WO1998041417A1 - Method for controlling electric rolling stock - Google Patents

Method for controlling electric rolling stock Download PDF

Info

Publication number
WO1998041417A1
WO1998041417A1 PCT/JP1997/000918 JP9700918W WO9841417A1 WO 1998041417 A1 WO1998041417 A1 WO 1998041417A1 JP 9700918 W JP9700918 W JP 9700918W WO 9841417 A1 WO9841417 A1 WO 9841417A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
braking torque
vehicle
braking
motor
Prior art date
Application number
PCT/JP1997/000918
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Yamada
Hiroshi Katada
Original Assignee
Hitachi, Ltd.
Hitachi Car Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd., Hitachi Car Engineering Co., Ltd. filed Critical Hitachi, Ltd.
Priority to JP54033198A priority Critical patent/JP3608799B2/en
Priority to PCT/JP1997/000918 priority patent/WO1998041417A1/en
Publication of WO1998041417A1 publication Critical patent/WO1998041417A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a method for controlling an electric vehicle, and more particularly to a method for preventing a vehicle from retreating on a slope.
  • Japanese Unexamined Patent Publication No. Hei 7-75216 discloses that, in the middle of a hill, when the accelerator is turned off and the gear is in the forward or reverse position of the shift lever one position, it is detected that the motor has rotated in the reverse direction.
  • a method is disclosed in which the current supplied to the electric motor is increased so that a rotational driving torque is generated in a direction to prevent the vehicle from retreating. Disclosure of the invention
  • An object of the present invention is to provide a control method for an electric vehicle having a regression preventing function for preventing the vehicle from retreating (slipping) on a slope without impairing the traveling performance during normal traveling.
  • Another object of the present invention is to provide an electric vehicle that enables a smooth re-start from a retreat-prevented state, and also allows a driver to safely and smoothly descend on a slope when the driver wants to descend. It is to provide a control device.
  • the object of the present invention is to provide a control method for an electric vehicle, which calculates a drive torque based on a signal of an acceleration instruction means, adjusts an amount of power to an electric motor according to the drive torque, and thereby drives a vehicle.
  • Signal indicates that the vehicle is not accelerating, and that the moving speed of the vehicle is equal to or lower than a predetermined value.
  • braking corresponding to the moving distance of the vehicle after the detection is performed.
  • Calculate the torque adjust the amount of current to the electric motor according to the braking torque, and maintain the amount of current at the time when the vehicle stops after the vehicle stops, which is achieved by an electric vehicle control method. Is done.
  • the shift device is switched to the neutral position while the braking torque is being generated, the motor is suppressed to a predetermined rotation speed. This is achieved by controlling electric vehicles.
  • the value of the drive torque calculated based on the signal of the acceleration instruction means is the braking torque.
  • the electric vehicle control method is characterized in that the generation of the braking torque is released after the torque value is exceeded.
  • FIG. 1 shows a basic configuration diagram of an electric vehicle control system according to an embodiment of the present invention.
  • FIG. 2 shows an electrical block diagram of the control device 4 of FIG.
  • FIG. 3 shows the contents of the rotation detection signal 13 generated by the rotation detection means 10 in Fig. 1 when the motor 9 rotates forward and reverse, and the rotor 9 of the motor 9 based on the rotation detection signal 13.
  • FIG. 3 shows a principle diagram for obtaining a position.
  • FIG. 4 shows a timing chart for calculating a braking torque during forward rotation in the control device 4 of FIG.
  • FIG. 5 shows a timing chart of the calculation of the braking torque at the time of reverse rotation in the control device 4 of FIG.
  • FIG. 6 shows a time chart of the signal of the braking device 4 of FIG.
  • FIG. 7 shows a method of generating a braking torque 27 with respect to the position deviation 25 in the position control operation of FIG.
  • FIG. 8 shows the shift device 1 in the control device 4 shown in FIG. -Indicates the operation when selected in a neutral way, that is, when the position is selected to be neither forward nor reverse.
  • FIG. 9 shows the change pattern of the neutral braking torque 36 described in FIG.
  • FIG. 10 is a diagram for explaining the operation of the braking torque release determination means 28 of FIG.
  • FIG. 11 shows a flowchart until the braking torque 27 is output in FIG.
  • FIG. 12 is a flowchart illustrating the selection of the torque command in FIG.
  • FIG. 13 shows a flowchart for releasing the generation of the braking torque in the control device of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a basic configuration diagram of an electric vehicle control system according to an embodiment of the present invention.
  • the control device 4 of the electric car receives signals from an accelerator device 1 as acceleration instruction means, a shift lever device 2 as forward / reverse direction selection means 2 and a brake device 3 as braking instruction means.
  • the calculation means 5 inside the control device 4 calculates the torque to be output by the motor 9 based on the signal of the accelerator device 1 and the like, and outputs the drive signal 14 to the power conversion device 7 based on the calculation result. .
  • the power semiconductor element 8 inside the power converter 7 converts the power of the power source 6 based on the drive signal 14 and supplies the power to the motor 9.
  • Motor 9 is drive transmission
  • the driving force is transmitted to the driving wheels 12 through the device 11.
  • the rotation of the motor 9 is detected by the rotation detecting means 10, converted into a rotation detection signal 13, which is an electric signal, and transmitted to the control device 4.
  • FIG. 2 shows an electrical block diagram of the control device 4 of FIG.
  • the driving torque calculating means 15 calculates the driving torque 19 during normal running based on the signal of the accelerator device 1, the signal of the shift lever device 2, and the value of the motor rotation speed 18.
  • the motor rotation speed 18 is obtained by counting the rotation detection signal 13 detected by the rotation detection means 10 in FIG. 1 by the rotation pulse counting means 16 and calculating the rotation pulse count value 2 4
  • the rotation speed is calculated from the rotation speed by the rotation speed calculation means 17.
  • the braking torque generation determining means 20 determines whether or not to generate a braking torque 27 based on the signal of the accelerator device 1, the signal of the shift lever device 2, and the value of the motor rotation speed 18. When it is determined that the braking torque 27 is generated, the torque mode flag 21 is output to the rotor initial position storage means 22.
  • the rotor initial position storage means 22 obtains the rotation pulse count value 24 from the rotation pulse counting means 16 and uses that value as the reference position. Stored as 2 3. This reference position 23 is matched with the subsequent rotation pulse count value 24, and the result is transmitted to the braking torque calculation means 26 as a position deviation 25.
  • the braking torque calculation means 26 calculates and outputs the braking torque 27 based on the value of the input position deviation 25 by performing a function calculation in proportion to the position deviation 25 or inputting the position deviation 25. .
  • the braking torque release determination means 28 is an accelerator device 1, a shift lever device 2, Brake device 3, Motor speed 18 and Braking torque 27 Based on each signal, it is determined whether or not to cancel the generation of braking torque. The result is transmitted to the torque selection means 30 as a torque switching flag 29.
  • the torque switching flag 29 is also transmitted to the rotor initial position storage means 22 and the braking torque calculating means 26, and when the generation of the braking torque is released, the reference position 23 and the braking torque 27 are reset.
  • the neutral braking command calculating means 31 is based on the signals of the accelerator device 1, the shift lever device 2, the brake device 3, and the motor rotation speed 18, and the signal of the shift lever device 2 is neither forward nor backward. In such a case, the calculation is performed to perform the neutral braking.
  • the calculation result is output as a neutral braking command 33, and the result of matching with the motor rotation speed 18 is output to the limiter 35 as a braking force.
  • the neutral braking limit value calculating means 32 calculates the limit value of the neutral braking control based on the signals of the accelerator device 1, the shift lever device 2, and the brake device 3. The calculation result is output to the limiter 35 as the neutral braking force limit value 3 4.
  • the limiter 35 outputs a neutral braking torque 36 based on the braking force and the neutral braking force limit value 34.
  • the selecting means 30 outputs which torque of the driving torque 19, the braking torque 27 described above, and the neutral braking torque 36 as the torque command 37 output by the power conversion means 7 to the electric motor 9. Or switch based on torque switch flag 29.
  • FIG. 3 shows the contents of the rotation detection signal 13 generated by the rotation detection means 10 in Fig. 1 when the motor 9 rotates forward and reverse, and the rotor 9 of the motor 9 based on the rotation detection signal 13.
  • FIG. 3 shows a principle diagram for obtaining a position.
  • the rotation detection signal 13 consists of two-phase pulse signals, A-phase and B-phase. The phase relationship is as shown in (a) during normal rotation when the A-phase signal rises, as shown in (a). Is low level, and the reverse phase is such that the A-phase signal is at the mouth level when the B-phase signal rises as shown in (b).
  • normal rotation and reverse rotation can be determined based on the phase relationship between the two-phase pulse signals.
  • the rotation pulse counting means 16 shown in FIG. 2 counts the pulses of the rotation detection signal 13 as shown in (a) the lower stage and (b) the lower stage.
  • the pulse count value appears in a sawtooth waveform having a cycle of the electrical angle of 360 ° as shown in (a) and (b). By obtaining this value, the position of the rotor can be obtained.
  • FIG. 4 shows a timing chart of the calculation of the braking torque during forward rotation in the control device 4 of FIG.
  • the torque mode flag 21 When the torque mode flag 21 is set, the value of the rotation pulse meter value 24 at that time is stored and held in the reference position 23 (Ph). Thereafter, as the vehicle moves forward, the rotor continues to rotate, and the rotation pulse count value 24 increases. The value obtained by subtracting the reference position 23 from the rotation pulse count value is calculated as the position deviation 25 ( ⁇ P).
  • the braking torque calculation means 26 calculates a braking torque 27 corresponding to the position deviation 25.
  • the braking torque 27 is a negative torque, and generates a force for suppressing the forward rotation of the electric motor 9.
  • the absolute value of the braking torque 27 increases to the value of h because the rotation of the rotor of the electric motor 9 is completely suppressed, and the vehicle stops. After stopping, hold h and keep the vehicle in the stop position.
  • FIG. 5 is a diagram showing the calculation of the braking torque at the time of reverse rotation in the control device 4 of FIG. This shows an imitation.
  • the vehicle stops according to the same flow, and thereafter is held at the stop position.
  • the braking torque 27 is a positive torque, and generates a force for suppressing the rotation of the motor 9 that rotates in the reverse direction.
  • FIG. 6 shows a time chart of the signal of the braking device 4 of FIG.
  • the accelerator SW When the vehicle is climbing the hill, the accelerator SW is on and the accelerator opening A CO maintains an arbitrary AC 01.
  • the brake SW is off because the vehicle is climbing a hill, and the drive torque 19 (m) is an arbitrary value ⁇ m1 corresponding to the accelerator opening AC ⁇ , and the motor 9 is driven based on this value. Torque 19 is being generated.
  • the rotation pulse count value 24 draws a sawtooth waveform according to the rotation of the rotor, and the torque mode flag 21 is not set.
  • the motor rotation speed 18 is an arbitrary value calculated by the rotation speed calculation means 17 from the rotation pulse count value 24.
  • the accelerator SW is turned off, and the driving torque 19 decreases at a predetermined slope and eventually becomes zero.
  • the motor speed 18 likewise decreases, eventually reaching Nniin, a very low speed level near stopping.
  • the position deviation 25 becomes a positive value, and the braking torque 27 acts to cancel the inertia with negative torque as described in FIG.
  • the vehicle whose inertia has been canceled, temporarily stops on the slope and then tries to go backward, that is, start to go down the slope in reverse.
  • the motor speed 18 is a positive value, that is, it passes through zero speed from forward. Then, it changes to the negative speed which is the reverse.
  • the vehicle stops when the braking torque 27 and the vehicle's retreating force on the sloping road are balanced, and the operation of preventing the vehicle from retreating on the sloping road is performed.
  • the braking torque 27 may be generated in proportion to the position deviation 25, or may be given by calculation using a function using the position deviation 25 as an input value. By doing so, the position of the rotor at the time when the speed of the vehicle is reduced by releasing the accelerator device 1, that is, when the motor rotation speed 18 becomes equal to or less than a certain threshold value N min is determined.
  • N min a certain threshold value
  • FIG. 7 shows a method of generating a braking torque 27 with respect to the position deviation 25 in the position control operation of FIG.
  • the braking torque 27 Since the electric motor 9 has a limit on the torque that can be physically generated, the braking torque 27 must also have an upper limit determined according to the maximum torque. In addition, a pattern is set so that the position deviation 25 becomes the maximum value at 360 ° (corresponding to one electrical angle rotation). The braking torque 27 becomes the maximum value hma X just before reaching the maximum value. If this is done, a large amount of braking torque can be generated with a very small amount of rotation of the electric motor 9, which has the effect of reducing the deviation of the position control and, in the case of a vehicle, reducing the retreat distance on a slope. Contribute.
  • the braking torque 27 is generated by a non-linear characteristic, and various position control can be performed by setting such a pattern.
  • the characteristics can be obtained, and position control characteristics suitable for various vehicles can be realized.
  • FIG. 8 shows the operation of the control device 4 of FIG. 2 when the shift lever device 2 is selected in a neutral manner, that is, when the shift lever device 2 is selected at a position that is neither forward nor reverse.
  • the accelerator device 1 Since the vehicle is stopped on the uphill by the braking torque 27, the accelerator device 1 is not depressed, the accelerator opening A C ⁇ is zero, and the accelerator SW is also in the off state.
  • the brake device 3 is not depressed, and the brake depression amount B R S and the brake SW are also in the off state. Since the accelerator device 1 is not depressed, the driving torque 19 remains zero.
  • the shift is selected as D.
  • the torque mode flag 21 is in the set state. This The vehicle is held in a state where the reversing force and the braking torque 27 are balanced by the braking torque ⁇ h, and the motor rotation speed 18 is zero and the stopped state is maintained.
  • the controller 4 determines that the neutral state is established, and resets the torque mode flag 21 to apply the braking torque. 2 Release 7.
  • the vehicle stopped on the ascending road in proportion to the reversing force by 27 starts losing the stopping power and starts retreating.
  • the motor rotation speed 18 increases with a negative value.
  • the driver does not perform any operation such as adjusting the descent speed by depressing the brake device 3, the motor rotation speed 18 will continue to increase, but the torque mode flag 21 will be set. If it becomes neutral while running, set the neutral braking flag.If this neutral braking flag is set, the neutral braking flag is set according to the motor speed 18. Natural braking torque
  • the neutral braking torque 36 increases as the motor rotation speed 18 increases, and operates so as to limit the torque when reaching an arbitrary value ⁇ 1. With this neutral braking torque 36, the vehicle descending speed is suppressed, and the vehicle does not descend at an unnecessarily high speed.
  • This operation has the effect that when the driver's brake pedaling force is small or the braking force of the mechanical brake is low, the vehicle can safely go downhill without excessively increasing the downhill speed.
  • FIG. 9 shows the change pattern of the neutral braking torque 36 described in FIG.
  • the natural braking torque 36 can be changed according to the amount of depression of the brake device 3, as described in FIG. During the time the brake depression amount reaches 0% to 100%, the limit value of the neutral braking torque is changed so that the depression amount becomes n1 when STR1 and n2 when STR2. To make it work.
  • the brake device 3 when the stepping amount of the brake device 3 is small, the natural braking torque is small, and when the stepping force is large, the brake device 3 can be operated so as to strongly brake.
  • the pattern of the generation of the neutral braking torque 36 with respect to the brake depression amount may be generated in proportion to the brake depression amount, or may be generated by a function using the brake depression amount as an input. good.
  • FIG. 10 is a diagram for explaining the operation of the braking torque release determination means 28 of FIG.
  • the state category (a) the braking torque 27 is being generated, and both the accelerator device 1 and the brake device 3 are off.
  • the braking torque 27 holds the value of h, and the vehicle on the ascending road is in the holding state, and the motor rotation speed 18 is zero.
  • the driving torque 19 enough to prevent the vehicle from retreating on the slope is secured, the vehicle does not slip down, and the motor rotation speed 18 is maintained at zero.
  • the braking torque 27 is released when the accelerator SW is turned on, the torque for climbing the hill will be insufficient until the torque reaches m1 from the start of the stepping on the accelerator device 1, You have to retreat on the slope. In order to start the vehicle smoothly, it is necessary to operate the accelerator so as not to suddenly exceed m 1 when stepping on the accelerator device 1. However, if the braking torque generation is released by the method shown in FIG. In the trimming, it is possible to maintain the torque enough to stop and hold the vehicle on the slope at all times, so that the vehicle can restart on the uphill without retreating and smoothly without requiring the driver to perform subtle operations. Enables transmission on slopes.
  • FIG. 11 shows a flowchart until the braking torque 27 is output in FIG.
  • the torque mode flag 21 determines the value of the torque mode flag 21. If it is set, set the braking torque generation flag. Thereafter, when the braking torque is generated, that is, when the torque mode flag 21 is set, the braking torque generation flag is set to leave information that the braking torque is generated. Next, it is determined whether or not the initial position for braking torque control has already been stored and held by the initial position storage flag. If the initial position has not been stored and held, the rotation detection signal 13 is used as a rotation pulse counting means. The rotation pulse count value 24 counted in 16 is taken in and stored as a reference position 23 for position control. When storage is completed, the initial position storage flag is set.
  • the position deviation 25 which is the deviation from the rotation pulse count value 24, is obtained based on the stored reference position 23. If it does not move from 25, the position deviation 25 will also be zero.
  • the braking torque 27 is calculated based on the position deviation 25.
  • the condition that the accelerator is off and the motor speed 18 is N1 or less holds.
  • the time spent is measured by a timer counter. Determine whether the measured time has elapsed t1, and if it has elapsed, set the torque mode flag 21 and clear the timer counter. If the time t 1 has not elapsed, the torque mode flag 21 is reset, and the processing ends.
  • the torque mode flag 21 is reset.
  • FIG. 12 is a flowchart illustrating the selection of the torque command in FIG.
  • a drive torque command 19 is calculated based on the accelerator device 1 and the motor rotation speed 18.
  • FIG. 13 shows a flowchart for releasing the generation of the braking torque in the control device of FIG.
  • the signal selected by the shift lever device 2 is checked, and if it is not in the D range or the R range, it is determined that the condition for canceling the generation of the braking torque is satisfied, and the torque mode flag 21 is turned off. And set the initial position storage flag to off.
  • the absolute value of the driving torque 19 at that time is calculated and set to abs, and the absolute value of the braking torque is calculated. And set it in habs.
  • the downhill speed can be adjusted by the braking torque in accordance with the vehicle speed and the brake operation, so that the vehicle can go down safely and smoothly. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

An electric rolling stock is prevented from moving backward on an ascending slope, etc., when the stock goes up the slope and from slipping down when the stock again goes up the slop and, at the same time, to make the stock to safely goes down a slope at the time of neutral braking by adjusting and suppressing the descending speed of the stock. When the number of revolutions of a motor (9) is equal to or smaller than a threshold while an accelerator (1) is turned off, a reference position (23) is stored on the basis of the count value (27) of pulses and braking torque (27) is computed by finding a positional deviation (25). Driving torque (19) for power running and neutral braking torque (36) for neutral braking are computed from the rotation detecting signals (13) of the accelerator (1), a shift lever device (2), brake phase device, and the rotation detecting means (10) of the motor (9) and the torque is selected by means of a torque selecting means (30). Then the selected torque is outputted as a torque command (37) so that the motor (9) can generate the torque.

Description

明 細 書  Specification
電気車の制御方法 技術分野  Electric vehicle control method
本発明は電気車の制御方法に係り、 特に坂道における車両の退行阻止 方法に関する。 背景技術  The present invention relates to a method for controlling an electric vehicle, and more particularly to a method for preventing a vehicle from retreating on a slope. Background art
電気自動車もエンジンで駆動される自動車同様坂道での停止, 発進時 に車両がずり下がると言った問題がある。  Like electric vehicles, electric vehicles have the problem that the vehicle slips when stopping or starting on a hill.
特開平 7— 75216 号公報には、 坂の中途において、 アクセルカ^ ffであ り、 かつギアのシフ トレバ一位置の前進或いは後進位置にあるとき電動 機が逆に回転したことを検知して、 車両の退行を阻止する方向へ回転駆 動トルクが発生するように電動機へ供給する電流を増加する方法が開示 されている。 発明の開示  Japanese Unexamined Patent Publication No. Hei 7-75216 discloses that, in the middle of a hill, when the accelerator is turned off and the gear is in the forward or reverse position of the shift lever one position, it is detected that the motor has rotated in the reverse direction. A method is disclosed in which the current supplied to the electric motor is increased so that a rotational driving torque is generated in a direction to prevent the vehicle from retreating. Disclosure of the invention
上記特開平 7- 75216号公報記載の技術は、 アクセルとギアのシフ 卜レ バ一位置と、 電動機の回転方向をパラメータとして退行阻止トルクを発 生するか否かを判定する。  According to the technique described in Japanese Patent Application Laid-Open No. 7-75216, it is determined whether or not to generate a regression preventing torque by using the positions of a shift lever of an accelerator and a gear and a rotation direction of a motor as parameters.
しかし、 例えば車両が後進している際に、 アクセルを off にしてシフ トレバ一位置を前進に切り換える操作をした場合、 ギアのシフ トレバ一 位置に对して電動機が逆回転しているという状況が発生し、 電動機に退 行阻止トルクが発生する。  However, for example, if the accelerator is turned off and the shift lever position is switched to forward while the vehicle is moving backward, there is a situation in which the electric motor rotates in the reverse direction after shifting to the gear shift position. Occurs, causing the motor to generate regression-preventing torque.
すると車両は急停止し、 搭乗者に強いショックがかかり、 運転性を損 なう。 As a result, the vehicle stops suddenly, causing a strong shock to the passengers and impairing drivability. Now.
また、 ノ ッテリフォークリフ 卜のように高速域からギアのシフ トレパ 一位置を頻繁に電動機の回転方向と逆の方向に切り換えて制動を行うよ うな場合には、 ショックが大きく、 特開平 7— 75216号公報に示されてい るような技術は適用できないものと考えられる。  Also, in the case where braking is performed by frequently switching the position of the gear shift trepper from the high-speed range to the direction opposite to the rotation direction of the electric motor as in the case of a notch forklift, the shock is large. — It is considered that the technology described in 75216 is not applicable.
また、 上記特開平 7— 75216号公報に示されている技術においては、 坂 道における退行阻止制御については述べられているが、 退行阻止状態か らの発進方法については述べられておらず、 またギアのシフ トレバ一位 置が走行位置、 すなわち Dレンジでも Rレンジでもないニュー 卜ラルの 位置に選択された場合の動作、 特にニュー 卜ラル時における退行阻止解 除状態での降坂動作については述べられていない。  Also, in the technology disclosed in Japanese Patent Application Laid-Open No. 7-75216, the regression prevention control on a sloping road is described, but the method of starting from the regression prevention state is not described. The operation when the gear shift lever position is selected to the traveling position, that is, the neutral position that is neither the D range nor the R range, especially the descent operation in the deceleration prevention release state during the neutral operation Not stated.
本発明の目的は、 通常走行時における走行性を損なうことなく、 坂道 において車両の退行 (ずり落ち) を防止する退行阻止機能を有する電気 車の制御方法を提供することにある。  An object of the present invention is to provide a control method for an electric vehicle having a regression preventing function for preventing the vehicle from retreating (slipping) on a slope without impairing the traveling performance during normal traveling.
また、 本発明の他の目的は、 退行阻止状態からの再発進を円滑に行え るようにし、 かつ運転者が降坂したい場合には安全かつ円滑に降坂する ことも可能とする電気車の制御装置を提供することにある。  Another object of the present invention is to provide an electric vehicle that enables a smooth re-start from a retreat-prevented state, and also allows a driver to safely and smoothly descend on a slope when the driver wants to descend. It is to provide a control device.
上記目的は、 加速指示手段の信号に基づいて駆動トルクを算出し、 該 駆動トルクに応じて電動機への通電量を調節し、, もって車両を駆動する 電気車の制御方法において、 前記加速指示手段の信号が非加速状態を示 していること、 および車両の移動速度が所定の値以下であることを検出 し、 車両の移動中は該検出があった後の車両の移動距離に応じた制動ト ルクを算出し、 該制動トルクに応じて電動機への通電量を調節し、 車両 の停止後は車両が停止した時点の通電量を保持することを特徴とする電 気車の制御方法により達成される。 また上記発明の、 好ましくは、 前記制動トルクが発生している際にシ フ ト装置がニュー 卜ラルの位置に切り換えられた後は、 前記電動機を所 定の回転速度に抑制することを特徴とする電気車の制御方法によって達 成される。 The object of the present invention is to provide a control method for an electric vehicle, which calculates a drive torque based on a signal of an acceleration instruction means, adjusts an amount of power to an electric motor according to the drive torque, and thereby drives a vehicle. Signal indicates that the vehicle is not accelerating, and that the moving speed of the vehicle is equal to or lower than a predetermined value. During the movement of the vehicle, braking corresponding to the moving distance of the vehicle after the detection is performed. Calculate the torque, adjust the amount of current to the electric motor according to the braking torque, and maintain the amount of current at the time when the vehicle stops after the vehicle stops, which is achieved by an electric vehicle control method. Is done. In the above invention, preferably, after the shift device is switched to the neutral position while the braking torque is being generated, the motor is suppressed to a predetermined rotation speed. This is achieved by controlling electric vehicles.
また上記発明の好ましくは、 制動トルクを発生している際に前記加速 指示手段の信号が加速状態を示したときは、 前記加速指示手段の信号に 基づいて算出した前記駆動トルクの値が前記制動トルクの値を超えた後 に前記制動トルクの発生を解除することを特徴とする電気車の制御方法 によリ達成される。 図面の簡単な説明  In a preferred embodiment of the present invention, when the signal of the acceleration instruction means indicates an acceleration state while the braking torque is being generated, the value of the drive torque calculated based on the signal of the acceleration instruction means is the braking torque. The electric vehicle control method is characterized in that the generation of the braking torque is released after the torque value is exceeded. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 本発明の一実施形態をなす電気車制御システムの基本構成 図を示す。  FIG. 1 shows a basic configuration diagram of an electric vehicle control system according to an embodiment of the present invention.
第 2図は、 第 1 図の制御装置 4の電気的プロック図を示す。  FIG. 2 shows an electrical block diagram of the control device 4 of FIG.
第 3図は、 電動機 9の正転時, 逆転時において、 第 1 図の回転検出手 段 1 0が発生する回転検出信号 1 3の内容、 および回転検出信号 1 3か ら電動機 9の回転子位置を求めるための原理図を示す。  Fig. 3 shows the contents of the rotation detection signal 13 generated by the rotation detection means 10 in Fig. 1 when the motor 9 rotates forward and reverse, and the rotor 9 of the motor 9 based on the rotation detection signal 13. FIG. 3 shows a principle diagram for obtaining a position.
第 4図は、 第 2図の制御装置 4における、 正転時の制動トルク演算の タィムチヤー 卜を示す。  FIG. 4 shows a timing chart for calculating a braking torque during forward rotation in the control device 4 of FIG.
第 5図は、 第 2図の制御装置 4における逆転時の制動トルク演算のタ ィムチヤ一 卜を示す。  FIG. 5 shows a timing chart of the calculation of the braking torque at the time of reverse rotation in the control device 4 of FIG.
第 6図は、 第 2図の制動装置 4の信号のタイムチヤ一 卜を示す。 第 7図は、 第 6図の位置制御動作での位置偏差 2 5に対する制動卜ル ク 2 7の発生方法を示す。  FIG. 6 shows a time chart of the signal of the braking device 4 of FIG. FIG. 7 shows a method of generating a braking torque 27 with respect to the position deviation 25 in the position control operation of FIG.
第 8図は、 第 2図の制御装置 4において、 シフ トレバ一装置 2がニュ ― 卜ラルに選択された場合、 つまり前進でも後進でもない位置に選択し た場合の動作を示す。 FIG. 8 shows the shift device 1 in the control device 4 shown in FIG. -Indicates the operation when selected in a neutral way, that is, when the position is selected to be neither forward nor reverse.
第 9図は、 第 8図で述べたニュー 卜ラル制動トルク 3 6の変化バタ一 ンを示す。  FIG. 9 shows the change pattern of the neutral braking torque 36 described in FIG.
第 1 0図は、 第 2図の制動トルク解除判定手段 2 8の動作説明図を示 す。  FIG. 10 is a diagram for explaining the operation of the braking torque release determination means 28 of FIG.
第 1 1 図は、 第 2図において制動トルク 2 7 を出力するまでのフロー チャー トを示す。  FIG. 11 shows a flowchart until the braking torque 27 is output in FIG.
第 1 2図は、 第 2図における トルク指令の選択を説明するフ口一チヤ 一 卜を示す。  FIG. 12 is a flowchart illustrating the selection of the torque command in FIG.
第 1 3図は、 第 2図の制御装置において制動トルクの発生を解除する フローチヤ一 トを示す。 発明を実施するための最良の形態  FIG. 13 shows a flowchart for releasing the generation of the braking torque in the control device of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施形態を図を用いて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第 1 図は、 本発明の一実施形態をなす電気車制御システムの基本構成 図を示す。  FIG. 1 shows a basic configuration diagram of an electric vehicle control system according to an embodiment of the present invention.
電気車の制御装置 4には、 加速指示手段としてのアクセル装置 1 、 前, 後進方向選択手段としてのシフ トレバー装置 2い および制動指示手段と してのブレーキ装置 3の信号が入力される。  The control device 4 of the electric car receives signals from an accelerator device 1 as acceleration instruction means, a shift lever device 2 as forward / reverse direction selection means 2 and a brake device 3 as braking instruction means.
制御装置 4の内部にある演算手段 5は、 アクセル装置 1等の信号に基 づいて、 モータ 9が出力すべき トルクを演算し、 演算結果に基づき駆動 信号 1 4 を電力変換装置 7に出力する。  The calculation means 5 inside the control device 4 calculates the torque to be output by the motor 9 based on the signal of the accelerator device 1 and the like, and outputs the drive signal 14 to the power conversion device 7 based on the calculation result. .
電力変換装置 7の内部の電力半導体素子 8は、 駆動信号 1 4に基づい て、 電源 6の電力を変換し、 電動機 9に供給する。 モータ 9は駆動伝達 装置 1 1 を通して駆動輪 1 2に駆動力を伝達する。 The power semiconductor element 8 inside the power converter 7 converts the power of the power source 6 based on the drive signal 14 and supplies the power to the motor 9. Motor 9 is drive transmission The driving force is transmitted to the driving wheels 12 through the device 11.
電動機 9の回転は回転検出手段 1 0によって検出され、 電気的な信号 である回転検出信号 1 3に変換され制御装置 4に伝達される。  The rotation of the motor 9 is detected by the rotation detecting means 10, converted into a rotation detection signal 13, which is an electric signal, and transmitted to the control device 4.
第 2図は、 第 1 図の制御装置 4の電気的プロック図を示す。  FIG. 2 shows an electrical block diagram of the control device 4 of FIG.
駆動トルク演算手段 1 5は、 アクセル装置 1 の信号、 シフ ト レバー装 置 2の信号、 および電動機回転速度 1 8の値をもとに、 通常走行時の駆 動トルク 1 9 を演算する。  The driving torque calculating means 15 calculates the driving torque 19 during normal running based on the signal of the accelerator device 1, the signal of the shift lever device 2, and the value of the motor rotation speed 18.
ここで電動機回転速度 1 8は、 第 1 図における回転検出手段 1 0で検 出した回転検出信号 1 3 を回転パルス計数手段 1 6によって計数し、 そ の計数結果である回転パルス計数値 2 4から回転速度を回転速度演算手 段 1 7により演算したものである。  Here, the motor rotation speed 18 is obtained by counting the rotation detection signal 13 detected by the rotation detection means 10 in FIG. 1 by the rotation pulse counting means 16 and calculating the rotation pulse count value 2 4 The rotation speed is calculated from the rotation speed by the rotation speed calculation means 17.
制動トルク発生判定手段 2 0は、 アクセル装置 1 の信号、 シフ トレバ —装置 2の信号、 および電動機回転速度 1 8の値に基づいて、 制動卜ル ク 2 7 を発生するかどうか判定する。 制動トルク 2 7 を発生するように 判定されると、 トルクモー ドフラグ 2 1 が回転子初期位置記憶手段 2 2 に出力される。  The braking torque generation determining means 20 determines whether or not to generate a braking torque 27 based on the signal of the accelerator device 1, the signal of the shift lever device 2, and the value of the motor rotation speed 18. When it is determined that the braking torque 27 is generated, the torque mode flag 21 is output to the rotor initial position storage means 22.
トルクモー ドフラグ 2 1 が回転子初期位置記憶手段 2 2に入力される と、 回転子初期位置記憶手段 2 2は回転パルス計数手段 1 6から回転パ ルス計数値 2 4 を得、 その値を基準位置 2 3 として記憶保持する。 この 基準位置 2 3は、 以後の回転パルス計数値 2 4 と突き合わされ、 その結 果は位置偏差 2 5 として制動トルク演算手段 2 6に伝達される。  When the torque mode flag 21 is input to the rotor initial position storage means 22, the rotor initial position storage means 22 obtains the rotation pulse count value 24 from the rotation pulse counting means 16 and uses that value as the reference position. Stored as 2 3. This reference position 23 is matched with the subsequent rotation pulse count value 24, and the result is transmitted to the braking torque calculation means 26 as a position deviation 25.
制動トルク演算手段 2 6では、 入力した位置偏差 2 5の値をもとに、 位置偏差 2 5に比例あるいは位置偏差 2 5 を入力とした関数演算などに よって、 制動トルク 2 7 を演算出力する。  The braking torque calculation means 26 calculates and outputs the braking torque 27 based on the value of the input position deviation 25 by performing a function calculation in proportion to the position deviation 25 or inputting the position deviation 25. .
制動トルク解除判定手段 2 8は、 アクセル装置 1 , シフ トレバ一装置 2, ブレーキ装置 3, 電動機回転速度 1 8, 制動トルク 2 7の各々の信 号に基づいて、 制動トルクの発生を解除するか否か判断する。 その結果 は、 トルク切換フラグ 2 9 として トルク選択手段 3 0に伝達される。 The braking torque release determination means 28 is an accelerator device 1, a shift lever device 2, Brake device 3, Motor speed 18 and Braking torque 27 Based on each signal, it is determined whether or not to cancel the generation of braking torque. The result is transmitted to the torque selection means 30 as a torque switching flag 29.
トルク切換フラグ 2 9は回転子初期位置記憶手段 2 2 と制動トルク演 算手段 2 6にも伝達され、 制動トルク発生が解除されたときには基準位 置 2 3 と制動トルク 2 7 をリセッ 卜する。  The torque switching flag 29 is also transmitted to the rotor initial position storage means 22 and the braking torque calculating means 26, and when the generation of the braking torque is released, the reference position 23 and the braking torque 27 are reset.
ニュー トラル制動指令演算手段 3 1 は、 アクセル装置 1 , シフ ト レバ 一装置 2, ブレーキ装置 3, 電動機回転速度 1 8の信号に基づいて、 シ フ 卜レバー装置 2の信号が前進でも後進でもない場合に、 ニュ一 卜ラル 制動を行うべく演算を行う。 演算結果は、 ニュー トラル制動指令 3 3 と して出力され、 電動機回転速度 1 8 と突き合わせた結果が制動力として リ ミッタ 3 5に出力される。  The neutral braking command calculating means 31 is based on the signals of the accelerator device 1, the shift lever device 2, the brake device 3, and the motor rotation speed 18, and the signal of the shift lever device 2 is neither forward nor backward. In such a case, the calculation is performed to perform the neutral braking. The calculation result is output as a neutral braking command 33, and the result of matching with the motor rotation speed 18 is output to the limiter 35 as a braking force.
ニュー トラル制動制限値演算手段 3 2は、 アクセル装置 1 , シフ トレ バ一装置 2, ブレーキ装置 3の信号に基づいて、 ニュー トラル制動の制 動力の制限値を演算する。 演算結果はニュー 卜ラル制動力制限値 3 4 と してリ ミッタ 3 5に出力される。  The neutral braking limit value calculating means 32 calculates the limit value of the neutral braking control based on the signals of the accelerator device 1, the shift lever device 2, and the brake device 3. The calculation result is output to the limiter 35 as the neutral braking force limit value 3 4.
リ ミッタ 3 5は、 上記制動力と上記ニュー 卜ラル制動力制限値 3 4に 基づいて、 ニュー トラル制動トルク 3 6 を出力する。  The limiter 35 outputs a neutral braking torque 36 based on the braking force and the neutral braking force limit value 34.
選択手段 3 0は、 電力変換手段 7が電動機 9に対して出力する トルク 指令 3 7 として、 駆動トルク 1 9、 先に述べた制動トルク 2 7 , ニュー 卜ラル制動トルク 3 6のどのトルクを出力するか、 トルク切換フラグ 2 9に基づいて切り換える。  The selecting means 30 outputs which torque of the driving torque 19, the braking torque 27 described above, and the neutral braking torque 36 as the torque command 37 output by the power conversion means 7 to the electric motor 9. Or switch based on torque switch flag 29.
第 3図は、 電動機 9の正転時, 逆転時において、 第 1 図の回転検出手 段 1 0が発生する回転検出信号 1 3の内容、 および回転検出信号 1 3か ら電動機 9の回転子位置を求めるための原理図を示す。 回転検出信号 1 3は、 図に示すように A相と B相の 2相のパルス信号 からなり、 その位相関係は、 正転時には ( a ) のように A相信号の立ち 上がり時に B相信号がローレベル、 逆転時には ( b ) のように B相信号 の立ち上がり時に A相信号が口一レベルとなるような関係にある。 Fig. 3 shows the contents of the rotation detection signal 13 generated by the rotation detection means 10 in Fig. 1 when the motor 9 rotates forward and reverse, and the rotor 9 of the motor 9 based on the rotation detection signal 13. FIG. 3 shows a principle diagram for obtaining a position. As shown in the figure, the rotation detection signal 13 consists of two-phase pulse signals, A-phase and B-phase. The phase relationship is as shown in (a) during normal rotation when the A-phase signal rises, as shown in (a). Is low level, and the reverse phase is such that the A-phase signal is at the mouth level when the B-phase signal rises as shown in (b).
この関係を利用することにより、 2相のパルス信号の位相関係で正転 と逆転の判別が可能である。  By utilizing this relationship, normal rotation and reverse rotation can be determined based on the phase relationship between the two-phase pulse signals.
また、 第 2図に示した回転パルス計数手段 1 6では、 ( a ) 下段, ( b ) 下段のように、 回転検出信号 1 3のパルスをカウン ト し、 正回転 の時には加算、 逆回転の時には減算する。 ここで回転子が電気角度で 3 6 0 ° 回転した時点でリセッ トすると、 パルスカウン 卜値は、 ( a ) ( b ) に示すように電機角 3 6 0 ° を周期とするのこぎり波状に現れる。 この値を得ることによって回転子の位置を求めることができる。  In addition, the rotation pulse counting means 16 shown in FIG. 2 counts the pulses of the rotation detection signal 13 as shown in (a) the lower stage and (b) the lower stage. Sometimes subtract. Here, when the rotor is reset at the time of rotating by 360 ° in the electrical angle, the pulse count value appears in a sawtooth waveform having a cycle of the electrical angle of 360 ° as shown in (a) and (b). By obtaining this value, the position of the rotor can be obtained.
第 4図は、 第 2図の制御装置 4における、 正転時の制動トルク演算の タィムチヤ一卜を示す。  FIG. 4 shows a timing chart of the calculation of the braking torque during forward rotation in the control device 4 of FIG.
トルクモ一 ドフラグ 2 1 がセッ 卜されると、 その時点の回転パルス計 数値 2 4の値が基準位置 2 3 ( P h ) に記憶保持される。 その後車両が 進むにつれ回転子は回転し続け、 回転パルス計数値 2 4は増加する。 そ の回転パルス計数値から基準位置 2 3 を差し引いた値を、 位置偏差 2 5 (△ P ) として算出する。  When the torque mode flag 21 is set, the value of the rotation pulse meter value 24 at that time is stored and held in the reference position 23 (Ph). Thereafter, as the vehicle moves forward, the rotor continues to rotate, and the rotation pulse count value 24 increases. The value obtained by subtracting the reference position 23 from the rotation pulse count value is calculated as the position deviation 25 (△ P).
制動トルク演算手段 2 6は、 この位置偏差 2 5に応じた制動トルク 2 7 を演算する。 この場合、 制動トルク 2 7は負トルクであり、 電動機 9の正回転を抑制する力を発生する。 制動トルク 2 7の絶対値は電動機 9の回転子の回転が完全に抑制されるて hの値まで増加し、 車両が停止 する。 停止後はて hを保持し、 車両を停止位置に保持する。  The braking torque calculation means 26 calculates a braking torque 27 corresponding to the position deviation 25. In this case, the braking torque 27 is a negative torque, and generates a force for suppressing the forward rotation of the electric motor 9. The absolute value of the braking torque 27 increases to the value of h because the rotation of the rotor of the electric motor 9 is completely suppressed, and the vehicle stops. After stopping, hold h and keep the vehicle in the stop position.
第 5図は、 第 2図の制御装置 4における逆転時の制動トルク演算のタ ィムチヤ一卜を示す。 FIG. 5 is a diagram showing the calculation of the braking torque at the time of reverse rotation in the control device 4 of FIG. This shows an imitation.
この場合も同様の流れにより車両が停止し、 その後は停止位置に保持 される。 この場合、 制動トルク 2 7は正トルクであり、 逆転する電動機 9の回転を抑制する力を発生する。  In this case as well, the vehicle stops according to the same flow, and thereafter is held at the stop position. In this case, the braking torque 27 is a positive torque, and generates a force for suppressing the rotation of the motor 9 that rotates in the reverse direction.
第 6図は、 第 2図の制動装置 4の信号のタイムチヤ一 トを示す。  FIG. 6 shows a time chart of the signal of the braking device 4 of FIG.
車両が登坂中のとき、 アクセル S Wは onで、 アクセル開度 A C Oは任 意の A C 0 1 を保っている。 ブレーキ S Wは登坂中であることから off になっており、 駆動トルク 1 9 (て m ) はアクセル開度 A C〇に応じた 任意の値 τ m 1 で、 この値をもとに電動機 9は駆動トルク 1 9 を発生し ている。 回転パルス計数値 2 4は回転子の回転に応じたのこぎり波形を 描き、 トルクモー ドフラグ 2 1 は非セッ ト状態である。 また電動機回転 速度 1 8は回転パルス計数値 2 4から回転数算出手段 1 7で算出された 任意の値となっている。  When the vehicle is climbing the hill, the accelerator SW is on and the accelerator opening A CO maintains an arbitrary AC 01. The brake SW is off because the vehicle is climbing a hill, and the drive torque 19 (m) is an arbitrary value τm1 corresponding to the accelerator opening AC 、, and the motor 9 is driven based on this value. Torque 19 is being generated. The rotation pulse count value 24 draws a sawtooth waveform according to the rotation of the rotor, and the torque mode flag 21 is not set. Further, the motor rotation speed 18 is an arbitrary value calculated by the rotation speed calculation means 17 from the rotation pulse count value 24.
ここで運転者がアクセルを離すと、 アクセル S Wは off となり、 また 駆動トルク 1 9は所定の傾きで減少し、 やがてゼロとなる。 電動機回転 速度 1 8も同様に低下し、 やがて停止に近い微少速度レベルである Nniin に達する。  Here, when the driver releases the accelerator, the accelerator SW is turned off, and the driving torque 19 decreases at a predetermined slope and eventually becomes zero. The motor speed 18 likewise decreases, eventually reaching Nniin, a very low speed level near stopping.
電動機回転速度 1 8が N m i nに達すると、 トルクモ一 ドフラグ 2 1 がセッ 卜され、 回転パルス計数値 2 4の値が基準位置 2 3 として記憶さ れる。  When the motor rotation speed 18 reaches N min, the torque mode flag 21 is set, and the value of the rotation pulse count value 24 is stored as the reference position 23.
その後車両が惰性で登坂すると、 位置偏差 2 5は正の値となり、 第 4 図で説明したように制動トルク 2 7は負トルクで惰性を打ち消すように 働く。 惰性が打ち消された車両は坂の上で一旦停止し今度は後進つま り 坂を逆に下り始めようとする。  Thereafter, when the vehicle goes uphill by inertia, the position deviation 25 becomes a positive value, and the braking torque 27 acts to cancel the inertia with negative torque as described in FIG. The vehicle, whose inertia has been canceled, temporarily stops on the slope and then tries to go backward, that is, start to go down the slope in reverse.
このとき電動機回転速度 1 8は正の値つま り前進から速度ゼロを通過 し、 後進である負の速度にまで変化していく。 At this time, the motor speed 18 is a positive value, that is, it passes through zero speed from forward. Then, it changes to the negative speed which is the reverse.
車両が後進状態になると、 今度は電動機 9の回転方向も逆になるので、 回転パルス計数値 2 4は今度は減算方向にダウンカウン 卜 していく。 回 転パルス計数値 2 4が変化していく とそれに応じて位置偏差 2 5も変化 し、 位置偏差 2 5の値はゼロを通過し今度は基準位置 2 3よりも小さく なり位置偏差 2 5は負の値を示すようになる。  When the vehicle is in the reverse state, the rotation direction of the electric motor 9 is also reversed this time, so that the rotation pulse count value 24 now counts down in the subtraction direction. As the rotation pulse count value 24 changes, the position deviation 25 also changes accordingly, and the value of the position deviation 25 passes through zero, and is now smaller than the reference position 23, and the position deviation 25 becomes It shows a negative value.
この状態は電動機 9の回転子の位置があらかじめ記憶した基準位置よ りも逆転方向に移動している状態、 つま り車両が後退していっている状 態であるので、 今度はその後退力を打ち消すべく前進力である正の制動 トルク 2 7 を発生する。  In this state, the position of the rotor of the electric motor 9 is moving in the reverse direction from the reference position stored in advance, that is, the vehicle is moving backward. A positive braking torque 27 is generated as a forward force.
この制動トルク 2 7 と車両の坂道上での後退力が釣り合う所で車両は 停止し、 坂道上での退行阻止という動作になる。  The vehicle stops when the braking torque 27 and the vehicle's retreating force on the sloping road are balanced, and the operation of preventing the vehicle from retreating on the sloping road is performed.
なお、 この制動トルク 2 7は位置偏差 2 5に対し比例して発生させて もよいし、 位置偏差 2 5 を入力値とした関数で計算して与えてもよい。 このようにすることにより、 アクセル装置 1 を離して車両の速度が低 下した時点、 つま り電動機回転速度 1 8がある任意のしきい値 N m i n 以下になった時点での回転子の位置を記憶することで、 その基準位置 2 3から車両が動いた場合、 つまリ電動機 9の回転子位置が移動した場 合に基準位置 2 3 との 「ずれ」 に応じて トルクを発生する位置制御が実 現でき、 登坂路上などで動作した場合には車両の退行阻止として動作す るようになる。  The braking torque 27 may be generated in proportion to the position deviation 25, or may be given by calculation using a function using the position deviation 25 as an input value. By doing so, the position of the rotor at the time when the speed of the vehicle is reduced by releasing the accelerator device 1, that is, when the motor rotation speed 18 becomes equal to or less than a certain threshold value N min is determined. By memorizing, when the vehicle moves from the reference position 23, when the rotor position of the trimmer motor 9 moves, the position control that generates torque in accordance with the “deviation” from the reference position 23 is performed. It can be realized, and when it operates on an uphill road, it will operate to prevent the vehicle from retreating.
第 7図は、 第 6図の位置制御動作での位置偏差 2 5に対する制動トル ク 2 7の発生方法を示す。  FIG. 7 shows a method of generating a braking torque 27 with respect to the position deviation 25 in the position control operation of FIG.
位置偏差 2 5が正または負の値に変化していった場合、 ( a ) ではそ の変化量に比例した関係で制動トルク 2 7 を発生させるパタ一ンとなつ ている。 When the position deviation 25 changes to a positive or negative value, (a) shows a pattern that generates the braking torque 27 in a relation proportional to the change. ing.
電動機 9は物理的に発生できる トルクに限度があるため、 制動トルク 2 7 も当然その最大トルクに合わせて上限を決めておく必要がある。 また、 位置偏差 2 5は 3 6 0 ° で最大の値 (電気角度 1 回転相当) と なる力 制動トルク 2 7はその最大値になる手前で最大の値て h m a X となるようにパターンを設定しておけば、 電動機 9の回転がごく小さい 量で大きな制動トルクを発生させることができるため、 位置制御の偏差 を小さくする効果があり、 車両においては坂道での退行距離を小さくす ることに寄与する。  Since the electric motor 9 has a limit on the torque that can be physically generated, the braking torque 27 must also have an upper limit determined according to the maximum torque. In addition, a pattern is set so that the position deviation 25 becomes the maximum value at 360 ° (corresponding to one electrical angle rotation). The braking torque 27 becomes the maximum value hma X just before reaching the maximum value. If this is done, a large amount of braking torque can be generated with a very small amount of rotation of the electric motor 9, which has the effect of reducing the deviation of the position control and, in the case of a vehicle, reducing the retreat distance on a slope. Contribute.
( b ) のパターンでは、 位置偏差 2 5が負の値である場合には非線形 の特性により制動トルク 2 7 を発生させるパターンとなっており、 この ようなパターンを設定することによってさまざまな位置制御特性を得る ことができ、 いろいろな車両に合わせた位置制御特性を実現することが できる。  In the pattern (b), when the position deviation 25 is a negative value, the braking torque 27 is generated by a non-linear characteristic, and various position control can be performed by setting such a pattern. The characteristics can be obtained, and position control characteristics suitable for various vehicles can be realized.
第 8図は、 第 2図の制御装置 4において、 シフ トレバ一装置 2がニュ 一卜ラルに選択された場合、 つま リ前進でも後進でもない位置に選択し た場合の動作を示す。  FIG. 8 shows the operation of the control device 4 of FIG. 2 when the shift lever device 2 is selected in a neutral manner, that is, when the shift lever device 2 is selected at a position that is neither forward nor reverse.
車両は登坂路上で制動トルク 2 7により停止している状態であるため、 アクセル装置 1 は踏み込まれておらずアクセル開度 A C〇はゼロであり、 アクセル S Wも off状態である。 ブレーキ装置 3も踏み込まれておらず、 ブレーキ踏み込み量 B R Sもブレーキ S Wも of f状態である。 アクセル 装置 1が踏み込まれていないので駆動トルク 1 9もゼロのままである。 ここでシフ 卜は Dに選択されている。  Since the vehicle is stopped on the uphill by the braking torque 27, the accelerator device 1 is not depressed, the accelerator opening A C〇 is zero, and the accelerator SW is also in the off state. The brake device 3 is not depressed, and the brake depression amount B R S and the brake SW are also in the off state. Since the accelerator device 1 is not depressed, the driving torque 19 remains zero. Here, the shift is selected as D.
状態区分 ( a ) の領域では、 制動トルク 2 7がある値 τ hで発生され ている最中なので、 トルクモー ドフラグ 2 1 はセッ ト状態にある。 この 制動トルク τ hによリ車両は後退力と制動トルク 2 7が釣り合う状態で 保持され、 電動機回転速度 1 8はゼロとなって停止状態を保持している。 In the area of the state category (a), since the braking torque 27 is being generated at a certain value τh, the torque mode flag 21 is in the set state. this The vehicle is held in a state where the reversing force and the braking torque 27 are balanced by the braking torque τ h, and the motor rotation speed 18 is zero and the stopped state is maintained.
ここでシフ ト D信号を off にし、 シフ ト D信号もシフ ト R信号も選択 されない状態になると、 制御装置 4ではニュー トラル状態であると判定 し、 トルクモ一 ドフラグ 2 1 をリセッ 卜 し制動トルク 2 7 を解除する。  Here, when the shift D signal is turned off and neither the shift D signal nor the shift R signal is selected, the controller 4 determines that the neutral state is established, and resets the torque mode flag 21 to apply the braking torque. 2 Release 7.
トルクモー ドフラグ 2 1 のリセッ トにより、 基準位置 2 3, 位置偏差 2 5、 および制動トルク 2 7は全てゼ口にリセッ 卜され、 制動トルク By resetting the torque mode flag 21, the reference position 23, the position deviation 25, and the braking torque 27 are all reset to the opening, and the braking torque
2 7によって後退力と釣り合って登坂路上に停止していた車両は阻止力 を失って後退を始める。 The vehicle stopped on the ascending road in proportion to the reversing force by 27 starts losing the stopping power and starts retreating.
ここで車両は登坂路を後退することになるので、 電動機回転速度 1 8 が負の値で増加していく。 この時に運転者がブレーキ装置 3 を踏み込ん で降坂速度を調整するなどの操作を行わなかった場合には、 電動機回転 速度 1 8は増加し続けることとなるが、 トルクモー ドフラグ 2 1 がセッ 卜されている時にニュー トラルになった場合には、 ニュー 卜ラル制動フ ラグをセッ トするようにし、 このニュ一 トラル制動フラグがセッ 卜され ている場合には、 電動機回転速度 1 8に応じてニュー 卜ラル制動トルク Here, since the vehicle moves backward on the uphill road, the motor rotation speed 18 increases with a negative value. At this time, if the driver does not perform any operation such as adjusting the descent speed by depressing the brake device 3, the motor rotation speed 18 will continue to increase, but the torque mode flag 21 will be set. If it becomes neutral while running, set the neutral braking flag.If this neutral braking flag is set, the neutral braking flag is set according to the motor speed 18. Natural braking torque
3 6 を発生するようにする。 So that 6 occurs.
このニュー卜ラル制動トルク 3 6は、 電動機回転速度 1 8の増加に従 つて増加し、 ある任意の値 τ η 1 まで達したら制限するように動作する。 このニュー 卜ラル制動トルク 3 6により車両の降坂速度が抑制され、 車 両が必要以上の速さで降坂することがない。  The neutral braking torque 36 increases as the motor rotation speed 18 increases, and operates so as to limit the torque when reaching an arbitrary value τη 1. With this neutral braking torque 36, the vehicle descending speed is suppressed, and the vehicle does not descend at an unnecessarily high speed.
また運転者が降坂速度が早いと感じた場合にはブレーキを踏み込む動 作を行うが、 このブレーキ踏み込み量 B R Sを検出し、 ニュー トラル制 動トルク 3 6の制限値て η 1 をブレーキ踏み込み量 B R Sに応じてて η2 に変化させる。 この結果ニュー トラル制動トルク 3 6が大きくなり、 電 動機回転速度 1 8すなわち車両の降坂速度が抑制される。 If the driver feels that the downhill speed is high, the driver depresses the brake.However, this brake depression amount BRS is detected, and η 1 is set to the limit value of the neutral braking torque 36 and η 1 Change to η2 according to BRS. As a result, the neutral braking torque 36 increases, The motive rotation speed 18, that is, the vehicle downhill speed is suppressed.
この動作は運転者のブレーキ踏力が小さい場合や機械ブレーキの制動 力が低い場合に車両の降坂速度が過度に上昇することなく安全に降坂で きるという効果をもたらす。  This operation has the effect that when the driver's brake pedaling force is small or the braking force of the mechanical brake is low, the vehicle can safely go downhill without excessively increasing the downhill speed.
またニュー 卜ラル制動トルク 3 6は電動機回転速度 1 8がゼロのとき には発生しないようにすることが有効である。 平地でニュー 卜ラル状態 で保持しているときや、 走行中にニュー 卜ラルに切り換えたときには、 トルクモー ドフラグ 2 1 のリセッ 卜状態が維持され、 二ユー トラル制動 フラグをセッ 卜する条件が成立しないために、 二ユー トラル制動が働か ず、 通常走行することができる。  It is also effective to prevent the neutral braking torque 36 from being generated when the motor rotation speed 18 is zero. When the vehicle is held in the neutral state on level ground, or when the vehicle is switched to the neutral state while driving, the reset state of the torque mode flag 21 is maintained, and the condition for setting the dual braking flag is not satisfied. As a result, normal driving can be performed without dual-neutral braking.
第 9図は、 第 8図で述べたニュー 卜ラル制動トルク 3 6の変化パター ンを示す。  FIG. 9 shows the change pattern of the neutral braking torque 36 described in FIG.
ニュ一 卜ラル制動トルク 3 6は、 第 8図で述べたようにブレーキ装置 3の踏み込み量に応じて変化させることができるように構成している。 ブレーキ踏み込み量が 0から 1 0 0 %に至るまでの間において、 踏み込 み量が S T R 1 のときにはて n 1, S T R 2のときにはて n 2 となるよ うにニュー トラル制動トルクの制限値を変化させるようにする。  The natural braking torque 36 can be changed according to the amount of depression of the brake device 3, as described in FIG. During the time the brake depression amount reaches 0% to 100%, the limit value of the neutral braking torque is changed so that the depression amount becomes n1 when STR1 and n2 when STR2. To make it work.
このことによって、 ブレーキ装置 3の踏み込み量が小さい時にはニュ ― 卜ラル制動トルクも小さく、 大きく踏み込んだ時には強く制動するよ うに動作させることができる。 このブレーキ踏み込み量に対するニュ一 卜ラル制動トルク 3 6の発生パタ一ンは、 ブレーキ踏み込み量に比例し て発生させても良いし、 ブレ一キ踏み込み量を入力とした関数で発生さ せても良い。  As a result, when the stepping amount of the brake device 3 is small, the natural braking torque is small, and when the stepping force is large, the brake device 3 can be operated so as to strongly brake. The pattern of the generation of the neutral braking torque 36 with respect to the brake depression amount may be generated in proportion to the brake depression amount, or may be generated by a function using the brake depression amount as an input. good.
第 1 0図は、 第 2図の制動トルク解除判定手段 2 8の動作説明図を示 す。 状態区分 ( a ) では制動トルク 2 7の発生中であり、 アクセル装置 1 もブレーキ装置 3も off の状態である。 制動トルク 2 7はあるて hの値 を保持しており、 これによつて登坂路上の車両は保持状態となって電動 機回転速度 1 8はゼロとなっている。 FIG. 10 is a diagram for explaining the operation of the braking torque release determination means 28 of FIG. In the state category (a), the braking torque 27 is being generated, and both the accelerator device 1 and the brake device 3 are off. The braking torque 27 holds the value of h, and the vehicle on the ascending road is in the holding state, and the motor rotation speed 18 is zero.
状態区分 ( b ) において、 運転者が坂道発進を行うべくアクセル装置 1 を踏み込むと、 アクセル S Wは onとなり、 駆動トルク 1 9はアクセル 開度 A C〇に従って上昇していく。 この時点ではまだトルクモー ドフラ グ 2 1 はセッ トされたままであり、 依然制動トルク 2 7が発生している。 さらにアクセル装置 1 が踏み込まれていく と、 駆動トルク 1 9が上昇 し、 所定の値て m 1の値に近づいていく。 この て m 1 は制動トルク 2 7 と等しい値に設定しており、 やがてて ] =て m 1 になったら、 トルクモ — ドフラグ 2 1 をリセッ トし、 電動機 9の発生トルクを制動トルク 2 7 から駆動トルク 1 9に切り換える。  In the state category (b), when the driver depresses the accelerator device 1 to start on a slope, the accelerator SW is turned on, and the driving torque 19 increases according to the accelerator opening A C〇. At this point, the torque mode flag 21 is still set, and the braking torque 27 is still generated. When the accelerator device 1 is further depressed, the drive torque 19 increases and approaches a predetermined value m1. In this case, m 1 is set to a value equal to the braking torque 27, and when] = m 1 is reached, the torque mode flag 21 is reset and the torque generated by the electric motor 9 is reduced from the braking torque 27. Switch to drive torque 19.
切り換えた時点では、 坂道を退行しないだけの駆動トルク 1 9が確保 されており、 車両がずり下がることがなく、 電動機回転速度 1 8はゼロ を保持される。  At the time of switching, the driving torque 19 enough to prevent the vehicle from retreating on the slope is secured, the vehicle does not slip down, and the motor rotation speed 18 is maintained at zero.
状態区分 ( c ) でさらにアクセル装置 1 が踏み込まれ、 駆動トルク 1 9が増加すると、 電動機 9のトルクが登坂力に打ち勝ち、 車両は登坂 を開始する。  When the accelerator device 1 is further depressed in the state category (c) and the driving torque 19 increases, the torque of the electric motor 9 overcomes the climbing force, and the vehicle starts climbing the slope.
もしアクセル S Wが onになった時点で制動トルク 2 7の発生を解除す ると、 アクセル装置 1 の踏み始めから トルクがて m 1 に達するまでの間 は、 登坂するためのトルクが不足し、 坂道を退行してしまうこととなる。 また、 円滑に車両を発進させるためには、 アクセル装置 1 を踏み込む 際に、 て m 1 を急に越えないようなアクセル操作が必要とされる。 しか し第 1 0図に示すような方法によって制動トルク発生を解除すれば、 タ ィ ミングでは常に坂道上で車両を停止保持するだけのトルクを維持でき るから、 車両は退行することなく登坂路を再発進することができ、 運転 者に微妙な操作を要求することなく 円滑に坂道発信を可能とする。 If the braking torque 27 is released when the accelerator SW is turned on, the torque for climbing the hill will be insufficient until the torque reaches m1 from the start of the stepping on the accelerator device 1, You have to retreat on the slope. In order to start the vehicle smoothly, it is necessary to operate the accelerator so as not to suddenly exceed m 1 when stepping on the accelerator device 1. However, if the braking torque generation is released by the method shown in FIG. In the trimming, it is possible to maintain the torque enough to stop and hold the vehicle on the slope at all times, so that the vehicle can restart on the uphill without retreating and smoothly without requiring the driver to perform subtle operations. Enables transmission on slopes.
第 1 1 図は第 2図において制動トルク 2 7 を出力するまでのフローチ ャ一 卜を示す。  FIG. 11 shows a flowchart until the braking torque 27 is output in FIG.
はじめに トルクモー ドフラグ 2 1 の値を判定し、 セッ 卜されている時 は制動トルク発生フラグをセッ トする。 その後、 制動トルクが発生して いる場合、 すなわち トルクモー ドフラグ 2 1 がセッ 卜されている場合に は、 制動トルクが発生しているという情報を残すべく制動トルク発生フ ラグをセッ 卜する。 次に制動トルク制御のための初期位置がすでに記憶 保持されたかどうかを初期位置記憶フラグにより判定し、 初期位置が記 憶保持されていなければ、 回転検出信号 1 3の信号を回転パルス計数手 段 1 6で計数した回転パルス計数値 2 4 を取り込み、 これを位置制御の ための基準位置 2 3 として記憶保持する。 記憶保持が終了したら初期位 置記憶フラグをセッ 卜する。  First, determine the value of the torque mode flag 21. If it is set, set the braking torque generation flag. Thereafter, when the braking torque is generated, that is, when the torque mode flag 21 is set, the braking torque generation flag is set to leave information that the braking torque is generated. Next, it is determined whether or not the initial position for braking torque control has already been stored and held by the initial position storage flag. If the initial position has not been stored and held, the rotation detection signal 13 is used as a rotation pulse counting means. The rotation pulse count value 24 counted in 16 is taken in and stored as a reference position 23 for position control. When storage is completed, the initial position storage flag is set.
初期位置が記憶保持されていれば、 記憶保持されている基準位置 2 3 をもとに、 回転パルス計数値 2 4 との偏差である位置偏差 2 5 を求める < この時、 電動機 9が基準位置 2 5から動いていない場合には位置偏差 2 5もゼロになる。 その位置偏差 2 5 をもとに制動トルク 2 7 を演算す る。  If the initial position is stored, the position deviation 25, which is the deviation from the rotation pulse count value 24, is obtained based on the stored reference position 23. If it does not move from 25, the position deviation 25 will also be zero. The braking torque 27 is calculated based on the position deviation 25.
トルクモー ドフラグ 2 1 がセッ トされていないときは、 ァクセルが踏 まれているかどうか、 また電動機回転速度 1 8が所定のしきい値 N 1以 下であるかどうかを判定する。  When the torque mode flag 21 is not set, it is determined whether or not the accelerator is depressed and whether or not the motor rotation speed 18 is lower than a predetermined threshold N1.
アクセル off かつ電動機回転速度 1 8が N 1以下であった場合には、 アクセル off かつ電動機回転速度 1 8が N 1以下である条件が成立して いる時間をタイマカウンタにより計測する。 計測した時間が t 1経過し たかどうかを判定し、 経過していればトルクモー ドフラグ 2 1 をセッ 卜 し、 タイマカウンタをクリアする。 時間 t 1 が経過していない場合はト ルクモー ドフラグ 2 1 をリセッ トし、 処理を終了する。 If the accelerator is off and the motor speed 18 is N1 or less, the condition that the accelerator is off and the motor speed 18 is N1 or less holds. The time spent is measured by a timer counter. Determine whether the measured time has elapsed t1, and if it has elapsed, set the torque mode flag 21 and clear the timer counter. If the time t 1 has not elapsed, the torque mode flag 21 is reset, and the processing ends.
アクセル off かつ電動機回転速度 1 8が N 1以下でない場合には、 卜 ルクモ一 ドフラグ 2 1 をリセッ 卜する。  If the accelerator is off and the motor speed 18 is not lower than N1, the torque mode flag 21 is reset.
第 1 2図は第 2図における トルク指令の選択を説明するフローチヤ一 卜を示す。  FIG. 12 is a flowchart illustrating the selection of the torque command in FIG.
通常走行時においては、 アクセル装置 1 , 電動機回転速度 1 8に基づ いて、 駆動トルク指令 1 9が算出される。  During normal running, a drive torque command 19 is calculated based on the accelerator device 1 and the motor rotation speed 18.
駆動トルク指令 1 9が算出されると、 トルクモー ドフラグ 2 1 カ (^ f かどうか判定し、 off のときはシフ トレバー装置 2の信号が Dレンジで も Rレンジでもないニュー トラルかどうか、 および制動トルク発生が過 去に行われたかの情報である制動トルク発生フラグをチェックする。 ニュー 卜ラルかつ制動トルク発生フラグが onであった場合には、 ニュ 一卜ラル制動を行う条件が成立したとして、 電動機回転速度 1 8 をもと にニュー 卜ラル制動トルク 3 6 を演算し、 結果を トルク指令 3 7にセッ 卜する。  When the drive torque command 19 is calculated, it is determined whether the torque mode flag 2 1 (^ f) is set, and when it is off, whether the signal of the shift lever device 2 is neutral which is neither D range nor R range, and braking Check the braking torque generation flag, which is information on whether or not torque generation was performed in the past.If the neutral and braking torque generation flag are on, it is determined that the condition for performing the neutral braking is satisfied. Calculate the neutral braking torque 36 based on the motor rotation speed 18 and set the result to the torque command 37.
シフ ト レバ一装置 2が Dまたは Rに入っていた場合、 またはシフ トレ バー装置 2の信号がニュー 卜ラルかつ制動トルク発生フラグがクリアさ れている場合、 例えば通常走行中にニュー 卜ラルに切り換えた場合など はニュー 卜ラル制動が行わないため、 駆動トルク指令 1 9 を トルク指令 3 7にセッ ト し、 その値に基づいて電動機 9のトルクを制御する。 この 場合は制動トルクを発生しないので、 制動トルク発生フラグを off にす る。 トルクモ一 ドフラグ 2 1 が onの場合には、 制動トルク 2 7 を トルク指 令 3 7にセッ トし、 制動トルクを電動機 9に発生させるように動作する。 第 1 3図は、 第 2図の制御装置において制動トルクの発生を解除する フローチヤ一 卜を示す。 If the shift lever device 2 is in D or R, or if the signal of the shift lever device 2 is neutral and the braking torque generation flag is cleared, for example, the neutral When switching or the like, since the neutral braking is not performed, the driving torque command 19 is set to the torque command 37, and the torque of the electric motor 9 is controlled based on the value. In this case, no braking torque is generated, so the braking torque generation flag is turned off. When the torque mode flag 21 is on, the braking torque 27 is set in the torque command 37, and the motor 9 operates so as to generate the braking torque. FIG. 13 shows a flowchart for releasing the generation of the braking torque in the control device of FIG.
ここではまずシフ トレバ一装置 2で選択されている信号をチェック し、 Dレンジでも Rレンジでもない場合には制動トルクの発生を解除する条 件が成立したと判定し、 トルクモー ドフラグ 2 1 を off にし、 初期位置 記憶フラグを off にする。  Here, first, the signal selected by the shift lever device 2 is checked, and if it is not in the D range or the R range, it is determined that the condition for canceling the generation of the braking torque is satisfied, and the torque mode flag 21 is turned off. And set the initial position storage flag to off.
シフ 卜レバー装置 2で選択されている信号が Dレンジまたは Rレンジ である場合には、 その時点の駆動トルク 1 9の絶対値を計算して abs にセヅ 卜し、 制動トルクの絶対値をて h a b sにセッ トする。  If the signal selected by the shift lever device 2 is in the D range or the R range, the absolute value of the driving torque 19 at that time is calculated and set to abs, and the absolute value of the braking torque is calculated. And set it in habs.
次にアクセル装置 1 が踏み込まれており しかも駆動トルク 1 9の絶対 値 τ a b sの方が制動トルクの絶对値て h a b s よりも大きいかどう力、 チェックする。 結果が yes のときは、 運転者がアクセルを踏み込んで坂 道を上ろうとしている操作状態であり、 トルクモー ドフラグ 2 1 および 初期位置記憶フラグを off にすることにより制動トルクの発生を解除す る。  Next, it is checked whether the accelerator device 1 is depressed and the absolute value τ abs of the driving torque 19 is greater than the absolute value of the braking torque h abs. If the result is yes, the driver is depressing the accelerator and going uphill, and the generation of braking torque is canceled by turning off the torque mode flag 21 and the initial position storage flag.
以上のように本発明によれば、 坂道において車両の退行 (ずり落ち) を防止することが可能である。 ,  As described above, according to the present invention, it is possible to prevent the vehicle from retreating (slipping) on a slope. ,
また、 ショックゃ一時的なずリ下がりなしに退行阻止状態から再発進 することができる。  In addition, it is possible to restart from a regression-prevented state without a shock or a temporary drop.
また、 降坂時の退行阻止状態において、 降坂が必要になった場合には 車両速度やブレーキ操作に応じ降坂速度を制動トルクによって調整する ことができ、 安全かつ円滑に降坂することができる。  In addition, when the vehicle is required to go downhill when the vehicle is going downhill, the downhill speed can be adjusted by the braking torque in accordance with the vehicle speed and the brake operation, so that the vehicle can go down safely and smoothly. it can.
また、 退行阻止機能を備えつつも、 通常の平坦路の走行においては退 行阻止機能を持たないものと同等の機能及び動作を行えるので、 使い勝 手の向上を図ることができる In addition, it has a regression prevention function, but it does not retract when traveling on a normal flat road. Functions and operations equivalent to those without a line blocking function can be performed, improving usability.

Claims

請 求 の 範 囲 The scope of the claims
1 . 加速指示手段の信号に基づいて駆動トルクを算出し、 該駆動トルク に応じて電動機への通電量を調節し、 もって車両を駆動する電気車の制 御方法において、 前記加速指示手段の信号が非加速状態を示しているこ と、 および車両の移動速度が所定の値以下であることを検出し、 車両の 移動中は該検出があった後の車両の移動距離に応じた制動トルクを算出 し、 該制動トルクに応じて電動機への通電量を調節し、 車両の停止後は 車両が停止した時点の通電量を保持することを特徴とする電気車の制御 方法。 1. A method for controlling an electric vehicle that calculates a drive torque based on a signal of an acceleration instruction means, adjusts an amount of power to an electric motor in accordance with the drive torque, and thereby drives a vehicle. Indicates that the vehicle is in a non-acceleration state, and that the moving speed of the vehicle is equal to or lower than a predetermined value. A method for controlling an electric vehicle, comprising: calculating and adjusting the amount of current supplied to an electric motor according to the braking torque, and maintaining the amount of current supplied when the vehicle stops after the vehicle stops.
2 . 請求項 1記載において、 前記移動距離は、 前記電動機の回転角度か ら算出することを特徴とする電気車の制御方法。  2. The electric vehicle control method according to claim 1, wherein the moving distance is calculated from a rotation angle of the electric motor.
3 . 請求項 1記載において、 前記制動トルクは、 前記検出があった時点 からの前記電動機の回転パルス計数値に応じて算出されることを特徴と する電気車の制御方法。  3. The control method for an electric vehicle according to claim 1, wherein the braking torque is calculated according to a rotation pulse count value of the electric motor from the time when the detection is performed.
4 . 請求項 1記載において、 前記制動トルクは、 前記移動距離をパラメ —タとする関数を用いて算出することを特徴とする電気車の制御方法。 4. The electric vehicle control method according to claim 1, wherein the braking torque is calculated by using a function having the moving distance as a parameter.
5 . 請求項 1 において、 前記制動トルクは、 前記移動距離をパラメータ とする比例関数を用いて算出することを特徴とする電気車の制御方法。 5. The control method for an electric vehicle according to claim 1, wherein the braking torque is calculated using a proportional function having the moving distance as a parameter.
6 . 請求項 1記載において、 制動トルクを発生している際に前記加速指 示手段の信号が加速状態を示したときは、 前記加速指示手段の信号に基 づいて算出した前記駆動トルクの値が前記制動トルクの値を超えた後に 前記制動トルクの発生を解除することを特徴とする電気車の制御方法。 6. In claim 1, the value of the drive torque calculated based on the signal of the acceleration instruction means, when the signal of the acceleration instruction means indicates an acceleration state while the braking torque is being generated. Releasing the generation of the braking torque after the vehicle exceeds the value of the braking torque.
7 . 請求項 1記載において、 前記制動トルクが発生している際にシフ ト 装置がニュ一 卜ラルに切り換えられた後は、 前記電動機の所定の回転速 度に抑制することを特徴とする電気車の制御方法。 7. The electric motor according to claim 1, wherein, after the shift device is switched to a neutral state while the braking torque is being generated, the rotational speed of the electric motor is suppressed to a predetermined rotational speed. Car control method.
8 . 請求項 1記載において、 前記制動トルクが発生している際にシフ ト 装置がニュー 卜ラルに切り換えられた後は、 車両の移動速度に応じた制 動トルクを算出し、 車両の移動速度を所定の速度に保持することを特徴 とする電気車の制御方法。 8. The vehicle according to claim 1, wherein after the shift device is switched to neutral while the braking torque is being generated, a braking torque corresponding to the vehicle moving speed is calculated, and the vehicle moving speed is calculated. And controlling the electric vehicle at a predetermined speed.
9 . 請求項 1 記載において、 ブレーキ信号があつたときは、 前記制動卜 ルクの発生を解除することを特徴とする電気車の制御方法。  9. The control method for an electric vehicle according to claim 1, wherein the occurrence of the braking torque is released when a brake signal is applied.
1 0 . 請求項 9記載において、 前記制御トルク発生が解除された後は、 前記電動機を所定の回転速度に抑制することを特徴とする電気車の制御 方法。  10. The method for controlling an electric vehicle according to claim 9, wherein after the generation of the control torque is released, the electric motor is suppressed to a predetermined rotation speed.
PCT/JP1997/000918 1997-03-19 1997-03-19 Method for controlling electric rolling stock WO1998041417A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP54033198A JP3608799B2 (en) 1997-03-19 1997-03-19 Electric vehicle control method
PCT/JP1997/000918 WO1998041417A1 (en) 1997-03-19 1997-03-19 Method for controlling electric rolling stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/000918 WO1998041417A1 (en) 1997-03-19 1997-03-19 Method for controlling electric rolling stock

Publications (1)

Publication Number Publication Date
WO1998041417A1 true WO1998041417A1 (en) 1998-09-24

Family

ID=14180271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000918 WO1998041417A1 (en) 1997-03-19 1997-03-19 Method for controlling electric rolling stock

Country Status (2)

Country Link
JP (1) JP3608799B2 (en)
WO (1) WO1998041417A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8478467B2 (en) 2006-12-26 2013-07-02 Byd Co. Ltd. Method and apparatus for controlling output torque of a motor for an electric vehicle in uphill mode
JP2014075869A (en) * 2012-10-03 2014-04-24 Ntn Corp Rollback suppression control device of electric vehicle
JP2014187779A (en) * 2013-03-22 2014-10-02 Mazda Motor Corp Travel control device of vehicle
CN110091715A (en) * 2018-01-29 2019-08-06 丰田自动车株式会社 Electric vehicle and control method for electric vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101209681B (en) 2006-12-26 2010-09-29 比亚迪股份有限公司 Electric motor outputting torque moment control system and control method in electric automobile descending condition
CN111890949B (en) * 2020-07-23 2023-02-03 奇瑞商用车(安徽)有限公司 New energy automobile slope-sliding prevention control method
CN112590561B (en) * 2020-12-19 2022-08-30 浙江阿尔法汽车技术有限公司 Electric automobile slope-sliding-prevention control method based on torque feedforward

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0595107U (en) * 1992-05-29 1993-12-24 三菱自動車工業株式会社 Stop control of DC motor for electric vehicle
JPH06261418A (en) * 1993-03-05 1994-09-16 Toyota Motor Corp Driving power controller for electric automobile
JPH06276607A (en) * 1993-03-18 1994-09-30 Toyota Motor Corp Drive force controller for electric motor vehicle
JPH06292302A (en) * 1993-04-05 1994-10-18 Mitsubishi Electric Corp Controller for electric vehicle
JPH0775216A (en) * 1993-09-02 1995-03-17 Mitsubishi Motors Corp Electric car with controller to prevent reverse movement on upward slope
JPH07184304A (en) * 1993-12-24 1995-07-21 Nippondenso Co Ltd Running controller for electric automobile
JPH09130909A (en) * 1995-10-31 1997-05-16 Sanyo Electric Co Ltd Driving control device of electric car

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0595107U (en) * 1992-05-29 1993-12-24 三菱自動車工業株式会社 Stop control of DC motor for electric vehicle
JPH06261418A (en) * 1993-03-05 1994-09-16 Toyota Motor Corp Driving power controller for electric automobile
JPH06276607A (en) * 1993-03-18 1994-09-30 Toyota Motor Corp Drive force controller for electric motor vehicle
JPH06292302A (en) * 1993-04-05 1994-10-18 Mitsubishi Electric Corp Controller for electric vehicle
JPH0775216A (en) * 1993-09-02 1995-03-17 Mitsubishi Motors Corp Electric car with controller to prevent reverse movement on upward slope
JPH07184304A (en) * 1993-12-24 1995-07-21 Nippondenso Co Ltd Running controller for electric automobile
JPH09130909A (en) * 1995-10-31 1997-05-16 Sanyo Electric Co Ltd Driving control device of electric car

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8478467B2 (en) 2006-12-26 2013-07-02 Byd Co. Ltd. Method and apparatus for controlling output torque of a motor for an electric vehicle in uphill mode
JP2014075869A (en) * 2012-10-03 2014-04-24 Ntn Corp Rollback suppression control device of electric vehicle
JP2014187779A (en) * 2013-03-22 2014-10-02 Mazda Motor Corp Travel control device of vehicle
CN110091715A (en) * 2018-01-29 2019-08-06 丰田自动车株式会社 Electric vehicle and control method for electric vehicle
CN110091715B (en) * 2018-01-29 2022-06-24 丰田自动车株式会社 Electric vehicle and control method for electric vehicle

Also Published As

Publication number Publication date
JP3608799B2 (en) 2005-01-12

Similar Documents

Publication Publication Date Title
JP3430555B2 (en) Anti-skid control by regenerative braking of electric vehicles
US8862303B2 (en) Industrial vehicle
JP2003237421A (en) Vehicular driving force control device
TW202007583A (en) Motor control device and method, and electric assistance vehicle
CA2295571A1 (en) Brake control apparatus and method
US11440418B2 (en) Control system for electric vehicle
WO1998041417A1 (en) Method for controlling electric rolling stock
JP3374703B2 (en) Electric vehicle motor torque control device
JP2005117718A (en) Method and device for controlling torque of vehicle driven by motor
JP2002271903A (en) Vehicle with synchronous motor taken driving source
JPH09135504A (en) Hill holding device for electric vehicle
JP2004248499A (en) Device for controlling drive of electric automobile
JP2008195379A (en) Brake responsive vehicle electric drive system
JP2001103618A (en) Controller of electric vehicle
JPWO2021246379A5 (en)
JP4106562B2 (en) Electric vehicle drive control device
JP5017945B2 (en) Vehicle braking / driving control device
JP2005218148A (en) Electric working vehicle for conducting course management work of golf course
JP3374702B2 (en) Electric vehicle motor torque control device
JP3872740B2 (en) Motor control method for electric vehicle
JP4268698B2 (en) Crane traveling device and inverter for crane traveling device
JPH089508A (en) Travel controller for battery-driven vehicle
JP3664460B2 (en) Vehicle speed control device
JP4106561B2 (en) Electric vehicle drive control device
JP3503210B2 (en) Motor control device for electric vehicle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase