WO1998036190A1 - Ball-type spherical variator mechanism - Google Patents

Ball-type spherical variator mechanism Download PDF

Info

Publication number
WO1998036190A1
WO1998036190A1 PCT/ES1998/000022 ES9800022W WO9836190A1 WO 1998036190 A1 WO1998036190 A1 WO 1998036190A1 ES 9800022 W ES9800022 W ES 9800022W WO 9836190 A1 WO9836190 A1 WO 9836190A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer ring
balls
primary
ball
movement
Prior art date
Application number
PCT/ES1998/000022
Other languages
Spanish (es)
French (fr)
Inventor
Josu Izagirre Irure
Original Assignee
Josu Izagirre Irure
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Josu Izagirre Irure filed Critical Josu Izagirre Irure
Priority to AU57663/98A priority Critical patent/AU5766398A/en
Publication of WO1998036190A1 publication Critical patent/WO1998036190A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/42Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion with gears having teeth formed or arranged for obtaining multiple gear ratios, e.g. nearly infinitely variable

Definitions

  • the present invention relates to a spherical ball variation mechanism designed to transmit rotary circular motion between trees and / or shafts. It consists of two coaxially located trees, and any of them can transmit or receive the movement, that is, any of them can function as a Primary or Secondary tree of said variator.
  • the transmission of the movement and its variation in rotary circular movement of the secondary shaft with respect to the primary one is achieved as a consequence of the relative movement of three fundamental components that form a kind of bearing.
  • Said components are a spherical ball (which functions as an inner ring of the bearing) integral with the primary shaft, balls or intermediate ball systems and an outer ring fixed to the secondary shaft.
  • Said ring can rotate in both directions on an axis that is perpendicular to the axis that contains the primary and secondary trees. Turning the outer ring in one direction or another is able to transmit the movement of the primary tree to the secondary one. The movement of said ring is carried out by means of drive, control and force mechanisms that are related to the primary and secondary trees. The direction of rotation of the two trees is the same. If you want the direction of rotation of the secondary shaft to be opposite to the primary one, an inverter can be installed. Said inverter may be included within the variator mechanism or be a supplementary component.
  • the mechanism of the invention can be applied in different industrial sectors such as automotive, aeronautics, machinery and mechanical equipment, toys and others.
  • variator mechanisms for domestic and industrial use can be built and also as a component in micromachines, nanomachines and others for different uses.
  • several types of variator mechanisms are known that are used to transmit rotary circular motion between trees and / or axes. According to the shape of the oscillating body these are classified as frontal, conical, spherical, butt and others.
  • the variator mechanism specified in this document could be classified as spherical.
  • the object of the present invention is to develop a variant mechanism for the exposed purpose, by means of which the rotary circular movement of one of the trees and / or axes with respect to the other can be varied at any time and continuously.
  • PH horizontal
  • PV vertical
  • PP profile
  • the two trees and / or axes (either of them can be taken as input or output shaft, transmitter or receiver of the circular movement, primary or secondary tree) of the variator mechanism can be considered contained in the aforementioned ZZ axis, that is, said Transmission shafts will be considered coaxial.
  • Figures 1, 2, 3 and 4 show the components, sub-assemblies and assembly of the spherical ball variator mechanism in a symbolic way.
  • Figure 1 shows a diagram of the primary tree A. This, on one side has a spherical ball
  • SUBSTITUTE SHEET (RULE 26) solidarity C and the end N that is fixed in the bearing I of the shaft B, being able to rotate independently with respect to it.
  • the spherical ball is shown in more detail in Figure 4. It has two M and N poles contained in the ZZ axis. Between the X and Y planes parallel to each other and perpendicular to the ZZ axis, the spherical ball carries a series of meridians (1, 2, ..., n) that can be geodesic or warped curves that between these planes range from M to N Said curves represent the paths that will be described by the balls or ball systems used to transmit the movement between the trees A and B. As a non-limiting example, a curve can start from position 1 of plane X to end in position 3 of the Y plane, and describe as a trajectory a geodesic or a warped curve.
  • Figure 2 shows a diagram of the secondary shaft B. This, at one of its ends has the bearing I and one or two arms E at the ends of which has two bearings H.
  • the assembly F is constituted by the drive, control and force mechanisms that aim to rotate the outer ring D in the bearings H (alternative rotary movement).
  • the balls or ball systems will move along the inner face of the outer ring describing a circumference as a trajectory. That is, on the one hand they are limited to describing as geodetic or warped curves of the C ball as they describe circular paths along the inner face of the outer ring.
  • Figure 3 shows a schematic of the spherical ball variator mechanism. It shows how the primary shaft A of Figure 1 and the secondary shaft B of Figure 2 are fixed in the housing J.
  • the assembly G is also shown which together with the assembly F form the drive, control and force mechanisms that have
  • SUBSTITUTE SHEET (RULE 26) as a function to rotate the outer ring D on the shaft containing the bearings H.
  • the assembly G is fixed to the housing J.
  • the assembly F moves in solidarity with the shaft B.
  • the operation of the variator mechanism is as follows: when the ring exterior D is contained in the PP containing point 0, when turning the tree A moves all the balls or ball systems with it. These only describe the circular path along the inner face of the outer ring, so it does not transmit movement to the B-tree.
  • Figure 5 is an elevation of the spherical ball variator mechanism. In it, by means of section FF, the fundamental elements and components necessary in the transmission of the circular movement between the shaft 1 and the shaft 16 are shown. One of the ends of the shaft 1 is mounted on the bearing of the cover-support 2, the other end is mounted on the bearing that the shaft 16
  • SUBSTITUTE SHEET (RULE 26) It has one of its ends. The other end of the shaft 16 is mounted on the housing bearing 3. The drive shafts 1 and 16 will be considered coaxial. The housing 3 is secured to the support cover 2 by appropriate fasteners.
  • Tree 1 on one side, has a spherical ball 15 integral to it. Said spherical ball has a series of grooves 17. The path of the grooves 17 is curved, which may be geodetic or warped curves. These represent the paths that will describe the balls 18 used to transmit the movement between the trees 1 and 16.
  • grooves 17 are a series of meridians that go from one side to the other of the spherical ball 15, as a non-limiting example, said grooves can start from position 1 of plane X to end in position 3 of plane Y, and describe as a trajectory a geodesic or warped curve (figure 4).
  • the grooves section can be circular or other.
  • a circular section (semicircle) of the grooves 17 is shown in Fig. 6.
  • the height of the grooves 17 of the spherical ball 15 and the outer ring formed by the rings 12 and 13 is approximately equal to the radius of the ball 18, being the section approx. A semicircle.
  • the rings 12 and 13 are positioned and held together by suitable fasteners.
  • the transmission elements 18 can be balls, in the same way that they can be golf balls or other balls, and systems of these. As a non-limiting example we can consider a dodecahedron or an icosahedron that would perform the cage function, and in each of the holes of its faces a ball would be housed. On the inside of the cage the balls would touch each other or another ball. In this way the possible frictions that may appear in the transmission of the movement could be eliminated.
  • Ring 12 in two diametrically opposite points has two holes
  • SUBSTITUTE SHEET (RULE 26) in which the pinion axes are housed and fixed 11. These are responsible for rotating the outer ring on the axis of rotation in one direction or another.
  • the tree 16, at one of the ends, has the arms 14. The end of these is positioned and fixed to the body 8 by appropriate fasteners. Everything analyzed so far is shown in full detail in Figures 5, 6 and 7.
  • Figure 7 is a section GG shown in Figure 5.
  • the assembly formed by the ball 15, the transmitting balls 18 and the outer ring is shown. This can rotate to the position where it forms an angle S with the axis that contains the two trees.
  • Figure 8 is a section DD shown in Figure 5. It shows two hydraulic pumps of external gear teeth used to send the oil from the cavity 29 to the oscillating hydraulic cylinders.
  • the pumps receive the movement of the shaft 1.
  • the shaft 1 rotates faster than the shaft 16
  • one of the pumps sends the oil through the hole 9.
  • the other pump sends the oil through the hole 21 to the corresponding oscillating hydraulic cylinder.
  • one of the two oscillating hydraulic cylinders is working. That is, it rotates the outer ring at an angle S (figure 7), transmitting the movement from tree 1 to tree 16.
  • Figure 9 is a section CC represented in Figure 5. It shows the transmission from shaft 1 to
  • Figure 10 is a section BB represented in Figure 5. It shows an external gear pump. Said pump is responsible for carrying the oil accumulated in 19 to the cavity 29. The oil accumulated in 19 is suctioned through the hole 25 to the cavity 43. The pump moves this oil to the cavity 41 and then passes through the holes. 39 and 24 of tree 1 and reaching cavities 35 and 29. This pump is attached to the cover-support 2 and receives the transmission from tree 1.
  • Figure 11 is a section AA shown in Figure 5. It shows the transmission from the tree 1 to the pump.
  • Figure 12 is a hydraulic scheme.
  • the drive, control and force mechanisms used to rotate the outer ring towards M or N are shown ( Figure 7).
  • the drive, control and force mechanisms may be mechanical, pneumatic, hydraulic, electrical, electronic, etc .; or combination of these.
  • the aforementioned pumps may be used and suitable holes made.
  • the operation of the variator mechanism can be as follows: at first, trees 1 and 16 are stopped and the outer ring is in the PP. When the shaft 1 starts to rotate, it moves the wheel 44 (figure 11), transmitting the movement to the pinion 45. The pinion 45 by means of the shaft 46 transmits the movement to the pinion 40 of the figure 10. The pinion 40 moves to the 42 causing the pump run and send the oil accumulated in 19 to cavity 35 of figure 9 and cavity 29 of figure

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Friction Gearing (AREA)
  • Support Of The Bearing (AREA)

Abstract

The present invention relates to a ball-type spherical variator mechanism designed to transmit circular rotary motion automatically between shafts and/or axes. It is comprised of two shafts (1, 16) which are arranged coaxially. Each of them can transmit or receive the motion. The transmission of the motion and its variation in a rotary circular motion of a secondary shaft (16) with respect to the primary shaft (1) is obtained as a consequence of the relative motion of three fundamental components which form a sort of bearing. Said components are a spherical ball (15) integral with the primary shaft (1), balls (18) or systems of intermediary balls and an external ring (20) fixed to the secondary shaft (16). Said ring (20) may rotate in both directions on an axis which is perpendicular to the axis which contains the primary and secondary shafts. By rotating the external ring (12) in one direction or the other the motion of the primary shaft (1) is transmitted to the secondary shaft (16). The motion of said ring (12) is obtained by means of actuation control and force mechanisms which are associated with the primary (1) and secondary (16) shafts.

Description

MECANISMO VARIADOR ESFÉRICO DE BOLAS. La presente invención se refiere a un mecanismo va- riador esférico de bolas concebida para transmitir movimiento circular rotativo entre árboles y/o ejes. Consta de dos árboles situados coaxialmente pudiendo cualquiera de ellos transmitir o recibir el movimiento, esto es, cualquiera de ellos puede funcionar como árbol Primario o Secundario de dicho variador. La transmisión del movimiento y su variación en movimiento circular rotativo del árbol secundario con respecto al primario se consigue como consecuencia del movimiento relativo de tres componentes fundamentales que forman una especie de cojinete. Dichos componentes son una bola esférica (que hace la función de aro interior del cojinete) solidaria al árbol primario, bolas o sistemas de bolas intermedias y un aro exterior fijado al árbol secundario. Dicho aro puede girar en ambos sentidos sobre un eje que es perpendicular al eje que contiene los árboles primario y secundario. Girando el aro exterior en uno u otro sentido se consigue transmitir el movimiento del árbol primario al secundario. El movimiento de dicho aro se realiza mediante unos mecanismos de accionamiento, control y fuerza que están relacionados con los árboles primario y secundario. El sentido de giro de los dos árboles es el mismo. Si se quiere que el sentido de giro del árbol secundario sea opuesto al primario se puede instalar un inversor. Dicho inversor puede estar incluido dentro del mecanismo variador o ser un componente suplementario. BALL SPHERICAL VARIATOR MECHANISM. The present invention relates to a spherical ball variation mechanism designed to transmit rotary circular motion between trees and / or shafts. It consists of two coaxially located trees, and any of them can transmit or receive the movement, that is, any of them can function as a Primary or Secondary tree of said variator. The transmission of the movement and its variation in rotary circular movement of the secondary shaft with respect to the primary one is achieved as a consequence of the relative movement of three fundamental components that form a kind of bearing. Said components are a spherical ball (which functions as an inner ring of the bearing) integral with the primary shaft, balls or intermediate ball systems and an outer ring fixed to the secondary shaft. Said ring can rotate in both directions on an axis that is perpendicular to the axis that contains the primary and secondary trees. Turning the outer ring in one direction or another is able to transmit the movement of the primary tree to the secondary one. The movement of said ring is carried out by means of drive, control and force mechanisms that are related to the primary and secondary trees. The direction of rotation of the two trees is the same. If you want the direction of rotation of the secondary shaft to be opposite to the primary one, an inverter can be installed. Said inverter may be included within the variator mechanism or be a supplementary component.
El mecanismo de la invención puede ser aplicado en distintos sectores industriales tales como la automo- ción, la aeronáutica, la maquinaria y equipos mecánicos, juguetería y otros.The mechanism of the invention can be applied in different industrial sectors such as automotive, aeronautics, machinery and mechanical equipment, toys and others.
Se ha de tener en cuenta que se pueden construir mecanismos variadores de uso doméstico e industrial y también como componente en micromáquinas, nanomáquinas y otros para distintos usos. Hasta la fecha se conocen varios tipos de mecanismos variadores que se utilizan para transmitir el movimiento circular rotativo entre árboles y/o ejes. Según la forma del cuerpo oscilante éstos se clasifican en frontales, cónicos, esféricos, de tope y otros. El mecanismo variador que se especifica en este documento se podría clasificar como esférico.It must be borne in mind that variator mechanisms for domestic and industrial use can be built and also as a component in micromachines, nanomachines and others for different uses. To date, several types of variator mechanisms are known that are used to transmit rotary circular motion between trees and / or axes. According to the shape of the oscillating body these are classified as frontal, conical, spherical, butt and others. The variator mechanism specified in this document could be classified as spherical.
El objeto de la presente invención es desarrollar un mecanismo variador para el fin expuesto, medíante el cual se pueda variar en todo momento y de forma continuada el movimiento circular rotativo de uno de los árboles y/o ejes con respecto al otro. Para una mejor comprensión, en un principio se analizarán algunos aspectos teóricos para más adelante exponer detalladamente un ejemplo no limitativo. Para ello, consideremos un triedro intrínseco formado por los planos horizontal (PH), vertical (PV) y de perfil (PP) que se cortan perpendicu- larmente entre sí en el punto 0, tal y como se muestra en las figuras 1, 2, 3 y 4. Consideremos el eje Z-Z de las figuras 1, 2 y 3 que resulta de la intersección de los planos PH y PV. Los dos árboles y/o ejes (cualquiera de ellos puede tomarse como árbol de entrada o de salida, transmisor o receptor del movimiento circular, árbol primario o secundario) del mecanismo variador pueden considerarse contenidos en el eje Z-Z antes mencionado, esto es, dichos árboles de transmisión se considerarán coaxiales. Definamos como árbol primario o transmisor del movimiento al árbol A de la figura 1 y como árbol secundario o receptor del movimien- to al árbol B de la figura 2.The object of the present invention is to develop a variant mechanism for the exposed purpose, by means of which the rotary circular movement of one of the trees and / or axes with respect to the other can be varied at any time and continuously. For a better understanding, at first some theoretical aspects will be analyzed in order to explain in detail a non-limiting example. For this, consider an intrinsic trihedron formed by the horizontal (PH), vertical (PV) and profile (PP) planes that are cut perpendicularly to each other at point 0, as shown in Figures 1, 2 , 3 and 4. Consider the ZZ axis of Figures 1, 2 and 3 resulting from the intersection of the PH and PV planes. The two trees and / or axes (either of them can be taken as input or output shaft, transmitter or receiver of the circular movement, primary or secondary tree) of the variator mechanism can be considered contained in the aforementioned ZZ axis, that is, said Transmission shafts will be considered coaxial. Let us define as primary tree or transmitter of movement to tree A of figure 1 and as secondary tree or receiver of movement to tree B of figure 2.
Las figuras 1, 2, 3 y 4 muestran los componentes, subconjuntos y conjunto del mecanismo variador esférico de bolas de una forma simbólica.Figures 1, 2, 3 and 4 show the components, sub-assemblies and assembly of the spherical ball variator mechanism in a symbolic way.
La figura 1 muestra un esquema del árbol prima- rio A. Esta, en uno de los lados tiene una bola esféricaFigure 1 shows a diagram of the primary tree A. This, on one side has a spherical ball
HOJA DE SUSTITUCIÓN (REGLA 26) solidaria C y el extremo N que se fija en el cojinete I del árbol B, pudiendo girar independientemente respecto a esta. La bola esférica se muestra con más detalle en la figura 4. Tiene dos polos M y N contenidos en el eje Z-Z. Entre los planos X e Y paralelos entre sí y perpendiculares al eje Z-Z, la bola esférica lleva una serie de meridianos (1, 2, ..., n) que pueden ser curvas geodésicas o alabeadas que entre dichos planos van de M a N. Dichas curvas representan las trayectorias que des- cribirán las bolas o sistemas de bolas utilizadas para transmitir el movimiento entre los árboles A y B. Como ejemplo no limitativo, una curva puede partir de la posición 1 del plano X para terminar en la posición 3 del plano Y, y describir como trayectoria una geodésica o una curva alabeada.SUBSTITUTE SHEET (RULE 26) solidarity C and the end N that is fixed in the bearing I of the shaft B, being able to rotate independently with respect to it. The spherical ball is shown in more detail in Figure 4. It has two M and N poles contained in the ZZ axis. Between the X and Y planes parallel to each other and perpendicular to the ZZ axis, the spherical ball carries a series of meridians (1, 2, ..., n) that can be geodesic or warped curves that between these planes range from M to N Said curves represent the paths that will be described by the balls or ball systems used to transmit the movement between the trees A and B. As a non-limiting example, a curve can start from position 1 of plane X to end in position 3 of the Y plane, and describe as a trajectory a geodesic or a warped curve.
La figura 2 muestra un esquema del árbol secundario B. Esta, en uno de sus extremos lleva el cojinete I y uno o dos brazos E en cuyos extremos tiene dos cojinetes H. En estos cojinetes H se fijan el árbol B, el conjunto F y el aro exterior D. El conjunto F esta constituido por los mecanismos de accionamiento, control y fuerza que tienen como objetivo girar el aro exterior D en los cojinetes H (movimiento rotativo alternativo). Las bolas o sistemas de bolas se moverán por la cara in- terior del aro exterior describiendo como trayectoria una circunferencia. Esto es, por una parte están limitados a describir como trayectoria curvas geodésicas o alabeadas de la bola C a la vez que describen trayectorias circulares por la cara interior del aro exterior. La figura 3 muestra un esquema del mecanismo variador esférico de bolas. En ella se muestra cómo se fijan el árbol primario A de la figura 1 y el árbol secundario B de la figura 2 en la carcasa J. También se muestra el conjunto G que junto con el conjunto F forman los mecanismos de accionamiento, control y fuerza que tienenFigure 2 shows a diagram of the secondary shaft B. This, at one of its ends has the bearing I and one or two arms E at the ends of which has two bearings H. In these bearings H the shaft B, the assembly F and the outer ring D. The assembly F is constituted by the drive, control and force mechanisms that aim to rotate the outer ring D in the bearings H (alternative rotary movement). The balls or ball systems will move along the inner face of the outer ring describing a circumference as a trajectory. That is, on the one hand they are limited to describing as geodetic or warped curves of the C ball as they describe circular paths along the inner face of the outer ring. Figure 3 shows a schematic of the spherical ball variator mechanism. It shows how the primary shaft A of Figure 1 and the secondary shaft B of Figure 2 are fixed in the housing J. The assembly G is also shown which together with the assembly F form the drive, control and force mechanisms that have
HOJA DE SUSTITUCIÓN (REGLA 26) como función girar el aro exterior D sobre el eje que contiene los cojinetes H. El conjunto G se fija a la carcasa J. El conjunto F se mueve solidario al árbol B. El funcionamiento del mecanismo variador es co- mo sigue: cuando el aro exterior D esta contenido en el PP que contiene al punto 0, al girar el árbol A mueve consigo todas las bolas o sistemas de bolas. Estas únicamente describen la trayectoria circular por la cara interior del aro exterior, por lo que no transmite mo- vimiento al árbol B. Cuando mediante los mecanismos de accionamiento, control y fuerza F y G se hace girar el aro exterior posicionandolo a un ángulo dado con respecto al eje M-N obliga a las bolas o sistemas de bolas a describir la trayectoria circular por la cara interior del aro exterior a la vez que describen las curvas geodésicas y/o alabeadas de la bola C en movimiento alternativo de M hacia N y viceversa. En consecuencia, se consigue transmitir el movimiento del árbol A al B, o viceversa. Si en la posición en la cual el aro exterior forma un ángulo dado con el eje M-N, las bolas o sistemas de bolas no se mueven por ninguna de las trayectorias correspondientes al aro exterior o la bola C, el número de revoluciones del árbol A será igual al del B.SUBSTITUTE SHEET (RULE 26) as a function to rotate the outer ring D on the shaft containing the bearings H. The assembly G is fixed to the housing J. The assembly F moves in solidarity with the shaft B. The operation of the variator mechanism is as follows: when the ring exterior D is contained in the PP containing point 0, when turning the tree A moves all the balls or ball systems with it. These only describe the circular path along the inner face of the outer ring, so it does not transmit movement to the B-tree. When the outer ring is rotated by means of the drive, control and force mechanisms F and G, positioning it at a given angle with respect to the axis MN forces the balls or ball systems to describe the circular path along the inner face of the outer ring while describing the geodetic and / or warped curves of the ball C in reciprocating motion of M towards N and vice versa . Consequently, it is possible to transmit the movement from tree A to B, or vice versa. If in the position in which the outer ring forms a given angle with the MN axis, the balls or ball systems do not move along any of the paths corresponding to the outer ring or ball C, the number of revolutions of the shaft A will be equal to B.
Todas las características expuestas se compren- derán más fácilmente con la siguiente descripción hecha con referencia a los dibujos adjuntos donde se muestra una posible forma de realización dada a titulo de ejemplo no limitativo.All the exposed characteristics will be more easily understood with the following description made with reference to the attached drawings where a possible embodiment given by way of non-limiting example is shown.
La figura 5 es un alzado del mecanismo variador esférico de bolas. En ella, mediante la sección FF, se muestran los elementos y componentes fundamentales necesarios en la transmisión del movimiento circular entre el árbol 1 y el árbol 16. Uno de los extremos del árbol 1 va montado en el cojinete de la tapa-soporte 2, el otro extremo va montado en el cojinete que el árbol 16Figure 5 is an elevation of the spherical ball variator mechanism. In it, by means of section FF, the fundamental elements and components necessary in the transmission of the circular movement between the shaft 1 and the shaft 16 are shown. One of the ends of the shaft 1 is mounted on the bearing of the cover-support 2, the other end is mounted on the bearing that the shaft 16
HOJA DE SUSTITUCIÓN (REGLA 26) tiene en uno de sus extremos. El otro extremo del árbol 16 va montado en el cojinete de la carcasa 3. Los árboles de transmisión 1 y 16 se considerarán coaxiales. La carcasa 3 va sujeta a la tapa-soporte 2 mediante elemen- tos de sujección apropiados. El árbol 1, en uno de los lados tiene una bola esférica 15 solidaria a ésta. Dicha bola esférica tiene una serie de ranuras 17. La trayectoria de las ranuras 17 es curva, pudiendo éstas ser unas geodésicas o curvas alabeadas. Estas representan las tra- yectorias que describirán las bolas 18 utilizadas para transmitir el movimiento entre los árboles 1 y 16. Aunque las ranuras 17 son una serie de meridianos que van de un lado al otro de la bola esférica 15, como ejemplo no limitativo, dichas ranuras pueden partir de la posi- ción 1 del plano X para terminar en la posición 3 del plano Y, y describir como trayectoria una geodésica o curva alabeada (figura 4). La sección de las ranuras puede ser circular o de otro tipo.SUBSTITUTE SHEET (RULE 26) It has one of its ends. The other end of the shaft 16 is mounted on the housing bearing 3. The drive shafts 1 and 16 will be considered coaxial. The housing 3 is secured to the support cover 2 by appropriate fasteners. Tree 1, on one side, has a spherical ball 15 integral to it. Said spherical ball has a series of grooves 17. The path of the grooves 17 is curved, which may be geodetic or warped curves. These represent the paths that will describe the balls 18 used to transmit the movement between the trees 1 and 16. Although the grooves 17 are a series of meridians that go from one side to the other of the spherical ball 15, as a non-limiting example, said grooves can start from position 1 of plane X to end in position 3 of plane Y, and describe as a trajectory a geodesic or warped curve (figure 4). The grooves section can be circular or other.
En la figura 6 se muestra una sección circular (semicírculo) de las ranuras 17. La altura de las ranuras 17 de la bola esférica 15 y del aro exterior formado por los aros 12 y 13 es aproximadamente igual al radio de la bola 18, siendo la sección aprox. un semicírculo. Los aros 12 y 13 se posicionan y sujetan entre sí por elementos de sujección adecuados. Los elementos de transmisión 18 pueden ser bolas, de la misma forma que pueden ser bolas tipo pelotas de golf u otros, y sistemas de éstos. Como ejemplo no limitativo podemos considerar un dodecaedro o un icosaedro que harían la función de jaula, y en cada uno de los agujeros de sus caras se alojaría una bola. En la parte interior de la jaula las bolas se tocarían entre sí o a otra bola. De esta forma se podrían elimminar las posibles fricciones que pueden aparecer en la transmisión del movimiento. El aro 12, en dos puntos diametralmente opuestos tiene dos agujerosA circular section (semicircle) of the grooves 17 is shown in Fig. 6. The height of the grooves 17 of the spherical ball 15 and the outer ring formed by the rings 12 and 13 is approximately equal to the radius of the ball 18, being the section approx. A semicircle. The rings 12 and 13 are positioned and held together by suitable fasteners. The transmission elements 18 can be balls, in the same way that they can be golf balls or other balls, and systems of these. As a non-limiting example we can consider a dodecahedron or an icosahedron that would perform the cage function, and in each of the holes of its faces a ball would be housed. On the inside of the cage the balls would touch each other or another ball. In this way the possible frictions that may appear in the transmission of the movement could be eliminated. Ring 12, in two diametrically opposite points has two holes
HOJA DE SUSTITUCIÓN (REGLA 26) en los cuales se alojan y fijan los ejes-piñón 11. Estos son los encargados de hacer girar en uno u otro sentido el aro exterior sobre el eje de giro. El eje-piñón 11 junto con uno o dos cremalleras 26 (cada cremallera tiene uno o dos émbolos 10) forman el accionamiento oscilante de émbolos hidráulicos con accionamiento por cilindro de vastago continuo y transmisión por piñón y cremallera. El árbol 16, en uno de los extremos, tiene los brazos 14. El extremo de éstos se posiciona y fija al cuerpo 8 me- diante elementos de sujección apropiados. Todo lo analizado hasta ahora se muestra con todo detalle en las figuras 5, 6 y 7.SUBSTITUTE SHEET (RULE 26) in which the pinion axes are housed and fixed 11. These are responsible for rotating the outer ring on the axis of rotation in one direction or another. The pinion shaft 11 together with one or two zippers 26 (each rack has one or two pistons 10) form the oscillating hydraulic piston drive with continuous rod cylinder drive and pinion and rack drive. The tree 16, at one of the ends, has the arms 14. The end of these is positioned and fixed to the body 8 by appropriate fasteners. Everything analyzed so far is shown in full detail in Figures 5, 6 and 7.
La figura 7 es una sección GG representado en la figura 5. Se muestra el conjunto formado por la bola es- férica 15, las bolas 18 transmisoras de movimiento y el aro exterior. Este puede girar hasta la posición en la que forma un ángulo S con el eje que contiene a los dos árboles .Figure 7 is a section GG shown in Figure 5. The assembly formed by the ball 15, the transmitting balls 18 and the outer ring is shown. This can rotate to the position where it forms an angle S with the axis that contains the two trees.
La figura 8 es una sección DD representado en la figura 5. En ella se muestran dos bombas hidráulicas de engranajes de dentado exterior empleados para enviar el aceite desde la cavidad 29 hacia los cilindros hidráulicos oscilantes. Las bombas reciben el movimiento del árbol 1. Como ejemplo no limitativo, cuando el árbol 1 gira más rápido que el árbol 16, una de las bombas envía el aceite por el orificio 9. Por contra, cuando el árbol 16 gira más rápido que el árbol 1, la otra bomba envía el aceite por el oroficio 21 hacia el cilindro hidráulico oscilante correspondiente. De esta forma, en todo momen- to uno de los dos cilindros hidráulicos oscilantes se encuentra trabajando. Esto es, hace girar el aro exterior en un ángulo S (figura 7) consiguiendo transmitir el movimiento del árbol 1 al árbol 16.Figure 8 is a section DD shown in Figure 5. It shows two hydraulic pumps of external gear teeth used to send the oil from the cavity 29 to the oscillating hydraulic cylinders. The pumps receive the movement of the shaft 1. As a non-limiting example, when the shaft 1 rotates faster than the shaft 16, one of the pumps sends the oil through the hole 9. By contrast, when the shaft 16 rotates faster than the shaft tree 1, the other pump sends the oil through the hole 21 to the corresponding oscillating hydraulic cylinder. In this way, at all times one of the two oscillating hydraulic cylinders is working. That is, it rotates the outer ring at an angle S (figure 7), transmitting the movement from tree 1 to tree 16.
La figura 9 es una sección CC representada en la figura 5. Muestra la transmisión desde el árbol 1 hastaFigure 9 is a section CC represented in Figure 5. It shows the transmission from shaft 1 to
HOJA DE SUSTITUCIÓN (REGLA 26) las bombas. Si el piñón 36 y su respectivo eje 48 se colocasen en la posición 37 las dos bombas trabajarían y dejarían de trabajar a la vez.SUBSTITUTE SHEET (RULE 26) the bombs. If the pinion 36 and its respective shaft 48 were placed in position 37, the two pumps would work and stop working at the same time.
La figura 10 es una sección BB representada en la figura 5. En ella se muestra una bomba de engranajes de dentado exterior. Dicha bomba es la encargada de llevar el aceite acumulado en 19 a la cavidad 29. El aceite acumulado en 19 es succionado por el orificio 25 a la cavidad 43. La bomba mueve este aceite a la cavidad 41 pasan- do a continusción por los orificios 39 y 24 del árbol 1 y llegando a las cavidades 35 y 29. Esta bomba va solidaria a la tapa-soporte 2 y recibe la transmisión del árbol 1.Figure 10 is a section BB represented in Figure 5. It shows an external gear pump. Said pump is responsible for carrying the oil accumulated in 19 to the cavity 29. The oil accumulated in 19 is suctioned through the hole 25 to the cavity 43. The pump moves this oil to the cavity 41 and then passes through the holes. 39 and 24 of tree 1 and reaching cavities 35 and 29. This pump is attached to the cover-support 2 and receives the transmission from tree 1.
La figura 11 es una sección AA representada en la figura 5. En ella se muestra la transmisión desde el ár- bol 1 a la bomba.Figure 11 is a section AA shown in Figure 5. It shows the transmission from the tree 1 to the pump.
La figura 12 es un esquema hidráulico. En ella, a titulo de ejenplo no limitativo, se muestran los mecanismos de accionamiento, control y fuerza empleados para girar el aro exterior hacia M o N (figura 7). Los mecanis- mos de accionamiento, control y fuerza podrán ser mecánicos, neumáticos, hidráulicos, eléctricos, electrónicos, etc.; o combinación de éstos. Como fluido se podrá utilizar el aceite o cualquier otro que cumpla las exigencias. Para la lubrificación y el engrase de los distintos ele- mentos de transmisión se podrán utilizar las bombas antes mencionadas y realizar orificios adecuados.Figure 12 is a hydraulic scheme. In it, as a non-limiting example, the drive, control and force mechanisms used to rotate the outer ring towards M or N are shown (Figure 7). The drive, control and force mechanisms may be mechanical, pneumatic, hydraulic, electrical, electronic, etc .; or combination of these. As a fluid you can use the oil or any other that meets the requirements. For the lubrication and lubrication of the different transmission elements, the aforementioned pumps may be used and suitable holes made.
El funcionamiento del mecanismo variador puede ser como sigue: al principio, los árboles 1 y 16 están parados y el aro exterior se encuentra en el PP. Cuando el árbol 1 empieza a girar mueve la rueda 44 (figura 11) transmitiendo ésta el movimiento al piñón 45. El piñón 45 mediante el eje 46 transmite el movimiento al piñón 40 de la figura 10. El piñón 40 mueve al 42 haciendo que la bomba funcione y envíe el aceite acumulado en 19 a la cavidad 35 de la figura 9 y a la cavidad 29 de la figuraThe operation of the variator mechanism can be as follows: at first, trees 1 and 16 are stopped and the outer ring is in the PP. When the shaft 1 starts to rotate, it moves the wheel 44 (figure 11), transmitting the movement to the pinion 45. The pinion 45 by means of the shaft 46 transmits the movement to the pinion 40 of the figure 10. The pinion 40 moves to the 42 causing the pump run and send the oil accumulated in 19 to cavity 35 of figure 9 and cavity 29 of figure
HOJA DE SUSTITUCIÓN (REGLA 26) 8. Simultáneamente a la bomba de la figura 10 se ponen en marcha las bombas de la figura 8. Estas, reciben el movimiento de la transmisión que se muestra en la figura 9 y esta conectada al árbol 1. El aceite acumulado en las ca- vidades 35 y 29 es enviado a la cavidad 7 pasando a continuación por el orificio 9 y haciendo presión en el émbolo 10. Esta presión activa el cilindro hidráulico oscilante girando el eje-piñón 11, y ésta a su vez el aro exterior del cojinete. Al principio, al girar el árbol 1 gira con- sigo la bola esférica 15 solidaria moviendo las bolas 18 por la ranura del aro exterior. Estas bolas 18 no se mueven por las ranuras 17 de la bola esférica 15. Tampoco se mueve el árbol 16. Cuando mediante el sistema de accionamiento, control y fuerza se gira el aro exterior hacia M (figura 7) obliga a las bolas 18 a que hagan presión sobre la parte lateral de la ranura del aro exterior, haciendo girar al árbol 16. Si la orientación de las ranuras 17 de la bola esférica 15 es imagen espejo de la orientación del aro exterior cuando ésta se posiciona en un ángulo S (figura 7), las bolas 18 se fijarán en una posición dada, lo que hará que se transmita el movimiento del árbol 1 al 16 al 100%. 0 sea, hay una posición dada en la cual las bolas no pueden describir simultáneamente las trayectorias 17 de la bola esférica 15 y la trayecto- ria circular de la cara interior del aro exterior, por lo que se pararán, transmitiendo el movimiento al 100% entre dichos árboles. Por contra, cuando el árbol 16 gira a mayor velocidad que el árbol 1 la otra bomba de la figura 8 enviará el aceite a la cavidad 22 pasando por el orificio 21 y haciendo presión en el émbolo de la cremallera correspondiente. De esta forma se activa su correspondiente cilindro hidráulico oscilante que mantiene el aro exterior en la posición correspondiente al ángulo S de la figura 7. Las disposiciones anteriormente indicadas son sus- ceptibles de modificación sin alterar el principio fundamental.SUBSTITUTE SHEET (RULE 26) 8. Simultaneously to the pump of figure 10, the pumps of figure 8 are started. They receive the movement of the transmission shown in figure 9 and is connected to the shaft 1. The oil accumulated in the cells vities 35 and 29 are sent to the cavity 7, then passing through the hole 9 and pressing on the plunger 10. This pressure activates the oscillating hydraulic cylinder by rotating the pinion shaft 11, and this in turn the outer ring of the bearing. At the beginning, turning the shaft 1 rotates the spherical ball 15 in solidarity, moving the balls 18 through the groove of the outer ring. These balls 18 do not move through the grooves 17 of the spherical ball 15. Nor does the tree 16 move. When the outer ring is turned towards M by means of the drive, control and force system (figure 7) it forces the balls 18 to that make pressure on the lateral part of the groove of the outer ring, turning the shaft 16. If the orientation of the grooves 17 of the spherical ball 15 is a mirror image of the orientation of the outer ring when it is positioned at an angle S ( Figure 7), the balls 18 will be fixed in a given position, which will cause the movement of the tree 1 to 16 to be transmitted 100%. That is, there is a given position in which the balls cannot simultaneously describe the trajectories 17 of the spherical ball 15 and the circular trajectory of the inner face of the outer ring, so they will stop, transmitting the movement at 100% Among those trees. On the other hand, when the shaft 16 rotates at a faster speed than the shaft 1, the other pump of figure 8 will send the oil to the cavity 22 passing through the hole 21 and pressing on the corresponding rack plunger. In this way, its corresponding oscillating hydraulic cylinder is activated which maintains the outer ring in the position corresponding to the angle S of Figure 7. The above-mentioned arrangements are susceptible to modification without altering the fundamental principle.
HOJA DE SUSTITUCIÓN (REGLA 26) SUBSTITUTE SHEET (RULE 26)

Claims

REIVINDICACIONES . CLAIMS.
1.- Mecanismo variador esférico de bolas, caracterizado porque comprende dos árboles y/o ejes que se considerarán coaxiales, pudiendo cualquiera de ellos trans- mitir o recibir el movimiento circular rotativo. Esto es, cualquiera de los dos puede funcionar como árbol primario o secundario de dicho mecanismo variador. La transmisión del movimiento y su variación en movimiento circular rotativo del árbol secundario con respecto al primario, o viceversa, se consigue como consecuencia del movimiento relativo entre tres componentes fundamentales que forman una especie de cojinete. Dichos componentes son una bola esférica (que realiza la función de aro interior del cojinete) solidaria al árbol primario, bolas o sistemas de bolas intermedias transmisoras de movimiento y un aro exterior montado sobre los brazos (uno o dos brazos) que el árbol secundario tiene en uno de los extremos. Dicho aro puede girar en ambos sentidos sobre un eje que es perpendicular al eje que contiene los árboles primario y secun- dario. El movimiento de dicho aro exterior se realiza mediante unos mecanismos de accionamiento, control y fuerza que están relacionados con los árboles primario y secundario, con la finalidad de que la variación del número de revoluciones de uno de los árboles con respecto al otro sea automática. Los mecanismos de accionamiento, control y fuerza posibilitan la regulación del mecanismo variador.1.- Spherical ball variator mechanism, characterized in that it comprises two trees and / or axes that will be considered coaxial, and any of them can transmit or receive the rotary circular movement. That is, either can function as a primary or secondary tree of said variator mechanism. The transmission of the movement and its variation in rotary circular movement of the secondary shaft with respect to the primary one, or vice versa, is achieved as a consequence of the relative movement between three fundamental components that form a kind of bearing. Said components are a spherical ball (which performs the function of the inner ring of the bearing) integral to the primary shaft, balls or intermediate ball motion transmitting systems and an outer ring mounted on the arms (one or two arms) that the secondary shaft has at one end. Said ring can rotate in both directions on an axis that is perpendicular to the axis that contains the primary and secondary trees. The movement of said outer ring is carried out by means of drive, control and force mechanisms that are related to the primary and secondary trees, so that the variation in the number of revolutions of one of the trees with respect to the other is automatic. The drive, control and force mechanisms make it possible to regulate the variator mechanism.
2.- Mecanismo variador según la reivindicación 1, caracterizado porque uno de los extremos del árbol prima- rio va montado en el cojinete de la tapa-soporte, stL otro extremo va montado en el cojinete que en uno de los extremos tiene el árbol secundario y el otro extremo libre de éste va montado en el cojinete de la carcasa. La carcasa va sujeta a la tapa-soporte mediante elementos de sujec- ción apropiados. 2. Variator mechanism according to claim 1, characterized in that one of the ends of the primary shaft is mounted on the bearing of the cover-support, stL another end is mounted on the bearing that at one end has the secondary shaft and the other free end of it is mounted on the housing bearing. The housing is attached to the support cover by appropriate fasteners.
3.- Mecanismo variador según la reivindicación 1, caracterizado porque la bola esférica tiene una serie de ranuras (1, 2, ..., n) que pueden ser meridianos, curvas geodésicas y/o curvas alabeadas. Dichas curvas represen- tan las trayectorias que las bolas o sistemas de bolas describirán en su movimiento. Como ejemplo no limitativo, una ranura puede describir la trayectoria desde la posición 1 del plano X a la posición 3 del plano Y, pudiendo la trayectoria ser una geodésica o una curva alabeada. También puede describir la trayectoria desde la posición 12 del plano Y a la posición 18 del plano X, pudiendo la trayectoria ser una geodésica o una curva alabeada (figura 4). La sección de la ranura puede ser circular o tener otra forma geométrica. 3. Variator mechanism according to claim 1, characterized in that the spherical ball has a series of grooves (1, 2, ..., n) that can be meridians, geodesic curves and / or warped curves. These curves represent the trajectories that the balls or ball systems will describe in their movement. As a non-limiting example, a groove can describe the trajectory from position 1 of plane X to position 3 of plane Y, the trajectory being able to be a geodesic or a warped curve. You can also describe the trajectory from the position 12 of the Y plane to the position 18 of the X plane, the trajectory being able to be a geodesic or a warped curve (Figure 4). The groove section may be circular or have another geometric shape.
4.- Mecanismo variador según la reivindicación 1, caracterizado porque el aro exterior en su cara interior tiene una ranura cuya trayectoria es circular. La sección de la ranura puede ser circular o tener otra forma geométrica. 4. Variator mechanism according to claim 1, characterized in that the outer ring on its inner face has a groove whose path is circular. The groove section may be circular or have another geometric shape.
5.- Mecanismo variador según la reivindicación 1, caracterizado porque las bolas o sistemas de bolas transmisoras de movimiento serán las adecuadas para el fin propuesto. Las bolas pueden ser lisas, del tipo pelotas de golf o de otro tipo, siempre que mejoren la eficiencia en la transmisión, en la lubricación y el engrase. El sistema de bolas transmisoras puede ser como sigue: como ejemplo no limitativo podemos considerar un dodecaedro o un icosaedro que harían la función de jaula y en cada uno de los agujeros de sus caras se alojaría una bola. En la parte interior de la jaula las bolas se tocarían entre sí o a otra bola central. De esta forma se podrían eliminar las posibles fricciones que pudieran aparecer en la transmisión del movimiento.5. Variator mechanism according to claim 1, characterized in that the balls or systems of motion transmitting balls will be suitable for the proposed purpose. The balls can be smooth, of the type golf balls or of another type, as long as they improve the efficiency in the transmission, in the lubrication and the greasing. The transmitter ball system can be as follows: as a non-limiting example we can consider a dodecahedron or an icosahedron that would perform the cage function and in each of the holes of its faces a ball would be housed. Inside the cage the balls would touch each other or another central ball. In this way the possible frictions that could appear in the transmission of the movement could be eliminated.
6.- Mecanismo variador según las reivindicaciones 1 y 4, caracterizado porque el aro exterior en su cara ex-6. Variator mechanism according to claims 1 and 4, characterized in that the outer ring on its outer face
HOJA DE SUSTITUCIÓN (REGLA 26) terior y en dos puntos diametralmente opuestos tiene dos agujeros en los cuales se alojan y fijan los ejes- piñón de los cilindros hidráulicos oscilantes. Estos son los encargados de girar en uno u otro sentido el aro ex- terior sobre el eje de giro.SUBSTITUTE SHEET (RULE 26) inside and at two diametrically opposite points it has two holes in which the pinion shafts of the oscillating hydraulic cylinders are housed and fixed. These are responsible for rotating the outer ring in one direction or another on the axis of rotation.
7.- Mecanismo variador según las reivindicaciones 1 y 6, caracterizado porque los mecanismos de accionamiento, control y fuerza podrán ser mecánicos, neumáticos, hidráulicos, eléctricos, electrónicos, etc.; o combínación de estos. En el mecanismo variador que se analiza tenemos los siguientes subconjuntos : a) mecanismo transmisor de movimiento circular constante o variado formado por la bola esférica, las bolas7. Variator mechanism according to claims 1 and 6, characterized in that the drive, control and force mechanisms may be mechanical, pneumatic, hydraulic, electrical, electronic, etc .; or combination of these. In the variator mechanism that is analyzed we have the following subsets: a) constant or varied circular motion transmitter mechanism formed by the spherical ball, the balls
0 sistemas de bolas intermedias y el aro exterior fijado en los brazos del árbol secundario. b) cilindros hidráulicos oscilantes para girar el aro exterior en los sentidos M y N (figura 7). c) el conjunto F de la figura 3 formado por dos bombas hidráulicas de engranajes de dentado exterior con los correspondientes elementos de transmisión, cavidades, orificios, etc. Dicho conjunto va solidario al árbol secundario. d) el conjunto G de la figura 3 formado por una bomba hidráulica de engranajes de dentado exterior con los correspondientes elementos de transmisión, cavidades, orificios, etc. Dicho conjunto va solidario a la tapa-soporte. 0 intermediate ball systems and the outer ring fixed on the arms of the secondary shaft. b) oscillating hydraulic cylinders to rotate the outer ring in the M and N directions (figure 7). c) the assembly F of figure 3 formed by two hydraulic pumps of external gear teeth with the corresponding transmission elements, cavities, holes, etc. Said set is in solidarity with the secondary tree. d) the assembly G of Figure 3 formed by a hydraulic pump of external gear teeth with the corresponding transmission elements, cavities, holes, etc. Said assembly is integral to the cover-support.
8.- Mecanismo variador según las reivindicaciones8.- Variant mechanism according to the claims
1 a 7, caracterizado porque los elementos de transmisión, accionamiento, control, fuerza, sujección y fijación, lu- brificación y engrase, obturación, etc. serán los adecuados para el buen funcionamiento del mecanismo variador.'' De la misma forma, los sistemas de transmisión, accionamiento, control, fuerza, lubrificación y engrase, etc. serán los adecuados para el buen funcionamiento del mecanis- mo variador esférico de bolas.1 to 7, characterized in that the transmission, actuation, control, force, clamping and fixing, lubrication and lubrication, sealing, etc. they will be suitable for the proper functioning of the variator mechanism. '' In the same way, the transmission, drive, control, force, lubrication and lubrication systems, etc. they will be suitable for the proper functioning of the spherical ball variator mechanism.
HOJA DE SUSTITUCIÓN (REGLA 26) SUBSTITUTE SHEET (RULE 26)
9.- Mecanismo variador según las reivindicaciones 1 a 8, caracterizado porque el funcionamiento puede ser como sigue: al principio, los árboles primario y secundario están parados y el aro exterior se encuentra en el plano de perfil. Cuando el árbol primario empieza a girar mueve la rueda de transmisión (figura 11) transmitiendo ésta el movimiento al piñón correspondiente. Dicho piñón, mediante su correspondiente eje transmite el movimiento al piñón de la figura 10. Esta mueve a otro piñón. Los dos piñones corresponden a la bomba de engranajes de dentado exterior que enviará el aceite acumulado en la carcasa a la cavidad del conjunto F (figura 3). Simultáneamente y consecuencia de la transmisión recibida del árbol primario y sus correspondientes transmisiones se ponen en fun- cionamiento las bombas de engranajes de dentado exterior de la figura 3. El aceite acumulado en la cavidad del conjunto F es enviado por el orificio correspondiente a uno de los cilindros hidráulicos oscilantes para activarlo y hacer girar el aro exterior (el aceite acumulado en F puede ser enviado simultanea o alternativamente a cada cilindro hidráulico oscilante). Por otra parte, al girar el árbol primario gira consigo la bola esférica solidaria, moviendo las bolas o sistemas de bolas intermedias transmisoras de movimiento por la ranura del aro exterior. Es- tas bolas no se mueven por las ranuras de la bola esférica. Consecuentemente, tampoco se mueve el árbol secundario. Al girar el aro exterior hacia M (figura 7) obliga a las bolas intermedias a que hagan presión sobre la parte lateral de la ranura del aro exterior, haciendo girar el árbol secundario. Si la orientación de las ranuras de la bola esférica es imagen espejo con respecto al PP con la orientación de la ranura del aro exterior cuando ésta se posiciona en un ángulo S (figura 7) con respecto al eje que contiene a los árboles primario y secundario, las bo- las transmisoras de movimiento se fijarán en una posición9. Variator mechanism according to claims 1 to 8, characterized in that the operation can be as follows: at first, the primary and secondary trees are stopped and the outer ring is in the profile plane. When the primary shaft starts to rotate, it moves the transmission wheel (figure 11), transmitting the movement to the corresponding pinion. Said pinion, by means of its corresponding axis, transmits the movement to the pinion of figure 10. It moves to another pinion. The two sprockets correspond to the external toothed gear pump that will send the accumulated oil in the housing to the cavity of the assembly F (figure 3). Simultaneously and as a consequence of the transmission received from the primary shaft and its corresponding transmissions, the external toothed gear pumps of Figure 3 are put into operation. The oil accumulated in the cavity of the assembly F is sent through the orifice corresponding to one of the oscillating hydraulic cylinders to activate it and rotate the outer ring (the oil accumulated in F can be sent simultaneously or alternatively to each oscillating hydraulic cylinder). On the other hand, when the primary shaft is turned, the spherical ball rotates with it, moving the balls or intermediate ball systems transmitting movement through the groove of the outer ring. These balls do not move through the spherical ball slots. Consequently, the secondary tree does not move either. Turning the outer ring towards M (figure 7) forces the intermediate balls to press on the lateral part of the groove of the outer ring, rotating the secondary shaft. If the orientation of the spherical ball grooves is a mirror image with respect to the PP with the orientation of the groove of the outer ring when it is positioned at an angle S (figure 7) with respect to the axis that contains the primary and secondary trees , the motion transmitters will be fixed in one position
HOJA DE SUSTITUCIÓN (REGLA 26) dada lo que hará que se transmita el movimiento del árbol primario al secundario al 100%. O sea, hay una posición dada en la cual las bolas no pueden describir simultáneamente las trayectorias de las ranuras de la bola es- férica y de la ranura del aro exterior, por lo que se pararán, transmitiendo el movimiento al 100% entre dichos árboles. En caso de que las bombas funcionen alternativamente, cuando el árbol secundario gire a mayor velocidad que el primario, una de las bombas enviará el aceite al cilindro hidráulico oscilante correspondiente haciendo que el aro exterior gire hacia M. Se puede considerar que el mecanismo variador esférico de bolas pueda funcionar únicamente consecuencia del accionamiento, control y fuerza de la bomba del conjunto G (figura 3). SUBSTITUTE SHEET (RULE 26) given what will cause the movement of the primary tree to the 100% secondary tree. That is, there is a given position in which the balls cannot simultaneously describe the trajectories of the spherical ball grooves and the groove of the outer ring, so they will stop, transmitting 100% movement between said trees . If the pumps work alternately, when the secondary shaft rotates at a faster speed than the primary one, one of the pumps will send the oil to the corresponding oscillating hydraulic cylinder causing the outer ring to turn towards M. The spherical variator mechanism can be considered of balls can only work as a result of the drive, control and force of the pump of the G set (figure 3).
10.- Mecanismo variador según las reivindicaciones 1 a 9, caracterizado porque el sentido de giro de los dos árboles es el mismo. Si se quiere que el sentido de giro de uno de ellos sea contrario al otro, se puede instalar un inversor. Dicho inversor puede estar incluido dentro del mecanismo variador esférico de bolas o ser un componente suplementario.10. Variable mechanism according to claims 1 to 9, characterized in that the direction of rotation of the two trees is the same. If you want the direction of rotation of one of them to be contrary to the other, you can install an inverter. Said inverter may be included within the spherical ball variator mechanism or be a supplementary component.
11.- Mecanismo variador según las reivindicaciones 1 a 10, caracterizado porque dicho mecanismo variador puede ser aplicado en distintos sectores industriales ta- les cómo la automoción, la aeronáutica, la maquinaria y equipos mecánicos, juguetería y otros. Se ha de tener en cuenta que se pueden construir mecanismos variadores de uso doméstico e industrial y también como componente en micromáquinas , nanomáquinas y otros para distintos usos.11.- Variator mechanism according to claims 1 to 10, characterized in that said variator mechanism can be applied in different industrial sectors such as the automotive, aeronautics, machinery and mechanical equipment, toys and others. It must be borne in mind that variator mechanisms for domestic and industrial use can be built and also as a component in micromachines, nanomachines and others for different uses.
HOJA DE SUSTITUCIÓN (REGLA 26) SUBSTITUTE SHEET (RULE 26)
PCT/ES1998/000022 1997-02-14 1998-02-02 Ball-type spherical variator mechanism WO1998036190A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU57663/98A AU5766398A (en) 1997-02-14 1998-02-02 Ball-type spherical variator mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES9700302A ES2140282B1 (en) 1997-02-14 1997-02-14 SPHERICAL BALL MECHANISM OF BALLS.
ESP9700302 1997-02-14

Publications (1)

Publication Number Publication Date
WO1998036190A1 true WO1998036190A1 (en) 1998-08-20

Family

ID=8298244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1998/000022 WO1998036190A1 (en) 1997-02-14 1998-02-02 Ball-type spherical variator mechanism

Country Status (3)

Country Link
AU (1) AU5766398A (en)
ES (1) ES2140282B1 (en)
WO (1) WO1998036190A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1722839A (en) * 1925-01-21 1929-07-30 Coleman Automatic Transmission Clutch
FR684020A (en) * 1929-10-28 1930-06-20 Clutch for automotive and other applications
US2103791A (en) * 1935-05-21 1937-12-28 Robert K Pepper Power transmission apparatus
CH349463A (en) * 1958-07-14 1960-10-15 Salomon Francois Marie Michel Transmission device capable of acting as a torque converter
FR1394865A (en) * 1964-02-24 1965-04-09 Improvements to variable speed drives
DE1924774A1 (en) * 1969-05-14 1970-11-19 Winfried Atzinger Infinitely adjustable bevel gear

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1722839A (en) * 1925-01-21 1929-07-30 Coleman Automatic Transmission Clutch
FR684020A (en) * 1929-10-28 1930-06-20 Clutch for automotive and other applications
US2103791A (en) * 1935-05-21 1937-12-28 Robert K Pepper Power transmission apparatus
CH349463A (en) * 1958-07-14 1960-10-15 Salomon Francois Marie Michel Transmission device capable of acting as a torque converter
FR1394865A (en) * 1964-02-24 1965-04-09 Improvements to variable speed drives
DE1924774A1 (en) * 1969-05-14 1970-11-19 Winfried Atzinger Infinitely adjustable bevel gear

Also Published As

Publication number Publication date
ES2140282B1 (en) 2001-12-01
ES2140282R (en) 2001-03-01
ES2140282A2 (en) 2000-02-16
AU5766398A (en) 1998-09-08

Similar Documents

Publication Publication Date Title
RU2078942C1 (en) Assembly of engine or pump
ES2230055T3 (en) ROTATING POWER UNIT.
US4867000A (en) Linear motion power cylinder
ES2324552T3 (en) CONTINUOUSLY VARIABLE TRANSMISSION, AS WELL AS OPERATING PROCEDURE FOR THE SAME.
ES2266390T3 (en) DEMODROMIC MECHANISM.
ES2353625T3 (en) ROTARY PISTON MACHINE.
US2157764A (en) Internal combustion engine
US4796514A (en) Rotary/linear convertor
WO1998036190A1 (en) Ball-type spherical variator mechanism
ES2908049T3 (en) A Differential Drive Conveyor and a Method for Supporting It
US4185508A (en) Motion change transmission
RU2643280C2 (en) Rotary gear-driven engine fueled by compressible medium
US20060240936A1 (en) Self-regulating continuosly variable transmission
US1978762A (en) Engine
KR101167141B1 (en) Hydraulic motor/pump
RU2594375C2 (en) Downhole hydraulic pump
CN104314675A (en) Power transmission device with cycloid cam and wobble mechanism combined
US20060222544A1 (en) Rotary machine with orbiting twin blades, especially for expansion drive units and compressors
ES2425200T3 (en) Transmission device to transmit a pair and device to generate or convert a pair
ES2559068A1 (en) Inertial piston gas compressor (Machine-translation by Google Translate, not legally binding)
ES2835698T3 (en) Motion transformation device and corresponding procedure
ES2333487T3 (en) MATERIAL FOR CONVERSION DEVICE OF A RECTILINE ALTERNATIVE MOVEMENT IN A ROTATION MOVEMENT.
RU2775456C1 (en) Device for converting rectilinear reciprocating motion into alternate
US3641828A (en) Rotary-linear motion converter
ES2326579B1 (en) MECHANICAL ORGAN OF TRANSFORMATION OF ALTERNATIVE LINEAR MOVEMENTS IN ROTARY OR VICEVERSA.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase