WO1998001298A1 - Resin-coated composite metal sheet - Google Patents

Resin-coated composite metal sheet Download PDF

Info

Publication number
WO1998001298A1
WO1998001298A1 PCT/JP1996/001860 JP9601860W WO9801298A1 WO 1998001298 A1 WO1998001298 A1 WO 1998001298A1 JP 9601860 W JP9601860 W JP 9601860W WO 9801298 A1 WO9801298 A1 WO 9801298A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
layer
metal plate
polyester resin
coated metal
Prior art date
Application number
PCT/JP1996/001860
Other languages
French (fr)
Japanese (ja)
Inventor
Takaaki Okamura
Yasuo Ohhashi
Hiroshi Nakamura
Atsuo Tanaka
Original Assignee
Toyo Kohan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co., Ltd. filed Critical Toyo Kohan Co., Ltd.
Priority to AU63187/96A priority Critical patent/AU6318796A/en
Priority to PCT/JP1996/001860 priority patent/WO1998001298A1/en
Priority to CN97197295A priority patent/CN1069580C/en
Priority to PCT/JP1997/002324 priority patent/WO1998001301A1/en
Priority to JP10505048A priority patent/JP3115899B2/en
Priority to AU33588/97A priority patent/AU3358897A/en
Priority to DE69725849T priority patent/DE69725849T2/en
Priority to US09/214,489 priority patent/US6261654B1/en
Priority to MYPI97003048A priority patent/MY118336A/en
Priority to EP97929526A priority patent/EP0909641B1/en
Priority to IDP972345A priority patent/ID18710A/en
Publication of WO1998001298A1 publication Critical patent/WO1998001298A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/24Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/30Iron, e.g. steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/66Cans, tins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1355Elemental metal containing [e.g., substrate, foil, film, coating, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1355Elemental metal containing [e.g., substrate, foil, film, coating, etc.]
    • Y10T428/1359Three or more layers [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/266Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension of base or substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/269Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension including synthetic resin or polymer layer or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]

Definitions

  • the present invention relates to a resin-coated metal plate mainly intended for use as a material for cans, and more particularly, to a polyester resin having an upper layer and a lower layer having a fixed structure on one or both sides of the metal plate.
  • the present invention relates to a resin-coated metal plate in which a three-layer resin film is formed by laminating a resin layer as a component and a resin layer obtained by blending a polyester resin and a polycarbonate resin having a constant structure in an intermediate layer.
  • polyester resin-coated metal sheets can be widely used as materials for cans due to their excellent economics and characteristics.However, to apply to applications requiring strict workability such as thin-walled deep-drawing cans, lamination is required. It is necessary to reduce the degree of orientation of the polyester resin layer after the formation to such an extent that the can body does not break during molding. On the other hand, in a state where the laminated polyester resin layer is hardly oriented, that is, in a state close to amorphous, the can is filled at high speed and continuously after the can is filled with the contents.
  • polyester resin-coated metal plates are inferior in impact resistance, especially low-temperature impact resistance, and it is difficult to perform stable production. It is difficult.
  • the two-layer composite resin-coated metal plate described in Japanese Patent Application Laid-Open No. Hei 7-99616 can be said to be an effective material for use in forming the can body by thinning the can body by about 20%.
  • the lower blended resin coating layer must simultaneously satisfy both functions of ensuring processing adhesion to the metal plate and ensuring impact resistance. Ideal for satisfying both adhesion and impact resistance at the same time with a polyester resin component that is excellent in adhesion of resin but has poor impact resistance and a polycarbonate resin component that is excellent in impact resistance but poor in adhesion to metal plate Blending at a ratio is difficult.
  • the blending range must satisfy both functions to some extent.
  • To reduce the weight of the can by reducing the thickness of the can body by more than 40% fill the can in applications that require severe workability. It is difficult to apply unless the contents are weakly corrosive.
  • the constituent resin components in the lower layer are made of polyester resin to secure the processing adhesion required to reduce the thickness of the can body by 40% or more, the resin of the can body that has been significantly thinned In fact, the impact resistance required for the coating is extremely poor.
  • An object of the present invention is to enable severe molding processing to reduce the thickness of a can body by 40% or more, maintain good flavor even after filling the obtained can body with the contents, and further improve the content.
  • An object of the present invention is to provide a composite resin-coated metal plate having high impact resistance, which does not cause cracks in a film even when subjected to an external impact before and after the filling. Disclosure of the invention
  • the intermediate layer is composed of a polyester resin composed of a repeating unit having the following basic structure of the following formula (1) and a polycarbonate resin composed of a repeating unit having the following basic structure of the following formula (1): Resin mixed in a ratio of 0.75 to 9.0 by ratio
  • R1 is an alkylene group having 2 to 6 carbon atoms
  • R 2 is an alkylene group or an arylene group having 2 to 24 carbon atoms, Equation (2)
  • the lower layer is represented by the following formula (1):
  • a resin layer in which a polycarbonate resin comprising a repeating unit having the basic structure of the formula (2) is mixed with the polyester resin at a weight ratio of 0.05 to 0.54 with respect to the polyester resin is also applicable.
  • the polycarbonate resin contained in the intermediate layer is a bisphenol A polycarbonate resin.
  • Preferred examples of the polyester resin contained in the intermediate layer include one of the following (i) to (1) or a mixture of two or more of the following (i) to (1): Can be
  • (k) a copolymerized polyester resin mainly composed of ethylene terephthalate units; (1) a copolymerized polyester resin mainly composed of butylene terephthalate units; Preferred examples include polyethylene terephthalate resin or polyethylene terephthalate 'isophthalate copolymerized polyester resin.
  • a material composed of a resin layer mixed at a ratio of 0.35 is also applicable.
  • the present invention has been found to be able to solve the above-mentioned problem by forming three resin coatings and sharing the functions required for the material for cans with each resin layer.
  • the lower layer is mainly responsible for the function of ensuring the processing adhesion to the metal plate
  • the middle layer is mainly responsible for the impact resistance
  • the upper layer is mainly responsible for the flavor retention. It has been found that the above problems can be solved by designing the coating in such a way as to perform the above.
  • the resin coating is merely formed into three layers to share the functions, but also the selection of the resin composition of the intermediate layer is particularly detailed.
  • the processing stress of the resin of the intermediate layer during molding was designed to reduce the mist. In addition, consideration was given so that cracking did not occur in each resin layer due to the molding process, and separation did not occur between the resin layers. More specifically, as a surface in contact with the resin to be covered and the metal plate, that is, as a lower layer of the laminated resin layer, a polyester resin having a certain structure which is inferior in impact resistance but has excellent adhesion to the metal plate. By mainly using a resin layer, processing adhesion was mainly ensured.
  • the intermediate layer has poor adhesion to the metal plate, but has excellent impact resistance, especially low temperature impact resistance.
  • a polycarbonate resin with a certain structure and a polyester resin with a certain structure in an appropriate range, the impact resistance function was secured, and the molding followability of the resin film was better than that of polycarbonate resin alone.
  • As the upper layer a resin layer mainly composed of polyester resin having a certain structure that has excellent barrier properties and hardly changes the taste of the contents is used. By laminating such a three-layer resin layer on a metal plate, it is possible to perform the severe molding process as described above, and a resin coating that satisfies the characteristics required for cans such as flavorability and low-temperature impact resistance. They have found that a metal plate can be obtained.
  • the polyester resin which is a main component of the upper layer and the lower layer, or one of the constituent components of the intermediate layer, is a repetition of the basic structure represented by the following formula (1). It is a polymer mainly composed of units.
  • R1 is an alkylene group having 2 to 6 carbon atoms
  • R2 is an alkylene group or an arylene group having 2 to 24 carbon atoms.
  • the polyester resin which is the main component of the lower layer of the composite resin-coated metal plate of the present invention is selected mainly from the viewpoint of the working adhesion between the polycarbonate resin and the polyester resin blend resin layer of the metal plate and the intermediate layer.
  • the polyester resin selected is
  • a polymer mainly composed of the repeating unit having the basic structure represented by the formula (1) particularly, a polyethylene terephthalate resin, a polybutylene terephthalate resin, a copolymerized polyester resin mainly composed of an ethylene terephthalate unit, and a butylene terephthalate. It is preferable to use one type of copolymerized polyester resin mainly composed of latex units, or a polyester resin composed of a mixture of at least two of any of these. Examples of the copolymerized polyester resin include polyethylene terephthalate isophthalate, polyethylene terephthalate sebacate, polyethylene terephthalate-adipate resin, and polybutylene terephthalate isophthalate resin.
  • a polyester resin consisting of a repeating unit having the basic structure shown in the above formula (1) is added to a polyester resin shown in the following formula (2) in a weight ratio to the polyester resin. It is preferable to form a layer made of a resin blended in a ratio of 0.05 to 0.54. If the weight ratio is less than 0.05, there is almost no improvement in the impact resistance, which is the purpose of blending the polycarbonate resin, and if it exceeds 0.54, it is difficult to secure stable processing adhesion, which is the function to be shared by the lower layer. It is not preferable.
  • R3 is an aliphatic hydrocarbon having 2 to 10 carbon atoms or an aromatic hydrocarbon having 6 to 18 carbon atoms.
  • aromatic polycarbonate resin is more preferable than aliphatic polycarbonate resin,
  • Aromatic polycarbonate resin with alkyl group bonded to carbon of central methane Preferably, in particular impact resistance, heat resistance, in view of processability and economy, it is common poly force one Poneto resin bisphenol A polycarbonate - DOO resin is more preferable.
  • the polycarbonate resin which is one of the resin components constituting the blend resin of the intermediate layer, is a polymer comprising a repeating unit having the basic structure represented by the above formula (2).
  • the polyester resin which is one of the above, is a polymer comprising a repeating unit having a basic structure represented by the above formula (1).
  • Particularly preferred resins among these polyolefin resins are more aromatic than aliphatic polycarbonate resins as described above.
  • Aromatic polycarbonate resins are preferred, for example, polydioxydiphenyl-2,2-propane carbonate, polydioxydiphenyl methane carbonate, polydioxydiphenyl ethane carbonate, and polydioxydiphenyl methane carbonate.
  • Aromatic polycarbonate resin in which an alkyl group is bonded to the carbon of central methane of 4,4-dioxydiphenylmethane carbonate is preferred, but from the viewpoints of impact resistance, heat resistance, processability, and economy.
  • Bisphenol A polycarboxylic acid resin is more preferred.
  • polyester resins represented by the above formula (1) particularly preferred resins are the same as those described above in consideration of the compatibility with the polycarbonate resin and the adhesion to the lower resin layer.
  • the requirement for the intermediate layer is not limited to the type of applicable resin, but as described above, it is essential that the intermediate resin be a polycarbonate resin composed of repeating units of a certain basic structure and a polyester resin blend resin.
  • An appropriate blending ratio is in the range of 0.72 to 9.0 in weight ratio of the polycarbonate resin to the polyester resin. If the weight ratio is less than 0.72, it is difficult to secure impact resistance. If the weight ratio is more than 9.0, the elongation of the resin layer decreases, the processing stress during molding increases, and the resin film peels after molding. And the resin coating is easily cracked, which is not preferable.
  • polyester resin which is the main resin that constitutes the upper layer, forms a composite resin-coated metal plate into a can, and when the content is filled, directly contacts the content, greatly adsorbing one flavor component. It is applied to cover the defects of polycarbonate resin blended in the intermediate layer having the defect of changing the flavor, and to prevent the contents from changing the flavor. It is selected from polyester resin, but it has particularly good flavor. From the viewpoint of the adhesion of the tellurium resin to the blend resin layer, it is preferable to use a polyethylene terephthalate resin, a polyethylene terephthalate ′ isophthalate copolymerized polyester resin, or a mixture thereof.
  • those resins are preferably solid phase polymerized resins for the purpose of lowering low molecular weight components such as oligomers and contained aldehyde components than those obtained by melt polymerization.
  • a resin obtained by blending the polycarbonate resin of the above formula (2) in a weight ratio of 0.05 to 0.35 with respect to the polyester resin is used. Layering is also an effective method as long as the content to be filled does not require special flavor. If the weight ratio is less than 0.05, no plend effect is observed, and if it exceeds 0.35, the flavor property may be greatly impaired, which is not preferable.
  • the polycarbonate resin used in this case is more aromatic than the aliphatic polycarbonate resin in consideration of the heat resistance and retort resistance required for the material for cans in addition to the impact resistance.
  • Group polycarbonate resins are preferred, for example, polydioxydiphenyl 2,2-propane carbonate, polydioxydiphenyl methane carbonate, polydioxydiphenylethane carbonate, polydioxydiphenyl 2,4-butane carbonate, polydioxy 2,2-pentane carbonate, polydioxydiphenyl-1,3-pentane carbonate, polydioxydiphenyl 2,2-hexane carbonate, etc.
  • Alkoxy group is bonded to carbon of central methane by oxydiphenyl methane carbonate.
  • Aromatic polycarbonate resins are preferred, and bisphenol A polycarbonate resin is more preferred, particularly in view of impact resistance, heat resistance, processability, and economic efficiency.
  • the blended resin of the polycarbonate resin and the polyester resin constituting the intermediate layer is heated for 10 seconds in a nitrogen stream so that the temperature of the blended resin reaches (melting point + 3 o).
  • the sample obtained by immersing in ot: water is a resin having a breaking elongation of 170% or more as measured by the method described in ASTMD 638. It is preferable to obtain stable and excellent moldability and impact resistance.
  • the melting point of the resin as used herein refers to the value when the temperature was raised at 10 / min by a differential scanning calorimeter (SS10, manufactured by Seiko Instruments Inc.).
  • the temperature that indicates the maximum depth of the endothermic peak based on the melting of the resin it refers to the temperature that indicates the maximum depth of the endothermic peak based on the melting of the resin. If there are two or more endothermic peaks, the higher temperature indicating the maximum depth of the endothermic peak is basically used as the melting point, but if the characteristics are satisfactory, the lower temperature may be used as the melting point.
  • the molecular weight and molecular weight distribution of each resin constituting the lower, intermediate, and upper resin layers also affect the properties.In general, the higher the molecular weight and the less wide the distribution, the better the properties such as impact resistance In general, the lower the molecular weight, the better the economic efficiency and the ease of film formation. Therefore, the molecular weight is selected according to the required characteristics, and is not particularly limited here.
  • the molecular weight distribution should be selected according to the required characteristics, but if the molecular weight distribution is excessively large, especially if there are too many low molecular weight substances (oligomers, etc.), these components will be extracted into the contents and flavor will be reduced. It is necessary to be careful because it may change.
  • the resin constituting each layer, especially the resin used for the upper layer is a component contained in the resin that is easily extracted, that is, after filling the contents into a can, the resin film that comes into contact with the contents is converted from the low-molecular-weight substance. If there is a possibility that the flavor will be adversely affected by the extraction of metals and metal ions, it is preferable to use one that extracts as few components as possible.
  • a thermosetting resin such as an epoxy resin or another thermoplastic resin may be laminated on the upper and lower layers of the three-layer resin film of the present invention, if necessary. Care should be taken to ensure that the features of the three-layer resin coating are not impaired.
  • the thickness of each resin layer in the composite resin-coated metal plate of the present invention should basically be determined according to the application and required characteristics. Unless otherwise specified, if the thicknesses of the upper, middle, and lower resin layers of the three-layer resin coating are Tl, ⁇ 2, and ⁇ 3, respectively, the following equations (3), (4), and (5) are used. It is preferable that the composite resin coating layer has three layers.
  • Tl is less than 1 m, it may not be possible to ensure sufficient flavor. If T3 is less than 0.5 / zm, stable adhesion may occur depending on the conditions of the metal plates to be laminated. The security There is a danger that it will be insufficient. When T 2 / (T 1 + T 2 + T 3) is less than 0.4, the middle layer may have insufficient impact resistance depending on the use conditions.
  • the melting point of the resin constituting the lower layer of the three-layer resin film is Tml
  • the melting point of the resin constituting the upper layer is: (Tml + 3 ° C) or more is preferable because a stable surface appearance of the resin film can be easily obtained after lamination and the risk of the resin film being fused to the laminating roll is reduced. If the melting point of the resin constituting the upper layer is less than (Tml + 3 ° C.), in the step of heat-sealing the three-layer resin film of the present invention to a metal plate to be described later, the polishing of the rubber of the laminating roll is performed.
  • the melting point of the intermediate layer is Tm2, Tm2 is (Tml + 3)
  • the melting point of the resin constituting the upper layer is (Tm2 + 3t :) or more.
  • the resin constituting the upper layer has a melting point of at least (Tml + 3 ° C.) or more include the following 1), 2), and 3). .
  • the upper layer is polyethylene terephthalate resin
  • the middle layer is polyethylene terephthalate / isophthalate copolymer resin (isophthalic acid added amount-6 mol when acid component at the time of polymerization is 100 mol-6 mol)
  • poly Blend resin consisting of butylene terephthalate resin and bisphenol A polycarbonate resin.
  • Polyethylene terephthalate / isophthalate copolymer resin whose lower layer has 7 mol of isophthalic acid when the acid component during polymerization is 100 mol.
  • a three-layer resin film is described in this specification is 100 mol.
  • Polyethylene terephthalate / isophthalate copolymer resin and polybutylene terephthalate resin with 9 moles of isophthalic acid A three-layer resin film composed of a blend resin of the same composition as the intermediate layer except that the blend resin is a blend resin containing bisphenol A polycarbonate resin and a lower layer, and the lower layer is a blend resin containing bisphenol A polycarbonate resin in a significantly lower proportion. .
  • the melting point referred to here is the maximum depth of the endothermic peak based on the melting of the resin when the temperature is raised at 10 / min using a differential scanning calorimeter (SS10, manufactured by Seiko Instruments Inc.). Refers to the temperature at which When there are two or more endothermic peaks like a blended resin
  • the melting point is the highest temperature that indicates the maximum depth of the endothermic peak, but the coating is stable due to the small amount of resin caused by the highest temperature that indicates the maximum depth of the endothermic peak. If the melting point does not significantly affect the melting point, it is not always necessary to use the highest temperature as the melting point, and the melting point may be the temperature indicating the maximum depth of the endothermic peak lower than the highest temperature indicating the maximum endothermic peak. .
  • the preferred melting point conditions of the three-layer coating described from the viewpoint of the coating stability are not essential conditions but preferable conditions.
  • the forming process for reducing the thickness of the can body by 40% or more is a very severe process for a resin film, and the three-layer resin film of the present invention must be used at least as a material for covering the inner surface of a can.
  • characteristics such as corrosion resistance are within the practical level for the first time.
  • the effect of reducing the above-mentioned defective characteristics is high because the force, which is the condition of (3) or (4) shown below, especially the condition of (3) is excessively high temperature and long time Melting of the surface layer may result in degradation of properties, such as the formation of decomposition products that affect flavor. Therefore, it is important not to heat the can body at an unnecessarily high temperature and for a long time.
  • condition (1) is also effective because it restores the reduced adhesion due to the molding process and has a positive effect on the improvement of the impact resistance accompanying the restoration of the adhesion.
  • Which of the following conditions (1) to (3) should be selected should be determined according to the required characteristics, etc., and there is no particular limitation here.
  • a three-layer resin film as the inner surface coating material described above is laminated on one surface of a metal plate, and on the other surface, Either the middle layer or the lower layer of a three-layer resin film Double-sided resin coating by laminating a resin film with a resin layer mainly composed of a resin whose melting point is at least 5 higher than the melting point of the resin on the uppermost layer Metal plate.
  • a double-sided resin-coated metal plate formed by laminating a resin coating having at least an uppermost layer of a resin layer mainly composed of a resin having a high melting point.
  • a three-layer resin film which is the above-mentioned inner coating material, is laminated on one side of a metal plate, and the other surface has any of the upper, middle, and lower layers of the three-layer resin coating. 5 than the melting point of the resin: A double-sided resin-coated metal plate formed by laminating a resin coating having at least the uppermost layer of a resin layer mainly composed of a resin having a higher melting point.
  • the outer surface is generally thin even if the metal surface is plated, has a high melting point, and has a high melting point. It is not necessary to pay much attention to the melting point of the plating metal on the outer surface, as shown in (1) to (3) above, since the outer surface is plated with a relatively large amount of tin with a low melting point. Even if the outer surface is a metal-coated layer that is not a resin film, the melting point of the constituent resin of the three-layer resin film, which is the inner surface coating material, and the outer surface Attention should be paid to the melting point of the plating layer in some cases.
  • the melting point is a value measured in the same manner as described above.
  • the conditions 1) to 3) above are effective even when the can strength strengthening process is not added, for example, when forming a can body with a very thinner thickness. Whether to use it should be determined according to the required performance.
  • a stabilizer an antioxidant, an antistatic agent, a pigment, a lubricant, a corrosion inhibitor, or the like may be added to the resin used for each resin layer, if necessary, as described above. It should be implemented within the range that does not adversely affect the characteristics such as flavor. Also, the composite film before lamination may be unstretched, uniaxially stretched or biaxially stretched, but if the film after lamination has excessive orientation, it may adversely affect the formability and adhesion. It is not preferable.
  • the film can be formed with inexpensive equipment, and the resin composition and composition of the present invention can be used in special cases even in a non-oriented state (for example, a low-hardness soft plate having a thickness of 0.1 mm or less).
  • a resin-coated metal plate obtained by laminating a resin film on a steel plate is formed into a can body by molding, the can bottom has a large dent even under a slight impact, and the resin film suffers considerable film damage.
  • the lamination temperature range of the fat film is widened and the production is easy.
  • the uniaxially stretched film or the biaxially stretched film is more controlled than in a narrow laminating temperature condition range so as to be in an appropriate orientation degree range.
  • the coated film should be a resin layer within the proper orientation range or a certain degree of orientation or less (including non-oriented) after coating, and the coated film should be a resin layer within the proper orientation range or a certain degree of orientation or less ( There are advantages and disadvantages as to whether or not to use a non-oriented resin layer.
  • the resin layer is selected according to required characteristics.
  • the metal plate used for the composite resin-coated metal plate of the present invention is a sheet-shaped or band-shaped steel plate or an aluminum plate (including an aluminum alloy plate, the same applies hereinafter). Those having an oxide film are preferred.
  • a metal plate subjected to chromate treatment or a chromium hydrated oxide film formed on the surface is used as the metal plate of the present invention.
  • the chromium hydrated oxide formed on the surface has a large effect on the processing adhesion to the composite resin layer regardless of the steel plate or the aluminum plate, but it is preferable that the chromium water content is appropriate.
  • the amount of the oxidized oxide is preferably 3 to 30 mg / m 2 as chromium.
  • the three-layer composite resin film used in the present invention must be firmly adhered to the metal plate by heat fusion.
  • the heat fusion can be achieved, for example, by pressing a resin layer to a heated metal plate using a laminating roll, melting at least the resin in the vicinity of the metal plate, and cooling and solidifying the resin.
  • a three-layer resin film composed of an upper layer, an intermediate layer, and a lower layer, or a composite resin film in a molten state formed into three layers by co-extrusion is laminated on a heated metal plate in advance.
  • An example is shown below.
  • the upper layer is a resin mainly composed of the polyester resin
  • the intermediate layer is the polycarbonate.
  • T g glass transition temperature
  • T ml melting point
  • One or both sides of the metal plate heated to the upper layer, and the upper layer mainly contains the polyester resin.
  • a resin as an ingredient, an intermediate layer, a blended resin of the polycarbonate resin and the polyester resin, and a lower layer, which is a resin layer containing a polyester resin as a main component, and three molten composite resin layers are directly extruded and laminated in a molten state. Cool slowly or rapidly.
  • the glass transition temperature (T g) is the temperature at the boundary where the state of the resin becomes glassy or rubbery.
  • the specific volume at each temperature is measured, and the specific volume-temperature curve is bent. Indicated at the starting temperature.
  • T g the temperature at which bending starts is high is used as T g, but if characteristics are satisfactory, a low temperature may be used as T g.
  • a film containing a resin as a main component is laminated on a metal plate on which a multilayer resin film heated to a melting point (Tm2) to Tm2 + 1500 t: of the resin to be the upper layer is laminated, and gradually cooled or quenched.
  • the method of heating the metal plate includes a known hot air heating method, an induction heating method, and a heating method. There are troll systems and the like, but these systems may be used alone or in combination.
  • the laminating conditions such as the heating temperature of the metal plate, the laminating roll temperature, and the pressing force of the laminator roll, and the cooling conditions after laminating the composite film, exhibit the characteristics of the composite film used in the present invention, and the required characteristics Of course, you must be carefully selected to be satisfied.
  • the upper layer is a solid phase polymerized polyethylene terephthalate resin (manufactured by Unitika Ltd., trade name: NEH-2060, melting point: 256), and the middle layer is an acid component containing terephthalic acid 90 mol% and isophthalic acid 10 mol%.
  • Polyethylene terephthalate 'isophthalate copolymerized polyester resin (manufactured by Kuraray Co., Ltd., trade name: KS 760 K) was used in combination with bisphenol A poly-carbonate resin (Nippon Di Plastic Co., Ltd.) ), A resin blended with Lexan 154) at a weight ratio of 1.5 (melting point: 2230, lower layer: polyethylene terephthalate resin (manufactured by Unitika Ltd., trade name: NEH-2060)) Unstretched composite resin film composed of a resin (melting point: 25 It :) blended with polybutylene terephthalate resin (700 FP, manufactured by Polyplastics Co., Ltd.) at a weight ratio of 0.67.
  • Polyester terephthalate / isophthalate copolymerized polyester resin (Kuraray) whose middle layer is composed of 90 mol% of terephthalic acid and 10 mol% of isophthalic acid Co., Ltd., product name: KS76 OK) and polybutylene terephthalate resin (Polyplastics Co., Ltd., 700 FP) in equal proportions by weight based on the total amount of polyester blend resin And a resin in which bisphenol A polycarbonate resin (Nippon Digital Plastics Co., Ltd., Lexan 154) is blended at a weight ratio of 1.5 (melting point: 220, lower layer: 90 moles terephthalic acid) %, Isophthalic acid 10 mol% as an acid component, polyethylene terephthalate / isophthalate copolymerized polyester resin (Kuraray Co., Ltd., product name: KS760K) and polybutylene terephthalate Resin (Polyplastics Co., Ltd., 700 FP) was blended
  • Example 2 The same metal plate as in Example 1 was used, except that the film (resin thickness of the upper layer, intermediate layer, and lower layer was 5, 17 tim. 3 nm each), and the same laminating conditions and cooling conditions as in Example 1 were used. Thus, a double-sided resin-coated metal plate was obtained.
  • Polyethylene terephthalate / isophthalate copolymerized polyester resin containing 90 mol% of terephthalic acid and 10 mol% of isophthalic acid as an acid component (Kuraray Co., Ltd., trade name: KS760K, melting point: Except for using an unstretched composite resin film consisting of three layers (upper layer, intermediate layer, and lower layer have a resin thickness of 5 m, 17 m, and 3 urn, respectively), except that they are 2 in 25)
  • KS760K melting point: Except for using an unstretched composite resin film consisting of three layers (upper layer, intermediate layer, and lower layer have a resin thickness of 5 m, 17 m, and 3 urn, respectively), except that they are 2 in 25)
  • a double-sided resin-coated metal plate was obtained under the same laminating conditions and cooling conditions as in Example 2.
  • a polyethylene terephthalate resin (manufactured by Unitika Ltd., trade name: NEH-2060, melting point: 2561 :) obtained by polymerizing the upper layer using a solid phase polymerization method, and bisphenol A polycarbonate resin ( Three layers similar to Example 1 except that a resin layer (melting point: 245T :) blended with Lexan 154) manufactured by Nippon Digital Plastics Co., Ltd. at a weight ratio of 0.25 Except for using unstretched composite resin film consisting of (upper layer, middle layer, lower layer resin thickness of 5 wm, 17 m, 3 urn, respectively) Using the same metal plate as in Example 1, a double-sided resin-coated metal plate was obtained under the same lamination conditions and cooling conditions as in Example 1.
  • the metal plate is an aluminum alloy plate with electrolytic chromic acid treatment (metal chromium content: 65 mg / m ⁇ chromium hydrated oxide content: 8 mg / n ⁇ as chromium plate thickness: 0.21 mm, plate width 250 mm) Otherwise, the same resin film as in Example 3 was used, and a double-sided resin-coated metal plate was obtained under the same laminating conditions and cooling conditions as in Example 3.
  • Polyethylene terephthalate 'isophthalate copolymerized polyester resin (manufactured by Kuraray Co., Ltd., trade name: KS 760 K) containing 90 mol% of terephthalic acid and 10 mol% of isophthalic acid as an acid component and polybutylene terephthalate Rate resin (manufactured by Polyplastics Co., Ltd., 700 FP) in a weight ratio of polyester blend resin to bisphenol A polycarbonate resin (Nippon G Plastics Co., Ltd., Lexan 154 ) Is a resin layer (melting point: 223X :) blended at a weight ratio of 0.75, except that the unstretched composite resin film (upper layer, intermediate layer, The same metal plate as in Example 2 was used except that the resin thickness of the lower layer was 5 m> 17 rn, 3 m, respectively, and the double-sided resin-coated metal was used under the same laminating and cooling conditions as in Example 2. I got a board.
  • Polyester terephthalate / isophthalate copolymer polyester resin (manufactured by Kuraray Co., Ltd., trade name: KS760K) containing 90 mol% of terephthalic acid and 10 mol% of isophthalic acid as the acid component and polybutyleneteref Based on the total amount of the polyester blend resin blended with equal rate resin (Polyplastics Co., Ltd., 700 FP) in a weight ratio, the amount of bisphenol A polycarbonate resin (Nippon Gee Plastic Co., Ltd.) And lexane 154) in a weight ratio of 9.0 blended resin layer (melting point: 220) except that it is a three-layer unstretched composite resin film (upper layer, middle layer)
  • the same metal plate as in Example 2 was used except that the resin thicknesses of the layer and the lower layer were 5 m, 17 ⁇ , and 3 ⁇ m, respectively, and the double-sided resin was used under the same laminating and cooling conditions as in Example 2. Coated metal plate
  • the lower layer is made of poly (ethylene terephthalate) / isophthalate copolymerized polyester resin (product name: KS760K) with 90 mol% of terephthalic acid and 10 mol% of isophthalic acid as acid components.
  • a resin layer (melting point: 222) was prepared by blending bisphenol A polycarbonate resin (Nippon Digital Plastic Co., Ltd., Lexan 154) at a weight ratio of 0.54.
  • Example 3 The same as Example 2 except that an unstretched composite resin film consisting of the same three layers (resin thickness of the upper, middle and lower layers was 5 m, 17 zm and 3 ⁇ . ⁇ respectively) was used. Using a metal plate, a double-sided resin-coated metal plate was obtained under the same laminating conditions and cooling conditions as in Example 2.
  • Polyethylene terephthalate resin whose upper layer is solid-phase polymerized (manufactured by Unitika Ltd., trade name: 20-20600, melting point: 2560, and bisphenol A polycarbonate resin (Nippon Digital Plastics Co., Ltd.)
  • Unexposed composite resin film consisting of three layers (upper layer, same as in Example 4) except that it is a resin layer (melting point: 247) blended with Lexan 154) at a ratio of 0.35 by weight.
  • the same metal plate as in Example 4 was used, except that the resin thickness of the intermediate layer and the lower layer was 5 / zm, 17 u, and 3 m, respectively, and both surfaces were laminated and cooled in the same manner as in Example 4.
  • a resin-coated metal plate was obtained.
  • Example 1 1 The resin composition of the upper layer, the intermediate layer, and the lower layer is the same as in Example 2, except that the thickness ratio is 5 / m, 10 ⁇ , and 10 / zm, respectively.
  • the same metal plate as in Example 2 was used except that an unstretched composite resin film consisting of was used, and a double-sided resin-coated metal plate was obtained under the same laminating conditions and cooling conditions as in Example 2.
  • Example 2 Double-sided resin coating in the same manner as in Example 2 except that a two-layer unstretched composite resin having a resin (thickness: 10 / m) having the same resin composition as the lower layer as the lower layer was used. A metal plate was obtained.
  • Example 2 instead of the composite resin film of Example 2, the same three layers as in Example 2 except that the intermediate layer was entirely made of bisphenol A polycarbonate resin (Lexan 154, manufactured by Nippon Digital Plastics Co., Ltd.) A double-sided resin-coated metal plate was obtained in the same manner as in Example 2 except that the composite resin film was used.
  • bisphenol A polycarbonate resin Lixan 154, manufactured by Nippon Digital Plastics Co., Ltd.
  • Polyethylene terephthalate / isophthalate copolymerized polyester resin containing 90% by mole of terephthalic acid and 10% by mole of isophthalic acid as the middle layer (Kuraray Co., Ltd., trade name: KS760K)
  • the intermediate layer is composed of 90 mol% of terephthalic acid and 10 mol% of isophthalic acid as acid components.
  • Bisphenol A polycarbonate resin Nippon Di-F-Plastic Co., Ltd., Lexan
  • polyethylene terephthalate isophthalate copolymerized polyester resin Kuraray Co., Ltd., trade name: KS760K
  • KS760K polyethylene terephthalate isophthalate copolymerized polyester resin
  • a double-sided resin-coated metal plate was obtained in the same manner as in Example 1, except that an unstretched composite resin film similar to that of Example 1 was used except that the upper layer had the same resin composition as the intermediate layer of Example 1.
  • Example 1 to Example 11 and Comparative Example 1 to Comparative Example 6 were squeezed under the following processing conditions so that the composite resin film lamination surface was on the inner side of the can. It was stretched and ironed one or two times after processing and drawing to form a can body.
  • Average thinning rate of the body of the final can: about 42%
  • the obtained thin-walled deep-drawing can is filled with Fan-Yu Orange (manufactured by Coca-Cola Co., Ltd.), and an end made of the same resin material as the resin-coated metal plate used for the thin-walled deep-drawing can is wound around the end.
  • Fan-Yu Orange manufactured by Coca-Cola Co., Ltd.
  • the panelists of 100 people examined the flavor of the contents, and the number of people who judged that there was no difference in the taste of the contents before and after the aging was 90 or more, A case of 60 or more was considered good, and a case of less than 60 was poor.
  • a sample cut in the circumferential direction with a width of 3 Omm from the center of the can body of the obtained thin-walled deep drawn can was immersed in ice water for 5 minutes, taken out, and placed on the outer surface of the sample at a temperature of about 5 with a circle.
  • a steel rod (weight: lkg) having a steel ball with a tip diameter of 1Z2 inches at a circumferential interval of 15 links is dropped from a height of 4 Omm to the center of the sample in the width direction, and the inner surface of the generated can Apply a sponge impregnated with 3% saline to the convex part of the, apply a DC voltage of 6.3 V to the sample, measure the flowing current value, and average the measured current value.
  • the low-temperature impact workability of the resin layer to be the surface was evaluated. The lower the current value, the smaller the occurrence of cracks in the inner resin coating.
  • PETI mono- (ethylene terephthalate) iriphthalate copolymerized polyester resin • PETI mono- (ethylene terephthalate) iriphthalate copolymerized polyester resin.
  • the figures after PETI indicate moles of iriphthalic acid.
  • the upper layer is a resin layer mainly composed of a polyester resin having a predetermined structure in order to share the flavor securing function
  • the intermediate layer is formed of a polyester resin and a polycarbonate having a constant structure in order to share the impact resistance securing function.
  • a three-layer resin film consisting of a resin layer mainly composed of a polyester resin with a certain structure is used for laminating a resin layer on the metal plate in order to share the function of ensuring processing adhesion to the metal plate.
  • the functions required for the material for cans are assigned to each of the coatings, and the resin-coated metal plate of the present invention thus obtained is strictly required to reduce the thickness of the body of the can by 40% or more. Molding is possible, and the obtained cans are filled with the contents and have good flexibility even after aging. Maintains a single bar and can maintain high corrosion resistance even if it receives an external impact before and after filling the contents.

Landscapes

  • Laminated Bodies (AREA)

Abstract

A resin-coated composite metal sheet which permits such a severe as to reduce the thickness of a can drum by 40 % or above and can give cans which keep the good flavor of contents packed therein for a long period and have such a high impact resistance that the resin film does not cause cracking even when an impact is applied thereto from the outside before and after the packing of contents. This sheet is one produced by laminating a metal sheet with three films, i.e., an upper layer mainly made of a polyester resin, an interlayer made of a blend of a polyester resin with a polycarbonate resin and a lower layer mainly made of a polyester resin.

Description

明 細 書 複合樹脂被覆金属板 技術分野  Description Composite resin-coated metal sheet Technical field
本発明は、 主に缶用素材への適用を目的とした樹脂被覆金属板に関し、 より詳 細には、 金属板の片面あるいは両面に、 上層および下層が一定構造を有したポリ エステル樹脂を主成分とした樹脂層、 中間層が一定構造のポリエステル樹脂とポ リカーボネー卜樹脂をブレンドした樹脂層からなる三層榭脂被膜が積層されてな る樹脂被覆金属板に関する。 背景技術  The present invention relates to a resin-coated metal plate mainly intended for use as a material for cans, and more particularly, to a polyester resin having an upper layer and a lower layer having a fixed structure on one or both sides of the metal plate. The present invention relates to a resin-coated metal plate in which a three-layer resin film is formed by laminating a resin layer as a component and a resin layer obtained by blending a polyester resin and a polycarbonate resin having a constant structure in an intermediate layer. Background art
近年、 二軸配向性を有するポリエステル樹脂フィルムを金属板に積層した缶用 材料が開発され、 それを用いた缶が市販されている。 ポリエステル樹脂被覆金属 板は、 その優れた経済性、 および特性により広く缶用素材として適用可能なもの であるが、 薄肉化深絞り缶など厳しい加工性が要求される用途に適用するには、 積層された後のポリエステル樹脂層の配向度を成形加工時に缶体に破断を生じな い程度に低下させる必要がある。 一方、 積層された後のポリエステル樹脂層がほ とんど配向してない状態、 すなわち無定形に近い状態では、 成形された缶あるい は缶に内容物を充填後、 缶を高速かつ連続的に搬送する際に、 缶と缶が衝突し、 一方の缶にへこみを生じた場合、 へこみを生じた部分のポリエステル樹脂層にク ラックが入り、 局部的に腐食を生じることがある。 したがって、 安定した品質を 有するポリエステル樹脂被覆金属板を得るために、 積層された後のポリエステル 樹脂層の配向度を非常に狭い範囲にコントロールしなければならないのが実状で ある。 また、 たとえポリエステル樹脂の配向度を適正な範囲にコントロールして も、 成形された薄肉化深絞り缶に炭酸飲料などを低温で充填し、 低温で搬送する 時に缶胴にへこみが生じると、 ポリエステル樹脂層に実用上問題となるクラック が入り、 局部的に腐食が生じる。 すなわち、 ポリエステル樹脂被覆金属板は耐衝 撃加工性、 特に耐低温衝撃加工性に劣るとともに、 安定した製造を行うことが困 難である。 In recent years, materials for cans in which a biaxially oriented polyester resin film is laminated on a metal plate have been developed, and cans using the same have been marketed. Polyester resin-coated metal sheets can be widely used as materials for cans due to their excellent economics and characteristics.However, to apply to applications requiring strict workability such as thin-walled deep-drawing cans, lamination is required. It is necessary to reduce the degree of orientation of the polyester resin layer after the formation to such an extent that the can body does not break during molding. On the other hand, in a state where the laminated polyester resin layer is hardly oriented, that is, in a state close to amorphous, the can is filled at high speed and continuously after the can is filled with the contents. If the cans collide with each other when they are conveyed and dents occur in one of the cans, cracks may enter the polyester resin layer in the dented area, causing local corrosion. Therefore, in order to obtain a polyester resin-coated metal plate having a stable quality, the degree of orientation of the laminated polyester resin layers must be controlled within a very narrow range. Even if the degree of orientation of the polyester resin is controlled within an appropriate range, if a carbonated beverage or the like is filled at a low temperature in a molded thin-walled deep-drawing can and dents occur in the can body when transported at a low temperature, the polyester may be degraded. Cracks, which pose a practical problem, occur in the resin layer, causing local corrosion. In other words, polyester resin-coated metal sheets are inferior in impact resistance, especially low-temperature impact resistance, and it is difficult to perform stable production. It is difficult.
この耐低温衝撃加工性を改善するために、 様々な試みが行われ、 特開平 7— 9 6 1 6号公報によるポリカーボネート樹脂被覆金属板は、 缶用被覆材として必要 な特性の一つであるフレーバー性を良好に保ちながら、 狭い範囲で配向度を厳し くコントロールすることなしに、 耐低温衝撃加工性を大幅に改善している。 しか しながら、 近年、 缶コストの大幅な低減が求められ、 樹脂フィルムを金属板の両 面にラミネートした樹脂被覆金属板を素材として缶胴部を 2 0 %程度薄肉化した 缶体では十分なコストダンとなり得なくなってきている。 近年、 このような事情 から、 缶胴部を 4 0 %以上薄肉化し、 かつ従来の缶に充填されているよりもさら に腐食性の高い内容物に適用する 2ピース缶を製造することが可能な樹脂被覆金 属板の開発の要求が高まってきている。 従って、 樹脂被覆金属板には樹脂被膜に 強固な加工密着性を有するとともに、 缶胴部を極端に薄肉化したために外部から 缶胴部に衝撃が加えられたとき深いへこみが生じ、 樹脂被膜に内容物保護被膜と しての致命的なクラックが入り易くなり、 それに加えて腐食性の高い内容物をも 充填可能とするためには、 以前よりも格段に優れた加工密着性と耐衝撃性が要求 されるようになつてきた。  Various attempts have been made to improve the low-temperature impact workability, and the polycarbonate resin-coated metal plate disclosed in Japanese Patent Application Laid-Open No. 7-91616 is one of the properties required as a coating material for cans. While maintaining good flavor, without significantly controlling the degree of orientation in a narrow range, it significantly improves low-temperature impact workability. However, in recent years, a significant reduction in can cost has been demanded, and a can body with a 20% thinner can body made of a resin-coated metal plate obtained by laminating a resin film on both sides of a metal plate is not sufficient. It can no longer be cost-effective. In recent years, under these circumstances, it has become possible to reduce the thickness of the can body by 40% or more and to manufacture two-piece cans that can be applied to more highly corrosive contents than those filled in conventional cans. The demand for the development of a resin-coated metal plate is increasing. Therefore, the resin-coated metal plate has strong processing adhesion to the resin film, and the can body is made extremely thin, causing a deep dent when an external impact is applied to the body of the can. In order to make it easy for fatal cracks to occur as a protective film for the contents and to be able to fill even highly corrosive contents, the processing adhesion and impact resistance are much better than before. Has been required.
特開平 7 - 9 6 1 6号公報に記載の二層の複合樹脂被覆金厲板は、 前記の缶胴 部を 2 0 %程度薄膜化して成形する用途には有効な素材と言える。 しかしながら、 下層のプレンド樹脂被膜層は金属板との加工密着性を確保し、 耐衝撃性を確保す る両方の機能を同時に満足させければならず、 下層を構成する樹脂において、 金 厲板との樹脂の密着性には優れるが耐衝撃性に劣るポリエステル樹脂成分と、 耐 衝擊性には優れるが金属板との密着性に劣るポリカーボネート樹脂成分を密着性 と耐衝撃性を同時に満足させる最適な比率でプレンドすることは、 困難である。 従って、 両者の機能をある程度満足できるブレンド範囲にせざるをえないため、 缶胴部を 4 0 %以上薄肉化して缶の軽量化を図る厳しい加工性を要求される用途 には、 缶に充填する内容物が腐食性の弱いものである場合以外は適用困難である。 例えば、 缶胴部を 4 0 %以上薄肉化するために必要な加工密着性を確保するため に下層の構成樹脂成分の大部分をポリエステル樹脂とすると、 大幅に薄肉化され た缶胴部の樹脂被膜に必要とされる耐衝撃性が極端に劣るのが実状である。 本発明の課題は、 缶胴部を 40%以上薄肉化する厳しい成形加工が可能で、 か つ得られた缶体に内容物を充填経時した後も良好なフレーバー性を保持し、 さら に内容物充填前後に外部から衝撃を受けても皮膜にクラックが生じることのない 高い耐衝撃性を有する複合樹脂被覆金属板を提供することである。 発明の開示 The two-layer composite resin-coated metal plate described in Japanese Patent Application Laid-Open No. Hei 7-99616 can be said to be an effective material for use in forming the can body by thinning the can body by about 20%. However, the lower blended resin coating layer must simultaneously satisfy both functions of ensuring processing adhesion to the metal plate and ensuring impact resistance. Ideal for satisfying both adhesion and impact resistance at the same time with a polyester resin component that is excellent in adhesion of resin but has poor impact resistance and a polycarbonate resin component that is excellent in impact resistance but poor in adhesion to metal plate Blending at a ratio is difficult. Therefore, the blending range must satisfy both functions to some extent.To reduce the weight of the can by reducing the thickness of the can body by more than 40%, fill the can in applications that require severe workability. It is difficult to apply unless the contents are weakly corrosive. For example, if most of the constituent resin components in the lower layer are made of polyester resin to secure the processing adhesion required to reduce the thickness of the can body by 40% or more, the resin of the can body that has been significantly thinned In fact, the impact resistance required for the coating is extremely poor. An object of the present invention is to enable severe molding processing to reduce the thickness of a can body by 40% or more, maintain good flavor even after filling the obtained can body with the contents, and further improve the content. An object of the present invention is to provide a composite resin-coated metal plate having high impact resistance, which does not cause cracks in a film even when subjected to an external impact before and after the filling. Disclosure of the invention
本発明の請求項 1は、  Claim 1 of the present invention
金属板の片面あるいは両面に、 次の (a) , (b) 及び (c) の三層樹脂被膜が 積層されている複合樹脂被覆金属板であることを特徴とする。 It is a composite resin-coated metal plate in which the following three layers (a), (b) and (c) are laminated on one or both sides of the metal plate.
(a) 上層が、 下記の (1) 式の基本構造の繰り返し単位からなるポリエステル 樹脂を主成分とした樹脂層、  (a) a resin layer mainly composed of a polyester resin whose upper layer is composed of a repeating unit having a basic structure represented by the following formula (1);
(b) 中間層が、 下記の (1) 式の基本構造の繰り返し単位からなるポリエステ ル樹脂に下記の (2) 式の基本構造の繰り返し単位からなるポリカーボネー卜樹 脂を、 ポリエステル樹脂に対する重量比で 0. 75〜9.0の割合で混合した樹脂  (b) The intermediate layer is composed of a polyester resin composed of a repeating unit having the following basic structure of the following formula (1) and a polycarbonate resin composed of a repeating unit having the following basic structure of the following formula (1): Resin mixed in a ratio of 0.75 to 9.0 by ratio
(c) 下層が、 下記の (1) 式の基本構造の繰り返し単位からなるポリエステル 樹脂を主成分とした榭脂層 (c) A resin layer whose lower layer is mainly composed of a polyester resin consisting of a repeating unit having the basic structure of the following formula (1).
(1) 式 (1 set
[ポリエステル樹脂の基本構造]  [Basic structure of polyester resin]
o o  o o
II II  II II
-0-R1-0-C-R2-C- ただし、 (1) 式において、 R1は炭素数 2〜 6のアルキレン基、 -0-R1-0-C-R2-C- wherein, in the formula (1), R1 is an alkylene group having 2 to 6 carbon atoms,
R 2は炭素数 2〜 24のアルキレン基またはァリーレン基、 (2) 式 R 2 is an alkylene group or an arylene group having 2 to 24 carbon atoms, Equation (2)
[ポリカーボネート樹脂の基本構造]  [Basic structure of polycarbonate resin]
O O
II II
-O-R3-0-C- ただし、 (2) 式において、 R3 は炭素数 2〜10の脂肪族炭化水素、 または炭素数 6〜 18の芳香族炭化水素、 また、 請求項 2は、 本発明の樹脂被覆金厲板の下層樹脂層の主成分であるポリェ ステル樹脂の好ましい例として、 次の (d) 〜 (g) のいずれかであるか、 また は (d) 〜 (g) の 2種以上を混合したものをあげる。  -O-R3-0-C- wherein, in the formula (2), R3 is an aliphatic hydrocarbon having 2 to 10 carbon atoms or an aromatic hydrocarbon having 6 to 18 carbon atoms. Preferred examples of the polyester resin which is a main component of the lower resin layer of the resin-coated metal sheet of the present invention include any of the following (d) to (g), or the following (d) to (g): A mixture of two or more types is given.
(d) ポリエチレンテレフタレート樹脂、  (d) polyethylene terephthalate resin,
(e) ポリブチレンテレフタレ一卜樹脂、  (e) polybutylene terephthalate resin,
( f ) エチレンテレフタレ一ト単位を主体とした共重合ポリエステル樹脂、 (g) ブチレンテレフ夕レート単位を主体とした共重合ポリエステル樹脂 そして、 請求項 3においては、 下層が、 (1) 式のポリエステル樹脂に、 (2) 式の基本構造の繰り返し単位からなるポリカーボネート樹脂を、 ポリエステル樹 脂に対する重量比で 0· 05〜0. 54の割合で混合した樹脂層も適用可能である。 請求項 4においては、 中間層に含まれるポリカーボネート樹脂が、 ビスフエノー ル Aポリカーボネート樹脂であることが好ましい。 そして中間層に含まれるポリ エステル樹脂の好ましい例として、 次の ( i) 〜 ( 1 ) のいずれかであるか、 ま たは ( i) 〜 ( 1 ) の 2種以上を混合したものがあげられる。  (f) a copolymerized polyester resin mainly composed of ethylene terephthalate units; (g) a copolymerized polyester resin mainly composed of butylene terephthalate units; and in claim 3, the lower layer is represented by the following formula (1): A resin layer in which a polycarbonate resin comprising a repeating unit having the basic structure of the formula (2) is mixed with the polyester resin at a weight ratio of 0.05 to 0.54 with respect to the polyester resin is also applicable. In claim 4, it is preferable that the polycarbonate resin contained in the intermediate layer is a bisphenol A polycarbonate resin. Preferred examples of the polyester resin contained in the intermediate layer include one of the following (i) to (1) or a mixture of two or more of the following (i) to (1): Can be
( i ) ポリエチレンテレフタレ一卜樹脂、  (i) polyethylene terephthalate resin,
( j ) ポリブチレンテレフ夕レート樹脂、  (j) polybutylene terephthalate resin,
(k) エチレンテレフ夕レート単位を主体とした共重合ポリエステル樹脂、 ( 1 ) ブチレンテレフ夕レート単位を主体とした共重合ポリエステル樹脂 また、 請求項 5においては、 上層の主成分であるポリエステル樹脂の好ましい例 として、 ポリエチレンテレフタレ一卜樹脂、 又はポリエチレンテレフタレ一卜 ' イソフタレート共重合ポリエステル樹脂があげられ、 さらに、 請求項 6において は、 上層が、 前記 (1 ) 式の基本構造の繰り返し単位からなるポリエステル樹脂 に、 前記 (2 ) 式の基本構造の繰り返し単位からなるポリカーボネート樹脂を、 ポリエステル樹脂に対する重量比で 0. 0 5〜 0. 3 5の割合で混合した樹脂層か らなるものも適用可能である。 請求項 7においては、 上層、 中間層及び下層の厚みを、 それぞれ T l、 Τ 2、 Τ3 とした場合に、 特に好ましい脱厚比は、 以下の (3 ) 、 (4 ) 、 ( 5 ) 式を満足 するような複合樹脂被覆金属板であることを特徴とする。 (k) a copolymerized polyester resin mainly composed of ethylene terephthalate units; (1) a copolymerized polyester resin mainly composed of butylene terephthalate units; Preferred examples include polyethylene terephthalate resin or polyethylene terephthalate 'isophthalate copolymerized polyester resin. Is a polyester resin composed of a repeating unit having the basic structure represented by the formula (1), and a polycarbonate resin composed of a repeating unit having the basic structure represented by the formula (2), wherein the weight ratio of the polyester resin to the polyester resin is 0.05 to 5%. A material composed of a resin layer mixed at a ratio of 0.35 is also applicable. In claim 7, when the thicknesses of the upper layer, the intermediate layer, and the lower layer are respectively Tl, Τ2, and Τ3, particularly preferable de-thickening ratios are the following formulas (3), (4), and (5). It is a composite resin-coated metal plate that satisfies the following.
Τ2/ (T 1 + T2 + T3) ≥0. 4 · · · ( 3 ) 式  Τ2 / (T 1 + T2 + T3) ≥0.4.
T l≥ 1 i m · · · ( 4 ) 式  T l ≥ 1 im · Equation (4)
T3≥ 0 . 5 fi m · · · ( 5 ) 式 発明を実施するための最良の形態  T3≥ 0.5 fi m ··· (5) Best mode for carrying out the invention
本発明は、 樹脂被膜を三層とし、 それぞれの樹脂層に缶用素材として必要な機 能を分担させることにより前記課題が解決できることを見いだしたものである。 すなわち、 下層には主に金属板との加工密着性を確保する機能を、 中間層には主 に耐衝撃性を確保する機能を、 上層には主にフレーバーを保持する機能をそれぞ れ分担するように被膜設計を行うことにより、 前記課題を解決出来ることを見い だしたものである。 さらに、 本発明において特に重要な機能である加工密着性と 耐衝撃性を同時に満足するために、 樹脂被膜を単に三層にし機能分担させるだけ でなく、 中間層の樹脂組成の選定にあたっては特に詳細な検討を行い、 中間層が 分担しなければならない耐衝撃性を確保する機能だけでなく、 下層の密着性を確 保する機能を極力阻害しないように、 成形時の中間層の樹脂の加工応力を低くす るような樹脂の設計を行った。 また、 成形加工によりそれぞれの樹脂層に亀裂が 生じたり、 各樹脂層の間で剥離が生じないように考慮した。 より具体的には、 被 覆する樹脂と金属板と接する面、 すなわち、 積層される樹脂層の下層としては耐 衝撃加工性には劣るが、 金属板との密着性に優れる一定構造のポリエステル樹脂 を主成分とした樹脂層とすることにより、 主に加工密着性を確保した。 中間層と しては金属板との密着性には劣るが、 耐衝撃加工性、 特に耐低温衝撃加工性に優 れる一定構造のポリカーボネート樹脂と一定構造のポリエステル樹脂とを適正範 囲でブレンドすることにより耐衝撃性機能を確保し、 ポリカーボネー卜榭脂単体 におけるよりも優れた樹脂被膜の成形追従性を確保した。 上層としてはバリヤー 性に優れ、 かつ内容物の味覚をほとんど変化させない一定構造のポリエステル樹 脂を主成分とした樹脂層とした。 このような三層からなる樹脂層を金属板に積層 することにより、 前記のような厳しい成形加工が可能で、 フレーバー性および耐 低温衝撃加工性などの缶に要求される特性を満足できる樹脂被覆金属板が得られ ることを見いだしたものである。 The present invention has been found to be able to solve the above-mentioned problem by forming three resin coatings and sharing the functions required for the material for cans with each resin layer. In other words, the lower layer is mainly responsible for the function of ensuring the processing adhesion to the metal plate, the middle layer is mainly responsible for the impact resistance, and the upper layer is mainly responsible for the flavor retention. It has been found that the above problems can be solved by designing the coating in such a way as to perform the above. Furthermore, in order to simultaneously satisfy the processing adhesion and impact resistance, which are particularly important functions in the present invention, not only the resin coating is merely formed into three layers to share the functions, but also the selection of the resin composition of the intermediate layer is particularly detailed. In order not to impede not only the function of ensuring the impact resistance that the intermediate layer must share but also the function of ensuring the adhesion of the lower layer, the processing stress of the resin of the intermediate layer during molding The design of the resin was designed to reduce the mist. In addition, consideration was given so that cracking did not occur in each resin layer due to the molding process, and separation did not occur between the resin layers. More specifically, as a surface in contact with the resin to be covered and the metal plate, that is, as a lower layer of the laminated resin layer, a polyester resin having a certain structure which is inferior in impact resistance but has excellent adhesion to the metal plate. By mainly using a resin layer, processing adhesion was mainly ensured. The intermediate layer has poor adhesion to the metal plate, but has excellent impact resistance, especially low temperature impact resistance. By blending a polycarbonate resin with a certain structure and a polyester resin with a certain structure in an appropriate range, the impact resistance function was secured, and the molding followability of the resin film was better than that of polycarbonate resin alone. . As the upper layer, a resin layer mainly composed of polyester resin having a certain structure that has excellent barrier properties and hardly changes the taste of the contents is used. By laminating such a three-layer resin layer on a metal plate, it is possible to perform the severe molding process as described above, and a resin coating that satisfies the characteristics required for cans such as flavorability and low-temperature impact resistance. They have found that a metal plate can be obtained.
以下、 本発明を実施例により詳細に説明する。  Hereinafter, the present invention will be described in detail with reference to examples.
まず、 本発明の複合榭脂被覆金属板において、 上層および下層の主成分、 ある いは、 中間層の構成成分の一つであるポリエステル樹脂は以下の (1) 式に示さ れる基本構造の繰り返し単位を主体とする重合体である。  First, in the composite resin-coated metal plate of the present invention, the polyester resin, which is a main component of the upper layer and the lower layer, or one of the constituent components of the intermediate layer, is a repetition of the basic structure represented by the following formula (1). It is a polymer mainly composed of units.
O O  O O
-0-R1-0-C-R2-C- (1) 式 -0-R1-0-C-R2-C- (1)
ただし、 (1) 式において、 R1は炭素数 2〜6のアルキレン基、 R2は炭素数 2 〜24のアルキレン基またはァリーレン基である。 However, in the formula (1), R1 is an alkylene group having 2 to 6 carbon atoms, and R2 is an alkylene group or an arylene group having 2 to 24 carbon atoms.
本発明の複合榭脂被覆金属板の下層の主成分となるポリエステル樹脂は、 主に 金属板および中間層のポリカーボネート樹脂とポリエステル樹脂のブレンド樹脂 層との加工密着性の観点から選択される。 選択されるポリエステル樹脂は前記の The polyester resin which is the main component of the lower layer of the composite resin-coated metal plate of the present invention is selected mainly from the viewpoint of the working adhesion between the polycarbonate resin and the polyester resin blend resin layer of the metal plate and the intermediate layer. The polyester resin selected is
(1) 式に示す基本構造の繰り返し単位を主体とする重合体であるが、 特にポリ エチレンテレフタレート樹脂、 ポリブチレンテレフ夕レート樹脂、 エチレンテレ フタレート単位を主体とした共重合ポリエステル樹脂、 およびブチレンテレフ夕 レート単位を主体とした共重合ポリエステル樹脂の一種、 あるいはこれらのいず れかの少なくとも 2種の混合物からなるポリエステル樹脂が好ましい。 また、 共 重合ポリエステル樹脂の例として、 ポリエチレンテレフ夕レート .イソフタレー 卜、 ポリエチレンテレフ夕レート ·セバケ一卜、 ポリエチレンテレフタレー卜 - アジペート樹脂や、 ポリブチレンテレフタレ一卜 ·イソフタレート樹脂などが挙 げられる。 さらに、 缶に充填する内容物が高腐食性で、 樹脂被膜に特別に強固な 耐衝撃性が要求される場合は、 前記の (1) 式に示す基本構造の繰り返し単位か らなるポリエステル樹脂に、 次の (2) 式に示すポリカーポネ一卜樹脂をポリエ ステル樹脂に対する重量比で 0. 05-0. 54の割合でブレンドした樹脂からな る層とすることが好ましい。 重量比が 0. 05未満ではポリカーボネート樹脂を ブレンドした目的である耐衝撃性の向上がほとんど認められず、 0. 54を超え ると下層の分担すべき機能である加工密着性の安定確保が困難となり、 好ましく ない。 A polymer mainly composed of the repeating unit having the basic structure represented by the formula (1), particularly, a polyethylene terephthalate resin, a polybutylene terephthalate resin, a copolymerized polyester resin mainly composed of an ethylene terephthalate unit, and a butylene terephthalate. It is preferable to use one type of copolymerized polyester resin mainly composed of latex units, or a polyester resin composed of a mixture of at least two of any of these. Examples of the copolymerized polyester resin include polyethylene terephthalate isophthalate, polyethylene terephthalate sebacate, polyethylene terephthalate-adipate resin, and polybutylene terephthalate isophthalate resin. Can be In addition, the contents to be filled into cans are highly corrosive, and the resin coating is particularly strong. When impact resistance is required, a polyester resin consisting of a repeating unit having the basic structure shown in the above formula (1) is added to a polyester resin shown in the following formula (2) in a weight ratio to the polyester resin. It is preferable to form a layer made of a resin blended in a ratio of 0.05 to 0.54. If the weight ratio is less than 0.05, there is almost no improvement in the impact resistance, which is the purpose of blending the polycarbonate resin, and if it exceeds 0.54, it is difficult to secure stable processing adhesion, which is the function to be shared by the lower layer. It is not preferable.
 〇
II  II
-0-R3-0-C- (2) 式  -0-R3-0-C- (2)
ただし、 (2) 式において、 R3 は炭素数 2〜1 0の脂肪族炭化水素、 または炭素数 6〜1 8の芳香族炭化水素である。 However, in the formula (2), R3 is an aliphatic hydrocarbon having 2 to 10 carbon atoms or an aromatic hydrocarbon having 6 to 18 carbon atoms.
これらのポリカーボネ一ト榭脂の中で、 耐衝撃性、 さらに缶用素材に要求され る耐熱性、 耐レトルト性などを考慮すると、 脂肪族ポリカーボネート樹脂よりも 芳香族ポリカーボネート榭脂の方が好ましく、 例えば、 ポリ一ォジォキシジフエ 二ルー 2, 2—プロパンカーボネート、 ポリ一ジォキシジフエニルメタンカーボ ネート、 ポリージォキシジフエニルェタンカーボネート、 ポリージォキシジフエ ニル 2, 2—ブタンカーボネート、 ポリージォキシ 2, 2—ペンタンカーポネ一 卜、 ポリ一ジォキシジフエニル一 3, 3—ペンタンカーボネート、 ポリ一ジォキ シジフエ二ルー 2, 2—へキサンカーボネートなど 4, 4ージォキシジフエニル メタンカーボネー卜の中央メタンの炭素にアルキル基が結合した芳香族ポリカー ボネー卜樹脂などが好ましく、 特に耐衝撃性、 耐熱性、 加工性および経済性など の点から、 一般的なポリ力一ポネート樹脂であるビスフエノール Aポリカーボネ —ト樹脂がより好ましい。  Among these polycarbonate resins, in consideration of impact resistance, heat resistance and retort resistance required for a material for cans, etc., aromatic polycarbonate resin is more preferable than aliphatic polycarbonate resin, For example, polydioxydiphenyl 2,2-propane carbonate, polydioxydiphenyl methane carbonate, polydioxydiphenyl ethane carbonate, polydioxydiphenyl 2,2-butane carbonate, polydioxy 2,4-pentane carbonate, poly-dioxydiphenyl-1,3-pentane carbonate, poly-dioxydiphenyl 2,2-hexane carbonate, etc. 4,4-dioxydiphenyl methane carbonate Aromatic polycarbonate resin with alkyl group bonded to carbon of central methane Preferably, in particular impact resistance, heat resistance, in view of processability and economy, it is common poly force one Poneto resin bisphenol A polycarbonate - DOO resin is more preferable.
つぎに、 中間層のブレンド樹脂を構成する樹脂成分の一つであるポリカーボネ 一卜樹脂は、 前記の (2) 式に示す基本構造の繰り返し単位からなる重合体であ り、 他の構成樹脂成分の一つであるポリエステル樹脂は、 前記の (1) 式に示す 基本構造の繰り返し単位からなる重合体である。 これらのポリ力一ポネート樹脂 の中で特に好ましい樹脂は、 前記と同様に脂肪族ポリカーボネート樹脂より芳香 族ポリカーボネート樹脂の方が好ましく、 例えば、 ポリ一ォジォキシジフエニル —2 , 2—プロパンカーボネート、 ポリージォキシジフエニルメタンカーボネ一 ト、 ポリージォキシジフエニルェタンカーボネート、 ポリ一ジォキシジフエニル 2 , 2—ブタンカーボネート、 ポリ一ジォキシ 2, 2—ペンタンカーボネート、 ポリ一ジォキシジフエニル一 3 , 3—ペンタンカーボネート、 ポリージォキシジ フエ二ルー 2 , 2—へキサンカーボネートなど 4, 4ージォキシジフエニルメタ ンカーボネー卜の中央メタンの炭素にアルキル基が結合した芳香族ポリカーボネ 一卜樹脂などが好ましいが、 特に耐衝撃性、 耐熱性、 加工性および経済性などの 点からビスフエノール Aポリ力一ポネート樹脂がより好ましい。 一方, 前記の ( 1 ) 式に示すポリエステル樹脂の中で特に好ましい榭脂は、 ポリ力一ボネ一卜 樹脂との相溶性や下層の樹脂層との密着性を考慮すると、 やはり前記同様のポリ エチレンテレフタレ一ト榭脂、 ポリブチレンテレフ夕レート榭脂、 エチレンテレ フタレート単位を主体とした共重合ポリエステル樹脂、 およびブチレンテレフ夕 レ一ト単位を主体とした共重合ポリエステル樹脂の一種、 あるいはこれらのいず れかの少なくとも 2種の混合物からなるポリエステル樹脂であることが好ましい。 中間層に必要とされる要件は適用可能な樹脂の種類もさることながら、 前記した ように、 一定の基本構造の繰り返し単位からなるポリカーボネ一卜樹脂とポリエ ステル樹脂のプレンド樹脂であることが必須であり、 またそれぞれの樹脂が適正 な比率でブレンドされていなければならないことである。 適正なブレンド比率は、 前記ポリカーボネート樹脂をポリエステル樹脂に対し、 重量比で 0. 7 2〜9 . 0 の範囲である。 重量比が 0 . 7 2未満では耐衝撃性の確保が困難であり、 9 . 0 を超えると樹脂層の伸びが低下し、 また成形時の加工応力が高くなり、 成形後の 樹脂被膜の剥離や樹脂被膜に亀裂が生じ易くなり好ましくない。 Next, the polycarbonate resin, which is one of the resin components constituting the blend resin of the intermediate layer, is a polymer comprising a repeating unit having the basic structure represented by the above formula (2). The polyester resin, which is one of the above, is a polymer comprising a repeating unit having a basic structure represented by the above formula (1). Particularly preferred resins among these polyolefin resins are more aromatic than aliphatic polycarbonate resins as described above. Aromatic polycarbonate resins are preferred, for example, polydioxydiphenyl-2,2-propane carbonate, polydioxydiphenyl methane carbonate, polydioxydiphenyl ethane carbonate, and polydioxydiphenyl methane carbonate. Dioxydiphenyl 2,2-butane carbonate, poly-dioxy 2,2-pentane carbonate, poly-dioxy diphenyl 1,3-, 3-pentane carbonate, polydioxy diphenyl 2,2, -hexane carbonate, etc. 4 Aromatic polycarbonate resin in which an alkyl group is bonded to the carbon of central methane of 4,4-dioxydiphenylmethane carbonate is preferred, but from the viewpoints of impact resistance, heat resistance, processability, and economy. Bisphenol A polycarboxylic acid resin is more preferred. On the other hand, among the polyester resins represented by the above formula (1), particularly preferred resins are the same as those described above in consideration of the compatibility with the polycarbonate resin and the adhesion to the lower resin layer. One of ethylene terephthalate resin, polybutylene terephthalate resin, copolymerized polyester resin mainly composed of ethylene terephthalate unit, and copolymerized polyester resin mainly composed of butylene terephthalate unit, or It is preferably a polyester resin composed of a mixture of at least two of the above. The requirement for the intermediate layer is not limited to the type of applicable resin, but as described above, it is essential that the intermediate resin be a polycarbonate resin composed of repeating units of a certain basic structure and a polyester resin blend resin. And that each resin must be blended in the proper ratio. An appropriate blending ratio is in the range of 0.72 to 9.0 in weight ratio of the polycarbonate resin to the polyester resin. If the weight ratio is less than 0.72, it is difficult to secure impact resistance.If the weight ratio is more than 9.0, the elongation of the resin layer decreases, the processing stress during molding increases, and the resin film peels after molding. And the resin coating is easily cracked, which is not preferable.
一方、 上層を構成する主成分の樹脂であるポリエステル榭脂は、 複合樹脂被覆 金属板を缶体に成形し、 内容物を充填した際に直接に内容物と接するとフレーバ 一成分を大幅に吸着し、 フレーバーを変化させる欠点を有する中間層にブレンド されるポリカーボネ一ト榭脂の欠点をカバーし、 内容物のフレーバー変化を防止 するために適用されるものであり、 前記の (1 ) 式のポリエステル樹脂から選択 されるが、 特にフレーバー性、 および中間層のポリカーボネート樹脂とポリエス テル樹脂のブレンド樹脂層との密着性の観点から、 ポリエチレンテレフ夕レート 樹脂、 ポリエチレンテレフ夕レート 'イソフタレート共重合ポリエステル樹脂、 またはこれらの混合物であることが好ましい。 さらに、 フレーバー性の観点から は、 それらの樹脂は溶融重合したものよりオリゴマーなどの低分子量成分や含有 アルデヒド成分の低下を目的として固相重合された樹脂であることが好ましい。 また、 特別に腐食性の強い内容物を充填する用途には、 前記の (2 ) 式のポリ力 ーボネート樹脂をポリエステル樹脂に対する重量比で 0 . 0 5 - 0 . 3 5の割合で ブレンドした樹脂層とすることも、 充填される内容物に特別にフレーバー性が要 求されない用途である限り有効な方法である。 重量比が 0 . 0 5未満ではプレン ド効果は認められず、 0 . 3 5 を超えるとフレーバー性を大きく損なう恐れがあ るので好ましくない。 また、 この際に用いるポリカーボネート樹脂としては中間 層の場合と同様に、 耐衝撃性に加えて缶用素材に要求される耐熱性、 耐レトルト 性などを考慮すると、 脂肪族ポリカ一ポネート樹脂より芳香族ポリカーポネート 樹脂の方が好ましく、 例えば、 ポリ一ォジォキシジフエ二ルー 2, 2—プロパン カーボネ一卜、 ポリ一ジォキシジフエニルメタンカーボネート、 ポリージォキシ ジフエニルェタン力一ボネ一卜、 ポリージォキシジフエニル 2 , 2—ブタンカー ポネート、 ポリージォキシ 2, 2—ペンタンカーボネート、 ポリージォキシジフ ェニル一3, 3—ペン夕ンカーボネート、 ポリ一ジォキシジフエ二ルー 2, 2— へキサンカーボネ一卜など 4, 4—ジォキシジフエニルメタンカーボネー卜の中 央メタンの炭素にアルキル基が結合した芳香族ポリカーボネート樹脂などが好ま しく、 特に耐衝撃性、 耐熱性、 加工性および経済性などの点からビスフエノール Aポリカーボネート樹脂がより好ましい。 On the other hand, polyester resin, which is the main resin that constitutes the upper layer, forms a composite resin-coated metal plate into a can, and when the content is filled, directly contacts the content, greatly adsorbing one flavor component. It is applied to cover the defects of polycarbonate resin blended in the intermediate layer having the defect of changing the flavor, and to prevent the contents from changing the flavor. It is selected from polyester resin, but it has particularly good flavor, From the viewpoint of the adhesion of the tellurium resin to the blend resin layer, it is preferable to use a polyethylene terephthalate resin, a polyethylene terephthalate ′ isophthalate copolymerized polyester resin, or a mixture thereof. Further, from the viewpoint of flavor properties, those resins are preferably solid phase polymerized resins for the purpose of lowering low molecular weight components such as oligomers and contained aldehyde components than those obtained by melt polymerization. In addition, for the purpose of filling particularly corrosive contents, a resin obtained by blending the polycarbonate resin of the above formula (2) in a weight ratio of 0.05 to 0.35 with respect to the polyester resin is used. Layering is also an effective method as long as the content to be filled does not require special flavor. If the weight ratio is less than 0.05, no plend effect is observed, and if it exceeds 0.35, the flavor property may be greatly impaired, which is not preferable. As in the case of the intermediate layer, the polycarbonate resin used in this case is more aromatic than the aliphatic polycarbonate resin in consideration of the heat resistance and retort resistance required for the material for cans in addition to the impact resistance. Group polycarbonate resins are preferred, for example, polydioxydiphenyl 2,2-propane carbonate, polydioxydiphenyl methane carbonate, polydioxydiphenylethane carbonate, polydioxydiphenyl 2,4-butane carbonate, polydioxy 2,2-pentane carbonate, polydioxydiphenyl-1,3-pentane carbonate, polydioxydiphenyl 2,2-hexane carbonate, etc. Alkoxy group is bonded to carbon of central methane by oxydiphenyl methane carbonate. Aromatic polycarbonate resins are preferred, and bisphenol A polycarbonate resin is more preferred, particularly in view of impact resistance, heat resistance, processability, and economic efficiency.
また、 中間層の樹脂組成については、 中間層を構成するポリカーボネート樹脂 とポリエステル樹脂のブレンド樹脂が、 このブレンド樹脂を到達温度が (融点 + 3 o ) になるように窒素気流中で 1 0秒間加熱し溶融した後直ちに o t:の水に 浸漬して得たサンプルを、 A S T M D 6 3 8に記載の方法を用いて測定した破 断伸びが 1 7 0 %以上となるような樹脂であることが、 安定した優れた成形性と 耐衝撃性を得る上で好ましい。 なお、 ここで言う樹脂の融点とは、 示差走査熱量 計 (S S 1 0、 セイコー電子工業 (株) 製) により、 1 0で/分で昇温した際の 樹脂の融解に基づく吸熱ピークの最大深さを示す温度をいう。 吸熱ピークが二つ 以上ある場合、 基本的には吸熱ピークの最大深さを示す高い温度を融点として用 いるが、 特性的に満足できる場合は低い方の温度を融点として用いて差し支えな レ^ 一方、 下層、 中間層、 及び上層の樹脂層を構成している各々の樹脂の分子量 や分子量分布も特性に影響し、 概して分子量が高く分布もあまり広くない方が耐 衝撃性などの特性に優れる傾向にあるが、 一般的には分子量が低い方が経済性に 優れ、 また容易に製膜可能であるので、 分子量に関しては要求特性に応じて選択 するものとし、 ここでは特に限定しない。 また、 分子量分布も要求特性に応じて 選択するものとするが、 過度に分子量分布が大きく、 特に低分子量体 (オリゴマ —など) が多いいと内容物にこれらの成分が抽出してフレ一バーを変化させるこ ともあるので注意が必要である。 さらに、 各層を構成する榭脂、 特に上層に用い られる樹脂は樹脂中に含まれる抽出されやすい成分、 すなわち缶に内容物を充填 した後、 内容物と接している樹脂フィルムから前記の低分子量体や金属イオンな どが抽出することにより、 フレーバーに悪影響を及ぼす恐れのある場合は、 出来 るだけ抽出する成分が少ないものを用いることが好ましい。 また、 本発明の三層 樹脂被膜のさらに上層や下層に、 エポキシ系樹脂などの熱硬化性樹脂や他の熱可 塑性樹脂を積層することも必要であれば行っても良いが、 積層にあたっては三層 樹脂被膜の特長を損なわないように考慮して実施すべきである。 Regarding the resin composition of the intermediate layer, the blended resin of the polycarbonate resin and the polyester resin constituting the intermediate layer is heated for 10 seconds in a nitrogen stream so that the temperature of the blended resin reaches (melting point + 3 o). Immediately after being melted, the sample obtained by immersing in ot: water is a resin having a breaking elongation of 170% or more as measured by the method described in ASTMD 638. It is preferable to obtain stable and excellent moldability and impact resistance. The melting point of the resin as used herein refers to the value when the temperature was raised at 10 / min by a differential scanning calorimeter (SS10, manufactured by Seiko Instruments Inc.). It refers to the temperature that indicates the maximum depth of the endothermic peak based on the melting of the resin. If there are two or more endothermic peaks, the higher temperature indicating the maximum depth of the endothermic peak is basically used as the melting point, but if the characteristics are satisfactory, the lower temperature may be used as the melting point. On the other hand, the molecular weight and molecular weight distribution of each resin constituting the lower, intermediate, and upper resin layers also affect the properties.In general, the higher the molecular weight and the less wide the distribution, the better the properties such as impact resistance In general, the lower the molecular weight, the better the economic efficiency and the ease of film formation. Therefore, the molecular weight is selected according to the required characteristics, and is not particularly limited here. In addition, the molecular weight distribution should be selected according to the required characteristics, but if the molecular weight distribution is excessively large, especially if there are too many low molecular weight substances (oligomers, etc.), these components will be extracted into the contents and flavor will be reduced. It is necessary to be careful because it may change. Furthermore, the resin constituting each layer, especially the resin used for the upper layer, is a component contained in the resin that is easily extracted, that is, after filling the contents into a can, the resin film that comes into contact with the contents is converted from the low-molecular-weight substance. If there is a possibility that the flavor will be adversely affected by the extraction of metals and metal ions, it is preferable to use one that extracts as few components as possible. Further, a thermosetting resin such as an epoxy resin or another thermoplastic resin may be laminated on the upper and lower layers of the three-layer resin film of the present invention, if necessary. Care should be taken to ensure that the features of the three-layer resin coating are not impaired.
つぎに、 本発明の複合樹脂被覆金属板におけるそれぞれの樹脂層の厚さは、 基 本的には用途と要求特性により決定すべきであるが、 缶体とした際に充填される 内容物が特殊なものでない限り、 三層樹脂被膜の上層、 中間層、 下層の樹脂層の 厚みを各々 Tl、 Τ2、 および Τ3とした場合、 下記の (3) 、 (4) 、 および ( 5 ) 式を満足する三層の複合樹脂被膜層であることが好ましい。  Next, the thickness of each resin layer in the composite resin-coated metal plate of the present invention should basically be determined according to the application and required characteristics. Unless otherwise specified, if the thicknesses of the upper, middle, and lower resin layers of the three-layer resin coating are Tl, Τ2, and Τ3, respectively, the following equations (3), (4), and (5) are used. It is preferable that the composite resin coating layer has three layers.
[各層の適性膜厚条件]  [Appropriate film thickness conditions for each layer]
Τ2/ (T1 + T2 + T3) ≥ 0. 4 (3) Τ2 / (T1 + T2 + T3) ≥ 0.4 (3)
Figure imgf000012_0001
Figure imgf000012_0001
Τ3≥0. 5 m (5) Tlが 1 m未満ではフレ一バ一性の確保が充分では無くなる恐れがあり、 T3 が 0. 5 /zm 未満では積層する金属板の条件によっては安定した密着性の確保が 一 1 不十分となる恐れがある。 また T 2/ (T 1 + T 2 + T 3) が 0 . 4未満の場合は、 使用条件によっては中間層の耐衝撃性機能の発揮が不十分となる恐れがある。 また、 上記の三層樹脂フィルムを安定して金属板に積層する観点からは、 前記 三層樹脂フィルムの下層を構成する榭脂の融点を Tmlとした場合、 上層を構成す る樹脂の融点は (Tml + 3 °C) 以上であることが、 積層後に樹脂被膜の安定した 表面外観が得られやすいこと、 およびラミネートロールに樹脂フィルムが融着す る危険性が少なくなり好ましい。 上層を構成する樹脂の融点が (Tml + 3 °C) 未 満の場合は、 後述する本発明の三層樹脂フィルムを金属板に熱融着する工程にお いて、 ラミネートロールのラバーの研磨目が粗すぎたり、 ラバ一表面に比較的微 細な凹凸欠陥が生じた場合、 これらの表面粗度がそのまま樹脂表面に転写し、 樹 脂被覆金属板の表面外観が損なわれやすく、 良好な表面外観を安定して得るには ラミネートロールの表面管理に細心の注意を払う必要がある。 中間層、 および下 層となる二層樹脂フィルムを予め金属板に積層した後、 上層となる層を積層する 場合、 中間層の融点を Tm2とすると、 Tm2は前記と同様な理由で (Tml + 3 ) 以上であることが好まく、 さらに上層を構成する樹脂の融点は (Tm2 + 3 t:) 以 上であることが好ましい。 本発明による前記の上層を構成する樹脂の融点が少な くとも (Tml + 3 °C) 以上である三層樹脂フィルムの例としては、 下記の 1 ) 、 2 ) 、 および 3 ) などが挙げられる。 Τ3≥0.5 m (5) If Tl is less than 1 m, it may not be possible to ensure sufficient flavor.If T3 is less than 0.5 / zm, stable adhesion may occur depending on the conditions of the metal plates to be laminated. The security There is a danger that it will be insufficient. When T 2 / (T 1 + T 2 + T 3) is less than 0.4, the middle layer may have insufficient impact resistance depending on the use conditions. From the viewpoint of stably laminating the three-layer resin film on a metal plate, when the melting point of the resin constituting the lower layer of the three-layer resin film is Tml, the melting point of the resin constituting the upper layer is: (Tml + 3 ° C) or more is preferable because a stable surface appearance of the resin film can be easily obtained after lamination and the risk of the resin film being fused to the laminating roll is reduced. If the melting point of the resin constituting the upper layer is less than (Tml + 3 ° C.), in the step of heat-sealing the three-layer resin film of the present invention to a metal plate to be described later, the polishing of the rubber of the laminating roll is performed. If the surface is too rough or relatively fine irregularities occur on the rubber surface, the surface roughness is transferred to the resin surface as it is, and the surface appearance of the resin-coated metal plate is easily damaged, resulting in a good surface. To obtain a stable appearance, it is necessary to pay close attention to the lamination roll surface management. When the intermediate layer and the lower two-layer resin film are laminated on a metal plate in advance and then the upper layer is laminated, assuming that the melting point of the intermediate layer is Tm2, Tm2 is (Tml + 3) Preferably, the melting point of the resin constituting the upper layer is (Tm2 + 3t :) or more. Examples of the three-layer resin film according to the present invention in which the resin constituting the upper layer has a melting point of at least (Tml + 3 ° C.) or more include the following 1), 2), and 3). .
[三層樹脂被フィルムの構成例]  [Configuration example of three-layer resin film]
1 ) 上層がポリエチレンテレフ夕レート樹脂、 中間層がポリエチレンテレフタレ —ト ·イソフタレート共重合樹脂 (重合時の酸成分を 1 0 0モルとした場合のィ ソフタル酸添加量- 6モル) とポリブチレンテレフ夕レート樹脂とビスフエノー ル Aポリカーボネート樹脂からなるブレンド樹脂、 下層が重合時の酸成分を 1 0 0モルとした場合のイソフタル酸添加量が 7モルのポリエチレンテレフ夕レート ·イソフタレー卜共重合樹脂からなる三層樹脂フィルム。  1) The upper layer is polyethylene terephthalate resin, the middle layer is polyethylene terephthalate / isophthalate copolymer resin (isophthalic acid added amount-6 mol when acid component at the time of polymerization is 100 mol-6 mol) and poly Blend resin consisting of butylene terephthalate resin and bisphenol A polycarbonate resin.Polyethylene terephthalate / isophthalate copolymer resin whose lower layer has 7 mol of isophthalic acid when the acid component during polymerization is 100 mol. A three-layer resin film.
2 ) 上層が重合時の酸成分を 1 0 0モルとした場合のイソフタル酸添加量が 5モ ルのポリエチレンテレフ夕レート ·イソフタレート共重合樹脂、 中間層が重合時 の酸成分を 1 0 0モルとした場合のイソフタル酸添加量が 9モルのポリエチレン テレフ夕レート ·イソフタレート共重合樹脂とポリブチレンテレフタレ一ト榭脂 とビスフエノール Aポリ力一ボネート樹脂からなるプレンド樹脂、 下層がビスフ エノ一ル Aポリカーボネート樹脂の配合比が大幅に少ないブレンド樹脂である他 は中間層と同一組成のブレンド樹脂からなる三層樹脂フィルム。 2) Polyethylene terephthalate / isophthalate copolymer resin with an isophthalic acid addition amount of 5 mol when the acid component at the time of polymerization is 100 mol for the upper layer, and the acid component at the time of polymerization for the intermediate layer is 100 mol. Polyethylene terephthalate / isophthalate copolymer resin and polybutylene terephthalate resin with 9 moles of isophthalic acid A three-layer resin film composed of a blend resin of the same composition as the intermediate layer except that the blend resin is a blend resin containing bisphenol A polycarbonate resin and a lower layer, and the lower layer is a blend resin containing bisphenol A polycarbonate resin in a significantly lower proportion. .
3 ) 中間層にポリブチレンテレフタレー卜樹脂がブレンドされていない他は前記 1 ) と同様の三層樹脂フィルム。 3) The same three-layer resin film as in 1) above, except that no polybutylene terephthalate resin is blended in the intermediate layer.
なお、 ここで言う融点とは、 示差走査熱量計 (S S 1 0、 セイコー電子工業 (株) 製) により、 1 0で/分で昇温した時の樹脂の融解に基づく吸熱ピークの 最大深さを示す温度をいう。 ブレンド樹脂のように吸熱ピークが二つ以上ある場  The melting point referred to here is the maximum depth of the endothermic peak based on the melting of the resin when the temperature is raised at 10 / min using a differential scanning calorimeter (SS10, manufactured by Seiko Instruments Inc.). Refers to the temperature at which When there are two or more endothermic peaks like a blended resin
2  Two
合、 基本的には吸熱ピークの最大深さを示す最も高い温度を融点とするが、 吸熱 ピークの最大深さを示す最も高い温度に起因する樹脂の配合量が少ない等の理由 により、 被覆安定性にあまり影響しない場合は、 必ずしも最も高い温度を融点と する必要はなく、 吸熱ピークの最大深さを示す最も高い温度よりも低い吸熱ピ一 クの最大深さを示す温度を融点として差し支えない。 但し、 前記したように、 三 層榭脂フィルムを安定して金属板に積層する観点から述べた好ましい条件の範囲 外の三層樹脂フィルムでも、 ラミネートロール表面の適切な管理や、 ラミネート ロール表面温度等の被覆条件を選択することにより良好な状態で金属板に積層す ることが可能となる。 従って前記被覆安定性の観点から述べた三層被覆の好まし い各々の融点条件は必須条件ではなく、 好ましい条件である。 In general, the melting point is the highest temperature that indicates the maximum depth of the endothermic peak, but the coating is stable due to the small amount of resin caused by the highest temperature that indicates the maximum depth of the endothermic peak. If the melting point does not significantly affect the melting point, it is not always necessary to use the highest temperature as the melting point, and the melting point may be the temperature indicating the maximum depth of the endothermic peak lower than the highest temperature indicating the maximum endothermic peak. . However, as described above, even if the three-layer resin film is out of the range of the preferable conditions described from the viewpoint of stably laminating the three-layer resin film on the metal plate, the appropriate management of the laminating roll surface and the laminating roll surface temperature By selecting the coating conditions such as these, it becomes possible to laminate the metal sheet in a good condition. Therefore, the preferred melting point conditions of the three-layer coating described from the viewpoint of the coating stability are not essential conditions but preferable conditions.
さらに、 前述したように缶胴部の厚さを 4 0 %以上薄肉化する成形加工は樹脂 フィルムにとって非常に厳しい加工であり、 本発明の三層樹脂フィルムを少なく とも缶内面被覆材として用いることより、 樹脂被覆金属板を缶体とした際に耐食 性等の特性が初めて実用レベル範囲内となるものである。 さらにより厳しい成形 加工が施される場合、 例えば 4 0 %以上缶胴部を薄肉化し、 さらに缶胴部の強度 を高めるためにビード加工等の缶胴強度強化加工を付加する場合、 本発明の三層 樹脂フィルムを内面被覆材として用いても、 充填される内容物の腐食性が高い場 合は実用特性を満足できない場合がある。 本発明においては、 この場合に対処す るために種々検討した結果、 両面に樹脂フィルムを被覆した金属板において、 内 外面に積層される樹脂層の融点を考慮すれば実用特性を満足することが可能であ ることも見出した。 具体的には、 内外面の樹脂フィルムを次の①〜③の条件を満たすようにするこ とにより、 缶体に成形加工した後の後加熱工程において、 外面樹脂フィルムが溶 融して加熱オーブンのメッシュに溶着したり、 缶体が互いに溶着し合うこと無く、 さらに、 内面被覆材である三層樹脂フィルムの中間層、 あるいは下層を、 缶強度 強化加工をする前の缶体、 あるいは缶強度加工した後の缶体の状態で加熱溶融さ せることにより、 成形加工による樹脂フィルムの歪み、 過度の結晶化上昇による 耐衝撃性の低下、 および被膜ダメージを減少させることが可能となり、 前記缶胴 強度強化加工を付加する場合でも要求性能を満たすことが可能となることを見出 したものである。 Further, as described above, the forming process for reducing the thickness of the can body by 40% or more is a very severe process for a resin film, and the three-layer resin film of the present invention must be used at least as a material for covering the inner surface of a can. Thus, when a resin-coated metal plate is used as a can, characteristics such as corrosion resistance are within the practical level for the first time. When more severe forming processing is performed, for example, when the can body is thinned by 40% or more, and when can body strength strengthening processing such as bead processing is added to increase the strength of the can body, the present invention is applied. Even if a three-layer resin film is used as the inner surface covering material, practical characteristics may not be satisfied if the content to be filled is highly corrosive. In the present invention, as a result of various studies to cope with this case, it has been found that practical characteristics can be satisfied by considering the melting point of the resin layer laminated on the inner and outer surfaces of a metal plate coated on both sides with a resin film. We also found that it is possible. Specifically, by making the resin film on the inner and outer surfaces satisfy the following conditions (1) to (3), in the post-heating step after forming into a can, the outer resin film is melted and heated. Of the three-layer resin film, which is the inner surface coating material, of the intermediate layer or the lower layer. By heating and melting in the state of the can body after processing, it becomes possible to reduce distortion of the resin film due to molding processing, decrease in impact resistance due to excessive increase in crystallization, and decrease in coating damage. It has been found that it is possible to meet the required performance even with the addition of strength strengthening processing.
上記の缶強度強化加工を付加する場合、 前記の不良特性を減少させる効果が高 いのは、 次に示す③あるいは②の条件である力 特に③の条件はあまりにも高い 温度、 および長時間で表層を溶融するとフレーバーに影響する分解物が生成する など、 特性低下をもたらす恐れがあるので、 缶体における加熱に際しては必要以 上の高い温度、 および長時間で行わないことが肝要である。  When the above-mentioned can strength strengthening processing is added, the effect of reducing the above-mentioned defective characteristics is high because the force, which is the condition of (3) or (4) shown below, especially the condition of (3) is excessively high temperature and long time Melting of the surface layer may result in degradation of properties, such as the formation of decomposition products that affect flavor. Therefore, it is important not to heat the can body at an unnecessarily high temperature and for a long time.
また、 ①の条件も成形加工により低下した密着性を回復させ、 密着性の回復に 伴う耐衝撃性の改善にも好影響をおよぼし有効である。 下記に示す①〜③のどの 条件を選択するかは要求特性などにより決定すべきであり、 ここでは特に限定し ない。  The condition (1) is also effective because it restores the reduced adhesion due to the molding process and has a positive effect on the improvement of the impact resistance accompanying the restoration of the adhesion. Which of the following conditions (1) to (3) should be selected should be determined according to the required characteristics, etc., and there is no particular limitation here.
<缶強度強化加工を付加する場合の好ましい内外面の樹脂フィルムの構成条件〉 ①金属板の片面に、 前述した内面被覆材である三層樹脂フィルムが積層されて なり、 他の面に、 前記三層樹脂フィルムの中間層、 または下層のいずれかの構成 樹脂の融点より 5で以上高い融点を示す樹脂を主成分とする樹脂層を少なくとも 最上層に有する樹脂フィルムを積層してなる両面樹脂被覆金属板。  <Recommended conditions for resin film on inner and outer surfaces when adding can strength strengthening process> (1) A three-layer resin film as the inner surface coating material described above is laminated on one surface of a metal plate, and on the other surface, Either the middle layer or the lower layer of a three-layer resin film Double-sided resin coating by laminating a resin film with a resin layer mainly composed of a resin whose melting point is at least 5 higher than the melting point of the resin on the uppermost layer Metal plate.
②金属板の片面に、 前述した内面被覆材である三層樹脂フィルムが積層されて なり、 他の面に、 前記三層樹脂フィルムの中間層および下層のいずれの構成樹脂 の融点より 5で以上高い融点を示す樹脂を主成分とする樹脂層を少なくとも最上 層に有する樹脂被膜を積層してなる両面樹脂被覆金属板。  (2) On one side of the metal plate, the above-mentioned three-layer resin film as the inner surface covering material is laminated, and on the other side, at least 5 points higher than the melting point of the constituent resin of the intermediate layer and the lower layer of the three-layer resin film. A double-sided resin-coated metal plate formed by laminating a resin coating having at least an uppermost layer of a resin layer mainly composed of a resin having a high melting point.
③金属板の片面に、 前述した内面被覆材である三層樹脂フィルムが積層されて なり、 他の面に、 前記三層樹脂被膜の上層、 中間層、 および下層のいずれの構成 樹脂の融点より 5 :高い融点を示す樹脂を主成分とする樹脂層を少なくとも最上 層に有する樹脂被膜を積層してなる両面樹脂被覆金属板。 (3) A three-layer resin film, which is the above-mentioned inner coating material, is laminated on one side of a metal plate, and the other surface has any of the upper, middle, and lower layers of the three-layer resin coating. 5 than the melting point of the resin: A double-sided resin-coated metal plate formed by laminating a resin coating having at least the uppermost layer of a resin layer mainly composed of a resin having a higher melting point.
なお、 缶内面となる面にのみ樹脂フィルムが被覆されている場合は、 外面は一 般的には金属表面にめっきが施されていてもめっき層は薄く、 その融点も高く、 また他の金属と容易には結合しないため、 あまり前記①〜③に示したように、 外 面のめっき金属の融点に考慮を払う必要はないが、 外面が低融点の錫で比較的多 量にめっきされている場合は、 例え外面が樹脂フィルムではない金属めつき層で あっても、 前記①〜③に示した場合と同様に、 内面被覆材である三層樹脂フィル ムの構成樹脂の融点と、 外面めつき層の融点を考慮しなければならない場合があ り、 注意が必要である。  In addition, when the resin film is coated only on the inner surface of the can, the outer surface is generally thin even if the metal surface is plated, has a high melting point, and has a high melting point. It is not necessary to pay much attention to the melting point of the plating metal on the outer surface, as shown in (1) to (3) above, since the outer surface is plated with a relatively large amount of tin with a low melting point. Even if the outer surface is a metal-coated layer that is not a resin film, the melting point of the constituent resin of the three-layer resin film, which is the inner surface coating material, and the outer surface Attention should be paid to the melting point of the plating layer in some cases.
なお、 ここで言う融点とは、 前記と同様にして測定した値である。 また、 前記 ①〜③の条件は、 缶強度強化加工を付加しない場合においても、 例えば非常に薄 肉化率の高い缶体の成形加工などにおいても有効であり、 前記①〜③の条件を適 用するか否かは要求性能に応じて決定すべきである。  Here, the melting point is a value measured in the same manner as described above. In addition, the conditions 1) to 3) above are effective even when the can strength strengthening process is not added, for example, when forming a can body with a very thinner thickness. Whether to use it should be determined according to the required performance.
なお、 それぞれの樹脂層に用いられる樹脂には、 必要に応じ適量の安定剤、 酸 化防止剤、 帯電防止剤、 顔料、 滑剤、 腐食防止剤などを添加してもよいが、 前記 したように、 フレーバー性などの特性に悪影響を及ぼさない範囲で実施すべきで ある。 また、 積層前の複合フィルムは未延伸、 一軸延伸、 あるいは二軸延伸され たものでも差し支えないが、 積層後のフィルムに過度の配向が残存していると成 形性や密着性に悪影響をおよぼすので好ましくない。 積層後のフィルムに適度の 配向が残存している場合は、 積層されたフィルムの耐衝撃性などの缶用素材とし ての特性向上が、 無配向状態の場合よりもむしろ期待できるが、 未延伸フィルム は安価な設備で製膜可能であること、 本発明の樹脂組成、 および構成にすること により無配向状態でも特殊な場合 (例えば、 板厚が 0. 1 mm以下の低硬度の柔 らかい鋼板に樹脂フィルムを積層した樹脂被覆金属板を成形加工し缶体とした際 に、 缶底部は軽度の衝擊を受けても大きな凹みを生じ樹脂フィルムにかなりの被 膜ダメージを受けるため、 このような缶に強腐食性の内容物を充填することは耐 食性の観点から不可能である) などを除き、 殆どの場合にフィルムが無配向状態 でも充分に要求性能が果たせるだけでなく、 配向度の調整が必要でないために樹 脂フィルムの積層温度範囲が広くなり製造しやすくなる長所を有している。 しか し、 一軸延伸フィルム、 および二軸延伸フィルムの積層に関しても、 狭い積層温 度条件範囲でコントロールして適正な配向度範囲内になるように調整するより、 一軸延伸フィルム、 または二軸延伸フィルムを被覆後に一定配向度以下 (無配向 も含む) のフィルムとする方が製造面では容易であり、 被覆後の被膜を適正な配 向度範囲内の樹脂層とするか、 一定配向度以下 (無配向も含む) の樹脂層とする かは一長一短があり、 ここでは要求特性に応じて選択するものとする。 In addition, an appropriate amount of a stabilizer, an antioxidant, an antistatic agent, a pigment, a lubricant, a corrosion inhibitor, or the like may be added to the resin used for each resin layer, if necessary, as described above. It should be implemented within the range that does not adversely affect the characteristics such as flavor. Also, the composite film before lamination may be unstretched, uniaxially stretched or biaxially stretched, but if the film after lamination has excessive orientation, it may adversely affect the formability and adhesion. It is not preferable. When a proper orientation remains in the film after lamination, the improvement of the properties as a material for cans such as impact resistance of the laminated film can be expected rather than the case of non-oriented state, but unstretched The film can be formed with inexpensive equipment, and the resin composition and composition of the present invention can be used in special cases even in a non-oriented state (for example, a low-hardness soft plate having a thickness of 0.1 mm or less). When a resin-coated metal plate obtained by laminating a resin film on a steel plate is formed into a can body by molding, the can bottom has a large dent even under a slight impact, and the resin film suffers considerable film damage. In most cases, it is not possible to fill the required performance even when the film is in a non-oriented state. Must be adjusted Trees in order not There is an advantage that the lamination temperature range of the fat film is widened and the production is easy. However, regarding the lamination of the uniaxially stretched film and the biaxially stretched film, the uniaxially stretched film or the biaxially stretched film is more controlled than in a narrow laminating temperature condition range so as to be in an appropriate orientation degree range. It is easier in terms of manufacturing to form a film with a certain degree of orientation or less (including non-oriented) after coating, and the coated film should be a resin layer within the proper orientation range or a certain degree of orientation or less ( There are advantages and disadvantages as to whether or not to use a non-oriented resin layer. Here, the resin layer is selected according to required characteristics.
つぎに、 本発明の複合樹脂被覆金属板に用いられる金属板としては、 シート状 または帯状の鋼板、 またはアルミニウム板 (アルミニウム合金板を含む、 以下同 じ) であり、 これらの表面にクロム水和酸化物皮膜を有するものが好ましい。 特 に下層が金厲クロム、 上層がクロム水和酸化物の二層構造の皮膜を有した鋼板、 いわゆる T F Sが好ましく、 さらに鋼板表面に錫、 ニッケル、 亜鉛などの 1種、 または 2種以上の複層めっき、 合金めつきを施し、 その上層に前記の二層構造の T F S皮膜、 あるいはクロム水和酸化物皮膜を形成させたもの、 あるいはアルミ ニゥム板に表面清浄化処理をした後、 リン酸クロメート処理を施したものや、 表 面にクロム水和酸化物皮膜を形成させたものなどが本発明の金属板として用いら れる。 また、 表面にクロム水和酸化物を形成したものは、 鋼板またはアルミニゥ ム板にかかわらず複合樹脂層との加工密着性に対する効果は大きいが、 適性な付 着量であることが好ましく、 クロム水和酸化物量はクロムとして 3〜 3 0 mg/m2 であることが好ましい。 クロム水和酸化物量がクロムとして 3 mg/m2未満、 また は 3 0 mg/Di2を超えると加工密着性の向上の効果があまり認められなくなる。 本発明に用いる三層構造の複合樹脂被膜は、 金属板と熱融着により強固に密着 していなければならないのはもちろんのことである。 熱融着は、 例えば樹脂層を 加熱された金属板にラミネートロールを用いて圧着し、 少なくとも金属板近傍部 分の樹脂を溶融させ、 冷却固化させることにより達成できる。 Next, the metal plate used for the composite resin-coated metal plate of the present invention is a sheet-shaped or band-shaped steel plate or an aluminum plate (including an aluminum alloy plate, the same applies hereinafter). Those having an oxide film are preferred. In particular, a steel sheet having a double-layered film of gold-chromium in the lower layer and hydrated chromium oxide in the upper layer, so-called TFS, is preferable, and one or more of tin, nickel, zinc, etc. Multi-layer plating, alloy plating, TFS film of the above-mentioned two-layer structure or chromium hydrate oxide film formed on the upper layer, or aluminum plate with surface cleaning treatment, phosphoric acid A metal plate subjected to chromate treatment or a chromium hydrated oxide film formed on the surface is used as the metal plate of the present invention. In addition, the chromium hydrated oxide formed on the surface has a large effect on the processing adhesion to the composite resin layer regardless of the steel plate or the aluminum plate, but it is preferable that the chromium water content is appropriate. The amount of the oxidized oxide is preferably 3 to 30 mg / m 2 as chromium. When the amount of hydrated chromium oxide is less than 3 mg / m 2 or more than 30 mg / Di 2 as chromium, the effect of improving the processing adhesion is not so recognized. Needless to say, the three-layer composite resin film used in the present invention must be firmly adhered to the metal plate by heat fusion. The heat fusion can be achieved, for example, by pressing a resin layer to a heated metal plate using a laminating roll, melting at least the resin in the vicinity of the metal plate, and cooling and solidifying the resin.
つぎに、 本発明の複合樹脂被覆金属板の製造法の例について説明する。 本発明 の複合樹脂被覆金属板の製造法は下記に示す方法などが考えられる。  Next, an example of a method for producing the composite resin-coated metal sheet of the present invention will be described. As a method for producing the composite resin-coated metal sheet of the present invention, the following methods can be considered.
(1 ) 樹脂被膜を加熱された金属板にフィルムの形態で積層する、 または溶融した 樹脂を直接金属板上に押し出して積層する。 (2) 上層、 中間層、 および下層を構成する樹脂被膜を、 加熱された金属板にすべ て別々に積層する、 あるいは各々の樹脂被膜を加熱された金属板に同時に積層す る。 (1) Laminate the resin film on the heated metal plate in the form of a film, or extrude the molten resin directly onto the metal plate and laminate. (2) Laminate the resin films constituting the upper layer, the intermediate layer, and the lower layer separately on the heated metal plate, or simultaneously laminate each resin film on the heated metal plate.
(3) 予め上層、 中間層、 および下層からなる三層樹脂フィルム、 あるいは共押し 出しにより三層とした溶融状態の複合樹脂被膜を加熱された金属板に積層する。 下記にその一例を示す。  (3) A three-layer resin film composed of an upper layer, an intermediate layer, and a lower layer, or a composite resin film in a molten state formed into three layers by co-extrusion is laminated on a heated metal plate in advance. An example is shown below.
1 ) 下層となる樹脂の融点 (Tml) 〜Tml + l 5 0でに加熱された金属板の片 面あるいは両面に、 上層が前記ポリエステル樹脂を主成分とした樹脂、 中間層が 前記ポリカーボネー卜樹脂とポリエステル樹脂のブレンド榭脂、 下層が前記ポリ エステル樹脂を主成分とした樹脂の三層の複合樹脂フィルムを一対の表面温度が 調整されたラミネートロールにより積層し、 徐冷あるいは急冷する。  1) On one or both sides of a metal plate heated to the melting point (Tml) to Tml + l50 of the resin to be the lower layer, the upper layer is a resin mainly composed of the polyester resin, and the intermediate layer is the polycarbonate. A three-layer composite resin film of a resin blended with a resin and a polyester resin, the lower layer of which is a resin containing the above-mentioned polyester resin as a main component, is laminated by a pair of laminating rolls whose surface temperature is adjusted, and then gradually cooled or quenched.
2 ) 下層となる樹脂のガラス転移温度 (T g ) + 3 0 T:〜融点 (T ml) + 1 5 ο τ:に加熱された金属板の片面あるいは両面に、 上層が前記ポリエステル樹脂を 主成分とした樹脂、 中間層が前記ポリカーボネート樹脂とポリエステル樹脂のブ レンド榭脂、 下層がポリエステル樹脂を主成分とした樹脂層の三層の溶融した複 合樹脂層を溶融状態で直接押し出し積層し、 徐冷あるいは急冷する。  2) The glass transition temperature (T g) of the lower layer resin (T g) +30 T: to the melting point (T ml) +15 ο τ: One or both sides of the metal plate heated to the upper layer, and the upper layer mainly contains the polyester resin. A resin as an ingredient, an intermediate layer, a blended resin of the polycarbonate resin and the polyester resin, and a lower layer, which is a resin layer containing a polyester resin as a main component, and three molten composite resin layers are directly extruded and laminated in a molten state. Cool slowly or rapidly.
なお、 ここでいうガラス転移温度 (T g ) とは樹脂の状態がガラス状あるいは ゴム状になる境界の温度であり、 各温度における比容積を測定し、 該比容積一温 度曲線が折れ曲がりを開始する温度で示される。 折れ曲がりを開始する温度が二 つ以上ある場合、 基本的には折れ曲がりを開始する温度が高い温度を T gとして 用いるが、 特性が満足できるならば、 低い温度を T gとして用いてもよい。  Here, the glass transition temperature (T g) is the temperature at the boundary where the state of the resin becomes glassy or rubbery. The specific volume at each temperature is measured, and the specific volume-temperature curve is bent. Indicated at the starting temperature. When there are two or more temperatures at which bending starts, basically the temperature at which bending starts is high is used as T g, but if characteristics are satisfactory, a low temperature may be used as T g.
3 ) 下層となる樹脂の融点 (Tml) 〜Tml + 1 5 O tに加熱された金属板の片 面あるいは両面に、 下層となるポリエステル樹脂を主成分とした樹脂層と中間層 となるポリカーボネート樹脂とポリエステル樹脂のブレンド樹脂層の 2層からな る複層樹脂フィルムを、 該下層となるポリエステル樹脂を主成分とした樹脂層を 金属板と接するように積層し、 さらにその上に上層となるポリエステル樹脂を主 成分としたフィルムを、 該上層となる樹脂の融点 (Tm2) 〜Tm2 + 1 5 0 t:に 加熱された複層樹脂フィルムを積層した金属板に積層し、 徐冷あるいは急冷する。 なお、 金属板を加熱する方法には、 公知の熱風加熱方式、 誘導加熱方式、 ヒー トロール方式などがあるが、 これらの方式を単独で用いてもあるいは併用しても 差し支えない。 また、 金属板の加熱温度、 ラミネートロール温度、 およびラミネ 一トロールの加圧力などの積層条件や複合フィルムを積層した後の冷却条件は、 本発明に用いる複合フィルムの特長が発揮され、 要求特性を満足できるように慎 重に選ばれなければならないことはもちろんのことである。 3) Melting point of lower layer resin (Tml) T Tml + 15 Ot On one or both sides of a metal plate heated to lower layer, resin layer mainly composed of polyester resin as lower layer and polycarbonate resin as intermediate layer A multilayer resin film composed of two layers, a polyester resin blend layer and a polyester resin layer, is laminated such that a resin layer mainly composed of a polyester resin serving as the lower layer is in contact with a metal plate, and a polyester layer serving as an upper layer is further formed thereon. A film containing a resin as a main component is laminated on a metal plate on which a multilayer resin film heated to a melting point (Tm2) to Tm2 + 1500 t: of the resin to be the upper layer is laminated, and gradually cooled or quenched. The method of heating the metal plate includes a known hot air heating method, an induction heating method, and a heating method. There are troll systems and the like, but these systems may be used alone or in combination. In addition, the laminating conditions such as the heating temperature of the metal plate, the laminating roll temperature, and the pressing force of the laminator roll, and the cooling conditions after laminating the composite film, exhibit the characteristics of the composite film used in the present invention, and the required characteristics Of course, you must be carefully selected to be satisfied.
以下に、 本発明の実施例および比較例について具体的に説明する。  Hereinafter, Examples and Comparative Examples of the present invention will be specifically described.
実施例 1 Example 1
上層が固相重合のポリエチレンテレフ夕レート樹脂 (ュニチカ(株)製、 商品名 : NEH- 2060、 融点: 256 ) 、 中間層がテレフタル酸 90モル%、 ィ ソフタル酸 10モル%を酸成分としたポリエチレンテレフタレ—卜 'イソフ夕レ —ト共重合ポリエステル樹脂 (クラレ (株)製、 商品名: KS 760 K) に対して ビスフエノール Aポリ力一ポネート榭脂 (日本ジ一ィ一プラスチック(株)製、 レ キサン 1 54) を重量比で 1. 5の割合でブレンドした樹脂 (融点: 2230 、 下層がポリエチレンテレフ夕レート樹脂 (ュニチカ(株)製、 商品名: NEH— 2 060) に対してポリブチレンテレフ夕レート樹脂 (ポリプラスチック(株)製、 700 FP) を重量比で 0. 67の割合でブレンドした樹脂 (融点: 25 It:) とした三層からなる未延伸の複合樹脂フィルム (上層、 中間層、 下層の樹脂厚み は各々 5 m、 1 7 , 3 πι) を、 誘導加熱ロールで 270 " に加熱した帯 状の TFS (金属クロム量: 1 05 mg/m2, クロム水和酸化物量:クロムとして 1 7mg/m2、 板厚: 0. 2 lmm, 板幅 2 50醒、 テンパー度: T一 5) の片面に、 ポリエチレンテレフ夕レート樹脂 (ュニチカ (株) 製、 商品名: NEH— 206 0) に対してポリブチレンテレフタレ一ト榭脂 (ポリプラスチック(株)製、 70 0FP) を重量比で 0. 67の割合でブレンドした樹脂 (融点: 25 1で) から なる単層の未延伸の複合樹脂フィルム (樹脂厚み: 1 3 / m) を前記 TFSの他 の面に、 表面温度 90での一対の積層ロールを用いて 8 OmZ分の速度で同時に 積層し、 直ちに水中に浸漬冷却し、 両面樹脂被覆金属板を得た。 The upper layer is a solid phase polymerized polyethylene terephthalate resin (manufactured by Unitika Ltd., trade name: NEH-2060, melting point: 256), and the middle layer is an acid component containing terephthalic acid 90 mol% and isophthalic acid 10 mol%. Polyethylene terephthalate 'isophthalate copolymerized polyester resin (manufactured by Kuraray Co., Ltd., trade name: KS 760 K) was used in combination with bisphenol A poly-carbonate resin (Nippon Di Plastic Co., Ltd.) ), A resin blended with Lexan 154) at a weight ratio of 1.5 (melting point: 2230, lower layer: polyethylene terephthalate resin (manufactured by Unitika Ltd., trade name: NEH-2060)) Unstretched composite resin film composed of a resin (melting point: 25 It :) blended with polybutylene terephthalate resin (700 FP, manufactured by Polyplastics Co., Ltd.) at a weight ratio of 0.67. (Upper layer, middle layer Lower resin thickness each 5 m, a 1 7, 3 πι), strip-like TFS (metallic chromium amount which has been heated to 270 "in an induction heating roll: 1 05 mg / m 2, hydrated chromium oxide content: as chromium 17 mg / m 2 , board thickness: 0.2 lmm, board width 2 50, temper degree: T-1 5) Polyethylene terephthalate resin (manufactured by Unitika Ltd.), trade name: NEH—206 0 Unstretched single layer of resin (melting point: 251) blended with 0.67 by weight of polybutylene terephthalate resin (700 FP, manufactured by Polyplastics Co., Ltd.) A composite resin film (resin thickness: 13 / m) was simultaneously laminated on the other surface of the TFS using a pair of laminating rolls at a surface temperature of 90 at a speed of 8 OmZ, immediately immersed in water and cooled. Thus, a double-sided resin-coated metal plate was obtained.
実施例 2 Example 2
中間層がテレフタル酸 90モル%、 イソフ夕ル酸 10モル%を酸成分としたポ リエチレンテレフタレ—ト ·イソフタレート共重合ポリエステル樹脂 (クラレ (株)製、 商品名: KS 7 6 O K) とポリブチレンテレフ夕レート樹脂 (ポリブラ スチック(株)製, 7 0 0 F P) を重量比で等量配合したポリエステルのブレンド 樹脂の総量に対して、 さらにビスフエノール Aポリカーボネート樹脂 (日本ジ一 ィ一プラスチック(株)製、 レキサン 1 54) を重量比で 1. 5の割合でブレンド した樹脂 (融点: 2 2 10 、 下層がテレフタル酸 9 0モル%、 イソフ夕ル酸 1 0モル%を酸成分としたポリエチレンテレフ夕レート ·イソフタレー卜共重合ポ リエステル樹脂 (クラレ(株)製、 商品名: KS 7 6 0 K) に対してポリプチレン テレフ夕レート樹脂 (ポリプラスチック(株)製、 7 0 0 F P) を重量比で 1 /3 の割合で配合したポリエステルのプレンド樹脂の総量に対して、 さらにビスフエ ノール Aポリ力一ポネート樹脂 (日本ジ T—プラスチック(株)製、 レキサン 1 54) を重量比で 0. 2 5の割合でブレンドした樹脂 (融点: 22 It:) である 他は実施例 1と同様の三層からなる未延伸の複合樹脂フィルム (上層、 中間層、 下層の樹脂厚みは各々 5 , 1 7 tim. 3 nm) を用いる以外は、 実施例 1と 同様の金属板を用い、 実施例 1と同様の積層条件及び冷却条件にて両面樹脂被覆 金属板を得た。 Polyester terephthalate / isophthalate copolymerized polyester resin (Kuraray) whose middle layer is composed of 90 mol% of terephthalic acid and 10 mol% of isophthalic acid Co., Ltd., product name: KS76 OK) and polybutylene terephthalate resin (Polyplastics Co., Ltd., 700 FP) in equal proportions by weight based on the total amount of polyester blend resin And a resin in which bisphenol A polycarbonate resin (Nippon Digital Plastics Co., Ltd., Lexan 154) is blended at a weight ratio of 1.5 (melting point: 220, lower layer: 90 moles terephthalic acid) %, Isophthalic acid 10 mol% as an acid component, polyethylene terephthalate / isophthalate copolymerized polyester resin (Kuraray Co., Ltd., product name: KS760K) and polybutylene terephthalate Resin (Polyplastics Co., Ltd., 700 FP) was blended at a weight ratio of 1/3 to the total amount of the blended polyester resin, and the amount of bisphenol A polycarbonate resin (Nihon Di T Unstretched composite resin consisting of three layers as in Example 1 except that Lexan 154) manufactured by Plastics Co., Ltd. is blended at a weight ratio of 0.25 (melting point: 22 It :) The same metal plate as in Example 1 was used, except that the film (resin thickness of the upper layer, intermediate layer, and lower layer was 5, 17 tim. 3 nm each), and the same laminating conditions and cooling conditions as in Example 1 were used. Thus, a double-sided resin-coated metal plate was obtained.
実施例 3 Example 3
上層がテレフタル酸 90モル%、 イソフタル酸 1 0モル%を酸成分としたポリ エチレンテレフ夕レート ·イソフタレ一卜共重合ポリエステル樹脂 (クラレ(株) 製、 商品名: KS 7 6 0 K、 融点: 2 2 5で) である他は実施例 2と同様の三層 からなる未延伸の複合樹脂フィルム (上層、 中間層、 下層の樹脂厚みは各々 5 m、 1 7 m、 3 urn) を用いる以外は、 実施例 2と同様の金属板を用い、 実施 例 2と同様の積層条件及び冷却条件にて両面樹脂被覆金属板を得た。  Polyethylene terephthalate / isophthalate copolymerized polyester resin containing 90 mol% of terephthalic acid and 10 mol% of isophthalic acid as an acid component (Kuraray Co., Ltd., trade name: KS760K, melting point: Except for using an unstretched composite resin film consisting of three layers (upper layer, intermediate layer, and lower layer have a resin thickness of 5 m, 17 m, and 3 urn, respectively), except that they are 2 in 25) Using the same metal plate as in Example 2, a double-sided resin-coated metal plate was obtained under the same laminating conditions and cooling conditions as in Example 2.
実施例 4 Example 4
上層が固相重合法を用いて重合して得られたポリエチレンテレフ夕レート樹脂 (ュニチカ(株)製、 商品名: NEH— 2060、 融点: 2 5 61:) に対してビス フエノール Aポリカーボネート樹脂 (日本ジ一ィ一プラスチック(株)製、 レキサ ン 1 54) を重量比で 0. 2 5の割合でブレンドした樹脂層 (融点: 24 5T:) である他は実施例 1と同様の三層からなる未延伸の複合樹脂フィルム (上層、 中 間層、 下層の樹脂厚みは各々 5 wm、 1 7 m, 3 urn) を用いる以外は、 実施 例 1と同様の金属板を用い、 実施例 1と同様の積層条件及び冷却条件にて両面樹 脂被覆金属板を得た。 A polyethylene terephthalate resin (manufactured by Unitika Ltd., trade name: NEH-2060, melting point: 2561 :) obtained by polymerizing the upper layer using a solid phase polymerization method, and bisphenol A polycarbonate resin ( Three layers similar to Example 1 except that a resin layer (melting point: 245T :) blended with Lexan 154) manufactured by Nippon Digital Plastics Co., Ltd. at a weight ratio of 0.25 Except for using unstretched composite resin film consisting of (upper layer, middle layer, lower layer resin thickness of 5 wm, 17 m, 3 urn, respectively) Using the same metal plate as in Example 1, a double-sided resin-coated metal plate was obtained under the same lamination conditions and cooling conditions as in Example 1.
実施例 5 Example 5
縦、 横各々 1 1 0°Cの温度で 3倍に二軸延伸し、 21 O の温度で 30秒間熱 固定させた二軸配向フィルム (製膜速度 = 1 0 OmZ分) とした以外は実施例 3 と同様の樹脂組成の三層からなる複合樹脂フィルム (上層、 中間層、 下層の樹脂 厚みは各々 1 / m、 23. 5 m, 0. 5 ^m) を用い、 誘導加熱ロールで 280 °Cに加熱した帯状の TF S (金属クロム量: 105 mg/m\ クロム水和酸化物量 : クロムとして 1 7mg/m2、 板厚: 0. 2 1顏、 板幅 250誦、 テンパー度: T— 5) の片面に積層し、 上記の複合樹脂フィルムのすべての層を無配向化 (一般的 に実施されている X線回折法による測定において、 回折角度を変化させて測定し ても明確な樹脂の結晶面に基づくピークが認められない状態) した以外は、 実施 例 3と同様の積層条件及び冷却条件にて両面樹脂被覆金属板を得た。 Performed except that the film was biaxially stretched three times at 110 ° C in both the vertical and horizontal directions and heat-fixed at a temperature of 21 O for 30 seconds (film formation speed = 10 OmZ minutes). Using a composite resin film consisting of three layers with the same resin composition as in Example 3 (resin thicknesses of the upper, middle and lower layers are 1 / m, 23.5 m and 0.5 ^ m, respectively), TF S in the form of a strip heated to ° C (metal chromium content: 105 mg / m \ chromium hydrated oxide content: 17 mg / m 2 as chromium, plate thickness: 0.2 1 face, plate width 250 recitation, temper degree: Laminated on one side of T-5) and make all layers of the above composite resin film non-oriented. (In general measurement by X-ray diffraction method, it is clear even if the diffraction angle is changed and measured. A state in which no peak based on the crystal plane of the resin was observed) was repeated under the same laminating and cooling conditions as in Example 3 except that It was.
実施例 6 Example 6
金属板が電解クロム酸処理を施したしたアルミニウム合金板 (金属クロム量: 65mg/m\ クロム水和酸化物量: クロムとして 8 mg/n^ 板厚: 0. 2 1mm、 板 幅 250mm) である他は実施例 3と同様の樹脂フィルムを用い、 実施例 3と同様 の積層条件及び冷却条件にて両面樹脂被覆金属板を得た。  The metal plate is an aluminum alloy plate with electrolytic chromic acid treatment (metal chromium content: 65 mg / m \ chromium hydrated oxide content: 8 mg / n ^ as chromium plate thickness: 0.21 mm, plate width 250 mm) Otherwise, the same resin film as in Example 3 was used, and a double-sided resin-coated metal plate was obtained under the same laminating conditions and cooling conditions as in Example 3.
実施例 7 Example 7
中間層がテレフタル酸 90モル%、 イソフタル酸 10モル%を酸成分としたポ リエチレンテレフ夕レート 'イソフタレー卜共重合ポリエステル樹脂 (クラレ (株)製、 商品名: KS 760 K) とポリブチレンテレフ夕レート樹脂 (ポリブラ スチック(株)製、 700 FP) を重量比で等量配合したポリエステルのブレンド 樹脂の総量に対して、 さらにビスフエノール Aポリカーボネート樹脂 (日本ジー ィープラスチック(株)製、 レキサン 154) を重量比で 0. 7 5の割合でプレン ドした樹脂層 (融点: 223X:) である他は実施例 2と同様の三層からなる未延 伸の複合樹脂フィルム (上層、 中間層、 下層の樹脂厚みは各々 5 m> 1 7 rn, 3 m) を用いる以外は、 実施例 2と同様の金属板を用い、 実施例 2と同様の積 層条件及び冷却条件にて両面樹脂被覆金属板を得た。 実施例 8 Polyethylene terephthalate 'isophthalate copolymerized polyester resin (manufactured by Kuraray Co., Ltd., trade name: KS 760 K) containing 90 mol% of terephthalic acid and 10 mol% of isophthalic acid as an acid component and polybutylene terephthalate Rate resin (manufactured by Polyplastics Co., Ltd., 700 FP) in a weight ratio of polyester blend resin to bisphenol A polycarbonate resin (Nippon G Plastics Co., Ltd., Lexan 154 ) Is a resin layer (melting point: 223X :) blended at a weight ratio of 0.75, except that the unstretched composite resin film (upper layer, intermediate layer, The same metal plate as in Example 2 was used except that the resin thickness of the lower layer was 5 m> 17 rn, 3 m, respectively, and the double-sided resin-coated metal was used under the same laminating and cooling conditions as in Example 2. I got a board. Example 8
中間層がテレフタル酸 90モル%、 イソフタル酸 1 0モル%を酸成分としたポ リエチレンテレフタレート ·イソフタレート共重合ポリエステル樹脂 (クラレ (株)製、 商品名: KS 7 6 0 K) とポリブチレンテレフ夕レート樹脂 (ポリブラ スチック(株)製、 7 0 0 F P) を重量比で等量配合したポリエステルのブレンド 樹脂の総量に対して、 さらにビスフエノール Aポリカーボネート樹脂 (日本ジー ィープラスチック(株)製、 レキサン 1 54) を重量比で 9. 0の割合でブレンド した樹脂層 (融点: 2 20で) である他は実施例 2と同様の三層からなる未延伸 の複合樹脂フィルム (上層、 中間層、 下層の樹脂厚みは各々 5 m、 1 7 πι, 3 um) を用いる以外は、 実施例 2と同様の金属板を用い、 実施例 2と同様の積 層条件及び冷却条件にて両面樹脂被覆金属板を得た。  Polyester terephthalate / isophthalate copolymer polyester resin (manufactured by Kuraray Co., Ltd., trade name: KS760K) containing 90 mol% of terephthalic acid and 10 mol% of isophthalic acid as the acid component and polybutyleneteref Based on the total amount of the polyester blend resin blended with equal rate resin (Polyplastics Co., Ltd., 700 FP) in a weight ratio, the amount of bisphenol A polycarbonate resin (Nippon Gee Plastic Co., Ltd.) And lexane 154) in a weight ratio of 9.0 blended resin layer (melting point: 220) except that it is a three-layer unstretched composite resin film (upper layer, middle layer) The same metal plate as in Example 2 was used except that the resin thicknesses of the layer and the lower layer were 5 m, 17 πι, and 3 μm, respectively, and the double-sided resin was used under the same laminating and cooling conditions as in Example 2. Coated metal plate I got
実施例 9 Example 9
下層がテレフタル酸 90モル%、 イソフタル酸 1 0モル%を酸成分としたポリ エチレンテレフ夕レート ·イソフタレート共重合ポリエステル樹脂 (クラレ(株) 製、 商品名: KS 7 6 0 K) に対してビスフエノール Aポリカーボネート樹脂 (日本ジ一ィ一プラスチック(株)製、 レキサン 1 54) を重量比で 0. 54の割 合でブレンドした樹脂層 (融点: 2 2 2 ) である他は実施例 2と同様の三層か らなる未延伸の複合樹脂フィルム (上層,中間層、下層の榭脂厚みは各々 5 m、 1 7 zm、 3 μ.τη) を用いる以外は、 実施例 2と同様の金属板を用い、 実施例 2 と同様の積層条件及び冷却条件にて両面樹脂被覆金属板を得た。  The lower layer is made of poly (ethylene terephthalate) / isophthalate copolymerized polyester resin (product name: KS760K) with 90 mol% of terephthalic acid and 10 mol% of isophthalic acid as acid components. Example 2 except that a resin layer (melting point: 222) was prepared by blending bisphenol A polycarbonate resin (Nippon Digital Plastic Co., Ltd., Lexan 154) at a weight ratio of 0.54. Example 3 The same as Example 2 except that an unstretched composite resin film consisting of the same three layers (resin thickness of the upper, middle and lower layers was 5 m, 17 zm and 3 μ.τη respectively) was used. Using a metal plate, a double-sided resin-coated metal plate was obtained under the same laminating conditions and cooling conditions as in Example 2.
実施例 1 0 Example 10
上層が固相重合のポリエチレンテレフタレート榭脂 (ュニチカ(株)製、 商品名 : ΝΕΗ- 20 6 0, 融点: 2 560 に対してビスフエノール Aポリカーボネ —卜樹脂 (日本ジ一ィ一プラスチック(株)製,レキサン 1 54) を重量比で 0. 3 5の割合でブレンドした樹脂層 (融点: 247で) である他は実施例 4と同様の 三層からなる未延伸の複合樹脂フィルム (上層、 中間層、 下層の樹脂厚みは各々 5 /zm, 1 7 u , 3 m) を用いる以外は、 実施例 4と同様の金属板を用い、 実施例 4と同様の積層条件及び冷却条件にて両面樹脂被覆金属板を得た。  Polyethylene terephthalate resin whose upper layer is solid-phase polymerized (manufactured by Unitika Ltd., trade name: 20-20600, melting point: 2560, and bisphenol A polycarbonate resin (Nippon Digital Plastics Co., Ltd.) Unexposed composite resin film consisting of three layers (upper layer, same as in Example 4) except that it is a resin layer (melting point: 247) blended with Lexan 154) at a ratio of 0.35 by weight. The same metal plate as in Example 4 was used, except that the resin thickness of the intermediate layer and the lower layer was 5 / zm, 17 u, and 3 m, respectively, and both surfaces were laminated and cooled in the same manner as in Example 4. A resin-coated metal plate was obtained.
実施例 1 1 上層、 中間層、 および下層の樹脂組成が実施例 2と同じであるが、 膜厚比が各 々 5 /m、 1 0 τη, 1 0 /zmである他は実施例 2と同様の三層からなる未延伸 の複合樹脂フィルムを用いた以外は、 実施例 2と同様の金属板を用い、 実施例 2 と同様の積層条件及び冷却条件にて両面樹脂被覆金属板を得た。 Example 1 1 The resin composition of the upper layer, the intermediate layer, and the lower layer is the same as in Example 2, except that the thickness ratio is 5 / m, 10 τη, and 10 / zm, respectively. The same metal plate as in Example 2 was used except that an unstretched composite resin film consisting of was used, and a double-sided resin-coated metal plate was obtained under the same laminating conditions and cooling conditions as in Example 2.
比較例 1 Comparative Example 1
実施例 2の複合樹脂フィルムの上層の固相重合によるポリエチレンテレフタレ 一卜樹脂を省略し、 実施例 2の中間層と同一樹脂組成の樹脂 (膜厚: 1 5 / m) を上層に、 実施例 2の下層と同一樹脂組成の樹脂 (膜厚: 1 0 / m) を下層に有 した二層からなる未延伸の複合樹脂 2フィルムを用いた他は実施例 2と同様にして 両面樹脂被覆金属板を得た。  The polyethylene terephthalate resin obtained by solid-state polymerization of the upper layer of the composite resin film of Example 2 was omitted, and a resin (film thickness: 15 / m) having the same resin composition as the intermediate layer of Example 2 was used as the upper layer. Example 2 Double-sided resin coating in the same manner as in Example 2 except that a two-layer unstretched composite resin having a resin (thickness: 10 / m) having the same resin composition as the lower layer as the lower layer was used. A metal plate was obtained.
比較例 2 Comparative Example 2
実施例 2の複合樹脂フィルムの代わりに、 中間層がすべてビスフエノール Aポ リカーポネート樹脂 (日本ジ一ィ一プラスチック(株)製、 レキサン 1 54) から なる他は実施例 2と同様の三層からなる複合樹脂フィルムを用いた以外は、 実施 例 2と同様にして両面樹脂被覆金属板を得た。  Instead of the composite resin film of Example 2, the same three layers as in Example 2 except that the intermediate layer was entirely made of bisphenol A polycarbonate resin (Lexan 154, manufactured by Nippon Digital Plastics Co., Ltd.) A double-sided resin-coated metal plate was obtained in the same manner as in Example 2 except that the composite resin film was used.
比較例 3 Comparative Example 3
下層の樹脂組成が実施例 2の中間層の樹脂組成と同じであること、 および実施 例 2と同様の未延伸の複合樹脂フィルムを用いた以外は、 実施例 2と同様にして 両面樹脂被覆金属板を得た。  Except that the resin composition of the lower layer was the same as the resin composition of the intermediate layer of Example 2, and that the same unstretched composite resin film as in Example 2 was used, a double-sided resin-coated metal was produced in the same manner as in Example 2. I got a board.
比較例 4 Comparative Example 4
中間層がテレフタル酸 9 0モル%、 イソフ夕ル酸 1 0モル%を酸成分としたポ リエチレンテレフタレ一ト ·イソフタレート共重合ポリエステル樹脂 (クラレ (株)製、 商品名: KS 7 60K) に対してビスフエノール Aポリカーボネート樹 脂 (日本ジーィ一プラスチック(株)製、 レキサン 1 54) を重量比で 0. 6 7の 割合でブレンドした榭脂層 (融点: 2 2 3°C) である他は実施例 1と同様の未延 伸の複合樹脂フィルムを用いた以外は、 実施例 1と同様にして両面樹脂被覆金属 板を得た。  Polyethylene terephthalate / isophthalate copolymerized polyester resin containing 90% by mole of terephthalic acid and 10% by mole of isophthalic acid as the middle layer (Kuraray Co., Ltd., trade name: KS760K) A resin layer (melting point: 23 ° C) blended with bisphenol A polycarbonate resin (Nippon Gee Plastic Co., Ltd., Lexan 154) at a weight ratio of 0.67. Otherwise, a double-sided resin-coated metal plate was obtained in the same manner as in Example 1, except that an unstretched composite resin film similar to that in Example 1 was used.
比較例 5 Comparative Example 5
中間層がテレフタル酸 9 0モル%、 イソフタル酸 1 0モル%を酸成分としたポ リエチレンテレフ夕レート 'イソフタレート共重合ポリエステル樹脂 (クラレ (株)製、 商品名: K S 7 6 0 K) に対してビスフエノール Aポリカーボネ一ト樹 脂 (日本ジ f一プラスチック(株)製、 レキサン 1 5 4 ) を重量比で 1 1 . 5の 割合でブレンドした樹脂層 (融点: 2 2 1 °C) である他は実施例 1と同様の未延 伸の複合樹脂フィルムを用いた以外は、 実施例 1と同様にして両面榭脂被覆金属 板を得た。 The intermediate layer is composed of 90 mol% of terephthalic acid and 10 mol% of isophthalic acid as acid components. Bisphenol A polycarbonate resin (Nippon Di-F-Plastic Co., Ltd., Lexan) for polyethylene terephthalate isophthalate copolymerized polyester resin (Kuraray Co., Ltd., trade name: KS760K) Except that a non-stretched composite resin film similar to that of Example 1 was used except that the resin layer (melting point: 2221 ° C) was used in which 15.4) was blended at a weight ratio of 11.5. Then, a double-sided resin-coated metal plate was obtained in the same manner as in Example 1.
比較例 6 Comparative Example 6
上層が実施例 1の中間層と同じ樹脂組成である他は実施例 1と同様の未延伸の 複合樹脂フィルムを用いた以外は、 実施例 1と同様にして両面樹脂被覆金属板を 得た。  A double-sided resin-coated metal plate was obtained in the same manner as in Example 1, except that an unstretched composite resin film similar to that of Example 1 was used except that the upper layer had the same resin composition as the intermediate layer of Example 1.
実施例 1〜実施例 1 1、 および比較例 1〜比較例 6で得られた樹脂被覆金属板 に、 複合樹脂フィルム積層面が缶内面側になるようにして、 以下に示す加工条件 により、 絞り加工、 及び絞り加工後に施す 1〜2回のストレッチ一しごき加工を 施して缶体に成形した。  The resin-coated metal plates obtained in Example 1 to Example 11 and Comparative Example 1 to Comparative Example 6 were squeezed under the following processing conditions so that the composite resin film lamination surface was on the inner side of the can. It was stretched and ironed one or two times after processing and drawing to form a can body.
[成形加工条件]  [Molding conditions]
1 .ブランク径: 1 5 6 mm  1. Blank diameter: 15.6mm
2 .絞り加工条件  2.Drawing conditions
ポンチ径: 8 8. 5議  Punch diameter: 88.5 discussions
ポンチ〜ダイス間のクリアランス : 0. 3 8 3 mm  Clearance between punch and die: 0.383 mm
絞り工程のしわ押さえ荷重: 2 0 0 0 kg  Wrinkle holding load in drawing process: 200 kg
絞り直前の被覆金属板、 ボンチ、 及びダイスの温度: 4 5で  Temperature of coated metal plate, bunch and die just before drawing: 45
3 .ストレッチ—しごき加工条件  3. Stretch—ironing conditions
1 ) 第 1回  1) 1st
ボンチ径: 6 6 . 5 mm  Bunch diameter: 66.5 mm
ポンチ〜ダイス間のクリアランス : 0 . 1 9 5 mni  Clearance between punch and die: 0.195 mni
絞り工程のしわ押さえ荷重: 1 0 0 0 kg  Wrinkle holding load in drawing process: 100 kg
ダイスのコーナ一部の曲率半径: 0. 3 8圆  The radius of curvature of the corner of the die: 0.38 圆
加工直前の絞り缶、 ボンチ、 及びダイスの温度: 6 5  Temperature of squeeze cans, bonches and dies just before processing: 6 5
2 ) 第 2回 ポンチ径: 5 1. 95 mm 2) 2nd Punch diameter: 5 1.95 mm
ポンチ〜ダイス間のクリアランス : 0. 143mm  Clearance between punch and die: 0.143mm
絞り工程のしわ押さえ荷重: 1 000kg  Wrinkle holding load of drawing process: 1 000kg
ダイスのコーナー部の曲率半径: 0. 47麵  Die corner radius of curvature: 0.47 麵
加工直前の第 1回のストレッチ—しごき缶、 ボンチ、 及びダイスの温度 1st stretch just before processing—ironing can, bunch and die temperature
: 65 : 65
注) 1)最終缶体の胴部の平均薄肉化率:約 42 %  Note) 1) Average thinning rate of the body of the final can: about 42%
2)成形後の缶は加工による脂被膜の歪みを除去することを目的として 228 の温度で 30秒加熱後冷却した。  2) The can after molding was heated at a temperature of 228 for 30 seconds and then cooled in order to remove the distortion of the grease film due to processing.
前記の成形加工条件で得られた薄肉化深絞り缶の特性を、 つぎに示す方法で評 価した。 その結果を表 1〜表 6に示した。  The properties of the thin-walled deep-drawn cans obtained under the above-mentioned molding conditions were evaluated by the following methods. The results are shown in Tables 1 to 6.
(1) 積層された樹脂層の加工密着性  (1) Processing adhesion of laminated resin layers
上記の成形加工条件で実施した薄肉化深絞り缶の各成形加工工程における積層 された樹脂層の剥離の有無を肉眼で評価した。 最終工程まで剥離がない場合を良 好とした。  The presence or absence of peeling of the laminated resin layer in each forming process of the thinned deep drawn can performed under the above forming conditions was visually evaluated. The case where there was no peeling until the final step was considered good.
(2) 積層された樹脂層のフレーバー性  (2) Flavor properties of laminated resin layers
得られた薄肉化深絞り缶にファン夕オレンジ (コカコーラ(株)製) を充填し、 薄肉化深絞り缶に用いた樹脂被覆金属板と同じ内面樹脂構成の材料を用いて作成 したエンドを巻き締めた後、 37 の雰囲気中で三週間経時した。 この経時後の 缶を開缶して 1 00人のパネラーにより内容物のフレーバー性を調査し、 経時前 後の内容物の味覚に差がないと判定した人数が 90人以上の場合を優、 60人以 上の場合を良、 60人未満の場合を不良とした。  The obtained thin-walled deep-drawing can is filled with Fan-Yu Orange (manufactured by Coca-Cola Co., Ltd.), and an end made of the same resin material as the resin-coated metal plate used for the thin-walled deep-drawing can is wound around the end. After tightening, it was aged for 3 weeks in 37 atmospheres. After opening the can after the aging, the panelists of 100 people examined the flavor of the contents, and the number of people who judged that there was no difference in the taste of the contents before and after the aging was 90 or more, A case of 60 or more was considered good, and a case of less than 60 was poor.
(3) 積層された樹脂層の耐低温衝撃加工性  (3) Low-temperature impact resistance of laminated resin layers
得られた薄肉化深絞り缶の缶胴中央部から 3 Ommの幅で円周方向に切り出した 試料を氷水中に 5分間浸漬した後取り出し、 約 5 の温度の試料の缶外面側に、 円周方向で 1 5關間隔で先端の直径が 1Z2インチの鋼球を有した鋼棒 (重さ : lkg) を高さ 4 Ommより試料の幅方向の中央部に落下させ、 発生した缶内面側の 凸部に 3 %食塩水を含浸させたスポンジをあて、 試料に 6. 3 Vの直流電圧を印 加し、 流れる電流値を測定し、 測定された電流値の平均値により積層された缶内 面となる樹脂層の耐低温衝撃加工性を評価した。 電流値が低いほど内面の樹脂被 膜のクラックの発生が小であることを示す。 A sample cut in the circumferential direction with a width of 3 Omm from the center of the can body of the obtained thin-walled deep drawn can was immersed in ice water for 5 minutes, taken out, and placed on the outer surface of the sample at a temperature of about 5 with a circle. A steel rod (weight: lkg) having a steel ball with a tip diameter of 1Z2 inches at a circumferential interval of 15 links is dropped from a height of 4 Omm to the center of the sample in the width direction, and the inner surface of the generated can Apply a sponge impregnated with 3% saline to the convex part of the, apply a DC voltage of 6.3 V to the sample, measure the flowing current value, and average the measured current value. Inside The low-temperature impact workability of the resin layer to be the surface was evaluated. The lower the current value, the smaller the occurrence of cracks in the inner resin coating.
表 1 樹脂被覆金属板の特性 ( 1 ) Table 1 Characteristics of resin-coated metal plate (1)
Figure imgf000027_0001
Figure imgf000027_0001
(注) 表 1〜6において下記の記号を用いた。  (Note) The following symbols were used in Tables 1 to 6.
• PETI 一- ホ "リエチレンテレフタレ-ト'イリフタレ-ト共重合ホ°リ1ステル樹脂, PETI後の数値は イリフタル酸モル を示す。  • PETI mono- (ethylene terephthalate) iriphthalate copolymerized polyester resin. The figures after PETI indicate moles of iriphthalic acid.
• PBT—--ホ。リブチレン ϊレフタレ-卜樹脂。  • PBT——E. Ributylene ϊ phthalate resin.
• PC ビスフエノ- Mホ。り力-ホ'ネ-ト樹脂。  • PC Bispheno-Mho. Reinforced-hot resin.
- PC+PETI+PBT-6:2:2 一- PCと PET1と PBTを各々 6:2:2の重量比でフ'レン卜' した樹脂。  -PC + PETI + PBT-6: 2: 2 A resin in which PC, PET1, and PBT are flanked at a weight ratio of 6: 2: 2, respectively.
• [ ]内は融点を示す。 2 樹脂被覆金属板の特性 (2 ) • [] indicates the melting point. 2 Characteristics of resin-coated metal plate (2)
2Two
6
Figure imgf000028_0001
6
Figure imgf000028_0001
3 樹脂被覆金属板の特性 (3) 項 目 実施例 7 実施例 8 実施例 9 金 属 板 TF S TF S TF S 上層の樹脂組成 PET PET PET 3 Characteristics of resin-coated metal plate (3) Item Example 7 Example 8 Example 9 Metal plate TF S TF S TF S Resin composition of upper layer PET PET PET
[256°C] [256°C] [256T:] 内 中間層の樹脂組成 PC+PETI10+PBT= PC+PETI10+PBT= PC+PETI10+PBT- [256 ° C] [256 ° C] [256T:] In the resin composition of the middle layer PC + PETI10 + PBT = PC + PETI10 + PBT = PC + PETI10 + PBT-
1.5:1:1[223Τ:] 18:1:1 [22(TC] 1.5: 1: 1 [223Τ:] 18: 1: 1 [22 (TC)
下層の樹脂組成 PC+PETI10+PBT= PC+PETI10+PBT- PC+PETI10= 面 2:6:2 [221V] 2:6:2 [221V]  Resin composition of lower layer PC + PETI10 + PBT = PC + PETI10 + PBT- PC + PETI10 = Surface 2: 6: 2 [221V] 2: 6: 2 [221V]
上層/中間層/下層 5/17/3 5/17/3 5/17/3 の樹脂厚み(//m)  Upper layer / Middle layer / Lower layer 5/17/3 5/17/3 5/17/3 resin thickness (// m)
外 樹 脂 組 成 PBT+PET=4:6 PBT+PET=4:6 PBT†PET=4:6 Outer resin composition PBT + PET = 4: 6 PBT + PET = 4: 6 PBT † PET = 4: 6
[251V] [251t:] [251V] 面 樹脂厚み( m) 13 13 o t 13 特 加 工 密 着 性 良好 良好 良好  [251V] [251t:] [251V] surface Resin thickness (m) 13 13 o t 13 Special processing Good adhesion Good Good
フ レ - ハ' - 性 優 優 優 性 耐低温衝撃性 (mA) 0.00 0.00 0.00 Free-C'- Excellent Excellent Excellent Low-temperature impact resistance (mA) 0.00 0.00 0.00
4 樹脂被覆金属板の特性 (4) 項 目 実施例 10 実施例 1 1 金 属 板 T F S T F S 上層の樹脂組成 PC+PET=7:20 PET 4 Properties of resin-coated metal plate (4) Item Example 10 Example 11 1 Metal plate T F S T F S Resin composition of upper layer PC + PET = 7: 20 PET
[247 ] [256" ] 内 中間層の樹脂組成 PC+PETI10=6:4 PC+PETI10+PBT=  [247] [256 "] Inside resin composition of middle layer PC + PETI10 = 6: 4 PC + PETI10 + PBT =
[223 ] 6:2:2 [221 ] 下層の樹脂組成 PBT+PET=4:6 PC+PETI10+PBT= 面 1_251で] 2:6:2 [221 ] 上層/中間層/下層 5/17/3 5/10/10 の樹脂厚み( m)  [223] 6: 2: 2 [221] Lower layer resin composition PBT + PET = 4: 6 PC + PETI10 + PBT = surface 1_251] 2: 6: 2 [221] Upper layer / intermediate layer / lower layer 5/17 / 3 5/10/10 resin thickness (m)
外 樹 脂 組成 PBT+PET=4:6 PBT+PET=4:6 Outer resin composition PBT + PET = 4: 6 PBT + PET = 4: 6
[2511:] [251 :] 面 樹脂厚み( m) 13 】3 特 加 工 密 着 性 良好 良好  [2511:] [251:] surface Resin thickness (m) 13] 3 Special processing Good adhesion Good
フ レ - ハ' - 性 良 優 性 耐低温衝撃性 (DlA) 0.00 0.00 Fre-C'- Property Good Superiority Low temperature impact resistance (DlA) 0.00 0.00
5 樹脂被覆金属板の特性 (5) 5 Characteristics of resin-coated metal plate (5)
Figure imgf000031_0001
Figure imgf000031_0001
表 6 樹脂被覆金属板の特性 (6 ) Table 6 Characteristics of resin-coated metal plate (6)
Figure imgf000032_0001
産業上の利用可能性
Figure imgf000032_0001
Industrial applicability
本発明は、 上層をフレーバー確保機能を分担させるために一定構造のポリエス テル樹脂を主体とした樹脂層とし、 中間層を耐衝撃性確保機能を分担させるため に一定構造のポリエステル樹脂とポリカーボネー卜樹脂からなるブレンド樹脂層 とし、 下層を金属板との加工密着性確保機能を分担させるために一定構造のポリ エステル樹脂を主体とした樹脂層とした三層から成る樹脂フィルムを金属板に積 層し、 各々の被膜に缶用素材として必要な機能を分担させたものであり、 このよ うにして得られた本発明の樹脂被覆金属板は缶胴部を 4 0 %以上薄肉化する厳し い成形加工が可能で、 かつ得られた缶体に内容物を充填経時した後も良好なフレ 一バー性を保持し、 さらに内容物充填前後に外部から衝撃を受けても高い耐食性 を維持できる。 In the present invention, the upper layer is a resin layer mainly composed of a polyester resin having a predetermined structure in order to share the flavor securing function, and the intermediate layer is formed of a polyester resin and a polycarbonate having a constant structure in order to share the impact resistance securing function. A three-layer resin film consisting of a resin layer mainly composed of a polyester resin with a certain structure is used for laminating a resin layer on the metal plate in order to share the function of ensuring processing adhesion to the metal plate. In addition, the functions required for the material for cans are assigned to each of the coatings, and the resin-coated metal plate of the present invention thus obtained is strictly required to reduce the thickness of the body of the can by 40% or more. Molding is possible, and the obtained cans are filled with the contents and have good flexibility even after aging. Maintains a single bar and can maintain high corrosion resistance even if it receives an external impact before and after filling the contents.

Claims

請 求 の 範 囲 The scope of the claims
1. 金属板の片面あるいは両面に、 次の (a) , (b) 及び (c) の三層樹脂 被膜が積層されている複合樹脂被覆金属板。 1. A composite resin-coated metal plate in which the following three layers (a), (b) and (c) are laminated on one or both sides of the metal plate.
(a) 上層が、 下記の (1) 式の基本構造の繰り返し単位からなるポリエステル 樹脂を主成分とした樹脂層、  (a) a resin layer mainly composed of a polyester resin whose upper layer is composed of a repeating unit having a basic structure represented by the following formula (1);
(b) 中間層が、 下記の (1) 式の基本構造の繰り返し単位からなるポリエステ ル樹脂に下記の (2) 式の基本構造の繰り返し単位からなるポリカーボネー卜樹 脂を、 ポリエステル樹脂に対する重量比で 0. 72〜9.0の割合で混合した樹脂 層、  (b) The intermediate layer is composed of a polyester resin composed of a repeating unit having the following basic structure of the following formula (1) and a polycarbonate resin composed of a repeating unit having the following basic structure of the following formula (1): Resin layer mixed at a ratio of 0.72 to 9.0 in ratio,
(c) 下層が、 下記の (1) 式の基本構造の繰り返し単位からなるポリエステル 樹脂を主成分とした樹脂層、  (c) a resin layer mainly composed of a polyester resin whose lower layer is composed of a repeating unit having a basic structure represented by the following formula (1);
(1) 式  (1 set
[ポリエステル樹脂の基本構造]  [Basic structure of polyester resin]
0 0  0 0
II II  II II
-0-R1-0-C-R2-C- ただし、 (1) 式において、 R1は炭素数 2〜 6のアルキレン基、 -0-R1-0-C-R2-C- wherein, in the formula (1), R1 is an alkylene group having 2 to 6 carbon atoms,
R2は炭素数 2〜24のアルキレン基またはァリーレン基、 R2 is an alkylene group or an arylene group having 2 to 24 carbon atoms,
(2) 式  Equation (2)
[ポリエステル樹脂の基本構造]  [Basic structure of polyester resin]
O II  O II
-0-R3-0-C- ただし、 (2) 式において、 R3 は炭素数 2〜10の脂肪族炭化水素、 または炭素数 6〜18の芳香族炭化水素  -0-R3-0-C- where, in formula (2), R3 is an aliphatic hydrocarbon having 2 to 10 carbon atoms or an aromatic hydrocarbon having 6 to 18 carbon atoms
2. 前記下層樹脂層の主成分であるポリエステル樹脂が、 次の (d) 〜 (g) のいずれかであるか、 または (d) 〜 (g) の 2種以上を混合したものである請 求項 1に記載の複合榭脂被覆金属板。 (d) ポリエチレンテレフ夕レート榭脂、 2. The polyester resin, which is the main component of the lower resin layer, is one of the following (d) to (g) or a mixture of two or more of the following (d) to (g): 2. The composite resin-coated metal sheet according to claim 1. (d) polyethylene terephthalate resin,
(e) ポリブチレンテレフタレ一卜樹脂、  (e) polybutylene terephthalate resin,
(f ) エチレンテレフタレ一卜単位を主体とした共重合ポリエステル樹脂、 (g) ブチレンテレフ夕レート単位を主体とした共重合ポリエステル樹脂  (f) a copolymerized polyester resin mainly composed of ethylene terephthalate units, and (g) a copolymerized polyester resin mainly composed of butylene terephthalate units.
3. 前記下層が、 前記 (1) 式のポリエステル樹脂に、 前記 (2) 式の基本構 造の繰り返し単位からなるポリカーボネー卜樹脂を、 ポリエステル樹脂に対する 重量比で 0. 05-0. 54の割合で混合した樹脂層である請求項 1又は 2 に記載の複合樹脂被覆金属板。 3. The lower layer is composed of a polyester resin of the above formula (1) and a polycarbonate resin comprising a repeating unit of the basic structure of the above formula (2) in a weight ratio of 0.05 to 0.54 with respect to the polyester resin. 3. The composite resin-coated metal plate according to claim 1, which is a resin layer mixed in a ratio.
4. 前記中間層に含まれるポリカーボネート樹脂が、 ビスフエノール Aポリ力 ーボネート樹脂である請求項 1〜 3のいずれかに記載の複合樹脂被覆金厲板。 4. The composite resin-coated metal plate according to any one of claims 1 to 3, wherein the polycarbonate resin contained in the intermediate layer is a bisphenol A polycarbonate resin.
5. 前記中間層に含まれるポリエステル樹脂が、 次の ( i ) 〜 ( 1 ) のいずれか であるか、 または U) 〜 ( 1 ) の 2種以上を混合したものである請求項 1〜4 のいずれかに記載の複合樹脂被覆金属板。 5. The polyester resin contained in the intermediate layer is any one of the following (i) to (1) or a mixture of two or more of U) to (1). The composite resin-coated metal plate according to any one of the above.
( i ) ポリエチレンテレフ夕レート樹脂、  (i) polyethylene terephthalate resin,
( j ) ポリブチレンテレフ夕レート樹脂、  (j) polybutylene terephthalate resin,
(k) エチレンテレフ夕レート単位を主体とした共重合ポリエステル榭脂、 ( 1 ) ブチレンテレフ夕レート単位を主体とした共重合ポリエステル樹脂  (k) copolymerized polyester resin mainly composed of ethylene terephthalate units, (1) copolymerized polyester resin mainly composed of butylene terephthalate units
6. 前記上層の主成分であるポリエステル樹脂が、 ポリエチレンテレフタレー 卜樹脂であるか、 又はポリエチレンテレフ夕レート ·イソフタレート共重合ポリ エステル樹脂である請求項 1〜 5のいずれかに記載の複合樹脂被覆金属板。 6. The composite resin according to any one of claims 1 to 5, wherein the polyester resin as a main component of the upper layer is a polyethylene terephthalate resin or a polyethylene terephthalate / isophthalate copolymerized polyester resin. Coated metal plate.
7. 前記上層が、 前記 (1) 式の基本構造の繰り返し単位からなるポリエステ ル榭脂に、 前記 (2) 式の基本構造の繰り返し単位からなるポリカーボネート榭 脂を、 ポリエステル樹脂に対する重量比で 0. 05-0. 35の割合で混合した樹 脂層からなる請求項 1〜 6のいずれかに記載の複合樹脂被覆金属板。 7. The upper layer is composed of a polyester resin composed of repeating units of the basic structure of the above formula (1) and a polycarbonate resin composed of repeating units of the basic structure of the above formula (2) in a weight ratio of 0 to the polyester resin. The composite resin-coated metal sheet according to any one of claims 1 to 6, comprising a resin layer mixed at a ratio of 0.05 to 0.35.
8. 前記上層、 中間層、 及び下層の厚みを、 それぞれ Tl、 Τ2、 Τ3 とした場合 に、 以下の (3) 式、 (4) 式、 (5) 式を満足する請求項 1〜 7のいずれかに 記載の複合樹脂被覆金属板。 8. The method according to claim 1, wherein when the thicknesses of the upper layer, the intermediate layer, and the lower layer are Tl, Τ2, and Τ3, respectively, the following expressions (3), (4), and (5) are satisfied. The composite resin-coated metal plate according to any one of the above.
Τ2/ (T1 + T2+T3) ≥0.4 · · · (3) 式  Τ2 / (T1 + T2 + T3) ≥0.4Eq. (3)
Tl≥ 1 rn · · · (4) 式  Tl≥ 1 rn
T3≥0. 5 um · · · (5) 式  T3≥0.5 um
9. 金属板の片面に、 請求項 1の三層樹脂被膜が積層してあり、 他の面に、 該三 層樹脂被膜の中間層および下層のいずれかの構成樹脂の融点より 5 :以上高い融 点を示す樹脂を主成分とする樹脂層を少なくとも最上層に有した樹脂被膜を積層 してあることを特徴とする請求項 1〜 8の複合樹脂被覆金属板。 9. The three-layer resin coating of claim 1 is laminated on one surface of the metal plate, and the other surface is at least 5: higher than the melting point of any of the constituent resins of the intermediate layer and the lower layer of the three-layer resin coating. The composite resin-coated metal plate according to any one of claims 1 to 8, wherein a resin film having at least an uppermost layer of a resin layer mainly composed of a resin having a melting point is laminated.
10. 金属板の片面に、 請求項 1の三層樹脂被膜が積層してあり、 他の面に、 該 三層樹脂被膜の中間層および下層のいずれの構成樹脂の融点より 5で以上高い融 点を示す樹脂を主成分とする樹脂層を少なくとも最上層に有した樹脂被膜を積層 してあることを特徴とする請求項 1〜 8の複合樹脂被覆金属板。 10. The three-layer resin coating according to claim 1 is laminated on one surface of the metal plate, and the other surface has a melting point higher by at least 5 than the melting point of the constituent resin of the intermediate layer and the lower layer of the three-layer resin coating. The composite resin-coated metal plate according to any one of claims 1 to 8, wherein a resin film having at least an uppermost layer of a resin layer mainly composed of a resin showing a dot is laminated.
1 1. 金属板の片面に、 請求項 1の三層被膜が積層してあり、 他の面に、 該三層 被膜の上層、 中間層、 及び下層のいずれの構成樹脂の融点より 5で高い融点を示 す樹脂を主成分とする樹脂層を少なくとも最上層に有する樹脂被膜を積層してあ ることを特徴とする請求項 1〜 8の複合樹脂被覆金属板。 1 1. The three-layer coating according to claim 1 is laminated on one surface of a metal plate, and the other surface has a melting point of 5 higher than the melting point of the constituent resin of the upper, intermediate, and lower layers of the three-layer coating. The composite resin-coated metal plate according to any one of claims 1 to 8, wherein a resin film having at least an uppermost layer of a resin layer mainly composed of a resin having a melting point is laminated.
12. 請求項 1の三層樹脂被膜の上層の樹脂の融点が少なくとも下層の樹脂の融 点より 3*0以上高いことを特徴とする請求項 1〜1 1の複合樹脂被覆金属板。 12. The composite resin-coated metal plate according to claim 1, wherein the melting point of the resin in the upper layer of the three-layer resin coating of claim 1 is at least 3 * 0 higher than the melting point of the resin in the lower layer.
13. 金属板が鋼板及びアルミニウム板の表層にクロム水和酸化物皮膜を 3 ~3 Omg/m2有したものであることを特徴とする請求項 1〜 12の複合榭脂被覆金属 板。 13. The composite resin-coated metal plate according to claim 1, wherein the metal plate has a chromium hydrated oxide film on a surface layer of the steel plate and the aluminum plate in a range of 3 to 3 Omg / m 2 .
PCT/JP1996/001860 1996-07-05 1996-07-05 Resin-coated composite metal sheet WO1998001298A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
AU63187/96A AU6318796A (en) 1996-07-05 1996-07-05 Resin-coated composite metal sheet
PCT/JP1996/001860 WO1998001298A1 (en) 1996-07-05 1996-07-05 Resin-coated composite metal sheet
CN97197295A CN1069580C (en) 1996-07-05 1997-07-04 Composite resin film and metallic sheet coated with same
PCT/JP1997/002324 WO1998001301A1 (en) 1996-07-05 1997-07-04 Composite resin film and metallic sheet coated with same
JP10505048A JP3115899B2 (en) 1996-07-05 1997-07-04 Composite resin film and composite resin coated metal plate
AU33588/97A AU3358897A (en) 1996-07-05 1997-07-04 Composite resin film and metallic sheet coated with same
DE69725849T DE69725849T2 (en) 1996-07-05 1997-07-04 PLASTIC COMPOSITE FILM AND METAL SHEET COATED WITH IT
US09/214,489 US6261654B1 (en) 1996-07-05 1997-07-04 Composite resin film and metallic sheet coated with same
MYPI97003048A MY118336A (en) 1996-07-05 1997-07-04 Composite resin film and composite resin covered metallic sheet.
EP97929526A EP0909641B1 (en) 1996-07-05 1997-07-04 Composite resin film and metallic sheet coated with same
IDP972345A ID18710A (en) 1996-07-05 1997-07-07 FILM RESIN COMBINATIONS AND RESIN COMBINATIONS CLOSED METALLIC PLATES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/001860 WO1998001298A1 (en) 1996-07-05 1996-07-05 Resin-coated composite metal sheet

Publications (1)

Publication Number Publication Date
WO1998001298A1 true WO1998001298A1 (en) 1998-01-15

Family

ID=14153500

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP1996/001860 WO1998001298A1 (en) 1996-07-05 1996-07-05 Resin-coated composite metal sheet
PCT/JP1997/002324 WO1998001301A1 (en) 1996-07-05 1997-07-04 Composite resin film and metallic sheet coated with same

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002324 WO1998001301A1 (en) 1996-07-05 1997-07-04 Composite resin film and metallic sheet coated with same

Country Status (9)

Country Link
US (1) US6261654B1 (en)
EP (1) EP0909641B1 (en)
JP (1) JP3115899B2 (en)
CN (1) CN1069580C (en)
AU (2) AU6318796A (en)
DE (1) DE69725849T2 (en)
ID (1) ID18710A (en)
MY (1) MY118336A (en)
WO (2) WO1998001298A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980018298A (en) * 1996-08-06 1998-06-05 하라다 야스오 Polyester laminated metal plate and can ends and can bodies molded therefrom
US7014896B1 (en) 1999-11-29 2006-03-21 Denki Kagaku Kogyo Kabushiki Kaisha Packaging container for electronic part
US20050151230A1 (en) 2001-12-14 2005-07-14 Toyo Kohan Co., Ltd. Preventive film for polarizing film and preventive film for releasable polarizing film, and polarizing plate using them
JP2003185833A (en) * 2001-12-14 2003-07-03 Toyo Kohan Co Ltd Protective film for polarizer and polarizing plate using the same
CN101259884B (en) * 2002-05-07 2011-01-26 帝人化成株式会社 Method for preserving resin
EP1449883A1 (en) * 2003-02-18 2004-08-25 Corus Technology BV Polymer packaging layer with improved release properties
KR20050110701A (en) * 2003-03-28 2005-11-23 코루스 스타알 베.뷔. A sheet material for forming applications, metal container made from such a sheet material and process for producing said sheet material
US7704592B2 (en) * 2006-03-09 2010-04-27 Politec Polimeri Tecnici S.A. Multilayer polymeric product based on polyethylene terephthalate and polycarbonate and its use as a building material
JP5186772B2 (en) * 2007-02-06 2013-04-24 Jfeスチール株式会社 Two-piece can manufacturing method and two-piece laminated can
CN101327673B (en) * 2007-06-22 2012-09-05 比亚迪股份有限公司 Metal composite board for injection moulding
WO2009063932A1 (en) * 2007-11-16 2009-05-22 Okura Industrial Co., Ltd. Rear surface protection sheet for solar cell module and solar cell module protected by such protection sheet
CN102848676B (en) * 2012-09-17 2015-05-20 奥瑞金包装股份有限公司 Coextrusion casting polyester film and preparation method thereof
KR101819774B1 (en) * 2013-08-19 2018-01-18 (주)엘지하우시스 Decoration sheet
US11027523B2 (en) * 2015-11-30 2021-06-08 Toray Plastics (America), Inc. Polyester film incorporating silicone for release of canned meat products
CN106633771B (en) * 2016-12-23 2019-03-15 四川东方绝缘材料股份有限公司 A kind of Wear-resistant, high-temperature resistant fire-retardant film or sheet material and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079615A (en) * 1993-06-28 1995-01-13 Toyo Kohan Co Ltd Composite resin coated metal plate and production thereof
JPH07227950A (en) * 1993-07-02 1995-08-29 Teijin Ltd Multilayered film for metal laminate

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6255022A (en) * 1985-09-04 1987-03-10 三菱電機株式会社 Plant culture apparatus
EP0270374A3 (en) * 1986-12-04 1989-05-10 Mitsui Petrochemical Industries, Ltd. Molded polyester laminate and use therof
JP3041151B2 (en) * 1993-01-29 2000-05-15 東洋鋼鈑株式会社 Polycarbonate resin-coated metal plate and method for producing the same
JP3056349B2 (en) * 1993-03-10 2000-06-26 東洋鋼鈑株式会社 Resin-coated metal plate and method of manufacturing the same
JP3029521B2 (en) 1993-06-28 2000-04-04 東洋鋼鈑株式会社 Composite resin-coated metal sheet and method for producing the same
CA2108728C (en) * 1993-10-19 2001-02-13 Takaaki Okamura Metal sheet laminated with triple layered thermoplastic resin and a method for producing thereof
JP3029529B2 (en) * 1993-12-27 2000-04-04 東洋鋼鈑株式会社 Polycarbonate resin coated metal plate
US5686194A (en) * 1994-02-07 1997-11-11 Toyo Kohan Co., Ltd. Resin film laminated steel for can by dry forming
JP3301212B2 (en) * 1994-04-27 2002-07-15 東洋紡績株式会社 Polyester composite film for metal lamination
JP3507558B2 (en) * 1994-09-14 2004-03-15 株式会社日立ユニシアオートモティブ Rotary axis vibration control device and rotary axis
US5780158A (en) * 1996-02-09 1998-07-14 Teijin Limited Biaxially oriented film to be laminated on a metal
JP2965491B2 (en) * 1995-09-22 1999-10-18 キヤノン株式会社 Copy transfer material for electrophotography

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079615A (en) * 1993-06-28 1995-01-13 Toyo Kohan Co Ltd Composite resin coated metal plate and production thereof
JPH07227950A (en) * 1993-07-02 1995-08-29 Teijin Ltd Multilayered film for metal laminate

Also Published As

Publication number Publication date
EP0909641B1 (en) 2003-10-29
JP3115899B2 (en) 2000-12-11
US6261654B1 (en) 2001-07-17
DE69725849D1 (en) 2003-12-04
DE69725849T2 (en) 2004-08-19
AU6318796A (en) 1998-02-02
EP0909641A4 (en) 2001-03-21
WO1998001301A1 (en) 1998-01-15
EP0909641A1 (en) 1999-04-21
ID18710A (en) 1998-04-30
CN1228057A (en) 1999-09-08
CN1069580C (en) 2001-08-15
MY118336A (en) 2004-10-30
AU3358897A (en) 1998-02-02

Similar Documents

Publication Publication Date Title
WO1998001298A1 (en) Resin-coated composite metal sheet
JP5541420B2 (en) Resin-coated metal plate for containers
JP5671863B2 (en) Resin-coated metal plate for containers
AU785244B2 (en) Resin-coated seamless can
WO2002076729A1 (en) Metal sheet coated with thermoplastic resin and can obtained therefrom
JP5772452B2 (en) Resin-coated metal plate for containers
US20050100749A1 (en) Metal sheet coated with thermoplastic resin and can obtained therefrom
JP5089440B2 (en) Method for producing resin-coated metal substrate
KR100965464B1 (en) Film for laminate and laminate comprising the same
JP4319358B2 (en) Polyester resin-coated metal plate and can using the same
JP4590886B2 (en) Multi-layer film for laminating, laminating material, can resistance and can lid
JP4056210B2 (en) Resin film laminated plated steel sheet, can using the same, and method for producing resin film laminated plated steel sheet
JP4422378B2 (en) Polyester resin coated steel sheet for can formation
JP3041164B2 (en) Composite resin-coated metal sheet and method for producing the same
JP6934268B1 (en) Polyester film and its manufacturing method
JP5811122B2 (en) Laminated metal plate for 2-piece can and 2-piece laminated can body
JP6715915B2 (en) Film for laminating on metal plate
KR100492700B1 (en) Composite resin film and metallic sheet coated with same
JP3897091B2 (en) Resin coated seamless can
JP4576147B2 (en) Polyester film-coated metal sheet, method for producing polyester film-coated metal sheet, and polyester film-coated metal can
WO2021182402A1 (en) Polyester film and production method therefor
WO1996002387A1 (en) Laminated polyester film for metallic lamination
JP4561077B2 (en) Laminating film, laminating material, can body and can lid
US20220212444A1 (en) Resin film for laminating metal plate and laminated metal plate using the same
JP2003063519A (en) Resin-coated seamless can

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN JP KR MX NO NZ PL SG TR US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA