as phenyl or naphthyl, each optionally carrying inert radicals.
  • metal complexes (I) are used in which the formally uncharged Lewis base ligands represent L 1 , L 2 acetonitrile or H0, particularly good results being achieved with H 2 O as the ligand for L 1 and L 2 .
  • Suitable anions X in (I) are, for example, perchlorate,
  • Sulphate, phosphate, nitrate and carboxylates such as acetate, trifluoroacetate, trichloroacetate, propionate, oxalate, citrate, benzoate, and conjugated anions of organosulphonic acids, for example methylsulphonate, trifluoromethylsulphonate and p-toluenesulphonate, furthermore tetrafluoroboroborate, tetrafluoroboroborate, tetrafluoroborate, tetrafluoroborate, tetrafluoroborate, nyDborat, hexafluorophosphate, hexafluoroarsenate or hexafluorophosphate antimonate.
  • organosulphonic acids for example methylsulphonate, trifluoromethylsulphonate and p-toluenesulphonate, furthermore tetrafluoroboroborate, tetrafluoroboroborate, t
  • one uses perchlorate, trifluoroacetate, sulfonates such as methylsulfonate, trifluoromethylsulfonate, p-toluene sulfonate, tetrafluoroborate or hexafluorophosphate, and in particular trifluoroacetate, perchlorate, tetrafluoroborate or p-toluene sulphonate as anion X .
  • metal complexes which have a C 2 symmetry are preferably used in accordance with the inventive method.
  • metal complexes which are in the meso form can also be used.
  • the metal complexes (I) can be used both as a mixture of diastereomers, as a mixture of enantiomers or as enantiomerically pure or diastereomerically pure.
  • Particularly suitable complexes include, for example, quo [1,2-bis (N-indolinyl) ethane] palladium (II) -bis (tetrafluorobora) and diaquo [1,2-bis (N-1,2,3,4-tetrahydroquinolinyl) ethane] palladium - (II) -bis (tetrafluoroborate) should be emphasized.
  • the amount of catalyst is generally matched to the amount of monomer used, the molar ratio of monomer to catalyst usually being in the range from 30: 1 to 100000: 1. Ratios in the range from 200: 1 to 5000: 1, in particular 300: 1 to 2000: 1, are preferably selected. As a rule, the polymer yield increases in an almost linear ratio with increasing molar ratio of starting monomer to catalyst.
  • the catalysts of the general formula (I) are generally prepared by processes known from the literature, as described in Abu-Surrah et al., J. Organomet. Chem. 1996, 512, 243.
  • complex salts such as bis (benzonitrile) palladium (II) dichloride can be combined with bidentate nitrogen ligands such as 1,2-bis- (N-indolinyl) -ethane or 1,2-bis (1,2,3,4- tetrahydroquino-linyl) ethane with ligand exchange to the corresponding palladium dichloride complexes.
  • These complexes can then be treated with silver tetrafluoroborate in the presence of e.g.
  • Acetonitrile or water can be converted into the bis-acetonitrile or diaquoligand complexes.
  • the diaquo complexes are also accessible from the bisacetonitrile complexes by stirring in water.
  • the reactions described are usually carried out at room temperature.
  • Halides, sulfates, phosphates, nitrates and carboxylates such as acetate, propionates, oxalates, citrates, benzoates and sulfonic acid salts, for example methyl sulfonates, trifluoromethyl sulfonate and p-toluenesulfonate, are suitable as complex salts of usually divalent metals M. Chlorides are preferably used for reasons of cost.
  • the production of polymers from cycloolefinic monomer units takes place in the presence of additive components which have a polarized double bond. These compounds themselves do not participate in the polymerization reaction and are therefore not incorporated into the growing polymer chain. However, an interaction with the catalyst species cannot be ruled out. These additives increase the molecular weight M w of the polymers and lead to a narrower molecular weight distribution M w / M n (determined by means of gel permeation chromatography relative to polystyrene standards).
  • the additive components with polarized double bonds are, for example, the esters of acrylic and methacrylic acid with ci- to cio-alkanols. Suitable in this context include Methyl acrylate, ethyl acrylate, t-butyl acrylate, n-butyl acrylate, i-butyl acrylate, ethylhexyl acrylate and the corresponding methacrylate derivatives. Mixtures of the compounds mentioned can also be used as the additive component.
  • the molar ratio of starting monomer to additive is generally greater than 1:10, but preferably takes on values in the range from 1: 5 to 1000: 1 and particularly preferably in the range from 1: 2 to 50: 1.
  • Tensioned ring systems which have one or more olefinic bonds in the cycle are advantageously used.
  • Tensioned ring systems are to be understood in particular as those in which the bond geometry of the double bond units shows deviations from corresponding free, unstressed systems. The deviations can either be that the bond angles in the sp 2 plane do not allow an optimal overlap of the orbitals involved, or that a bond from the sp 2 plane is forced.
  • cyclopropene, cyclopentene, dicyclopentadiene, bicyclo [2.2.1] hept-2-ene or bicyclo [2.2.2] oct-2-ene come as cycloolefinic monomer units, in each case also in substituted form, for example with alkyl, aryl or functional ones Groups based on elements of groups IVA, VA, VIA or VIIA of the periodic table of the elements, such as silyl, alkyl, carboxy, ester, amide, amino, hydroxyl, alkoxy, phosphate groups or halogen, in Question.
  • norbornene derivatives are, for example, compounds in which the carbon valences that are not involved in the ring formation are, by alkyl residues, such as methyl, ethyl, i-, n-propyl, i-, n-, s-, t-butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl or their structure - analog Cycloalkyl radicals, such as cyclopropyl, cyclopentyl, Cyclohexyl, by aryl radicals, such as phenyl or naphthyl or by alkylaryl radicals, such as benzyl, are substituted.
  • norbornene derivatives can be used, the functional groups based on elements from groups IVA, VA, VIA or VIIA of the periodic table of the elements, such as silyl, alkyl, carboxy, ester, amide, amino, hydroxy, Contain alkoxy, phosphate groups or halogens.
  • Both single and multiple substituted norbornene derivatives can be used.
  • homopolymers as well as statistical copolymers and block copolymers can be obtained from the cycloolefinic monomer units described above.
  • homopolymers examples include polymers of norbornene (poly (2,3-bicyclo [2.2. 1] hept-2-ene), dicyclopentadiene, cyclopentene and vinylcyclohexene.
  • the polynorbornene obtainable by the process according to the invention is characterized by a low solubility and by glass transition temperatures (Tg values) greater than 300 ° C. and is an amorphous, transparent molding compound.
  • Copolymers of norbornene and a norbornene derivative such as 2- (hydroxymethyl) bicyclo [2.2.1] hept-5-ene, bicyclo [2.2. l] hept-5-en-2-yl methyl decanoate, bicyclo [2.2. l] hept-5-en-2-carboxylic acid or bicyclo [2.2.1] hept-5-en-2-carboxylic acid methyl ester.
  • block copolymers are accessible by the processes according to the invention using the living character of the transition metal-catalyzed polymerization.
  • the polymerization can be carried out after adding ethylene, styrene, methoxy- or hydroxy-substituted styrene, eugenol or 3-ethylidene-1-cyclohexene in the presence of diaquo [1,2-bis (N.
  • the process according to the invention can be used to prepare homo-, co- and block copolymers from cycloolefinic monomer units with average molecular weights M w to 2 million g / mol.
  • Polymers with average molecular weights in the range from 5000 to 1 million, particularly preferably in the range from 40,000 to 500,000 and in particular in the range from 50,000 to 250,000 g / mol are preferably obtained.
  • the molecular weight distributions M n / M w obtained are generally in the range from 1.05 to 3.5 and preferably assume values in the range from 1.1 to 2.2 (determined by means of gel permeation chromatography, based on a polystyrene standard) .
  • the polymerization processes according to the invention are generally carried out at reaction temperatures in the range from -40 ° C. to 100 ° C. Good results and good reaction control are generally possible at room temperature in accordance with the processes mentioned, using the catalysts and monomer units described.
  • the polymerizations generally take place at normal pressure. With the catalysts described, it is not necessary to carry out the polymerizations in the absence of air and moisture.
  • the polymerizations can be carried out either without solvent or in the presence of inert solvents such as halogenated hydrocarbons, for example dichloromethane or chlorobenzene.
  • Solvent mixtures can also be used, with, in addition to the inert component, functionalized aromatic see compounds such as 1,2-dichlorobenzene or nitrobenzene.
  • reaction times in the processes according to the invention usually range from 30 minutes to 24 hours. With reaction times of 1 to 4 hours, good yields and conversions can already be achieved.
  • the catalyst can be used in a molar ratio in the range from 50: 1 to 10000: 1 (starting monomer / catalyst) and preferably in the range from 250: 1 to 2000: 1.
  • the sales achieved are usually in the range of 50 to 100%.
  • homopolymers, copolymers and block copolymers of, in particular, strained cycloolefinic monomer units, while maintaining the ring structure, are accessible in a preparatively uncomplicated manner using insensitive catalysts.
  • the polymerization of norbornene provides regioselectively only the 1, 2-exo-linked addition product.
  • the polynorbornene derivatives obtained are highly transparent, retain their shape very hot and can be used for the manufacture of medical devices and, if necessary, also as a polycarbonate substitute.
  • the molecular weights M w and the molecular weight distribution M w / M n were determined by gel permeation chromatography (GPC), based on a polystyrene standard.
  • the DSC data were determined using the Perkin-Elmer DSC-7 device at a heating rate of 10 ° C./min.
  • the melting points were determined using a polarizing microscope. The heating rate was set to 10 ° C / min.
  • the metal complexes rac-diacetonitrile- [1, 2 -bis (N-indolinyl) - ethane] alladium (II) -bis (tetrafluoroborate) (Kl), rac-diacetonitrile- [l, 2-bis (Nl, 2, 3, 4-tetrahydroquinolinyl) ethane] palladium (II) bis (tetrafluoroborate) (K2), rac-diaquo tl, 2-bis (N-indolyl) ethane] palladium (II) bis (tetrafluoroborate) (K3) and rac -Diaquo [l, 2-bis (Nl, 2,3, 4 - tetrahydroquinoline- nyl) ethane] palladium (II) bis (tetrafluoroborate)
  • Norbornene was added to a solution of the palladium (II) complex Kl, K2, K3 or K4 (50 mg) in dichloromethane (50 ml), 1,2-dichlorobenzene (5.0 ml) and nitrobenzene (2.0 ml) (see Table 1), stirred for 1 h at room temperature and terminated the reaction by adding an excess of methanol. The polymer product was filtered off, washed with methanol and dried in vacuo at 80.degree.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Herstellung von Homo-, Co- oder Blockcopolymeren aus cycloolefinischen Monomereinheiten, dadurch gekennzeichnet, daß die Polymerisation in Gegenwart eines Katalysators der allgemeinen Formel (I), in der die Substituenten und Indizes die folgende Bedeutung haben: M ein Metall aus der Gruppe VIII B des Periodensystems der Elemente, E1, E2 unabhängig voneinander ein Element aus der Gruppe VA des Periodensystems der Elemente, Z eine verbrückende Struktureinheit, Ar unabhängig voneinander annellierte Aryleinheiten, L1, L2 formal ungeladene Lewis-Basenliganden, X ein- oder zweiwertige Anionen, k 1 oder 2, l, m, n 1 oder 2, wobei m x n = 1 und gegebenenfalls eines Additivs durchgeführt wird.

Description

Herstellung von Homo-, Co- oder Blockcopolymeren aus cyclo- olefinischen Monomereinheiten
Beschreibung
Die vorliegende Erfindung betrifft Verfahren zur Herstellung von Homo-, Co- oder Blockcopolymeren aus cycloolefinischen Monomereinheiten. Weiterhin betrifft die Erfindung Homo-, Co- und Block- copolymere aus cycloolefinischen Monomereinheiten, deren Polymerketten Hydroxyendgruppen aufweisen. Außerdem betrifft die Erfindung die Verwendung eines Metallkatalysators bei der Herstellung von Homo-, Co- oder Blockcopolymeren aus cycloolefinischen Monomereinheiten.
Verfahren zur Polymerisation von insbesondere gespannten Cyclo- olefinen wie Norbornen gehen zurück auf Arbeiten von Andersen und Mercklmg, die sich dabei der Methode der Ringoffnungs-Metathesepolymerisation bedienten (vgl. US 2 721 189). Die Additionshomo- Polymerisation von Norbornen zu 1,2-verkn pften, gesattigten Polymeren gelingt nach Seehof et al., J. Mol. Catal. 1992, 76, 219 mit dem kationischen Palladiumkomplex [Pd(CH3CN) ] (BF4) in homogener Phase. Ebenfalls kationische Ubergangsmetallkomplexe, insbesondere Nickelkomplexe, werden von Goodall et al., Procee- dings of the Sixth International Business Forum on Speciality Polyolefins (SPO '96) als hochaktive Katalysatoren für die Additionspolymerisation von Norbornen beschrieben. Unter der Bedingung, daß das kationische Metallzentrum ausschließlich koordina- tive Bindungen zu olefinischen Liganden sowie eine δ-Bindung zu einem Kohlenstoffatom ausbildet, werden bei kurzen Reaktionszeiten Polynorbornenderivate mit hohen Molekulargewichten Mn (> 1 000 000 g/mol) erhalten. Diese Polymerprodukte sind in einfachen Kohlenwasserstofflosungsmitteln wie Heptan oder Cyclohexan gut loslich. Die verwendeten Komplexe, wie [Pd(NCCH3)4] (BF )2 oder [ (η3-Allyl)M(COD) ]+PF6 " und [ (η3-Crotyl)M(COD) ] +PF6 ~ (mit M in der Bedeutung von Nickel oder Palladium und COD = Cycloocta-1, 4-dien) sind jedoch äußerst empfindlich gegenüber Sauerstoff und Feuchtigkeit und synthetisch nur auf anspruchsvolle Weise zuganglich. Zudem weisen die von Goodall et al. beschriebenen Komplexe eine nicht starre Koordinationssphare auf, was die Möglichkeit zur Stereo- bzw. Regiokontrolle bei Verknüpfungsreaktionen von vornherein stark mindert. Abu-Surrah et al . , J. Organomet . Chem. 1996, 512, 243 - 251, beschreiben chirale Pd(II) -Komplexe, die über verbruckte, biden- tate, tertiäre Aminliganden stabilisiert sind, ohne jedoch Angaben über deren spezielle katalytische Eignung zu machen.
Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, ein Verfahren für die Herstellung von Polymeren aus cycloolefinischen Monomereinheiten zur Verfugung zu stellen, das bei guter Reaktionskontrolle und unproblematischer Katalysatorhandhabung hohe Ausbeuten und kurze Reaktionszeiten unter Erhalt der Ringstruktur ermöglicht .
Demgemäß wurde ein neues Verfahren zur Herstellung von Homo-, Co- oder Blockcopolymeren aus cycloolefinischen Monomereinheiten ge- funden, bei dem die Polymerisation der Monomereinheiten in Gegenwart eines Katalysator der allgemeinen Formel (I)
Figure imgf000004_0001
in der die Substituenten und Indizes die folgende Bedeutung haben,
M ein Metall aus der Gruppe VIII B des Periodensystems der Elemente,
El, E2 unabhängig voneinander ein Element aus der Gruppe VA des Periodensystems der Elemente,
eine verbrückende Struktureinheit aus einer, zwei, drei oder vier Substruktureinheiten von Elementen der Gruppe IVA, VA, VIA des Periodensystems der Elemente,
Ar unabhängig voneinander annellierte Aryleinheiten, Ll, L2 formal ungeladene Lewis-Basenliganden,
ein- oder zweiwertige Anionen,
k 1 oder 2 ,
1, m, n 1 oder 2,
wobei m x n = 1,
und gegebenenfalls eines Additivs durchgeführt wird.
Des weiteren wurde ein neues Verfahren zur Herstellung von Homo-, Co- oder Blockcopolymeren aus cycloolefinischen Monomereinheiten gefunden, bei dem die Polymerisation der Monomereinheiten in Gegenwart des beschriebenen Katalysators der allgemeinen Formel (I) sowie in Gegenwart eines Additivs enthaltend eine polarisierte Doppelbindung durchgeführt wird.
Weiterhin wurden Homo-, Co- und Blockcopolymere aus cycloolefi- nisehen Monomereinheiten gefunden, deren Endgruppen Hydroxyein- heiten aufweisen.
Außerdem wurde die Verwendung der Metallkomplexe der allgemeinen Formel (I) als Katalysator bei der Polymerisation von cycloolefi- nischen Monomereinheiten gefunden.
Als Katalysatoren für die erfindungsgemäßen Verfahren werden bevorzugt Metallkomplexe eingesetzt, die unter die folgende all- gemeine Formel (I) fallen:
Figure imgf000005_0001
worin die Substituenten und Indizes die folgende Bedeutung haben: Z Methylen, 1,2-Ethylen, 1,3-Propylen oder 1,4-Butylen,
L1, L2 formal ungeladene Lewis-Basenliganden,
X ein- oder zweiwertige Anionen,
k 1 oder 2 ,
m, n 1 oder 2,
wobei m x n = 2 ist.
Als Polymerisationskatalysatoren kommen im allgemeinen Metallverbindungen der achten Nebengruppe des Periodensystems der Elemente (VIII B) in Frage, die als definierter Metallkomplex (I) vorliegen. Unter einem definierten Metallkomplex im Sinne der vorliegenden Erfindung soll vorzugsweise eine Verbindung verstanden werden, die vor der Verwendung im Polymerisationsverfahren separat hergestellt wird. Die aktive Katalysatorspezies kann aber ebenfalls in-situ erzeugt werden. Gegebenenfalls können den
MetallVerbindungen aktivierend wirkende Additive zugesetzt werden.
Als Metalle M kommen neben Eisen, Cobalt, Ruthenium, Rhodium, Os- mium, Iridium oder Platin, vorzugsweise die Metalle Nickel und Palladium in Betracht, wobei Palladium besonders bevorzugt ist. Die Metalle Nickel, Palladium und Platin liegen dabei grundsatzlich formal zweifach positiv geladen in den Komplexen vor; Eisen, Ruthenium und Osmium liegen im allgemeinen einfach positiv gela- den und Cobalt und Rhodium im allgemeinen ein- oder dreifach, bevorzugt einfach positiv geladen vor.
Als Elemente E1, E2, die koordinativ mit dem Metallzentrum in (I) wechselwirken, kommen die Elemente der V. Hauptgruppe des Perio- densystems der Elemente (Gruppe VA) , also Stickstoff, Phosphor, Arsen, Antimon oder Bismut in Betracht. Besonders geeignet sind Stickstoff oder Phosphor, insbesondere Stickstoff. In einem Metallkomplex haben E1 und E2 nicht notwendigerweise identisch vorzuliegen. Vorzugsweise stellen E1 und E2 aber gleiche Elemente dar, wobei Stickstoff bevorzugt ist.
Die verbruckende Struktureinheit Z verbindet die beiden Elemente E1 und E2 miteinander. Z kann aus miteinander verbundenen Sub- struktureinheiten bestehend jeweils aus einem Atom der Gruppe IVA, VA, VIA des Periodensystems der Elemente gebildet werden, wobei die möglichen freien Valenzen dieser Bruckenatome manigfaltig abgesattigt sein können, so zum Beispiel durch Sub- stitution mit Wasserstoff oder mit funktioneilen Gruppen basierend auf Elementen der Gruppen IVA, VA, VIA oder VIIA des Periodensystems der Elemente, wie Silyl-, Alkyl-, A ino-, Alkoxy- gruppen oder Halogen. Die Substituenten können untereinander oder mit dem Bruckenatom Ringstrukturen bilden. Demnach kann die verbruckende Struktureinheit Z z.B. eine gesattigte oder ungesättigte Kohlenstoffkette mit bis zu vier C-Atomen darstellen, wobei einzelne Kohlenstoffatome der Kette durch Elemente der Gruppen IVA, VA oder VIA des Periodensystems der Elemente ersetzt sein können. Beispielsweise kommen ether-, thioether-, amino-, phosphino-, imino- oder silaverbruckte Systeme Z in Frage. Gleichfalls sind z.B. f r E1 = E2 = Phosphor heteroatomterminierte verbruckende Stukrueinheiten Z wie -0-(CH ) -0- möglich. Ebenso kann die Bruckenstruktur Z mit nicht identischen Substrukturein- heiten, z.B. mit einem N- und einem C-Atom, wie in -N(R*)-CH- oder -N(R*) - (CH2) -, terminiert sein: (R* z.B. Wasserstoff, Alkyl oder Aryl) .
Gut verbruckende Struktureinheiten Z sind solche mit einem, zwei, drei oder vier Elementen aus der Gruppe IVA des Periodensystems der Elemente wie Methylen (-CH2-), 1,2-Ethylen (-CH2CH2-) , 1,3-Propylen (-CH2CH2CH2-) , 1,4-Butylen, 1, 3-Disilapropylen (-RbRaSi-CH2-SiRaRb, worin Ra, Rb Cι~ bis Cι0-Alkyl oder C6- bis Cio-Aryl bedeuten) , Ethyliden (CH3(H)C=), 2-Propyliden ((CH3)2C=), Diphenylmethylen ((C6Hs) C=) oder ortho-Phenylen.
Als besonders geeignete verbruckende Struktureinheiten seien 1,2-Ethylen, 1,3-Propylen und 1,4-Butylen genannt, wobei 1,2-Ethylen besonders bevorzugt ist.
Als Reste Ar kommen beispielsweise an den das Bruckenatom E1 bzw. E2 enthaltenden Heterocyclus annellierte aromatische Reste, insbesondere orthoannellierte Aryleinheiten, in Frage. Beispielsweise kann es sich bei Ar um einen annellierten Benzolring, eine annellierte Naphthyleinheit oder um einen annellierten Pyrroli- dinring handeln. Die Reste Ar können sowohl substituiert, z.B. mit funktioneilen Gruppen auf der Basis der Elemente der Gruppen IVA, VA, VIA, VIIA des Periodensystems der Elemente wie Silyl-, Alkyl-, Carboxy-, Ester-, Amid-, Amino-, Hydroxy-, Alkoxy-, Phosphatgruppen oder Halogen, als auch unsubstituiert vorliegen. Bevorzugt ist Ar ein unsubstituierter annellierter Benzolring. Die beiden in dem Metallkomplex (I) vorliegenden aromatischen Einheiten Ar stellen bevorzugt identische Reste dar. Vorzugsweise verwendet man als Chelatliganden, d.h. als koordina- tiv über E1 und E2 an das Metall M gebundene Einheiten, l,2-Bis(N- indolinyDethan oder 1,2-Bis (N-1,2 , 3 , 4-tetrahydroquinolinyl) - ethan.
Als formal ungeladene Liganden L1, L2 sind generell Lewisbasen geeignet, also Lewisbase-Verbindungen mit mindestens einem freien Elektronenpaar, vorzugsweise organische Verbindungen oder Wasser.
Gut geeignet sind Lewisbasen, deren freies Elektronenpaar oder deren freie Elektronenpaare sich an einem Stickstoff- oder Sauerstoffatom befinden, also Nitrile, Ketone, Ether oder vorzugsweise Wasser.
Als geeignete Lewisbasen seien genannt Ci- bis Cio-Nitrile wie
Acetonitril, Propionitril, Benzonitril oder C3- bis Cχo-Ketone wie Aceton, Acetylaceton oder aber C- bis Cio-Ether wie Dimethyl- ether, Diethylether oder Tetrahydrofuran.
Des weiteren sind als Liganden L1, L2 in (I) solche der Formel (III)
T-OH (III)
geeignet. Hierin bedeutet T ein mit einer lewisbasischen Gruppe versehener Ci- bis Ci5-kohlenstofforganischer Rest. Gut geeignete Ci- bis Cis-kohlenstofforganische Reste sind beispielsweise lineare oder auch cyclische CH-)-n-Einheiten, worin n 1 bis 10 bedeutet, also Methylen, 1,2-Ethylen, 1, 3-Propylen, 1,4-Butylen, 1,5-Pentylen, 1,6-Hexylen, 1, 7-Heptylen, 1,8-Octylen, 1,9-Nonylen oder 1, 10-Decylen.
Als lewisbasische Gruppe kommen Ether, Ester, Keton, A in, Phosphan und insbesondere Nitril (-C≡ N) oder tertiäres Amin in Frage.
Gut geeignete Verbindungen T-OH sind zum Beispiel α-ω-Hydroxyni- trile wie NC CH2-nOH mit n=l bis 10 oder (2-Hydroxymethyl) tetrahydrofuran, sowie (2-Hydroxymethyl) (N-organo)pyrrolidine (lila) oder (2-Hydroxymethyl) (N-organo) -piperidine (Illb)
Figure imgf000009_0001
R ' R '
( lila ) ( I llb )
worin R' Ci- bis Cio-Alkyl oder c3- bis Cio-Cycloalkyl bedeutet, beispielsweise Methyl, Ethyl , n-Propyl, i-Propyl, n-Butyl, i-Butyl, s-Butyl, t-Butyl, Cyclopentyl, Cyclohexyl. Weiterhin kann R' auch Cζ- bis Cio-Aryl, wie Phenyl oder Naphthyl, jeweils gegebenenfalls inerte Reste tragend, bedeuten.
In besonders bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens werden Metallkomplexe (I) eingesetzt, in denen die formal ungeladenen Lewis-Basenliganden L1, L2 Acetonitril oder H0 darstellen, wobei mit H2O als Ligand für L1 und L2 besonders gute Resultate erzielt werden.
Geeignete Anionen X in (I) sind beispielsweise Perchlorat,
Sulfat, Phosphat, Nitrat und Carboxylate, wie Acetat, Trifluor- acetat, Trichloracetat , Propionat, Oxalat, Citrat, Benzoat, sowie konjugierte Anionen von Organosulfonsäuren, zum Beispiel Methylsulfonat, Trifluormethylsulfonat und p-Toluolsulfonat , weiterhin Tetrafluoroborat , Tetraphenylborat , Tetrakis (pentafluorophe- nyDborat, Hexafluorophosphat , Hexafluoroarsenat oder Hexafluoro- antimonat. Vorzugsweise verwendet man Perchlorat, Trifluoracetat , Sulfonate wie Methylsulfonat , Trifluormethylsulfonat , p-Toluol- sulfonat, Tetrafluoroborat oder Hexafluorophosphat und insbeson- dere Trifluoracetat , Perchlorat, Tetrafluorborat oder p-Toluol- sulfonat als Anion X.
Grundsätzlich werden gemäß den erfindungsgemäßen Verfahren jene Metallkomplexe bevorzugt verwendet, die über eine C2-Symmetrie verfügen. Allerdings können ebenfalls solche Metallkomplexe, die in der meso-Form vorliegen, eingesetzt werden. Die Metallkomplexe (I) können sowohl als Diastereomerengemisch, als Enantiomerenge- misch oder enantiomeren- bzw. diastereomerenrein verwendet werden.
Als geeignete definierte Metallkomplexe (I) seien genannt Diace- tonitril-bis-1,2 (N-1,2,3 , 4-tetrahydroquinolinyl) ethan-palladium- bis (tetrafluoroborat) und Diaquo-bis-1,2 (N-1,2 , 3 , 4-tetrahydro- quinolinyl)ethan-palladium-bis (tetrafluoroborat ) . Besonders gute Resultate, z.B. hinsichtlich Ausbeute und Umsatz, werden generell mit Diaquo-Komplexen erhalten (L1 = L2 = H0 in Formel (I)). Als besonders geeignete Komplexe sind zum Beispiel Dia- quo[l, 2-bis (N-indolinyl) ethan]palladium(II) -bis (tetrafluorobora ) und Diaquo[l,2-bis (N-1,2, 3, 4-tetrahydroquinoli- nyl) ethan] -palladium- (II) -bis (tetrafluoroborat) hervorzuheben.
Die Menge an Katalysator wird im allgemeinen auf die eingesetzte Monomermenge abgestimmt, wobei das molare Verhältnis von Monomer zu Katalysator blicherweise im Bereich von 30 : 1 bis 100000 : 1 liegt. Bevorzugt werden Verhaltnisse im Bereich von 200 : 1 bis 5000 : 1, insbesondere 300 : 1 bis 2000 : 1 gewählt. In der Regel nimmt mit steigendem Molverhaltnis Ausgangsmonomer zu Katalysator die Polymerausbeute in nahezu linearem Verhältnis zu.
Die Herstellung der Katalysatoren der allgemeinen Formel (I) erfolgt im allgemeinen nach literaturbekannten Verfahren, wie in Abu-Surrah et al., J. Organomet . Chem. 1996, 512, 243 beschrieben. Üblicherweise können Komplexsalze, wie Bis (benzonitril) - palladium(II) -dichlorid, mit bidentaten Stickstoffliganden, wie 1,2-Bis- (N-indolinyl) -ethan oder 1,2-Bis (1,2,3 , 4-tetrahydroquino- linyl) ethan unter Ligandenaustausch zu den entsprechenden Palla- diumdichloridkomplexen umgesetzt werden. Anschließend können diese Komplexe durch Behandeln mit Silbertetrafluoroborat in Gegenwart von z.B. Acetonitril oder Wasser in die Bis-acetoni- tril- oder Diaquoligandkomplexe überfuhrt werden. Die Diaquokomplexe sind ebenfalls aus den Bisacetonitrilkomplexen durch Ruhren in Wasser zug nglich. In der Regel werden die beschriebenen Reaktionen bei Raumtemperatur durchgeführt.
Als Komplexsalze von üblicherweise zweiwertigen Metallen M sind Halogenide, Sulfate, Phosphate, Nitrate und Carboxylate, wie Acetat, Propionate, Oxalate, Citrate, Benzoate sowie Sulfonsaure- salze, zum Beispiel Methylsulfonate, Trifluormethylsulfonat und p-Toluolsulfonat geeignet. Vorzugsweise verwendet man aus Kostengründen Chloride.
In einer weiteren erfindungsgemaßen Ausfuhrungsform findet die Herstellung von Polymeren aus cycloolefinischen Monomereinheiten in Gegenwart von Additivkomponenten, die über eine polarisierte Doppelbindung verfugen, statt. Diese Verbindungen nehmen selber an der Polymerisationsreaktion nicht teil und werden demzufolge auch nicht in die wachsende Polymerkette eingebaut. Gleichwohl ist eine Wechselwirkung mit der Katalysatorspezies nicht auszuschließen. Diese Additive bewirken eine Zunahme des Molekulargewichts Mw der Polymeren und führen zu einer engeren Molekulargewichtsverteilung Mw/Mn (bestimmt mittels Gelpermeationschromatographie relativ zu Polystyrolstandards) .
Als Additivkomponenten mit polarisierten Doppelbindungen kommen beispielsweise die Ester der Acryl- und Methacrylsäure mit Ci- bis Cio-Alkanolen in Betracht. Geeignet sind in diesem Zusammenhang u.a. Methylacrylat, Ethylacrylat, t-Butylacrylat, n-Butylacrylat, i-Butylacrylat, Ethylhexylacrylat sowie die entsprechenden Meth- acrylatderivate. Es können auch Mischungen der genannten Verbindungen als Additivkomponente verwendet werden.
Das molare Verhältnis von Ausgangsmonomer zu Additiv ist in der Regel größer 1 : 10, nimmt allerdings bevorzugt Werte im Bereich von 1 : 5 bis 1000 : 1 und besonders bevorzugt im Bereich von 1 : 2 bis 50 : 1 an.
Als cycloolefinische Monomere kommen grundsätzlich alle Monomere dieser Verbindungsklasse, d.h. verbrückte und nicht verbrückte Ringsysteme, in Betracht.
Vorteilhafterweise werden gespannte Ringsysteme eingesetzt, die über eine oder mehrere olefinische Bindungen im Cyclus verfügen. Unter gespannten Ringsystemen sind insbesondere diejenigen zu verstehen, bei denen die Bindungsgeometrie der Doppelbindungsein- heiten Abweichungen gegenüber entsprechenden freien, ungespannten Systemen zeigt. Die Abweichungen können entweder darin bestehen, daß die Bindungswinkel in der sp2-Ebene keine optimale Überlappung der beteiligten Orbitale erlauben, oder darin, daß eine Bindung aus der sp2 -Ebene gezwungen wird. Beispielsweise kommen als cycloolefinische Monomereinheiten Cyclopropen, Cyclopenten, Dicyclopentadien, Bicyclo [2.2.1] hept-2 -en oder Bicyclo [2.2.2] oct- 2-en, jeweils auch in substituierter Form, z.B. mit Alkyl-, Aryl- oder funktionellen Gruppen auf der Basis von Elementen der Gruppen IVA, VA, VIA oder VIIA des Periodensystems der Elemente, wie Silyl-, Alkyl-, Carboxy- , Ester-, Amid-, Amino-, Hydroxy- , Alkoxy-, Phosphatgruppen oder Halogen, in Frage.
Besonders bevorzugt werden unter den cycloolefinischen Monomeren Norbornen ( = Bicyclo [2.2.1] hept-2 -en] und Derivate des Norbornens eingesetzt. Norbornenderivate im Sinne der vorliegenden Erfindung sind zum Beispiel Verbindungen, bei denen die Kohlenstoffvalenzen, die nicht an der Ringbildung beteiligt sind, durch Alkyl - reste, wie Methyl, Ethyl, i-, n-Propyl, i-, n-, s-, t-Butyl, Pentyl, Hexyl, Heptyl, Octyl, Nonyl, Decyl oder deren Struktur - analoge, durch Cycloalkylreste, wie Cyclopropyl, Cyclopentyl, Cyclohexyl, durch Arylreste, wie Phenyl oder Naphthyl oder durch Alkylarylreste, wie Benzyl, substituiert sind. Darüber hinaus sind Norbornenderivate einsetzbar, die funktionelle Gruppen auf der Basis von Elementen der Gruppen IVA, VA, VIA oder VIIA des Periodensystems der Elemente, wie Silyl-, Alkyl-, Carboxy-, Ester-, Amid-, Amino-, Hydroxy-, Alkoxy- , Phosphatgruppen oder Halogene enthalten.
Es können sowohl einfach als auch mehrfach substituierte Norbor- nenderivate eingesetzt werden.
Mit den erfindungsgemäßen Verfahren sind aus den vorhergehend beschriebenen cycloolefinischen Monomereinheiten sowohl Homopoly- mere als auch statistische Copolymere sowie Blockcopolymere zugänglich.
Als Homopolymerisate seien beispielsweise Polymere des Norbornens (ö Poly (2, 3-bicyclo[2.2. l]hept-2-en) , des Dicyclopentadiens, des Cyclopentens und des Vinylcyclohexens genannt.
Das nach den erfindungsgemäßen Verfahren erhältliche Polynorbor- nen zeichnet sich durch eine geringe Löslichkeit sowie durch Glasübergangstemperaturen (Tg-Werte) größer 300°C aus und stellt eine amorphe transparente Formmasse dar.
Als Copolymerisate kommen beliebige binäre, ternäre oder höhere Systeme, gebildet aus Gemischen der genannten Monomereinheiten, in Frage. Es lassen sich u.a. Copolymere aus Norbornen und einem Norbornenderivat wie 2- (Hydroxymethyl) bicyclo [2.2.1] hept-5-en, Bicyclo [2.2. l]hept-5-en-2-yl-methyldecanoat , Bicyclo [2 .2 . l]hept-5-en-2-carbonsäure oder Bicyclo [2.2.1] hept-5-en-2-carbonsäuremethylester herstellen.
Des weiteren sind Blockcopolymere nach den erfindungsgemäßen Ver- fahren unter Ausnutzung des lebenden Charakters der Übergangsme- tall-katalysierten Polymerisation zugänglich. Nach Polymerisation einer bestimmten Menge Norbornen, läßt sich beispielsweise die Polymerisation nach Zugabe von Ethylen, Styrol, Methoxy- oder Hydroxy-substituiertem Styrol, Eugenol oder 3-Ethyliden-l-cyclo- hexen in Gegenwart von Diaquo[l, 2-bis (N-indolinyl) ethan]palla- dium(Il) -bis (tetrafluoroborat) oder Diaquo [1,2-bis (N-1,2 ,3 ,4-te- trahydroquinolinyl) ethan] -palladium- (II) -bis (tetrafluoroborat) zu einem binären Blockcopolymer fortführen. In entsprechender Weise sind auch höhere Blockcopolymersysteme herstellbar. Durch Verwendung von Norbornenderivaten mit Alkyl-, Aryl- oder Alkylarylresten lassen sich charakteristische Eigenschaften der Polymerisate, wie Tg-Wert und Schmelzpunkt, maßgeblich beeinflussen. So weisen Homopolymere aus Bicyclo[2.2.1] hept-5-en-2-yl-me- thyldecanoat einen Tg-Wert von deutlich unter 300°C auf.
Werden Metallkomplexe der allgemeinen Formel (I) mit L1 = L2 = H0 als Katalysatoren eingesetzt, erhält man Polymere, deren Endgruppen, bedingt durch einen zur Wacker-Oxidation analogen Reak- tionsmechanismus, Hydroxyfunktionalitaten aufweisen. Ausgehend von Norbornen ist auf diese Art und Weise hydroxyfunktionalisier- tes Polynorbornen zuganglich. Die OH-Gruppen können für Folgereaktionen verwendet werden und bieten die Möglichkeit, die mechanischen und rheologischen Eigenschaften der Polymerformmasse, z.B. durch Veresterung, zu manipulieren.
Nach den erfindungsgemaßen Verfahren lassen sich Homo-, Co- und Blockcopolymere aus cycloolefinischen Monomereinheiten mit mittleren Molekulargewichten Mw bis 2 Mio g/mol herstellen. Bevor- zugt werden Polymere mit mittleren Molekulargewichten im Bereich von 5000 bis 1 Mio, besonders bevorzugt im Bereich von 40000 bis 500000 und insbesondere im Bereich von 50000 bis 250000 g/mol erhalten.
Die erhaltenen Molekulargewichtsverteilungen Mn/Mw bewegen sich in der Regel im Bereich von 1,05 bis 3,5 und nehmen bevorzugt Werte im Bereich von 1,1 bis 2,2 an (bestimmt mittels Gelpermeations- chromatographie, bezogen auf einen Polystyrolstandard) .
Die erfindungsgemaßen Polymerisationsverfahren werden im allgemeinen bei Reaktionstemperaturen im Bereich von -40°C bis 100°C durchgeführt. Gute Resultate und eine gute Reaktionskontrolle sind nach den genannten Verfahren unter Verwendung der beschriebenen Katalysatoren und Monomereinheiten in der Regel bei Raum- temperatur möglich.
Die Polymerisationen laufen im allgemeinen bei Normaldruck ab. Mit den beschriebenen Katalysatoren ist es nicht notwendig, die Polymerisationen unter Ausschluß von Luft und Feuchtigkeit durch- zufuhren.
Die Polymerisationen können sowohl losungsmittelfrei als auch in Gegenwart von inerten Losungsmitteln wie halogenierten Kohlenwasserstoffen, z.B. Dichlormethan oder Chlorbenzol vorgenommen wer- den. Ebenso sind Losungsmittelgemische einsetzbar, wobei neben der inerten Komponente beispielsweise funktionalisierte aromati- sehe Verbindungen wie 1,2-Dichlorbenzol oder Nitrobenzol in Betracht kommen.
Die Reaktionszeiten bei den erfindungsgemaßen Verfahren bewegen sich üblicherweise im Bereich von 30 min bis 24 h. Mit Reaktionszeiten von 1 bis 4 h sind bereits gute Ausbeuten und Umsätze erzielbar.
Bezogen auf die eingesetzte Menge an Monomer kann der Katalysator in einem molaren Verhältnis im Bereich von 50 : 1 bis 10000 : 1 (Ausgangsmonomer/Katalysator) und bevorzugt im Bereich von 250 : 1 bis 2000 : 1 eingesetzt werden.
Die erzielten Umsätze liegen der Regel im Bereich von 50 bis 100 %.
Mit den erfindungsgemaßen Verfahren sind auf praparativ unkomplizierte Art und Weise unter Verwendung unempfindlicher Katalysatoren Homo-, Co- und Blockcopolymere aus insbesondere gespann- ten cycloolefinischen Monomereinheiten, unter Erhalt der Ringge- ruste, zuganglich. Die Polymerisation von Norbornen liefert re- gioselektiv ausschließlich das 1, 2-exo-verknüpfte Additionsprodukt. Die erhaltenen Polynorbornenderivate sind hochtransparent, sehr warmeformbestandig und können für die Herstellung von medi- zinischen Geraten und ggf. auch als Polycarbonatersatz verwendet werden.
Die vorliegende Erfindung wird im nachfolgenden anhand von Beispielen naher erläutert :
Beispiele
Die Molekulargewichte Mw und die Molekulargewichtsverteilung Mw/Mn wurden durch Gelpermeationschromatographie (GPC) , bezogen auf einen Polystyrolstandard, ermittelt.
IR-Messungen wurden an dem Spektrometer Bruker IFS113 durchgeführt .
Die DSC-Daten wurden bestimmt mit dem Gerat Perkin-Elmer DSC-7 bei einer Aufheizgeschwindigkeit von 10°C/min.
Die Schmelzpunkte wurden mit Hilfe eines Polarisationsmikroskops bestimmt. Die Aufheizgeschwindigkeit wurde auf 10°C/min einge- stellt. Die Metallkomplexe rac-Diacetonitril- [1, 2 -bis (N-indolinyl) - ethan] alladium(II) -bis (tetrafluoroborat) (Kl), rac-Diacetonitril- [l,2-bis(N-l,2, 3,4-tetrahydroquinolinyl)ethan] -palladium (II) -bis (tetrafluoroborat) (K2), rac-Diaquo tl, 2-bis (N-indoli nyl) ethan] palladium(II) -bis (tetrafluoroborat) (K3) und rac-Diaquo [l,2-bis(N-l,2,3, 4 - tetrahydroquinoli- nyl) ethan] palladium(II) -bis (tetrafluoroborat) (K4), wurden wie bei Abu-Surrah et al., J. Organomet. Chem. 1996, 512, 243 - 251 beschrieben, hergestellt.
Allgemeine Verfahrensvorschriften
I. Homopolymerisation von Norbornen (Versuche 1.01 bis 1.08)
Zu einer Lösung des Palladium (II) -Komplexes Kl, K2, K3 oder K4 (50 mg) in Dichlormethan (50 ml), 1, 2 -Dichlorbenzol (5,0 ml) und Nitrobenzol (2,0 ml) gab man Norbornen (siehe Tabelle 1), rührte für 1 h bei Raumtemperatur und beendete die Reaktion durch Zugabe eines Überschusses an Methanol. Das Polymerprodukt wurde ab- filtriert, mit Methanol gewaschen und im Vakuum bei 80°C getrocknet.
Die weiteren Versuchsparameter und die Polymereigenschaften sind der Tabelle 1 zu entnehmen.
Tabelle 1: Ergebnisse der Norbornenpolymerisation
Figure imgf000015_0001
Bestimmt mittels Gelpermeationschromatographie (GPC) , bezogen auf einen Polystyrolstandard. b) Bezogen auf einen linearen Polyethylenstandard. 5 II. Polymerisation von Norbornen in Gegenwart von Methylacrylat (Versuche 2.01 bis 2.05)
Zu einer Lösung von K4 (50 mg) in Dichlormethan (50 ml) , 1, 2-Dichlorbenzol (5,0 ml) und Nitrobenzol (2,0 ml) gab man
Norbornen (5,0 g) und Methylmethacrylat (siehe Tabelle 2), rührte für 4 h bei Raumtemperatur und überführte das Reaktionsgemisch in ein Gefäß mit Methanol. Das erhaltene Polymermaterial wurde ab- filtriert, mit einem Überschuß an Methanol gewaschen und im Va- kuum bei 80°C getrocknet.
Die weiteren Versuchsparameter und die Polymereigenschaften sind der Tabelle 2 zu entnehmen.
Tabelle 2: Ergebnisse der Norbornenpolymerisation in Gegenwart von Methylacrylat
Figure imgf000016_0001
a) Bestimmt mittels (GPC) , bezogen auf einen Polystyrolstandard. b) Keine Polymerisation beobachtet.

Claims

Patentansprüche
Verfahren zur Herstellung von Homo-, Co- oder Blockcopolymeren aus cycloolefinischen Monomereinheiten, dadurch gekennzeichnet, daß man die Polymerisation in Gegenwart eines Katalysators der allgemeinen Formel (I)
Figure imgf000017_0001
in der die Substituenten und Indizes die folgende Bedeutung haben:
M ein Metall aus der Gruppe VIII B des Periodensystems der Elemente,
E1 , E2 unabhängig voneinander ein Element aus der Gruppe VA des Periodensystems der Elemente,
eine verbrückende Struktureinheit aus einer, zwei, drei oder vier Substruktureinheiten von Elementen der Gruppe IVA, VA, VIA des Periodensystems der Elemente,
Ar unabhängig voneinander annellierte Aryleinheiten,
L1, L2 formal ungeladene Lewis-Basenliganden,
X ein- oder zweiwertige Anionen,
1 oder 2 ,
1, m, n 1 oder 2,
wobei m x n = 1 , und gegebenenfalls eines Additivs durchführt.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Katalysator eine Verbindung der Formel (I)
Figure imgf000018_0001
in der die Substituenten und Indizes die folgende Bedeutung haben
Z Methylen, 1,2-Ethylen, 1,3-Propylen oder 1,4-Butylen,
L1 , L2 formal ungeladene Lewis-Basenliganden,
ein- oder zweiwertige Anionen,
1 oder 2 ,
m, n 1 oder 2,
wobei m x n = 2 ist,
verwendet .
3. Verfahren nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, daß man als Katalysator eine Verbindung der Formel (I)
Figure imgf000019_0001
in der die Substituenten und Indizes die folgende Bedeutung haben:
L1, L2 CH3CN oder H20,
X Tetrafluoroborat, Perchlorat, p-Toluolsulfonat oder Trifluoracetat ,
k 1 oder 2 ,
m
verwendet .
Verfahren nach den Ansprüchen 1 bis 3 , dadurch gekennzeichnet, daß man als Katalysator eine Verbindung der Formel (I) , worin L1 und L2 H20 bedeuten, verwendet.
Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß man die Polymerisation in Gegenwart eines Additivs enthaltend eine polarisierte Doppelbindung durchführt.
6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß man als Additiv einen Ester der Acryl- oder Meth- acrylsäure mit einem Ci- bis Cio-Alkanol verwendet.
Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß man als Additiv Methylacrylat verwendet.
8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß das Ausgangsmengenverhaltnis von cycloolefinischer Monomereinheit zu Additiv großer 1 : 10 ist.
5 9. Verfahren nach den Anspr chen 1 bis 8, dadurch gekennzeichnet, daß das Ausgangsmengenverhaltnis von cycloolefinischer Monomereinheit zu Additiv im Bereich von 1 : 5 bis 1000 : 1 liegt.
10 10. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, daß man als cycloolefinische Monomereinheiten Norbornen oder Norbornenderivate verwendet.
11. Homo-, Co- und Blockcopolymere, erhaltlich gemäß Anspruch 4
15
12. Verwendung der Katalysatoren der allgemeinen Formel (I)
Figure imgf000020_0001
30
in der die Substituenten und Indizes die folgende Bedeutung haben:
35 M ein Metall aus der Gruppe VIII B des Periodensystems der Elemente,
E1 , E2 unabhängig voneinander ein Element aus der Gruppe VA des Periodensystems der Elemente,
40
Z eine verbruckende Struktureinheit aus einer, zwei, drei oder vier Substrukture heiten von Elementen der Gruppe IVA, VA, VIA des Periodensystems der Elemente,
45 Ar unabhängig voneinander annellierte Aryleinheiten, L1 , L2 formal ungeladene Lewis-Basenliganden,
X ein- oder zweiwertige Anionen,
k 1 oder 2,
1, m, n 1 oder 2,
wobei m x n = 1,
für die Herstellung von Homo-, Co- oder Blockcopolymeren aus cycloolefinischen Monomereinheiten.
PCT/EP1998/001803 1997-04-08 1998-03-26 Herstellung von homo-, co- oder blockcopolymeren aus cycloolefinischen monomereinheiten WO1998045342A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP54232398A JP2001518955A (ja) 1997-04-08 1998-03-26 シクロオレフィン系単量体単位からなる単独重合体、共重合体またはブロック共重合体の製造
AU72115/98A AU7211598A (en) 1997-04-08 1998-03-26 Production of homocopolymers, co-copolymers or block copolymers from cycloolefinic monomer units
EP98919166A EP0973813A1 (de) 1997-04-08 1998-03-26 Herstellung von homo-, co- oder blockcopolymeren aus cycloolefinischen monomereinheiten
US09/402,541 US6262194B1 (en) 1997-04-08 1998-03-26 Production of homocopolymers, co-polymers or block copolymers from cycloolefinicmonomer units

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19714532.9 1997-04-08
DE19714532A DE19714532A1 (de) 1997-04-08 1997-04-08 Herstellung von Homo-, Co- oder Blockcopolymeren aus cycloolefinischen Monomereinheiten

Publications (1)

Publication Number Publication Date
WO1998045342A1 true WO1998045342A1 (de) 1998-10-15

Family

ID=7825826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/001803 WO1998045342A1 (de) 1997-04-08 1998-03-26 Herstellung von homo-, co- oder blockcopolymeren aus cycloolefinischen monomereinheiten

Country Status (6)

Country Link
US (1) US6262194B1 (de)
EP (1) EP0973813A1 (de)
JP (1) JP2001518955A (de)
AU (1) AU7211598A (de)
DE (1) DE19714532A1 (de)
WO (1) WO1998045342A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245871B1 (en) 1997-04-18 2001-06-12 Eastman Chemical Company Group 8-10 transition metal olefin polymerization catalysts
US6350832B1 (en) 1998-12-09 2002-02-26 The B. F. Goodrich Company Mold addition polymerization of norbornene-type monomers using group 10 metal complexes
US6455650B1 (en) 1998-10-05 2002-09-24 The B.F. Goodrich Company Catalyst and methods for polymerizing cycloolefins
US6620896B1 (en) 1999-02-23 2003-09-16 Eastman Chemical Company Mixed olefin polymerization catalysts, processes employing such catalysts, and polymers obtained therefrom

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102970544A (zh) * 2012-12-07 2013-03-13 豪威科技(上海)有限公司 Jpeg编码和解码方法及***
JP6225294B2 (ja) 2014-08-15 2017-11-01 プロメラス, エルエルシー ポリシクロオレフィンブロックポリマー、その製造方法、および重合組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037529A1 (en) * 1995-05-24 1996-11-28 The B.F. Goodrich Company Homopolymers and copolymers of cationically polymerizable monomers and method of their preparation
WO1996037526A1 (en) * 1995-05-25 1996-11-28 The B.F. Goodrich Company Addition polymers of polycycloolefins containing functional substituents
EP0758657A2 (de) * 1993-11-16 1997-02-19 The B.F. Goodrich Company Additionspolymere aus funktionalisierten Norbornenmonomeren und Verfahren

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2721189A (en) 1954-08-30 1955-10-18 Du Pont Polymeric bicyclo-(2, 2, 1)-2-heptene

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0758657A2 (de) * 1993-11-16 1997-02-19 The B.F. Goodrich Company Additionspolymere aus funktionalisierten Norbornenmonomeren und Verfahren
WO1996037529A1 (en) * 1995-05-24 1996-11-28 The B.F. Goodrich Company Homopolymers and copolymers of cationically polymerizable monomers and method of their preparation
WO1996037526A1 (en) * 1995-05-25 1996-11-28 The B.F. Goodrich Company Addition polymers of polycycloolefins containing functional substituents

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S. ADNAN: "SYNTHESIS AND STRUCTURE OF CHIRAL PALLADIUM(II) COMPLEXES BEARING ETHYLENE-BRIDGED BISINDOLINYL- AND BIS(1,2,3,4,-TETRAHYDROQUINOLINYL) LIGANDS.", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 512, 1996, pages 243 - 251, XP002075269 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245871B1 (en) 1997-04-18 2001-06-12 Eastman Chemical Company Group 8-10 transition metal olefin polymerization catalysts
US6656869B2 (en) 1997-04-18 2003-12-02 Eastman Chemical Company Group 8-10 transition metal olefin polymerization catalysts
US6455650B1 (en) 1998-10-05 2002-09-24 The B.F. Goodrich Company Catalyst and methods for polymerizing cycloolefins
US6350832B1 (en) 1998-12-09 2002-02-26 The B. F. Goodrich Company Mold addition polymerization of norbornene-type monomers using group 10 metal complexes
US6620896B1 (en) 1999-02-23 2003-09-16 Eastman Chemical Company Mixed olefin polymerization catalysts, processes employing such catalysts, and polymers obtained therefrom

Also Published As

Publication number Publication date
AU7211598A (en) 1998-10-30
DE19714532A1 (de) 1998-10-15
JP2001518955A (ja) 2001-10-16
US6262194B1 (en) 2001-07-17
EP0973813A1 (de) 2000-01-26

Similar Documents

Publication Publication Date Title
EP0827515B1 (de) Verfahren zur herstellung von polymeren aus olefinisch ungesättigten monomeren
EP0827516A1 (de) Polymere aus olefinisch ungesättigten monomeren
DE69311601T2 (de) Homogenes Katalysatorsystem und Verfahren zur Copolymerisation von Olefinen mit Kohlenmonoxid
WO1998045342A1 (de) Herstellung von homo-, co- oder blockcopolymeren aus cycloolefinischen monomereinheiten
DE69310583T2 (de) Homogenes Katalysatorsystem und Verfahren zur Copolymerisation eines oder mehrerer Olefine mit Kohlenmonoxid
DE19727271A1 (de) Funktionalisierte Kohlenmonoxidcopolymere
DE69212366T2 (de) Katalysatorzusammensetzungen
DE68905982T2 (de) Bereitung einer katalytischen loesung.
EP0944666B1 (de) Katalysatorsysteme für die herstellung von copolymerisaten aus kohlenmonoxid und olefinisch ungesättigten verbindungen
EP0886662B1 (de) Thermoplastische elastomere kohlenmonoxid/olefin-copolymere
EP0944638B1 (de) Cis-verbrückte metallkomplexe
EP1071689B1 (de) Cis-verbrückte metallkomplexe und diese enthaltende katalysatorsysteme
DE19649072A1 (de) Thermoplastische, elastomere Kohlenmonoxid/Olefin-Copolymere
DE19518737A1 (de) Kohlenmonoxid/Olefin-Copolymere
DE19651786C2 (de) Katalysatorsysteme für die Herstellung von Copolymerisaten aus Kohlenmonoxid und olefinisch ungesättigten Verbindungen
DE69307605T2 (de) Polymerisation von Acetylene
DE19812124A1 (de) Verfahren zur Herstellung von Copolymeren aus funktionalisierten olefinisch ungesättigten Monomeren und unpolaren olefinisch ungesättigten Verbindungen
DE1595695A1 (de) Verfahren zur Herstellung von Mischpolymerisaten aus AEthylen,Propylen und 5-AEthyliden-2-norbornen
DE2101809C2 (de) Verfahren zur Herstellung von Polyvinylchlorid
DE19846053A1 (de) Verfahren zur Herstellung von linearen, alternierenden Kohlenmonoxidcopolymeren
EP0827520A1 (de) Einatomig verbrückte chelat-metallkomplexe
WO1995003353A1 (de) Verfahren zur herstellung von polyketonen
DE1171159B (de) Verfahren zur Herstellung von Misch-polymerisaten

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BG BR BY CA CN CZ GE HU ID IL JP KR KZ LT LV MX NO NZ PL RO RU SG SI SK TR UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998919166

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09402541

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 542323

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1998919166

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1998919166

Country of ref document: EP