WO1997032458A1 - Light-transmissive electromagnetic shielding material and process for producing the same - Google Patents

Light-transmissive electromagnetic shielding material and process for producing the same Download PDF

Info

Publication number
WO1997032458A1
WO1997032458A1 PCT/JP1997/000626 JP9700626W WO9732458A1 WO 1997032458 A1 WO1997032458 A1 WO 1997032458A1 JP 9700626 W JP9700626 W JP 9700626W WO 9732458 A1 WO9732458 A1 WO 9732458A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal layer
black
transparent
electromagnetic wave
Prior art date
Application number
PCT/JP1997/000626
Other languages
French (fr)
Japanese (ja)
Inventor
Kanji Suyama
Tatsuo Ishibashi
Yoshihide Inako
Shuzo Okumura
Masayasu Sakane
Original Assignee
Nissha Printing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP13596796A external-priority patent/JPH09298384A/en
Application filed by Nissha Printing Co., Ltd. filed Critical Nissha Printing Co., Ltd.
Publication of WO1997032458A1 publication Critical patent/WO1997032458A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0094Shielding materials being light-transmitting, e.g. transparent, translucent
    • H05K9/0096Shielding materials being light-transmitting, e.g. transparent, translucent for television displays, e.g. plasma display panel

Definitions

  • the present invention relates to a light-transmitting electromagnetic wave shielding material that functions to shield an electromagnetic wave and allows the opposite side of the material to be seen through, and a method for manufacturing the same.
  • electromagnetic shielding materials not only function to shield electromagnetic waves, but also, for example, can be used as front panels for displays and microwave oven windows so that they can be used as microwave oven windows. There is a translucent one that allows you to see behind. In particular, in the case of a front panel such as a display, the display screen is viewed through an electromagnetic wave shielding material.Therefore, a display screen with excellent visibility while maintaining the electromagnetic wave shielding property has been desired.
  • a conductive net As a light-transmitting electromagnetic wave shielding material that functions as a shield and can see through the other side of the material, 1) a conductive net is sandwiched between glass or transparent resin plates, And 2) a transparent conductive thin film such as gold or ITO formed on glass or a transparent resin plate by vapor deposition or sputtering.
  • a transparent conductive thin film such as gold or ITO formed on glass or a transparent resin plate by vapor deposition or sputtering.
  • the surface of the conductive net is dyed black to suppress the reflection on the net surface in order to enhance visibility.
  • an object of the present invention is to provide a translucent electromagnetic wave shielding material having excellent visibility and a high electromagnetic wave shielding effect, and a method for producing the same.
  • the light-transmitting electromagnetic wave shielding material of the present invention is characterized in that a metal layer and a black layer are present on a transparent substrate in no particular order, and the metal layer and the black layer are both aligned and patterned. It was configured as follows.
  • the translucent electromagnetic wave shielding material of the present invention has a structure in which a metal layer is laminated in a pattern on a transparent substrate, and a black resist layer in register with the metal layer is laminated on the metal layer. (1st invention).
  • the black resist layer is formed of a photoresist containing a black dye and pigment.
  • the method for producing a translucent magnetic shielding material according to the first invention includes a step of providing a metal layer on a transparent substrate, a step of providing a black resist layer on the metal layer in a pattern, and a portion not covered with the black resist layer. And a step of removing the metal layer by etching.
  • the step of providing the black resist layer in a pattern is such that a photosensitive resin containing a black dye is applied, exposed using a mask, and developed.
  • the translucent electromagnetic wave shielding material of the first invention has a metal layer provided on a transparent substrate. Providing a patterned release layer on the metal layer, providing a black resist layer on the metal layer and the release layer, removing the release layer with a release liquid to remove the black resist layer thereon, It can also be obtained by a step of removing the metal layer at the portion where the black resist layer has been removed by etching.
  • the release layer may be formed of a printing resist material / photoresist material. Further, the black resist layer may have a thickness of 0.1 / m to 10 m.
  • the stripper may be composed of water, an aqueous solution of sodium hydroxide, an aqueous solution of potassium hydroxide, acetone, or ethyl cellosolve acetate.
  • the translucent electromagnetic wave shielding material of the present invention is configured such that a metal layer is laminated in a pattern on a transparent substrate, and a black electrodeposition layer which is in register with the metal layer is laminated on the metal layer.
  • the black electrodeposition layer may be formed of a material containing black particles in an ionic polymer.
  • the black electrodeposition layer may be made of a black conductive polymer.
  • the black electrodeposition layer may be formed of an electric plating film having a black color tone.
  • an acrylic resin, a polyester resin, a polybutadiene resin, a maleic resin, an epoxy resin, a urethane resin, a polyamide resin or a modified product thereof can be aminated or carboxylated.
  • carbon black, titanium black, and aniline plastic can be used as the black particles.
  • a polymer of pyrrole, aniline, thiophene and a derivative thereof can be used as the conductive polymer.
  • the method for producing a translucent electromagnetic wave shielding material according to the second aspect of the present invention includes a step of laminating a metal layer in a pattern on a transparent substrate, and a step of forming the metal layer in a solution of an ionic polymer containing black particles in a previous step.
  • the laminated transparent substrate was immersed together with the counter electrode and energized to form a black electrodeposition layer on the metal layer.
  • the method for producing a translucent electromagnetic wave shielding material according to the second invention is characterized in that a metal layer is formed on a transparent substrate.
  • a transparent electrode on the metal layer by immersing the transparent substrate on which the metal layer was laminated in the previous step in a solution of the monomer of the conductive polymer together with the counter electrode, and applying an electric current to the transparent substrate. May be configured to include a step of laminating.
  • the method for producing a light-transmitting electromagnetic wave shielding material according to the second aspect of the present invention includes a step of laminating a metal layer on a transparent substrate in a turn pattern, and a plating solution for forming an electroplating film having a black color tone.
  • the transparent substrate on which the metal layer is laminated in the previous step may be dipped, and a current may be applied to the metal layer to laminate a black electrodeposition layer on the metal layer.
  • the translucent electromagnetic wave shielding material of the present invention may be configured such that the surface layer of the metal layer formed in a pattern on the transparent substrate is a metal compound exhibiting black (third invention). In this case, the black layer is integrated with the metal layer.
  • the method for producing a translucent electromagnetic wave shielding material according to the third aspect of the present invention is a metal compound that provides a metal layer on a transparent substrate in a pattern and then performs a chemical conversion treatment so that the surface layer of the metal layer exhibits a black color. It can be configured as follows.
  • the black dyed layer laminated on the transparent substrate is composed of a pattern-shaped bleached portion and other non-bleached portions, and is regarded as a non-bleached portion on the black stained layer.
  • the matching metal layer may be configured so as to be ridged (fourth invention).
  • the black dyed layer contains acryl-based resin, polyester-based resin, cellulose-based resin, polyolefin-based resin, polyvinyl alcohol-based resin, natural polymer-type resin or a copolymer of these, or a dye in the mixture. It may be composed of
  • the method for producing a translucent electromagnetic wave shielding material according to the fourth invention includes a step of providing a black dye layer on a transparent substrate, a step of providing a metal layer on the black dye layer, and forming a resist layer on the metal layer in a pattern.
  • the step of providing and the step of removing the metal layer in the portion not covered with the resist layer with an etchant are sequentially performed.
  • the black stain layer in the portion not covered with the patterned metal layer in the etching process is decolorized with the etchant. May be configured.
  • a black dyeing layer is provided on a transparent substrate.
  • the method for producing a light-transmitting electromagnetic wave shielding material according to the fourth invention includes a step of providing a black dye layer on a transparent substrate, a step of providing a metal layer on the black dye layer, and a step of providing a resist layer in a pattern on the metal layer.
  • a step of removing the metal layer in a portion not covered with the resist layer with an etchant is sequentially performed, and then, a step of peeling the resist layer with a stripper is performed.
  • a portion of the black dyed layer that is not covered with the metal layer may be decolorized with a stripping solution.
  • a step of providing a black dyeing layer on a transparent substrate, a step of providing a metal layer on the black dyeing layer, and a step of forming a resist layer on the metal layer The steps of removing the metal layer in the portion not covered with the resist layer with an etchant are sequentially performed, and then removing the black stained layer in the portion not covered with the patterned metal layer separately from the etchant. You may comprise so that the process of decoloring with a bleaching solution and the process of peeling off a resist layer with a stripping solution may be performed.
  • the method for producing a light-transmitting electromagnetic wave shielding material of the present invention may be configured so that, in the step of removing the resist layer, a portion of the black stained layer that is not covered with the patterned metal layer is decolorized with a stripping solution. Good.
  • a portion not covered with the patterned metal layer may be decolorized with an etchant.
  • the etching solution may be configured so that the main component thereof is aqua regia, an aqueous solution of ferric nitrate, an aqueous solution of ferric chloride, an aqueous solution of cupric oxide, or an aqueous solution of cerium nitrate.
  • the above decolorizing solution is used as an aqueous solution of a surfactant, an aqueous solution of sodium chlorite, an aqueous solution of sodium hypochlorite, an aqueous solution of hydrogen peroxide, an aqueous solution of sodium nitrate, and an aqueous solution of stannous chloride.
  • Liquid, aqueous solution of sodium formaldehyde sulfoxylate dihydrate, aqueous solution of thiourea dioxide, aqueous solution of sodium hydrosulfite, and aqueous solution of a colorless and transparent dye intermediate Liquid, aqueous solution of sodium formaldehyde sulfoxylate dihydrate, aqueous solution of thiourea dioxide, aqueous solution of sodium hydrosulfite, and aqueous solution of a colorless and transparent dye intermediate.
  • the above-mentioned stripping solution was constituted so that an alkaline aqueous solution, an organic solvent or a mixture thereof was used as a main component.
  • the alkaline aqueous solution may be composed of sodium hydroxide, 7 oxidizing rim, and the organic solvent may be composed of acetone, cellosolve acetate solvent, cellosolve solvent, or alcohol solvent.
  • the etching solution and / or the stripping solution may include a decoloring agent.
  • Decolorizing agents are surfactants, sodium chlorite, sodium hypochlorite, hydrogen peroxide, sodium nitrate, stannous chloride, sodium formaldehyde sodium sulfoxylate tonihydrate, thiourea dioxide, sodium hydrosulfite, It may be composed of a colorless and transparent dye intermediate.
  • the translucent electromagnetic wave shielding material of the present invention is an adhesive sheet in which a metal layer is provided in a pattern on a transparent first substrate made of a film, and a black resist layer registered with the metal layer is provided on the metal layer. May be bonded via an adhesive layer to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer (fifth invention).
  • the translucent electromagnetic wave shielding material family of the fifth invention has a metal layer provided on the entire surface of a transparent first base made of a film, a black resist layer provided on the metal layer in a pattern, and covered with a black resist layer.
  • the adhesive sheet produced by removing the metal layer in the non-existing part using an etchant is attached via an adhesive layer to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer. You may manufacture by combining.
  • the step of providing the black resist layer in a pattern may be a step of applying a photosensitive resin ink containing a black dye and pigment on the metal layer, exposing using a photomask, and developing. Further, the step of providing a black resist layer in a pattern form includes providing a patterned free layer on the metal layer, providing a black resist layer on the metal layer and the free layer, By removing the free layer with a removal solution, the black resist layer thereon may also be removed.
  • the translucent electromagnetic wave shielding material of the present invention comprises a transparent first substrate made of a film, a metal layer provided in a pattern, and a black electrodeposition layer registered with the metal layer provided on the metal layer.
  • a sixth invention a configuration may be adopted in which the sheet is bonded to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via a bonding sheet force and an adhesive layer.
  • the translucent electromagnetic wave shielding material of the sixth invention is that a metal layer is provided in a pattern on a transparent first substrate made of a film, and the metal layer is placed in a solution of an ionic polymer containing black particles in the previous step.
  • the transparent first substrate provided with the layer is immersed together with the counter electrode and energized, so that the adhesive sheet prepared by providing the black electrodeposition layer on the metal layer can be connected to a plate, a three-dimensional object, or a functional object through the adhesive layer. It may be manufactured by laminating on a transparent second substrate made of a film having a layer.
  • this material comprises a transparent first substrate made of a film, a metal layer provided in a pattern on a transparent first substrate, and a transparent first substrate provided with a metal layer in a solution of a monomer of a conductive polymer in a previous step.
  • the adhesive sheet prepared by providing black electrodeposits on the metal layer by immersion and energizing together with the adhesive layer is passed through an adhesive layer to form a transparent sheet made of a plate, a three-dimensional object, or a film having a functional layer. It may be manufactured by laminating on a substrate.
  • a metal layer is provided in a pattern on a transparent first substrate made of a film, and the metal layer is provided in a pretreatment in a plating solution for forming an electroplating film having a black color tone.
  • the adhesive sheet prepared by providing a black electrodeposition layer on the metal layer is converted into a plate, a three-dimensional object, or a functional object through the adhesive layer. It may be manufactured by laminating on a transparent second substrate composed of a film having a layer.
  • the translucent electromagnetic wave shielding material of the present invention is a metal compound in which a metal layer is provided in a pattern on a transparent first substrate made of a film, and a surface portion of the metal layer exhibits a black color.
  • a three-dimensional object or functional layers may be configured as being bonded to a second transparent substrate comprising a fill arm having a (seventh shot bright ⁇
  • a translucent electromagnetic wave shielding material is to provide a transparent first substrate made of a film, wherein a metal layer is provided in a pattern on a transparent first base material, and then subjected to a chemical conversion treatment so that a surface layer of the metal layer becomes a metal compound exhibiting black.
  • the adhesive sheet produced in this manner may be manufactured by attaching the adhesive sheet to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer.
  • the translucent electromagnetic wave shielding material of the present invention is provided with a black dyeing layer comprising a pattern-like bleached part and other non-bleached parts provided on a transparent first substrate made of a film.
  • An adhesive sheet provided with a metal layer strength 5 corresponding to the non-bleaching part on the upper side is attached to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer. (Eighth invention).
  • the translucent magnetic wave shielding material according to the eighth invention is characterized in that a black staining layer is provided on a transparent first substrate made of a film, a metal layer is provided on the black staining layer, and a resist layer is provided in a pattern on the metal layer.
  • the step of removing the metal layer in the portion not covered with the resist layer using an etchant is sequentially performed, and the portion of the black stained layer not covered with the metal layer patterned in the etching process is etched with the etchant.
  • the adhesive sheet produced by decolorization may be bonded to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer.
  • the translucent electromagnetic wave shielding material according to the eighth aspect of the present invention also provides a black dyeing layer on a transparent first base made of a film, a metal layer on the black dyeing layer, and a resist layer on the metal layer.
  • the steps of removing the metal layer in the area not covered with the resist layer using an etchant are sequentially performed, and then etching the S-stained layer in the area not covered with the patterned metal layer.
  • the sheet may be manufactured by laminating a sheet on a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer.
  • the transparent electromagnetic wave shielding material of No. 8 is provided with a black dye layer on a transparent first substrate made of film, a metal layer on the black dye layer, and a resist layer on the metal layer.
  • the resist layer may be removed using a resist removing solution. Further, in the resist layer removing step, a portion of the black stained layer that is not covered with the patterned metal layer can be decolorized with a resist removing liquid. In the above-mentioned niching step, the portion of the black dyed layer that is not covered with the patterned metal layer may be decolorized with an etching solution.
  • the translucent electromagnetic wave shielding material of the present invention comprises a release layer, a metal layer provided in a pattern on the release layer, and a black register provided in register with the metal layer on the metal layer.
  • the transfer layer composed of a substrate and a transfer layer composed of a film having a plate, a solid or a functional layer is transferred via an adhesive layer such that the release layer is on the outer surface.
  • the light-transmitting electromagnetic wave shield material according to the ninth invention is such that a release layer is provided on the entire surface of the first substrate made of a film, a metal layer is provided on the release layer, and a black resist layer is provided on the association layer in a pattern. Then, the transfer sheet produced by removing the metal layer in the portion not covered with the black resist layer using an etchant is applied to a plate and a three-dimensional structure via an adhesive layer such that the first substrate is on the outer surface. Bonded on a transparent second substrate consisting of a product or a film having a functional layer After that, it can be manufactured by peeling off only the first substrate.
  • the step of providing the black resist layer in a pattern may be a step of applying a photosensitive resin ink containing a black dyeing face, exposing it using a photomask, and developing. Also, the step of providing a black resist layer in a pattern is to provide a buttered free layer on the metal layer, provide a black resist layer on the metal layer and the free layer, and remove the free layer with a free removal solution. May remove the black resist layer on it.
  • the translucent electromagnetic wave shielding material of the present invention comprises a release layer, a metal layer provided in a pattern on the release layer, and a black electric layer provided on the metal layer in register with the metal layer.
  • the transfer layer composed of the deposited layer is transferred via the adhesive layer onto the transparent second substrate composed of a plate, a solid or a film having a functional layer so that the release layer becomes the outer surface. (10th invention).
  • a translucent electromagnetic wave shielding material comprising: providing a peeling layer on the entire surface of a first substrate made of a film; providing a metal layer in a pattern on the peeling layer; A transfer sheet prepared by providing a black electrodeposition layer on a metal layer by immersing the first substrate provided with the metal layer in the previous step together with the counter electrode and energizing the first substrate through an adhesive layer, It can be manufactured by laminating on a transparent second substrate consisting of a plate, a three-dimensional object, or a film having a functional layer so that the outer surface becomes the outer surface, and then peeling off only the first substrate. it can.
  • the translucent electromagnetic wave shielding material of the tenth invention is characterized in that a stripping layer is provided on the entire surface of the first substrate made of a film, a metal layer is provided on the stripping bottle in a pattern, and a conductive polymer monomer is provided.
  • Metal in the previous process in the solution)! The transfer sheet prepared by immersing the first substrate provided with the counter electrode together with the opposing electrode and applying a current to the metal layer so that the black electrodeposition layer is provided on the metal layer via the adhesive layer so that the first substrate becomes the outer surface. It may be manufactured by laminating on a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer, and then peeling off only the first substrate.
  • the light-transmitting electromagnetic wave shielding material of the tenth aspect of the present invention provides a light-transmitting electromagnetic wave shielding material, wherein a release layer is provided on the entire surface of the first substrate made of a film, and a metal layer is provided in a pattern on the release layer.
  • a transfer sheet prepared by providing a black electrodeposited layer on a metal layer by immersing the first substrate provided with the metal layer in the previous step in a plating solution for forming a film together with the counter electrode and passing a current through the adhesive layer, And then bonding the first substrate to a transparent second substrate composed of a plate, a three-dimensional object, or a film having a functional layer such that the first substrate is an outer surface, and then peeling off only the first substrate. You may.
  • a transfer layer including a release layer and a metal layer which is a metal compound which is provided in a pattern on the release layer and whose surface portion exhibits a black color, forms an adhesive layer.
  • a transparent second substrate made of a plate, a three-dimensional object, or a film having functionality, so that the release layer becomes the outer surface.
  • the translucent electromagnetic wave shielding material of the eleventh aspect of the present invention provides a translucent electromagnetic wave shielding material, comprising: providing a stripping layer on the entire surface of a first substrate made of a film; forming a metal layer on the stripping layer in a pattern; A transfer sheet prepared by using a metal compound exhibiting a black color on the surface layer portion is formed of a transparent film made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer such that the first substrate is an outer surface. It can be manufactured by laminating only the first substrate after laminating on the second substrate.
  • the translucent electromagnetic wave shielding material of the present invention may further include a release layer, a black dyed layer including a pattern-shaped bleached portion and another non-bleached portion provided on the release layer, and a black dyed layer.
  • a transfer layer consisting of a non-bleaching part and a metal layer provided in register with a register, a transparent sheet consisting of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer such that the release layer is on the outer surface. It may be configured to be transferred onto the second substrate (the 12th invention).
  • the light-transmitting electromagnetic wave shielding material includes a release layer provided on the entire surface of the first substrate made of a film, a black dye layer provided on the release layer, a metal layer provided on the black dye layer, To A step of providing a resist layer in a pattern and sequentially removing the metal layer in a portion not covered with the resist layer using an etching solution is performed, and a portion not covered with the metal layer patterned in the etching process is performed.
  • the transfer sheet prepared by decolorizing the black dyed layer of the above with an etching solution is passed through an adhesive layer so that the first substrate becomes an outer surface, a transparent plate or a three-dimensional object or a film having a functional layer. After bonding on the second substrate, it can be manufactured by peeling off only the first substrate.
  • the light-transmitting electromagnetic wave shielding material of the 12th invention is provided with a peeling layer on the entire surface of the first substrate made of a film, a black dye layer on the peel layer, and a metal layer on the black dye seed.
  • a resist layer is provided in a pattern on the metal layer, and a step of removing the metal layer in a portion not covered with the resist layer using an etchant is sequentially performed, and then a portion not covered with the patterned metal layer is performed.
  • a transfer sheet prepared by decolorizing the black dyed layer with a decolorizing solution different from the etching solution is applied to a plate, a three-dimensional object, or a functional layer via an adhesive layer such that the first substrate is on the outer surface. It can also be produced by laminating on a transparent second substrate made of a film having the film and then peeling off only the first substrate.
  • a release layer is provided on the entire surface of the first substrate made of a film, a black dye layer is provided on the release layer, a metal layer is provided on the black dye layer, ⁇ ⁇ A resist layer is provided on the layer in a pattern, and a step of removing portions of the metal layer that are not covered with the resist layer using an etchant is sequentially performed.Then, the resist layer is removed using a resist remover, In the resist layer removing step, the transfer sheet produced by decolorizing the black dyed layer of the portion not covered with the patterned metal layer with the resist removing liquid is applied to the outer surface of the first base via the adhesive layer. It can also be produced by laminating on a transparent second substrate composed of a plate, a three-dimensional object, or a film having a functional layer, and then peeling off only the first substrate.
  • the resist layer may be removed using a resist remover. Also, in the resist layer removal process, The part of the black dyed layer that is not covered with the metalized layer can be decolorized with a resist removing solution. Further, in the etching step, a portion of the black stained layer that is not covered with the patterned metal layer may be decolorized with an etchant.
  • a metal layer is laminated in a pattern on a transparent substrate, and a black resist layer which coincides with the metal layer except for a ground portion is laminated on the metal layer.
  • a configuration may be adopted (the thirteenth invention).
  • the light-transmitting electromagnetic wave shielding material includes a step of providing a metal layer on a transparent substrate, a step of providing a mask layer on a part of the metal layer, and a step of providing a black resist layer in a pattern on at least the metal layer. It can be obtained from a step of removing the metal layer in a portion not covered with the black resist layer by etching, and a step of removing the mask layer to make an exposed portion of the metal layer a ground portion.
  • the light-transmitting electromagnetic wave shielding material of the thirteenth invention comprises a step of providing a metal layer on a transparent substrate, a step of providing a black resist layer on the metal layer in a pattern, and a step of forming a black resist layer on the exposed metal layer. Forming a mask layer, removing the black resist layer and the portion of the metal layer not covered by the mask layer by etching, removing the mask layer and setting the exposed portion of the metal layer to a ground portion can do.
  • a step of providing a metal layer on a transparent substrate, a step of providing a black resist layer in a pattern on the metal layer, and etching away a portion of the metal layer not covered with the black resist layer are performed. And a step of removing a part of the black resist layer to make an exposed part of the metal layer a ground part.
  • the thirteenth invention also includes a step of providing a metal layer on the transparent substrate, a step of providing a mask layer on a part of the metal layer, a step of providing a patterned release layer on at least the metal layer, and at least the metal layer and the release.
  • Process to remove It may be obtained by a process of removing the mask layer and making the exposed portion of the metal layer a ground portion.
  • the thirteenth invention provides a step of providing a metal layer on the transparent substrate, a step of providing a patterned release layer on the metal layer, a step of providing a mask layer on a part of the exposed metal layer, And a step of providing a black resist layer on the peeling layer, a step of removing the peeling 11 with a peeling liquid to remove the black resist layer thereon, and not being covered with the black resist layer and the mask layer It may be obtained from a step of removing a portion of the metal layer by etching, or a step of removing the mask layer and setting an exposed portion of the metal layer to a ground portion.
  • a thirteenth invention provides a step of providing a metal layer on a transparent substrate, a step of providing a patterned resist on the metal layer, a step of providing a black resist layer on the metal layer and the release layer, Peeling off to remove the black resist layer on it by peeling off, etching off the metal on the part where the black resist layer was removed, and removing metal by removing part of the black resist layer It is also obtained in the process where the exposed part of S is used as the ground part.
  • a metal layer is formed in a pattern on a transparent substrate, and a black electrodeposition layer which is aligned with the metal layer except for a ground portion is laminated on the metal layer.
  • a configuration may be adopted (the 14th invention).
  • the light-transmitting electromagnetic wave shielding material includes a step of laminating a metal layer on a transparent substrate in a pattern, a step of forming a mask layer on a part of the metal layer, and black particles.
  • a transparent substrate, on which a metal layer and a mask layer are laminated in a previous step, is immersed together with a counter electrode in a solution of a conductive polymer, and a current is applied to the transparent substrate to thereby remove the black electrodeposition layer on the metal layer.
  • the exposed portion of the metal layer may be used as a ground portion.
  • the translucent electromagnetic wave shielding material according to the fourteenth aspect of the present invention comprises a step of laminating a metal layer in a pattern on a transparent substrate, and a step of laminating the metal layer in a solution of an ionic polymer containing black particles in a previous step.
  • black electricity It may be obtained by a step of laminating a deposited layer, and a step of removing a part of the black electrodeposited layer to make an exposed part of the metal layer a ground part.
  • the light-transmitting electromagnetic wave shielding material includes a step of laminating a metal layer on a transparent substrate, a step of laminating a positive resist layer on the metal layer in a pattern, and a step of laminating a positive resist layer.
  • Removing the uncovered metal layer by etching, exposing the positive resist layer by exposing and developing while leaving a part behind, and pre-processing in a solution of a macromolecular polymer containing black particles A step of immersing the transparent substrate, on which the metal layer and the positive resist layer are laminated, together with the counter electrode and energizing to deposit black electrodeposition on the metal layer, and removing the remaining positive resist layer to remove the metal
  • the exposed portion of the layer may be obtained as a grounding step.
  • the light-transmitting electromagnetic wave shielding material according to the fourteenth invention comprises a step of laminating a metal layer in a pattern on a transparent substrate, a step of laminating a mask layer on a part of the metal layer, and a step of forming a conductive polymer monomer.
  • a step of stacking a black electrodeposition layer on the metal layer by immersing the transparent substrate, on which the metal layer and the mask layer were stacked in the solution in the previous step, together with the counter electrode and applying a current, and removing the mask layer It may be obtained from the step of using the exposed part of the metal layer as the ground part.
  • a fourteenth invention is directed to a step of laminating a metal layer in a pattern on a transparent substrate, and the step of forming a transparent substrate in which a metal layer is deposited in a solution of a monomer of a conductive polymer in a previous step together with a counter electrode. Step of immersing the black electrodeposition layer on the metal layer by immersing and applying current. : It may be obtained from a process in which a part of the gas deposition layer is removed and the exposed part of the metal layer is used as a ground part.
  • a step of laminating a metal layer on a transparent substrate a step of laminating a positive resist layer in a pattern on the metal layer, and etching a metal layer in a portion not covered with the positive resist layer Removing the positive-type resist layer by exposing and developing it while leaving a part, facing the transparent substrate on which the metal layer and the bodi-type resist layer were laminated in the previous step in a solution of conductive polymer monomer Energize by immersing with electrodes
  • This may be obtained from a step of laminating a black electrodeposition layer on the metal layer, or a step of removing the remaining positive resist layer to make the exposed portion of the metal layer a ground portion.
  • the black electrodeposition layer may be an electroplated film having a black color tone (the fifteenth invention).
  • the translucent electromagnetic wave shielding material of the fifteenth invention has a step of forming a metal layer in a pattern on a transparent substrate, a step of laminating a mask layer on a part of the metal layer, and has a black color tone.
  • it may be obtained by removing the mask layer and using the exposed portion of the metal layer as a ground portion.
  • the fifteenth invention is also directed to a step of laminating a metal layer in a pattern on a transparent substrate, and a step of laminating the metal layer in a previous step in a plating solution for forming an electroplating film having a black color tone.
  • the fifteenth invention is directed to a step of laminating a metal layer on a transparent substrate, a step of laminating a positive resist layer on the metal layer in a pattern, and a step of forming a metal layer in a portion not covered with the positive resist.
  • Removing by etching and removing the positive resist layer by exposing and developing, leaving a part, forming an electroplating film having a black color tone metal layer and positive resist in the previous process by plating solution Immersing the transparent substrate with the ridged layer together with the counter electrode and applying a current to seed a black electrodeposition layer on the metal layer; removing the remaining positive resist layer to remove the exposed portion of the metal layer; It may be obtained from the process of forming a ground part.
  • the translucent magnetic wave shield material of the present invention may be a metal compound in which the surface layer of a metal layer formed in a pattern on a transparent substrate has a black color except for the ground portion ( first example).
  • the translucent electromagnetic wave shielding material of the 16th invention comprises a step of providing a metal layer in a pattern on a transparent substrate, a step of providing a mask layer on a part of the metal layer, and a chemical conversion treatment.
  • the metal layer may be obtained by a step of forming the surface layer portion of the metal layer into a metal compound exhibiting black, or a step of removing the mask layer and setting the exposed portion of the metal layer to a ground portion.
  • a step of providing a metal layer on a transparent substrate, a step of providing a positive resist layer in a pattern on the metal layer, and removing portions of the metal layer that are not covered with the positive resist layer by etching Exposing and developing the positive resist layer by exposing and developing a part of the metal layer; converting the surface layer of the metal layer to a black metal compound by performing a chemical conversion treatment; removing the remaining positive resist layer
  • the exposed portion of the metal layer may be used as a ground portion.
  • the translucent magnetic wave shielding material of the present invention has a black color in which a metal layer is provided in a pattern on a transparent first base made of a film, and the metal layer is aligned with the metal layer except for a ground portion on the metal layer.
  • An adhesive sheet provided with a resist layer is attached via an adhesive layer to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer, such that the black resist layer is on the outer surface.
  • the light-transmitting electromagnetic wave shielding material according to the seventeenth invention is characterized in that a metal layer is provided on the entire surface of a transparent first base made of a film, a mask layer is provided on a part of the metal layer, and at least on the metal layer and the mask layer.
  • a black resist layer is provided in a pattern, and the metal layer in the portion not covered with the black resist layer and the mask layer is removed using an etchant. The mask is removed and the exposed portion of the metal layer is used as a ground portion.
  • the adhesive sheet prepared as described above is applied to the transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer so that the black resist layer becomes an outer surface through an adhesive layer. You may obtain by combining.
  • the seventeenth invention is directed to providing a metal layer on the entire surface of the transparent first substrate made of a film, providing a black resist layer in a pattern on the metal layer, and forming a mask layer on a part of the exposed metal layer.
  • the masking layer was removed using an etching solution to remove the metal layer in the area not covered with the black resist layer and the mask layer, and the mask layer was removed to make the exposed part of the metal layer a ground part.
  • the adhesive sheet may be obtained by laminating an adhesive sheet on a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer such that the black resist layer becomes the outer surface.
  • a metal layer is provided on the entire surface of the transparent first substrate made of a film, a black resist layer is provided in a pattern on the metal layer, and a portion of the metal layer not covered with the black resist layer is etched.
  • the adhesive sheet prepared by removing the black resist layer using a liquid and removing the part of the black resist layer to make the exposed part of the metal layer a ground part, and the black resist layer is removed through the adhesive layer. It may be obtained by laminating on a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer so as to have a surface.
  • the translucent electromagnetic wave shielding material of the present invention is a black electrodeposition layer in which a metal is provided in a pattern on a transparent first substrate made of a film, and the metal electrode is aligned with the metal layer except for a ground portion. Is attached to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer such that the black electrodeposition layer is on the outer surface. (The 18th invention).
  • the light-transmitting electromagnetic wave shielding material provides a light-transmitting electromagnetic wave shielding material comprising: a metal layer provided in a pattern on a transparent first substrate made of a film; a mask layer provided on a part of the metal layer; A black electrodeposited layer is formed on the metal layer by immersing the transparent first substrate provided with the metal layer and the mask type in the previous step together with the counter electrode in a solution of the conductive polymer and energizing the same, and forming the mask layer on the metal layer.
  • the adhesive sheet produced by removing the exposed metal layer to serve as a ground part has a plate, a three-dimensional object, or a functional layer via an adhesive layer so that the black electrodeposition layer is the outer surface. It may be obtained by laminating on a transparent second substrate made of a film.
  • the eighteenth invention is directed to a method in which a metal layer is patterned on a transparent first substrate made of a film.
  • the transparent first substrate provided with the metal layer in the previous step is immersed in the solution of the ionic polymer containing the black particles together with the counter electrode, and a black electrodeposition layer is provided on the metal layer by energizing.
  • the adhesive sheet prepared by removing a part of the black electrodeposition layer and setting the exposed part of the metal layer as an earth part is placed on a plate such that the black electrodeposition layer becomes an outer surface via an adhesive layer.
  • it may be obtained by laminating on a transparent second substrate made of a film having a three-dimensional object or a functional layer.
  • a metal layer was provided on the entire surface of the transparent first substrate made of film, a positive resist layer was provided on the metal layer in a pattern, and was not covered with the positive resist layer.
  • the positive resist layer is removed by exposure and development except for a part, and the metal layer and the positive resist are added to the solution of the ionic polymer containing black particles in the previous step.
  • the transparent first substrate provided with the layer was boiled together with the counter electrode and energized to form a black electrodeposition layer on the metal, and the remaining positive resist layer was removed to expose the exposed metal layer.
  • the adhesive sheet produced by using the grounding portion is placed on a transparent second layer made of a plate, a three-dimensional object, or a film having a functional layer so that the black electrodeposition layer becomes the outer surface via the adhesive layer. May be laminated on the substrate
  • a metal layer is provided in a pattern on a transparent first substrate made of a film, a mask layer is provided on a part of the metal layer, and a solution of a monomer of a conductive polymer is added in a previous step.
  • the transparent first substrate provided with the metal layer and the mask layer is immersed in the electrode together with the counter electrode to conduct electricity, so that a black electrodeposition layer is provided on the metal layer, the mask layer is removed, and the exposed portion of the metal layer is grounded.
  • the adhesive sheet prepared by the above process is applied to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer so that the black electrodeposited layer becomes the outer surface. It may be pasted on.
  • the eighteenth invention is further directed to a transparent first substrate in which a metal layer is provided in a pattern on a transparent first substrate made of a film, and a metal layer is provided in a previous step by a solution of a conductive polymer monomer.
  • the body is immersed with the counter electrode * and a current is applied to form a black electrodeposition layer on the metal layer.
  • the adhesive sheet prepared by removing a part of the black electrodeposition layer and leaving the exposed metal layer as a ground part was placed on the plate so that the black electrodeposition layer became the outer surface via the adhesive layer.
  • it may be obtained by laminating on a transparent second substrate composed of a three-dimensional object or a film having a functional layer.
  • the eighteenth invention is directed to providing a metal layer on the entire surface of a transparent first substrate made of a film, providing a positive resist layer in a pattern on the metal layer, and covering a portion of the metal layer not covered with the positive resist layer.
  • the resist was removed by etching, the positive resist layer was removed by exposure and development except for a part, and the metal layer and the poly resist layer were provided in the previous step in a conductive polymer monomer solution.
  • a black electrodeposition layer is provided on the metal layer, the remaining positive resist layer is removed, and the exposed portion of the metal layer is used as a ground portion. Even if the prepared adhesive sheet is bonded to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer so that the black electrodeposited layer becomes the outer surface, it can be obtained by bonding. good.
  • a metal layer is provided in a pattern on a transparent first substrate made of a film, and a mask layer is provided on a part of the metal layer to form an electroplating film having a black color tone.
  • the transparent first substrate provided with the metal layer and the mask layer in the previous step was immersed in the plating solution together with the counter electrode, and a current was applied to the black first electrode to provide a black electrodeposition layer on the metal layer.
  • the adhesive sheet produced by using the exposed part of the layer as the ground part is made of a plate, a three-dimensional object, or a film having a functional layer via the adhesive layer so that the black electrodeposition layer is the outer surface. It may be bonded on a transparent second substrate.
  • a metal layer was provided in a pattern on a transparent first substrate made of a film, and the metal layer was provided in a previous step in a plating solution for forming an electroplating film having a black color tone.
  • a black first electrodeposition layer is provided on the metal layer by immersing the transparent first substrate together with the counter electrode and energizing, and a part of the black electrodeposition layer is removed, and the exposed portion of the metal layer is used as a ground portion.
  • the black sheet is deposited on the adhesive sheet prepared by
  • Replacement form (Rule 26) It may be bonded to a transparent second substrate composed of a plate, a three-dimensional object, or a film having a functional layer so that m is the outer surface.
  • the eighteenth invention is directed to providing a metal layer on the entire surface of a transparent first substrate made of a film, providing a positive resist layer in a pattern on the metal layer, and covering a portion of the metal layer not covered with the positive resist layer.
  • the positive resist layer is removed by exposure and development, leaving a part of the metal layer and the positive electrode layer in the previous step in a plating solution that forms an electroplating film having a black color tone.
  • the transparent first substrate provided with the resist layer was immersed together with the counter electrode and energized to provide a black electrophoretic layer on the metal layer, exposing the remaining positive resist layer and exposing the metal layer.
  • the adhesive sheet produced by using the portion as a ground portion is placed on a transparent sheet made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer such that the black electrodeposition layer is on the outer surface. Paste on two substrates Even if the good.
  • the translucent electromagnetic wave shielding material according to the present invention is a translucent electromagnetic wave shielding material comprising: a transparent first substrate made of a film, a metal layer provided in a pattern, and a surface layer portion of the metal layer excluding a ground portion being a metal compound exhibiting black.
  • a translucent electromagnetic wave shielding material comprising: a transparent first substrate made of a film, a metal layer provided in a pattern, and a surface layer portion of the metal layer excluding a ground portion being a metal compound exhibiting black.
  • the translucent electromagnetic wave shielding material according to the nineteenth aspect of the present invention is a transparent electromagnetic wave shielding material, comprising: providing a metal layer in a pattern on a transparent first substrate made of a film; providing a mask layer on a part of the metal layer; Table not covered by the mask layer)!
  • the adhesive sheet prepared by removing the mask layer from the metal compound and then exposing the exposed metal layer to the ground is used as an adhesive layer. May be bonded on a transparent second substrate made of a plate, a solid, or a film having functionality.
  • a metal layer is provided on the entire surface of the transparent first substrate made of a film, and A positive resist layer is formed in a pattern, and the metal layer in the part not covered with the positive resist layer is removed by etching, and the positive resist layer is removed by exposure and development while leaving a part, and the chemical conversion treatment is performed.
  • the surface layer that is not covered with the positive resist layer of the metal layer is coated with a black metal compound, the remaining positive resist layer is removed, and the exposed metal layer is used as the grounding part.
  • the sheet may be obtained by laminating the sheet via a bonding layer on a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer so that the metal compound exhibiting black color becomes the outer surface. good.
  • the translucent electromagnetic wave shielding material of the present invention includes a release layer, a metal layer provided in a pattern on the release layer, and a black resist layer provided on the metal layer in register with the metal layer.
  • Transfer layer strength consisting of: The adhesive layer is transferred onto a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer so that the release layer becomes the outer surface, and is peeled off.
  • a configuration in which only the ground portion of the metal layer is exposed on the layer side may be employed (20th invention).
  • the translucent electromagnetic wave shielding material of the present invention comprises: a release layer; a metal layer provided in a pattern on the release layer; and a black electrodeposition layer provided on the metal layer in register with the metal layer. Is transferred onto a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer so as to be an outer surface of a release layer, and A configuration in which only the ground portion is exposed on the release layer side of the metal layer may be employed (the twenty-first invention).
  • the translucent magnetic wave shielding material of the present invention comprises: a transfer layer comprising a release layer; and a metal layer which is a metal compound which is provided on the release layer in a pattern and has a blackened surface portion.
  • the second configuration may be adopted (the second invention).
  • the translucent electromagnetic wave shielding material of the present invention comprises a release layer, a black dyed layer comprising a pattern-shaped bleached portion provided on the release layer and other non-bleaching parts,
  • the transfer layer consisting of the decolored part and the metal layer provided in register is peeled off via the adhesive layer.
  • the layer is transferred to a transparent second substrate composed of a plate, a three-dimensional object, or a film having a functional layer so that the layer becomes a surface, and only the ground layer is exposed on the release layer side.
  • a configuration may be adopted (the 23rd invention).
  • the light-transmitting raw electromagnetic wave shielding material according to the twenty-third invention is characterized in that a release layer is provided on a first substrate made of a film, a black dye layer is provided on the release layer, a metal layer is provided on the black dye layer, and a metal layer is provided on the black dye layer.
  • a resist layer is provided in a pattern in the pattern, and a process of sequentially removing the metal layer in a portion not covered with the resist by using an etching solution is performed, and a portion not covered with the metal layer patterned in the etching process is performed.
  • the transfer sheet produced by decolorizing the black dyed layer with an etchant is made of a plate, a solid or a film having a functional layer via an adhesive layer such that the first substrate is the outer surface. After laminating on the transparent second substrate, only the first substrate is peeled off, a part of the non-bleaching part of the black dyed layer and the peeling layer thereover are removed, and the exposed part of the gold is grounded. May be obtained.
  • the light-transmitting electromagnetic wave shielding material provides a light-transmitting electromagnetic wave shielding material, wherein a peeling layer is provided on a first substrate made of a film, a black staining layer is provided on the peeling layer, a metal layer is provided on the black staining layer, Then, a resist layer is provided in a pattern, and a step of removing portions of the metal layer that are not covered with the resist layer using an etching solution is sequentially performed. Then, a portion of the portion that is not covered with the patterned metal layer is removed.
  • a transfer sheet produced by decolorizing the black dyed layer with a decolorizing solution different from the etching solution is applied to a plate, a solid or a functional layer via an adhesive layer such that the first substrate is on the outer surface.
  • a light-transmitting electromagnetic wave shield material comprising: a first substrate made of a film, a peeling layer, a black dyeing layer provided on the peeling layer, a metal layer provided on the black dyeing layer, A resist layer is provided in a pattern on the metal layer, and a step of removing the metal layer in a portion not covered with the resist layer using an etching solution is sequentially performed.
  • the transfer sheet produced by applying a resist removing liquid to a portion of the black dyed layer that is not covered with the patterned metal layer in the resist layer removing step is colored with a resist removing liquid.
  • a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer so as to have an outer surface of the first substrate After laminating on a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer so as to have an outer surface of the first substrate, only the first substrate is peeled off, and the black dyed layer is removed. It may be obtained by removing a part of the non-bleaching part and a peeling layer thereover and leaving the exposed part of the metal layer as a ground part.
  • FIG. 1 is a schematic view showing one embodiment of the manufacturing process of the translucent electromagnetic wave shielding material of the first invention of the present invention.
  • FIG. 2 is a schematic view showing one embodiment of the pattern of the black resist layer of the first invention.
  • FIG. 3 is a schematic view showing one embodiment of the pattern of the black resist layer of the first invention.
  • FIG. 4 is a schematic view showing one embodiment of the pattern of the black resist layer of the first invention.
  • FIG. 5 is a schematic view showing one embodiment of the pattern of the black resist layer of the first invention.
  • FIG. 6 is a schematic view showing one embodiment of another manufacturing process of the translucent electromagnetic wave shielding material of the first invention of the present invention.
  • FIG. 7 is a schematic view showing one embodiment of the pattern of the release layer.
  • FIG. 8 is a schematic view showing one embodiment of the pattern of the release layer.
  • FIG. 9 is a schematic view showing one example of a pattern of the stripping and slaughter.
  • FIG. 10 is a schematic diagram showing one embodiment of the pattern of the release layer.
  • FIG. 11 is a schematic view showing one embodiment of the manufacturing process of the translucent electromagnetic wave shielding material of the second invention.
  • FIG. 12 is a schematic diagram showing an apparatus for depositing a black electrodeposition layer on a metal layer according to the second invention.
  • FIG. I3 is a schematic view showing one embodiment of a manufacturing process of the third electromagnetic wave transmitting electromagnetic wave shielding material.
  • FIG. 14 is a schematic view showing one embodiment of the manufacturing process of the translucent electromagnetic wave shielding material of the fourth invention.
  • FIG. 15 is a schematic diagram showing another embodiment of the manufacturing process of the translucent electromagnetic wave shielding material of the fourth invention.
  • FIG. 16 is a schematic view showing another embodiment of the manufacturing process of the translucent electromagnetic wave shielding material of the fourth invention.
  • FIG. 17 is a schematic view showing another embodiment of the manufacturing process of the translucent electromagnetic wave shielding material of the fourth invention.
  • FIG. 18 is a schematic diagram showing one embodiment of a translucent electromagnetic wave shielding material according to the fifth invention.
  • FIG. 19 is a schematic diagram showing one embodiment of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the fifth invention.
  • FIG. 20 is a schematic view showing one embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the fifth invention.
  • FIG. 21 is a schematic diagram 121 showing another embodiment of the translucent electromagnetic wave shielding material according to the fifth invention.
  • FIG. 22 is another embodiment of the second half of the manufacturing process of the translucent electromagnetic wave shielding material according to the fifth invention.
  • FIG. 23 is a schematic view showing another embodiment of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the fifth invention.
  • FIG. 24 is a schematic view showing another embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the fifth invention.
  • FIG. 25 is a schematic view showing another embodiment of the latter half of the manufacturing process of the transparent electromagnetic wave shield material according to the fifth invention.
  • FIG. 26 is a schematic view showing one embodiment of the translucent electromagnetic wave shielding material according to the sixth invention. You.
  • FIG. 27 is a schematic view showing one embodiment of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the sixth invention.
  • FIG. 28 is a schematic view showing one embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shield material according to the sixth invention.
  • FIG. 29 is a schematic view showing another embodiment of the translucent electromagnetic wave shielding material according to the sixth invention.
  • FIG. 30 is a schematic view showing another embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the sixth invention.
  • FIG. 31 is a schematic view showing another embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the sixth invention.
  • FIG. 7 is a schematic view showing another embodiment of the latter half of the manufacturing process of the magnetic wave shielding material.
  • FIG. 33 is a schematic view showing one embodiment of the translucent electromagnetic wave shielding material according to the seventh invention.
  • FIG. 34 is a schematic view showing one example of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the seventh invention.
  • FIG. 35 is a schematic view showing one embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the seventh invention.
  • FIG. 36 is a schematic view showing another embodiment of the translucent electromagnetic wave shielding material according to the seventh invention.
  • FIG. 37 is a schematic view showing another embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the seventh invention.
  • FIG. 38 is a schematic view showing another embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the seventh invention.
  • FIG. 39 is a schematic diagram showing another example of the latter half of the manufacturing process of the translucent electromagnetic wave shield material according to the seventh shimmer.
  • FIG. 40 is a schematic diagram showing an embodiment of the transparent and transmitted electromagnetic wave shielding material according to the eighth invention.
  • FIG. 4D is a schematic view showing one embodiment of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the eighth invention.
  • FIG. 42 is a schematic view showing one embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the eighth invention.
  • FIG. 43 is a schematic view showing another embodiment of the translucent electromagnetic wave shielding material according to the eighth invention.
  • FIG. 44 is a schematic view showing another embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the eighth invention.
  • FIG. 45 is a schematic view showing another embodiment of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the eighth invention.
  • FIG. 46 is a schematic view showing another embodiment of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the eighth invention.
  • FIG. 47 is a schematic view showing another embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the eighth invention.
  • FIG. 48 is a schematic view showing another embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the eighth invention.
  • FIG. 49 is a schematic view showing one embodiment of the translucent electromagnetic wave shielding material according to the ninth invention.
  • FIG. 50 is a schematic view showing one embodiment of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the ninth invention.
  • FIG. 51 shows another embodiment of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the ninth invention.
  • FIG. 52 is a schematic diagram showing an example of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the ninth invention.
  • FIG. 53 is a schematic view showing another embodiment in the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the ninth invention! ].
  • FIG. 54 is a schematic view showing one embodiment of the translucent electromagnetic wave shielding material according to the tenth invention.
  • FIG. 55 is a schematic view showing one embodiment of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the tenth invention.
  • FIG. 56 is a schematic view showing one embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the tenth invention! ].
  • FIG. 57 is a schematic view showing another embodiment of the latter half of the manufacturing process of the translucent magnetic shielding material according to the tenth invention.
  • FIG. 58 is a schematic view showing one embodiment of the translucent electromagnetic wave shielding material according to the eleventh invention.
  • FIG. 59 is a schematic view showing one embodiment of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the eleventh invention.
  • FIG. 60 is a schematic view showing an example of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the eleventh invention.
  • FIG. 61 is a schematic view showing another embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the eleventh invention.
  • FIG. 62 is a schematic view showing one embodiment of the translucent electromagnetic wave shielding material according to the 12th invention.
  • FIG. 63 is a schematic view showing one embodiment of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the 12th invention.
  • me 4 is a schematic diagram showing one embodiment of the latter half of the manufacturing process of the translucent electromagnetic shielding material according to the 12th invention! ].
  • FIG. 65 is a schematic view showing another embodiment of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the 12th invention.
  • FIG. 66 is a schematic view showing another embodiment of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the 12th invention.
  • FIG. 67 is a schematic view showing another embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the first and second embodiments.
  • FIG. 68 is a translucent electromagnetic wave shielding material of the present invention, and is a basic plan view of an embodiment having a ground portion.
  • FIG. 69 is a view corresponding to FIG. 1, but showing an aspect in which the mask layer is formed first.
  • the black resist layer is formed before the mask layer.
  • FIG. 71 is a diagram showing a method without using a mask layer.
  • FIG. 72 is a view corresponding to FIG. 6, but showing an embodiment in which a mask layer is formed.
  • FIG. 73 shows a case where the order of forming the stripping layer 4 and the mask layer 101 in FIG. 72 is reversed.
  • FIG. 74 is a view showing a method of forming the ground portion 100 by removing only a part of the black resist layer 3 at the end without using a mask layer.
  • FIG. 75 is a view corresponding to FIG. 11, and is a view showing a method of forming a ground portion using a mask layer.
  • FIG. 76 is a diagram showing the deposition apparatus used in FIG.
  • FIG. 77 and FIG. 78 are diagrams showing a method of once forming the black deposition layer 3 on the metal layer, and then removing a portion of the deposition layer 3.
  • FIG. 78 shows the deposition apparatus used in FIG. 77 and FIG. FIG. 79 is a view showing a method of forming a positive resist layer 102 instead of the mask layer 101 and finally exposing that portion.
  • FIG. 80 shows the deposition apparatus used in FIG.
  • FIG. 81 is a view corresponding to FIG. 13, and a mask layer is formed on a part of the metal layer so as not to change into a metal compound.
  • FIG. 82 shows an embodiment in which a positive resist layer is formed instead of the mask layer, and the portion is finally removed by exposure.
  • FIG. 83 is a view corresponding to FIG. 21, and a part of the metal layer 32 is exposed to form a ground portion 100.
  • FIG. 84 shows an example of a method for manufacturing the translucent electromagnetic wave shielding material of the embodiment shown in FIG. # 85 is a state in which the black resist layer 33 is formed earlier than the mask # 101.
  • FIG. 86 shows a state in which the ground portion 100 is formed by removing a part of the black resist layer 33 without using the mask ⁇ .
  • FIG. 87 and FIG. 88 show embodiments obtained by attaching the one obtained in FIG. 86 to the second base 35.
  • FIGS. 89, 90 and 91 show embodiments using the free layer 37, and are the same as FIGS. 84 to 88 except that the metal layer is exposed using the free layer 37. .
  • FIGS. 92 to 97 are the same as the embodiments of FIGS. 83 to 88 except that the black layer is the black electrodeposition layer 33.
  • FIGS. 98 to 102 are the same except that the upper part of the metal layer 32 is a metal compound exhibiting black.
  • FIG. 103 to FIG. 106 are inventions corresponding to the ninth invention to the twelveth invention, but a part of the metal layer is also exposed to form a ground part.
  • FIG. 1 is a schematic diagram showing one embodiment of a manufacturing process of the translucent electromagnetic wave shielding material of the first invention of the present invention
  • FIGS. 2 to 5 are schematic diagrams showing one embodiment of a pattern of a black resist layer.
  • 1 indicates a transparent substrate
  • 2 indicates a metal layer
  • 3 indicates a black resist layer.
  • the metal layer 2 is provided on the entire surface of the transparent substrate 1 (see FIG. 1a).
  • the transparent substrate 1 examples include glass, acrylic resin, polycarbonate resin, polyethylene resin, AS resin, vinyl acetate resin, polystyrene resin, polypropylene resin, polyester resin, polysulfone resin, polyethersulfone resin, and polyvinyl chloride. Any transparent material may be used.
  • the transparent substrate 1 includes a plate, a film, and the like.
  • the material of the metal layer 2 for example, a material having sufficient conductivity, such as gold, silver, copper, iron, nickel, and chromium, that can shield electromagnetic waves sufficiently is used.
  • the metal layer 2 is not limited to a simple substance, but may be an alloy or a multilayer.
  • Examples of the method for forming the metal layer 2 include a method of deposition from a gas phase such as vapor deposition, sputtering, and ion plating, a method of bonding gold foil, and a method of electroless plating the surface of the transparent substrate 1. It is preferable that the thickness of the metal layer 2 be 0.1 ⁇ 50 ⁇ m. If it exceeds 50 m, it will be difficult to finish the pattern with high accuracy. If it is less than 0.1 / m, it will be impossible to stably secure the minimum necessary conductivity to maintain the electromagnetic shielding effect.
  • the black resist layer 3 is a layer for suppressing the reflection on the surface of the metal layer 2 to enhance visibility, and is a layer used for patterning the metal layer 2 in the process of manufacturing the light-transmitting electromagnetic wave shielding material. is there.
  • the black resist layer 3 includes a photo resist and a printing resist.
  • Fortress For example, roll coating, spin coating, full-surface printing, sculpting, etc., of photosensitive resins such as photosensitive polyimide, polyepoxy acrylate, and novolak containing black dyes and pigments are used.
  • a solid pattern is formed on the metal layer 2 using a mask, exposed using a mask, and developed to form a pattern.
  • the printing resist is, for example, a resin made of a resin such as polyester containing a black dye and pigment, and is formed in a pattern on the metal layer 2 by an offset printing method or a gravure printing method.
  • the pattern of the layer 3 includes, for example, a lattice (see FIG. 2), a honeycomb (see FIG.
  • the thickness of the black resist layer 3 is preferably set to Olm to 10 m. If it exceeds 10 m, it becomes difficult to finish the above pattern with high accuracy. If it is smaller than 10 m, sufficient light-shielding properties cannot be maintained, and it is difficult to suppress the reflection on the surface of the metal layer 2.
  • the part of the metal layer 2 not covered with the black resist layer 3 is etched and removed (see FIG. Lc).
  • a transparent electromagnetic wave shielding material is obtained in which the metal layer 2 is laminated in a pattern on the transparent substrate 1 and the black resist layer 3 corresponding to the metal layer 2 is layered on the gold layer 2.
  • the transmissive electromagnetic wave shielding material, a metal layer 2 force? Has a light-transmitting property in the removed portion is suppressed reflection at by Ri metal layer 2 surface in the black resist layer 3 register coincides with the metal layer 2 .
  • the etching solution is selected according to the material of the metal layer 2.
  • the material of the metal layer 2 is gold, it is aqua regia, silver is an aqueous solution of ferric nitrate, copper is an aqueous solution of ferric chloride or cupric chloride, and chromium is an aqueous solution of cerium nitrate. It is good to use such as.
  • the transfer method may be used. That is, a transfer material having a black resist layer 3, a metal layer 2 corresponding to the black resist layer 3, and a transfer layer composed of an adhesive layer provided on a peelable substrate sheet is used, and the transparent substrate 1 is plowed. Only the photosensitive layer may be transferred. If the translucent electromagnetic wave shielding material ⁇ made in this way is weak in strength, apply a protective layer made of a transparent material on one or both sides of the shielding material as necessary, or apply film lamination, etc. As the material of the protective layer, the protective layer can have various functions, such as a non-glare function, an antistatic function, an anti-Newton ring function, etc., so select a material according to each function. It does not need to be particularly limited.
  • FIG. 6 is a schematic view showing another example of the manufacturing process of the translucent electromagnetic wave shielding material of the first invention of the present invention.
  • Figure? 1 to 10 are schematic diagrams showing one embodiment of the pattern of the release layer.
  • 1 is a transparent substrate
  • 2 is a metal layer
  • 3 is a black resist layer
  • 4 is a release layer.
  • the metal layer 2 is provided on the transparent substrate 1 as in the method of FIG. 1 (see FIG. 6a).
  • a patterned release layer 4 is provided on the metal layer 2 (see FIG. 6B).
  • a generally available printing resist material / photoresist material is used as the material of the release layer 4.
  • the release layer 4 may be formed in a pattern on the metal layer 2 by a screen printing method using a printing resist material, or by a roll coating method, a spin coating method, or a dip method using a photoresist material.
  • a solid pattern is formed on the metal layer 2 by a coating method, a full-surface printing method, a transfer method, or the like, and is exposed to light using a mask, developed, and formed into a pattern. In this case, since black dyes and pigments are not contained, workability during exposure, development and printing does not matter much.
  • the pattern of the stripping layer 4 includes, for example, a reciprocal lattice (see FIG. 7), an inverted honeycomb (see FIG. 8), an inverted ladder (see FIG. 9), a polka dot (see FIG. 10), and the like. There is a pattern.
  • a black resist layer 3 is provided on the metal layer 2 and the peeling layer 4 (see FIG. 6c).
  • the above metal layer 2 is patterned during the manufacturing process of optical electromagnetic wave shielding material It is a layer used as an etching resist to perform As the material of the black resist layer 4, as in the case of the method of FIG. 1, for example, a material in which a black dye or pigment is added to a resin such as polyester is used.
  • Examples of a method for forming the black resist layer 3 include a roll coating method and a dip coating.
  • the thickness of the black resist layer 3 is preferably set to Olm to 10 / ⁇ . If it exceeds 10 m, the peeling of the release layer 4 becomes difficult, and if it is less than 0.1 m, sufficient light-shielding properties cannot be maintained, and reflection on the surface of the metal layer 2 becomes difficult to suppress.
  • the black resist layer 3 thereon is removed by peeling the peeling layer 4 with a peeling liquid (see FIG. 6d).
  • the black resist layer 3 becomes a pattern obtained by inverting the pattern of the release layer 4.
  • the patterns are lattice (see Fig. 2), honeycomb (see Fig. 3), ladder (see Fig. 4), and inverted polka dots (see Fig. 5).
  • the stripping solution used in this step a different type is used depending on the material of the stripping layer 4.
  • the release layer 4 is of an alkaline release type, an aqueous solution of potassium hydroxide or an aqueous solution of sodium hydroxide is used.
  • the stripping layer 4 is of a water stripping type, use water.
  • the stripping layer 4 is of a solvent stripping type, use ethyl acetate mouth sorp acetate, acetone, or the like.
  • the black resist layer 3 is simply formed, there is no need to consider workability at the time of exposure, development, and printing.
  • the material can be used in a wide range, and it is possible to obtain a transparent electro-magnetic shield material at low cost.
  • the metal layer 2 at the portion where the black resist layer 3 has been removed is removed by etching (see FIG. 6E). C
  • the metal layer 2 is laminated on the transparent substrate 1 in a pattern, and thus, a translucent electromagnetic shield material is obtained in which a black resist layer 3 which is in register with the metal layer 2 is laminated.
  • the translucent electromagnetic wave shielding material has translucency in a portion where the metal layer 2 is removed, and the reflection on the surface of the metal layer 2 is suppressed by the black resist layer 3 which is in register with the metal layer 2. Select the etching solution according to the material of the metal layer 2. You.
  • the material of the metal layer 2 is gold, aqua regia is used, when silver, ferric nitrate aqueous solution is used, when copper is used, ferric chloride or cupric chloride aqueous solution is used, when chromium is used, cerium nitrate aqueous solution is used. Good to use.
  • the protective layer made of a transparent material may be applied to one or both surfaces of the shielding material by coating or film laminating as necessary. You can set it.
  • the protective layer can include various functions, for example, a non-glare function, an antistatic function, an anti-Newton ring function, etc., so that a material suitable for each function may be selected. Not limited.
  • FIG. 11 is a schematic view showing still another example of the manufacturing process of the translucent electromagnetic wave shielding material of the second invention of the present invention.
  • FIG. 12 is a schematic view showing an apparatus for depositing a black electrodeposition layer on a metal layer according to the present invention. 1 indicates a transparent substrate, 2 indicates a metal layer, 5 indicates a black electrodeposited layer, and 6 indicates a counter electrode.
  • the metal 2 is provided on the transparent base 1 in a pattern (see FIG. 11a).
  • the metal layer 2 As a method of patterning the metal layer 2, there is a method in which the metal layer 2 is provided on the entire surface of the transparent substrate 1, and photolithography or the like is used for the metal layer 2. It is also possible to form a conductive metal film pattern in advance and then bond it to the transparent substrate 1.
  • the pattern of the metal layer 2 includes, for example, a lattice pattern (see FIG. 2), a honeycomb pattern (see FIG. 3), a ladder pattern (see FIG. 4), and a reverse polka dot pattern (see FIG. 5).
  • a black electrodeposition layer 5 that is in register with the metal layer 2 is deposited on the patterned metal layer 2 (see FIG. 11b).
  • the black electrodeposition layer 5 is a layer for suppressing the reflection of the surface of the metal layer 2 to enhance the visibility, and for example, there is an ionic polymer containing black particles. like this
  • the transparent substrate 1, on which the metal layer 2 was laminated in the previous step is immersed together with the facing electrode 6 in a solution of a polymer containing black particles, (See Figure 12).
  • black particles examples include carbon black, titanium black, and aniline black. Further, instead of the black-based particles, some particles other than the black-based particles may be combined so as to have a substantially black-based appearance.
  • the black type includes a color other than pure black, for example, a dark brown or a dark green.
  • an acrylic resin, a polyester resin, a polybutadiene resin, a maleic resin, an epoxy resin, a urethane resin, a polyamide resin, or a modified product thereof, which is obtained by amination or carboxylation is used.
  • the content of the ionic polymer in the aqueous solution is from 1 to 30 parts by weight of the solid content.
  • additives such as inorganic salts, organic salts, surfactants, and organic solvents are used for the purpose of stabilizing the conditions during energization and improving the conductivity and mechanical surface properties of the black electrodeposition layer 5. May be added to the solution of the ionic polymer.
  • the energization is performed by exposing a part of the metal layer 2 laminated on the transparent substrate 1 upward from the liquid interface or by connecting an insulated coated lead wire and applying a voltage of 1 to 300 V to the counter electrode 6. : Apply pressure.
  • the black electrodeposition layer 5 may be made of a black conductive polymer.
  • the transparent substrate 1 on which the metal layer 2 is laminated in the previous step together with the counter electrode 6 is immersed in a solution of the monomer of the conductive II polymer, and the current is applied. . It is so-called electrolytic polymerization.
  • the monomer of the conductive polymer is selected from, for example, virol, aniline, thiophene, and derivatives thereof.
  • Solvents for dissolving the monomers include water, acetonitrile, propion carbonate, tetrahydrofuran, nitromethane, methanol, ethanol, and sulfolane.
  • a dopant is added to a solution of a conductive polymer monomer in the solution. Examples of dopants include lithium perchlorate, tetraalkylammonium borofluoride, and sulfuric acid.
  • as a current supply method there is a method of periodically increasing and decreasing the potential, in addition to a constant potential electrolysis method and a constant current electrolysis method.
  • the color of the deposited conductive polymer varies depending on the conditions at the time of energization, the degree of polymerization, the type of monomer, etc., but it is generally black, and it is possible to suppress the reflection on the surface of the metal sludge. it can.
  • the thickness of the black electrodeposition layer 5 is 0.1 / ⁇ ! ⁇ And the power of 5 'preferred. If it exceeds m, it becomes difficult to finish the above pattern with high precision. If it is less than 0.1 m, sufficient light-shielding properties cannot be maintained, and it is difficult to suppress reflection on the surface of the metal layer 2.
  • the load It is anticipated that a black electrodeposition layer 5 composed of black particles of the same nature and that using a solution containing black particles in micelles in the production process will be obtained.
  • the black electrodeposition layer 5 is a layer for suppressing the reflection on the surface of the metal layer 2 to enhance the visibility, and an electroplated film having a black color tone may be used.
  • the transparent substrate 1 on which the metal layer 2 is laminated in the previous step is immersed together with a counter electrode in an electroplating solution for forming a coating having a black color tone. Then, turn on the power (see Fig. 12).
  • Nickel-based, chromium-based, rhodium-based, tin-nickel-copper ternary alloy or tin-nickel-molybdenum ternary alloy-based coatings can be used as the hot-plated coating having a black color tone.
  • the black type in the present invention includes, for example, black-brown brown or blackish green other than black.
  • Examples of the method of electroplating include placing the transparent substrate 1 on which the metal layer 2 is laminated in a rack, hanging it, immersing it, and applying electricity to it. There is a method in which a plating solution is sprayed onto the transparent substrate 1 on which the metal layer 2 is laminated to energize and adhere.
  • a continuous (hoop) plating method can be used.
  • the color tone of the deposited electroplated film slightly varies depending on the conditions at the time of energization, the composition of the plating solution components, and the like, it is basically black and can suppress reflection on the surface of the metal layer 2.
  • the thickness of the black electrodeposition layer 5 is preferably 0.1 m / m to 10 / m. If it exceeds 10 / im, it becomes difficult to finish the above pattern with high accuracy, and if it is less than 0.1 lm, sufficient light-shielding properties cannot be maintained and it becomes difficult to suppress reflection on the surface of the metal layer 2.
  • a protective layer may be provided on one or both surfaces of the shield material by film-laminate if necessary.
  • the protective layer can include various functions, for example, a non-glare function, an antistatic function, and an anti-Newton ring function. Not limited.
  • the translucent electromagnetic wave shielding material of the present invention is usually used so as to be seen through from the surface on which the metal layer 2 and the black electrodeposition layer 5 of the transparent substrate 1 are laminated, but the metal layer 2 has transparency. When formed to be as thin as possible, the transparent substrate 1 can be used so as to be seen through.
  • FIG. 13 is a schematic view showing one embodiment of the manufacturing process of the translucent electromagnetic wave shielding material of the third invention of the present invention.
  • 1 indicates a transparent substrate
  • 2 ' indicates a metal layer
  • 7 indicates a black-colored metal compound.
  • a metal layer 2 is provided in a pattern on a transparent base 1 (see FIG. 3 a).
  • the metal layer 2 ′ may be made of the same material as the metal layer used in FIG. 1, but it is necessary to generate a compound that exhibits a black color by a chemical conversion treatment. Use a conductive material that can shield electromagnetic waves.
  • the method of forming the patterned metal layer 2 ′ includes a method of depositing from a gas phase such as vapor deposition, sputtering, or ion plating, a method of bonding gold foil, and a method of electrolessly plating the surface of the transparent substrate 1. After providing the metal layer 2 ′ on the entire surface of the transparent substrate 1, patterning is performed. Thickness of the metal layer 2 ', the mosquitoes? Preferably to 0.1 m ⁇ 50 / m.
  • a photoresist may be solidly formed, exposed using a mask, developed, formed into a pattern, etched, and stripped.
  • a printing register may be used.
  • the pattern of the metal layer 2 includes, for example, a lattice (see FIG. 2), a honeycomb (see FIG. 3), a ladder (see FIG. 4), and a reverse polka dot (see FIG. 5). .
  • the surface layer of the metal layer 2 ' is formed into a black metal compound 7 by a chemical conversion treatment (see FIG. 13b).
  • the chemical conversion treatment is a treatment for changing the composition of the metal surface by a chemical or a solution thereof, and includes, for example, an oxidation treatment, a phosphoric acid treatment, and a sulfuration treatment.
  • a chemical conversion treatment is used so that the metal compound exhibits a black color according to the material of the metal layer 2.
  • the material of the metal layer 2 ′ is copper, sodium chlorite and hydroxide are used.
  • the metal layer 2 ' is immersed in an aqueous solution containing potassium, an aqueous solution containing antimony polysulfide, an aqueous solution containing sodium chlorite and sodium phosphate, and sodium hydroxide, and an aqueous solution containing persulfuric acid and sodium hydroxide. It is good.
  • the metal layer 2 ' is iron
  • the metal layer 2' is preferably immersed in an aqueous solution containing zinc dihydrogen phosphate.
  • the depth of formation of the black metal compound 7 is set to such an extent that the shielding effect of the metal layer 2 'is not impaired by adjusting conditions such as the composition, temperature, and immersion time of the solution for chemical conversion treatment.
  • black as used in the present invention includes, besides pure black, for example, dark brown and blackish green.
  • the translucent electromagnetic wave shielding material obtained as described above has translucency at the opening of the metal layer 2 ′, and the surface layer of the metal layer 2 ′ is black, so that the surface of the metal layer 2 ′ is black. Reflection is suppressed.
  • a protective layer may be provided on one or both surfaces of the shielding material by coating or film laminating as necessary.
  • the material of the protective layer is not particularly limited, since the protective layer can include various functions, such as a non-glare function, an antistatic function, and an anti-Newton ring function.
  • the light-transmitting electromagnetic wave shielding material of the present invention usually has a force used to see through from the surface on which the gold layer 2 ′ and the black electrodeposition S layer 7 of the transparent substrate are laminated, and the metal layer 2 ′ is transparent. In the case where it is formed thin enough to have the following, the transparent substrate 1 can be used so as to be seen through.
  • FIG. 14 is a schematic view showing one embodiment of the manufacturing process of the translucent electromagnetic wave shielding material of the fourth invention of the present invention.
  • FIGS. 15 to 17 are schematic views showing another embodiment of the process for producing the light-transmitting magnetic wave shielding material of the fourth invention.
  • 11 indicates a transparent substrate
  • 12 indicates a black dyed layer
  • 20 indicates a bleached portion
  • 21 indicates a non-bleached portion
  • 13 indicates a metal layer
  • 14 indicates a resist layer.
  • a black dyeing layer 12 and a metal layer 13 are sequentially provided on the transparent substrate 11 (see FIG. 14a). .
  • the material of the transparent substrate 11 is glass, acrylic resin, polycarbonate resin, polyethylene resin, AS resin, vinyl acetate resin, polystyrene resin, polypropylene resin, polyester resin, polysulfone resin, polyether sulfone. Any transparent material such as resin or polyvinyl chloride may be used.
  • the transparent substrate 11 may be a plate, a film, or the like.
  • the black dyed layer 12 is a slaughter for suppressing reflection on the back surface of the metal layer 13 and improving visibility. You.
  • the black dyed layer 12 is made of, for example, natural resin such as acrylic resin, polyester resin, cellulose resin, polyolefin resin, polyvinyl alcohol resin, gelatin, etc. Are dissolved or dispersed in a solvent together with a black dye, and formed by a roll coating method, a spin coating method, a full-surface printing method, or the like.
  • a film made of the above resin may be formed by a roll coating method, a spin coating method, a full-surface printing method, or the like, and then dyed with a black dye.
  • a heat transfer dye may be dyed on the resin film by heat transfer.
  • the type of dye that can be used differs depending on the type of the resin of the substrate.
  • the black dye a commercially available dye may be used, or a mixture of two or more dyes having a hue other than black may be used to make it black.
  • the material of the metal layer 13 for example, a material having sufficient conductivity such as gold, silver, copper, iron, nickel, and chromium to sufficiently shield the I magnetic wave is used.
  • the metal layer 13 is not limited to a simple substance, but may be an alloy or a multilayer. Examples of the method for forming the metal layer 13 include a method of depositing from a gas phase such as vapor deposition, sputtering, and ion plating, a method of bonding a gold JR foil, and a method of non-dissolving the surface of the transparent substrate 11. is there.
  • the thickness of the metal layer 13 is Ol / in! It is preferably set to ⁇ ⁇ ⁇ 50 / m.
  • a resist layer 14 is provided in a pattern on the metal layer 13 (see FIG. 14b).
  • the resist layer 14 is a layer used for patterning the metal layer 13 in the process of manufacturing the translucent electromagnetic wave shielding material.
  • Resist; ⁇ 14 includes photoresist and print resist.
  • a photosensitive resin such as photosensitive polyimide, polyepoxy acrylate, and novolak is formed on the metal layer 13 by a mouth coating method, a spin coating method, a full printing method, a transfer method, or the like. Solid type Formed, exposed using a mask, and developed.
  • the printing resist is formed in a pattern on the metal layer 13 by offset printing or gravure printing using a resin such as polyester, for example.
  • the pattern of the resist layer 14 includes, for example, a lattice (see FIG. 2), a honeycomb (see FIG. 3), a ladder (see FIG. 4), and a reverse polka dot (see FIG. 5). .
  • the etching solution is selected according to the material of the metal layer 13. For example, if the material of the metal layer 13 is gold, use aqua regia, use silver to use an aqueous ferric nitrate solution, use copper to use an aqueous ferric chloride or cupric chloride solution, use chromium to use an aqueous cerium nitrate solution, or the like. Good to use.
  • the material of the metal layer 13 is gold, use aqua regia, use silver to use an aqueous ferric nitrate solution, use copper to use an aqueous ferric chloride or cupric chloride solution, use chromium to use an aqueous cerium nitrate solution, or the like. Good to use.
  • the portion of the black stained layer 12 not covered with the patterned metal layer 13 in this etching step is decolorized by the acid of the etching solution. (See Figure 14c).
  • the black dye layer 1 2 dyes, those forces easily decolorized by an etchant? Are selectively used.
  • the black dyed layer 12 laminated on the transparent substrate 11 is composed of a pattern-shaped bleached portion 20 and other non-bleached portions 21 and is not bleached on the black stained layer 12
  • a translucent magnetic wave shielding material in which the metal layer 13 corresponding to the part 21 is laminated is obtained.
  • the transparent electromagnetic wave shielding material described above has a portion where the metal layer 13 has been removed and the decolorized portion 20 have a light-transmitting property, and the non-bleached portion of the black dyed layer 2 which is in register with the metal layer 12. 21 suppresses reflection on the surface of the metal layer 13.
  • the manufacturing process of the translucent electromagnetic wave shielding material is not limited to the above-described embodiment.
  • the resist layer 14 may be peeled off after the etching is completed using a peeling liquid (see FIG. 15).
  • a peeling liquid see FIG. 15
  • an alkali aqueous solution such as sodium hydroxide or potassium hydroxide, an organic solvent such as acetone or ethyl acetate-solve acetate, or a mixture thereof may be used.
  • a black dyeing layer 12 and a metal layer 13 are sequentially provided on the transparent substrate 11 (see FIG. 16a), and a resist layer 14 is provided in a pattern on the metal layer 13 (see FIG. 1).
  • the portion of the metal layer 13 not covered with the resist layer 14 is removed with an etching solution (see FIG. 16c), and then the portion of the metal layer 13 not covered with the patterned metal layer 13 is removed.
  • the black stained layer 12 may be decolorized with a decolorizing solution separate from the etching solution (see I3l6d).
  • Color liquids include surfactant aqueous solution, sodium chlorite aqueous solution, sodium hypochlorite aqueous solution, hydrogen peroxide aqueous solution, sodium nitrate aqueous solution, stannous chloride aqueous solution, formaldehyde sodium sulfoxylatonite
  • An aqueous solution, an aqueous solution of urea dioxide, an aqueous solution of hydrosulfite sodium, and an aqueous solution of a colorless and transparent dye intermediate are used.
  • an extra step only for decolorization is required, and decolorization at the same time as etching is more preferable.
  • the colorless and transparent dye intermediate which has a higher affinity for the resin forming the black dyed layer than the black dye dyed in the black dyed layer, takes precedence in the resin instead of the black dye. May be dyed. As a result, the black color of the portion where the metal layer is not laminated is bleached and becomes colorless and transparent. In order to perform decolorization by such a mechanism, it is necessary to properly select a combination of a resin, a black dye, and a colorless and transparent dye intermediate.
  • a black dyeing layer 12 and a metal layer 13 are sequentially provided on the transparent substrate 11 (see FIG. 17a), and the resist layer 14 is patterned on the metal layer 13. (See Figure 17b), remove the metal layer 13 that is not covered with the resist layer 14 with an etching solution (see Figure 17c), and then peel off the resist layer 14 Then, in the stripping step of the resist layer 14, the black dyeing / 212 of the portion not covered with the patterned metal layer 13 may be decolorized with a stripping solution (see FIG. 17d). In this case, since the decoloring is performed simultaneously with the peeling of the resist layer, a step only for the decoloring is not required, and the production of the translucent material is simple. In addition, the decolorization in the manufacturing process of the translucent electromagnetic wave shielding material of the present invention may be performed in a plurality of steps after the etching step.
  • a bleaching agent may be added to the etching solution and / or the stripping solution.
  • the decolorizing agent include surfactants, sodium chlorite, sodium hypochlorite, peroxides such as hydrogen peroxide, sodium nitrate, primary chloride, sodium formaldehyde sodium sulfoxylate dihydrate, Examples include thiourea dioxide, sodium hydrosulfite, and colorless and transparent dye intermediates.
  • FIG. 18 shows an embodiment of the translucent electromagnetic wave shielding material according to the fifth invention. That is, a metal sheet 32 is provided in a pattern on a transparent first substrate 31 made of a film, and a sticking sheet is provided in which a black resist pattern 33 matching the metal layer 32 is provided on gold 15 32. DOO 3 4 forces?, through the adhesive layer 3 6, bonding a first substrate 3 a transparent plate such that the outer surface, the second substrate 35 a transparent consisting film having a three-dimensional object or functional layer It has been.
  • an adhesive sheet 34 is prepared. Specifically, first, a metal layer 32 is provided on the entire surface of the transparent first substrate 31 made of a film (see FIG. 19a).
  • the material of the transparent first substrate 31 made of a film includes acrylic resin, polycarbonate resin, polyethylene resin, AS resin, vinyl acetate resin, polystyrene resin, polypropylene resin, polyester resin, polysalfone resin, polystyrene resin. Use ether sulfone resin, polyvinyl chloride resin, etc.
  • the material of the metal layer 32 for example, a material such as gold, silver, copper, iron, nickel, and chromium having conductivity enough to shield electromagnetic waves is used.
  • the metal layer 32 need not be a simple substance, but may be an alloy or a multilayer.
  • the method of forming the metal layer 32 is Examples of the method include a method of depositing from a gas phase such as vapor deposition, sputtering, and ion plating, a method of bonding a metal foil, and a method of electrolessly plating the surface of the transparent first substrate 31.
  • the thickness of the metal layer 32 is preferably 0.1; If it exceeds 50 / m, it will be difficult to finish the pattern with high precision. If it is less than 0.1 / m, it will not be possible to stably secure the minimum necessary conductivity to maintain the electromagnetic shielding effect.
  • a black resist layer 33 is provided in a pattern on the metal layer 32 (see FIG. 19b).
  • the black resist layer 33 is a layer for suppressing the reflection on the surface of the metal layer 32 to enhance the visibility, and is used for patterning the metal layer 32 in the process of manufacturing the translucent magnetic wave shielding material.
  • the black resist layer 33 includes a photoresist and a printing resist.
  • Photoresist is prepared, for example, by coating a photosensitive resin such as photosensitive polyimide, polyepoxyacrylate, and novolak with a black dye and pigment by a roll coating method, a spin coating method, a full-surface printing method, a transfer method, or the like; A solid pattern is formed on 13 2, exposed using a photomask, and developed to form a pattern.
  • the printing resist is formed in a pattern on the metal layer 32 by a screen printing method, an offset printing method, or a gravure printing method using, for example, a resin such as polyester containing a black pigment. It is formed.
  • the pattern of the black resist layer 33 is, for example, a lattice (see FIG. 2), a honeycomb (see FIG.
  • the thickness of the black resist layer 33 is preferably set to OlmOjum. If it exceeds 10 // m, it becomes difficult to finish the above pattern with high accuracy, and if it is smaller than 10 // m, sufficient light-shielding properties cannot be maintained and it is difficult to suppress reflection on the surface of the metal layer 32.
  • the portion of the metal layer 32 not covered with the black resist cover 33 is removed using an etchant (see FIG. 19c).
  • an etchant see FIG. 19c.
  • the adhesive sheet in which the metallic layer 32 is laminated in a pattern on the transparent first base 31 and the black resist layer 33 which is in register with the metallic layer 32 on the metallic layer 32 is laminated.
  • the etching solution is for the metal layer 3 2 Select according to the material.
  • the material of the gold layer 32 is gold, it is aqua regia, if it is silver, ferric nitrate aqueous solution, if it is copper, it is ferric chloride or cupric chloride aqueous solution, if it is chromium, it is cerium nitrate aqueous solution, etc. It is better to use
  • an adhesive layer 36 is provided on a transparent second substrate 35 made of a plate, a three-dimensional object, or a film having a functional layer, and the adhesive sheet 34 is formed so that the transparent first substrate 3 has a Yuka outer surface.
  • a translucent magnetic wave shielding material is obtained by bonding (see Fig. 20).
  • the material of the transparent second substrate 35 consisting of a plate and a three-dimensional object is glass, acrylic resin, polycarbonate resin, polyethylene resin, AS resin, vinyl acetate resin, polystyrene resin, polypropylene resin, polyester resin.
  • the material of the transparent second substrate 35 made of a film having the functionality / g includes acrylic resin, polycarbonate resin, polyethylene resin, AS resin, vinyl acetate resin, polystyrene resin, and polypropylene.
  • Functional layers such as hardened layer, transparent conductive layer, anti-reflection layer, fine uneven layer, and fluorine-containing layer on the surface of resin film such as resin, polyester resin, polysulfone resin, polyethersulfone resin, and polyvinyl chloride resin. The provided ones can be mentioned.
  • These functional layers provide functions such as curing improvement, antistatic, antireflection, antifogging, and water repellency.
  • the material of the adhesive layer 36 may be, for example, epoxy resin, phenolic resin, reactive acrylic resin, polyurethane resin, melamine resin, rubber resin, urea resin, or a polymer containing these resins. A blend or a copolymer is used.
  • a method for forming the adhesive layer 36 include a coating method such as a gravure coating method, a black coating method, and a comma coating method, and a printing method such as a gravure coating method and a screen printing method.
  • the adhesive sheet 34 may be connected to the black resist layer 33 via the adhesive layer 36. It may be a plate, a three-dimensional object, or a film having a functional layer so that it has an outer surface. (See FIGS. 21 and 22). In this case, if necessary, a protective layer or a protective film may be provided on the black resist layer 33 side.
  • the adhesive sheet 36 is provided on the sticking sheet 34, and is made of a plate, a three-dimensional object, or a film having a functional layer.
  • a translucent electromagnetic wave shielding material may be obtained by bonding the transparent electromagnetic wave shielding material to the transparent second substrate 35 (see FIGS. 23 and 24).
  • the step of providing the black resist layer 33 in a pattern comprises providing the free layer 37 which is patterned on the metal layer 32. (See Fig. 25a), a black resist layer 33 is provided on the metal layer 32 and the free layer 37 (see Fig. 25b), and the free layer 37 is removed by removing the free layer 37 with the free removing solution.
  • the black resist layer 33 may also be removed (see FIG. 25c).
  • As the material of the free layer 37 a generally available printing resist material or a photoresist material is used.
  • a pattern is formed on the metal layer 32 by a screen printing method using a printing resist material, a roll coating method using a photoresist material, a spin coating method, or the like.
  • a solid pattern is formed on the metal layer 32 by a coating method, a dip coating method, a full-surface printing method, a transfer method, or the like, is exposed using a photomask, is developed, and is developed to form a pattern.
  • the pattern of the free layer 37 includes, for example, a reciprocal lattice shape (see Fig. 7), a reverse honeycomb shape (see Fig. 8), a reverse ladder shape (see Fig. 9), a polka dot shape (see Fig. 10), and the like. .
  • the liberation removing solution a different type is used depending on the material of the game. For example, if the free layer 37 is of an alkaline stripping type, use an aqueous solution of potassium hydroxide or sodium hydroxide. If the free layer 37 is a water-peelable type, use water. If the free layer 37 is a solvent-peelable type, use ethyl acetate-soluble acetate, acetone, or the like.
  • (Sixth invention) ⁇ 26 shows an example of the translucent mane magnetic wave shielding material according to the 6th Akira. That is, a metal layer 32 was provided in a pattern on a transparent first substrate 31 made of a film, and a black electrodeposition layer 38 was provided on the metal layer 32 in register with the metal layer 32. A transparent second substrate 3 made of a plate, a solid, or a film having a functional layer is formed such that the bonding sheet 39 is provided with the transparent first substrate 31 as an outer surface via the adhesive layer 36. It is attached to 5.
  • an adhesive sheet 39 is produced.
  • a metal layer 32 is provided in a pattern on a transparent first substrate 31 made of a film (see FIG. 27a).
  • the material and material thickness of the transparent first base 31 and the metal slaughter 32 are the same as those of the fifth invention.
  • Examples of the method of forming the patterned metal layer 32 include a method of depositing from a gas phase such as vapor deposition, sputtering, or ion plating, a method of bonding a metal foil, and a method of forming a transparent first substrate 31 with a non-decomposable surface.
  • the metal layer 32 is provided on the entire surface of the transparent first substrate 31 by a method such as the above, patterning is performed.
  • a photoresist may be solidly formed, exposed using a photomask, developed, formed into a pattern, etched, and stripped. Further, a printing resist may be used.
  • the pattern of the metal layer 32 has a lattice shape, a honeycomb shape, a ladder shape, an inverted polka dot shape, and the like.
  • the transparent first substrate 31 provided with the metal layer 32 in the previous step is immersed together with the counter electrode 41 in a solution 40 of an ion-containing polymer containing black particles, and a current is applied (see FIG. 27 b).
  • black particles include carbon black, titanium black, and aniline black.
  • some particles other than the black-based particles may be combined so as to have a substantially black-based appearance.
  • the term “black system” as used in the present invention includes, for example, black brown and power other than black, and blackish green.
  • the ionic polymer include acryl resin, polyester resin, polybutadiene resin, male resin, epoxy resin, urethane resin, polyamide resin and modified products thereof.
  • the content of the ionic polymer in the aqueous solution is 1 to 30 parts by weight of solid content.
  • the energization is performed by exposing a part of the metal layer 32 laminated on the transparent first substrate 31 upward from the liquid interface or connecting a lead wire that is completely covered, and connecting the counter electrode 41 with a voltage of 1 to 300 V. Voltage.
  • inorganic salts, organic salts, surfactants, organic solvents, and the like are used for the purpose of stabilizing the conditions during energization and improving the compressibility and mechanical surface properties of the resulting black electrodeposited layer 38. Additives may be added to the solution of the ionic polymer.
  • a black electrodeposition layer 38 was deposited on the metal layer 32, and as a result, a metal layer 32 was provided in a pattern on the transparent first substrate 31 and a metal layer was formed on the metal layer 32.
  • An adhesive sheet 39 in which a black electrodeposition layer 38 corresponding to the layer 32 is laminated is obtained (see FIG. 27c).
  • the black electrodeposition layer 38 is a layer for suppressing the reflection on the surface of the metal layer 32 to enhance the visibility.
  • An adhesive layer 36 is provided on a transparent second substrate 35 made of a material, a plate, a three-dimensional object, or a film having a functional layer, and the adhesive sheet 39 is used as the outer surface of the transparent first substrate 31.
  • a translucent electromagnetic wave shielding material is obtained by bonding as shown in Figure 28.
  • the material of the transparent second substrate 35 and the adhesive layer 36 and the method of forming the adhesive layer 36 are the same as those of the fifth invention.
  • the adhesive sheet 39 may be provided with a black electrodeposition layer via an adhesive layer 36. It may be bonded to a transparent second substrate 35 made of a plate, a three-dimensional object, or a film having a functional layer so that 38 is the outer surface (see FIGS. 29 and 30). In this case, a protective film or a protective film may be provided on the black electrodeposition work 38 side as necessary.
  • an adhesive layer 36 is provided on the sticking sheet 39 in advance, and a film having a plate, a three-dimensional object, or a functional layer is provided.
  • a translucent electromagnetic wave shield material may be obtained by attaching the transparent electromagnetic wave shield material to a transparent second base material 35 (see FIGS. 31 and 32).
  • the step of providing the black electrodeposition layer 38 comprises the steps of: forming a metal layer 32 on a transparent first substrate 1 made of a film;
  • the transparent first substrate 31 provided with the metal 32 in the previous step may be immersed together with the counter electrode 41 in a solution of the conductive polymer monomer and may be energized.
  • electrolytic polymerization The monomer of the conductive polymer is selected from pyrrole, aniline, thiophene and derivatives thereof.
  • a solvent for dissolving the monomer water, acetonitrile, probion force, tetrahydrofuran, nitromethane, methanol, ethanol, sulfolane, or the like is used.
  • a dopant is added to a solution of a conductive polymer monomer in the solution. Examples of the dopant include lithium perchlorate, tetraalkylammonium borofluoride, and sulfuric acid. Further, in order to more stably form the black electrodeposition layer 38, it is desirable to control the mane position using the reference electrode.
  • a compressing method there is a method of periodically increasing and decreasing the potential, in addition to a constant potential electrolysis method and a constant flow S solution.
  • the color of the deposited conductive polymer varies in color depending on the conditions at the time of conduction, the degree of polymerization, the type of monomer, etc., but is generally black and suppresses reflection on the metal (132) surface. be able to.
  • black electrodeposited particles 38 comprising charged black-based particles and those using a solution containing black-based particles in micelles in the production process are possible. Is done.
  • the process for providing the black electrodeposition layer 38 includes the steps of:
  • the transparent first substrate 31 provided with the metal layer 32 in the previous step is immersed together with the counter electrode 41 in a plating solution for forming an electric plating film having a color tone of It may be an electric device.
  • the electroplating film having a black color tone As the electroplating film having a black color tone, a nickel-based, chromium-based, rhodium-based, tin-nickel-copper ternary alloy-based or tin-nickel-molybdenum ternary alloy-based one can be used.
  • the black type in the present invention includes, for example, black-brown brown or blackish green other than black.
  • FIG. 33 shows an embodiment of the translucent electromagnetic wave shielding material according to the seventh invention. That is, the adhesive sheet 43 provided on the transparent first base body 31 made of a film in the form of a metal layer 32 in a force pattern, and the surface layer of the metal layer 32 is a metal compound 42 having a black color.
  • the transparent first substrate 31 is bonded via an adhesive layer 36 to a transparent second substrate 35 made of a plate, a three-dimensional object, or a film having a functional layer so that the transparent first substrate 31 is an outer surface.
  • an adhesive sheet 43 is prepared. Specifically, first, a metal layer 32 is provided in a pattern on a transparent first substrate 31 made of a film (see FIG. 34a). The material and thickness of the transparent first base 31 and the metal layer 32, the method of forming the patterned metal layer 32, the pattern of the metal layer 32, and the like are the same as in the sixth invention.
  • the surface layer of the metal layer 32 is formed into a black metal compound 42 by a chemical conversion treatment (see FIG. 34b).
  • a chemical conversion treatment is a treatment for changing the composition of the metal surface by a chemical or a solution thereof, and includes, for example, an oxidation treatment, a phosphoric acid treatment, and a sulfuration treatment.
  • a chemical conversion treatment is used so that the metal compound exhibits a black color according to the material of the metal layer 32.
  • the metal layer 32 when the material of the metal layer 32 is copper, sodium chlorite and hydroxyl An aqueous solution containing potassium potassium, an aqueous solution containing antimony polysulfide, an aqueous solution containing sodium chlorite and sodium phosphate, sodium hydroxide, It is recommended that the metal layer 32 be immersed in an aqueous solution containing potassium perluate and sodium hydroxide. Layer 32 may be immersed.
  • the black metal compound 42 is a part for suppressing the reflection of the surface of the metal layer 32 to enhance the visibility. The formation depth of the black metal compound 42 depends on the composition and temperature of the chemical conversion solution. The shielding effect of the metal layer 32 is set so as not to hinder by adjusting conditions such as the immersion time.
  • the black in the present invention includes a color other than black, for example, a dark brown or a dark green.
  • An adhesive layer 36 is provided on a transparent second substrate 35 made of a material, a plate, a three-dimensional object, or a functional film, and the adhesive sheet 43 is formed so that the transparent first substrate 31 becomes the outer surface. Then, a translucent magnetic wave shielding material is obtained by pasting it on the substrate (see Fig. 35).
  • the material of the transparent second substrate 35 and the adhesive layer 36 and the method of forming the adhesive layer 36 are the same as those of the first invention.
  • the adhesive sheet 43 may be a metal compound that exhibits black via the adhesive layer 36. It may be bonded to a transparent second substrate 35 made of a plate, a three-dimensional object, or a film having a functional layer so that 2 is the outer surface (see FIGS. 36 and 37). In this case, if necessary, a protective layer or a protective film may be provided on the side of the metal compound 42 exhibiting black color.
  • the adhesive sheet 36 is provided on the sticking sheet 43 so that a plate, a three-dimensional object, or a film having a functional layer is provided.
  • a translucent electromagnetic wave shielding material may be obtained by bonding to a transparent second substrate 35 (see FIGS. 38 and 39).
  • FIG. 40 shows an embodiment of the translucent electromagnetic wave shielding material according to the eighth invention. That is, On the transparent first substrate 31 made of a film, a black dyed layer 46 composed of a pattern-shaped decolorizing part 44 and other non-decolored parts 45 is provided, and a non-decolored part is formed on the black dyed layer 46. 4 Adhesive sheet provided with a metal layer 3 2 that matches register 5 4 7 A plate, a three-dimensional object, or a functional layer so that the transparent first base 31 is the outer surface via the adhesive layer 36 It is bonded to a transparent second substrate 35 made of a film having
  • an adhesive sheet 47 is prepared. Specifically, first, a black dye layer 46 and a metal layer 32 are sequentially provided on a transparent first substrate 31 made of a film (see FIG. 41a). The material of the transparent first base 31 and the metal layer 32 and the method of forming the metal layer 32 are the same as those of the fifth invention.
  • the black dyed layer 46 is a layer for suppressing reflection of the metal layer 32 to enhance visibility.
  • the black dyed layer 46 is made of, for example, an acrylic resin, a polyester resin, a cellulose resin, a polyolefin resin, a polyvinyl alcohol resin, a natural polymer resin such as gelatin, a copolymer thereof, a mixture thereof, or the like.
  • a film made of the above resin may be formed by a roll coating method, a spin coating method, a full-surface printing method, or the like, and then dyed with a black dye.
  • the resin film may be dyed with a heat transfer dye by heat transfer. Since the decolorization of the dye from the black dyed layer 46 substrate greatly differs depending on the combination of the dye and the substrate, the type of dye that can be used differs depending on the type of the resin of the substrate.
  • the black dye a commercially available dye may be used, or two or more dyes having a hue other than black may be mixed to black.
  • a resist layer 48 is provided in a pattern on the metal layer 32 (see FIG. 4 lb).
  • the material of the resist layer 48 include a photoresist and a printing resist.
  • the photoresist is formed by coating a photosensitive resin such as photosensitive polyimide, polyepoxy acrylate, and novolak by a roll coating method, a spin coating method, a full printing method, a transfer method, or the like. Solid on top and exposed using photo mask And then developed.
  • the printing resist is formed in a pattern on the metal layer 32 by offset printing or gravure printing using a resin such as polyester, for example.
  • the pattern of the resist layer 48 includes, for example, a lattice shape, a honeycomb shape, a ladder shape, and a reverse polka dot pattern.
  • portions of the metal layer 32 not covered with the resist layer 48 are removed using an etching solution, and the portions of the black stained layer 4 not covered with the patterned metal layer 32 in this etching step are removed.
  • the adhesive sheet 47 is obtained by decolorizing 6 with an etchant (see FIG. 41c).
  • the etching solution is selected according to the material of the metal layer 32. For example, when the material of the metal layer 32 is gold, aqua regia is used for gold, ferric nitrate aqueous solution is used for silver, ferric chloride or cupric chloride aqueous solution is used for copper, and cerium nitrate aqueous solution is used for chromium. You may want to use something like that.
  • the dye of the black dyed layer 46 a dye which is easily decolored by the above-mentioned etching solution is selectively used.
  • the resist layer 48 may be left, or may be removed using a resist removing solution.
  • a resist removing solution an aqueous solution of sodium hydroxide such as sodium hydroxide or potassium hydroxide, an organic solvent such as acetone or ethyl acetate solvent, or a mixed solution thereof may be used.
  • An adhesive layer 36 is provided on a transparent second substrate 35 made of a material, a plate, a three-dimensional object, or a film having a functional layer, and the adhesive sheet 47 is used as the outer surface of the transparent first substrate 31.
  • a translucent magnetic shielding material is obtained by bonding as shown in Fig. 42.
  • the material of the transparent second substrate 35 and the adhesive layer 36 and the method of forming the adhesive layer 36 are the same as those of the fifth invention.
  • the configuration of the translucent electromagnetic wave shielding material according to the eighth invention is not limited to the above-described embodiment.
  • the metal sheet 3 may be attached via the bonding sheet 4 and the adhesive layer 36. It may be bonded to a transparent second substrate 35 made of a plate, a three-dimensional object, or a film having functionality, such that 2 is the outer surface (see FIGS. 43 and 44). in this case, If necessary, a protective layer or a protective film may be provided on the metal layer 32 side.
  • the adhesive sheet 36 is provided on the sticking sheet 47, and is made of a plate, a three-dimensional object, or a film having a functional layer.
  • a light-transmitting / electromagnetic shielding material may be obtained by bonding to the transparent second substrate 35 (see FIGS. 45 and 46).
  • the step of providing a black dyeing part 46 comprising a pattern-like decolorization part 44 and another non-bleaching part 45 includes a transparent film-forming step.
  • a black dye layer 46 and a metal layer 32 are provided on the first base 31 and a resist layer 48 is provided in a pattern on the gold JS layer 32 (see FIG. 47a).
  • the metal layer 32 that is not covered is removed using an etchant (see FIG. 47 b), and then the black dyed layer 46 that is not covered by the patterned metal layer 32 is etched. It may be one that decolorizes with another decolorizing solution (see Figure 47c).
  • the decolorizing solution examples include an aqueous solution of a surfactant, an aqueous solution of sodium chlorite, an aqueous solution of sodium hypochlorite, an aqueous solution of hydrogen peroxide, an aqueous solution of sodium nitrate, an aqueous solution of stannous chloride, and an aqueous solution of sodium formaldehyde sodium sulfoxylate 3 ⁇ 4 ⁇ .
  • Thiourea dioxide aqueous solution, sodium hydrosulfite aqueous solution, colorless and transparent dye intermediate aqueous solution, etc., and a bleaching agent suitable for the dye of the black dye layer 46 is appropriately used.
  • the resist layer 48 may be left after the etching step, or may be removed using a resist removing liquid before or after decolorization with the decolorizing liquid.
  • the step force 5 providing a black dyed layer 4 6 made of other non-bleaching unit 4 5 which the pattern of bleaching unit 4 4, from the film
  • a black dyed layer 46 and a metal layer 32 are provided on the transparent first base 31, and a resist layer 48 is provided in a pattern on the metal layer 32 (see FIG. 48 a).
  • the portion of the metal layer 32 not covered with the metal layer 32 is removed using an etchant (see FIG. 48 b), and then the resist layer 48 is removed using a resist remover.
  • the black dyed layer 46 in the portion not covered with the patterned gold layer 32 may be decolorized with a resist removing liquid (see FIG. 48 c).
  • a dye which is easily decolored by a resist removing solution is selected and used.
  • a plurality of decolorization using an etching solution, decolorization using a decolorization solution different from the etching solution, and decolorization using a resist removal solution may be combined.
  • FIG. 49 shows an embodiment of the translucent magnetic wave shielding material according to the ninth invention. That is, a release layer 49, a metal layer 32 provided in a pattern on the release layer 49, and a black resist layer 3 provided on the metal layer 32 in register with the metal layer 32.
  • the transparent second substrate 3 made of a plate, a three-dimensional object, or a film having functionality so that the transfer layer 50 composed of 3 and the peeling layer 49 becomes the outer surface via the adhesive layer 36. 5 has been transcribed.
  • a transfer sheet 52 is prepared. Specifically, first, a release layer 49 and a gold-like layer 32 are sequentially provided on the entire surface of the first substrate 51 made of a film (see FIG. 50a).
  • the material K of the first substrate 51 made of a film is acrylic resin, polycarbonate resin, polyethylene resin, AS resin, vinyl acetate resin, polystyrene resin, polypropylene resin, polyester resin, polysulfone resin, polyether. Sulfone resin, polyvinyl chloride resin, etc. are used and need not be transparent.
  • Peeling 49 is a layer which becomes the outermost surface of the translucent electromagnetic wave shielding material when peeled from first substrate 51 when first substrate 51 is peeled after transfer.
  • the material of the stripping layer 49 may be a polyacrylic resin, a polyester resin, a polyvinyl chloride resin, a cellulose resin, a rubber resin, a polyurethane resin, a polyvinyl acetate resin, or the like.
  • a copolymer such as a vinyl monovinyl acetate copolymer resin or an ethylene monovinyl acetate copolymer resin.
  • a method for forming the release layer 49 There are coating methods such as gravure coating, roll coating, and comma coating, and printing methods such as gravure coating and screen printing.
  • the material, forming method and the like of the metal layer 32 are the same as in the fifth invention.
  • a black resist layer 33 is provided in a pattern on the metal layer 32 (see FIG. 5 Ob).
  • the material and pattern forming method of the black resist layer 33 are the same as in the fifth invention.
  • a method of performing patterning using the free layer 37 is also possible as in the fifth invention.
  • the portion of the metal layer 32 that is not covered with the black resist layer 33 is removed using an etchant (see FIG. 50c).
  • the metallized layer 3 2 is laminated on the first substrate 51, the metallized layer 3 2 is patterned on the laminated layer 3 1, and the metallic layer 3 2 is laminated on the metallized layer 3 2.
  • a transfer sheet 52 in which a black resist layer 33 corresponding to 2 is formed is obtained.
  • the same etchant as that of the fifth invention is used.
  • an adhesive S36 is provided on a transparent second substrate 35 made of a plate, a three-dimensional object, or a film having functionality, and the transfer sheet 52 is attached so that the first substrate 51 is an outer surface. After joining (see Fig. 52), only the first substrate 51 is peeled off to make it translucent! : Obtain magnetic shielding material.
  • the material of the transparent second substrate 35 and the adhesive layer 36 made of a plate, a three-dimensional object, or a film having a functional layer and the method of forming the adhesive layer 36 are the same as those of the fifth invention.
  • the transfer sheet 52 is provided with an adhesive layer 36 in advance, and the transfer sheet 52 becomes the first substrate 51 as an outer surface. After such bonding (see FIG. 53), only the first substrate 51 may be peeled off to obtain a light-transmitting electromagnetic wave shield material.
  • the light-transmitting electromagnetic wave shielding material formed by the above method may be provided with a protective layer or a protective film on the peeling layer 49 if necessary.
  • FIG. 54 shows an embodiment of the translucent electromagnetic wave shielding material according to the tenth invention. That is, the release layer 49, the metal layer 32 provided in a pattern on the release layer 49, and the black electricity provided in register with the metal layer 32 on the metal layer 32.
  • a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer, such that the transfer layer 53 composed of the deposition layer 38 and the release layer 49 becomes the outer surface via the adhesive layer 36 It is transcribed on 35.
  • a transfer sheet 5 is prepared. Specifically, first, a release layer 49 is provided on the entire surface of the first substrate 51 made of a film, and a metal layer 32 is provided on the release layer 49 in a pattern (see FIG. 55a).
  • the material of the first base 51 and the release layer 49 and the method of forming the release layer 49 are the same as those of the ninth invention.
  • the material and thickness of the metal layer 32 and the method of forming the patterned metal layer 32 are the same as in the sixth invention.
  • the first substrate 51 provided with the release layer 49 and the metal footwear 32 in the previous step in the solution 40 of the ion-polymer containing black particles was infiltrated with the counter electrode 41, (See Figure 55b).
  • the materials of the black particles and the ionic polymer, and other conditions for energization are the same as in the sixth invention.
  • a black electrodeposition layer 38 was deposited on the metal layer 32, and as a result, a stripping layer 49 was laminated on the first substrate 51, and the metal layer 32 was formed thereon.
  • a transfer sheet 54 is obtained in which a black electrodeposition layer 38 which is provided in a pattern and is in register with the metal layer 32 on the metal layer 32 is laminated (see FIG. 55c).
  • an adhesive layer 36 is provided on a transparent second substrate 35 made of a plate, a three-dimensional object, or a film having a functional layer, and the transfer sheet 54 is formed so that the first substrate 51 becomes an outer surface. Then, only the first substrate 51 is peeled off to obtain a light-transmitting electromagnetic wave shielding material.
  • the material of the transparent second base member 35 made of a plate, a three-dimensional object, or a film having functional properties and the material of the adhesive layer 36, and the method of forming the adhesive layer 36 are the same as those of the sixth invention. The same is true.
  • the transfer sheet 54 is provided with an adhesive layer 36 in advance, and the transfer sheet 54 becomes the outer surface of the first base 51. After bonding as described above (see FIG. 57), only the first substrate 51 may be peeled off to obtain a light-transmitting electromagnetic shielding material family.
  • the step of providing the black compressible gas-deposited layer 38 includes the steps of: providing a release layer 49 over the entire surface of the first substrate 51 made of a film; A metal layer 32 is provided in a pattern on the layer 49, and the first base 51 provided with the metal layer 32 in the previous step in a solution of a monomer of the conductive polymer is placed together with the counter electrode 41 on the first substrate 51, It may be passed.
  • the material of the solvent for dissolving the monomer and monomer of the conductive polymer and other conditions for energization are the same as in the sixth invention.
  • a black electrodeposition coating may be an electroplated film having a black color tone. The method of forming the plating layer is the same as that of the second invention.
  • a protective S or a protective film may be provided on the peeling layer 49 as needed after the light-transmitting compressive wave shielding material formed by the above method is peeled off.
  • FIG. 58 shows an example of the translucent electromagnetic wave shielding material according to the eleventh embodiment. That is, a transfer layer 55 composed of a release layer 49 and a metal layer 32, which is a metal compound 42 provided in a pattern on the release layer 49 and having a surface portion exhibiting a blue color, It is transferred onto a transparent second base member 35 made of a plate, a three-dimensional object, or a film having a functional layer via the adhesive layer 36 so that the peeling layer 49 becomes the outer surface.
  • a transfer sheet 56 is prepared. Specifically, first, a release layer 49 is provided on the entire surface of the first substrate 51 made of a film, and a metal layer 32 is provided on the release layer 49 in a pattern (see FIG. 59a).
  • the material of the first substrate 51 and the peeling layer 49 and the method of forming the peeling layer 49 are the same as in the ninth invention.
  • the material and thickness of the metal layer 32 and the method of forming the patterned metal layer 32 are the same as in the seventh invention.
  • the surface layer of the metal layer 32 is formed into a black metal compound 42 by a chemical conversion treatment (see FIG. 59b).
  • the peeling layer 49 is laminated on the first base 51, the metal layer 32 is provided in a pattern on the peeling layer 49, and the surface layer of the metal layer 32 has a force s ′ of a metal exhibiting black.
  • a transfer sheet 56 which is the compound 42 is obtained.
  • the chemical conversion treatment is the same as in the seventh invention.
  • an adhesive layer 36 is provided on a transparent second substrate 35 made of a plate, a three-dimensional object, or a film having a functional layer so that the transfer sheet 56 becomes the outer surface of the first substrate 51. Then, only the first base member 51 is peeled off to obtain a light-transmitting electromagnetic wave shielding material.
  • the material of the transparent second base member 35 and the adhesive layer 36 made of a plate, a three-dimensional object, or a film having a functional layer, and the method of forming the adhesive layer 36 are the same as in the seventh invention.
  • the adhesive layer 36 is provided on the transfer sheet 56, and the transfer sheet 56 is formed on the outer surface of the first base 51. After bonding (see FIG. 61), only the first base member 51 may be peeled off to obtain a light-transmitting electromagnetic wave shield material.
  • the light-transmitting electromagnetic wave shielding material formed by the above method may be provided with a protective layer or a protective film on the peeling layer 49 if necessary.
  • FIG. 62 shows an embodiment of the translucent electromagnetic wave shielding material according to the 12th invention. That is, a black dyed layer 46 composed of a release layer 49, a pattern-shaped bleached part 44 provided on the release layer 49, and other non-bleached parts 45, and a black dyed layer 46
  • the transfer layer 57 composed of the metal layer 32 provided in register with the non-bleaching portion 45 on the transfer layer 57, and the release layer 49 becomes the outer surface via the adhesive layer 36. From boards, three-dimensional objects or films with functional layers Is transferred onto a transparent second substrate 35.
  • a transfer sheet 58 is prepared. Specifically, first, an exfoliation layer 49, a black dyeing layer 46, and a metal layer 32 are sequentially provided on the entire surface of the first substrate 51 made of a film (see FIG. 63a).
  • the material of the first base 51 and the release layer 49 and the method of forming the release layer 49 are the same as in the ninth invention.
  • the material and forming method of the black dyed layer 46 and the metal layer 32 are the same as in the eighth invention.
  • a resist layer 48 is provided in a pattern on the metal layer 32 (see FIG. 63B).
  • the material and forming method of the resist layer 48 are the same as those of the eighth invention.
  • portions of the metal layer 32 not covered with the resist layer 48 are removed using an etching solution, and the portions of the black stained layer 4 not covered with the patterned metal layer 32 in this etching step are removed.
  • the transfer sheet 58 is obtained by decolorizing 6 with an etchant (see FIG. 63 c).
  • the etching solution and the dye for the black dyed layer 46 are the same as those used in the eighth invention.
  • the resist layer 48 may be left, or may be removed using a resist removing liquid. The same resist removing solution as that used in the eighth invention is used.
  • An adhesive layer 36 is provided on a transparent second substrate 35 made of a material, a plate, a three-dimensional object, or a film having functionality / S, and the transfer sheet 58 is formed so that the first substrate 51 becomes the outer surface. After bonding (see FIG. 64), only the first substrate 51 is peeled off to obtain a transparent electromagnetic wave shielding material family.
  • the material of the transparent second base member 35 and the adhesive layer 36 made of a plate, a three-dimensional object, or a film having functionality II, and the method of forming the adhesive layer 36 are the same as in the eighth invention.
  • the transfer sheet 58 is provided with an adhesive layer 36 in advance, and the transfer sheet 58 is formed on the outer surface of the first base 51. After bonding (see FIG. 65), only the first substrate 51 may be peeled off to obtain a light-transmitting electromagnetic wave shielding material. Further, in the method for producing a translucent electromagnetic wave shielding material according to the twelfth invention, a step of providing a black stained layer 46 comprising a pattern-shaped bleached portion 44 and another non-bleached portion 45 is performed.
  • a peeling layer 49, a black dyeing layer 46, and a metal layer 32 are provided on a transparent first substrate 51 made of, and a resist layer 48 is provided in a pattern on the metal layer 32 (Fig. 66a). (See FIG. 66B.) Then, the portion of the metal layer 32 not covered with the resist layer 48 is removed using an etchant (see FIG. 66 b), and then the portion not covered with the patterned metal layer 32.
  • the black dyed layer 46 may be decolorized with a decolorizing solution different from the etching solution (see FIG. 66c). As the decolorizing solution, use the same one as described in VIII.
  • the resist layer 48 may be left after the etching step, or may be removed using a resist removing liquid before or after decolorization with the decolorizing liquid. As the resist removing liquid, the same liquid as in the eighth invention is used.
  • the step of providing a black dyed layer 46 composed of a pattern-shaped bleached portion 44 and other non-bleached portions 45 comprises: A release layer 49, a black dyeing layer 46, and a metal layer 32 are provided on the transparent first base 31 and a resist layer 48 is provided in a pattern on the metal layer 32 (see FIG. 67a). Then, the portion of the metal layer 32 not covered with the resist layer 48 is removed using an etchant (see FIG. 67 b), and then the resist layer 48 is removed using a resist remover.
  • the portion of the black stained layer 46 not covered with the patterned metal layer 32 is decolorized with a resist removing solution (see FIG. 67c). Good.
  • a dye which is decolorized by removing the resist is selectively used as the dye of the black dyed layer 53.
  • a combination of decolorization with an etching solution, decolorization with a decolorization solution different from the etching solution, and decolorization with a resist removal solution is combined. You may.
  • the translucent electromagnetic wave shielding material formed by the above method is used to peel off the first base 51. Thereafter, if necessary, a protective layer or a protective film may be provided on the release layer 49c (the thirteenth invention to the twenty-third invention).
  • FIG. 68 is a basic plan view of the translucent electromagnetic wave shielding material of the present invention.
  • 1 indicates a transparent substrate
  • 3 indicates a black portion, for example, a black resist layer.
  • the uncovered portion of the M-color resist layer 3 becomes the ground portion 100.
  • FIG. 68 a frame-shaped pattern surrounding the light-transmitting electromagnetic wave shield part, a rod-shaped pattern adjacent to the end of the light-transmitting electromagnetic wave shield part, as shown in FIG.
  • Various modes are conceivable.
  • FIG. 69 is a drawing corresponding to FIG. 1, but a part of the metal layer is covered with the mask layer 101 instead of the black resist layer 3, and this part is finally removed and grounded. The part 100 is formed. In this case, the mask layer is formed first.
  • FIG. 70 shows a method in which a black resist layer is formed first.
  • a printing resist material or a photo resist material which is generally commercially available is used.
  • the mask layer may be formed on a part of the metal layer by screen printing using a printing resist, or by mouth coating, dip coating, or full-surface printing using a photoresist material.
  • a solid is formed on the metal layer by tilling, etc., exposed using a photomask, developed, and partially formed.
  • the following methods may be used to remove the mask and the part of the non-bleaching part of the black resist layer, the black electrodeposition layer, the positive resist layer, and the black stain layer described later.
  • each black layer there are a method of dissolving and removing with a peeling liquid, a method of peeling by bonding to an adhesive tape, and a method of mechanically shaving. Even if there is a slight gap between the mask layer or the positive resist layer and each black layer, the grounding and the translucent electromagnetic wave shield will be disconnected by etching, so to prevent this. Is a mask layer or positive type It is preferable to form each black layer on the dist layer so as to partially overlap.
  • 1171 is a method that does not use a mask layer.
  • the ground portion 100 is formed by finally removing a part of the black resist layer 3.
  • H72 is a drawing corresponding to Fig. 6, but first, a mask layer 101 is formed, followed by a release layer 4, and finally, both the mask layer 101 and the black resist layer 3 are removed. As a result, a ground portion 100 is formed.
  • FIG. 73 shows a case where the order of forming the release layer 4 and the mask layer 101 is reversed.
  • the ground portion 100 is formed by removing the black resist layer 3 only partially at the end without using the mask layer 101 as well.
  • FIG. 75 is a diagram corresponding to FIG. Also in this case, the ground layer 100 is formed by finally peeling off the mask layer 101 using the mask layer 101.
  • the black layer 3 is a black electrodeposition layer, and the deposition apparatus for it is shown in FIG. 76 in the same manner as in FIG. However, the mask slaughter 101 is formed in a place where the precipitation is not necessary.
  • the black deposition layer 3 is formed once on the metal layer, and then a part of the deposition layer 3 is removed.
  • Fig. 78 shows a deposition apparatus for that purpose.
  • FIG. 80 shows a deposition apparatus for that purpose.
  • a material of the positive resist layer a generally available photoresist of a posi type is used.
  • the positive resist layer can be formed by solid coating on the metal layer by roll coating, spin coating, dip coating, full-surface printing, transfer, etc., and exposure using a photomask. Then, it is developed and partially formed.
  • FIG. 81 is a drawing corresponding to FIG. In this embodiment, a part of the metal layer changes to the metal compound 3 exhibiting black. Some of the metal ⁇ does not change to a metal compound ',: The mask layer 101 is formed. In FIG. 82, instead of the mask layer 101, a post-type resist layer 102 is formed, and finally, the portion is removed by exposure.
  • FIG. 83 is a drawing corresponding to FIG. 21.
  • a part of the metal layer 32 is exposed to form a ground portion 100.
  • FIG. 84 shows an example of a method of manufacturing the translucent electromagnetic wave shielding material of the embodiment shown in FIG. In this method, a part of the metal layer 32 is protected by the mask layer 101 and formed.
  • FIG. 85 shows an embodiment in which the black resist layer 33 is formed earlier than the mask layer 101.
  • FIG. 86 shows an embodiment in which the ground portion 100 is formed by removing a part of the black resist layer 33 without using a mask layer.
  • FIG. 87 and FIG. 88 show an embodiment in which the one obtained in FIG. 86 is attached to the second substrate 35.In FIG. 87, the adhesive layer 36 is present on the second substrate 35, In FIG. 88, it is on the adhesive sheet 34.
  • FIGS. 89, 90 and 91 show embodiments using the free layer 37, and are the same as FIGS. 84 to 88 except that the metal layer is exposed using the free layer
  • FIGS. 92 to 97 are the same as the embodiments of FIGS. 83 to 88 except that the black layer is the black electrodeposition layer 33.
  • FIGS. 98 to 102 are the same except that the upper part of the metal layer 32 is a metal compound exhibiting black.
  • FIG. 103 to FIG. 106 are inventions corresponding to the ninth invention to the 12th invention, but also a part of the metal layer is exposed to form an earth portion.
  • a 1.1 mm thick borosilicate glass plate on which 0.3 / ⁇ -thick nickel was vapor-deposited was used as one provided with a metal layer on one surface of the transparent substrate.
  • ink containing carbon black in polyethylene terephthalate resin offset printing on nickel layer A black resist layer having a thickness of 5 was provided in a reverse polka dot pattern with a pitch of 110 // m and a pitch of 100 / um.
  • portions of the metal layer not covered with the black resist layer were removed by etching with an aqueous ferric chloride solution.
  • a transparent substrate provided with a metal layer on one surface As a transparent substrate provided with a metal layer on one surface, a polyester film having a thickness of 35 ⁇ m and a copper foil attached thereto was used. Using an ink containing carbon black in the photosensitive polyimide resin, a black resist layer with a thickness of 1 is formed on the entire surface of the copper foil layer by the roll coating method, and is exposed using a photomask. It was developed with an aqueous cupric solution and patterned into a hiiragi pattern with a width of 10 m and an eye size of lOOX lOO m. Finally, the portion of the metal layer not covered with the black resist layer was etched away with an aqueous cupric chloride solution.
  • a 3-mm-thick acrylic plate was used as a transparent substrate.
  • An acrylic resin “BR-77” (manufactured by Mitsubishi Rayon Co., Ltd.) was applied on one side of the plate, immersed in 1% potassium hydroxide for 5 minutes, and then palladium chloride chloride ⁇ Immersed in a colloid solution, immersed in 1% potassium hydroxide for 1 minute, and subjected to electroless nickel plating.
  • “Color Mosaic CK” manufactured by Fuji Hunt Electronics Technology Co., Ltd.
  • a black resist layer with a thickness of 1.5 m is formed on the entire metal layer by the ⁇ -coating method, and a photomask is formed.
  • a 1-mm-thick methacryl sheet was used as a transparent substrate, and a metal layer was provided on the upper surface of the methacryl sheet by bonding a thick copper foil with an acrylic resin.
  • a release layer was provided on the metal layer by screen printing in a reciprocal lattice pattern having a lattice width of 10 m and a mesh size of 100 / mx 100 / m.
  • a black carbon ink using a black carbon ink, a metal layer and a black resist layer having a thickness of 1 were formed on the upper surface of the peeling 11 by a roll coating method.
  • water was used as a stripping solution, and the black resist layer was removed by stripping the stripping layer.
  • the portion of the metal layer from which the black resist layer was removed was removed by etching with a second aqueous chloride solution.
  • a 2 mm thick polycarbonate sheet was used as the transparent substrate, and a 0.3 m thick metal layer was formed by sputtering nickel on the top surface.
  • a photo resist material of an alkali development type is roll-coated on the metal layer, pre-baked, exposed and developed using a photo mask, and the release layer is formed to have a lattice width of ⁇ with a size of lOO.um.
  • a black resist layer having a thickness of 1 was provided on the upper surface of the metal layer and the release layer by a roll coating method using black ink.
  • an aqueous potassium hydroxide solution was used as a stripping solution, and the black resist layer thereon was removed by stripping the stripping layer. Finally, the portion of the metal layer from which the black resist layer was removed was removed by etching with a nitric acid aqueous solution.
  • Example 7 An acrylic layer having a thickness of 2 mm was used as a transparent substrate, and a transparent ink composed of cellulose acetate propionate was roll-coated on the upper surface to form an anchor layer.
  • a metal layer was provided.
  • a release layer was provided on the metal layer by screen printing using an aqueous printing resist ink in a reciprocal lattice pattern having a lattice width of 10 / m and an eye size of 100 m ⁇ 100 m.
  • a black resist layer having a thickness of 1 m was formed on the upper surface of the metal layer and the release layer by a roll coating method using black carbon ink.
  • water was used as the stripping solution, and the stripping layer was stripped to remove the black resist layer thereon.
  • the portion of the metal layer from which the black resist layer had been removed was etched away with an aqueous ferric chloride solution.
  • the translucent electromagnetic wave shielding materials of Examples 1 to 7 thus obtained were excellent in visibility and high in the shielding effect.
  • a metal layer of a 100 / i-in-thick polyester film laminated with a copper foil with a thickness of 100 / i in by photolithography is formed into a grid pattern with a line width of 10 / um and an eye size of 100X100 // m. It has become. Connect a conductive wire to this, immerse it in a water solution containing 1% carbon black, aminated epoxidized boritabutinine (number average molecular weight about 1000), and 1% triethylamine, and apply a voltage of 10V for 1 minute. Thus, a black electrodeposition layer was formed. The substrate was dried at 60 for 30 minutes, and after cooling, a film was laminated thereon to obtain a transparent electromagnetic wave shielding material.
  • a polymethyl methacrylate film having a thickness of I00 / m was used as a transparent substrate, and a nickel layer having a thickness of 0.2 m was formed on one side thereof by nickel vapor deposition.
  • This metal layer was patterned by photolithography into a honeycomb shape with a connection width of 20 / m and an eye diameter of 200, um.
  • a conductive wire is connected to this metal layer, and carbon black 1%, maleated polybutadiene 15 %, And immersed in an aqueous solution containing triethylamine, and a voltage of 30 V was applied for 5 minutes to form a black electrodeposited layer having a thickness of 1.
  • the substrate was dried at 60 for 30 minutes, and after cooling, a film was laminated thereon to obtain a translucent electromagnetic wave shielding material.
  • a 3-mm-thick acrylic plate was used as a transparent substrate.
  • An acrylic resin (BR-77 manufactured by Mitsubishi Rayon Mori Co., Ltd.) was applied on one side of the plate, immersed in 1% potassium hydroxide for 5 minutes, and then palladium chloride Z tin chloride They were immersed in a colloid solution, immersed in potassium hydroxide for 1 minute, and subjected to electroless nickel plating.
  • the metal layer was patterned by photolithography into a grid with a line width of 30 m and an eye size of 150 X I50 / m.
  • a conductive wire was connected to this metal layer, and titanium black 1%, aminated epoxidized polybutadiene 20 «3 ⁇ 4, and triethylamine 1.
  • a metal layer of an ll mm thick borate glass plate on which a 0.3 mm thick nickel was deposited was patterned by photolithography into an inverted polka dot shape with an inner diameter of 100 pitch l lO ⁇ m.
  • a conductive wire is connected to this metal layer, immersed in an acetoniril solution containing 0.5M pyrrole, 0.5M sulfuric acid, and 0.2M tetraethylammonium borofluoride, and a platinum plate as the counter electrode and saturated as the reference electrode.
  • a calomel electrode was set up, and electricity was passed at 0.8 V vs. SCE for 3 minutes to form a black electrodeposited layer having a thickness of 1 m. Then 60 dry 30 minutes to obtain a light-transmitting electromagnetic wave shielding material after cooling film thereon by one preparative lamination c
  • a metal layer of a 100-m-thick polyester film laminated with a copper foil of a thickness of 35 m was applied by photolithography with a line width of 10 m and an eye size of 100 mx 100 Patterned in a grid of m. Connect the conductive wire to this, nickel sulfate 70 g Z l, It was immersed in a 55 degree plating solution containing nickel ammonium sulfate 40 g / 1, zinc sulfate 20 g / sodium thiocyanate 20 g / 1, and a current of 1.0 A / dm2 was applied. A black electrodeposition layer was formed over 3 minutes. The substrate was dried at 60 ° C. for 30 minutes, and after cooling, a film was laminated thereon to obtain a translucent electromagnetic wave shielding material having a black color tone in the electroplated film.
  • a 100-m thick polymethyl methacrylate film was used as a transparent substrate, and a metal layer having a thickness of 2 was provided on one surface thereof by nickel vapor deposition.
  • This metal layer was patterned into a honeycomb shape with a line width of 20 ⁇ and an eye diameter of 200 m by photolithography.
  • Connect a conductive wire to this metal layer and dip it into a plating solution with 30 g containing 200 g of dichromium triacid / 4.5 g of barium acetate / 8.5 g / sodium acetate.
  • a current of 100 A / dm 2 was applied for 5 minutes to form a black electric layer having a thickness of 1 m.
  • the substrate was dried at 60 for 30 minutes, and after cooling, a film was laminated thereon to obtain a light-transmitting electromagnetic shielding material having an electroplated film having a black color tone.
  • a 3 mm thick acrylic plate was used as a transparent substrate.
  • An acrylic resin (BR-77, manufactured by Mitsubishi Rayon Co., Ltd.) was applied on one side of the plate, immersed in 1% potassium hydroxide for 5 minutes, and then palladium chloride / tin chloride They were immersed in a colloid solution *, crushed in 1% 7j potassium oxide for 1 minute, and subjected to electroless nickel plating.
  • the metal layer was patterned into a lattice shape with a line width of 30 / m and an eye size of 150 ⁇ 150 / m by photolithography.
  • a conductive layer was connected to this metal layer, immersed in a plating solution with a ⁇ dime concentration of 3.0 g / sulfuric acid concentration of 27 g / 1, and a current of 4 A / dm 2 of 5 g.
  • a black electrodeposited layer having a thickness of 0 was formed over a minute.
  • This substrate was dried at 60 "C for 30 minutes, and after cooling, a film was laminated thereon to obtain a light-transmitting shielding material having an electroplated film having a black color tone.
  • a metal layer of a borosilicate glass plate with a thickness of 0.3 mm and a thickness of 2 mm nickel and a thickness of 1 .1 mm was formed in reverse polka dots with an inner diameter of lOO m and a pitch of 110 m by photolithography. Patterned. Connect a conductive wire to this metal layer and add potassium pyrophosphate 200 I, tin pyrophosphate 15 g / 1, nickel sulfate 15 g, sodium molybdate 105 g / and glycine 20 g / 1. The resultant was immersed in a plating solution containing 50% and a current of 0.2 A / dm 2 was supplied for 3 minutes to form a black electrodeposited layer having a thickness of 1. Thereafter, the film was dried at 60 ° C. for 30 minutes, and after cooling, a film was laminated thereon to obtain a translucent magnetic wave shielding material having a black color tone with an electroplated film.
  • the translucent electromagnetic wave shielding materials of Examples 8 to 15 and the method of manufacturing the same have the following configurations, and therefore have the following effects.
  • a 100 / m-thick polyester film having a 35 /; m-thick copper foil bonded thereto was used as one having a metal layer provided on one surface of the transparent substrate.
  • a positive type photoresist (OFPR800, manufactured by Tokyo Kogaku Kogyo Co., Ltd.) is solid-formed on this copper foil and exposed using a photomask. Photo-development patterned into a grid with a width of 10 / m and an eye size of 100 ⁇ 100 / m. Next, the copper foil was etched with an aqueous cupric chloride solution, and the resist was stripped off.
  • a polyester film having a thickness of 100 / ym with a 35 m-thick iron foil bonded thereto was used as a metal substrate provided on one surface of the transparent substrate.
  • a positive photo resist (OFPR 800, manufactured by Tokyo Ohka Kogyo Co., Ltd.) is solid-formed on this iron foil and exposed and developed using a photomask to form a grid with a width of 10 / um and an eye size of lOOXlOO m. Patterned.
  • the resist was stripped off. This was immersed in an aqueous solution of 80 containing zinc dihydrogen phosphate O.IM for 2 minutes to obtain a translucent electromagnetic wave shielding material so that the surface layer of the iron foil was black.
  • the translucent electromagnetic wave shielding material and the method of manufacturing the same according to the third aspect of the invention have the following configuration, and therefore have the following effects.
  • the metal layer is laminated in a pattern on the transparent substrate, There were no restrictions imposed by the standards, and the design was optimal for visibility and electromagnetic shielding. Therefore, the visibility of the translucent electromagnetic wave shielding material and the electromagnetic wave shielding effect are improved.
  • the surface portion of the metal layer is a metal compound exhibiting black color, no metallic luster is produced. Therefore, the visibility of the translucent electromagnetic wave shielding material was improved. Also, since the metal layers are laminated in a pattern, visibility can be obtained without making the conductive material transparent. Therefore, it is not necessary to limit the material to a transparent conductive material, and a material having high conductivity can be selected from a wider range of materials, and the electromagnetic shielding effect has been improved.
  • a 2 mm thick acryl plate was used as a transparent substrate, and N, N-dimethylformamide solution of polyacrylonitrile was applied to one surface of the plate with a bar coater, dried, and then a black dye (Sumitomo Chemical Co., Ltd.) (Sumiacryl Black FFP) was immersed in a dyeing bath for 20 minutes to form a black dyed layer. Next, a metal layer was formed by vapor deposition over the entire surface of the black dyed layer.
  • a black dye Suditomo Chemical Co., Ltd.
  • a metal layer was formed by vapor deposition over the entire surface of the black dyed layer.
  • a resist layer is formed on the entire surface of the gold layer by a spin coating method, exposed using a photomask, developed, and developed to a line width of 20 / m2. It was patterned into a grid with a pitch of 150 m.
  • the metal layer in the area not covered with the resist layer was removed with an aqueous solution of ferric nitrate 'sodium chlorite, and at the same time, the black stained layer in the area not covered with the metal layer was decolorized with the above etching solution. .
  • a 1-mm-thick cellulose acetate plate was used as the transparent substrate, and one side of the substrate was mixed with a solution of n-propyl alcohol of an ethylene-vinyl alcohol copolymer (Eval F manufactured by Kuraray Co., Ltd.)
  • a black dye (Lanasyn Brill Black A manufactured by Sando Co.) was added and applied with an applicator and dried to form a black dye layer.
  • chloride After immersion in an aqueous palladium solution, electroless copper plating was performed to provide a metal layer.
  • a resist layer is formed on the entire metal layer by spin coating, exposed using a photomask, developed, and developed to a width of 30 m and a pitch of 200 ⁇ m. m was patterned into a honeycomb shape.
  • the metal layer in the area not covered with the resist layer was removed with an aqueous ferric chloride solution.
  • the resist layer was peeled off with a 3% aqueous potassium hydroxide solution, and at the same time, the portion of the black dyed layer not covered with the metal layer was decolorized with the above peeling solution.
  • the translucent electromagnetic wave shielding material and the method of manufacturing the same according to the fourth aspect of the invention have the following configuration, and therefore have the following effects.
  • the metal layer is laminated in a pattern on the transparent substrate, there is no restriction on the line width and the pitch according to the standard, and a design that is optimal in terms of visibility and electromagnetic wave shielding effect can be freely performed. Therefore, the visibility of the translucent electromagnetic wave shielding material and the electromagnetic wave shielding effect were improved.
  • a polyethylene terephthalate film was used as a first substrate, and a release layer was provided on one surface of the first substrate by applying methyl methacrylate by a comma coating method.
  • a metal layer having a thickness of 0.3 / m was formed by evaporating nickel.
  • a black resist layer having a thickness of 10 m was provided in a reverse polka dot pattern with an inner diameter of 500 m and a pitch of 700 / im.
  • a portion of the metal layer that was not covered with the black resist layer was removed by etching with a second chloride solution to produce a transfer sheet.
  • a borosilicate glass plate of lmm was used as a transparent second substrate, and a bisphenol A type epoxy resin was applied on one surface thereof by a roll coating method to provide an adhesive layer. Finally, after the transfer sheet was bonded onto the second substrate so that the first substrate was the outer surface, only the first substrate was peeled off to obtain a light-transmitting electromagnetic wave shielding material.
  • a polyethylene terephthalate film was used as a first substrate, and on one surface thereof, a polyethylene methacrylate was applied by a comma coating method to provide a peeling layer.
  • a metal layer was provided by bonding a copper foil having a thickness of 35 m.
  • a black resist layer having a thickness of 1 ⁇ was formed on the entire metal layer by a roll coating method using an ink containing carbon black as the photosensitive polyimide resin, and was exposed using a photomask. Then, it was developed with an aqueous solution of sodium carbonate and patterned into a lattice pattern having a width of 10 m and an eye size of 100 ⁇ 100 / im.
  • a transfer sheet was prepared by etching away the metal layer in a portion not covered with the black resist layer using an aqueous cupric chloride solution.
  • a 3 mm thick polyester plate was used as a transparent second substrate, and a bisphenol F type epoxy resin was applied on one surface thereof by a roll coating method to provide an adhesive layer.
  • the transfer sheet was bonded onto the second substrate so as to be the outer surface of the first substrate, only the first substrate was peeled off to obtain a light-transmitting electromagnetic wave shielding material.
  • a polymethyl methacrylate film was used as a transparent first substrate, and an acrylic resin “BR-77” (manufactured by Mitsubishi Rayon Co., Ltd.) was applied on one side of the substrate and immersed in 1% potassium hydroxide for 5 minutes.
  • the metal layer was immersed in a palladium-tin-tin chloride colloid solution, immersed in 1% sodium hydroxide for 1 minute, and subjected to electroless nickel plating to form a metal layer.
  • an acrylic plate with a thickness of 3 mm was used as a transparent second substrate, and an adhesive layer was formed by applying a glycidylamine type epoxy resin to one surface of the substrate by a roll coating method.
  • a polymethyl methacrylate film was used as a transparent first substrate, and a metal layer having a thickness of 0.2 / rn was provided on one surface thereof by silver vapor deposition.
  • a black resist layer with a thickness of 0.7 / m was formed on the entire surface of the metal layer by spin coating, and after exposure using a photomask, Developed with a 50-fold dilution of “Developer V-259D” (Shin Kogyo Co., Ltd.) and patterned into a honeycomb shape with a width of 20 // m and an eye diameter of 200 ”m.
  • the portion of the metal layer that was not covered with the black resist layer was removed by etching with a nitric acid second solution, and an aminophenol type epoxy resin was applied thereon by a roll coating method to provide an adhesive layer.
  • an affixed sheet was prepared.
  • a 2 mm-thick polymethyl methacrylate plate was used as a transparent second substrate, and an adhesive sheet was attached to the second substrate so that the first substrate was the outer surface, and a translucent electromagnetic wave shielding material was applied. Obtained.
  • polyethylene terephthalate film as a transparent first substrate, one side of which A metal layer was provided by bonding a copper foil having a thickness of 18 m.
  • a free layer was provided on the metal layer by screen printing in a reciprocal lattice pattern having a lattice width of 100 ⁇ and an eye size of 300 m ⁇ 300 ym.
  • a black resist layer having a thickness of 1 / m was provided on the upper surface of the metal layer and the free layer by roll coating using black carbon ink.
  • water was used as a release removing solution, and the free layer was removed to remove the black resist layer thereon.
  • the metal layer where the black resist layer was removed was removed by etching with an aqueous ferric chloride solution. Further, a bisphenol-type epoxy resin was applied thereon by a mouth coating method, and an adhesive layer was provided, thereby producing an adhesive sheet.
  • a translucent electromagnetic wave shielding material was obtained by using a methacrylic plate having a thickness of 2 mm as a transparent second substrate and laminating the adhesive sheet on the second substrate such that the first substrate was the outer surface. .
  • a polyethylene film was used as a first substrate, and polymethyl methacrylate was applied on one surface thereof by a spray nozzle method to provide a peeling.
  • a metal layer having a thickness of 0.3 m was formed by sputtering nickel.
  • an alkali-developable photoresist material is roll-coated on the metal layer, prebaked, exposed and developed using a photomask to develop a free layer with a grid width of 10 m, eye size of 100, "mx100
  • a black resist layer having a thickness of 1 was formed on the upper surface of the metal layer and the free layer by roll coating using black carbon ink.
  • the black resist layer was removed by removing the floating layer using an aqueous solution of potassium oxide, and finally, the metal layer in the portion from which the black resist layer had been removed was removed by etching with a nitric acid aqueous solution.
  • a transfer sheet was prepared.
  • a 2 mm thick polycarbonate plate was used as a transparent second substrate, and an aminophenol-type epoxy resin was applied on one side of the substrate by a roll coating method to provide an adhesive layer. Finally, after the tilling sheet was attached on the second substrate so that the first substrate was the outer surface, only the first substrate was peeled off to obtain a light-transmitting electromagnetic wave shield material.
  • a polymethyl methacrylate film as a transparent first substrate, roll coating a transparent ink made of cellulose acetate propionate on one surface to form an energized layer, then applying electroless copper plating to a thickness of 0.2 / m metal layer was provided.
  • aqueous printing resist ink a free layer was provided on the metal layer by screen printing in a reciprocal lattice pattern having a lattice width of 80 / m and an eye size of 300 / mx 300; m.
  • a black resist layer having a thickness of 1 was formed on the upper surface of the metal layer and the free layer by roll coating using black carbon ink.
  • an acrylic plate having a thickness of 2 mm was used as a transparent second substrate, and an adhesive layer was provided on one surface thereof by applying a glycidylamine type epoxy resin by a roll coating method.
  • the adhesive sheet was attached on the second substrate so as to have an outer surface of the first substrate force 5 to obtain a translucent electromagnetic wave shielding material.
  • a polyethylene terephthalate film was used as a first substrate, and a release layer was provided on one surface of the first substrate by applying polyethylene methacrylate by a comma coating method.
  • a metal layer was provided by bonding a copper foil having a thickness of 35 m.
  • a positive photo resist (OFPR800, manufactured by Tokyo Ohka Kogyo Co., Ltd.) is solid-formed on this metal layer, and exposed using a photomask. Patterned in a grid of m.
  • the resist was stripped.
  • a lead wire is connected to this metal layer, and carbon black 1%, aminated epoxidized polybutadiene (Number average molecular weight: about 1000)
  • a transfer sheet was prepared by immersion in an aqueous solution containing 20% and triethylamine 1%, and applying a voltage of 10 V for 1 minute to form a black electrodeposited layer having a thickness of 1 m.
  • a 100 m-thick polyethylene terephthalate film formed by sputtering TO on one side is used as a transparent second substrate, and a polyurethane-based adhesive is applied by roll coating on the other side of the ITO and the adhesive layer is formed.
  • a polyurethane-based adhesive is applied by roll coating on the other side of the ITO and the adhesive layer is formed.
  • a polyethylene terephthalate film was used as a first substrate.
  • Polymethyl methacrylate was applied on one side of the substrate by a comma coating method to form a release layer.
  • an acrylic resin (BR-77 manufactured by Mitsubishi Rayon Co., Ltd.) was applied and immersed in 1% potassium hydroxide for 5 minutes, then immersed in a palladium chloride-tin chloride colloid solution, and then added to 196 potassium hydroxide for 1 minute.
  • the metal layer was provided by immersion and electroless nickel plating.
  • a positive photoresist (OFPR800, manufactured by Tokyo Ohka Kogyo Co., Ltd.) is solid-formed on the metal layer, exposed and developed using a photomask, and patterned into a 200 m-diameter honeycomb shape with a line width of 20 ⁇ .
  • the resist was stripped.
  • a conductive wire is connected to this metal layer, immersed in an aqueous solution containing titanium black 1%, aminated epoxidized polybutadiene 20%, and triethylamine 1%, and applied with a voltage of 30 V for 3 minutes to a thickness of 1 m. Formed a black electrodeposited layer.
  • a transfer sheet was prepared by applying a glycidyl ether type epoxy resin thereon by a roll coating method and providing an adhesive layer.
  • Example 30 a 3 mm-thick polymethyl methacrylate plate is used as a transparent second substrate.
  • the transfer sheet is laminated on the second substrate so that the first substrate is the outer surface.
  • a polyethylene terephthalate film was used as a first substrate, and on one surface thereof, a polyethylene methacrylate was applied by a comma coating method to provide a peeling layer.
  • an acrylic resin (BR-77, manufactured by Mitsubishi Rayon Co., Ltd.) was applied and immersed in 1% potassium hydroxide for 5 minutes, and then immersed in a palladium chloride / tin chloride colloid solution, and then immersed in 1% potassium hydroxide. It was immersed for a while and electroless nickel plating was applied to form a metal layer.
  • a positive photoresist (OFPR800 manufactured by Tokyo Ohka Kogyo Co., Ltd.) is solid-formed on the metal layer, exposed and developed using a photomask, and has a line width of 30 / ym and an eye size of 150 ⁇ 15 cm. Patterned in a grid.
  • the resist was stripped. A conductive wire was connected to this metal layer, immersed in an aqueous solution containing titanium black 1 ⁇ 3 ⁇ 4, aminated epoxidized polybutadiene 20%, and triethylamine 1%, and applied with a voltage of 30 V for 3 minutes to a thickness of 1 ⁇ m.
  • a transfer sheet was prepared by forming a black electrodeposited layer of m.
  • an acrylic plate having a thickness of 3 mm was used as a transparent second substrate, and an adhesive layer was formed by applying a glycidyl ether type epoxy resin on one surface thereof by a roll coating method.
  • the transfer sheet was bonded onto the second substrate so that the first substrate was the outer surface
  • the first substrate alone was peeled off to obtain a light-transmitting electromagnetic wave shield material.
  • a polymethyl methacrylate film was used as a transparent first substrate, and a metal layer was provided on one surface thereof by vapor-depositing nickel.
  • a positive photo resist (OFPR800, manufactured by Tokyo Ohka Kogyo Co., Ltd.) is solid-formed on the metal layer, exposed and developed using a photomask, and patterned into a reverse polka dot shape with an inner diameter of 100 m and a pitch of 110 / im. did.
  • the metal layer was etched with a ferric chloride solution, the resist was stripped.
  • a conductive wire was connected to this metal layer, and further immersed in an acetonitrile solution containing 0.5 M of pyrrole, 0.5 M of sulfuric acid, and 0.2 M of tetraethylammonium borofluoride.
  • a ⁇ -mel electrode having a saturation force was set as a reference electrode, and a current of 0.8 V vs. SCE was applied for 3 minutes to form a black electrodeposited layer having a thickness of 1 m.
  • a phenol-polak type epoxy resin was applied thereon by a mouth coating method and an adhesive layer was provided to produce an adhesive sheet.
  • a borosilicate glass plate having a thickness of Umm was used as a transparent second substrate. Then, the adhesive sheet was adhered on the second substrate so that the first substrate was the outer surface, to obtain a light-transmitting electromagnetic wave shield material.
  • a polyethylene terephthalate film was used as a transparent first substrate, and a metal layer was provided on one surface thereof by bonding a copper foil having a thickness of 35 ⁇ m.
  • a positive photoresist (OFPR800, manufactured by Tokyo Ohka Kogyo Co., Ltd.) is solid-formed on the copper foil, exposed and developed using a photomask, and the width is 10 / m and the eye size is lOO X lOO m. Patterned in a grid.
  • the resist was stripped off.
  • a 2 mm-thick polyester plate was used as a transparent second substrate, and an adhesive sheet was adhered to the second substrate so that the first substrate was on the outer surface, to obtain a translucent electromagnetic wave shielding material.
  • a polyethylene terephthalate film was used as a first substrate, and a release layer was provided on one surface of the first substrate by applying polyethylene methacrylate by a comma coating method.
  • a metal layer was provided by bonding a copper foil having a thickness of 35 / in to one of them.
  • a photo resist (OFPR800, manufactured by Tokyo Ohka Kogyo Co., Ltd.) was solid-formed, exposed and developed using a photomask, and was patterned into a lattice pattern having a width of 0; zm and an eye size of lOO x lOOm.
  • the copper foil was etched with an aqueous ferric chloride solution, and the resist was stripped off.
  • This is transferred by subjecting it to a chemical treatment in which it is immersed in a boiling aqueous solution containing 1 part by weight of potassium persulfate and 5 parts by weight of sodium hydroxide for 1 minute, and the copper foil has a black surface layer.
  • the sheet was torn.
  • a 2-mm thick polymethyl methacrylate plate was used as a transparent second substrate, and an adhesive layer was provided on one surface of the second substrate by applying a bisfuninol A-type epoxy resin by a roll coating method.
  • a metal layer was provided by bonding an iron foil having a thickness to one surface thereof.
  • a positive photoresist (OFPR800, manufactured by Tokyo Ohka Kogyo Co., Ltd.) is solid-formed on the iron foil, exposed and developed using a photomask, and developed to a width of 10 / im and an eye size of 100 ⁇ 100; / m. In a lattice pattern.
  • the resist was stripped off. This was subjected to a chemical conversion treatment in which it was immersed for 2 minutes in an aqueous solution containing 0.1 M of zinc dihydrogen phosphate at 80 to produce a metal compound in which the surface layer of the iron foil had a black color.
  • a pressure-sensitive adhesive on one side and a low-reflection-treated polyurethane film (3-7 top manufactured by Asahi Glass Co., Ltd.) on the other side were used as a transparent second substrate with an adhesive layer.
  • the adhesive sheet was attached on the second substrate such that the first substrate was on the outer surface to obtain a transparent A raw electromagnetic wave shielding material.
  • Example 3 5 A polyethylene terephthalate film was used as a first substrate, and a release layer was provided on one surface of the first substrate by applying polyethylene methacrylate by a comma coating method. Next, a solution of polyacrylonitrile in ⁇ , ⁇ -dimethylformamide is applied with a bar coater, dried, and immersed in a dye bath of a black dye (Sumiacryl Black FFP manufactured by Sumitomo Chemical Co., Ltd.) for 20 minutes. It was crushed to provide a black dyed layer. Next, silver was vapor-deposited on the entire surface of the black dyeing layer to provide a metal layer.
  • a black dye Sudiacryl Black FFP manufactured by Sumitomo Chemical Co., Ltd.
  • a resist layer is formed on the entire metal layer by spin coating, exposed using a photomask, developed, and developed to a width of 20 Aim. It was patterned in a grid pattern with a pitch of 150 / m.
  • the portion of the metal layer not covered with the resist layer is removed with an aqueous solution of ferric nitrate and sodium chlorite, and at the same time, the portion of the black stained layer not covered with the metal layer is decolorized with an etchant.
  • a transfer sheet was prepared.
  • an acrylic plate having a thickness of 2 mm was used as a transparent second substrate, and an adhesive layer was formed by applying a glycidylamine type epoxy resin to one surface thereof by a roll coating method.
  • the transfer sheet was bonded onto the second substrate so that the first substrate was the outer surface, and then the first substrate alone was stripped to obtain a translucent electromagnetic wave shielding material.
  • a polycarbonate film was used as the transparent first substrate, and a black dye (sand sand) was placed in a mixed solvent of ethylene-vinyl alcohol copolymer (Eval F manufactured by Kuraray Co., Ltd.) and n-propyl alcohol-water.
  • the product added with Lanasyn Brill Black A) was coated with an abricator and dried to form a black dyed layer.
  • electroless copper plating was performed to provide a metal layer.
  • a resist layer is formed on the entire surface of the metal layer by a roll coating method using a post type photo resist (OFPR800 manufactured by Tokyo Ohka Kogyo Co., Ltd.), exposed using a photomask, developed, and developed. 30, "m, and a honeycomb pattern of pitch 200 ⁇ ⁇ . then, using a ferric chloride solution as an etching solution, the metal layer which is not covered with the resist layer is removed Was. Finally, using a 3% aqueous potassium hydroxide solution as a resist remover, the resist layer is removed, and at the same time, the black stained layer not covered with the metal layer is decolorized with the resist remover, and the adhesive sheet is removed. Was prepared.
  • a post type photo resist OFPR800 manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • a cellulose acetate plate having a thickness of l mm was used as a transparent second substrate, and an adhesive layer was provided on one surface of the substrate by applying a glycidylamine type epoxy resin by a roll coating method.
  • the sticking sheet was stuck on the second substrate so that the metal layer became the outer surface, to obtain a light-transmitting electromagnetic wave shielding material.
  • the translucent electromagnetic wave shielding material and the method of manufacturing the same according to the fifth to the twelveth inventions have the above-described configuration, and thus have the following effects.
  • the translucent electromagnetic wave shielding material of the present invention comprises a plate after forming each layer of the electromagnetic wave shield on a transparent first base made of a film which is easier to handle more heavily than a plate to produce an adhesive sheet. Since it is bonded to the transparent second substrate, no large-scale equipment is required for forming each layer of the electromagnetic wave shield.
  • each layer of electromagnetic wave shielding is formed on the transparent first substrate made of film to produce an adhesive sheet, it is adhered along the transparent second substrate made of a three-dimensional object.
  • An electromagnetic shielding effect can be imparted to such a transparent substrate.
  • each electromagnetic wave shielding layer is formed on a transparent first substrate made of a normal film which is less expensive than a film having a functional layer to produce an adhesive sheet.
  • a transparent second layer made of a functional film is formed. Since it is bonded to the base, if pinholes, scratches, etc. are found in a part at the stage of the bonding sheet, it can be used by avoiding the part of the bonding sheet, and there is no need to discard the expensive second base.
  • the translucent electromagnetic wave shielding material obtained by the present invention has a good yield and a low product cost.
  • each layer of electromagnetic wave shielding is formed and adhered on a transparent first substrate made of a film.
  • the attached sheet After the attached sheet is prepared, it is bonded along the transparent second substrate consisting of a plate, a three-dimensional object, or a film having a functional layer, so that the second substrate is heated as required during the formation of each layer of the electromagnetic wave shield.
  • the material of the second substrate can be selected from a wider range than before without being damaged by the treatment or various chemical treatments.
  • the present invention provides a method for producing a transfer sheet in which a release layer and an electromagnetic wave shielding layer are provided on a first substrate made of a film, and then forming the transfer sheet on a transparent substrate made of a film having a plate, a three-dimensional object, or a functional layer.

Abstract

A light-transmissive electromagnetic shielding material having an excellent visibility and a high electromagnetic wave shielding effect. The shielding material is manufactured by forming metallic layers and black layers not in order on a transparent substrate and both the metallic layers and black layers are arranged in a pattern in alignment with each other. A process for producing the material is also disclosed.

Description

明 細 書  Specification
透光性電磁波シールド材料とその製造方法  Transparent electromagnetic wave shielding material and manufacturing method thereof
発明の分野 Field of the invention
本発明は、 電磁波をシールドする働きをし、 かつ材料の反対側を透視することが できる透光性電磁波シールド材料とその製造方法に関する。  The present invention relates to a light-transmitting electromagnetic wave shielding material that functions to shield an electromagnetic wave and allows the opposite side of the material to be seen through, and a method for manufacturing the same.
¾来技術 Traditional technology
にや LSIが多量に使用されているコンピュータなどの電子機器は電磁波を癸生し やすく、 この電磁波が周囲の機器を誤動作させるなどの障害を起こす。 近年、 電磁 波障害に関わる機器の広まりに従い、 また電磁波の人体に対する影響が論じられる ようになって、 電磁波シ一ルド材料に対する要求はますます高くなつている。 電磁波シ一ルド材料の中には、 電磁波をシールドする働きをするだけではなく、 たとえば、 ディスプレイなどの前面パネルにしたり、 電子レンジの窓にしたりする ことができるように電磁波シールド材料を通して電磁波シールド材料の後方を視る ことができる透光性のものがある。 とくに、 ディスプレイなどの前面パネルにする 場合には、 電磁波シールド材料を通してディスプレイ画面を視ることになるので、 電磁波シールド性を保ちながらディスプレイ画面の視認性に優れたものが望まれ 従来から、 電磁波シールドする働きをし、 かつ材料の反対側を透視することがで きる透光性電磁波シールド材料としては、 1 ) ガラスや透明樹脂板間に導電性ネッ トを挟み込んだり、 ガラスや透明樹脂板に導電性ネッ トを埋め込んだもの、 2 ) ガ ラスや透明樹脂板上に、 蒸着やスパッタリングによって金や ITOなどの透明導電薄 膜を形成したものなどがあった。 なお、 1 ) の透光性電磁波シールド材科の場合に は、 視認性を高めるために導電性ネッ ト表面を黒色に染めてネット表面の反射を抑 えることも行なわれている。  Electronic devices such as computers that use a large amount of LSI are susceptible to electromagnetic waves, and these electromagnetic waves can cause malfunctions such as malfunctioning of peripheral devices. In recent years, as devices related to electromagnetic interference have become widespread, and the effects of electromagnetic waves on the human body have been discussed, the demand for electromagnetic shielding materials has been increasing. Some electromagnetic shielding materials not only function to shield electromagnetic waves, but also, for example, can be used as front panels for displays and microwave oven windows so that they can be used as microwave oven windows. There is a translucent one that allows you to see behind. In particular, in the case of a front panel such as a display, the display screen is viewed through an electromagnetic wave shielding material.Therefore, a display screen with excellent visibility while maintaining the electromagnetic wave shielding property has been desired. As a light-transmitting electromagnetic wave shielding material that functions as a shield and can see through the other side of the material, 1) a conductive net is sandwiched between glass or transparent resin plates, And 2) a transparent conductive thin film such as gold or ITO formed on glass or a transparent resin plate by vapor deposition or sputtering. In the case of translucent electromagnetic wave shielding materials in 1), the surface of the conductive net is dyed black to suppress the reflection on the net surface in order to enhance visibility.
しかし、 1 ) の透光性電磁波シールド材料の場合、 導電性ネッ トとして、 線幅や ピッチなどの規格が決まった金網や、 織物繊維または編物繊維をメツキしたもの力 ί 使われているため、 ネッ トの線幅やピッチなどの設計が著しく ) J限を受けていた。 そのため、 視認性や電磁波シールド効果の点で最適となる設計で導電性ネッ トが得 られず、 視認性に劣ったり、 電磁波シールド効果が低かった。 However, in the case of the translucent electromagnetic wave shielding material of 1), the line width and the Because wire mesh and woven or knitted fibers are used for power, where the standards such as pitch have been determined. 設計 The design of the line width and pitch of the net has been markedly limited. As a result, a conductive net could not be obtained with a design that was optimal in terms of visibility and electromagnetic wave shielding effect, resulting in poor visibility and low electromagnetic wave shielding effect.
また、 2 ) の透光性電磁波シールド材料の場合、 金膜では金属光沢が出るために 視認性が悪く、 ITO膜では導電性が低いために電磁波シールド効果が低かった。 したがって、 本発明は、 視認性力優れ、 電磁波シールド効果も高い透光性電磁波 シールド材料とその製造方法を提供することを目的とする。  Also, in the case of the translucent electromagnetic wave shielding material of 2), the visibility was poor due to the metallic luster of the gold film, and the electromagnetic wave shielding effect was low due to the low conductivity of the ITO film. Therefore, an object of the present invention is to provide a translucent electromagnetic wave shielding material having excellent visibility and a high electromagnetic wave shielding effect, and a method for producing the same.
明の概要  Ming summary
上記の目的を達成するために、 本発明の透光性電磁波シールド材料は、 透明基体 上に金属層と黒色層とが順不同で存在し、 該金属層および黒色層が共に見当一致し てパターン化されているように構成した。  In order to achieve the above object, the light-transmitting electromagnetic wave shielding material of the present invention is characterized in that a metal layer and a black layer are present on a transparent substrate in no particular order, and the metal layer and the black layer are both aligned and patterned. It was configured as follows.
具体的には、 本発明の透光性電磁波シールド材料は、 透明基体上に金属層がパ ターン状に積層され、 金属層上に金属層と見当一致した黒色レジスト層が積層され ているように構成した (第 1発明) 。  Specifically, the translucent electromagnetic wave shielding material of the present invention has a structure in which a metal layer is laminated in a pattern on a transparent substrate, and a black resist layer in register with the metal layer is laminated on the metal layer. (1st invention).
また、 上記構成において、 黒色レジスト層が、 黒色の染顔料を含有するフオ トレ ジス トからなるように構成した。  Further, in the above configuration, the black resist layer is formed of a photoresist containing a black dye and pigment.
第 1発明の透光性篦磁波シールド材料の製造方法は、 透明基体上に金属層を設け る工程、 金属層上に黒色レジスト層をパターン状に設ける工程、 黒色レジスト層で 覆われていない部分の金属層をエッチングにより除去する工程よりなるように構成 した。  The method for producing a translucent magnetic shielding material according to the first invention includes a step of providing a metal layer on a transparent substrate, a step of providing a black resist layer on the metal layer in a pattern, and a portion not covered with the black resist layer. And a step of removing the metal layer by etching.
また、 上記構成において、 黒色レジス ト層をパターン状に設ける工程が、 黒色の 染顔料を含有する感光性樹脂を塗布し、 マスクを用いて露光し、 現像するものであ るよう:こ構成した C  Further, in the above configuration, the step of providing the black resist layer in a pattern is such that a photosensitive resin containing a black dye is applied, exposed using a mask, and developed. C
また— 第 1発明の透光性電磁波シールド材料は透明基体上に金属層を設けるェ 程、 金属層上にパターニングされた剥離層を設ける工程、 金属層および剥離層上に 黒色レジスト層を設ける工程、 剥離層を剥離液で剥離することによりその上の黒色 レジスト層を除去する工程、 黒色レジスト層を除去した部分の金属層をエッチング により除去する工程によっても得られる。 The translucent electromagnetic wave shielding material of the first invention has a metal layer provided on a transparent substrate. Providing a patterned release layer on the metal layer, providing a black resist layer on the metal layer and the release layer, removing the release layer with a release liquid to remove the black resist layer thereon, It can also be obtained by a step of removing the metal layer at the portion where the black resist layer has been removed by etching.
上記、 剥離層を印刷レジスト材料ゃフォ トレジスト材料からなるように構成して もよい。 また、 黒色レジスト層の膜厚を 0.1 / m〜10 mで構成してもよい。 また、 剥離液は水、 水酸化ナトリウム水溶液、 水酸化カリウム水溶液、 アセトン、 ェチル セロソルブァセテートで構成してもよい。  The release layer may be formed of a printing resist material / photoresist material. Further, the black resist layer may have a thickness of 0.1 / m to 10 m. The stripper may be composed of water, an aqueous solution of sodium hydroxide, an aqueous solution of potassium hydroxide, acetone, or ethyl cellosolve acetate.
さらに、 本発明の透光性電磁波シールド材料は、 透明基体上に金属層がパターン 状に積層され、 金属層上に金属層と見当一致した黒色電気析出層が積層されている ように構成してもよい (第 2発明) 。 また、 上記構成において、 黒色電気析出層 を、 イオン性高分子中に黒色系粒子を含むもので構成してもよい。 あるいは、 黒色 電気析出層を、 黒色系の導電性高分子からなるもので構成してもよい。 また、 黒色 電気析出層を黒色系の色調を有する電気メソキ被膜で構成しても良い。 上記イオン 性高分子としては、 アクリル樹脂、 ポリエステル榭脂、 ポリブタジエン樹脂、 マレ イン樹脂、 エポキシ樹脂、 ウレタン樹脂、 ポリアミ ド樹脂あるいはその変性体をァ ミノ化またはカルボキシル化したものを用いることができる。 また、 上記黒色系粒 子としては、 カーボンブラック、 チタンブラック、 ァニリンプラッツクを用いるこ とができる。 また、 上記導電性高分子としては、 ピロ一ル、 ァニリン、 チォフェン およびその誘導体の重合物を用いることができる。  Further, the translucent electromagnetic wave shielding material of the present invention is configured such that a metal layer is laminated in a pattern on a transparent substrate, and a black electrodeposition layer which is in register with the metal layer is laminated on the metal layer. (Second invention). Further, in the above configuration, the black electrodeposition layer may be formed of a material containing black particles in an ionic polymer. Alternatively, the black electrodeposition layer may be made of a black conductive polymer. Further, the black electrodeposition layer may be formed of an electric plating film having a black color tone. As the above-mentioned ionic polymer, an acrylic resin, a polyester resin, a polybutadiene resin, a maleic resin, an epoxy resin, a urethane resin, a polyamide resin or a modified product thereof can be aminated or carboxylated. In addition, carbon black, titanium black, and aniline plastic can be used as the black particles. Further, as the conductive polymer, a polymer of pyrrole, aniline, thiophene and a derivative thereof can be used.
上記第 2発明の透光性電磁波シールド材料の製造方法は、 透明基体上に金属層を パターン状に積層する工程と、 黒色系粒子を含むイオン性高分子の溶液中に前工程 で金属層を積層した透明基体を対向電極と共に浸漬して通電することにより金属層 上に黒色電気析出層を積層する工程よりなるように構成した。  The method for producing a translucent electromagnetic wave shielding material according to the second aspect of the present invention includes a step of laminating a metal layer in a pattern on a transparent substrate, and a step of forming the metal layer in a solution of an ionic polymer containing black particles in a previous step. The laminated transparent substrate was immersed together with the counter electrode and energized to form a black electrodeposition layer on the metal layer.
また、 第 2発明の透光性電磁波シールド材料の製造方法は、 透明基体上に金属層 をパターン状に積層する工程と、 導電性高分子のモノマーの溶液中に前工程で金属 層を積層した透明基体を対向電極と共に浸瀵して通電することにより金属層上に黒 色電気析出層を積層する工程よりなるように構成してもよい。 Further, the method for producing a translucent electromagnetic wave shielding material according to the second invention is characterized in that a metal layer is formed on a transparent substrate. A transparent electrode on the metal layer by immersing the transparent substrate on which the metal layer was laminated in the previous step in a solution of the monomer of the conductive polymer together with the counter electrode, and applying an electric current to the transparent substrate. May be configured to include a step of laminating.
また、 第 2発明の透光性電磁波シールド材料の製造方法は、 透明基体上に金属層 をノ、'ターン状に積層する工程と、 黒色系の色調を有する電気めつき被膜を形成する めっき液に、 前工程で金属層を積層した透明基体を浸潸し、 金属層に通電すること により金属層上に黒色電気析出層を積層する工程よりなるように構成してもよい。 また、 本発明の透光性電磁波シールド材料は、 透明基体上にパターン状に形成さ れた金属層の表層部分が黒色を呈する金属化合物であるように構成してもよい (第 3発明) 。 この場合、 黒色層が金属層と一体化している構成となる。  The method for producing a light-transmitting electromagnetic wave shielding material according to the second aspect of the present invention includes a step of laminating a metal layer on a transparent substrate in a turn pattern, and a plating solution for forming an electroplating film having a black color tone. Alternatively, the transparent substrate on which the metal layer is laminated in the previous step may be dipped, and a current may be applied to the metal layer to laminate a black electrodeposition layer on the metal layer. Further, the translucent electromagnetic wave shielding material of the present invention may be configured such that the surface layer of the metal layer formed in a pattern on the transparent substrate is a metal compound exhibiting black (third invention). In this case, the black layer is integrated with the metal layer.
また、 上記第 3発明の透光性電磁波シールド材料の製造方法は、 透明基体上に金 属屠をパターン状に設けた後、 化成処理を施すことにより金属層の表層部分を黒色 を呈する金属化合物とするように構成することができる。  Further, the method for producing a translucent electromagnetic wave shielding material according to the third aspect of the present invention is a metal compound that provides a metal layer on a transparent substrate in a pattern and then performs a chemical conversion treatment so that the surface layer of the metal layer exhibits a black color. It can be configured as follows.
また、 本発明の透光性電磁波シールド材料は、 透明基体上に積層された黒染色層 がパターン状の脱色部とその他の非脱色部とからなり、 黒染色層上に非脱色部と見 当一致した金属層が稜層されているように構成してもよい (第 4発明) 。 この場 合、 黒染色層をァクリル系榭脂、 ポリエステル系樹脂、 セルロース系樹脂、 ポリォ レフイ ン系榭脂、 ポリビニルアルコール系樹脂、 天然高分子型樹脂またはこれらの 共重合物、 混合物に染料を含むもので構成してもよい。  Further, in the translucent electromagnetic wave shielding material of the present invention, the black dyed layer laminated on the transparent substrate is composed of a pattern-shaped bleached portion and other non-bleached portions, and is regarded as a non-bleached portion on the black stained layer. The matching metal layer may be configured so as to be ridged (fourth invention). In this case, the black dyed layer contains acryl-based resin, polyester-based resin, cellulose-based resin, polyolefin-based resin, polyvinyl alcohol-based resin, natural polymer-type resin or a copolymer of these, or a dye in the mixture. It may be composed of
第 4発明の透光性電磁波シールド材料の製造方法は、 透明基体上に黒染色層を設 ける工程、 黒染色層上に金厲層を設ける工程、 金厲層上にレジスト層をパターン状 に設ける工程、 レジスト層で覆われていない部分の金属層をエッチング液により除 去する工程を順次行い、 エッチング工程においてパターン化された金属層で覆われ ていない部分の黒染色層をエッチング液により脱色するように構成してもよい。 また、 第 4発明の透光性電磁波シールド材料は、 透明基体上に黒染色層を設ける 工程、 黒染色層上に金属層を設ける工程、 金属層上にレジスト層をパターン状に設 ける工程、 レジスト層で覆われていない部分の金属層をエッチング液により涂去す る工程を順次行い、 次いでパターン化された金属層で覆われていない部分の黒染色 層をエッチング液とは別個の脱色液により脱色する工程より製造してもよい。 第 4発明の透光性電磁波シールド材料の製造方法は、 透明基体上に黒染色層を設 ける工程、 黒染色層上に金属層を設ける工程、 金属層上にレジスト層をパターン状 に設ける工程、 レジスト層で覆われていない部分の金属層をエッチング液により除 去する工程を順次行い、 次いでレジス ト層を剥離液により剥離する工程を行い、 こ のレジスト層の剥離工程においてパターン化された金属層で覆われていない部分の 黒染色層を剥離液により脱色するようにしてもよい。 The method for producing a translucent electromagnetic wave shielding material according to the fourth invention includes a step of providing a black dye layer on a transparent substrate, a step of providing a metal layer on the black dye layer, and forming a resist layer on the metal layer in a pattern. The step of providing and the step of removing the metal layer in the portion not covered with the resist layer with an etchant are sequentially performed.The black stain layer in the portion not covered with the patterned metal layer in the etching process is decolorized with the etchant. May be configured. Further, in the light-transmitting electromagnetic wave shielding material of the fourth invention, a black dyeing layer is provided on a transparent substrate. Steps: providing a metal layer on the black dyed layer, providing a resist layer in a pattern on the metal layer, and removing the metal layer in a portion not covered with the resist layer with an etchant. Then, the black stain layer not covered with the patterned metal layer may be manufactured by a step of decoloring with a decolorizing solution separate from the etching solution. The method for producing a light-transmitting electromagnetic wave shielding material according to the fourth invention includes a step of providing a black dye layer on a transparent substrate, a step of providing a metal layer on the black dye layer, and a step of providing a resist layer in a pattern on the metal layer. Then, a step of removing the metal layer in a portion not covered with the resist layer with an etchant is sequentially performed, and then, a step of peeling the resist layer with a stripper is performed. A portion of the black dyed layer that is not covered with the metal layer may be decolorized with a stripping solution.
更に、 第 4発明の透光性電磁波シールド材料の製造方法は、 透明基体上に黒染色 層を設ける工程、 黒染色層上に金属層を設ける工程、 金属層上にレジス ト層をパ ターン状に設ける工程、 レジスト層で覆われていない部分の金属層をエッチング液 により除去する工程を順次行い、 次いでパターン化された金属層で覆われていない 部分の黒染色層をエッチング液とは別個の脱色液により脱色する工程、 レジスト層 を剥離液により剥離する工程を行うように構成してもよい。 また、 本発明の透光性 電磁波シールド材料の製造方法は、 レジスト層の剥離工程においてパターン化され た金属層で覆われていない部分の黒染色層を剥離液により脱色するように構成して もよい。  Further, in the method for producing a translucent electromagnetic wave shielding material according to the fourth invention, a step of providing a black dyeing layer on a transparent substrate, a step of providing a metal layer on the black dyeing layer, and a step of forming a resist layer on the metal layer The steps of removing the metal layer in the portion not covered with the resist layer with an etchant are sequentially performed, and then removing the black stained layer in the portion not covered with the patterned metal layer separately from the etchant. You may comprise so that the process of decoloring with a bleaching solution and the process of peeling off a resist layer with a stripping solution may be performed. Further, the method for producing a light-transmitting electromagnetic wave shielding material of the present invention may be configured so that, in the step of removing the resist layer, a portion of the black stained layer that is not covered with the patterned metal layer is decolorized with a stripping solution. Good.
また、 上記エッチング工程において、 パターン化された金属層で覆われていない 部分の黒染色層をエッチング液により脱色するように構成してもよい。  Further, in the above-mentioned etching step, a portion not covered with the patterned metal layer may be decolorized with an etchant.
また、 上記エッチング液を王水、 硝酸第二鉄水溶液、 塩化第二鉄水溶液、 化第 二銅水溶液または硝酸セリゥム水溶液を主成分とするように構成してもよい。 また、 上記脱色液を界面活性剤の水溶液、 亜塩素酸ナトリウム水溶液、 次亜塩素 酸ナトリウム水溶液、 過酸化水素水溶液、 硝酸ナトリゥム水溶液、 塩化第一錫水溶 液、 ホルムアルデヒ ドナトリウムスルホキシラート二水塩水溶液、 二酸化チォ尿素 水溶液、 ハイ ドロサルファイ トナトリゥム水溶液、 無色透明の染料中間体水溶液で 構成してもよい。 Further, the etching solution may be configured so that the main component thereof is aqua regia, an aqueous solution of ferric nitrate, an aqueous solution of ferric chloride, an aqueous solution of cupric oxide, or an aqueous solution of cerium nitrate. In addition, the above decolorizing solution is used as an aqueous solution of a surfactant, an aqueous solution of sodium chlorite, an aqueous solution of sodium hypochlorite, an aqueous solution of hydrogen peroxide, an aqueous solution of sodium nitrate, and an aqueous solution of stannous chloride. Liquid, aqueous solution of sodium formaldehyde sulfoxylate dihydrate, aqueous solution of thiourea dioxide, aqueous solution of sodium hydrosulfite, and aqueous solution of a colorless and transparent dye intermediate.
また、 上記剥離液をアルカリ水溶液、 有機溶媒またはこれらの混合液を主成分と するように構成した。 アルカリ水溶液は水酸化ナトリウム、 7 酸化力リゥムで構成 してもよいつ 有機溶媒はアセトン、 セロソルブアセテート系溶媒、 セロソルブ系溶 媒、 アルコール系溶媒で構成してもよい。 エッチング液および/または剥離液は脱 色剤を含むもので構成してもよい。 脱色剤は界面活性剤、 亜塩素酸ナトリウム、 次 亜塩素酸ナ トリウム、 過酸化水素、 硝酸ナトリウム、 塩化第一錫、 ホルムアルデヒ ドナトリウムスルホキシラー トニ水塩、 二酸化チォ尿素、 ハイ ドロサルファイ トナ トリウム、 無色透明の染料中間体で構成してもよい。  Further, the above-mentioned stripping solution was constituted so that an alkaline aqueous solution, an organic solvent or a mixture thereof was used as a main component. The alkaline aqueous solution may be composed of sodium hydroxide, 7 oxidizing rim, and the organic solvent may be composed of acetone, cellosolve acetate solvent, cellosolve solvent, or alcohol solvent. The etching solution and / or the stripping solution may include a decoloring agent. Decolorizing agents are surfactants, sodium chlorite, sodium hypochlorite, hydrogen peroxide, sodium nitrate, stannous chloride, sodium formaldehyde sodium sulfoxylate tonihydrate, thiourea dioxide, sodium hydrosulfite, It may be composed of a colorless and transparent dye intermediate.
本発明の透光性電磁波シールド材料は、 フィルムからなる透明な第一基体上に金 厲層がパターン状に設けられ、 金属層上に金属層と見当一致した黒色レジスト層が 設けられた貼付シートが、 接着層を介して、 板、 立体物または機能性層を有する フィルムからなる透明な第二基体に貼り合わせられているように構成してもよい (第 5発明)  The translucent electromagnetic wave shielding material of the present invention is an adhesive sheet in which a metal layer is provided in a pattern on a transparent first substrate made of a film, and a black resist layer registered with the metal layer is provided on the metal layer. May be bonded via an adhesive layer to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer (fifth invention).
第 5発明の透光性電磁波シ一ルド材科はフィルムからなる透明な第一基体全面に 金属層を設け、 金属層上に黒色レジス ト層をパターン状に設け、 黒色レジスト層で 覆われていない部分の金属層をエッチング液を用いて除去することより作製した貼 付シートを、 接着層を介して、 板、 立体物または機能性層を有するフィルムからな る透明な第二基体上に貼り合わせることにより製造しても良い。  The translucent electromagnetic wave shielding material family of the fifth invention has a metal layer provided on the entire surface of a transparent first base made of a film, a black resist layer provided on the metal layer in a pattern, and covered with a black resist layer. The adhesive sheet produced by removing the metal layer in the non-existing part using an etchant is attached via an adhesive layer to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer. You may manufacture by combining.
上記黒色レジスト層をパターン状に設ける工程が、 黒色の染顔料を含有する感光 性樹脂インキを金属層上に塗布し、 フォ トマスクを用いて露光し、 現像するもので あってもよレ 。 また、 黒色レジスト層をパターン状に設ける工程が、 金属層上にパ ターニングされた遊離層を設け、 金属層および遊雜層上に黒色レジスト層を設け、 遊離層を遊雜除去液で除去することによりその上の黒色レジスト層も除まするもの でってもよい。 The step of providing the black resist layer in a pattern may be a step of applying a photosensitive resin ink containing a black dye and pigment on the metal layer, exposing using a photomask, and developing. Further, the step of providing a black resist layer in a pattern form includes providing a patterned free layer on the metal layer, providing a black resist layer on the metal layer and the free layer, By removing the free layer with a removal solution, the black resist layer thereon may also be removed.
また、 本発明の透光性電磁波シールド材料は、 フィルムからなる透明な第一基体 上に金属層がパターン状に設けられ、 金属層上に金属層と見当一致した黒色電気析 出層が設けられた貼付シート力、 接着層を介して、 板、 立体物または機能性層を有 するフィルムからなる透明な第二基体に貼り合わせられているように構成してもよ い (第 6発明)  Further, the translucent electromagnetic wave shielding material of the present invention comprises a transparent first substrate made of a film, a metal layer provided in a pattern, and a black electrodeposition layer registered with the metal layer provided on the metal layer. (A sixth invention), a configuration may be adopted in which the sheet is bonded to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via a bonding sheet force and an adhesive layer.
第 6発明の透光性電磁波シ一ルド材料は、 フィルムからなる透明な第一基体 上に金属層をパターン状に設け、 黒色系粒子を含むイオン性高分子の溶液中に前ェ 程で金属層を設けた透明な第一基体を対向電極と共に浸漬して通電することにより 金属層上に黒色電気析出層を設けて作製した貼付シートを、 接着層を介して、 板、 立体物または機能性層を有するフィルムからなる透明な第二基体上に貼り合わせる ことにより製造しても良い。 また、 この材料は、 フィルムからなる透明な第一基体 上に金属層をパターン状に設け、 導電性高分子のモノマーの溶液中に前工程で金属 層を設けた透明な第一基体を対向電極と共に浸潰して通電することにより金属層上 に黒色電気析出餍を設けて作製した貼付シートを、 接着層を介して、 板、 立体物ま たは機能性層を有するフィルムからなる透明な第二基体上に貼り合わせることによ り製造してもよい。 更にまた、 この材料は、 フィルムからなる透明な第一基体上に 金属層をパターン状に設け、 黒色系の色調を有する電気めつき被膜を形成するめつ き液中に前工程で金属層を設けた透明な第一基体を対向電極と共に浸漬して通電す ることにより金属層上に黒色電気析出層を設けて作製した貼付シ—トを、 接着層を 介して、 板、 立体物または機能性層を有するフィルムからなる透明な第二基体上に 貼り合わせることにより製造してもよい。  The translucent electromagnetic wave shielding material of the sixth invention is that a metal layer is provided in a pattern on a transparent first substrate made of a film, and the metal layer is placed in a solution of an ionic polymer containing black particles in the previous step. The transparent first substrate provided with the layer is immersed together with the counter electrode and energized, so that the adhesive sheet prepared by providing the black electrodeposition layer on the metal layer can be connected to a plate, a three-dimensional object, or a functional object through the adhesive layer. It may be manufactured by laminating on a transparent second substrate made of a film having a layer. In addition, this material comprises a transparent first substrate made of a film, a metal layer provided in a pattern on a transparent first substrate, and a transparent first substrate provided with a metal layer in a solution of a monomer of a conductive polymer in a previous step. The adhesive sheet prepared by providing black electrodeposits on the metal layer by immersion and energizing together with the adhesive layer is passed through an adhesive layer to form a transparent sheet made of a plate, a three-dimensional object, or a film having a functional layer. It may be manufactured by laminating on a substrate. Furthermore, in this material, a metal layer is provided in a pattern on a transparent first substrate made of a film, and the metal layer is provided in a pretreatment in a plating solution for forming an electroplating film having a black color tone. When the transparent first substrate is immersed together with the counter electrode and energized, the adhesive sheet prepared by providing a black electrodeposition layer on the metal layer is converted into a plate, a three-dimensional object, or a functional object through the adhesive layer. It may be manufactured by laminating on a transparent second substrate composed of a film having a layer.
更に、 本発明の透光性電磁波シールド材料は、 フィルムからなる透明な第一基体 上に金属層がパターン状に設けられ、 金属層の表層部分が黒色を呈する金属化合物 である貼付シート力 s、 接着層を介して、 板、 立体物または機能性層を有するフィル ムからなる透明な第二基体に貼り合わせられているように構成してもよい (第 7発 明〉 。 Furthermore, the translucent electromagnetic wave shielding material of the present invention is a metal compound in which a metal layer is provided in a pattern on a transparent first substrate made of a film, and a surface portion of the metal layer exhibits a black color. In a sticking sheet strength s, via an adhesive layer, a plate, a three-dimensional object or functional layers may be configured as being bonded to a second transparent substrate comprising a fill arm having a (seventh shot bright 〉
第 7発明の透光性電磁波シールド材料は、 フィルムからなる透明な第一基体 上に金属層をパターン状に設けた後、 化成処理を施して金属層の表層部分を黒色を 呈する金属化合物とすることにより作製した貼付シートを、 接着層を介して、 板、 立体物または機能性層を有するフィルムからなる透明な第二基体上に貼り合わせる ことにより製造してもよい。  A translucent electromagnetic wave shielding material according to a seventh aspect of the present invention is to provide a transparent first substrate made of a film, wherein a metal layer is provided in a pattern on a transparent first base material, and then subjected to a chemical conversion treatment so that a surface layer of the metal layer becomes a metal compound exhibiting black. The adhesive sheet produced in this manner may be manufactured by attaching the adhesive sheet to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer.
また、 本発明の透光性電磁波シールド材料は、 フィルムからなる透明な第一基体 上にパタ―ン状の脱色部とその他の非脱色部とからなる黒染色層が設けられ、 黒染 色層上に非脱色部と見当一致した金属層力5設けられた貼付シートが、 接着層を介し て、 板、 立体物または機能性層を有するフィルムからなる透明な第二基体に貼り合 わせられているように構成してもよい (第 8発明) 。 In addition, the translucent electromagnetic wave shielding material of the present invention is provided with a black dyeing layer comprising a pattern-like bleached part and other non-bleached parts provided on a transparent first substrate made of a film. An adhesive sheet provided with a metal layer strength 5 corresponding to the non-bleaching part on the upper side is attached to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer. (Eighth invention).
第 8発明の透光性鼋磁波シールド材料は、 フィルムからなる透明な第一基体上に 黒染色層を設け、 黒染色層上に金属層を設け、 金属層上にレジスト層をパターン状 に設け、 レジスト層で覆われていない部分の金厲層をエッチング液を用いて除去す る工程を順次行い、 エッチング工程においてパターン化された金属層で覆われてい ない部分の黒染色層をエッチング液により脱色することにより作製した貼付シート を、 接着 ¾を介して、 板、 立体物または機能性層を有するフィルムからなる透明な 第二基体上に貼り合わせることにより製造してもよい。  The translucent magnetic wave shielding material according to the eighth invention is characterized in that a black staining layer is provided on a transparent first substrate made of a film, a metal layer is provided on the black staining layer, and a resist layer is provided in a pattern on the metal layer. The step of removing the metal layer in the portion not covered with the resist layer using an etchant is sequentially performed, and the portion of the black stained layer not covered with the metal layer patterned in the etching process is etched with the etchant. The adhesive sheet produced by decolorization may be bonded to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer.
第 8発明の透光性電磁波シールド材料は、 また、 フィルムからなる透明な第—基 体上に黒染色層を設け、 黒染色層上に金属層を設け、 金属層上にレジス ト層をパ ターン状に設け、 レジスト層で覆われていない部分の金属層をエッチング液を用い て除去する工程を順次行い、 次いでパタ一ン化された金属層で覆われていない部分 の S染色層をエツチング液とは別の脱色液により脱色することにより作製した貼付 シートを、 接着層を介して、 板、 立体物または機能性層を有するフィルムからなる 透明な第二基体上に貼り合わせることにより製造してもよい。 The translucent electromagnetic wave shielding material according to the eighth aspect of the present invention also provides a black dyeing layer on a transparent first base made of a film, a metal layer on the black dyeing layer, and a resist layer on the metal layer. The steps of removing the metal layer in the area not covered with the resist layer using an etchant are sequentially performed, and then etching the S-stained layer in the area not covered with the patterned metal layer. Attachment made by decolorizing with a decolorizing liquid different from the liquid The sheet may be manufactured by laminating a sheet on a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer.
更に、 第 8癸明の透光性電磁波シールド材料は、 フィルムからなる透明な第一 基体上に黒染色層を設け、 黒染色層上に金属層を設け、 金厲層上にレジスト層をパ ターン状に設け、 レジスト層で覆われていない部分の金厲層をエッチング液を用い て除去する工程を順次行い、 次いでレジスト層をレジスト除去液を用いて除まし、 このレジスト層の除去工程においてパターン化された金属層で覆われていない部分 の黒染色層をレジスト除去液により脱色することにより作製した貼付シート、 接着 層を介して、 板、 立体物または機能性層を有するフィルムからなる透明な第二基体 上に貼り合わせることにより製造してもよい。  Further, the transparent electromagnetic wave shielding material of No. 8 is provided with a black dye layer on a transparent first substrate made of film, a metal layer on the black dye layer, and a resist layer on the metal layer. A step of removing the metal layer in a portion not covered with the resist layer using an etchant, and then removing the resist layer using a resist remover. A transparent sheet consisting of a plate, a three-dimensional object, or a film having a functional layer through an adhesive sheet or adhesive layer produced by decolorizing the black dyed layer in the part not covered with the patterned metal layer with a resist removing solution. It may be manufactured by laminating on a suitable second substrate.
上記金属層をエッチング液を用いて除去する工程の後に、 レジスト層をレジスト 除去液を用いて除去してもよい。 また、 レジス ト層の除去工程においてパターン化 された金属層で覆われていない部分の黒染色層をレジスト除去液により脱色するこ ともできる。 上記ニッチング工程においてパターン化された金属層で覆われていな い部分の黒染色層をエツチング液により脱色してもよい。  After the step of removing the metal layer using an etching solution, the resist layer may be removed using a resist removing solution. Further, in the resist layer removing step, a portion of the black stained layer that is not covered with the patterned metal layer can be decolorized with a resist removing liquid. In the above-mentioned niching step, the portion of the black dyed layer that is not covered with the patterned metal layer may be decolorized with an etching solution.
また、 本癸明の透光性電磁波シールド材料は、 剥離層と、 剥離層の上にパターン 状に設けられた金属層と、 金属層の上に金属餍と見当一致して設けられた黒色レジ スト層とからなる転写層が、 接着層を介して、 剥離層が外表面となるように板、 立 体物または機能性層を有するフィルムからなる透明な第二基体上に転写されている ように構成してもよい (第 9発明) 。  Further, the translucent electromagnetic wave shielding material of the present invention comprises a release layer, a metal layer provided in a pattern on the release layer, and a black register provided in register with the metal layer on the metal layer. The transfer layer composed of a substrate and a transfer layer composed of a film having a plate, a solid or a functional layer is transferred via an adhesive layer such that the release layer is on the outer surface. (A ninth invention).
第 9発明の透光 ¾電磁波シ―ルド材料は、 フィルムからなる第一基体全面に剥離 層を設け、 剥離層上に金属層を設け、 会厲層上に黒色レジス ト層をパターン状に設 け、 黒色レジスト層で覆われていない部分の金属層をエッチング液を用いて除去す ることより作製した転写シートを、 接着層を介して、 第一基体が外表面となるよう に板、 立体物または機能性層を有するフィルムからなる透明な第二基体上に貼り合 わせた後、 第一基体のみを剥離することにより製造することができる。 上記黒色レ ジス ト層をパターン状に設ける工程が、 黒色の染顔科を含有する感光性樹脂インキ を塗布し、 フォ トマスクを用いて露光し、 現像するものであってもよい。 また、 黒 色レジスト層をパターン状に設ける工程が、 金属層上にバタ一ニングされた遊離層 を設け、 金属層および遊離層上に黒色レジス ト層を設け、 遊離層を遊離除去液で除 去することによりその上の黒色レジスト層も除去するものであってもよレ The light-transmitting electromagnetic wave shield material according to the ninth invention is such that a release layer is provided on the entire surface of the first substrate made of a film, a metal layer is provided on the release layer, and a black resist layer is provided on the association layer in a pattern. Then, the transfer sheet produced by removing the metal layer in the portion not covered with the black resist layer using an etchant is applied to a plate and a three-dimensional structure via an adhesive layer such that the first substrate is on the outer surface. Bonded on a transparent second substrate consisting of a product or a film having a functional layer After that, it can be manufactured by peeling off only the first substrate. The step of providing the black resist layer in a pattern may be a step of applying a photosensitive resin ink containing a black dyeing face, exposing it using a photomask, and developing. Also, the step of providing a black resist layer in a pattern is to provide a buttered free layer on the metal layer, provide a black resist layer on the metal layer and the free layer, and remove the free layer with a free removal solution. May remove the black resist layer on it.
また、 本凳明の透光性電磁波シールド材料は、 剥離層と、 剥離層の上にパターン 状に設けられた金属層と、 金属層の上に金属層と見当一致して設けられた黒色電気 析出層とからなる転写層が、 接着層を介して、 剥離層が外表面となるように板、 立 体物または機能性層を有するフィルムからなる透明な第二基体上に転写されている ように構成してもよい (第 1 0発明〉 。  Further, the translucent electromagnetic wave shielding material of the present invention comprises a release layer, a metal layer provided in a pattern on the release layer, and a black electric layer provided on the metal layer in register with the metal layer. The transfer layer composed of the deposited layer is transferred via the adhesive layer onto the transparent second substrate composed of a plate, a solid or a film having a functional layer so that the release layer becomes the outer surface. (10th invention).
第 1 0発明の透光性電磁波シールド材料は、 フィルムからなる第一基体全面に剥 雜餍を設け、 剥離層上に金属屠をパターン状に設け、 黒色系粒子を含むイオン性高 分子の溶液中に前工程で金属層を設けた第一基体を対向電極と共に浸漬して通電す ることにより金厲層上に黒色電気析出層を設けて作製した転写シートを、 接着層を 介して、 第一 体が外表面となるように板、 立体物または機能性層を有するフィル ムからなる透明な第二基体上に貼り合わせた後、 第一基体のみを剥離することによ り製造することができる。  According to a tenth aspect of the present invention, there is provided a translucent electromagnetic wave shielding material, comprising: providing a peeling layer on the entire surface of a first substrate made of a film; providing a metal layer in a pattern on the peeling layer; A transfer sheet prepared by providing a black electrodeposition layer on a metal layer by immersing the first substrate provided with the metal layer in the previous step together with the counter electrode and energizing the first substrate through an adhesive layer, It can be manufactured by laminating on a transparent second substrate consisting of a plate, a three-dimensional object, or a film having a functional layer so that the outer surface becomes the outer surface, and then peeling off only the first substrate. it can.
また、 第 1 0発明の透光性電磁波シールド材料は、 フィルムからなる第—基体全 面に剥雜層を設け、 剥雜壜上に金属層をパターン状に設け、 導電性高分子のモノ マーの溶液中に前工程で金属)!を設けた第一基体を対向電極と共に浸潰して通電す ることにより金属層上に黒色電気析出層を設けて作製した転写シートを、 接着層を 介して、 第一基体が外表面となるように板、 立体物または機能性層を有するフィル ムからなる透明な第二基体上に貼り合わせた後、 第一基体のみを剥離することによ り製造してもよい。 また、 第 1 0発明の透光性電磁波シールド材料は、 フィルムからなる第一基体全 面に剥離層を設け、 剥離層上に金属層をパターン状に設け、 黒色系の色調を有する 電気めつき被膜を形成するめつき液中に前工程で金属層を設けた第一基体を対向電 極と共に浸漬して通電することにより金属層上に黒色電気析出層を設けて作製した 転写シートを、 接着層を介して、 第一基体が外表面となるように板、 立体物または 機能性層を有するフィルムからなる透明な第二基体上に貼り合わせた後、 第一基体 のみを剥離することにより製造してもよい。 Further, the translucent electromagnetic wave shielding material of the tenth invention is characterized in that a stripping layer is provided on the entire surface of the first substrate made of a film, a metal layer is provided on the stripping bottle in a pattern, and a conductive polymer monomer is provided. Metal in the previous process in the solution)! The transfer sheet prepared by immersing the first substrate provided with the counter electrode together with the opposing electrode and applying a current to the metal layer so that the black electrodeposition layer is provided on the metal layer via the adhesive layer so that the first substrate becomes the outer surface. It may be manufactured by laminating on a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer, and then peeling off only the first substrate. Further, the light-transmitting electromagnetic wave shielding material of the tenth aspect of the present invention provides a light-transmitting electromagnetic wave shielding material, wherein a release layer is provided on the entire surface of the first substrate made of a film, and a metal layer is provided in a pattern on the release layer. A transfer sheet prepared by providing a black electrodeposited layer on a metal layer by immersing the first substrate provided with the metal layer in the previous step in a plating solution for forming a film together with the counter electrode and passing a current through the adhesive layer, And then bonding the first substrate to a transparent second substrate composed of a plate, a three-dimensional object, or a film having a functional layer such that the first substrate is an outer surface, and then peeling off only the first substrate. You may.
また、 本発明の透光性電磁波シールド材料は、 剥離層と、 剥離層の上にパターン 状に設けられ且つ表層部分が黒色を呈する金属化合物である金属層とからなる転写 層が、 接着層を介して、 剥離層が外表面となるように板、 立体物または機能性餍を 有するフィルムからなる透明な第二基体上に転写されているように構成してもよい Further, in the light-transmitting electromagnetic wave shielding material according to the present invention, a transfer layer including a release layer and a metal layer which is a metal compound which is provided in a pattern on the release layer and whose surface portion exhibits a black color, forms an adhesive layer. Through a transparent second substrate made of a plate, a three-dimensional object, or a film having functionality, so that the release layer becomes the outer surface.
(第 1 】発明) 。 (1st invention).
第 1 1発明の透光性電磁波シールド材料は、 フィルムからなる第一基体全面に剥 雜層を設け、 剥雜層上に金属屠をパターン状に設けた後、 化成処理を施して金属層 の表層部分を黒色を呈する金属化合物とすることにより作製した転写シートを、 接 着層を介して、 第一基体が外表面となるように板、 立体物または機能性層を有する フィルムからなる透明な第二基体上に貼り合わせた後、 第一基体のみを剥雜するこ とにより製造することができる。  The translucent electromagnetic wave shielding material of the eleventh aspect of the present invention provides a translucent electromagnetic wave shielding material, comprising: providing a stripping layer on the entire surface of a first substrate made of a film; forming a metal layer on the stripping layer in a pattern; A transfer sheet prepared by using a metal compound exhibiting a black color on the surface layer portion is formed of a transparent film made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer such that the first substrate is an outer surface. It can be manufactured by laminating only the first substrate after laminating on the second substrate.
また、 本発明の透光性電磁波シールド材料は、 剥離層と、 剥離層の上に設けられ たパターン状の脱色部とその他の非脱色部とからなる黒染色層と、 黒染色層の上に 非脱色部と見当一致して設けられた金属層とからなる転写層が、 接着層を介して、 剥離層が外表面となるように板、 立体物または機能性層を有するフィルムからなる 透明な第二基体上に転写されているように構成してもよい (第 1 2発明) 。  Further, the translucent electromagnetic wave shielding material of the present invention may further include a release layer, a black dyed layer including a pattern-shaped bleached portion and another non-bleached portion provided on the release layer, and a black dyed layer. A transfer layer consisting of a non-bleaching part and a metal layer provided in register with a register, a transparent sheet consisting of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer such that the release layer is on the outer surface. It may be configured to be transferred onto the second substrate (the 12th invention).
第 1 2発明の透光性電磁波シールド材料は、 フィルムからなる第一基体全面に剥 離層を設け、 剥離層上に黒染色層を設け、 黒染色層上に金属層を設け、 金属層上に レジスト層をパターン状に設け、 レジスト層で覆われていない部分の金厲層をエツ チング液を用いて除去する工程を順次行い、 エッチング工程においてパターン化さ れた金属層で覆われていない部分の黒染色層をエツチング液により脱色することに より作製した転写シートを、 接着層を介して、 第一基体が外表面となるように板、 立体物または機能性層を有するフィルムからなる透明な第二基体上に貼り合わせた 後、 第一基体のみを剥離することにより製造できる。 The light-transmitting electromagnetic wave shielding material according to the 12th aspect of the present invention includes a release layer provided on the entire surface of the first substrate made of a film, a black dye layer provided on the release layer, a metal layer provided on the black dye layer, To A step of providing a resist layer in a pattern and sequentially removing the metal layer in a portion not covered with the resist layer using an etching solution is performed, and a portion not covered with the metal layer patterned in the etching process is performed. The transfer sheet prepared by decolorizing the black dyed layer of the above with an etching solution is passed through an adhesive layer so that the first substrate becomes an outer surface, a transparent plate or a three-dimensional object or a film having a functional layer. After bonding on the second substrate, it can be manufactured by peeling off only the first substrate.
また、 第 1 2発明の透光性電磁波シールド材料は、 フィルムからなる第一基体全 面に剥雜層を設け、 剥離層上に黒染色層を設け、 黒染色種上に金属層を設け、 金属 層上にレジスト層をパターン状に設け、 レジスト層で覆われていない部分の金属層 をエッチング液を用いて除まする工程を順次行い、 次いでパターン化された金属層 で覆われていない部分の黒染色層をエッチング液とは別の脱色液により脱色するこ とにより作製した転写シートを、 接着層を介して、 第一基体が外表面となるように 板、 立体物または機能性層を有するフィルムからなる透明な第二基体上に貼り合わ せた後、 第一基体のみを剥離することによつても製造できる。  Further, the light-transmitting electromagnetic wave shielding material of the 12th invention is provided with a peeling layer on the entire surface of the first substrate made of a film, a black dye layer on the peel layer, and a metal layer on the black dye seed. A resist layer is provided in a pattern on the metal layer, and a step of removing the metal layer in a portion not covered with the resist layer using an etchant is sequentially performed, and then a portion not covered with the patterned metal layer is performed. A transfer sheet prepared by decolorizing the black dyed layer with a decolorizing solution different from the etching solution is applied to a plate, a three-dimensional object, or a functional layer via an adhesive layer such that the first substrate is on the outer surface. It can also be produced by laminating on a transparent second substrate made of a film having the film and then peeling off only the first substrate.
更に、 第 1 2発明の透光性電磁波シールド材料は、 フィルムからなる第一基体全 面に剥離層を設け、 剥離層上に黒染色層を設け、 黒染色層上に金属層を設け、 金厲 層上にレジスト層をパターン状に設け、 レジスト層で覆われていない部分の金属層 をエッチング液を用いて除去する工程を順次行い、 次いでレジスト層をレジスト除 去液を用いて除去し、 このレジスト層の除去工程においてパターン化された金属層 で覆われていない部分の黒染色層をレジスト除去液により脱色することにより作製 した転写シートを、 接着層を介して、 第一基体が外表面となるように板、 立体物ま たは機能性層を有するフィルムからなる透明な第二基体上に貼り合わせた後、 第— 基体のみを剥離することでも製造できる。  Further, in the light-transmitting electromagnetic wave shielding material of the 12th invention, a release layer is provided on the entire surface of the first substrate made of a film, a black dye layer is provided on the release layer, a metal layer is provided on the black dye layer,設 け A resist layer is provided on the layer in a pattern, and a step of removing portions of the metal layer that are not covered with the resist layer using an etchant is sequentially performed.Then, the resist layer is removed using a resist remover, In the resist layer removing step, the transfer sheet produced by decolorizing the black dyed layer of the portion not covered with the patterned metal layer with the resist removing liquid is applied to the outer surface of the first base via the adhesive layer. It can also be produced by laminating on a transparent second substrate composed of a plate, a three-dimensional object, or a film having a functional layer, and then peeling off only the first substrate.
上記金厲層をエッチング液を用いて除去する工程の後に、 レジスト層をレジスト 除主液を用いて除去するしてもよい。 また、 レジスト層の除去工程においてパター ン化された金属層で覆われていない部分の黒染色層をレジスト除去液により脱色す ることもできる。 さらに、 エッチング工程においてパターン化された金属層で覆わ れていない部分の黒染色層をエッチング液により脱色してもよい。 After the step of removing the metal layer using an etchant, the resist layer may be removed using a resist remover. Also, in the resist layer removal process, The part of the black dyed layer that is not covered with the metalized layer can be decolorized with a resist removing solution. Further, in the etching step, a portion of the black stained layer that is not covered with the patterned metal layer may be decolorized with an etchant.
また、 本発明の透光性電磁波シールド材料は、 透明基体上に金属層がパターン状 に積層され、 金属層上にアース部を除いて金属層と見当一致した黒色レジス ト層が 積層されている構成でもよい (第 1 3発明) 。  Further, in the translucent electromagnetic wave shielding material of the present invention, a metal layer is laminated in a pattern on a transparent substrate, and a black resist layer which coincides with the metal layer except for a ground portion is laminated on the metal layer. A configuration may be adopted (the thirteenth invention).
第 1 3発明の透光性電磁波シールド材料は、 透明基体上に金属層を設ける工程、 金属層上の一部にマスク層を設ける工程、 少なくとも金属層上に黒色レジスト層を パターン状に設ける工程、 黒色レジスト層で覆われていない部分の金属層をエッチ ングにより除去する工程、 マスク層を除去して金属層の露出した部分をアース部と する工程より得ることができる。  The light-transmitting electromagnetic wave shielding material according to the thirteenth aspect of the present invention includes a step of providing a metal layer on a transparent substrate, a step of providing a mask layer on a part of the metal layer, and a step of providing a black resist layer in a pattern on at least the metal layer. It can be obtained from a step of removing the metal layer in a portion not covered with the black resist layer by etching, and a step of removing the mask layer to make an exposed portion of the metal layer a ground portion.
また、 第 1 3発明の透光性電磁波シールド材料は、 透明基体上に金属層を設ける 工程、 金属層上に黒色レジス ト層をパターン状に設ける工程、 露出した金厲層上の —部にマスク層を設ける工程、 黒色レジスト層およびマスク層で覆われていない部 分の金属層をエッチングにより除去する工程、 マスク層を除去して金属層の露出し た部分をアース部とする工程より形成することができる。  Further, the light-transmitting electromagnetic wave shielding material of the thirteenth invention comprises a step of providing a metal layer on a transparent substrate, a step of providing a black resist layer on the metal layer in a pattern, and a step of forming a black resist layer on the exposed metal layer. Forming a mask layer, removing the black resist layer and the portion of the metal layer not covered by the mask layer by etching, removing the mask layer and setting the exposed portion of the metal layer to a ground portion can do.
さらに、 第 1 3発明は透明基体上に金属層を設ける工程、 金属層上に黒色レジス ト層をパターン状に設ける工程、 黒色レジスト層で覆われていない部分の金属層を エッチングにより除まする工程、 黒色レジスト層の一部を除まして金属層の露出し た部分をアース部とする工程よりなる。  Further, in the thirteenth invention, a step of providing a metal layer on a transparent substrate, a step of providing a black resist layer in a pattern on the metal layer, and etching away a portion of the metal layer not covered with the black resist layer are performed. And a step of removing a part of the black resist layer to make an exposed part of the metal layer a ground part.
第 1 3発明はまた、 透明基体上に金属層を設ける工程、 金属層上の一部にマスク 層を設ける工程、 少なくとも金属層上にパターニングされた剥離層を設ける工程、 少なく とも金属層および剥離層上に黒色レジスト層を設ける工程、 剥離層を剥離液 で剥離することによりその上の黒色レジスト層を除去する工程、 黒色レジスト層お よびマスク層で覆われていない部分の金属層をニッチングにより除まする工程、 マ スク層を除去して金属層の露出した部分をァース部とする工程により得ても良い。 さらに、 第 1 3発明は透明基体上に金属層を設ける工程、 金属層上にパターニン グされた剥離層を設ける工程、 露出した金属層の一部にマスク層を設ける工程、 少 なく とも金属層および剥離層上に黒色レジスト層を設ける工程、 剥 ¾11を剥離液で 剥離することによ りその上の黒色レジス ト層を除去する工程、 黒色レジス ト層およ びマスク層で覆われていない部分の金属層をエッチングにより除去する工程、 マス ク層を除去して金属層の露出した部分をアース部とする工程より得ても良い。 また、 第 1 3発明は透明基体上に金属層を設ける工程、 金属層上にパターニング された剥雜展を設ける工程、 金属層および剥離層上に黒色レジスト層を設けるェ 程、 剥雜層を剥離 ¾で剥離することによりその上の黒色レジスト層を除去するェ 程、 黒色レジス ト層を除去した部分の金属餍をエッチングにより除まする工程、 黒 色レジスト層の一部を除去して金属; Sの露出した部分をアース部とする工程でもえ られる。 The thirteenth invention also includes a step of providing a metal layer on the transparent substrate, a step of providing a mask layer on a part of the metal layer, a step of providing a patterned release layer on at least the metal layer, and at least the metal layer and the release. A step of providing a black resist layer on the layer, a step of removing the peeled layer with a peeling liquid to remove the black resist layer thereon, and a step of nitting the black resist layer and a portion of the metal layer not covered with the mask layer. Process to remove It may be obtained by a process of removing the mask layer and making the exposed portion of the metal layer a ground portion. Further, the thirteenth invention provides a step of providing a metal layer on the transparent substrate, a step of providing a patterned release layer on the metal layer, a step of providing a mask layer on a part of the exposed metal layer, And a step of providing a black resist layer on the peeling layer, a step of removing the peeling 11 with a peeling liquid to remove the black resist layer thereon, and not being covered with the black resist layer and the mask layer It may be obtained from a step of removing a portion of the metal layer by etching, or a step of removing the mask layer and setting an exposed portion of the metal layer to a ground portion. Also, a thirteenth invention provides a step of providing a metal layer on a transparent substrate, a step of providing a patterned resist on the metal layer, a step of providing a black resist layer on the metal layer and the release layer, Peeling off to remove the black resist layer on it by peeling off, etching off the metal on the part where the black resist layer was removed, and removing metal by removing part of the black resist layer It is also obtained in the process where the exposed part of S is used as the ground part.
また、 本発明の透光性電磁波シールド材料は、 透明基体上に金属層がパターン状 に稜層され、 金属層上にアース部を除いて金属層と見当一致した黒色電気析出層が 積層された構成をとつてもよい (第 1 4発明) 。  Further, in the translucent electromagnetic wave shielding material of the present invention, a metal layer is formed in a pattern on a transparent substrate, and a black electrodeposition layer which is aligned with the metal layer except for a ground portion is laminated on the metal layer. A configuration may be adopted (the 14th invention).
第 1 4発明の透光性電磁波シールド材料は、 透明基体上に金属層をパターン状に 積層する工程と、 金属層上の一部にマスク層を稜層する工程、 黒色系粒子を含むィ ォン性高分子の溶液中に前工程で金属層およびマスク層を積層した透明基体を対向 電極と共に浸漬して通電することにより金 ¾層上に黒色電気析出層を稂屠するェ 程、 マスク層を除去して金属層の露出した部分をアース部とする工程によりえても よい。  The light-transmitting electromagnetic wave shielding material according to the fourteenth aspect of the present invention includes a step of laminating a metal layer on a transparent substrate in a pattern, a step of forming a mask layer on a part of the metal layer, and black particles. A transparent substrate, on which a metal layer and a mask layer are laminated in a previous step, is immersed together with a counter electrode in a solution of a conductive polymer, and a current is applied to the transparent substrate to thereby remove the black electrodeposition layer on the metal layer. , And the exposed portion of the metal layer may be used as a ground portion.
第 1 4発明の透光性電磁波シールド材料は、 透明基体上に金属層をパターン状に 積層する工程と、 黒色系粒子を含むイオン性髙分子の溶液中に前工程で金属層を積 層した透明基体をお向電極と共に浸漬して通電することにより金属層上に黒色電気 析出層を積層する工程、 黒色電気析出層の一部を除去して金属層の露出した部分を アース部とする工程により得ても良い。 The translucent electromagnetic wave shielding material according to the fourteenth aspect of the present invention comprises a step of laminating a metal layer in a pattern on a transparent substrate, and a step of laminating the metal layer in a solution of an ionic polymer containing black particles in a previous step. By immersing the transparent substrate with the facing electrode and applying current, black electricity It may be obtained by a step of laminating a deposited layer, and a step of removing a part of the black electrodeposited layer to make an exposed part of the metal layer a ground part.
また、 第 1 4発明の透光性電磁波シールド材料は、 透明基体上に金属層を積層 する工程と、 金属層上にポジ型レジスト層をパターン状に積層する工程、 ポジ型レ ジス ト層で覆われていない部分の金属層をエッチングにより除去する工程、 一部を 残してポジ型レジスト層を露光および現像により除去する工程、 黒色系粒子を含む ィ才ン性高分子の溶液中に前工程で金属層およびポジ型レジスト層を積層した透明 基体を対向電極と共に浸 ¾して通電することにより金属層上に黒色電気析出餍を積 層する工程、 残存のポジ型レジスト層を除去して金属層の露出した部分をアース部 とする工程より得ても良い。  The light-transmitting electromagnetic wave shielding material according to the fourteenth aspect of the present invention includes a step of laminating a metal layer on a transparent substrate, a step of laminating a positive resist layer on the metal layer in a pattern, and a step of laminating a positive resist layer. Removing the uncovered metal layer by etching, exposing the positive resist layer by exposing and developing while leaving a part behind, and pre-processing in a solution of a macromolecular polymer containing black particles A step of immersing the transparent substrate, on which the metal layer and the positive resist layer are laminated, together with the counter electrode and energizing to deposit black electrodeposition on the metal layer, and removing the remaining positive resist layer to remove the metal The exposed portion of the layer may be obtained as a grounding step.
第 1 4発明の透光性電磁波シールド材料は、 透明基体上に金属層をパターン状 に積層する工程と、 金属層上の一部にマスク層を積層する工程、 導電性高分子のモ ノマーの溶液中に前工程で金属層およびマスク層を積層した透明基体を対向電極と 共に浸潰して通電することによ り金属層上に黒色電気析出層を積層する工程、 マス ク層を除去して金属層の露出した部分をアース部とする工程より得ても良い c  The light-transmitting electromagnetic wave shielding material according to the fourteenth invention comprises a step of laminating a metal layer in a pattern on a transparent substrate, a step of laminating a mask layer on a part of the metal layer, and a step of forming a conductive polymer monomer. A step of stacking a black electrodeposition layer on the metal layer by immersing the transparent substrate, on which the metal layer and the mask layer were stacked in the solution in the previous step, together with the counter electrode and applying a current, and removing the mask layer It may be obtained from the step of using the exposed part of the metal layer as the ground part.c
また、 第 1 4発明は、 透明基体上に金属層をパターン状に積層する工程と、 導電 性高分子のモノマーの溶液中に前工程で金属層を積餍した透明基体を対向電極と共 に浸漬して通電することにより金属層上に黒色電気析出層を稜層する工程、 黒色!: 気析出層の一部を除去して金属層の露出した部分をアース部とする工程より得ても 良い。  Further, a fourteenth invention is directed to a step of laminating a metal layer in a pattern on a transparent substrate, and the step of forming a transparent substrate in which a metal layer is deposited in a solution of a monomer of a conductive polymer in a previous step together with a counter electrode. Step of immersing the black electrodeposition layer on the metal layer by immersing and applying current. : It may be obtained from a process in which a part of the gas deposition layer is removed and the exposed part of the metal layer is used as a ground part.
さらに、 第 1 4発明は透明基体上に金属層を積層する工程と、 金属層上にポジ型 レジスト層をパターン状に積層する工程、 ポジ型レジスト層で覆われていない部分 の金属層をエッチングにより除去する工程、 一部を残してポジ型レジスト層を露光 および現像により除去する工程、 導電性高分子のモノマーの溶液中に前工程で金属 層およびボジ型レジスト層を積層した透明基体を対向電極と共に浸漬して通電する ことにより金属層上に黒色電気析出層を積層する工程、 残存のポジ型レジスト層を 除去して金属層の露出した部分をアース部とする工程より得ても良い。 Further, in the fourteenth invention, a step of laminating a metal layer on a transparent substrate, a step of laminating a positive resist layer in a pattern on the metal layer, and etching a metal layer in a portion not covered with the positive resist layer Removing the positive-type resist layer by exposing and developing it while leaving a part, facing the transparent substrate on which the metal layer and the bodi-type resist layer were laminated in the previous step in a solution of conductive polymer monomer Energize by immersing with electrodes This may be obtained from a step of laminating a black electrodeposition layer on the metal layer, or a step of removing the remaining positive resist layer to make the exposed portion of the metal layer a ground portion.
第 1 4究明に置いて、 黒色電気析出層は、 黒色系の色調を有する電気めつき被膜 であってもよい (第 1 5発明) 。  In the fifteenth aspect, the black electrodeposition layer may be an electroplated film having a black color tone (the fifteenth invention).
第 1 5発明の透光性電磁波シールド材料は、 透明基体上に金属餍をパターン状に 稹層する工程と、 金属層上の一部にマスク層を積層する工程、 黒色系の色調を有す る電気めつき被膜を形成するめつき液中に前工程で金属層およびマスク層を積層し た透明基体を対向電極と共に浸清して通電することにより金属層上に黒色電気析出 層を積層する工程、 マスク層を除去して金属層の露出した部分をアース部とするェ 程より得ても良い。  The translucent electromagnetic wave shielding material of the fifteenth invention has a step of forming a metal layer in a pattern on a transparent substrate, a step of laminating a mask layer on a part of the metal layer, and has a black color tone. A step of laminating a transparent substrate on which a metal layer and a mask layer are laminated in the previous step together with a counter electrode in a plating solution for forming an electroplating film, and applying a current, thereby laminating a black electrodeposition layer on the metal layer. Alternatively, it may be obtained by removing the mask layer and using the exposed portion of the metal layer as a ground portion.
また、 第 1 5発明は、 透明基体上に金属層をパターン状に積層する工程と、 黒色 系の色調を有する電気めつき被膜を形成するめつき液中に前工程で金属層を積層し た透明基体を対向電極と共に浸漬して通電することにより金属層上に黒色電気析出 層を積層する工程、 黒色電気析出層の一部を除去して金属層の露出した部分をァー ス部とする工程より得ても良い。  The fifteenth invention is also directed to a step of laminating a metal layer in a pattern on a transparent substrate, and a step of laminating the metal layer in a previous step in a plating solution for forming an electroplating film having a black color tone. A step of laminating a black electrodeposition layer on a metal layer by immersing the substrate together with a counter electrode and applying a current, and a step of removing a part of the black electrodeposition layer to make an exposed part of the metal layer a ground portion. You may get more.
さらに、 第 1 5発明は、 透明基体上に金属層を積層する工程と、 金属層上にポジ 型レジスト層をパターン状に積屠する工程、 ポジ型レジストで覆われていない部分 の金属層をエッチングにより除去する工程、 一部を残してポジ型レジスト層を露光 および現像により除去する工程、 黒色系の色調を有する電気めつき被膜を形成する めっき液由に前工程で金属層およびポジ型レジスト層を稜層した透明基体を対向電 極と共に浸漬して通電することにより金属層上に黒色電気析出層を種層する工程、 残存のポジ型レジスト層を除去して金属層の露出した部分をアース部とする工程よ り得ても良い。  Further, the fifteenth invention is directed to a step of laminating a metal layer on a transparent substrate, a step of laminating a positive resist layer on the metal layer in a pattern, and a step of forming a metal layer in a portion not covered with the positive resist. Removing by etching and removing the positive resist layer by exposing and developing, leaving a part, forming an electroplating film having a black color tone metal layer and positive resist in the previous process by plating solution Immersing the transparent substrate with the ridged layer together with the counter electrode and applying a current to seed a black electrodeposition layer on the metal layer; removing the remaining positive resist layer to remove the exposed portion of the metal layer; It may be obtained from the process of forming a ground part.
本発明の透光性鼋磁波シ―ルド材料は、 透明基体上にパターン状に形成された金 厲層の表層部分がアース部を除いて黒色を呈する金属化合物であってもよい (第1 6発明) - 第 1 6発明の透光性電磁波シールド材料は、 透明基体上に金属層をパターン状に 設ける工程と、 金属層上の一部にマスク層を設ける工程、 化成処理を施すことによ り金属層の表層部分を黒色を呈する金属化合物とする工程、 マスク層を除まして金 厲層の露出した部分をアース部とする工程より得ても良い。 The translucent magnetic wave shield material of the present invention may be a metal compound in which the surface layer of a metal layer formed in a pattern on a transparent substrate has a black color except for the ground portion ( first example). (6 Invention)-The translucent electromagnetic wave shielding material of the 16th invention comprises a step of providing a metal layer in a pattern on a transparent substrate, a step of providing a mask layer on a part of the metal layer, and a chemical conversion treatment. Alternatively, the metal layer may be obtained by a step of forming the surface layer portion of the metal layer into a metal compound exhibiting black, or a step of removing the mask layer and setting the exposed portion of the metal layer to a ground portion.
第 1 6発明は、 透明基体上に金属層を設ける工程と、 金属層上にポジ型レジスト 層をパターン状に設ける工程、 ポジ型レジスト層で覆われていない部分の金属層を エツチングにより除去する工程、 一部を残してポジ型レジスト層を露光および現像 により除去する工程、 化成処理を施すことにより金属層の表層部分を黒色を呈する 金属化合物とする工程、 残存のポジ型レジスト層を除去して金属層の露出した部分 をアース部とする工程より得ても良い。  In the sixteenth invention, a step of providing a metal layer on a transparent substrate, a step of providing a positive resist layer in a pattern on the metal layer, and removing portions of the metal layer that are not covered with the positive resist layer by etching Exposing and developing the positive resist layer by exposing and developing a part of the metal layer; converting the surface layer of the metal layer to a black metal compound by performing a chemical conversion treatment; removing the remaining positive resist layer Alternatively, the exposed portion of the metal layer may be used as a ground portion.
また、 本発明の透光性霉磁波シールド材料は、 フィルムからなる透明な第一基体 上に金属層がパターン状に設けられ、 金属層上にアース部を除いて金属層と見当一 致した黒色レジスト層が設けられた貼付シートが、 接着層を介して、 黒色レジスト 層が外表面となるように板、 立体物または機能性層を有するフィルムからなる透明 な第二基体に貼り合わせられていてもよい (第 1 7発明) 。  Further, the translucent magnetic wave shielding material of the present invention has a black color in which a metal layer is provided in a pattern on a transparent first base made of a film, and the metal layer is aligned with the metal layer except for a ground portion on the metal layer. An adhesive sheet provided with a resist layer is attached via an adhesive layer to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer, such that the black resist layer is on the outer surface. (17th invention).
第 1 7発明の透光性電磁波シールド材料は、 フィルムからなる透明な第一基体全 面に金属層を設け、 金属層上の一部にマスク層を設け、 少なくとも金属層およびマ スク層上に黒色レジスト層をパターン状に設け、 黒色レジスト層およびマスク層で 覆われていない部分の金属層をエッチング液を用いて除去し、 マスク屠を除去して 金属層の露出した部分をアース部とすることより作製した貼付シートを、 接着層を 介ク I、して、 黒色レジス ト層が外表面となるように板、 立体物または機能性層を有する フィルムからなる透明な第二基体上に貼り合わせることにより得ても良い。  The light-transmitting electromagnetic wave shielding material according to the seventeenth invention is characterized in that a metal layer is provided on the entire surface of a transparent first base made of a film, a mask layer is provided on a part of the metal layer, and at least on the metal layer and the mask layer. A black resist layer is provided in a pattern, and the metal layer in the portion not covered with the black resist layer and the mask layer is removed using an etchant. The mask is removed and the exposed portion of the metal layer is used as a ground portion. The adhesive sheet prepared as described above is applied to the transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer so that the black resist layer becomes an outer surface through an adhesive layer. You may obtain by combining.
また、 第 1 7発明は、 フィルムからなる透明な第一基体全面に金属層を設け、 金 属層上に黒色レジスト層をパターン状に設け、 露出した金属層上の一部にマスク層 を設け、 黒色レジスト層およびマスク層で覆われていない部分の金厲層をエツチン グ液を用いて除まし、 マスク層を除去して金属層の露出した部分をアース部とする ことより作製した貼付シートを、 接着層を介して、 黒色レジスト層が外表面となる ように板、 立体物または機能性層を有するフィルムからなる透明な第二基体上に貼 り合わせることにより得ても良い。 Further, the seventeenth invention is directed to providing a metal layer on the entire surface of the transparent first substrate made of a film, providing a black resist layer in a pattern on the metal layer, and forming a mask layer on a part of the exposed metal layer. The masking layer was removed using an etching solution to remove the metal layer in the area not covered with the black resist layer and the mask layer, and the mask layer was removed to make the exposed part of the metal layer a ground part. The adhesive sheet may be obtained by laminating an adhesive sheet on a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer such that the black resist layer becomes the outer surface.
さらに、 第 1 7発明は、 フィルムからなる透明な第一基体全面に金属層を設け、 金属層上に黒色レジスト層をパターン状に設け、 黒色レジスト層で覆われていない 部分の金属層をエッチング液を用いて除去し、 黒色レジスト層の一部を除去して金 属層の露出した部分をアース部とすることより作製した貼付シートを、 接着層を介 して、 黒色レジス ト層が外表面となるように板、 立体物または機能性層を有する フィルムからなる透明な第二基体上に貼り合わせて得ても良い。  Further, in the seventeenth invention, a metal layer is provided on the entire surface of the transparent first substrate made of a film, a black resist layer is provided in a pattern on the metal layer, and a portion of the metal layer not covered with the black resist layer is etched. The adhesive sheet prepared by removing the black resist layer using a liquid and removing the part of the black resist layer to make the exposed part of the metal layer a ground part, and the black resist layer is removed through the adhesive layer. It may be obtained by laminating on a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer so as to have a surface.
本発明の透光性電磁波シールド材料は、 フィルムからなる透明な第一基体上に金 厲¾がパターン状に設けられ、 金属層上にアース部を除いて金属層と見当一致した 黒色電気析出層が設けられた貼付シートが、 接着層を介して、 黒色電気析出層が外 表面となるように板、 立体物または機能性層を有するフィルムからなる透明な第二 基体に貼り合わせらた構成をとつても良い (第 1 8発明) 。  The translucent electromagnetic wave shielding material of the present invention is a black electrodeposition layer in which a metal is provided in a pattern on a transparent first substrate made of a film, and the metal electrode is aligned with the metal layer except for a ground portion. Is attached to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer such that the black electrodeposition layer is on the outer surface. (The 18th invention).
第 1 8発明の透光性電磁波シールド材料は、 フィルムからなる透明な第一基体上 に金属層をパターン状に設け、 金属層上の一部にマスク層を設け、 黒色系粒子を含 むィォン性高分子の溶液中に前工程で金属層およびマスク種を設けた透明な第一基 体を対向電極と共に浸漬して通電することにより金属層上に黒色電気析出層を設 け、 マスク層を除去して金属層の露出した部分をアース部とすることにより作製し た貼付シートを、 接着層を介して、 黒色電気析出層が外表面となるように板、 立体 物または機能性層を有するフィルムからなる透明な第二基体上に貼り合わせること によって得ても良い。  The light-transmitting electromagnetic wave shielding material according to the eighteenth aspect of the present invention provides a light-transmitting electromagnetic wave shielding material comprising: a metal layer provided in a pattern on a transparent first substrate made of a film; a mask layer provided on a part of the metal layer; A black electrodeposited layer is formed on the metal layer by immersing the transparent first substrate provided with the metal layer and the mask type in the previous step together with the counter electrode in a solution of the conductive polymer and energizing the same, and forming the mask layer on the metal layer. The adhesive sheet produced by removing the exposed metal layer to serve as a ground part has a plate, a three-dimensional object, or a functional layer via an adhesive layer so that the black electrodeposition layer is the outer surface. It may be obtained by laminating on a transparent second substrate made of a film.
また、 第 1 8発明は、 フィルムからなる透明な第一基体上に金属層をパターン状 に設け、 黒色系粒子を含むイオン性高分子の溶液中に前工程で金属層を設けた透明 な第一基体を対向電極と共に浸漬して通電することにより金属層上に黒色電気析出 層を設け、 黒色電気析出層の一部を除去して金属層の露出した部分をアース部とす ることにより作製した貼付シートを、 接着層を介して、 黒色電気析出層が外表面と なるように板、 立体物または機能性層を有するフィルムからなる透明な第二基体上 に貼り合わせて得ても良い。 Further, the eighteenth invention is directed to a method in which a metal layer is patterned on a transparent first substrate made of a film. The transparent first substrate provided with the metal layer in the previous step is immersed in the solution of the ionic polymer containing the black particles together with the counter electrode, and a black electrodeposition layer is provided on the metal layer by energizing. Then, the adhesive sheet prepared by removing a part of the black electrodeposition layer and setting the exposed part of the metal layer as an earth part is placed on a plate such that the black electrodeposition layer becomes an outer surface via an adhesive layer. Alternatively, it may be obtained by laminating on a transparent second substrate made of a film having a three-dimensional object or a functional layer.
さらに、 第 1 8発日月は、 フィルムからなる透明な第一基体全面上に金属層を設 け、 金属層上にポジ型レジスト層をパターン状に設け、 ポジ型レジスト層で覆われ ていない部分の金属/!をエッチングにより除去し、 一部を残してポジ型レジスト層 を露光および現像により除去し、 黒色系粒子を含むイオン性高分子の溶液 に前ェ 程で金属層およびポジ型レジスト層を設けた透明な第一基体を対向電極と共に浸滾 して通電することにより金厲¾上に黒色電気析出層を設け、 残存のポジ型レジスト 層を除去して金属層の露出した部分をアース部とすることにより作製した貼付シ一 トを、 接着層を介して、 黒色電気析出層が外表面となるように板、 立体物または機 能 '性層を有するフィルムからなる透明な第二基体上に貼り合わせてもよい。  Furthermore, on the 18th day of the month, a metal layer was provided on the entire surface of the transparent first substrate made of film, a positive resist layer was provided on the metal layer in a pattern, and was not covered with the positive resist layer. Part of the metal /! Is removed by etching, the positive resist layer is removed by exposure and development except for a part, and the metal layer and the positive resist are added to the solution of the ionic polymer containing black particles in the previous step. The transparent first substrate provided with the layer was boiled together with the counter electrode and energized to form a black electrodeposition layer on the metal, and the remaining positive resist layer was removed to expose the exposed metal layer. The adhesive sheet produced by using the grounding portion is placed on a transparent second layer made of a plate, a three-dimensional object, or a film having a functional layer so that the black electrodeposition layer becomes the outer surface via the adhesive layer. May be laminated on the substrate
第 1 8発明は、 また、 フィルムからなる透明な第一基体上に金属層をパターン状 に設け、 金属層上の一部にマスク層を設け、 導電性高分子のモノマーの溶液 に前 工程で金属層およびマスク層を設けた透明な第一基体を対向電極と共に浸漬して通 電することにより金属層上に黒色電気析出層を設け、 マスク層を除去して金属層の 露出した部分をアース部とすることによ り作製した貼付シートを、 接着層を介し て、 黒色電気析出層が外表面となるように板、 立体物または機能性層を有するフィ ルムからなる透明な第二基体上に貼り合わせてもよい。  In the eighteenth invention, a metal layer is provided in a pattern on a transparent first substrate made of a film, a mask layer is provided on a part of the metal layer, and a solution of a monomer of a conductive polymer is added in a previous step. The transparent first substrate provided with the metal layer and the mask layer is immersed in the electrode together with the counter electrode to conduct electricity, so that a black electrodeposition layer is provided on the metal layer, the mask layer is removed, and the exposed portion of the metal layer is grounded. The adhesive sheet prepared by the above process is applied to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer so that the black electrodeposited layer becomes the outer surface. It may be pasted on.
第 1 8発明は、 更に、 フィルムからなる透明な第一基体上に金属層をパターン状 に設け、 導電性高分子のモノマーの溶液由に前工程で金厲層を設けた透明な第一基 体を対向電極と共に浸 *して通電することにより金属層上に黒色電気析出層を設 け、 黒色電気析出層の一部を除去して金属層の露出した部分をアース部とすること により作製した貼付シートを、 接着層を介して、 黒色電気析出層が外表面となるよ うに板、 立体物または機能性層を有するフィルムからなる透明な第二基体上に貼り 合わせることにより得ても良い。 The eighteenth invention is further directed to a transparent first substrate in which a metal layer is provided in a pattern on a transparent first substrate made of a film, and a metal layer is provided in a previous step by a solution of a conductive polymer monomer. The body is immersed with the counter electrode * and a current is applied to form a black electrodeposition layer on the metal layer. The adhesive sheet prepared by removing a part of the black electrodeposition layer and leaving the exposed metal layer as a ground part was placed on the plate so that the black electrodeposition layer became the outer surface via the adhesive layer. Alternatively, it may be obtained by laminating on a transparent second substrate composed of a three-dimensional object or a film having a functional layer.
第 1 8発明は、 フィルムからなる透明な第一基体全面上に金属層を設け、 金属層 上にポジ型レジスト層をパターン状に設け、 ポジ型レジスト層で覆われていない部 分の金属層をエッチングにより除去し、 一部を残してポジ型レジスト層を露光およ び現像により除去し、 導電性高分子のモノマーの溶液中に前工程で金属層およびポ ジ型レジスト層を設けた透明な第一基体を対向電極と共に浸漬して通電することに より金属層上に黒色電気析出層を設け、 残存のポジ型レジスト層を除去して金属層 の露出した部分をアース部とすることにより作製した貼付シートを、 接着屠を介し て、 黒色電気析出層が外表面となるように板、 立体物または機能性層を有するフィ ルムからなる透明な第二基体上に貼り合わせて得ても良い。  The eighteenth invention is directed to providing a metal layer on the entire surface of a transparent first substrate made of a film, providing a positive resist layer in a pattern on the metal layer, and covering a portion of the metal layer not covered with the positive resist layer. The resist was removed by etching, the positive resist layer was removed by exposure and development except for a part, and the metal layer and the poly resist layer were provided in the previous step in a conductive polymer monomer solution. By immersing the first base together with the counter electrode and energizing it, a black electrodeposition layer is provided on the metal layer, the remaining positive resist layer is removed, and the exposed portion of the metal layer is used as a ground portion. Even if the prepared adhesive sheet is bonded to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer so that the black electrodeposited layer becomes the outer surface, it can be obtained by bonding. good.
第 1 8発明は、 フィルムからなる透明な第一基体上に金属層をパターン状に設 け、 金属層上の一部にマスク層を設け、 黒色系の色調を有する電気めつき被膜を形 成するめつき液中に前工程で金属層およびマスク層を設けた透明な第一基体を対向 電極と共に浸潰して通電することにより金属層上に黒色電気析出層を設け、 マスク 層を除去して金属層の露出した部分をアース部とすることにより作製した貼付シー トを、 接着層を介して、 黒色電気析出層が外表面となるように板、 立体物または機 能性層を有するフィルムからなる透明な第二基体上に貼り合わせてもよい。  In the eighteenth invention, a metal layer is provided in a pattern on a transparent first substrate made of a film, and a mask layer is provided on a part of the metal layer to form an electroplating film having a black color tone. The transparent first substrate provided with the metal layer and the mask layer in the previous step was immersed in the plating solution together with the counter electrode, and a current was applied to the black first electrode to provide a black electrodeposition layer on the metal layer. The adhesive sheet produced by using the exposed part of the layer as the ground part is made of a plate, a three-dimensional object, or a film having a functional layer via the adhesive layer so that the black electrodeposition layer is the outer surface. It may be bonded on a transparent second substrate.
第 1 8発明は、 フィルムからなる透明な第一基体上に金属層をパターン状に設 け、 黒色系の色調を有する電気めつき被膜を形成するめつき液中に前工程で金属層 を設けた透明な第一基体を対向電極と共に浸漬して通電することにより金属層上に 黒色電気析出層を設け、 黒色電気析出層の一部を除去して金属層の露出した部分を アース部とすることにより作製した貼付シートを、 接着層を介して、 黒色電気析出  In the eighteenth invention, a metal layer was provided in a pattern on a transparent first substrate made of a film, and the metal layer was provided in a previous step in a plating solution for forming an electroplating film having a black color tone. A black first electrodeposition layer is provided on the metal layer by immersing the transparent first substrate together with the counter electrode and energizing, and a part of the black electrodeposition layer is removed, and the exposed portion of the metal layer is used as a ground portion. The black sheet is deposited on the adhesive sheet prepared by
20 20
差替え用紙 (規則 26) mが外表面となるように板、 立体物または機能性層を有するフィ ルムからなる透明 な第二基体上に貼り合わせてもよレ^ Replacement form (Rule 26) It may be bonded to a transparent second substrate composed of a plate, a three-dimensional object, or a film having a functional layer so that m is the outer surface.
第 1 8発明は、 フィルムからなる透明な第一基体全面上に金属層を設け、 金属層 上にポジ型レジスト層をパターン状に設け、 ポジ型レジスト層で覆われていない部 分の金属層をエッチングにより除去し、 一部を残してポジ型レジスト層を露光およ び現像により除去し、 黒色系の色調を有する電気めつき被膜を形成するめつき液中 に前工程で金属層およびポジ型レジスト層を設けた透明な第一基体を対向電極と共 に浸潰して通電することにより金属層上に黒色電気折出層を設け、 残存のポジ型レ ジスト層を除まして金属層の露出した部分をアース部とすることにより作製した貼 付シートを、 接着層を介して、 黒色電気析出層が外表面となるように板、 立体物ま たは機能性層を有するフィルムからなる透明な第二基体上に貼り合わせてえてもよ い。  The eighteenth invention is directed to providing a metal layer on the entire surface of a transparent first substrate made of a film, providing a positive resist layer in a pattern on the metal layer, and covering a portion of the metal layer not covered with the positive resist layer. The positive resist layer is removed by exposure and development, leaving a part of the metal layer and the positive electrode layer in the previous step in a plating solution that forms an electroplating film having a black color tone. The transparent first substrate provided with the resist layer was immersed together with the counter electrode and energized to provide a black electrophoretic layer on the metal layer, exposing the remaining positive resist layer and exposing the metal layer. The adhesive sheet produced by using the portion as a ground portion is placed on a transparent sheet made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer such that the black electrodeposition layer is on the outer surface. Paste on two substrates Even if the good.
本発明の透光性電磁波シールド材料は、 フィルムからなる透明な第一基体上に金 厲層がパターン状に設けられ、 金属層の表層部分がアース部を除いて黒色を呈する 金属化合物である貼付シートが、 接着層を介して、 黒色を呈する金属化合物が外表 面となるように板、 立体物または機能性層を有するフィルムからなる透明な第二基 体に貼り合わせられた構成でも良い (第ュ 9発明) 。  The translucent electromagnetic wave shielding material according to the present invention is a translucent electromagnetic wave shielding material comprising: a transparent first substrate made of a film, a metal layer provided in a pattern, and a surface layer portion of the metal layer excluding a ground portion being a metal compound exhibiting black. A configuration in which the sheet is bonded to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer such that the metal compound exhibiting black color becomes the outer surface (No. 9 inventions).
第 1 9発明の透光性電磁波シールド材料は、 フィルムからなる透明な第一基体上 に金属層をパターン状に設け、 金属層上の一部にマスク層を設け、 化成処理を施し て金属層のマスク層で覆われていない表)!部分を黒色を呈する金属化合物とし、 マ スク層を除去して金属層の露出した部分をアース部とすることにより作製した貼付 シートを、 接着層を介して、 黒色を呈する金属化合物力'外表面となるように板、 立 体物または機能性 ¾を有するフィルムからなる透明な第二基体上に貼り合わせても よい。  The translucent electromagnetic wave shielding material according to the nineteenth aspect of the present invention is a transparent electromagnetic wave shielding material, comprising: providing a metal layer in a pattern on a transparent first substrate made of a film; providing a mask layer on a part of the metal layer; Table not covered by the mask layer)! The adhesive sheet prepared by removing the mask layer from the metal compound and then exposing the exposed metal layer to the ground is used as an adhesive layer. May be bonded on a transparent second substrate made of a plate, a solid, or a film having functionality.
第〗 9発明は、 フィルムからなる透明な第一基体全面に金属層を設け、 金属層上 にポジ型レジスト層をパターン状に設け、 ポジ型レジスト層で覆われていない部分 の金属層をエッチングにより除まし、 一部を残してポジ型レジスト層を露光および 現像により除去し、 化成処理を施して金属層のポジ型レジスト層で覆われていない 表層部分を黒色を呈する金属化合物とし、 残存のポジ型レジスト層を除去して金属 層の露出した部分をアース部とすることにより作製した貼付シートを、 接着層を介 |- して、 黒色を呈する金属化合物が外表面となるように板、 立体物または機能性層を 有するフィルムからなる透明な第二基体上に貼り合わせて得ても良い。 In the ninth invention, a metal layer is provided on the entire surface of the transparent first substrate made of a film, and A positive resist layer is formed in a pattern, and the metal layer in the part not covered with the positive resist layer is removed by etching, and the positive resist layer is removed by exposure and development while leaving a part, and the chemical conversion treatment is performed. The surface layer that is not covered with the positive resist layer of the metal layer is coated with a black metal compound, the remaining positive resist layer is removed, and the exposed metal layer is used as the grounding part. The sheet may be obtained by laminating the sheet via a bonding layer on a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer so that the metal compound exhibiting black color becomes the outer surface. good.
本発明の透光性電磁波シールド材料は、'剥離層と、 剥離層の上にパターン状に設 けられた金属層と、 金属層の上に金属層と見当一致して設けられた黒色レジスト層 とからなる転写層力 接着層を介して、 剥離層が外表面となるように板、 立体物ま たは機能性層を有するフィルムからなる透明な第二基体上に転写されており、 かつ 剥離層側で金属層がアース部のみ露出している構成でも良い (第 2 0発明) 。  The translucent electromagnetic wave shielding material of the present invention includes a release layer, a metal layer provided in a pattern on the release layer, and a black resist layer provided on the metal layer in register with the metal layer. Transfer layer strength consisting of: The adhesive layer is transferred onto a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer so that the release layer becomes the outer surface, and is peeled off. A configuration in which only the ground portion of the metal layer is exposed on the layer side may be employed (20th invention).
本発明の透光性電磁波シールド材料は、 剥離層と、 剥離屠の上にパターン状に設 けられた金属層と、 金属層の上に金属層と見当一致して設けられた黒色電気析出層 とからなる転写層が、 接着層を介して、 剥離層力外表面となるように板、 立体物ま たは機能性層を有するフィルムからなる透明な第二基体上に転写されており、 かつ 剥離層側で金属層がアース部のみ露出している構成でもよい (第 2 1発明) 。 本発明の透光性鼋磁波シールド材料は、 剥離層と、 剥離層の上にパターン状に設 けられ且つ表屠部分が黒色を呈する金属化合物である金属層とからなる転写層が、 接着層を介して、 剥離層が外表面となるように板、 立体物または機能性層を有する フィルムからなる透明な第二基体上に転写されており、 かつ剥離層側で金属層が アース部のみ露出している構成でも良い (第 2 2発明) 。  The translucent electromagnetic wave shielding material of the present invention comprises: a release layer; a metal layer provided in a pattern on the release layer; and a black electrodeposition layer provided on the metal layer in register with the metal layer. Is transferred onto a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer so as to be an outer surface of a release layer, and A configuration in which only the ground portion is exposed on the release layer side of the metal layer may be employed (the twenty-first invention). The translucent magnetic wave shielding material of the present invention comprises: a transfer layer comprising a release layer; and a metal layer which is a metal compound which is provided on the release layer in a pattern and has a blackened surface portion. Is transferred onto a transparent second substrate composed of a plate, a three-dimensional object, or a film having a functional layer so that the release layer becomes the outer surface, and only the ground layer is exposed on the release layer side. The second configuration may be adopted (the second invention).
本発明の透光性電磁波シールド材料は、 剥離層と、 剥離層の上に設けられたパ ターン状の脱色部とその他の非脱色都とからなる黒染色層と、 昌染色層の上に非脱 色部と見当一致して設けられた金属層とからなる転写層が、 接着層を介して、 剥離 層がタ、表 ¾となるように板、 立体物または機能性層を有するフィルムからなる透明 な第二基体上に転写されており、 かつ剥離層側で金属層がアース部のみ露出してい る構成でもよい (第 2 3発明) 。 The translucent electromagnetic wave shielding material of the present invention comprises a release layer, a black dyed layer comprising a pattern-shaped bleached portion provided on the release layer and other non-bleaching parts, The transfer layer consisting of the decolored part and the metal layer provided in register is peeled off via the adhesive layer. The layer is transferred to a transparent second substrate composed of a plate, a three-dimensional object, or a film having a functional layer so that the layer becomes a surface, and only the ground layer is exposed on the release layer side. A configuration may be adopted (the 23rd invention).
第 2 3発明の透光'生電磁波シールド材料は、 フィルムからなる第一基体上に剥離 層を設け、 剥離層上に黒染色層を設け、 黒染色層上に金属層を設け、 金属層上にレ ジスト層をパターン状に設け、 レジスト屠で覆われていない部分の金属層をエッチ ング液を用いて除去する工程を順次行い、 エツチング工程においてパターン化され た金属層で覆われていない部分の黒染色層をエッチング液により脱色することによ り作製した転写シートを、 接着層を介して、 第一基体が外表面となるように板、 立 体物または機能性層を有するフィルムからなる透明な第二基体上に貼り合わせた 後、 第一基体のみを剥離し、 黒染色層の非脱色部の一部とその上の剥離層を除去し て金厲嚯の露出した部分をアース部とすることにより得ても良い。  The light-transmitting raw electromagnetic wave shielding material according to the twenty-third invention is characterized in that a release layer is provided on a first substrate made of a film, a black dye layer is provided on the release layer, a metal layer is provided on the black dye layer, and a metal layer is provided on the black dye layer. A resist layer is provided in a pattern in the pattern, and a process of sequentially removing the metal layer in a portion not covered with the resist by using an etching solution is performed, and a portion not covered with the metal layer patterned in the etching process is performed. The transfer sheet produced by decolorizing the black dyed layer with an etchant is made of a plate, a solid or a film having a functional layer via an adhesive layer such that the first substrate is the outer surface. After laminating on the transparent second substrate, only the first substrate is peeled off, a part of the non-bleaching part of the black dyed layer and the peeling layer thereover are removed, and the exposed part of the gold is grounded. May be obtained.
第 2 3発明の透光性電磁波シールド材料は、 フィルムからなる第一基体上に剥 雜層を設け、 剥離層上に黒染色層を設け、 黒染色層上に金属層を設け、 金属層上に レジス ト層をパターン状に設け、 レジスト層で覆われていない部分の金属層をエツ 千ング液を用いて除去する工程を順次行い、 次いでパターン化された金属層で覆わ れていない部分の黒染色層をエツチング液とは別の脱色液により脱色することによ り作製した転写シートを、 接着層を介して、 第一基体が外表面となるように板、 立 体物または機能性層を有するフィルムからなる透明な第二基体上に貼り合わせた 後、 第一基体のみを剥離し、 黒染色層の非脱色部の一部とその上の剥離層を除去し て金属層の露出した部分をアース部とすることにより得ても良い。  The light-transmitting electromagnetic wave shielding material according to the twenty-third aspect of the present invention provides a light-transmitting electromagnetic wave shielding material, wherein a peeling layer is provided on a first substrate made of a film, a black staining layer is provided on the peeling layer, a metal layer is provided on the black staining layer, Then, a resist layer is provided in a pattern, and a step of removing portions of the metal layer that are not covered with the resist layer using an etching solution is sequentially performed. Then, a portion of the portion that is not covered with the patterned metal layer is removed. A transfer sheet produced by decolorizing the black dyed layer with a decolorizing solution different from the etching solution is applied to a plate, a solid or a functional layer via an adhesive layer such that the first substrate is on the outer surface. After laminating on the transparent second substrate consisting of a film having the following, only the first substrate was peeled off, and the metal layer was exposed by removing a part of the non-bleaching portion of the black dyed layer and the peeled layer thereon. It may be obtained by making the portion a ground portion.
第 2 3発明の透光 電磁波シ一ルド材料は、 フィルムからなる第一基体上に剥 雜層を設け、 剥離層上に黒染色層を設け、 黒染色層上に金属層を設け、 金属層上に レジスト層をパターン状に設け、 レジスト層で覆われていない部分の金属層をエツ チング液を用いて除去する工程を順次行い、 次いでレジスト層をレジスト涂去液を 用いて除去し、 このレジスト層の除去工程においてパターン化された金属層で覆わ れていない部分の黒染色層をレジスト除去液により锐色することにより作製した転 写シートを、 接着層を介して、 第一基体力外表面となるように板、 立体物または機 能性層を有するフィルムからなる透明な第二基体上に貼り合わせた後、 第一基体の みを剥離し、 黒染色層の非脱色部の一部とその上の剥離層を除去して金属層の露出 した部分をアース部とすることにより得ても良い。 According to a twenty-third aspect of the present invention, there is provided a light-transmitting electromagnetic wave shield material comprising: a first substrate made of a film, a peeling layer, a black dyeing layer provided on the peeling layer, a metal layer provided on the black dyeing layer, A resist layer is provided in a pattern on the metal layer, and a step of removing the metal layer in a portion not covered with the resist layer using an etching solution is sequentially performed. The transfer sheet produced by applying a resist removing liquid to a portion of the black dyed layer that is not covered with the patterned metal layer in the resist layer removing step is colored with a resist removing liquid. After laminating on a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer so as to have an outer surface of the first substrate, only the first substrate is peeled off, and the black dyed layer is removed. It may be obtained by removing a part of the non-bleaching part and a peeling layer thereover and leaving the exposed part of the metal layer as a ground part.
図面の簡単な ΐ 月 Brief drawing ΐ month
図 1は本発明の第 1発明の透光性電磁波シールド材料の製造工程の一実施例を示 す模式図である。  FIG. 1 is a schematic view showing one embodiment of the manufacturing process of the translucent electromagnetic wave shielding material of the first invention of the present invention.
図 2は第 1発明の黒色レジスト層のパターンの一実施例を示す模式図である。 図 3は第 1発明の黒色レジスト層のパターンの一実施例を示す模式図である。 図 4は第 1発明の黒色レジスト層のパターンの一実施例を示す模式図である。 図 5は第 1発明の黒色レジスト層のパターンの一実施例を示す模式図である。 図 6は本発明の第 1発明の透光性電磁波シールド材料の別の製造工程の一実施例 を示す模式図である。  FIG. 2 is a schematic view showing one embodiment of the pattern of the black resist layer of the first invention. FIG. 3 is a schematic view showing one embodiment of the pattern of the black resist layer of the first invention. FIG. 4 is a schematic view showing one embodiment of the pattern of the black resist layer of the first invention. FIG. 5 is a schematic view showing one embodiment of the pattern of the black resist layer of the first invention. FIG. 6 is a schematic view showing one embodiment of another manufacturing process of the translucent electromagnetic wave shielding material of the first invention of the present invention.
図 7は剥離層のパターンの一実施例を示す模式図である。  FIG. 7 is a schematic view showing one embodiment of the pattern of the release layer.
図 8は剥離層のパターンの一実施例を示す模式図である。  FIG. 8 is a schematic view showing one embodiment of the pattern of the release layer.
図 9は剥離屠のパターンの一実施例を示す模式図である。  FIG. 9 is a schematic view showing one example of a pattern of the stripping and slaughter.
図 1 0は剥離層のバタ一ンの一実施例を示す模式図である。  FIG. 10 is a schematic diagram showing one embodiment of the pattern of the release layer.
図 1 1は第 2発明の透光性電磁波シールド材料の製造工程の一実施例を示す模式 図である。  FIG. 11 is a schematic view showing one embodiment of the manufacturing process of the translucent electromagnetic wave shielding material of the second invention.
図 1 2は第 2発明の黒色電気析出層を金属層上に析出させる装置を示す模式図で あな  FIG. 12 is a schematic diagram showing an apparatus for depositing a black electrodeposition layer on a metal layer according to the second invention.
図 I 3 ! 第 3癸明の透光性電磁波シ一ルド材料の製造工程の一実施例を示す模式 図である。 1 4は第 4発明の透光性電磁波シールド材料の製造工程の一実施例を示す模式 図である。 FIG. I3 is a schematic view showing one embodiment of a manufacturing process of the third electromagnetic wave transmitting electromagnetic wave shielding material. FIG. 14 is a schematic view showing one embodiment of the manufacturing process of the translucent electromagnetic wave shielding material of the fourth invention.
図 1 5は第 4発明の透光性電磁波シールド材料の製造工程の他の実施 'を示す模 式図である。  FIG. 15 is a schematic diagram showing another embodiment of the manufacturing process of the translucent electromagnetic wave shielding material of the fourth invention.
図 1 6は第 4発明の透光性電磁波シールド材料の製造工程の他の実施例を示す模 式図である。  FIG. 16 is a schematic view showing another embodiment of the manufacturing process of the translucent electromagnetic wave shielding material of the fourth invention.
図 1 7は第 4発明の透光性電磁波シールド材料の製造工程の他の実施例を示す模 式図である。  FIG. 17 is a schematic view showing another embodiment of the manufacturing process of the translucent electromagnetic wave shielding material of the fourth invention.
図 1 8は第 5発明に係る透光性電磁波シールド材料の一実施例を示す模弍図であ る。  FIG. 18 is a schematic diagram showing one embodiment of a translucent electromagnetic wave shielding material according to the fifth invention.
図 1 9は第 5発明に係る透光性電磁波シールド材料の製造工程前半の一実施例を 示す模式図である。  FIG. 19 is a schematic diagram showing one embodiment of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the fifth invention.
図 2 0は第 5発明に係る透光性電磁波シールド材料の製造工程後半の一実施例を 示す模式図である。  FIG. 20 is a schematic view showing one embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the fifth invention.
図 2 1は第 5発明に係る透光性電磁波シールド材料の他の実施例を示す模式 121で 図 2 2は第 5癸明に係る透光性電磁波シールド材料の製造工程後半の他の実施例 を示す模式図である。  FIG. 21 is a schematic diagram 121 showing another embodiment of the translucent electromagnetic wave shielding material according to the fifth invention. FIG. 22 is another embodiment of the second half of the manufacturing process of the translucent electromagnetic wave shielding material according to the fifth invention. FIG.
図 2 3は第 5発明に係る透光性電¾$波シールド材料の製造工程前半の他の実施例 を示す模式図である。  FIG. 23 is a schematic view showing another embodiment of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the fifth invention.
図 2 4は第 5発明に係る透光性電磁波シールド材料の製造工程後半の他の実施例 を示す模式図である。  FIG. 24 is a schematic view showing another embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the fifth invention.
図 2 5は第 5発明に係る透光性電磁波シ一ルド材料の製造工程後半の他の実施例 を示す模式図である。  FIG. 25 is a schematic view showing another embodiment of the latter half of the manufacturing process of the transparent electromagnetic wave shield material according to the fifth invention.
図 2 6は第 6発明に係る透光性電磁波シールド材料の一実施例を示す模式図であ る。 FIG. 26 is a schematic view showing one embodiment of the translucent electromagnetic wave shielding material according to the sixth invention. You.
図 2 7は第 6発明に係る透光性電磁波シールド材料の製造工程前半の一実施例を 示す模式図である。  FIG. 27 is a schematic view showing one embodiment of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the sixth invention.
図 2 8は第 6発明に係る透光性電磁波シ―ルド材料の製造工程後半の一実施例を 示す模式図である。  FIG. 28 is a schematic view showing one embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shield material according to the sixth invention.
図 2 9は第 6発明に係る透光性電磁波シールド材料の他の実施例を示す模式図で あ < )  FIG. 29 is a schematic view showing another embodiment of the translucent electromagnetic wave shielding material according to the sixth invention.
図 3 0は第 6発明に係る透光性電磁波シールド材料の製造工程後半の他の実施例 を示す模式図である。  FIG. 30 is a schematic view showing another embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the sixth invention.
図 3 1は第 6発明に係る透光性電磁波シールド材料の製造工程後半の他の実施例 を示す模式図である。  FIG. 31 is a schematic view showing another embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the sixth invention.
図 3 2は第 6発明に係る透光性!:磁波シールド材料の製造工程後半の他の実施例 を示す模式図である。  Fig. 32 shows the translucency according to the sixth invention! FIG. 7 is a schematic view showing another embodiment of the latter half of the manufacturing process of the magnetic wave shielding material.
図 3 3は第 7発明に係る透光性電磁波シ一ルド材料の一実施例を示す模式図であ る。  FIG. 33 is a schematic view showing one embodiment of the translucent electromagnetic wave shielding material according to the seventh invention.
図 3 4は第 7発明に係る透光性電磁波シールド材料の製造工程前半の一実施例を 示す模式図である。  FIG. 34 is a schematic view showing one example of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the seventh invention.
図 3 5は第 7発明に係る透光性電磁波シールド材料の製造工程後半の一実施例を 示す模式図である。  FIG. 35 is a schematic view showing one embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the seventh invention.
図 3 6は第 7発明に係る透光性電磁波シールド材料の他の実施例を示す模式図で あ 。  FIG. 36 is a schematic view showing another embodiment of the translucent electromagnetic wave shielding material according to the seventh invention.
図 3 7は第 7発明に係る透光性電磁波シールド材料の製造工程後半の他の実施例 を示す模式図である。  FIG. 37 is a schematic view showing another embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the seventh invention.
図 3 8は第 7発明に係る透光性電磁波シールド材料の製造工程後半の他の実施例 を示す模式図である。 図 3 9は第 7癸明に係る透光性電磁波シ―ルド材料の製造工程後半の他の実施例 を示す模式図である。 FIG. 38 is a schematic view showing another embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the seventh invention. FIG. 39 is a schematic diagram showing another example of the latter half of the manufacturing process of the translucent electromagnetic wave shield material according to the seventh shimmer.
図 4 0は第 8発明に係る透光†生電磁波シ一ルド材料の一実施例を示す模弍図であ る。  FIG. 40 is a schematic diagram showing an embodiment of the transparent and transmitted electromagnetic wave shielding material according to the eighth invention.
図 4 〗は第 8発明に係る透光性電磁波シールド材料の製造工程前半の一実施例を 示す模式図である。  FIG. 4D is a schematic view showing one embodiment of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the eighth invention.
図 4 2は第 8発明に係る透光性電磁波シールド材料の製造工程後半の一実施例を 示す模式図である。  FIG. 42 is a schematic view showing one embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the eighth invention.
図 4 3は第 8発明に係る透光性電磁波シールド材料の他の実施例を示す模式図で ある。  FIG. 43 is a schematic view showing another embodiment of the translucent electromagnetic wave shielding material according to the eighth invention.
図 4 4は第 8発明に係る透光性電磁波シールド材料の製造工程後半の他の実施例 を示す模式図である。  FIG. 44 is a schematic view showing another embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the eighth invention.
図 4 5は第 8発明に係る透光性電磁波シールド材料の製造工程前半の他の実施例 を示す模式図である。  FIG. 45 is a schematic view showing another embodiment of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the eighth invention.
図 4 6は第 8発明に係る透光性電磁波シールド材料の製造工程前半の他の実施例 を示す模式図である。  FIG. 46 is a schematic view showing another embodiment of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the eighth invention.
図 4 7は第 8発明に係る透光性電磁波シールド材料の製造工程後半の他の実施例 を示す模式図である。  FIG. 47 is a schematic view showing another embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the eighth invention.
図 4 8は第 8発明に係る透光性電磁波シールド材料の製造工程後半の他の実施例 を示す模式図である。  FIG. 48 is a schematic view showing another embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the eighth invention.
図 4 9は第 9発明に係る透光性電磁波シールド材料の一実施例を示す模式図であ る。  FIG. 49 is a schematic view showing one embodiment of the translucent electromagnetic wave shielding material according to the ninth invention.
図 5 0は第 9発明に係る透光性電磁波シールド材料の製造工程前半の一実施例を 示す模式図である。  FIG. 50 is a schematic view showing one embodiment of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the ninth invention.
図 5 1は第 9発明に係る透光性電磁波シールド材料の製造工程前半の他の実施例 を示す模式!]である 3 FIG. 51 shows another embodiment of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the ninth invention. A schematic showing! Is 3
図 5 2は第 9発明に係る透光性電磁波シールド材料の製造工程後半の一実施例を 示す模弍図である。  FIG. 52 is a schematic diagram showing an example of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the ninth invention.
図 5 3は第 9発明に係る透光性電磁波シールド材料の製造工程後半の他の実施例 を示す模式!]である。  FIG. 53 is a schematic view showing another embodiment in the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the ninth invention! ].
図 5 4は第 1 0発明に係る透光性電磁波シールド材料の一実施例を示す模式図で あ 。  FIG. 54 is a schematic view showing one embodiment of the translucent electromagnetic wave shielding material according to the tenth invention.
図 5 5は第 1 0発明に係る透光性電磁波シールド材料の製造工程前半の一実施例 を示す模式図である。  FIG. 55 is a schematic view showing one embodiment of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the tenth invention.
図 5 6は第 1 0発明に係る透光性電磁波シールド材料の製造工程後半の一実施例 を示す模式!]である。  FIG. 56 is a schematic view showing one embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the tenth invention! ].
図 5 7は第 1 0発明に係る透光性鼋磁波シールド材料の製造工程後半の他の実施 例を示す模式図である。  FIG. 57 is a schematic view showing another embodiment of the latter half of the manufacturing process of the translucent magnetic shielding material according to the tenth invention.
図 5 8は第 1 1発明に係る透光性電磁波シールド材料の一実施例を示す模式図で ある。  FIG. 58 is a schematic view showing one embodiment of the translucent electromagnetic wave shielding material according to the eleventh invention.
図 5 9は第 1 1発明に係る透光性電磁波シールド材料の製造工程前半の一実施例 を示す模式図である。  FIG. 59 is a schematic view showing one embodiment of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the eleventh invention.
図 6 0は第 1 1発明に係る透光性電磁波シールド材料の製造工程後半の一実施例 を示す模式図である。  FIG. 60 is a schematic view showing an example of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the eleventh invention.
図 6 1は第 1 1発明に係る透光性電磁波シールド材料の製造工程後半の他の実施 例を示す模式図である。  FIG. 61 is a schematic view showing another embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the eleventh invention.
図 6 2は第 1 2発明に係る透光性電磁波シールド材料の一実施例を示す模式図で あ  FIG. 62 is a schematic view showing one embodiment of the translucent electromagnetic wave shielding material according to the 12th invention.
図 6 3は第 1 2発明に係る透光性電磁波シールド材料の製造工程前半の一実施例 を示す模式図である。 m e 4は第 1 2発明に係る透光性電 波シールド材料の製造工程後半の一実施例 を示す模式!]である。 FIG. 63 is a schematic view showing one embodiment of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the 12th invention. me 4 is a schematic diagram showing one embodiment of the latter half of the manufacturing process of the translucent electromagnetic shielding material according to the 12th invention! ].
図 6 5は第 1 2発明に係る透光性電磁波シールド材料の製造工程前半の他の実施 例を示す模式図である。  FIG. 65 is a schematic view showing another embodiment of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the 12th invention.
図 6 6は第 1 2発明に係る透光性電磁波シールド材料の製造工程前半の他の実施 例を示す模式図である。  FIG. 66 is a schematic view showing another embodiment of the first half of the manufacturing process of the translucent electromagnetic wave shielding material according to the 12th invention.
図 6 7は第 1 2癸明に係る透光性電磁波シールド材料の製造工程後半の他の実施 例を示す模式図である。  FIG. 67 is a schematic view showing another embodiment of the latter half of the manufacturing process of the translucent electromagnetic wave shielding material according to the first and second embodiments.
図 6 8は、 本発明の透光性電磁波シールド材料であって、 アース部のある態様の の基本的な平面図である。  FIG. 68 is a translucent electromagnetic wave shielding material of the present invention, and is a basic plan view of an embodiment having a ground portion.
図 6 9は、 図 1に対応する図面であるが、 マスク層が先に形成される態様を示す 図である。  FIG. 69 is a view corresponding to FIG. 1, but showing an aspect in which the mask layer is formed first.
図 7 0では、 黒色レジスト層がマスク層より先に形成される方法である。  In FIG. 70, the black resist layer is formed before the mask layer.
図 7 1は、 マスク層を用いない方法を示す図である。  FIG. 71 is a diagram showing a method without using a mask layer.
図 7 2は、 図 6に対応する図面であるが、 マスク層が形成される態様である。 図 7 3は、 図 7 2において、 剥雜層 4とマスク層 1 0 1 との形成の順序が逆の場 合である。  FIG. 72 is a view corresponding to FIG. 6, but showing an embodiment in which a mask layer is formed. FIG. 73 shows a case where the order of forming the stripping layer 4 and the mask layer 101 in FIG. 72 is reversed.
図 7 4は、 やはりマスク層を用いないで、 黒色レジスト層 3を最後に一部分だけ 除去することによりアース部 1 0 0を形成する方法を示す図である。  FIG. 74 is a view showing a method of forming the ground portion 100 by removing only a part of the black resist layer 3 at the end without using a mask layer.
図 7 5は、 図 1 1に対応する図であり、 マスク層を用いてアース部を形成する方 法を示す図である。  FIG. 75 is a view corresponding to FIG. 11, and is a view showing a method of forming a ground portion using a mask layer.
図 7 6は、 図 7 4で用いるの析出装置を示す図である。  FIG. 76 is a diagram showing the deposition apparatus used in FIG.
図 7 7と図 7 8は、 黒色析出層 3を一旦金属層上に形成した後、 その析出層 3の —部を狳去する方法を示す図である。  FIG. 77 and FIG. 78 are diagrams showing a method of once forming the black deposition layer 3 on the metal layer, and then removing a portion of the deposition layer 3.
図 7 8は図 7 7と図 7 8でもちいる析出装置を示す。 図 7 9は、 マスク層 1 0 1の代わりに、 ポジ型レジスト層 1 0 2を形成して、 最 後にその部分を露光する方法を示す図である。 FIG. 78 shows the deposition apparatus used in FIG. 77 and FIG. FIG. 79 is a view showing a method of forming a positive resist layer 102 instead of the mask layer 101 and finally exposing that portion.
図 8 0は、 図 7 9で用いるの析出装置を示す。  FIG. 80 shows the deposition apparatus used in FIG.
図 8 1は、 図 1 3に対応する図面であり、 金属層の一部には金属化合物に変化し ないようにマスク層が形成される。  FIG. 81 is a view corresponding to FIG. 13, and a mask layer is formed on a part of the metal layer so as not to change into a metal compound.
図 8 2は、 マスク層の代わりに、 ポジ型レジスト層を形成して、 最後にその部分 を露光することにより除去する態様である。  FIG. 82 shows an embodiment in which a positive resist layer is formed instead of the mask layer, and the portion is finally removed by exposure.
図 8 3は、 図 2 1に対応する図面であって、 金厲層 3 2の一部が、 露出してァ一 ス部 1 0 0を形成する。  FIG. 83 is a view corresponding to FIG. 21, and a part of the metal layer 32 is exposed to form a ground portion 100.
図 8 4は、 図 8 3の態様の透光性電磁波シールド材料の製造方法の一例である。 囡8 5は、 黒色レジスト層 3 3をマスク ¾ 1 0 1よりはやく形成する態檨であ る。  FIG. 84 shows an example of a method for manufacturing the translucent electromagnetic wave shielding material of the embodiment shown in FIG. # 85 is a state in which the black resist layer 33 is formed earlier than the mask # 101.
図 8 6では、 マスク餍を用いずに、 黒色レジスト層 3 3の一部を除去することに よりアース部 1 0 0を形成する態棣である。  FIG. 86 shows a state in which the ground portion 100 is formed by removing a part of the black resist layer 33 without using the mask 餍.
図 8 7と図 8 8は、 図 8 6で得られたものを第二の基体 3 5に取り付ける態様で のる。  FIG. 87 and FIG. 88 show embodiments obtained by attaching the one obtained in FIG. 86 to the second base 35.
図 8 9、 図 9 0及び図 9 1は遊離屨3 7を用いた態様であって、 遊離層 3 7を用 いて金属層を露出する以外は図 8 4〜図 8 8と同じ態様である。  FIGS. 89, 90 and 91 show embodiments using the free layer 37, and are the same as FIGS. 84 to 88 except that the metal layer is exposed using the free layer 37. .
図 9 2〜図 9 7は、 黒色層が黒色電気析出層 3 3であることを除いては、 図 8 3 〜図 8 8の態様と同じである。  FIGS. 92 to 97 are the same as the embodiments of FIGS. 83 to 88 except that the black layer is the black electrodeposition layer 33.
図 9 8〜図 1 0 2は、 金属層 3 2の上部が、 黒色を呈する金属化合物であること を除いては同じである。  FIGS. 98 to 102 are the same except that the upper part of the metal layer 32 is a metal compound exhibiting black.
図 1 0 3〜図 1 0 6は、 第 9発明〜第 1 2発明の態様に該当する発明であるが、 やはり金属層の一部が、 露出していてアース部を形成する。  FIG. 103 to FIG. 106 are inventions corresponding to the ninth invention to the twelveth invention, but a part of the metal layer is also exposed to form a ground part.
の I ^田な 1½ (第 1癸明) I ^ Tana 1½ (No.1 Kishi)
以下、 図面を参照しながらこの発明の実施の形態をさらに詳しく説明する。 図 1 は本発明の第 1発明の透光性電磁波シールド材料の製造工程の一実施例を示す模式 図、 図 2〜 5は黒色レジスト層のパターンの一実施例を示す模式図である。 1は透 明基体、 2は金属層、 3は黒色レジス ト層をそれぞれ示す。  Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings. FIG. 1 is a schematic diagram showing one embodiment of a manufacturing process of the translucent electromagnetic wave shielding material of the first invention of the present invention, and FIGS. 2 to 5 are schematic diagrams showing one embodiment of a pattern of a black resist layer. 1 indicates a transparent substrate, 2 indicates a metal layer, and 3 indicates a black resist layer.
図 1に示す透光性電磁波シールド材料の製造工程は、 まず第一に、 透明基体 1全 面に金属層 2を設ける (図 1 a参照) 。  In the manufacturing process of the translucent electromagnetic wave shielding material shown in FIG. 1, first, the metal layer 2 is provided on the entire surface of the transparent substrate 1 (see FIG. 1a).
透明基体 1の材質としては、 ガラス、 アクリル系樹脂、 ポリカーボネート樹脂、 ポリエチレン樹脂、 A S樹脂、 酢酸ビニル樹脂、 ポリスチレン樹脂、 ボリプロピレ ン樹脂、 ポリエステル樹脂、 ポリサルホン樹脂、 ポリエーテルサルホン樹脂、 ポリ 塩化ビニルのように透明なものであればよい。 また、 透明基体 1は、 板、 フィルム などがある。  Examples of the material of the transparent substrate 1 include glass, acrylic resin, polycarbonate resin, polyethylene resin, AS resin, vinyl acetate resin, polystyrene resin, polypropylene resin, polyester resin, polysulfone resin, polyethersulfone resin, and polyvinyl chloride. Any transparent material may be used. The transparent substrate 1 includes a plate, a film, and the like.
金属層 2の材質としては、 たとえば、 金、 銀、 銅、 鉄、 ニッケル、 クロムなど充 分に電磁波をシールドできる程度の導電性を持つものを使用する。 また、 金属層 2 は単体でなくても、 合金あるいは多層であってもよレ 。 金属層 2の形成方法として は、 蒸着、 スパッタリング、 イオンプレーティングなどの気相から析出させる方 法、 金厲箔を貼り合わせる方法、 透明基体 1表面を無電解メツキする方法などがあ る。 金属層 2の膜厚は、 0.1 ^ m〜50 u mとするのが好ましい。 50 mを超えると パターンを精度よく仕上げるのが困難になり、 0.1 / mより小さいと電磁波シール ド効果を保っために必要最低限の導電性が安定して確保できなくなる。  As the material of the metal layer 2, for example, a material having sufficient conductivity, such as gold, silver, copper, iron, nickel, and chromium, that can shield electromagnetic waves sufficiently is used. The metal layer 2 is not limited to a simple substance, but may be an alloy or a multilayer. Examples of the method for forming the metal layer 2 include a method of deposition from a gas phase such as vapor deposition, sputtering, and ion plating, a method of bonding gold foil, and a method of electroless plating the surface of the transparent substrate 1. It is preferable that the thickness of the metal layer 2 be 0.1 ^ 50 μm. If it exceeds 50 m, it will be difficult to finish the pattern with high accuracy. If it is less than 0.1 / m, it will be impossible to stably secure the minimum necessary conductivity to maintain the electromagnetic shielding effect.
次に、 金属層 2上に黒色レジス ト層 3をパターン状に設ける (図 l b参照) 。 黒色レジスト層 3は、 金属層 2表面の反射を抑えて視認性を高めるための層であ り、 透光性電磁波シールド材料の製造過程において上記金属層 2をパターン化する ために使用する層である。  Next, a black resist layer 3 is provided in a pattern on the metal layer 2 (see FIG. Lb). The black resist layer 3 is a layer for suppressing the reflection on the surface of the metal layer 2 to enhance visibility, and is a layer used for patterning the metal layer 2 in the process of manufacturing the light-transmitting electromagnetic wave shielding material. is there.
黒色レジス ト層 3には、 フォ トレジス トや印刷レジストなどがある。 フォ トレジ ストは、 たとえば、 感光性ボリイミ ド、 ポリエポキシァクリレート、 ノボラックな どの感光性樹脂に黒色の染顔料を含有させたものをロールコーティ ング法、 スピン コーティ ング法、 全面印刷法、 耘写法などにより金属層 2上にベタ形成し、 マスク を用いて露光し、 現像してパターン状に形成したものである。 また、 印刷レジスト は、 たとえば、 ポリエステルなどの樹脂に黒色の染顔料を含有させたものを用いて オフセッ ト印刷法やグラビア印刷法にて金属層 2上にパターン状に形成したもので この黒色レジス ト層 3のパターンは、 たとえば、 格子状 (図 2参照) 、 ハニカム 状 (図 3参照) 、 ラダ一状 〈図 4参照) 、 逆水玉状 (図 5参照) などのパターンが ある。 黒色レジスト層 3の膜厚は、 O.l m〜10 mとするのが好ましい。 10 m を超えると上記パターンを精度よく仕上げるのが困難になり、 より小さい と充分な遮光性を保てず金厲層 2表面の反射を抑えにく くなる。 The black resist layer 3 includes a photo resist and a printing resist. Fortress For example, roll coating, spin coating, full-surface printing, sculpting, etc., of photosensitive resins such as photosensitive polyimide, polyepoxy acrylate, and novolak containing black dyes and pigments are used. A solid pattern is formed on the metal layer 2 using a mask, exposed using a mask, and developed to form a pattern. The printing resist is, for example, a resin made of a resin such as polyester containing a black dye and pigment, and is formed in a pattern on the metal layer 2 by an offset printing method or a gravure printing method. The pattern of the layer 3 includes, for example, a lattice (see FIG. 2), a honeycomb (see FIG. 3), a ladder (see FIG. 4), and a reverse polka dot (see FIG. 5). The thickness of the black resist layer 3 is preferably set to Olm to 10 m. If it exceeds 10 m, it becomes difficult to finish the above pattern with high accuracy. If it is smaller than 10 m, sufficient light-shielding properties cannot be maintained, and it is difficult to suppress the reflection on the surface of the metal layer 2.
最後に、 黒色レジスト層 3で覆われていない部分の金属層 2をエッチング:こより 除去する (図 l c参照) 。 この結果、 透明基体 1上に金属層 2がパターン状に積層 され、 金^!層 2上に金属層 2と見当一致した黒色レジスト層 3が樓層されている透 光性電磁波シールド材料が得られる。 上記透光性電磁波シールド材料は、 金属層 2 力 ?除去された部分で透光性を有し、 金属層 2と見当一致した黒色レジスト層 3によ り金属層 2表面での反射が抑えられる。 エッチング液は、 金属層 2の材質により選 択する。 たとえば、 金属層 2の材質が金であれば王水、 銀であれば硝酸第二鉄水溶 液、 銅であれば塩化第二鉄または塩化第二銅水溶液、 クロムであれは 15肖酸セリウム 水溶液などを使用するとよい。 Finally, the part of the metal layer 2 not covered with the black resist layer 3 is etched and removed (see FIG. Lc). As a result, a transparent electromagnetic wave shielding material is obtained in which the metal layer 2 is laminated in a pattern on the transparent substrate 1 and the black resist layer 3 corresponding to the metal layer 2 is layered on the gold layer 2. . The transmissive electromagnetic wave shielding material, a metal layer 2 force? Has a light-transmitting property in the removed portion is suppressed reflection at by Ri metal layer 2 surface in the black resist layer 3 register coincides with the metal layer 2 . The etching solution is selected according to the material of the metal layer 2. For example, if the material of the metal layer 2 is gold, it is aqua regia, silver is an aqueous solution of ferric nitrate, copper is an aqueous solution of ferric chloride or cupric chloride, and chromium is an aqueous solution of cerium nitrate. It is good to use such as.
なお、 金厲層 2 とこの金厲層 2と見当一致した黒色レジスト層 3を透明基体 1上 に形成するにあたっては、 転写法によってもよレ。 すなわち、 剥雜可能な基体シー ト上に黒色レジス ト層 3、 黒色レジス ト層 3に見当一致した金属層 2、 接着層から なる転写層を設けた転写材を用い、 透明基体 1上に耘写層のみを転写してもよい。 このようにして作成された透光性電磁波シールド材钭が強度的に弱い場合は、 必 要に応じてシールド材料のどちらかの面または両面に透明な材料から成る保護層を 塗布やフィルムラミネートなどにより設けてもよレ^ 保護層の材質としては、 保護 層に様々な機能、 例えばノングレア機能、 帯電防止機能、 アンチニュートンリング 機能などを含ませることができるので、 各機能に応じた材質を選択すればよく、 特 に限定されない。 In forming the metal layer 2 and the black resist layer 3 corresponding to the metal layer 2 on the transparent substrate 1, the transfer method may be used. That is, a transfer material having a black resist layer 3, a metal layer 2 corresponding to the black resist layer 3, and a transfer layer composed of an adhesive layer provided on a peelable substrate sheet is used, and the transparent substrate 1 is plowed. Only the photosensitive layer may be transferred. If the translucent electromagnetic wave shielding material 作成 made in this way is weak in strength, apply a protective layer made of a transparent material on one or both sides of the shielding material as necessary, or apply film lamination, etc. As the material of the protective layer, the protective layer can have various functions, such as a non-glare function, an antistatic function, an anti-Newton ring function, etc., so select a material according to each function. It does not need to be particularly limited.
図 6は本発明の第 1発明の透光性電磁波シールド材料の製造工程の別の例を示す模 式図である。 図?〜 1 0は剥離層のパターンの一実施例を示す模式図である。 図 中、 1は透明基体、 2は金属層、 3は黒色レジスト層、 4は剥離層をそれぞれ示 す。 FIG. 6 is a schematic view showing another example of the manufacturing process of the translucent electromagnetic wave shielding material of the first invention of the present invention. Figure? 1 to 10 are schematic diagrams showing one embodiment of the pattern of the release layer. In the figure, 1 is a transparent substrate, 2 is a metal layer, 3 is a black resist layer, and 4 is a release layer.
図 6に示す透光性電磁波シールド材料の製造工程は、 まず第一に、 前記図 1の方 法と同じく、 透明基体 1上に金属層 2を設ける (図 6 a参照) 。  In the manufacturing process of the translucent electromagnetic wave shielding material shown in FIG. 6, first, the metal layer 2 is provided on the transparent substrate 1 as in the method of FIG. 1 (see FIG. 6a).
次に、 金属層 2上にパターニングされた剥離層 4を設ける (図 6 b参照) 。 剥離 層 4の材質としては、 一般に市販されている印刷レジスト材料ゃフォ トレジスト材 料を用いる。 剥離層 4の形成方法としては、 印刷レジス ト材料を用いてスクリーン 印刷法などにて金属層 2上にパターン状に形成したりフォ トレジスト材料を用いて ロールコーティ ング法、 スピンコーティ ング法、 ディップコーティ ング法、 全面印 刷法、 転写法などにより金属層 2上にベタ形成し、 マスクを用いて露光し、 現像し てパターン状に形成する。 この場合、 黒色染顔料を含有させないので、 露光 '現像 や印刷時の作業適性はあまり問題とならない。 この剥雜層 4のパターンは、 たとえ ば、 逆格子状 (図 7参照) 、 逆ハニカム状 (図 8参照) 、 逆ラダー状 (図 9参 照) 、 水玉状 (図 1 0参照) などのパターンがある。  Next, a patterned release layer 4 is provided on the metal layer 2 (see FIG. 6B). As the material of the release layer 4, a generally available printing resist material / photoresist material is used. The release layer 4 may be formed in a pattern on the metal layer 2 by a screen printing method using a printing resist material, or by a roll coating method, a spin coating method, or a dip method using a photoresist material. A solid pattern is formed on the metal layer 2 by a coating method, a full-surface printing method, a transfer method, or the like, and is exposed to light using a mask, developed, and formed into a pattern. In this case, since black dyes and pigments are not contained, workability during exposure, development and printing does not matter much. The pattern of the stripping layer 4 includes, for example, a reciprocal lattice (see FIG. 7), an inverted honeycomb (see FIG. 8), an inverted ladder (see FIG. 9), a polka dot (see FIG. 10), and the like. There is a pattern.
次いで、 金属層 2および剥離層 4上に黒色レジスト層 3を設ける (図 6 c参 照) c 黒色レジスト層 3は、 金属層 2表面の反射を抑えて視認 を高めるための層 であり、 透光性電磁波シールド材料の製造過程において上記金属層 2をパターン化 するためにエッチングレジストとして使用する層である。 黒色レジスト層 4の材質 としては、 前記図 1の方法の場合と同じく、 たとえば、 ポリエステルなどの樹脂に 黒色の染顔料を含有させたものを用いる。 黒色レジスト層 3の形成方法としては、 ロールコ一ティ ング法、 ディップコーティ ングなどがある。 黒色レジス ト層 3の膜 厚は、 O.l m〜10/ ΙΏとするのが好ましい。 10^ mを超えると剥離層 4の剥離が 困難になり、 0.1 mより小さいと充分な遮光性を保てず金厲層 2表面の反射を抑 えにく くなる。 Next, a black resist layer 3 is provided on the metal layer 2 and the peeling layer 4 (see FIG. 6c). The above metal layer 2 is patterned during the manufacturing process of optical electromagnetic wave shielding material It is a layer used as an etching resist to perform As the material of the black resist layer 4, as in the case of the method of FIG. 1, for example, a material in which a black dye or pigment is added to a resin such as polyester is used. Examples of a method for forming the black resist layer 3 include a roll coating method and a dip coating. The thickness of the black resist layer 3 is preferably set to Olm to 10 / ΙΏ. If it exceeds 10 m, the peeling of the release layer 4 becomes difficult, and if it is less than 0.1 m, sufficient light-shielding properties cannot be maintained, and reflection on the surface of the metal layer 2 becomes difficult to suppress.
さらに、 剥離層 4を剥離液で剥離することによ りその上の黒色レジス ト層 3を除 去する (図 6 d参照) 。 この結果、 黒色レジス ト層 3は、 剥離層 4のパターンを反 転させたパターンとなる。 たとえば、 格子状 (図 2参照) 、 ハニカム状 (図 3参 照) 、 ラダー状 (図 4参照) 、 逆水玉状 (図 5参照) などのパターンである。 本ェ 程に用いる剥離液は、 剥離層 4の材質により異なる種類のものを用いる。 たとえ ば、 剥離層 4がアルカリ剥離タイプなら水酸化カリウム水溶液、 水酸化ナトリウム 水溶液などを使用する。 また、 剥雜層 4が水剥雜タイプなら水、 溶剤剥離タイプな らェチルセ口ソルプアセテート、 アセトンなどを使用する。  Furthermore, the black resist layer 3 thereon is removed by peeling the peeling layer 4 with a peeling liquid (see FIG. 6d). As a result, the black resist layer 3 becomes a pattern obtained by inverting the pattern of the release layer 4. For example, the patterns are lattice (see Fig. 2), honeycomb (see Fig. 3), ladder (see Fig. 4), and inverted polka dots (see Fig. 5). As the stripping solution used in this step, a different type is used depending on the material of the stripping layer 4. For example, if the release layer 4 is of an alkaline release type, an aqueous solution of potassium hydroxide or an aqueous solution of sodium hydroxide is used. If the stripping layer 4 is of a water stripping type, use water. If the stripping layer 4 is of a solvent stripping type, use ethyl acetate mouth sorp acetate, acetone, or the like.
上記したような剥離層 4の剥離により黒色レジスト層 3をパターン化する方法で は、 黒色レジスト層 3をベタ形成するだけなので、 露光 ·現像や印刷時の作業適性 を考慮する必要がなく、 レジスト材料の使用範囲が広く、 安価に透光性電¾波シー ルド材料を得ることが可能となる。  In the method of patterning the black resist layer 3 by peeling the release layer 4 as described above, since the black resist layer 3 is simply formed, there is no need to consider workability at the time of exposure, development, and printing. The material can be used in a wide range, and it is possible to obtain a transparent electro-magnetic shield material at low cost.
最後に、 黒色レジスト層 3を除去した部分の金属層 2をエッチングにより除去す る (図 6 e参照) c この結果、 透明基体 1上に金属層 2がパターン状に積層され、 金属層 2上に金属層 2と見当一致した黒色レジスト層 3が積層されている透光性電 磁波シ一ルド材料が得られる。 上記透光性電磁波シ一ルド材料は、 金属層 2が除去 された部分で透光性を有し、 金属層 2と見当一致した黒色レジスト層 3により金属 層 2表面での反射が抑えられる。 エッチング液は、 金属層 2の材質により選択す る。 たとえば、 金属層 2の材質が金であれば王水、 銀であれば硝酸第二鉄水溶液、 銅であれば塩化第二鉄または塩化第二銅水溶液、 クロムであれば硝酸セリウム水溶 液などを使用するとよい。 Finally, the metal layer 2 at the portion where the black resist layer 3 has been removed is removed by etching (see FIG. 6E). C As a result, the metal layer 2 is laminated on the transparent substrate 1 in a pattern, and Thus, a translucent electromagnetic shield material is obtained in which a black resist layer 3 which is in register with the metal layer 2 is laminated. The translucent electromagnetic wave shielding material has translucency in a portion where the metal layer 2 is removed, and the reflection on the surface of the metal layer 2 is suppressed by the black resist layer 3 which is in register with the metal layer 2. Select the etching solution according to the material of the metal layer 2. You. For example, when the material of the metal layer 2 is gold, aqua regia is used, when silver, ferric nitrate aqueous solution is used, when copper is used, ferric chloride or cupric chloride aqueous solution is used, when chromium is used, cerium nitrate aqueous solution is used. Good to use.
このようにして作成された透光性電磁波シールド材料が強度的に弱い場合は、 必 要に応じてシールド材料のどちらかの面または両面に透明な材料から成る保護層を 塗布やフィルムラミネートなどにより設けてもよレ、。 保謨層の材質としては、 保護 層に様々な機能、 例えばノングレア機能、 帯電防止機能、 アンチニュートンリング 機能などを含ませることができるので、 各機能に応じた材質を選択すればよく、 特 に限定されない。  If the light-transmitting electromagnetic wave shielding material created in this way is weak in strength, a protective layer made of a transparent material may be applied to one or both surfaces of the shielding material by coating or film laminating as necessary. You can set it. As the material of the rubber layer, the protective layer can include various functions, for example, a non-glare function, an antistatic function, an anti-Newton ring function, etc., so that a material suitable for each function may be selected. Not limited.
(第 2発明)  (Second invention)
図 1 1は本発明の第 2発明の透光性電磁波シールド材料の製造工程の更に別の例を 示す模式図である。 図 1 2は本発明の黒色電気析出層を金属層上に析出させる装置 を示す模式図である。 1は透明基体、 2は金属層、 5は黒色電気析出層、 6は対向 電極をそれぞれ示す。 FIG. 11 is a schematic view showing still another example of the manufacturing process of the translucent electromagnetic wave shielding material of the second invention of the present invention. FIG. 12 is a schematic view showing an apparatus for depositing a black electrodeposition layer on a metal layer according to the present invention. 1 indicates a transparent substrate, 2 indicates a metal layer, 5 indicates a black electrodeposited layer, and 6 indicates a counter electrode.
図 1 1に示す透光性電磁波シールド材料の製造工程は、 まず第一に、 透明基体 1 に金厲 ϋ 2をパターン状に設ける (図 1 1 a参照) 。  In the manufacturing process of the translucent electromagnetic wave shielding material shown in FIG. 11, first, the metal 2 is provided on the transparent base 1 in a pattern (see FIG. 11a).
金属層 2をパターン化する方法として、 透明基体 1全面に金属層 2を設けてそれ にフォ トリソグラフィ 一等を用いる方法がある。 また、 あらかじめ導電性金属膜の ノヽ ·ターンをつくっておき、 それを透明基体 1に貼り合わせるのもよい。 金属層 2の パターンは、 たとえば、 格子状 (図 2参照) 、 ハニカム状 (図 3参照) 、 ラダ一状 (図 4参照) 、 逆水玉状 (図 5参照) などのパターンがある。  As a method of patterning the metal layer 2, there is a method in which the metal layer 2 is provided on the entire surface of the transparent substrate 1, and photolithography or the like is used for the metal layer 2. It is also possible to form a conductive metal film pattern in advance and then bond it to the transparent substrate 1. The pattern of the metal layer 2 includes, for example, a lattice pattern (see FIG. 2), a honeycomb pattern (see FIG. 3), a ladder pattern (see FIG. 4), and a reverse polka dot pattern (see FIG. 5).
次に、 このパターン化された金属層 2上に、 金属層 2と見当一致した黒色電気析 出層 5を積餍する (図 1 1 b参照) 。  Next, a black electrodeposition layer 5 that is in register with the metal layer 2 is deposited on the patterned metal layer 2 (see FIG. 11b).
黒色電気析出層 5は、 金属層 2表面の反衬を抑えて視認性を高めるための層であ り、 たとえば、 イオン性高分子 に黒色系粒子を含有させたものがある。 このよう な黒色電気析出層 5を積層するには、 黒色系粒子を含むィ才ン' 高分子の溶液中に 前工程で金属層 2を積層した透明基体 1をお向電極 6と共に浸漬し、 通電すればい レ、 (図 1 2参照) 。 The black electrodeposition layer 5 is a layer for suppressing the reflection of the surface of the metal layer 2 to enhance the visibility, and for example, there is an ionic polymer containing black particles. like this In order to laminate the black electrodeposition layer 5, the transparent substrate 1, on which the metal layer 2 was laminated in the previous step, is immersed together with the facing electrode 6 in a solution of a polymer containing black particles, (See Figure 12).
黒色系粒子としては、 カーボンブラック、 チタンブラック、 ァニリンブラックな どがある。 また、 黒色系粒子の替わりに黒色系以外の粒子をいくつか組み合わせ て、 実質的に黒色系を呈するようにしてもよい。 なお、 本発明でいう黒色系とは、 真黒以外の、 たとえば、 黒つぼい茶色とか、 黒つぼい緑色とかも含む。 イオン性高 分子としては、 アクリル樹脂、 ポリエステル樹脂、 ポリブタジエン樹脂、 マレイン 樹脂、 エポキシ樹脂、 ウレタン樹脂、 ポリアミ ド樹脂あるいはその変性体をァミノ ィ匕またはカルボキシル化したものを用いる。 これらイオン性高分子の水溶液由への 含有量は、 固形分 1 〜 3 0重量部である。 また、 通電時の条件を安定させたり、 黒 色電気析出層 5の導電性、 機械的表面性などを向上させたりする目的で無機塩、 有 機塩、 界面活性剤、 有機溶剤などの添加剤をイオン性高分子の溶液に加えてもよ い。  Examples of black particles include carbon black, titanium black, and aniline black. Further, instead of the black-based particles, some particles other than the black-based particles may be combined so as to have a substantially black-based appearance. In the present invention, the black type includes a color other than pure black, for example, a dark brown or a dark green. As the ionic high molecule, an acrylic resin, a polyester resin, a polybutadiene resin, a maleic resin, an epoxy resin, a urethane resin, a polyamide resin, or a modified product thereof, which is obtained by amination or carboxylation is used. The content of the ionic polymer in the aqueous solution is from 1 to 30 parts by weight of the solid content. In addition, additives such as inorganic salts, organic salts, surfactants, and organic solvents are used for the purpose of stabilizing the conditions during energization and improving the conductivity and mechanical surface properties of the black electrodeposition layer 5. May be added to the solution of the ionic polymer.
通電は、 透明基体 1に積層された金属層 2の一部を液界面から上に露出させるか 絶縁被覆したリード線をつなぎ、 対向電極 6との間に 1〜 300 Vの!:圧をかければ よい。  The energization is performed by exposing a part of the metal layer 2 laminated on the transparent substrate 1 upward from the liquid interface or by connecting an insulated coated lead wire and applying a voltage of 1 to 300 V to the counter electrode 6. : Apply pressure.
また、 黒色電気析出層 5は、 黒色系の導電性高分子からなるもでもよい。 このよ うな黒色電気析出層 5を稜層するには、 導 II性高分子のモノマーの溶液中に前工程 で金属層 2を積層した透明基体 1を対向電極 6と共に浸潰し、 通電すればいい。 い わゆる電解重合である。  Further, the black electrodeposition layer 5 may be made of a black conductive polymer. To form such a black electrodeposited layer 5 on the edge, the transparent substrate 1 on which the metal layer 2 is laminated in the previous step together with the counter electrode 6 is immersed in a solution of the monomer of the conductive II polymer, and the current is applied. . It is so-called electrolytic polymerization.
導電性高分子のモノマーとしては、 ビロール、 ァニリン、 チォフェンおよびその 誘導体などより選ばれる。 また、 モノマ一を溶解させるための溶媒としては、 水、 ァセトニト リル、 プロピオンカーボネイ ト、 テ トラヒ ドロフラン、 ニトロメタン、 メタノール、 エタノール、 スルホランなどがある。 なお、 遇電を安定化しかつ電気化学的にドーピングするため、 導電性高分子のモ ノマーの溶液中にドーパントを溶液中に加えて行う。 ド一パントとしては、 過塩素 酸リチウム、 ホウフッ化テトラアルキルアンモニゥム、 硫酸などがある。 さらに、 黒色電気析出層 5の形成をより安定に行うためには、 参照電極を用いて電位をコン トロールするのが望ましい。 また、 通電方法としては、 定電位電解法、 定電流電解 法の他、 周期的に電位を上下させる方法がある。 The monomer of the conductive polymer is selected from, for example, virol, aniline, thiophene, and derivatives thereof. Solvents for dissolving the monomers include water, acetonitrile, propion carbonate, tetrahydrofuran, nitromethane, methanol, ethanol, and sulfolane. In order to stabilize the charge and to perform electrochemical doping, a dopant is added to a solution of a conductive polymer monomer in the solution. Examples of dopants include lithium perchlorate, tetraalkylammonium borofluoride, and sulfuric acid. Furthermore, in order to form the black electrodeposition layer 5 more stably, it is desirable to control the potential using a reference electrode. In addition, as a current supply method, there is a method of periodically increasing and decreasing the potential, in addition to a constant potential electrolysis method and a constant current electrolysis method.
析出した導電性高分子の色は、 通電時の条件、 重合程度、 モノマーの種類などに より様々な色を呈するが、 一般的には黒色系であり、 金属屠 2表面の反射を抑える ことができる。 黒色電気析出層 5の膜厚は、 0.1 /ζ π!〜 とするの力5 '好まし い。 mを超えると上記パターンを精度よく仕上げるのが困難になり、 0.1 m より小さいと充分な遮光性を保てず金属層 2表面の反射を抑えにく くなる。 The color of the deposited conductive polymer varies depending on the conditions at the time of energization, the degree of polymerization, the type of monomer, etc., but it is generally black, and it is possible to suppress the reflection on the surface of the metal sludge. it can. The thickness of the black electrodeposition layer 5 is 0.1 / ζπ! ~ And the power of 5 'preferred. If it exceeds m, it becomes difficult to finish the above pattern with high precision. If it is less than 0.1 m, sufficient light-shielding properties cannot be maintained, and it is difficult to suppress reflection on the surface of the metal layer 2.
また、 黒色電気析出層 5については、 上記した二例の他に、 荷!:性の黒色系粒子 からなる黒色電気析出層 5や、 製造工程においてミセル中に黒色系粒子を含む溶液 を用いるものなどが得られると予想される。  In addition, for the black electrodeposition layer 5, the load! It is anticipated that a black electrodeposition layer 5 composed of black particles of the same nature and that using a solution containing black particles in micelles in the production process will be obtained.
黒色電気析出層 5は、 金属層 2表面の反射を抑えて視認性を高めるための層であ り、 黒色系の色調を有する電気めつき彼膜を用いてもよい。 このような黒色電気析 出層 5を積層するには、 黒色系の色調を有する被膜を形成する電気めつき液溶液中 に前工程で金属層 2を積層した透明基体 1を対向電極と共に浸漬し、 通電すればよ レ (図 1 2参照) 。  The black electrodeposition layer 5 is a layer for suppressing the reflection on the surface of the metal layer 2 to enhance the visibility, and an electroplated film having a black color tone may be used. In order to laminate such a black electrodeposition layer 5, the transparent substrate 1 on which the metal layer 2 is laminated in the previous step is immersed together with a counter electrode in an electroplating solution for forming a coating having a black color tone. Then, turn on the power (see Fig. 12).
黒色系の色調を有する鼋気めっき被膜としては、 ニッケル系、 クロム系、 ロジゥ ム系、 スズーニッケル一銅三元合金系またはスズ一ニッケル一モリブデン三元合金 系のものを用いることができる。 なお、 本発明でいう黒色系とは、 真黒以外の、 た とえば、 黒つぼい茶色とか、 黒っぽい緑色とかも含む。  Nickel-based, chromium-based, rhodium-based, tin-nickel-copper ternary alloy or tin-nickel-molybdenum ternary alloy-based coatings can be used as the hot-plated coating having a black color tone. In addition, the black type in the present invention includes, for example, black-brown brown or blackish green other than black.
電気めつきの方法としては、 たとえば金属層 2を積層した透明基体 1をラックに 納めたり、 吊るしたりして浸漬、 通電してめつきする方法、 スプレーノズルから めっき液を金属層 2を積層した透明基体 1に噴射しながら通電してめつきする方法 等がある。 また、 金厲層 2を積層した透明基体 1が卷き取り可能なフィルム状の場 合は、 連続 (フープ) めっき法を用いることもできる。 Examples of the method of electroplating include placing the transparent substrate 1 on which the metal layer 2 is laminated in a rack, hanging it, immersing it, and applying electricity to it. There is a method in which a plating solution is sprayed onto the transparent substrate 1 on which the metal layer 2 is laminated to energize and adhere. When the transparent substrate 1 on which the metal layer 2 is laminated is in the form of a film that can be wound up, a continuous (hoop) plating method can be used.
析出した電気めつき被膜の色調は、 通電時の条件、 めっき液成分の組成等により 微妙に異なるが、 基本的には黒色系であり、 金属層 2表面の反射を抑えることにが できる。 黒色電気析出層 5の膜厚は、 0.1 m〜10/ mとするのが好ましい。 10/i m超えると上記パターンを精度よく仕上げるのが困難になり、 O.l mより小さい と充分な遮光性を保てず金属層 2表面の反射を抑えにく くなる。  Although the color tone of the deposited electroplated film slightly varies depending on the conditions at the time of energization, the composition of the plating solution components, and the like, it is basically black and can suppress reflection on the surface of the metal layer 2. The thickness of the black electrodeposition layer 5 is preferably 0.1 m / m to 10 / m. If it exceeds 10 / im, it becomes difficult to finish the above pattern with high accuracy, and if it is less than 0.1 lm, sufficient light-shielding properties cannot be maintained and it becomes difficult to suppress reflection on the surface of the metal layer 2.
このようにして作成された透光性鬣磁波シールド材料が強度的に弱い場合は、 必 要に応じてシールド材料のどちらかの面または両面に保護層を塗布ゃフイルムラミ ネートにより設けてもよい。 保護層の材質としては、 保護層に様々な機能、 例えば ノングレア機能、 带電防止機能、 アンチニュー トンリング機能などを含ませること ができるので、 各機能に応じた材質を選択すればよく、 特に限定されない。 また、 本発明の透光性電磁波シールド材料は、 通常、 透明基体 1の金属層 2および黒色電 気析出層 5を積層した面より透視するように使用するが、 金属層 2が透明性を有す る程度に薄く形成される場合には、 透明基体 1側より透視するように使用すること もできる。  If the light-transmitting mane magnetic shield material thus formed is weak in strength, a protective layer may be provided on one or both surfaces of the shield material by film-laminate if necessary. As the material of the protective layer, the protective layer can include various functions, for example, a non-glare function, an antistatic function, and an anti-Newton ring function. Not limited. In addition, the translucent electromagnetic wave shielding material of the present invention is usually used so as to be seen through from the surface on which the metal layer 2 and the black electrodeposition layer 5 of the transparent substrate 1 are laminated, but the metal layer 2 has transparency. When formed to be as thin as possible, the transparent substrate 1 can be used so as to be seen through.
(第 3発明)  (Third invention)
図 1 3は本発明の第 3発明の透光性電磁波シールド材料の製造工程の一実施例を 示す模式図である。 図中、 1は透明基体、 2 ' は金属層、 7は黒色を呈する金属化 合物をそれぞれ示す。  FIG. 13 is a schematic view showing one embodiment of the manufacturing process of the translucent electromagnetic wave shielding material of the third invention of the present invention. In the figure, 1 indicates a transparent substrate, 2 'indicates a metal layer, and 7 indicates a black-colored metal compound.
図 1 3に示す透光性電磁波シールド材料の製造工程は、 まず第一に、 透明基体 1 上に金属層 2, をパターン状に設ける (図 3 a参照) 。  In the manufacturing process of the translucent electromagnetic wave shielding material shown in FIG. 13, first, a metal layer 2 is provided in a pattern on a transparent base 1 (see FIG. 3 a).
金属層 2 ' は図 1で用いる金属層と同じ材質であってもよいが、 化成処理により 黒色を呈する化合物を生成する必要があり、 たとえば、 銅、 クロム、 鉄などの充分 に電磁波をシールドできる程度の導電性を持つものを使用する。 パターン状の金属 層 2 ' の形成方法としては、 蒸着、 スパッタリング、 イオンプレーティ ングなどの 気相から析出させる方法、 金厲箔を貼り合わせる方法、 透明基体 1表面を無電解 メツキする方法などにより金属層 2 ' を透明基体 1全面に設けた後、 パターニング する。 金属層 2 ' の膜厚は、 0.1 m〜50/ mとするのカ?好ましい。 50 mを超え るとパターンを精度よく仕上げるのが困難になり、 0.1 mより小さいと電磁波 シールド効果を保っために必要最低限の導電性が安定して確保できなくなる。 ノ、' ターニングの方法としては、 フォ トレジストをベタ形成し、 マスクを用いて露光 し、 現像してパターン状に形成しエッチング、 剥膜すればよい。 また、 印刷レジス トを用いてもよい。 この金属層 2, のパターンは、 たとえば、 格子状 (図 2参 照) 、 ハニカム状 (図 3参照) 、 ラダ—状 (図 4参照) 、 逆水玉状 (図 5参照) な どのパターンがある。 次に、 化成処理を施すことにより、 金属層 2 ' の表層部分を黒色を呈する金属化 合物 7とする (図 1 3 b参照) 。 化成処理とは、 薬品又はその溶液によって、 金属 表面の組成を変える処理であり、 たとえば、 酸化処理、 リン酸塩化処理、 硫化処理 などがある。 本発明では、 金属層 2, の材質に応じて金属化合物が黒色を呈するよ うな化成処理を選択使用し、 たとえば、 金属層 2 ' の材質が銅の場合には、 亜塩素 酸ナトリゥム及び水酸化力リウムを含む水溶液や、 多硫化ァンチモンを含む水溶 液、 亜塩素酸ナトリウム及びリン酸ナトリウム、 水酸化ナトリウムを含む水溶液、 過硫酸力リゥム及び水酸化ナトリゥムを含む水溶液などに金属層 2 ' を浸漬すると よい。 また、 金属層 2 ' の材質が鉄の場合には、 リン酸二水素亜鉛を含む水溶液な どに金属層 2 ' を浸漬するとよい。 なお、 黒色を呈する金属化合物 7の形成深度 は、 化成処理の溶液の組成、 温度、 浸漬時間などの条件を調節することにより、 金 属層 2 ' のシールド効果を妨げない程度に設定する。 また、 本発明でいう黒色と は、 真黒以外の、 たとえば、 黒っぽい茶色と力 黒っぽい緑色とかも含む。 以上のようにして得られた透光性電磁波シールド材料は、 金属層 2 ' の開口部分 で透光^を有し、 金属層 2 ' の表層部分が黒色を呈することにより金属層 2 ' 表面 での反射が抑えられる。 The metal layer 2 ′ may be made of the same material as the metal layer used in FIG. 1, but it is necessary to generate a compound that exhibits a black color by a chemical conversion treatment. Use a conductive material that can shield electromagnetic waves. The method of forming the patterned metal layer 2 ′ includes a method of depositing from a gas phase such as vapor deposition, sputtering, or ion plating, a method of bonding gold foil, and a method of electrolessly plating the surface of the transparent substrate 1. After providing the metal layer 2 ′ on the entire surface of the transparent substrate 1, patterning is performed. Thickness of the metal layer 2 ', the mosquitoes? Preferably to 0.1 m~50 / m. If it exceeds 50 m, it will be difficult to finish the pattern with high precision. As a method of turning, a photoresist may be solidly formed, exposed using a mask, developed, formed into a pattern, etched, and stripped. Alternatively, a printing register may be used. The pattern of the metal layer 2 includes, for example, a lattice (see FIG. 2), a honeycomb (see FIG. 3), a ladder (see FIG. 4), and a reverse polka dot (see FIG. 5). . Next, the surface layer of the metal layer 2 'is formed into a black metal compound 7 by a chemical conversion treatment (see FIG. 13b). The chemical conversion treatment is a treatment for changing the composition of the metal surface by a chemical or a solution thereof, and includes, for example, an oxidation treatment, a phosphoric acid treatment, and a sulfuration treatment. In the present invention, a chemical conversion treatment is used so that the metal compound exhibits a black color according to the material of the metal layer 2. For example, when the material of the metal layer 2 ′ is copper, sodium chlorite and hydroxide are used. The metal layer 2 'is immersed in an aqueous solution containing potassium, an aqueous solution containing antimony polysulfide, an aqueous solution containing sodium chlorite and sodium phosphate, and sodium hydroxide, and an aqueous solution containing persulfuric acid and sodium hydroxide. It is good. When the material of the metal layer 2 'is iron, the metal layer 2' is preferably immersed in an aqueous solution containing zinc dihydrogen phosphate. The depth of formation of the black metal compound 7 is set to such an extent that the shielding effect of the metal layer 2 'is not impaired by adjusting conditions such as the composition, temperature, and immersion time of the solution for chemical conversion treatment. The term “black” as used in the present invention includes, besides pure black, for example, dark brown and blackish green. The translucent electromagnetic wave shielding material obtained as described above has translucency at the opening of the metal layer 2 ′, and the surface layer of the metal layer 2 ′ is black, so that the surface of the metal layer 2 ′ is black. Reflection is suppressed.
このようにして作成された透光性電磁波シールド材料が強度的に弱い場合は、 必 要に応じてシールド材料のどちらかの面または両面に保護層を塗布やフィルムラミ ネートにより設けてもよい。 保護層の材質としては、 保護層に様々な機能、 例えば ノングレア機能、 帯電防止機能、 アンチニュートンリング機能などを含ませること ができるので、 各機能に応じた材質を選択すればよく、 特に限定されない。 また、 本発明の透光性電磁波シールド材料は、 通常、 透明基体〗の金 層 2 ' および黒色 電気析 S層 7を積層した面より透視するように使用する力、 金属層 2 ' が透明性を 有する程度に薄く形成される場合には、 透明基体 1側より透視するように使用する こともできる。  If the light-transmitting electromagnetic wave shielding material thus formed is weak in strength, a protective layer may be provided on one or both surfaces of the shielding material by coating or film laminating as necessary. The material of the protective layer is not particularly limited, since the protective layer can include various functions, such as a non-glare function, an antistatic function, and an anti-Newton ring function. . In addition, the light-transmitting electromagnetic wave shielding material of the present invention usually has a force used to see through from the surface on which the gold layer 2 ′ and the black electrodeposition S layer 7 of the transparent substrate are laminated, and the metal layer 2 ′ is transparent. In the case where it is formed thin enough to have the following, the transparent substrate 1 can be used so as to be seen through.
(第 4発明)  (4th invention)
図 1 4は本発明の第 4発明の透光性電磁波シールド材料の製造工程の一実施例を 示す模式図である。 図 1 5〜 1 7は第 4発明の透光性 «磁波シールド材料の製造ェ 程の他の実施例を示す模式図である。 図中、 1 1は透明基体、 1 2は黒染色層、 2 0は脱色部、 2 1は非脱色部、 1 3は金属層、 1 4はレジスト層をそれぞれ示す。 図 1 4に示す透光性鬣磁波シ—ルド材料の製造工程は、 まず第一に、 透明基体 1 1上に黒染色層 1 2、 金属層 1 3を順次設ける (図 1 4 a参照) 。  FIG. 14 is a schematic view showing one embodiment of the manufacturing process of the translucent electromagnetic wave shielding material of the fourth invention of the present invention. FIGS. 15 to 17 are schematic views showing another embodiment of the process for producing the light-transmitting magnetic wave shielding material of the fourth invention. In the figure, 11 indicates a transparent substrate, 12 indicates a black dyed layer, 20 indicates a bleached portion, 21 indicates a non-bleached portion, 13 indicates a metal layer, and 14 indicates a resist layer. In the manufacturing process of the translucent mane magnetic shield material shown in FIG. 14, first, a black dyeing layer 12 and a metal layer 13 are sequentially provided on the transparent substrate 11 (see FIG. 14a). .
透明基体 1 1の材質としては、 ガラス、 アクリル系榭脂、 ポリカーボネ一ト榭 脂、 ボリエチレン樹脂、 A S榭脂、 酢酸ビニル樹脂、 ポリスチレン樹脂、 ポリプロ ピレン樹脂、 ボリエステル樹脂、 ポリサルホン樹脂、 ポリエーテルサルホン榭脂、 ポリ塩化ビニルのように透明なものであればよい。 また、 透明基体 1 1は、 板、 フィルムなどがある。  The material of the transparent substrate 11 is glass, acrylic resin, polycarbonate resin, polyethylene resin, AS resin, vinyl acetate resin, polystyrene resin, polypropylene resin, polyester resin, polysulfone resin, polyether sulfone. Any transparent material such as resin or polyvinyl chloride may be used. The transparent substrate 11 may be a plate, a film, or the like.
黒染色層 1 2は、 金属層 1 3裏面の反射を抑えて視認性を高めるための屠であ る。 黒染色層 1 2は、 たとえば、 アクリル系榭脂、 ポリエステル系樹脂、 セルロー ス系榭脂、 ポリオレフイン系樹脂、 ポリビニルアルコール系樹脂、 ゼラチン等の天 然高分子型樹脂およびこれらの共重合部、 混合物などを黒色染料とともに溶媒に溶 解または分散し、 ロールコ一ティング法、 スピンコ一ティング法、 全面印刷法など により形成したものである。 また、 上記樹脂からなる被膜をロールコ一ティング 法、 スピンコーティ ング法、 全面印刷法などにより形成した後、 黒色染料で染色し てもよい。 また、 熱移行性染料を、 熱移行により上記樹脂被膜に染色してもいい。 なお、 染料の黒染色層 1 2基質からの脱色性は染料と基質の組み合せによって大き く異なるので、 基質の樹脂の種類によって使用できる染料の種類は異なる。 また、 黒色染料は、 市販のものを用いるか、 または黒色以外の色相の染料を 2種類以上混 合して黒色にし、 用いてもよい。 The black dyed layer 12 is a slaughter for suppressing reflection on the back surface of the metal layer 13 and improving visibility. You. The black dyed layer 12 is made of, for example, natural resin such as acrylic resin, polyester resin, cellulose resin, polyolefin resin, polyvinyl alcohol resin, gelatin, etc. Are dissolved or dispersed in a solvent together with a black dye, and formed by a roll coating method, a spin coating method, a full-surface printing method, or the like. Alternatively, a film made of the above resin may be formed by a roll coating method, a spin coating method, a full-surface printing method, or the like, and then dyed with a black dye. Further, a heat transfer dye may be dyed on the resin film by heat transfer. Since the decolorization of the dye from the black dyed layer 12 substrate varies greatly depending on the combination of the dye and the substrate, the type of dye that can be used differs depending on the type of the resin of the substrate. As the black dye, a commercially available dye may be used, or a mixture of two or more dyes having a hue other than black may be used to make it black.
金属層 1 3の材質としては、 たとえば、 金、 銀、 銅、 鉄、 ニッケル、 クロムなど 充分に I磁波をシールドできる程度の導電性を持つものを使用する。 また、 金属層 1 3は単体でなくても、 合金あるいは多層であってもよい。 金属層 1 3の形成方法 としては、 蒸着、 スパッタリング、 イオンプレーティングなどの気相から析出させ る方法、 金 JR箔を貼り合わせる方法、 透明基体 1 1表面を無鼋解メツキする方法な どがある。 金属層 1 3の膜厚は、 O.l /i n!〜 50/ mとするのが好ましい。 を 超えるとパターンを精度よく仕上げるのが困難になり、 0.1 mより小さいと電磁 波シールド効果を保っために必要最低限の導電性が安定して確保できなくなる。 次に、 金属層 1 3上にレジス ト層 1 4をパターン状に設ける (図 1 4 b参照) 。 レジス ト層 1 4は、 透光性電磁波シールド材料の製造過程において上記金属層 1 3をパターン化するために使用する層である。 レジスト; § 1 4には、 フォ トレジス トや印刷レジストなどがある。 フォトレジストは、 たとえば、 感光性ボリイミ ド、 ポリエポキシァクリレート、 ノボラックなどの感光性樹脂を口一ルコ一ティング 法、 スピンコーティ ング法、 全面印刷法、 転写法などにより金属層 1 3上にベタ形 成し、 マスクを用いて露光し、 現像して形成したものである。 また、 印刷レジス ト は、 たとえば、 ポリエステルなどの樹脂を用いてオフセッ ト印刷やグラビア印刷法 にて金属層 1 3上にパターン状に形成したものである。 このレジスト層 1 4のパ ターンは、 たとえば、 格子状 (図 2参照) 、 ハニカム状 (図 3参照) 、 ラダ—状 (図 4参照) 、 逆水玉状 (図 5参照) などのパターンがある。 As the material of the metal layer 13, for example, a material having sufficient conductivity such as gold, silver, copper, iron, nickel, and chromium to sufficiently shield the I magnetic wave is used. The metal layer 13 is not limited to a simple substance, but may be an alloy or a multilayer. Examples of the method for forming the metal layer 13 include a method of depositing from a gas phase such as vapor deposition, sputtering, and ion plating, a method of bonding a gold JR foil, and a method of non-dissolving the surface of the transparent substrate 11. is there. The thickness of the metal layer 13 is Ol / in! It is preferably set to と す る 50 / m. When the thickness exceeds 0.1 m, it is difficult to finish the pattern with high precision. When the thickness is less than 0.1 m, it is not possible to stably secure the minimum required conductivity to maintain the electromagnetic wave shielding effect. Next, a resist layer 14 is provided in a pattern on the metal layer 13 (see FIG. 14b). The resist layer 14 is a layer used for patterning the metal layer 13 in the process of manufacturing the translucent electromagnetic wave shielding material. Resist; §14 includes photoresist and print resist. For the photoresist, for example, a photosensitive resin such as photosensitive polyimide, polyepoxy acrylate, and novolak is formed on the metal layer 13 by a mouth coating method, a spin coating method, a full printing method, a transfer method, or the like. Solid type Formed, exposed using a mask, and developed. The printing resist is formed in a pattern on the metal layer 13 by offset printing or gravure printing using a resin such as polyester, for example. The pattern of the resist layer 14 includes, for example, a lattice (see FIG. 2), a honeycomb (see FIG. 3), a ladder (see FIG. 4), and a reverse polka dot (see FIG. 5). .
次に、 レジスト層 1 4で覆われていない部分の金厲層 1 3をエッチング液により 除去する (図 1 4 c参照) 。 エッチング液は、 金属層 1 3の材 ¾により選択する。 たとえば、 金属層 1 3の材質が金であれば王水、 銀であれば硝酸第二鉄水溶液、 銅 であれば塩化第二鉄または塩化第二銅水溶液、 クロムであれ ίί¾酸セリウム水溶液 などを使用するとよい。 なお、 図 1 4に示す透光性電磁波シールド材料の製造工程 では、 このエッチング工程においてパターン化された金属層 1 3で覆われていない 部分の黒染色層 1 2をエッチング液の酸によって脱色する (図 1 4 c参照) 。 この とき、 黒染色層 1 2の染料は、 エッチング液によって脱色しやすいもの力 ?選択使用 される。 Next, the portion of the metal layer 13 that is not covered with the resist layer 14 is removed with an etchant (see FIG. 14c). The etching solution is selected according to the material of the metal layer 13. For example, if the material of the metal layer 13 is gold, use aqua regia, use silver to use an aqueous ferric nitrate solution, use copper to use an aqueous ferric chloride or cupric chloride solution, use chromium to use an aqueous cerium nitrate solution, or the like. Good to use. In the process of manufacturing the light-transmitting electromagnetic wave shielding material shown in FIG. 14, the portion of the black stained layer 12 not covered with the patterned metal layer 13 in this etching step is decolorized by the acid of the etching solution. (See Figure 14c). In this case, the black dye layer 1 2 dyes, those forces easily decolorized by an etchant? Are selectively used.
以上の工程を経た結果、 透明基体 1 1上に積層された黒染色層 1 2がパターン状 の脱色部 2 0とその他の非脱色部 2 1とからなり、 黒染色層 1 2上に非脱色部 2 1 と見当一致した金属層 1 3が稹層された透光性鼋磁波シールド材料が得られる。 上 記透光性電磁波シ一ルド材料は、 金属層 1 3の除去された部分および脱色部 2 0は 透光性を有し、 金属 ¾ 1 2と見当一致した黒染色層 2の非脱色部 2 1により金属層 1 3表面での反射が抑えられる。  As a result of the above steps, the black dyed layer 12 laminated on the transparent substrate 11 is composed of a pattern-shaped bleached portion 20 and other non-bleached portions 21 and is not bleached on the black stained layer 12 A translucent magnetic wave shielding material in which the metal layer 13 corresponding to the part 21 is laminated is obtained. The transparent electromagnetic wave shielding material described above has a portion where the metal layer 13 has been removed and the decolorized portion 20 have a light-transmitting property, and the non-bleached portion of the black dyed layer 2 which is in register with the metal layer 12. 21 suppresses reflection on the surface of the metal layer 13.
また、 透光性電磁波シールド材料の製造工程は、 上記した態様に限定されるもの ではなく、 たとえば、 エッチング終了後にレジスト層 1 4を剥離液により剥離して もよい (図 1 5参照) 。 剥離液としては、 水酸化ナトリウム、 水酸化カリウムなど のアルカリ水溶液、 アセトン、 ェチルセ口ソルブアセテートなどの有機溶媒、 これ らの混合液などを使用するとよい。 また、 透明基体 1 1上に黒染色層 1 2、 金属層 1 3を順次設け (図 1 6 a参 照) 、 金属層 1 3上にレジスト層 1 4をパターン状に設けた後 (図 1 6 b参照) 、 レジスト層 1 4で覆われていない部分の金属層 1 3をエッチング液により除去し (図 1 6 c参照) 、 次いでパターン化された金属層 1 3で覆われていない部分の黒 染色層 1 2をエッチング液とは別個の脱色液により脱色してもよい (I3 l 6 d参 照) 。 ^色液としては、 界面活性剤の水溶液、 亜塩素酸ナトリウム水溶液、 次亜塩 素酸ナトリゥム水溶液、 過酸化水素水溶液、 硝酸ナトリウム水溶液、 塩化第一錫水 溶液、 ホルムアルデヒドナトリウムスルホキシラ一トニ水塩水溶液、 二酸化チォ尿 素水溶液、 ハイドロサルファイ トナトリゥム水溶液、 無色透明の染料中間体水溶液 などがあり、 黒染色層 1 2の染料に適した脱色剤を適宜使用する。 ただし、 前記し たエッチングと同時に脱色を行う場合と比べて脱色のためだけの工程が余分に必要 となり、 エッチング同時脱色の方が好ましい。 尚、 黒染色層を形成している樹脂に 対し、 黒染色層中に染着している黒色染料よりも親和性の強い無色透明の染料中間 体は、 黒色染料と入れ替わって樹脂中に優先的に染着する場合がある。 この結果、 金属層の積層されていない部分の黒色は脱色され、 無色透明になる。 このようなメ 力ニズムでの脱色を行うためには、 用いる榭脂、 黒色染料、 無色透明の染料中間体 の組合せをうまく選ぶ必要がある。 Further, the manufacturing process of the translucent electromagnetic wave shielding material is not limited to the above-described embodiment. For example, the resist layer 14 may be peeled off after the etching is completed using a peeling liquid (see FIG. 15). As the stripping solution, an alkali aqueous solution such as sodium hydroxide or potassium hydroxide, an organic solvent such as acetone or ethyl acetate-solve acetate, or a mixture thereof may be used. Further, a black dyeing layer 12 and a metal layer 13 are sequentially provided on the transparent substrate 11 (see FIG. 16a), and a resist layer 14 is provided in a pattern on the metal layer 13 (see FIG. 1). 6b), the portion of the metal layer 13 not covered with the resist layer 14 is removed with an etching solution (see FIG. 16c), and then the portion of the metal layer 13 not covered with the patterned metal layer 13 is removed. The black stained layer 12 may be decolorized with a decolorizing solution separate from the etching solution (see I3l6d). ^ Color liquids include surfactant aqueous solution, sodium chlorite aqueous solution, sodium hypochlorite aqueous solution, hydrogen peroxide aqueous solution, sodium nitrate aqueous solution, stannous chloride aqueous solution, formaldehyde sodium sulfoxylatonite An aqueous solution, an aqueous solution of urea dioxide, an aqueous solution of hydrosulfite sodium, and an aqueous solution of a colorless and transparent dye intermediate are used. However, compared to the case where decolorization is performed simultaneously with the above-described etching, an extra step only for decolorization is required, and decolorization at the same time as etching is more preferable. The colorless and transparent dye intermediate, which has a higher affinity for the resin forming the black dyed layer than the black dye dyed in the black dyed layer, takes precedence in the resin instead of the black dye. May be dyed. As a result, the black color of the portion where the metal layer is not laminated is bleached and becomes colorless and transparent. In order to perform decolorization by such a mechanism, it is necessary to properly select a combination of a resin, a black dye, and a colorless and transparent dye intermediate.
また、 図 1 7に示すように、 透明基体 1 1上に黒染色層 1 2、 金属層 1 3を順次 設け (図 1 7 a参照) 、 金属層 1 3上にレジスト層 1 4をパターン状に設けた後 (図 1 7 b参照) 、 レジスト層 1 4で覆われていない部分の金属層 1 3をエツチン グ液により除ました後 (図 1 7 c参照) 、 レジスト層 1 4を剥離し、 このレジスト 層 1 4の剥離工程においてパターン化された金属層 1 3で覆われていない部分の黒 染色/ 2 1 2を剥離液により脱色してもよい (図 1 7 d参照) 。 この場合、 レジス ト 層の剥離と同時に脱色を行うので、 脱色のためだけの工程が不要となり、 透光性材 料の製造が簡虽である。 また、 本発明の透光性電磁波シールド材料の製造工程における脱色は、 エツチン グ工程以後の工程のうち複数の工程で行われてもよい。 Further, as shown in FIG. 17, a black dyeing layer 12 and a metal layer 13 are sequentially provided on the transparent substrate 11 (see FIG. 17a), and the resist layer 14 is patterned on the metal layer 13. (See Figure 17b), remove the metal layer 13 that is not covered with the resist layer 14 with an etching solution (see Figure 17c), and then peel off the resist layer 14 Then, in the stripping step of the resist layer 14, the black dyeing / 212 of the portion not covered with the patterned metal layer 13 may be decolorized with a stripping solution (see FIG. 17d). In this case, since the decoloring is performed simultaneously with the peeling of the resist layer, a step only for the decoloring is not required, and the production of the translucent material is simple. In addition, the decolorization in the manufacturing process of the translucent electromagnetic wave shielding material of the present invention may be performed in a plurality of steps after the etching step.
さらに、 エッチング液および/または剥離液に脱色剤を添加してもよい。 こうす ることにより、 エツチング液の酸および剥離液のアルカリや有機溶媒によっても脱 色しにくい染料についても、 使用の可能性が広がる。 脱色剤としては、 たとえば、 界面活性剤、 亜塩素酸ナトリウム、 次亜塩素酸ナトリウム、 過酸化水素等の過酸ィ匕 物、 硝酸ナトリウム、 塩化第一锡、 ホルムアルデヒドナトリウムスルホキシラート 二水塩、 二酸化チォ尿素、 ハイ ドロサルフアイ トナトリウム、 無色透明の染料中間 体などがある。  Further, a bleaching agent may be added to the etching solution and / or the stripping solution. By doing so, the possibility of using dyes that are difficult to decolor even by the acid of the etching solution and the alkali or organic solvent of the stripping solution is expanded. Examples of the decolorizing agent include surfactants, sodium chlorite, sodium hypochlorite, peroxides such as hydrogen peroxide, sodium nitrate, primary chloride, sodium formaldehyde sodium sulfoxylate dihydrate, Examples include thiourea dioxide, sodium hydrosulfite, and colorless and transparent dye intermediates.
(第 5発明)  (Fifth invention)
図 1 8に第 5発明に係る透光性電磁波シールド材料の実施例を示す。 すなわち、 フィルムからなる透明な第一基体 3 1上に金属 ¾ 3 2がパターン状に設けられ、 金 15¾ 3 2上に金属層 3 2と見当一致した黒色レジスト ¾ 3 3が設けられた貼付シー ト 3 4力 ?、 接着層 3 6を介して、 透明な第一基体 3が外表面となるように板、 立体 物または機能性層を有するフィルムからなる透明な第二基体 3 5に貼り合わせられ ている。 FIG. 18 shows an embodiment of the translucent electromagnetic wave shielding material according to the fifth invention. That is, a metal sheet 32 is provided in a pattern on a transparent first substrate 31 made of a film, and a sticking sheet is provided in which a black resist pattern 33 matching the metal layer 32 is provided on gold 15 32. DOO 3 4 forces?, through the adhesive layer 3 6, bonding a first substrate 3 a transparent plate such that the outer surface, the second substrate 35 a transparent consisting film having a three-dimensional object or functional layer It has been.
この透光性電磁波シールド材料を製造するには、 まず、 貼付シート 3 4を作製す る。 具体的には、 第一に、 フィルムからなる透明な第一基体 3 1全面に金 Λ層 3 2 を設ける (図 1 9 a参照) 。 フィルムからなる透明な第一基体 3 1の材質として は、 アクリル系樹脂、 ポリカーボネート榭脂、 ポリエチレン榭脂、 A S樹脂、 酢酸 ビニル榭脂、 ポリスチレン榭脂、 ポリプロピレン樹脂、 ボリエステル樹脂、 ボリサ ルホン樹脂、 ボリエーテルサルホン樹脂、 ボリ塩化ビニル樹脂などを使用する。 金 厲層 3 2の材質としては、 たとえば、 金、 銀、 銅、 鉄、 ニッケル、 クロムなど充分 に電磁波をシールドできる程度の導電性を持つものを使用する。 また、 金属層 3 2 は単体でなくても、 合金あるいは多層であってもよい。 金属層 3 2の形成方法とし ては、 蒸着、 スパッタリング、 イオンプレーティングなどの気相から析出させる方 法、 金属箔を貼り合わせる方法、 透明な第一基体 3 1表面を無電解メツキする方法 などがある。 金属層 3 2の膜厚は、 0.1; 111〜50 111とするのが好ましぃ。 50/ m を超えるとパターンを精度よく仕上げるのが困難になり、 0.1 / mより小さいと電 磁波シ—ルド効果を保つために必要最低限の導電性が安定して確保できなくなる。 次に、 金属層 3 2上に黒色レジスト層 3 3をパターン状に設ける (図 1 9 b参 照) 。 黒色レジスト層 3 3は、 金属層 3 2表面の反射を抑えて視認性を高めるため の層であり、 透光性 ¾磁波シールド材料の製造過程において金属層 3 2をパターン 化するために使用する層である。 黒色レジスト層 3 3には、 フォ トレジストや印刷 レジストなどがある。 フォ トレジス トは、 たとえば、 感光性ポリィミ ド、 ポリェポ キシァクリレート、 ノボラックなどの感光性樹脂に黒色の染顔料を含有させたもの をロールコート法、 スピンコート法、 全面印刷法、 転写法などにより金属; 1 3 2上 にベタ形成し、 フォ トマスクを用いて露光し、 現像してパターン状に形成したもの である。 また、 印刷レジストは、 たとえば、 ボリエステルなどの榭脂に黒色の染顔 料を含有させたものを用いてスクリーン印刷法やオフセッ ト印刷法、 グラビア印刷 法にて金属層 3 2上にパターン状に形成したものである。 また、 黒色レジスト層 3 3のパターンは、 たとえば、 格子状 (図 2参照) 、 ハニカム状 (図 3参照) 、 ラ ダ一状 (図 4参照) 、 逆水玉状 (図 5参照) などのパターンがある。 黒色レジスト 層 3 3の膜厚は、 O.l m lOju mとするのが好ましい。 10// mを超えると上記パ ターンを精度よく仕上げるのが困難になり、 より小さいと充分な遮光性を 保てず金属層 3 2表面の反射を抑えにく くなる。 In order to manufacture this translucent electromagnetic wave shielding material, first, an adhesive sheet 34 is prepared. Specifically, first, a metal layer 32 is provided on the entire surface of the transparent first substrate 31 made of a film (see FIG. 19a). The material of the transparent first substrate 31 made of a film includes acrylic resin, polycarbonate resin, polyethylene resin, AS resin, vinyl acetate resin, polystyrene resin, polypropylene resin, polyester resin, polysalfone resin, polystyrene resin. Use ether sulfone resin, polyvinyl chloride resin, etc. As the material of the metal layer 32, for example, a material such as gold, silver, copper, iron, nickel, and chromium having conductivity enough to shield electromagnetic waves is used. Further, the metal layer 32 need not be a simple substance, but may be an alloy or a multilayer. The method of forming the metal layer 32 is Examples of the method include a method of depositing from a gas phase such as vapor deposition, sputtering, and ion plating, a method of bonding a metal foil, and a method of electrolessly plating the surface of the transparent first substrate 31. The thickness of the metal layer 32 is preferably 0.1; If it exceeds 50 / m, it will be difficult to finish the pattern with high precision. If it is less than 0.1 / m, it will not be possible to stably secure the minimum necessary conductivity to maintain the electromagnetic shielding effect. Next, a black resist layer 33 is provided in a pattern on the metal layer 32 (see FIG. 19b). The black resist layer 33 is a layer for suppressing the reflection on the surface of the metal layer 32 to enhance the visibility, and is used for patterning the metal layer 32 in the process of manufacturing the translucent magnetic wave shielding material. Layer. The black resist layer 33 includes a photoresist and a printing resist. Photoresist is prepared, for example, by coating a photosensitive resin such as photosensitive polyimide, polyepoxyacrylate, and novolak with a black dye and pigment by a roll coating method, a spin coating method, a full-surface printing method, a transfer method, or the like; A solid pattern is formed on 13 2, exposed using a photomask, and developed to form a pattern. The printing resist is formed in a pattern on the metal layer 32 by a screen printing method, an offset printing method, or a gravure printing method using, for example, a resin such as polyester containing a black pigment. It is formed. The pattern of the black resist layer 33 is, for example, a lattice (see FIG. 2), a honeycomb (see FIG. 3), a ladder (see FIG. 4), or a reverse polka dot (see FIG. 5). There is. The thickness of the black resist layer 33 is preferably set to OlmOjum. If it exceeds 10 // m, it becomes difficult to finish the above pattern with high accuracy, and if it is smaller than 10 // m, sufficient light-shielding properties cannot be maintained and it is difficult to suppress reflection on the surface of the metal layer 32.
次いで、 黒色レジスト瑁 3 3で覆われていない部分の金属層 3 2をエッチング液 を用いて除去する (図 1 9 c参照) 。 この結果、 透明な第一基体 3 1上に会属層 3 2がパターン状に積層され、 金属層 3 2上に金属層 3 2と見当一致した黒色レジス ト層 3 3力積層された貼付シート 3 4力 ?得られる。 エッチング液は、 金属層 3 2の 材質により選択する。 たとえば、 金厲層 3 2の材質が金であれば王水、 銀であれば 硝酸第二鉄水溶液、 銅であれば塩化第二鉄または塩化第二銅水溶液、 クロムであれ ば硝酸セリウム水溶液などを使用するとよい。 Next, the portion of the metal layer 32 not covered with the black resist cover 33 is removed using an etchant (see FIG. 19c). As a result, the adhesive sheet in which the metallic layer 32 is laminated in a pattern on the transparent first base 31 and the black resist layer 33 which is in register with the metallic layer 32 on the metallic layer 32 is laminated. 3 4 force? obtained. The etching solution is for the metal layer 3 2 Select according to the material. For example, if the material of the gold layer 32 is gold, it is aqua regia, if it is silver, ferric nitrate aqueous solution, if it is copper, it is ferric chloride or cupric chloride aqueous solution, if it is chromium, it is cerium nitrate aqueous solution, etc. It is better to use
一方、 板、 立体物または機能性層を有するフィルムからなる透明な第二基体 3 5 に接着層 3 6を設けておき、 貼付シート 3 4を透明な第一基体 3 ユカ外表面となる ように貼り合わせることにより透光性霉磁波シールド材料を得る (図 2 0参照) 。 板、 立体物からなる透明な第二基体 3 5の材質としては、 ガラス、 アクリル系榭 脂、 ポリカーボネート樹脂、 ポリエチレン樹脂、 A S榭脂、 酢酸ビニル榭脂、 ポリ スチレン榭脂、 ポリプロピレン樹脂、 ポリエステル樹脂、 ポリサルホン樹脂、 ボリ エーテルサルホン樹脂、 ポリ塩化ビニル樹脂を使用する。 また、 機能性/ gを有する フィルムからなる透明な第二基体 3 5の材質としては、 アクリル系樹脂、 ボリ力一 ボネート樹脂、 ボリエチレン樹脂、 A S樹脂、 酢酸ビニル榭脂、 ボリスチレン榭 脂、 ポリプロピレン榭脂、 ポリエステル樹脂、 ポリサルホン樹脂、 ボリエーテルサ ルホン樹脂、 ポリ塩化ビニル樹脂などの榭脂フィルムの表面に、 硬化層、 透明導電 層、 アンチリフレクション層、 微細な凹凸層、 含フッ素層などの機能性層を設けた ものを挙げることができる。 これらの機能性層により、 硬化向上、 带電防止、 反射 防止、 防曇、 撥水などの機能が付与される。 また、 接着層 3 6の材質としては、 た とえば、 エポキシ樹脂、 フ: Lノール樹脂、 反応型アクリル樹脂、 ポリウレタン榭 脂、 メラミン樹脂、 ゴム系樹脂、 ユリア樹脂、 またはこれらの樹脂を含むポリマー ブレンドあるいは共重合物などを使用する。 接着層 3 6の形成方法としては、 グラ ビアコート法、 □ールコート法、 コンマコー ト法などのコート法、 グラビアコート 法、 スクリーン印刷法などの印刷法がある。  On the other hand, an adhesive layer 36 is provided on a transparent second substrate 35 made of a plate, a three-dimensional object, or a film having a functional layer, and the adhesive sheet 34 is formed so that the transparent first substrate 3 has a Yuka outer surface. A translucent magnetic wave shielding material is obtained by bonding (see Fig. 20). The material of the transparent second substrate 35 consisting of a plate and a three-dimensional object is glass, acrylic resin, polycarbonate resin, polyethylene resin, AS resin, vinyl acetate resin, polystyrene resin, polypropylene resin, polyester resin. Use polysulfone resin, polyethersulfone resin, polyvinyl chloride resin. The material of the transparent second substrate 35 made of a film having the functionality / g includes acrylic resin, polycarbonate resin, polyethylene resin, AS resin, vinyl acetate resin, polystyrene resin, and polypropylene. Functional layers such as hardened layer, transparent conductive layer, anti-reflection layer, fine uneven layer, and fluorine-containing layer on the surface of resin film such as resin, polyester resin, polysulfone resin, polyethersulfone resin, and polyvinyl chloride resin. The provided ones can be mentioned. These functional layers provide functions such as curing improvement, antistatic, antireflection, antifogging, and water repellency. The material of the adhesive layer 36 may be, for example, epoxy resin, phenolic resin, reactive acrylic resin, polyurethane resin, melamine resin, rubber resin, urea resin, or a polymer containing these resins. A blend or a copolymer is used. Examples of a method for forming the adhesive layer 36 include a coating method such as a gravure coating method, a black coating method, and a comma coating method, and a printing method such as a gravure coating method and a screen printing method.
なお、 第 5発明に係る透光性電磁波シールド材料の構成は、 上記態様に限定され るものではなく、 たとえば、 貼付シート 3 4が、 接着層 3 6を介して、 黒色レジス ト層 3 3が外表面となるように板、 立体物または機能性層を有するフィルムからな る透明な第二基体 3 5に貼り合わせられていてもよい (図 2 1, 図 2 2参照) 。 こ の場合、 必要に応じて黒色レジスト層 3 3側に保護層または保護フィルムを設けて もよいつ Note that the configuration of the translucent electromagnetic wave shielding material according to the fifth invention is not limited to the above-described embodiment. For example, the adhesive sheet 34 may be connected to the black resist layer 33 via the adhesive layer 36. It may be a plate, a three-dimensional object, or a film having a functional layer so that it has an outer surface. (See FIGS. 21 and 22). In this case, if necessary, a protective layer or a protective film may be provided on the black resist layer 33 side.
また、 第 5発明に係る透光性電磁波シールド材料の製造方法において、 貼付シ— ト 3 4の方に接着層 3 6を設けておき、 板、 立体物または機能性層を有するフィル ムからなる透明な第二基体 3 5に貼り合わせることにより透光性電磁波シ一ルド材 料を得てもよい (図 2 3 , 2 4参照) 。  Further, in the method for producing a light-transmitting electromagnetic wave shielding material according to the fifth invention, the adhesive sheet 36 is provided on the sticking sheet 34, and is made of a plate, a three-dimensional object, or a film having a functional layer. A translucent electromagnetic wave shielding material may be obtained by bonding the transparent electromagnetic wave shielding material to the transparent second substrate 35 (see FIGS. 23 and 24).
また、 第 5発明に係る透光性電磁波シールド材料の製造方法において、 黒色レジ ス ト層 3 3をパターン状に設ける工程が、 金属層 3 2上にバタ一ニングされた遊離 層 3 7を設け (図 2 5 a参照) 、 金属層 3 2および遊離 3 7上に黒色レジスト層 3 3を設け (図 2 5 b参照) 、 遊雜層 3 7を遊離除去液で除去することによりその 上の黒色レジスト層 3 3も除去する (図 2 5 c参照) ものであってもよい。 遊離層 3 7の材¾としては、 一般に市販されている印刷レジスト材料ゃフォ トレジスト材 料を使用する。 遊雜層 3 7の形成方法としては、 印刷レジスト材料を用いてスク リーン印刷法などにて金属層 3 2上にパターン状に肜成したり、 フォトレジスト材 料を用いてロールコート法、 スピンコート法、 ディップコート法、 全面印刷法、 転 写法などにより金属層 3 2上にベタ形成し、 フォトマスクを用いて露光し、 現像し てパターン状に形成したりする。 遊離層 3 7のパターンは、 たとえば、 逆格子状 (図 7参照) 、 逆ハニカム状 (図 8参照) 、 逆ラダー状 (図 9参照) 、 水玉状 (図 1 0参照) などのパターンがある。 遊離除去液は、 遊雜 « 3 7の材質により異なる 種類のものを用いる。 たとえば、 遊離層 3 7がアルカリ剥離タイプなら水酸化カリ ゥム水溶液、 水酸化ナトリウム水溶液などを使用する。 また、 遊離層 3 7が水剥離 タイプなら水、 溶剤剥離タイプならェチルセ口ソルブアセテート、 アセトンなどを 使用する。  Further, in the method for manufacturing a light-transmitting electromagnetic wave shielding material according to the fifth invention, the step of providing the black resist layer 33 in a pattern comprises providing the free layer 37 which is patterned on the metal layer 32. (See Fig. 25a), a black resist layer 33 is provided on the metal layer 32 and the free layer 37 (see Fig. 25b), and the free layer 37 is removed by removing the free layer 37 with the free removing solution. The black resist layer 33 may also be removed (see FIG. 25c). As the material of the free layer 37, a generally available printing resist material or a photoresist material is used. As the formation method of the entertainment layer 37, a pattern is formed on the metal layer 32 by a screen printing method using a printing resist material, a roll coating method using a photoresist material, a spin coating method, or the like. A solid pattern is formed on the metal layer 32 by a coating method, a dip coating method, a full-surface printing method, a transfer method, or the like, is exposed using a photomask, is developed, and is developed to form a pattern. The pattern of the free layer 37 includes, for example, a reciprocal lattice shape (see Fig. 7), a reverse honeycomb shape (see Fig. 8), a reverse ladder shape (see Fig. 9), a polka dot shape (see Fig. 10), and the like. . As the liberation removing solution, a different type is used depending on the material of the game. For example, if the free layer 37 is of an alkaline stripping type, use an aqueous solution of potassium hydroxide or sodium hydroxide. If the free layer 37 is a water-peelable type, use water. If the free layer 37 is a solvent-peelable type, use ethyl acetate-soluble acetate, acetone, or the like.
(第 6発明) ϋ 2 6に第 6 明に係る透光性鬣磁波シールド材料の実施例を示す。 すなわち、 フィルムからなる透明な第一基体 3 1上に金属層 3 2がパターン状に設けられ、 金 属層 3 2上に金属層 3 2と見当一致した黒色電気析出層 3 8が設けられた貼付シ一 ト 3 9が、 接着層 3 6を介して、 透明な第一基体 3 1が外表面となるように板、 立 体物または機能性層を有するフィルムからなる透明な第二基体 3 5に貼り合わせら れている。 (Sixth invention) ϋ26 shows an example of the translucent mane magnetic wave shielding material according to the 6th Akira. That is, a metal layer 32 was provided in a pattern on a transparent first substrate 31 made of a film, and a black electrodeposition layer 38 was provided on the metal layer 32 in register with the metal layer 32. A transparent second substrate 3 made of a plate, a solid, or a film having a functional layer is formed such that the bonding sheet 39 is provided with the transparent first substrate 31 as an outer surface via the adhesive layer 36. It is attached to 5.
この透光性電磁波シールド材料を製造するには、 まず、 貼付シート 3 9を作製す る。 具体的には、 第一に、 フィルムからなる透明な第一基体 3 1 に金属層 3 2をパ ターン状に設ける (図 2 7 a参照) 。 透明な第一基体 3 1、 金属屠 3 2の材質およ び材厚等は、 第 5発明と同様である。 パターン状の金属層 3 2の形成方法として は、 蒸着、 スパッタリング、 イオンブレーティングなどの気相から析出させる方 法、 金属箔を貼り合わせる方法、 透明な第一基体 3 1表面を無鼋解メツキする方法 などにより金属層 3 2を透明な第一基体 3 1全面に設けた後、 パターニングする。 パターニングの方法としては、 フォ トレジストをベタ形成し、 フォ トマスクを用い て露光し、 現像してパターン状に形成しエッチング、 剥膜すればよい。 また、 印刷 レジストを用いてもよい。 金属層 3 2のパターンは、 第 5発明同様、 格子状、 ハニ カム状、 ラダ一状、 逆水玉状などがある。  In order to produce this translucent electromagnetic wave shielding material, first, an adhesive sheet 39 is produced. Specifically, first, a metal layer 32 is provided in a pattern on a transparent first substrate 31 made of a film (see FIG. 27a). The material and material thickness of the transparent first base 31 and the metal slaughter 32 are the same as those of the fifth invention. Examples of the method of forming the patterned metal layer 32 include a method of depositing from a gas phase such as vapor deposition, sputtering, or ion plating, a method of bonding a metal foil, and a method of forming a transparent first substrate 31 with a non-decomposable surface. After the metal layer 32 is provided on the entire surface of the transparent first substrate 31 by a method such as the above, patterning is performed. As a method of patterning, a photoresist may be solidly formed, exposed using a photomask, developed, formed into a pattern, etched, and stripped. Further, a printing resist may be used. Like the fifth invention, the pattern of the metal layer 32 has a lattice shape, a honeycomb shape, a ladder shape, an inverted polka dot shape, and the like.
次に、 黒色系粒子を含むィォン性高分子の溶液 4 0中に、 前工程で金属層 3 2を 設けた透明な第一基体 3 1を対向電極 4 1と共に浸撗し、 通電する (図 2 7 b参 照) 。 黒色系粒子としては、 カーボンブラック、 チタンブラック、 ァニリンブラッ クなどがある。 また、 黒色系粒子の替わりに黒色系以外の粒子をいくつか組み合わ せて、 実質的に黒色系を呈するようにしてもよい。 なお、 本発明でいう黒色系と は、 真黒以外の、 たとえば、 黒っぽい茶色と力、、 黒っぽい緑色とかも含む。 イオン 性高分子としては、 ァクリル樹脂、 ポリエステル榭脂、 ポリブタジェン樹脂、 マレ イン樹脂、 エポキシ樹脂、 ウレタン榭脂、 ポリアミ ド榭脂あるいはその変性体をァ ミノ化またはカルボキシル化したものを使用する。 これらイオン性高分子の水溶液 中への含有量は、 固形分 1〜 3 0重量部である。 通電は、 透明な第一基体 3 1に積 層された金属層 3 2の一部を液界面から上に露出させるか絶緣被覆したリード線を つなぎ、 対向電極 4 1との間に 1〜300Vの電圧をかければよい。 また、 通電時の 条件を安定させたり、 得られる黒色電気析出層 3 8の導罨性、 機械的表面性などを 向上させたりする目的で無機塩、 有機塩、 界面活性剤、 有機溶剤などの添加剤をィ ォン性高分子の溶液に加えてもよい。 Next, the transparent first substrate 31 provided with the metal layer 32 in the previous step is immersed together with the counter electrode 41 in a solution 40 of an ion-containing polymer containing black particles, and a current is applied (see FIG. 27 b). Examples of black particles include carbon black, titanium black, and aniline black. Further, instead of the black-based particles, some particles other than the black-based particles may be combined so as to have a substantially black-based appearance. The term “black system” as used in the present invention includes, for example, black brown and power other than black, and blackish green. Examples of the ionic polymer include acryl resin, polyester resin, polybutadiene resin, male resin, epoxy resin, urethane resin, polyamide resin and modified products thereof. Use those that have been aminated or carboxylated. The content of the ionic polymer in the aqueous solution is 1 to 30 parts by weight of solid content. The energization is performed by exposing a part of the metal layer 32 laminated on the transparent first substrate 31 upward from the liquid interface or connecting a lead wire that is completely covered, and connecting the counter electrode 41 with a voltage of 1 to 300 V. Voltage. In addition, inorganic salts, organic salts, surfactants, organic solvents, and the like are used for the purpose of stabilizing the conditions during energization and improving the compressibility and mechanical surface properties of the resulting black electrodeposited layer 38. Additives may be added to the solution of the ionic polymer.
上記通電により金属層 3 2上に黒色電気析出層 3 8が析出し、 この結果、 透明な 第一基体 3 1上に金厲層 3 2がパターン状に設けられ、 金属層 3 2上に金属層 3 2 と見当一致した黒色電気析出層 3 8が積層された貼付シート 3 9が得られる (図 2 7 c参照) 。 黒色電気析出層 3 8は、 金属層 3 2表面の反射を抑えて視認性を高め るための層である。  As a result of the energization, a black electrodeposition layer 38 was deposited on the metal layer 32, and as a result, a metal layer 32 was provided in a pattern on the transparent first substrate 31 and a metal layer was formed on the metal layer 32. An adhesive sheet 39 in which a black electrodeposition layer 38 corresponding to the layer 32 is laminated is obtained (see FIG. 27c). The black electrodeposition layer 38 is a layer for suppressing the reflection on the surface of the metal layer 32 to enhance the visibility.
—方、 板、 立体物または機能性層を有するフィルムからなる透明な第二基体 3 5 に接着層 3 6を設けておき、 貼付シート 3 9を透明な第一基体 3 1が外表面となる ように貼り合わせることにより透光性電磁波シールド材料を得る (図 2 8参照) 。 透明な第二基体 3 5および接着層 3 6の材質および接着層 3 6の形成方法は、 第 5 発明と同様である。  —An adhesive layer 36 is provided on a transparent second substrate 35 made of a material, a plate, a three-dimensional object, or a film having a functional layer, and the adhesive sheet 39 is used as the outer surface of the transparent first substrate 31. A translucent electromagnetic wave shielding material is obtained by bonding as shown in Figure 28. The material of the transparent second substrate 35 and the adhesive layer 36 and the method of forming the adhesive layer 36 are the same as those of the fifth invention.
なお、 第 6癸明に係る透光性電磁波シールド材科の構成は、 上記態様に限定され るものではなく、 たとえば、 貼付シート 3 9が、 接着層 3 6を介して、 黒色電気析 出層 3 8が外表面となるように板、 立体物または機能性層を有するフィルムからな る透明な第二基体 3 5に貼り合わせられていてもよい (図 2 9, 図 3 0参照) 。 こ の場合、 必要に応じて黒色電気析出雇 3 8側に保護壩または保護フィルムを設けて もよい。  Note that the configuration of the translucent electromagnetic wave shielding material family relating to the sixth shiki is not limited to the above-described embodiment. For example, the adhesive sheet 39 may be provided with a black electrodeposition layer via an adhesive layer 36. It may be bonded to a transparent second substrate 35 made of a plate, a three-dimensional object, or a film having a functional layer so that 38 is the outer surface (see FIGS. 29 and 30). In this case, a protective film or a protective film may be provided on the black electrodeposition work 38 side as necessary.
また、 第 6発明に係る透光性電磁波シールド材科の製造方法において、 貼付シ— ト 3 9の方に接着層 3 6を設けておき、 板、 立体物または機能性層を有するフィル ムからなる透明な第二基体 3 5に貼り合わせることにより透光性電磁波シ―ルド材 料を得てもよい (図 3 1 , 3 2参照) 。 Further, in the method for manufacturing a translucent electromagnetic wave shielding material family according to the sixth invention, an adhesive layer 36 is provided on the sticking sheet 39 in advance, and a film having a plate, a three-dimensional object, or a functional layer is provided. A translucent electromagnetic wave shield material may be obtained by attaching the transparent electromagnetic wave shield material to a transparent second base material 35 (see FIGS. 31 and 32).
また、 第 6発明に係る透光性電磁波シールド材料の製造方法において、 黒色電気 析出層 3 8を設ける工程が、 フィルムからなる透明な第一基体: 1 に金属層 3 2を バタ—ン状に設け、 導電性高分子のモノマーの溶液中に前工程で金厲壩 3 2を設け た透明な第一基体 3 1を対向電極 4 1と共に浸潰し、 通電するものであってもよ い。 いわゆる電解重合である。 導電性高分子のモノマーとしては、 ピロ一ル、 ァニ リン、 チォフェンおよびその誘導体などより選ばれる。 また、 モノマーを溶解させ るための溶媒としては、 水、 ァセトニトリル、 プロビオン力一ボネイ ト、 テトラヒ ドロフラン、 ニ トロメタン、 メタノール、 エタノール、 スルホランなどを用いる。 なお、 通鼋を安定化しかつ電気化学的にドーピングするため、 導電性高分子のモノ マーの溶液中にドーパントを溶液中に加えて行う。 ドーパントとしては、 過塩素酸 リチウム、 ホウフッ化テトラアルキルアンモニゥム、 硫酸などがある。 さらに、 黒 色電気析出層 3 8の形成をより安定に行うためには、 参照電極を用いて鬣位をコン トロールするのが望ましい。 また、 通罨方法としては、 定電位電解法、 定鼋流 S解 法の他、 周期的に電位を上下させる方法がある。 析出した導電性高分子の色は、 通 電時の条件、 重合程度、 モノマーの種類などにより様々な色を呈するが、 一般的に は黒色系であり、 金属) 1 3 2表面の反射を抑えることができる。  In the method for producing a translucent electromagnetic wave shielding material according to the sixth aspect of the present invention, the step of providing the black electrodeposition layer 38 comprises the steps of: forming a metal layer 32 on a transparent first substrate 1 made of a film; The transparent first substrate 31 provided with the metal 32 in the previous step may be immersed together with the counter electrode 41 in a solution of the conductive polymer monomer and may be energized. This is so-called electrolytic polymerization. The monomer of the conductive polymer is selected from pyrrole, aniline, thiophene and derivatives thereof. In addition, as a solvent for dissolving the monomer, water, acetonitrile, probion force, tetrahydrofuran, nitromethane, methanol, ethanol, sulfolane, or the like is used. In addition, in order to stabilize conductivity and to perform electrochemical doping, a dopant is added to a solution of a conductive polymer monomer in the solution. Examples of the dopant include lithium perchlorate, tetraalkylammonium borofluoride, and sulfuric acid. Further, in order to more stably form the black electrodeposition layer 38, it is desirable to control the mane position using the reference electrode. As a compressing method, there is a method of periodically increasing and decreasing the potential, in addition to a constant potential electrolysis method and a constant flow S solution. The color of the deposited conductive polymer varies in color depending on the conditions at the time of conduction, the degree of polymerization, the type of monomer, etc., but is generally black and suppresses reflection on the metal (132) surface. be able to.
また、 黒色電気析出層 3 8については、 荷電性の黒色系粒子からなる黒色電気析 出 « 3 8や、 製造工程においてミセル中に黒色系粒子を含む溶液を用いるものなど が可能であると予想される。  For the black electrodeposited layer 38, it is expected that black electrodeposited particles 38 comprising charged black-based particles and those using a solution containing black-based particles in micelles in the production process are possible. Is done.
また、 第 6発明に係る透光性電磁波シールド材料の製造方法において、 黒色電気 析出層 3 8を設ける工程力 フィルムからなる透明な第一基体 3 1に金属層 3 2を パターン状に設け、 黒色系の色調を有する電気メツキ被膜を形成するめつき液中に 前工程で金属層 3 2を設けた透明な第一基体 3 1を対向電極 4 1 と共に浸清し、 通 電するものであってもよい。 Further, in the method for producing a light-transmitting electromagnetic wave shielding material according to the sixth invention, the process for providing the black electrodeposition layer 38 includes the steps of: The transparent first substrate 31 provided with the metal layer 32 in the previous step is immersed together with the counter electrode 41 in a plating solution for forming an electric plating film having a color tone of It may be an electric device.
黒色系の色調を有する電気めつき被膜としては、 ニッケル系、 クロム系、 ロジゥ ム系、 スズーニッケル一銅三元合金系またはスズーニッケル—モリブデン三元合金 系のものを用いることができる。 なお、 本発明でいう黒色系とは、 真黒以外の、 た とえば、 黒つぼい茶色とか、 黒っぽい緑色とかも含む。  As the electroplating film having a black color tone, a nickel-based, chromium-based, rhodium-based, tin-nickel-copper ternary alloy-based or tin-nickel-molybdenum ternary alloy-based one can be used. In addition, the black type in the present invention includes, for example, black-brown brown or blackish green other than black.
(第 7麵  (No. 7
図 3 3に第 7発明に係る透光性電磁波シールド材料の実施例を示す。 すなわち、 フィルムからなる透明な第一基体 3 1上に金属層 3 2力パターン状に設けられ、 金 厲層 3 2の表層部分が黒色を呈する金属化合物 4 2である貼付シ—ト 4 3が、 接着 層 3 6を介して、 透明な第一基体 3 1が外表面となるように板、 立体物または機能 性層を有するフィルムからなる透明な第二基体 3 5に貼り合わせられている。 この透光性電磁波シールド材料を製造するには、 まず、 貼付シート 4 3を作製す る。 具体的には、 第一に、 フィルムからなる透明な第一基体 3 1 に金属層 3 2をパ ターン状に設ける (図 3 4 a参照) 。 透明な第一基体 3 1および金属層 3 2の材質 および材厚、 パターン状の金属層 3 2の形成方法、 金属屠 3 2のパターン等は、 第 6発明と同様である。  FIG. 33 shows an embodiment of the translucent electromagnetic wave shielding material according to the seventh invention. That is, the adhesive sheet 43 provided on the transparent first base body 31 made of a film in the form of a metal layer 32 in a force pattern, and the surface layer of the metal layer 32 is a metal compound 42 having a black color. The transparent first substrate 31 is bonded via an adhesive layer 36 to a transparent second substrate 35 made of a plate, a three-dimensional object, or a film having a functional layer so that the transparent first substrate 31 is an outer surface. To manufacture this translucent electromagnetic wave shielding material, first, an adhesive sheet 43 is prepared. Specifically, first, a metal layer 32 is provided in a pattern on a transparent first substrate 31 made of a film (see FIG. 34a). The material and thickness of the transparent first base 31 and the metal layer 32, the method of forming the patterned metal layer 32, the pattern of the metal layer 32, and the like are the same as in the sixth invention.
次に、 化成処理を施すことにより、 金属層 3 2の表層部分を黒色を呈する金属化 合物 4 2とする (図 3 4 b参照) 。 この結果、 透明な第一基体 3 1上に金属層 3 2 がパターン状に設けられ、 金属層 3 2の表層部分が黒色を呈する金属化合物 4 2で ある貼付シート 4 3が得られる。 化成処理とは、 薬品又はその溶液によって、 金属 表面の組成を変える処理であり、 たとえば、 酸化処理、 リン酸塩化処理、 硫化処理 などがある。 本発明では、 金属層 3 2の材質に応じて金属化合物が黒色を呈するよ うな化成処理を選択使用し、 たとえば、 金属層 3 2の材質が銅の場合には、 亜塩素 酸ナトリウム及び水酸ィ匕カリウムを含む水溶液や、 多硫化アンチモンを含む水溶 液、 亜塩素酸ナトリウム及びリン酸ナトリウム、 水酸化ナトリウムを含む水溶液、 過琉酸カリウム及び水酸化ナトリウムを含む水溶液などに金属層 3 2を浸潰すると よい- また、 金属層 3 2の材質が鉄の場合には、 リン酸二水素亜鉛を含む水溶液な どに金属層 3 2を浸潰するとよい。 黒色を呈する金属化合物 4 2は、 金属層 3 2表 面の反射を抑えて視認性を高めるための部分であり、 黒色を呈する金属化合物 4 2 の形成深度は、 化成処理の溶液の組成、 温度、 浸漬時間などの条件を調節すること により、 金属層 3 2のシールド効果を妨げない程度に設定する。 また、 本発明でい う黒色とは、 真黒以外の、 たとえば、 黒っぽい茶色とか、 黒っぽい緑色とかも含 む。 Next, the surface layer of the metal layer 32 is formed into a black metal compound 42 by a chemical conversion treatment (see FIG. 34b). As a result, an adhesive sheet 43 in which the metal layer 32 is provided in a pattern on the transparent first base 31 and the surface layer of the metal layer 32 is a metal compound 42 having a black color is obtained. The chemical conversion treatment is a treatment for changing the composition of the metal surface by a chemical or a solution thereof, and includes, for example, an oxidation treatment, a phosphoric acid treatment, and a sulfuration treatment. In the present invention, a chemical conversion treatment is used so that the metal compound exhibits a black color according to the material of the metal layer 32. For example, when the material of the metal layer 32 is copper, sodium chlorite and hydroxyl An aqueous solution containing potassium potassium, an aqueous solution containing antimony polysulfide, an aqueous solution containing sodium chlorite and sodium phosphate, sodium hydroxide, It is recommended that the metal layer 32 be immersed in an aqueous solution containing potassium perluate and sodium hydroxide. Layer 32 may be immersed. The black metal compound 42 is a part for suppressing the reflection of the surface of the metal layer 32 to enhance the visibility. The formation depth of the black metal compound 42 depends on the composition and temperature of the chemical conversion solution. The shielding effect of the metal layer 32 is set so as not to hinder by adjusting conditions such as the immersion time. In addition, the black in the present invention includes a color other than black, for example, a dark brown or a dark green.
—方、 板、 立体物または機能性 を有するフィルムからなる透明な第二基体 3 5 に接着層 3 6を設けておき、 貼付シート 4 3を透明な第一基体 3 1が外表面となる ように貼り合わせることにより透光性鼋磁波シールド材料を得る (図 3 5参照) 。 透明な第二基体 3 5および接着層 3 6の材質および接着層 3 6の形成方法は、 第一 発明と同様である。  An adhesive layer 36 is provided on a transparent second substrate 35 made of a material, a plate, a three-dimensional object, or a functional film, and the adhesive sheet 43 is formed so that the transparent first substrate 31 becomes the outer surface. Then, a translucent magnetic wave shielding material is obtained by pasting it on the substrate (see Fig. 35). The material of the transparent second substrate 35 and the adhesive layer 36 and the method of forming the adhesive layer 36 are the same as those of the first invention.
なお、 第 7発明に係る透光性電磁波シールド材料の構成は、 上記態様に限定され るものではなく、 たとえば、 貼付シート 4 3が、 接着層 3 6を介して、 黒色を呈す る金属化合物 4 2が外表面となるように板、 立体物または機能性層を有するフィル ムからなる透明な第二基体 3 5に貼り合わせられていてもよい (図 3 6 , 図 3 7参 照) 。 この場合、 必要に応じて黒色を呈する金属化合物 4 2側に保護層または保護 フィルムを設けてもよい。  The configuration of the translucent electromagnetic wave shielding material according to the seventh invention is not limited to the above-described embodiment. For example, the adhesive sheet 43 may be a metal compound that exhibits black via the adhesive layer 36. It may be bonded to a transparent second substrate 35 made of a plate, a three-dimensional object, or a film having a functional layer so that 2 is the outer surface (see FIGS. 36 and 37). In this case, if necessary, a protective layer or a protective film may be provided on the side of the metal compound 42 exhibiting black color.
また、 第 7発明に係る透光性 ¾磁波シールド材料の製造方法において、 貼付シ一 ト 4 3の方に接着層 3 6を設けておき、 板、 立体物または機能性層を有するフィル ムからなる透明な第二基体 3 5に貼り合わせることにより透光性電磁波シ一ルド材 料を得てもよい (図 3 8 , 3 9参照) 。  Further, in the method for producing a translucent electromagnetic wave shielding material according to the seventh aspect of the invention, the adhesive sheet 36 is provided on the sticking sheet 43 so that a plate, a three-dimensional object, or a film having a functional layer is provided. A translucent electromagnetic wave shielding material may be obtained by bonding to a transparent second substrate 35 (see FIGS. 38 and 39).
(第 8発明)  (Eighth invention)
図 4 0に第 8発明に係る透光性電磁波シールド材料の実施例を示す。 すなわち、 フィルムからなる透明な第一基体 3 1上にパターン状の脱色都 4 4とその他の非脱 色部 4 5とからなる黒染色層 4 6が設けられ、 黒染色層 4 6上に非脱色部 4 5と見 当一致した金属層 3 2が設けられた貼付シート 4 7力 接着層 3 6を介して、 透明 な第一基体 3 1が外表面となるように板、 立体物または機能性層を有するフィルム からなる透明な第二基体 3 5に貼り合わせられている。 FIG. 40 shows an embodiment of the translucent electromagnetic wave shielding material according to the eighth invention. That is, On the transparent first substrate 31 made of a film, a black dyed layer 46 composed of a pattern-shaped decolorizing part 44 and other non-decolored parts 45 is provided, and a non-decolored part is formed on the black dyed layer 46. 4 Adhesive sheet provided with a metal layer 3 2 that matches register 5 4 7 A plate, a three-dimensional object, or a functional layer so that the transparent first base 31 is the outer surface via the adhesive layer 36 It is bonded to a transparent second substrate 35 made of a film having
この透光性電磁波シールド材料を製造するには、 まず、 貼付シート 4 7を作製す る。 具体的には、 第一に、 フィルムからなる透明な第一基体 3 1上に黒染色層 4 6、 金属層 3 2を順次設ける (図 4 1 a参照) 。 透明な第一基体 3 1、 金属層 3 2 の材質および金属層 3 2の形成方法等は、 第 5発明と同様である。 黒染色層 4 6 は、 金属層 3 2の反射を抑えて視認性を高めるための層である。 黒染色層 4 6は、 たとえば、 アクリル系樹脂、 ポリエステル系樹脂、 セルロース系樹脂、 ポリ才レ フィン系樹脂、 ポリビニルアルコール系樹脂、 ゼラチン等の天然高分子型樹脂およ びこれらの共重合体、 混合物などを黒色染料とともに溶媒に溶解または分散し、 ロールコート法、 スピンコート法、 全面印刷法などにより形成したものである。 ま た、 上記樹脂からなる被膜をロールコート法、 スピンコート法、 全面印刷法などに より形成した後、 黒色染料で染色してもよい。 また、 熱移行性染料を、 熱移行によ り上記樹脂被膜に染色してもいい。 なお、 染料の黒染色層 4 6基質からの脱色性は 染料と基質の組み合せによって大きく異なるので、 基質の樹脂の種類によつて使用 できる染料の種類は異なる。 また、 黒色染料は、 市販のものを用いるか、 または黒 色以外の色相の染料を 2種類以上混合して黒色にしてもよい。  To manufacture this translucent electromagnetic wave shielding material, first, an adhesive sheet 47 is prepared. Specifically, first, a black dye layer 46 and a metal layer 32 are sequentially provided on a transparent first substrate 31 made of a film (see FIG. 41a). The material of the transparent first base 31 and the metal layer 32 and the method of forming the metal layer 32 are the same as those of the fifth invention. The black dyed layer 46 is a layer for suppressing reflection of the metal layer 32 to enhance visibility. The black dyed layer 46 is made of, for example, an acrylic resin, a polyester resin, a cellulose resin, a polyolefin resin, a polyvinyl alcohol resin, a natural polymer resin such as gelatin, a copolymer thereof, a mixture thereof, or the like. Is dissolved or dispersed in a solvent together with a black dye, and formed by a roll coating method, a spin coating method, a full-surface printing method, or the like. Alternatively, a film made of the above resin may be formed by a roll coating method, a spin coating method, a full-surface printing method, or the like, and then dyed with a black dye. Further, the resin film may be dyed with a heat transfer dye by heat transfer. Since the decolorization of the dye from the black dyed layer 46 substrate greatly differs depending on the combination of the dye and the substrate, the type of dye that can be used differs depending on the type of the resin of the substrate. As the black dye, a commercially available dye may be used, or two or more dyes having a hue other than black may be mixed to black.
次に、 金属層 3 2上にレジス ト層 4 8をパターン状に設ける (図 4 l b参照) 。 レジスト層 4 8の材質としては、 フォ トレジストや印刷レジストなどがある。 フ才 トレジストは、 たとえば、 感光性ポリイミ ド、 ポリエポキシァクリ レート、 ノボ ラックなどの感光性樹脂をロールコーティング法、 スピンコ一ティ ング法、 全面印 刷法、 転写法などにより金厲層 3 2上にベタ形成し、 フォ トマスクを用いて露光 し、 現像して形成したものである。 また、 印刷レジストは、 たとえば、 ポリエステ ルなどの樹脂を用いてオフセッ ト印刷やグラビア印刷法にて金属層 3 2上にパター ン状に形成したものである。 このレジスト層 4 8のパターンは、 たとえば、 格子 状、 ハニカム状、 ラダー状、 逆水玉状などのパターンがある。 Next, a resist layer 48 is provided in a pattern on the metal layer 32 (see FIG. 4 lb). Examples of the material of the resist layer 48 include a photoresist and a printing resist. The photoresist is formed by coating a photosensitive resin such as photosensitive polyimide, polyepoxy acrylate, and novolak by a roll coating method, a spin coating method, a full printing method, a transfer method, or the like. Solid on top and exposed using photo mask And then developed. The printing resist is formed in a pattern on the metal layer 32 by offset printing or gravure printing using a resin such as polyester, for example. The pattern of the resist layer 48 includes, for example, a lattice shape, a honeycomb shape, a ladder shape, and a reverse polka dot pattern.
次に、 レジスト層 4 8で覆われていない部分の金属層 3 2をエッチング液を用い て除去し、 このエッチング工程においてパターン化された金属層 3 2で覆われてい ない部分の黒染色層 4 6をエッチング液により脱色することにより貼付シート 4 7 を得る (図 4 1 c参照) 。 エッチング液は、 金属層 3 2の材質により選択する。 た とえば、 金属層 3 2の材質が金であれば王水、 銀であれば硝酸第二鉄水溶液、 銅で あれば塩化第二鉄または塩化第二銅水溶液、 クロムであれば硝酸セリウム水溶液な どを使用するとよい。 なお、 この方法においては、 黒染色層 4 6の染料は、 上記 エッチング液によって脱色しやすいものが選択使用される。 なお、 エッチング工程 後、 レジスト層 4 8を残しておいてもよいし、 レジスト除去液を用いて除去しても よレ。 レジスト除去液としては、 水酸化ナトリウム、 水酸化カリウムなどのアル力 リ水溶液、 アセトン、 ェチルセ口ソルブアセテートなどの有機溶媒、 これらの混合 液などを使用するとよい。  Next, portions of the metal layer 32 not covered with the resist layer 48 are removed using an etching solution, and the portions of the black stained layer 4 not covered with the patterned metal layer 32 in this etching step are removed. The adhesive sheet 47 is obtained by decolorizing 6 with an etchant (see FIG. 41c). The etching solution is selected according to the material of the metal layer 32. For example, when the material of the metal layer 32 is gold, aqua regia is used for gold, ferric nitrate aqueous solution is used for silver, ferric chloride or cupric chloride aqueous solution is used for copper, and cerium nitrate aqueous solution is used for chromium. You may want to use something like that. In this method, as the dye of the black dyed layer 46, a dye which is easily decolored by the above-mentioned etching solution is selectively used. After the etching step, the resist layer 48 may be left, or may be removed using a resist removing solution. As the resist removing solution, an aqueous solution of sodium hydroxide such as sodium hydroxide or potassium hydroxide, an organic solvent such as acetone or ethyl acetate solvent, or a mixed solution thereof may be used.
—方、 板、 立体物または機能性層を有するフィルムからなる透明な第二基体 3 5 に接着層 3 6を設けておき、 貼付シート 4 7を透明な第一基体 3 1が外表面となる ように貼り合わせることにより透光性 磁波シールド材料を得る (図 4 2参照) 。 透明な第二基体 3 5および接着層 3 6の材質および接着層 3 6の形成方法は、 第 5 発明と同様である。  —An adhesive layer 36 is provided on a transparent second substrate 35 made of a material, a plate, a three-dimensional object, or a film having a functional layer, and the adhesive sheet 47 is used as the outer surface of the transparent first substrate 31. A translucent magnetic shielding material is obtained by bonding as shown in Fig. 42. The material of the transparent second substrate 35 and the adhesive layer 36 and the method of forming the adhesive layer 36 are the same as those of the fifth invention.
なお、 第 8発明に係る透光性電磁波シ-ルド材料の構成は、 上記態様に限定され るものではなく、 たとえば、 貼付シ一ト 4,お、接着層 3 6を介して、 金属屠 3 2 が外表面となるように板、 立体物または機能性 ¾を有するフィルムからなる透明な 第二基体 3 5に貼り合わせられていてもよい (図 4 3 , 図 4 4参照) 。 この場合、 必要に応じて金属層 3 2側に保護層または保護フィルムを設けてもよい。 The configuration of the translucent electromagnetic wave shielding material according to the eighth invention is not limited to the above-described embodiment. For example, the metal sheet 3 may be attached via the bonding sheet 4 and the adhesive layer 36. It may be bonded to a transparent second substrate 35 made of a plate, a three-dimensional object, or a film having functionality, such that 2 is the outer surface (see FIGS. 43 and 44). in this case, If necessary, a protective layer or a protective film may be provided on the metal layer 32 side.
また、 第 8発明に係る透光性鼋磁波シールド材料の製造方法において、 貼付シー ト 4 7の方に接着層 3 6を設けておき、 板、 立体物または機能性層を有するフィル ムからなる透明な第二基体 3 5に貼り合わせることにより透光 ¾電磁波シ一ルド材 料を得てもよい (図 4 5 , 4 6参照) 。  Further, in the method for producing a translucent magnetic wave shielding material according to the eighth invention, the adhesive sheet 36 is provided on the sticking sheet 47, and is made of a plate, a three-dimensional object, or a film having a functional layer. A light-transmitting / electromagnetic shielding material may be obtained by bonding to the transparent second substrate 35 (see FIGS. 45 and 46).
また、 第 8発明に係る透光性電磁波シールド材料の製造方法において、 パターン 状の脱色部 4 4とその他の非脱色部 4 5とからなる黒染色 « 4 6を設ける工程が、 フィルムからなる透明な第一基体 3 1上に黒染色層 4 6、 金属層 3 2を設け、 金 JS 層 3 2上にレジスト層 4 8をパターン状に設け (図 4 7 a参照) 、 レジスト層 4 8 で覆われていない部分の金属層 3 2をエッチング液を用いて除去し (図 4 7 b参 照) 、 次いでパターン化された金属層 3 2で覆われていない部分の黒染色層 4 6を エッチング液とは別の脱色液により脱色する (図 4 7 c参照) ものであってもよ い。 脱色液としては、 界面活性剤の水溶液、 亜塩素酸ナトリウム水溶液、 次亜塩素 酸ナトリウム水溶液、 過酸化水素水溶液、 硝酸ナトリウム水溶液、 塩化第一錫水溶 液、 ホルムアルデヒ ドナトリウムスルホキシラートニ水 ¾τ 溶液、 二酸化チォ尿素 水溶液、 ハイ ドロサルファイトナトリウム水溶液、 無色透明の染料中間体水溶液な どがあり、 黒染色層 4 6の染料に適した脱色剤を適宜使用する。 なお、 エッチング 工程後、 レジスト層 4 8を残しておいてもよいし、 脱色液による脱色の前あるいは 後にレジスト除去液を用いて除去してもよい。  Further, in the method for producing a translucent electromagnetic wave shielding material according to the eighth invention, the step of providing a black dyeing part 46 comprising a pattern-like decolorization part 44 and another non-bleaching part 45 includes a transparent film-forming step. A black dye layer 46 and a metal layer 32 are provided on the first base 31 and a resist layer 48 is provided in a pattern on the gold JS layer 32 (see FIG. 47a). The metal layer 32 that is not covered is removed using an etchant (see FIG. 47 b), and then the black dyed layer 46 that is not covered by the patterned metal layer 32 is etched. It may be one that decolorizes with another decolorizing solution (see Figure 47c). Examples of the decolorizing solution include an aqueous solution of a surfactant, an aqueous solution of sodium chlorite, an aqueous solution of sodium hypochlorite, an aqueous solution of hydrogen peroxide, an aqueous solution of sodium nitrate, an aqueous solution of stannous chloride, and an aqueous solution of sodium formaldehyde sodium sulfoxylate ¾τ. Thiourea dioxide aqueous solution, sodium hydrosulfite aqueous solution, colorless and transparent dye intermediate aqueous solution, etc., and a bleaching agent suitable for the dye of the black dye layer 46 is appropriately used. Note that the resist layer 48 may be left after the etching step, or may be removed using a resist removing liquid before or after decolorization with the decolorizing liquid.
また、 第 8発明に係る透光性菜磁波シールド材料の製造方法において、 パターン 状の脱色部 4 4とその他の非脱色部 4 5とからなる黒染色層 4 6を設ける工程力5、 フィルムからなる透明な第一基体 3 1上に黒染色層 4 6、 金属層 3 2を設け、 金属 層 3 2上にレジスト層 4 8をパターン状に設け (図 4 8 a参照) 、 レジスト層 4 8 で覆われていない部分の金属層 3 2をエッチング液を用いて除去し (図 4 8 b参 照) 、 次いでレジスト層 4 8をレジスト除去液を用いて除まし、 このレジスト ¾ 4 8の除去工程においてパターン化された金厲層 3 2で覆われていない部分の黒染色 層 4 6をレジスト除去液により脱色する (図 4 8 c参照) ものであってもよい。 な お、 この方法においては、 黒染色層 4 6の染料は、 レジスト除去液によって脱色し やすいものが選択使用される。 In the method of manufacturing the translucent vegetable wave shielding material according to the eighth invention, the step force 5 providing a black dyed layer 4 6 made of other non-bleaching unit 4 5 which the pattern of bleaching unit 4 4, from the film A black dyed layer 46 and a metal layer 32 are provided on the transparent first base 31, and a resist layer 48 is provided in a pattern on the metal layer 32 (see FIG. 48 a). The portion of the metal layer 32 not covered with the metal layer 32 is removed using an etchant (see FIG. 48 b), and then the resist layer 48 is removed using a resist remover. In the removal step 8, the black dyed layer 46 in the portion not covered with the patterned gold layer 32 may be decolorized with a resist removing liquid (see FIG. 48 c). In this method, as the dye of the black dyed layer 46, a dye which is easily decolored by a resist removing solution is selected and used.
また、 第 8発明に係る透光性電磁波シールド材科の製造方法において、 エツチン グ液による脱色、 エッチング液とは別の脱色液による脱色、 レジスト除去液による 脱色のうち複数を組み合わせてもよい。  Further, in the method for producing a transparent electromagnetic wave shielding material family according to the eighth invention, a plurality of decolorization using an etching solution, decolorization using a decolorization solution different from the etching solution, and decolorization using a resist removal solution may be combined.
(第 9発明)  (Ninth invention)
図 4 9に第 9発明に係る透光性 ¾磁波シールド材料の実施例を示す。 すなわち、 剥離層 4 9と、 剥離層 4 9の上にパターン状に設けられた金属層 3 2と、 金属層 3 2の上に金属層 3 2と見当一致して設けられた黒色レジスト層 3 3とからなる転写 層 5 0が、 接着層 3 6を介して、 剥雜 « 4 9が外表面となるように板、 立体物また は機能性 ¾を有するフィルムからなる透明な第二基体 3 5上に転写されている。 この透光性電磁波シールド材料を製造するには、 まず、 転写シート 5 2を作製す る。 具体的には、 第一に、 フィルムからなる第一基体 5 1全面に剥離層 4 9、 金風 層 3 2を順次設ける (図 5 0 a参照) 。 フィルムからなる第一基体 5 1の材 Kとし ては、 アクリル系樹脂、 ボリカーボネート樹脂、 ボリエチレン樹脂、 A S樹脂、 酢 酸ビニル樹脂、 ポリスチレン樹脂、 ボリプロピレン樹脂、 ボリエステル樹脂、 ポリ サルホン樹脂、 ポリエーテルサルホン樹脂、 ポリ塩化ビエル樹脂などを使用し、 透 明である必要はない。 剥離 « 4 9は、 転写後に第一基体 5 1を剥離した際に、 第一 基体 5 1から剥離して透光性電磁波シールド材料の最外面となる層である。 剥雜層 4 9の材質としては、 ポリアクリル系樹脂、 ボリエステル系榭脂、 ポリ塩化ビニル 系樹脂、 セルロース系榭脂、 ゴム系樹脂、 ボリウレタン系樹脂、 ボリ酢酸ビニル系 樹脂などのほか、 塩化ビニル一酢酸ビニル共重合体系樹脂、 エチレン一酢酸ビニル 共重合体系榭脂などのコポリマ一を用いるとよい。 剥離層 4 9の形成方法として は、 グラビアコート法、 ロールコート法、 コンマコート法などのコート法、 グラビ アコ—ト法、 スクリーン印刷法などの印刷法がある。 金属層 3 2の材質、 形成方法 等は第 5発明と同様である。 FIG. 49 shows an embodiment of the translucent magnetic wave shielding material according to the ninth invention. That is, a release layer 49, a metal layer 32 provided in a pattern on the release layer 49, and a black resist layer 3 provided on the metal layer 32 in register with the metal layer 32. The transparent second substrate 3 made of a plate, a three-dimensional object, or a film having functionality so that the transfer layer 50 composed of 3 and the peeling layer 49 becomes the outer surface via the adhesive layer 36. 5 has been transcribed. To manufacture this translucent electromagnetic wave shielding material, first, a transfer sheet 52 is prepared. Specifically, first, a release layer 49 and a gold-like layer 32 are sequentially provided on the entire surface of the first substrate 51 made of a film (see FIG. 50a). The material K of the first substrate 51 made of a film is acrylic resin, polycarbonate resin, polyethylene resin, AS resin, vinyl acetate resin, polystyrene resin, polypropylene resin, polyester resin, polysulfone resin, polyether. Sulfone resin, polyvinyl chloride resin, etc. are used and need not be transparent. Peeling 49 is a layer which becomes the outermost surface of the translucent electromagnetic wave shielding material when peeled from first substrate 51 when first substrate 51 is peeled after transfer. The material of the stripping layer 49 may be a polyacrylic resin, a polyester resin, a polyvinyl chloride resin, a cellulose resin, a rubber resin, a polyurethane resin, a polyvinyl acetate resin, or the like. It is preferable to use a copolymer such as a vinyl monovinyl acetate copolymer resin or an ethylene monovinyl acetate copolymer resin. As a method for forming the release layer 49 There are coating methods such as gravure coating, roll coating, and comma coating, and printing methods such as gravure coating and screen printing. The material, forming method and the like of the metal layer 32 are the same as in the fifth invention.
次に、 金属層 3 2上に黒色レジスト層 3 3をパターン状に設ける (図 5 O b参 照) 。 黒色レジスト層 3 3の材質、 パターン形成方法等は第 5発明と同様である。 もちろん、 遊離層 3 7を用いてパターン化を行なう方法 (図 5 1参照) も第 5発明 と同様に可能である。  Next, a black resist layer 33 is provided in a pattern on the metal layer 32 (see FIG. 5 Ob). The material and pattern forming method of the black resist layer 33 are the same as in the fifth invention. Of course, a method of performing patterning using the free layer 37 (see FIG. 51) is also possible as in the fifth invention.
次いで、 黒色レジスト層 3 3で覆われていない部分の金属層 3 2をエッチング液 を用いて除去する (図 5 0 c参照) 。 この結果、 第一基体 5 1上に剥雜) 1 4 9が積 層され、 剥雜層 3 1上に金厲層 3 2がパターン状に積層され、 金属層 3 2上に金厲 層 3 2と見当一致した黒色レジスト層 3 3が稷層された転写シート 5 2が得られ る。 エッチング液は、 第 5発明と同様のものを使用する。  Next, the portion of the metal layer 32 that is not covered with the black resist layer 33 is removed using an etchant (see FIG. 50c). As a result, the metallized layer 3 2 is laminated on the first substrate 51, the metallized layer 3 2 is patterned on the laminated layer 3 1, and the metallic layer 3 2 is laminated on the metallized layer 3 2. A transfer sheet 52 in which a black resist layer 33 corresponding to 2 is formed is obtained. The same etchant as that of the fifth invention is used.
一方、 板、 立体物または機能性 ¾を有するフィルムからなる透明な第二基体 3 5 に接着 S 3 6を設けておき、 転写シート 5 2を第一基体 5 1が外表面となるように 貼り合わせた (図 5 2参照) 後、 第一基体 5 1のみを剥離することにより透光性!: 磁波シールド材料を得る。 板、 立体物または機能性層を有するフィルムからなる透 明な第二基体 3 5および接着層 3 6の材質および接着層 3 6の形成方法は、 第 5発 明と同様である。  On the other hand, an adhesive S36 is provided on a transparent second substrate 35 made of a plate, a three-dimensional object, or a film having functionality, and the transfer sheet 52 is attached so that the first substrate 51 is an outer surface. After joining (see Fig. 52), only the first substrate 51 is peeled off to make it translucent! : Obtain magnetic shielding material. The material of the transparent second substrate 35 and the adhesive layer 36 made of a plate, a three-dimensional object, or a film having a functional layer and the method of forming the adhesive layer 36 are the same as those of the fifth invention.
なお、 第 9発明に係る透光性電磁波シールド材料の製造方法において、 転写シー ト 5 2の方に接着層 3 6を設けておき、 転写シート 5 2を第一基体 5 1が外表面と なるように貼り合わせた (図 5 3参照) 後、 第一基体 5 1のみを剥離することによ り透光性電磁波シ一ルド材料を得てもよい。  In the method for manufacturing a translucent electromagnetic wave shielding material according to the ninth invention, the transfer sheet 52 is provided with an adhesive layer 36 in advance, and the transfer sheet 52 becomes the first substrate 51 as an outer surface. After such bonding (see FIG. 53), only the first substrate 51 may be peeled off to obtain a light-transmitting electromagnetic wave shield material.
また、 以上の方法で形成された透光性電磁波シールド材料は、 第一基体 5 1の剥 離後、 必要に応じて剥離 « 4 9上に保護層または保護フィルムを設けてもよい。  In addition, after the first base member 51 is peeled off, the light-transmitting electromagnetic wave shielding material formed by the above method may be provided with a protective layer or a protective film on the peeling layer 49 if necessary.
(第 1 0発明) 図 5 4に第 1 0発明に係る透光性電磁波シールド材料の実施例を示す。 すなわ ち、 剥離層 4 9と、 剥離層 4 9の上にパターン状に設けられた金属層 3 2と、 金属 層 3 2の上に金属層 3 2と見当一致して設けられた黒色電気析出層 3 8とからなる 転写層 5 3が、 接着層 3 6を介して、 剥離層 4 9が外表面となるように板、 立体物 または機能性屠を有するフィルムからなる透明な第二基体 3 5上に転写されてい る。 (10th invention) FIG. 54 shows an embodiment of the translucent electromagnetic wave shielding material according to the tenth invention. That is, the release layer 49, the metal layer 32 provided in a pattern on the release layer 49, and the black electricity provided in register with the metal layer 32 on the metal layer 32. A transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer, such that the transfer layer 53 composed of the deposition layer 38 and the release layer 49 becomes the outer surface via the adhesive layer 36 It is transcribed on 35.
この透光性電磁波シールド材料を製造するには、 まず、 転写シート 5 を作製す る。 具体的には、 第一に、 フィルムからなる第一基体 5 1全面に剥離層 4 9を設 け、 剥離層 4 9上に金属層 3 2をパターン状に設ける (図 5 5 a参照) 。 第一基体 5 1、 剥離層 4 9の材質および剥離層 4 9の形成方法は、 第 9発明と冋様である。 金属層 3 2の材質、 材厚およびパターン状の金属層 3 2の形成方法等は、 第 6発明 と同様である。  To manufacture this translucent electromagnetic wave shielding material, first, a transfer sheet 5 is prepared. Specifically, first, a release layer 49 is provided on the entire surface of the first substrate 51 made of a film, and a metal layer 32 is provided on the release layer 49 in a pattern (see FIG. 55a). The material of the first base 51 and the release layer 49 and the method of forming the release layer 49 are the same as those of the ninth invention. The material and thickness of the metal layer 32 and the method of forming the patterned metal layer 32 are the same as in the sixth invention.
次に、 黒色系粒子を含むイオン ¾高分子の溶液 4 0中に前工程で剥離層 4 9およ び金属履 3 2を設けた第一基体 5 1を対向電極 4 1と共に浸憤し、 通 する (図 5 5 b参照) 。 黒色系粒子およびイオン性高分子の材質、 その他通電の条件等は、 第 6発明と同様である。  Next, the first substrate 51 provided with the release layer 49 and the metal footwear 32 in the previous step in the solution 40 of the ion-polymer containing black particles was infiltrated with the counter electrode 41, (See Figure 55b). The materials of the black particles and the ionic polymer, and other conditions for energization are the same as in the sixth invention.
上記通鼋により金属層 3 2上に黒色電気析出層 3 8が析出し、 この結果、 第一基 体 5 1上に剥雜層 4 9力、'積層され、 その上に金属層 3 2がパターン状に設けられ、 金属層 3 2上に金属層 3 2と見当一致した黒色電気析出層 3 8が積層された転写 シート 5 4が得られる (図 5 5 c参照) 。  As a result of the above, a black electrodeposition layer 38 was deposited on the metal layer 32, and as a result, a stripping layer 49 was laminated on the first substrate 51, and the metal layer 32 was formed thereon. A transfer sheet 54 is obtained in which a black electrodeposition layer 38 which is provided in a pattern and is in register with the metal layer 32 on the metal layer 32 is laminated (see FIG. 55c).
一方、 板、 立体物または機能性層を有するフィルムからなる透明な第二基体 3 5 に接着層 3 6を設けておき、 転写シ一ト 5 4を第一基体 5 1が外表面となるように 貼り合わせた (図 5 6参照) 後、 第一基体 5 1のみを剥離することにより透光性電 磁波シールド材料を得る。 板、 立体物または機能性壩を有するフィルムからなる透 明な第二基体 3 5および接着層 3 6の材質、 接着層 3 6の形成方法は、 第 6発明と 同様である。 On the other hand, an adhesive layer 36 is provided on a transparent second substrate 35 made of a plate, a three-dimensional object, or a film having a functional layer, and the transfer sheet 54 is formed so that the first substrate 51 becomes an outer surface. Then, only the first substrate 51 is peeled off to obtain a light-transmitting electromagnetic wave shielding material. The material of the transparent second base member 35 made of a plate, a three-dimensional object, or a film having functional properties and the material of the adhesive layer 36, and the method of forming the adhesive layer 36 are the same as those of the sixth invention. The same is true.
なお、 第 1 0発明に係る透光性電磁波シールド材料の製造方法において、 転写 シート 5 4の方に接着層 3 6を設けておき、 転写シート 5 4を第一基体 5 1が外表 面となるように貼り合わせた (図 5 7参照) 後、 第一基体 5 1のみを剥離すること により透光性電磁波シールド材科を得てもよい。  In the method for manufacturing a translucent electromagnetic wave shielding material according to the tenth aspect of the present invention, the transfer sheet 54 is provided with an adhesive layer 36 in advance, and the transfer sheet 54 becomes the outer surface of the first base 51. After bonding as described above (see FIG. 57), only the first substrate 51 may be peeled off to obtain a light-transmitting electromagnetic shielding material family.
また、 第 1 0発明に係る透光性電磁波シールド材料の製造方法において、 黒色罨 気析出層 3 8を設ける工程が、 フィルムからなる第一基体 5 1全面に剥離層 4 9を 設け、 剥雜層 4 9上に金属層 3 2をパターン状に設け、 導電性高分子のモノマーの 溶液中に前工程で金属層 3 2を設けた第一基体 5 1を対向電極 4 1 と共に ¾濱し、 通 するものであってもよい。 導電性高分子のモノマーおよびモノマ一を溶解させ る溶媒の材質、 その他通電の条件等は、 第 6発明と同様である。 また、 黒色電気析 出 カ^黒色系の色調を有する電気めつき被膜であってもよい。 めつき層の形成方法 は第 2発明のそれと同様である。  Further, in the method for producing a translucent electromagnetic wave shielding material according to the tenth aspect, the step of providing the black compressible gas-deposited layer 38 includes the steps of: providing a release layer 49 over the entire surface of the first substrate 51 made of a film; A metal layer 32 is provided in a pattern on the layer 49, and the first base 51 provided with the metal layer 32 in the previous step in a solution of a monomer of the conductive polymer is placed together with the counter electrode 41 on the first substrate 51, It may be passed. The material of the solvent for dissolving the monomer and monomer of the conductive polymer and other conditions for energization are the same as in the sixth invention. Further, a black electrodeposition coating may be an electroplated film having a black color tone. The method of forming the plating layer is the same as that of the second invention.
また、 以上の方法で形成された透光性罨磁波シールド材料は、 第一基体 5 1の剥 離後、 必要に応じて剥雜層 4 9上に保護 Sまたは保護フィルムを設けてもよい。  Further, after the first substrate 51 is peeled off, a protective S or a protective film may be provided on the peeling layer 49 as needed after the light-transmitting compressive wave shielding material formed by the above method is peeled off.
(第 1 1発明)  (11th invention)
図 5 8に第 1 1凳明に係る透光性電磁波シールド材料の実施例を示す。 すなわ ち、 剥離 ® 4 9と、 剥雜層 4 9の上にパターン状に設けられ且つ表層部分が黑色を 呈する金属化合物 4 2である金厲層 3 2とからなる転写層 5 5が、 接着層 3 6を介 して、 剥雜層 4 9が外表面となるように板、 立体物または機能性 ¾を有するフィル ムからなる透明な第二基体 3 5上に転写されている。  FIG. 58 shows an example of the translucent electromagnetic wave shielding material according to the eleventh embodiment. That is, a transfer layer 55 composed of a release layer 49 and a metal layer 32, which is a metal compound 42 provided in a pattern on the release layer 49 and having a surface portion exhibiting a blue color, It is transferred onto a transparent second base member 35 made of a plate, a three-dimensional object, or a film having a functional layer via the adhesive layer 36 so that the peeling layer 49 becomes the outer surface.
この透光性電磁波シールド材料を製造するには、 まず、 転写シート 5 6を作製す る。 具体的には、 第一に、 フィルムからなる第一基体 5 1全面に剥離層 4 9を設 け、 剥離層 4 9上に金属層 3 2をパターン状に設ける (図 5 9 a参照) 。 第一基体 5 1、 剥雜層 4 9の材質および剥離層 4 9の形成方法は、 第 9発明と同様である。 金属層 3 2の材質、 材厚およびパターン状の金属層 3 2の形成方法等は、 第 7発明 と同様である c To manufacture this translucent electromagnetic wave shielding material, first, a transfer sheet 56 is prepared. Specifically, first, a release layer 49 is provided on the entire surface of the first substrate 51 made of a film, and a metal layer 32 is provided on the release layer 49 in a pattern (see FIG. 59a). The material of the first substrate 51 and the peeling layer 49 and the method of forming the peeling layer 49 are the same as in the ninth invention. The material and thickness of the metal layer 32 and the method of forming the patterned metal layer 32 are the same as in the seventh invention.
次に、 化成処理を施すことにより、 金属層 3 2の表層部分を黒色を呈する金属化 合物 4 2とする (図 5 9 b参照) 。 この結果、 第一基体 5 1上に剥雜層 4 9が積層 され、 剥離層 4 9上に金属層 3 2がパターン状に設けられ、 金属層 3 2の表層部分 力 s'黒色を呈する金属化合物 4 2である転写シート 5 6が得られる。 化成処理につい ては、 第 7発明と同様である。 Next, the surface layer of the metal layer 32 is formed into a black metal compound 42 by a chemical conversion treatment (see FIG. 59b). As a result, the peeling layer 49 is laminated on the first base 51, the metal layer 32 is provided in a pattern on the peeling layer 49, and the surface layer of the metal layer 32 has a force s ′ of a metal exhibiting black. A transfer sheet 56 which is the compound 42 is obtained. The chemical conversion treatment is the same as in the seventh invention.
一方、 板、 立体物または機能性層を有するフィルムからなる透明な第二基体 3 5 に接着層 3 6を設けておき、 転写シート 5 6を第一基体 5 1力 s'外表面となるように 貼り合わせた (図 6 0参照) 後、 第一基体 5 1のみを剥離することにより透光性電 磁波シールド材料を得る。 板、 立体物または機能性層を有するフィルムからなる透 明な第二基体 3 5および接着層 3 6の材質、 接着層 3 6の形成方法は、 第 7発明と 同様である。  On the other hand, an adhesive layer 36 is provided on a transparent second substrate 35 made of a plate, a three-dimensional object, or a film having a functional layer so that the transfer sheet 56 becomes the outer surface of the first substrate 51. Then, only the first base member 51 is peeled off to obtain a light-transmitting electromagnetic wave shielding material. The material of the transparent second base member 35 and the adhesive layer 36 made of a plate, a three-dimensional object, or a film having a functional layer, and the method of forming the adhesive layer 36 are the same as in the seventh invention.
なお、 第 1 1発明に係る透光性電磁波シールド材料の製造方法において、 転写 シ一ト 5 6の方に接着層 3 6を設けておき、 転写シート 5 6を第一基体 5 1が外表 面となるように貼り合わせた (図 6 1参照) 後、 第一基体 5 1のみを剥離すること により透光性電磁波シ一ルド材料を得てもよい。  In the method for producing a translucent electromagnetic wave shielding material according to the eleventh invention, the adhesive layer 36 is provided on the transfer sheet 56, and the transfer sheet 56 is formed on the outer surface of the first base 51. After bonding (see FIG. 61), only the first base member 51 may be peeled off to obtain a light-transmitting electromagnetic wave shield material.
また、 以上の方法で形成された透光性電磁波シールド材料は、 第一基体 2 1の剥 離後、 必要に応じて剥離層 4 9上に保護層または保護フィルムを設けてもよい。  In addition, after the first substrate 21 is peeled off, the light-transmitting electromagnetic wave shielding material formed by the above method may be provided with a protective layer or a protective film on the peeling layer 49 if necessary.
(第 1 2発明)  (First and second inventions)
図 6 2に第 1 2発明に係る透光性電磁波シールド材料の実施例を示す。 すなわ ち、 剥離層 4 9と、 剥離層 4 9の上に設けられたパターン状の脱色部 4 4とその他 の非脱色部 4 5とからなる黒染色層 4 6と、 黒染色層 4 6の上に非脱色部 4 5と見 当一致して設けられた金厲層 3 2とからなる転写層 5 7力、 接着層 3 6を介して、 剥離層 4 9が外表面となるように板、 立体物または機能性層を有するフィルムから なる透明な第二基体 3 5上に転写されている。 FIG. 62 shows an embodiment of the translucent electromagnetic wave shielding material according to the 12th invention. That is, a black dyed layer 46 composed of a release layer 49, a pattern-shaped bleached part 44 provided on the release layer 49, and other non-bleached parts 45, and a black dyed layer 46 The transfer layer 57 composed of the metal layer 32 provided in register with the non-bleaching portion 45 on the transfer layer 57, and the release layer 49 becomes the outer surface via the adhesive layer 36. From boards, three-dimensional objects or films with functional layers Is transferred onto a transparent second substrate 35.
この透光性電磁波シールド材料を製造するには、 まず、 転写シート 5 8を作製す る。 具体的には、 第一に、 フイルムからなる第一基体 5 1全面に剥雜層 4 9、 黒染 色層 4 6、 金属層 3 2を順次設ける (図 6 3 a参照) 。 第一基体 5 1、 剥離層 4 9 の材質および剥離層 4 9の形成方法は、 第 9発明と同様である。 黒染色層 4 6、 金 属層 3 2の材質および形成方法等は、 第 8発明と同様である。  To manufacture this translucent electromagnetic wave shielding material, first, a transfer sheet 58 is prepared. Specifically, first, an exfoliation layer 49, a black dyeing layer 46, and a metal layer 32 are sequentially provided on the entire surface of the first substrate 51 made of a film (see FIG. 63a). The material of the first base 51 and the release layer 49 and the method of forming the release layer 49 are the same as in the ninth invention. The material and forming method of the black dyed layer 46 and the metal layer 32 are the same as in the eighth invention.
次に、 金属層 3 2上にレジスト層 4 8をパターン状に設ける (図 6 3 b参照) 。 レジスト層 4 8の材質および形成方法等は、 第 8発明と同様である。  Next, a resist layer 48 is provided in a pattern on the metal layer 32 (see FIG. 63B). The material and forming method of the resist layer 48 are the same as those of the eighth invention.
次に、 レジスト層 4 8で覆われていない部分の金属層 3 2をエッチング液を用い て除去し、 このエッチング工程においてパターン化された金属層 3 2で覆われてい ない部分の黒染色層 4 6をエッチング液により脱色することにより転写シ—ト 5 8 を得る (図 6 3 c参照) 。 エッチング液や黒染色層 4 6の染料は、 第 8発明と同様 のものを使用する。 なお、 エッチング工程後、 レジスト層 4 8を残しておいてもよ いし、 レジスト除去液を用いて除去してもよい。 レジスト除去液としては、 第 8発 明と同様のものを使用する。  Next, portions of the metal layer 32 not covered with the resist layer 48 are removed using an etching solution, and the portions of the black stained layer 4 not covered with the patterned metal layer 32 in this etching step are removed. The transfer sheet 58 is obtained by decolorizing 6 with an etchant (see FIG. 63 c). The etching solution and the dye for the black dyed layer 46 are the same as those used in the eighth invention. After the etching step, the resist layer 48 may be left, or may be removed using a resist removing liquid. The same resist removing solution as that used in the eighth invention is used.
—方、 板、 立体物または機能性/ Sを有するフィルムからなる透明な第二基体 3 5 に接着層 3 6を設けておき、 転写シート 5 8を第一基体 5 1が外表面となるように 貼り合わせた (図 6 4参照) 後、 第一基体 5 1のみを剥離することにより透光性電 磁波シールド材科を得る。 板、 立体物または機能性餍を有するフィルムからなる透 明な第二基体 3 5および接着層 3 6の材質、 接着層 3 6の形成方法は、 第 8発明と 同様である。  —An adhesive layer 36 is provided on a transparent second substrate 35 made of a material, a plate, a three-dimensional object, or a film having functionality / S, and the transfer sheet 58 is formed so that the first substrate 51 becomes the outer surface. After bonding (see FIG. 64), only the first substrate 51 is peeled off to obtain a transparent electromagnetic wave shielding material family. The material of the transparent second base member 35 and the adhesive layer 36 made of a plate, a three-dimensional object, or a film having functionality II, and the method of forming the adhesive layer 36 are the same as in the eighth invention.
また、 第 1 2発明に係る透光性電磁波シールド材料の製造方法において、 転写 シ一ト 5 8の方に接着層 3 6を設けておき、 転写シート 5 8を第一基体 5 1が外表 面となるように貼り合わせた (図 6 5参照) 後、 第一基体 5 1のみを剥離すること により透光性電磁波シールド材料を得てもよい。 また、 第 1 2発明に係る透光性電磁波シールド材料の ¾造方法において、 パター ン状の脱色部 4 4とその他の非脱色部 4 5とからなる黒染色層 4 6を設ける工程 せ、 フィルムからなる透明な第一基体 5 1上に剥雜層 4 9、 黒染色層 4 6、 金属層 3 2を設け、 金属層 3 2上にレジスト層 4 8をパターン状に設け (図 6 6 a参 照) 、 レジスト層 4 8で覆われていない部分の金属層 3 2をエッチング液を用いて 除去し (図 6 6 b参照) 、 次いでパターン化された金属層 3 2で覆われていない部 分の黒染色層 4 6をエッチング液とは別の脱色液により脱色する (図 6 6 c参照) ものであってもよい。 脱色液としては、 第 8 明と同様のものを使用する。 なお、 エッチング工程後、 レジス ト層 4 8を残しておいてもよいし、 脱色液による脱色の 前あるいは後にレジスト除去液を用いて除去してもよい。 レジスト除去液として は、 第 8発明と同様のものを使用する。 Further, in the method for producing a translucent electromagnetic wave shielding material according to the twelfth invention, the transfer sheet 58 is provided with an adhesive layer 36 in advance, and the transfer sheet 58 is formed on the outer surface of the first base 51. After bonding (see FIG. 65), only the first substrate 51 may be peeled off to obtain a light-transmitting electromagnetic wave shielding material. Further, in the method for producing a translucent electromagnetic wave shielding material according to the twelfth invention, a step of providing a black stained layer 46 comprising a pattern-shaped bleached portion 44 and another non-bleached portion 45 is performed. A peeling layer 49, a black dyeing layer 46, and a metal layer 32 are provided on a transparent first substrate 51 made of, and a resist layer 48 is provided in a pattern on the metal layer 32 (Fig. 66a). (See FIG. 66B.) Then, the portion of the metal layer 32 not covered with the resist layer 48 is removed using an etchant (see FIG. 66 b), and then the portion not covered with the patterned metal layer 32. The black dyed layer 46 may be decolorized with a decolorizing solution different from the etching solution (see FIG. 66c). As the decolorizing solution, use the same one as described in VIII. Note that the resist layer 48 may be left after the etching step, or may be removed using a resist removing liquid before or after decolorization with the decolorizing liquid. As the resist removing liquid, the same liquid as in the eighth invention is used.
また、 第 1 2発明に係る透光性電磁波シールド材料の製造方法において、 パター ン状の脱色部 4 4とその他の非脱色部 4 5とからなる黒染色層 4 6を設ける工程 が、 フィルムからなる透明な第一基体 3 1上に剥離層 4 9、 黒染色餍 4 6、 金属層 3 2を設け、 金属層 3 2上にレジス ト層 4 8をパターン状に設け (図 6 7 a参 照) 、 レジス ト層 4 8で覆われていない部分の金属層 3 2をエッチング液を用いて 除去し (図 6 7 b参照) 、 次いでレジスト層 4 8をレジスト除去液を用いて除去 し、 このレジス ト層 4 8の除去工程においてパターン化された金属層 3 2で覆われ ていない部分の黒染色層 4 6をレジス ト除去液により脱色する (図 6 7 c参照) も のであってもよい。 なお、 この方法においては、 黒染色層 5 3の染料は、 レジスト 除去 によつて脱色しゃすいものが選択使用される。  Further, in the method for producing a translucent electromagnetic wave shielding material according to the first aspect of the present invention, the step of providing a black dyed layer 46 composed of a pattern-shaped bleached portion 44 and other non-bleached portions 45 comprises: A release layer 49, a black dyeing layer 46, and a metal layer 32 are provided on the transparent first base 31 and a resist layer 48 is provided in a pattern on the metal layer 32 (see FIG. 67a). Then, the portion of the metal layer 32 not covered with the resist layer 48 is removed using an etchant (see FIG. 67 b), and then the resist layer 48 is removed using a resist remover. In the step of removing the resist layer 48, the portion of the black stained layer 46 not covered with the patterned metal layer 32 is decolorized with a resist removing solution (see FIG. 67c). Good. In this method, as the dye of the black dyed layer 53, a dye which is decolorized by removing the resist is selectively used.
また、 第 1 2癸明に係る透光性電磁波シールド材料の製造方法において、 エッチ ング液による脱色、 エッチング液とは別の脱色液による脱色、 レジス ト除去液によ る脱色のうち複数を組み合わせてもよい。  Further, in the method for manufacturing a translucent electromagnetic wave shielding material according to the first and second methods, a combination of decolorization with an etching solution, decolorization with a decolorization solution different from the etching solution, and decolorization with a resist removal solution is combined. You may.
また、 以上の方法で形成された透光性電磁波シールド材料は、 第一基体 5 1の剥 ^後、 必要に じて剥離層 4 9上に保護層または保護フィルムを設けてもよい c (第 1 3発明〜第 2 3発明) Further, the translucent electromagnetic wave shielding material formed by the above method is used to peel off the first base 51. Thereafter, if necessary, a protective layer or a protective film may be provided on the release layer 49c (the thirteenth invention to the twenty-third invention).
これらの発明は全て金属層の一部が露出したアース部 1 0 0が存在する態様であ る。 例えば、 図 6 8は、 本発明の透光性電磁波シールド材料の基本的な平面図であ る。 図中、 1は透明基体を示し、 3は黒色部分、 例えば、 黒色レジス ト層である。 この M色レジスト層 3の被覆されていない部分がアース部 1 0 0となる。 ここから は図面の説明であって、 それぞれの詳しい内容はこれまでの発明の説明を参照すれ ばよい。 アース部の形成箇所としては、 例えば、 図 6 8に示すように、 透光性電磁 波シールド部を囲む枠状のパターン、 透光性電磁波シ一ルド部の端辺に隣接する棒 状のパターンなど種々の態様が考えられる。  All of these inventions are embodiments in which the ground portion 100 in which a part of the metal layer is exposed exists. For example, FIG. 68 is a basic plan view of the translucent electromagnetic wave shielding material of the present invention. In the figure, 1 indicates a transparent substrate, and 3 indicates a black portion, for example, a black resist layer. The uncovered portion of the M-color resist layer 3 becomes the ground portion 100. The following is a description of the drawings, and the details of each may refer to the description of the invention so far. For example, as shown in FIG. 68, a frame-shaped pattern surrounding the light-transmitting electromagnetic wave shield part, a rod-shaped pattern adjacent to the end of the light-transmitting electromagnetic wave shield part, as shown in FIG. Various modes are conceivable.
図6 9は、 図 1に対応する図面であるが、 金属層の一部が黒色レジスト層 3では なく、 マスク層 1 0 1で覆われた部分があり、 この部分が最後に除去されてアース 部 1 0 0を形成するのである。 この図の場合、 マスク層が先に形成される方法であ る。 図 7 0では、 逆に黒色レジスト層が先に形成される方法である。  FIG. 69 is a drawing corresponding to FIG. 1, but a part of the metal layer is covered with the mask layer 101 instead of the black resist layer 3, and this part is finally removed and grounded. The part 100 is formed. In this case, the mask layer is formed first. FIG. 70 shows a method in which a black resist layer is formed first.
マスクの材質としては、 一般に市販されている印刷レジス ト材料やフォ トレジス ト材料を用いる。 マスク層の形成方法としては、 印刷レジストを用いてスクリーン 印刷法などにて金属層上の一部に形成したりフォ トレジスト材料を用いて口一ル コーティング法、 ディ ップコーティング法、 全面印刷法、 耘写法などにより金属層 上にベた形成し、 フォ トマスクを用いて露光し、 現像して部分的に形成する。 ァ一 ス部を露出させるために、 上記マスク屠や、 後述する黒色レジスト層、 黒色電気析 出層、 ポジ型レジス ト層、 黒染色層の非脱色部の一部を除去する方法としては、 例 えば、 剥離液により溶解除去する方法や、 接着性のテープなどに接着させて剥離す る方法、 機械的に削り取る方法などがある。 マスク層や、 ポジ型レジスト層上と各 黒色層との間にわずかな隙間があつてもエッチイ ングによりアース部と透光性電磁 波シールド部との断線が起こるので、 これを防止するためにはマスク層やポジ型レ ジスト層上には各黒色層を部分的に重複するように形成するのが好ましい。 As the material of the mask, a printing resist material or a photo resist material which is generally commercially available is used. The mask layer may be formed on a part of the metal layer by screen printing using a printing resist, or by mouth coating, dip coating, or full-surface printing using a photoresist material. A solid is formed on the metal layer by tilling, etc., exposed using a photomask, developed, and partially formed. In order to expose the gaseous part, the following methods may be used to remove the mask and the part of the non-bleaching part of the black resist layer, the black electrodeposition layer, the positive resist layer, and the black stain layer described later. For example, there are a method of dissolving and removing with a peeling liquid, a method of peeling by bonding to an adhesive tape, and a method of mechanically shaving. Even if there is a slight gap between the mask layer or the positive resist layer and each black layer, the grounding and the translucent electromagnetic wave shield will be disconnected by etching, so to prevent this. Is a mask layer or positive type It is preferable to form each black layer on the dist layer so as to partially overlap.
11 7 1は、 マスク層を用いない方法である。 この方法の場合、 最後に黒色レジス ト層 3の一部を除去することにより、 アース部 1 0 0が形成される。  1171 is a method that does not use a mask layer. In the case of this method, the ground portion 100 is formed by finally removing a part of the black resist layer 3.
H 7 2は、 図 6に対応する図面であるが、 まずマスク層 1 0 1が形成され、 その 後に剥離層 4が形成され、 最後にマスク層 1 0 1と黒色レジスト層 3が共に除まさ れて、 アース部 1 0 0が形成される。 図 7 3では、 剥離層 4とマスク層 1 0 1.との 形成の順序が逆の場合である。  H72 is a drawing corresponding to Fig. 6, but first, a mask layer 101 is formed, followed by a release layer 4, and finally, both the mask layer 101 and the black resist layer 3 are removed. As a result, a ground portion 100 is formed. FIG. 73 shows a case where the order of forming the release layer 4 and the mask layer 101 is reversed.
図 7 4は、 やはりマスク層 1 0 1を用いないで、 黒色レジスト層 3を最後に一部 分だけ除去することによりアース部 1 0 0を形成するのである。 In FIG. 74, the ground portion 100 is formed by removing the black resist layer 3 only partially at the end without using the mask layer 101 as well.
図 7 5は、 図 1 1に対応する図である。 ここでも、 マスク層 1 0 1を用いて最後 にそのマスク層 1 0 1を剥離することにより、 アース部 1 0 0が形成される。 この 図において、 黒色層 3は黒色電気析出層であり、 そのための析出装置が、 図 1 2と 同様の形で図 7 6に示されている。 但し、 析出の必要の無いところにマスク屠 1 0 1が形成されている。  FIG. 75 is a diagram corresponding to FIG. Also in this case, the ground layer 100 is formed by finally peeling off the mask layer 101 using the mask layer 101. In this figure, the black layer 3 is a black electrodeposition layer, and the deposition apparatus for it is shown in FIG. 76 in the same manner as in FIG. However, the mask slaughter 101 is formed in a place where the precipitation is not necessary.
図 7 7と図 7 8の態様では、 黒色析出層 3を一旦金属層上に形成した後、 その析 出層 3の一部を除去する方法である。 図 7 8はそのための析出装置を示す。  In the embodiments of FIGS. 77 and 78, the black deposition layer 3 is formed once on the metal layer, and then a part of the deposition layer 3 is removed. Fig. 78 shows a deposition apparatus for that purpose.
図 7 9と図 8 0の態様では、 マスク層 1 0 1の代わりに、 ポジ型レジスト曙 1 0 2を形成して、 饅後にその部分を露光することにより除去する。 図 8 0は、 そのた めの析出装置を示す。 ポジ型レジスト層の材料としては、 一般に市販されているポ ジ型のフォ トレジスト材料を用いる。 ポジ型レジスト層の形成方法としては、 ロー ルコ一ティ ング法、 スピンコーティング法、 ディップコ一ティ ング法、 全面印刷 法、 転写法などにより金属層上にベた形成し、 フォ トマスクを用いて露光し、 現像 して部分的に形成する。  In the embodiments of FIGS. 79 and 80, instead of the mask layer 101, a positive resist Akebono 102 is formed, and after the bun, the portion is removed by exposure. FIG. 80 shows a deposition apparatus for that purpose. As a material of the positive resist layer, a generally available photoresist of a posi type is used. The positive resist layer can be formed by solid coating on the metal layer by roll coating, spin coating, dip coating, full-surface printing, transfer, etc., and exposure using a photomask. Then, it is developed and partially formed.
図 8 1は、 図 1 3に対応する図面である。 この態様では、 金属層の一部が黒色を 呈する金属化合物 3に変化する。 金属 ϋの一部には金属化合物に変化しないよう ',: マスク層 1 0 1が形成されるのである。 図 8 2は、 マスク層 1 0 1の代わりに、 ポ ジ型レジスト層 1 0 2を形成して、 最後にその部分を露光することにより除去す る。 FIG. 81 is a drawing corresponding to FIG. In this embodiment, a part of the metal layer changes to the metal compound 3 exhibiting black. Some of the metal ϋ does not change to a metal compound ',: The mask layer 101 is formed. In FIG. 82, instead of the mask layer 101, a post-type resist layer 102 is formed, and finally, the portion is removed by exposure.
図 8 3は、 図 2 1に対 Ιΐ:、する図面であって、 金属層 3 2の一部が、 露出してァー ス部 1 0 0を形成する。 図 8 4は、 図 8 3の態様の透光性電磁波シールド材料の製 造方法の一例である。 この方法では、 金属層 3 2の一部をマスク層 1 0 1で保護し て形成する。 図 8 5は、 黒色レジスト層 3 3をマスク層 1 0 1よりはやく形成する 態様である。 図 8 6では、 マスク層を用いずに、 黒色レジスト層 3 3の一部を除去 することによりアース部 1 0 0を形成する態様である。 図 8 7と図 8 8は、 図 8 6 で得られたものを第二の基体 3 5に取り付ける態様である力 図 8 7では、 接着層 3 6が第二基体 3 5上に存在し、 図 8 8では、 貼付シート 3 4上に存在する。 図8 9、 図 9 0及び図 9 1は遊離層 3 7を用いた態様であって、 遊離層 3 7を用 いて金属層を露出する以外は図 8 4〜図 8 8と同じ態様である。  FIG. 83 is a drawing corresponding to FIG. 21. A part of the metal layer 32 is exposed to form a ground portion 100. FIG. 84 shows an example of a method of manufacturing the translucent electromagnetic wave shielding material of the embodiment shown in FIG. In this method, a part of the metal layer 32 is protected by the mask layer 101 and formed. FIG. 85 shows an embodiment in which the black resist layer 33 is formed earlier than the mask layer 101. FIG. 86 shows an embodiment in which the ground portion 100 is formed by removing a part of the black resist layer 33 without using a mask layer. FIG. 87 and FIG. 88 show an embodiment in which the one obtained in FIG. 86 is attached to the second substrate 35.In FIG. 87, the adhesive layer 36 is present on the second substrate 35, In FIG. 88, it is on the adhesive sheet 34. FIGS. 89, 90 and 91 show embodiments using the free layer 37, and are the same as FIGS. 84 to 88 except that the metal layer is exposed using the free layer 37. .
図 9 2〜図 9 7は、 黒色層が黒色電気析出層 3 3であることを除いては、 図 8 3 〜図 8 8の態様と同じである。 同じく、 図 9 8〜図 1 0 2は、 金属層 3 2の上部 が、 黒色を呈する金属化合物であることを除いては同じである。  FIGS. 92 to 97 are the same as the embodiments of FIGS. 83 to 88 except that the black layer is the black electrodeposition layer 33. Similarly, FIGS. 98 to 102 are the same except that the upper part of the metal layer 32 is a metal compound exhibiting black.
図 1 0 3〜図 1 0 6は、 第 9発明〜第 1 2癸明の態様に該当する発明であるが、 やはり金属層の一部が、 露出していてアース部を形成する。 ML  FIG. 103 to FIG. 106 are inventions corresponding to the ninth invention to the 12th invention, but also a part of the metal layer is exposed to form an earth portion. ML
(第一発明の実施例)  (Example of the first invention)
実施例 1 Example 1
透明基体の一面に金厲層を設けたものとして、 厚さ 0.3 / πιのニッケルを蒸着し た厚さ 1.1mmのホウケィ酸ガラス板を用いた。 ポリエチレンテレフタレ一ト榭脂中 にカーボンブラックを含有するインキを用い、 オフセッ ト印刷にてニッケル層上に 厚さ 5 の黒色レジスト層を内 100,u m、 ピッチ 1 10// mの逆水玉パターン状に 設けた。 最後に、 黒色レジス ト層で覆われていない部分の金属層を塩化第二鉄水溶 液によりエッチング除去した。 A 1.1 mm thick borosilicate glass plate on which 0.3 / πι-thick nickel was vapor-deposited was used as one provided with a metal layer on one surface of the transparent substrate. Using ink containing carbon black in polyethylene terephthalate resin, offset printing on nickel layer A black resist layer having a thickness of 5 was provided in a reverse polka dot pattern with a pitch of 110 // m and a pitch of 100 / um. Finally, portions of the metal layer not covered with the black resist layer were removed by etching with an aqueous ferric chloride solution.
実施例 2 Example 2
透明基体の一面に金属層を設けたものとして、 厚さ 35〃 mの銅箔を貼り合わせた 厚さ のポリエステルフィルムを用いた。 感光性ポリイミ ド樹脂中にカーボ ンブラックを含有するインキを用い、 ロールコ一ティング法にて銅箔層全面に厚さ 1 の黒色レジス ト層を形成し、 フォ トマスクを用いて露光した後、 塩化第二銅 水溶液により現像して幅 10 m、 目の大きさ lOOX lOO mの柊子状にパターン化し た。 最後に、 黒色レジスト層で覆われていない部分の金属層を塩化第二銅水溶液に よりエッチング除去した。  As a transparent substrate provided with a metal layer on one surface, a polyester film having a thickness of 35 μm and a copper foil attached thereto was used. Using an ink containing carbon black in the photosensitive polyimide resin, a black resist layer with a thickness of 1 is formed on the entire surface of the copper foil layer by the roll coating method, and is exposed using a photomask. It was developed with an aqueous cupric solution and patterned into a hiiragi pattern with a width of 10 m and an eye size of lOOX lOO m. Finally, the portion of the metal layer not covered with the black resist layer was etched away with an aqueous cupric chloride solution.
実施例 3 Example 3
透明基体として厚さ 3 mmのアクリル板を用い、 その一面にアクリル樹脂 「BR- 77」 (三菱レイヨン社製) を塗布し 1 %水酸化カリウム中に 5分間浸潰した後、 塩 化パラジウム 塩化鉍コロイド溶液に浸漬し、 1 %水酸化カリウム中に 1分間浸 ¾ し、 無電解ニッケルメツキを施した。 次に、 「カラ一モザイク CK」 (富士ハン ト エレク トロニクステクノロジ一社製) を用いて、 π—ルコ一ティング法にて金属層 全面に厚さ 1.5 mの黒色レジスト層を形成し、 フォ トマスクを用いて露光した 後、 Γカラ一モザイク現像液 C DJ (富士ハントエレクトロニクステクノロジ一社 製) により現像して幅 目の大きさ I50X 150 mの格子状にパターン化し た。 最後に、 黒色レジスト層で覆われていない部分の金属層を希硝酸によりエッチ ング除去した。  A 3-mm-thick acrylic plate was used as a transparent substrate. An acrylic resin “BR-77” (manufactured by Mitsubishi Rayon Co., Ltd.) was applied on one side of the plate, immersed in 1% potassium hydroxide for 5 minutes, and then palladium chloride chloride浸漬 Immersed in a colloid solution, immersed in 1% potassium hydroxide for 1 minute, and subjected to electroless nickel plating. Next, using “Color Mosaic CK” (manufactured by Fuji Hunt Electronics Technology Co., Ltd.), a black resist layer with a thickness of 1.5 m is formed on the entire metal layer by the π-coating method, and a photomask is formed. After exposure using, it was developed with a color mosaic developer C DJ (manufactured by Fuji Hunt Electronics Technology Co., Ltd.) and patterned into a grid with a width of I50X150 m. Finally, portions of the metal layer not covered with the black resist layer were etched away with dilute nitric acid.
実施例 4  Example 4
透明基体として厚さ 100 / mのボリメチルメタクリレートフィルムを用い、 その 一面に銀蒸着して厚さ 0.2 μ ιηの金属層を設けた。 次に、 「ブラックレジスト V- 259BK739J (新日鉄化学社製) を用い、 スピンコーティ ング法にて金属層全面に 厚さ 0.7 / mの黒色レジス ト層を形成し、 フォ トマスクを用いて露光した後、 「現 像液 V-259I-D」 (新日鉄化学社製) の 50倍希釈液により現像して幅 20 m、 目の直 径 のハニカム状にパターン化した。 最後に、 黒色レジス ト層で覆われてい ない部分の金属層を硝酸第二鉄水溶液よりエッチング除去した。 Using Helsingborg methacrylate film with a thickness of 100 / m as a transparent substrate, provided with a metal layer having a thickness of 0.2 μ ιη and silver deposited on one surface thereof. Next, "Black resist V- Using a 259BK739J (manufactured by Nippon Steel Chemical Co., Ltd.), a black resist layer with a thickness of 0.7 / m was formed on the entire surface of the metal layer by spin coating and exposed using a photomask. -D "(manufactured by Nippon Steel Chemical Co., Ltd.) and developed into a honeycomb pattern with a width of 20 m and the diameter of the eye by developing with a 50-fold diluted solution. Finally, the portion of the metal layer not covered with the black resist layer was etched away from the aqueous ferric nitrate solution.
実施例 5 Example 5
透明基体として厚さ 1 mmのメタアクリルシートを用い、 その上面に厚さ の銅箔をアクリル樹脂で貼り合わせて金属層を設けた。 次に、 水性印刷レジストイ ンキを用い、 スクリーン印刷にて金属層上に剥離層を格子幅 10 m、 目の大きさ 100 / m X 100/ mの逆格子状パターンに設けた。 次いで、 黒色カーボンインキを用 い、 ロールコーティング法にて金属層および剥? 11上面に厚さ 1 の黒色レジス ト層を設けた。 次に、 剥離液として水を用い、 剥離層を剥離することによりその上 の黒色レジス ト層を除去した。 最後に、 黒色レジスト層を除去した部分の金属層を 塩化第二 水溶液によりエツチング除去した。  A 1-mm-thick methacryl sheet was used as a transparent substrate, and a metal layer was provided on the upper surface of the methacryl sheet by bonding a thick copper foil with an acrylic resin. Next, using an aqueous printing resist ink, a release layer was provided on the metal layer by screen printing in a reciprocal lattice pattern having a lattice width of 10 m and a mesh size of 100 / mx 100 / m. Next, using a black carbon ink, a metal layer and a black resist layer having a thickness of 1 were formed on the upper surface of the peeling 11 by a roll coating method. Next, water was used as a stripping solution, and the black resist layer was removed by stripping the stripping layer. Finally, the portion of the metal layer from which the black resist layer was removed was removed by etching with a second aqueous chloride solution.
実施例 6 Example 6
透明基体として厚さ 2 mmのボリカーボネートシ一トを用い、 その上面にニッケ ルをスパッタリングして厚さ 0.3 mの金属層を設けた。 次に、 アルカリ現像タイ プのフォ ト レジス ト材料を金属層上にロールコーティ ングし、 プレベーク後、 フォ トマスクを用いて露光、 現像して剥離層を格子幅 ΙΟ πκ 目の大きさ lOO.u m X lOO // mの逆格子状パターンに設けた。 次いで、 黒色力一ボンインキを用い、 ロール コーティング法にて金属層および剥離層上面に厚さ 1 の黒色レジスト層を設け た。 次に、 剥離液として水酸化カリウム水溶液を用い、 剥離層を剥雜することによ りその上の黒色レジスト層を除去した。 最後に、 黒色レジスト層を除去した部分の 金属層を硝酸水溶液によりエツチング除去した。  A 2 mm thick polycarbonate sheet was used as the transparent substrate, and a 0.3 m thick metal layer was formed by sputtering nickel on the top surface. Next, a photo resist material of an alkali development type is roll-coated on the metal layer, pre-baked, exposed and developed using a photo mask, and the release layer is formed to have a lattice width of κπκ with a size of lOO.um. X lOO // m provided in a reciprocal lattice pattern. Next, a black resist layer having a thickness of 1 was provided on the upper surface of the metal layer and the release layer by a roll coating method using black ink. Next, an aqueous potassium hydroxide solution was used as a stripping solution, and the black resist layer thereon was removed by stripping the stripping layer. Finally, the portion of the metal layer from which the black resist layer was removed was removed by etching with a nitric acid aqueous solution.
実施例 7 透明基体として厚さ 2 mmのァクリルシ一トを用い、 その上面にセルロースァセ テートプロピオネートからなる透明インキをロールコーティングしてアンカー層を 形成した後、 無電解銅メツキを施して厚さ 0.2 mの金属層を設けた。 次に、 水性 印刷レジストインキを用い、 スクリーン印刷にて金属層上に剥離層を格子幅 10/ m 、 目の大きさ 100 m X 100 mの逆格子状パターンに設けた。 次いで、 黒色カーボ ンインキを用い、 ロールコーティング法にて金属層および剥離層上面に厚さ 1 m の黒色レジスト層を設けた。 次に、 剥雜液として水を用い、 剥雜層を剥離すること によりその上の黒色レジスト層を除去した。 最後に、 黒色レジスト層を除去した部 分の金属層を塩化第二鉄水溶液によりエツチング除去した。 Example 7 An acrylic layer having a thickness of 2 mm was used as a transparent substrate, and a transparent ink composed of cellulose acetate propionate was roll-coated on the upper surface to form an anchor layer. A metal layer was provided. Next, a release layer was provided on the metal layer by screen printing using an aqueous printing resist ink in a reciprocal lattice pattern having a lattice width of 10 / m and an eye size of 100 m × 100 m. Next, a black resist layer having a thickness of 1 m was formed on the upper surface of the metal layer and the release layer by a roll coating method using black carbon ink. Next, water was used as the stripping solution, and the stripping layer was stripped to remove the black resist layer thereon. Finally, the portion of the metal layer from which the black resist layer had been removed was etched away with an aqueous ferric chloride solution.
このようにして得られた実施例 1〜 7の透光性電磁波シールド材料は、 視認性に 優れ、 シールド効果も高いものであった。  The translucent electromagnetic wave shielding materials of Examples 1 to 7 thus obtained were excellent in visibility and high in the shielding effect.
(第 2発明の実施例)  (Example of the second invention)
実施例 8  Example 8
厚さ の銅箔を貼り合わせた厚さ 100 /i inのポリエステルフィルムの金属層 を、 フォ トリソグラフィ一で線幅 10/u m、 目の大きさ 100X 100// mの格子状にノヽ' ターン化した。 これに導電線を接続し、 カーボンブラック 1 %、 アミノ化エポキシ 化ボリブタジニン (数平均分子量約 1000) 20%. トリェチルァミン 1 %を含んだ水 溶液中に浸漬し、 10Vの電圧を 1分かけて厚さ 1 の黒色電気析出層を形成し た。 この基板を 60 で 30分乾燥し、 冷却後この上にフィルムをラミネートして透光 性電磁波シ一ルド材料を得た。  A metal layer of a 100 / i-in-thick polyester film laminated with a copper foil with a thickness of 100 / i in by photolithography is formed into a grid pattern with a line width of 10 / um and an eye size of 100X100 // m. It has become. Connect a conductive wire to this, immerse it in a water solution containing 1% carbon black, aminated epoxidized boritabutinine (number average molecular weight about 1000), and 1% triethylamine, and apply a voltage of 10V for 1 minute. Thus, a black electrodeposition layer was formed. The substrate was dried at 60 for 30 minutes, and after cooling, a film was laminated thereon to obtain a transparent electromagnetic wave shielding material.
実施例 9 Example 9
透明基体として厚さ I00/ mのボリメチルメタクリレートフィルムを用い、 その —面にニッケル蒸着して厚さ 0.2 mの金厲層を設けた。 この金属層をフォ トリソ グラフィ一により楝幅 20 / m、 目の直径 200,u mのハニカム状にパターン化した。 こ の金属層に導電線を接続し、 カーボンブラック 1 %、 マレイン化ポリブタジエン 15 %、 トリエチルァミン を含んだ水溶液中に浸潰し、 30Vの電圧を 5分かけて厚 さ 1 の黒色電気析出層を形成した。 この基板を 60 で 30分乾燥し、 冷却後この 上にフィルムをラミネートして透光性電磁波シールド材料を得た。 A polymethyl methacrylate film having a thickness of I00 / m was used as a transparent substrate, and a nickel layer having a thickness of 0.2 m was formed on one side thereof by nickel vapor deposition. This metal layer was patterned by photolithography into a honeycomb shape with a connection width of 20 / m and an eye diameter of 200, um. A conductive wire is connected to this metal layer, and carbon black 1%, maleated polybutadiene 15 %, And immersed in an aqueous solution containing triethylamine, and a voltage of 30 V was applied for 5 minutes to form a black electrodeposited layer having a thickness of 1. The substrate was dried at 60 for 30 minutes, and after cooling, a film was laminated thereon to obtain a translucent electromagnetic wave shielding material.
実讓 1 0 Real judge 1 0
透明基体として厚さ 3 mmのアクリル板を用い、 その一面にアクリル樹脂 (三菱 レイヨン杜製 BR-77) を塗布し 1 %水酸化カリウム中に 5分間浸潰した後、 塩化パ ラジウム Z塩化錫コロイ ド溶液に浸潰し、 1 水酸化カリウム中に 1分間浸墳し、 無電解二ッケルメツキを施した。 次にフォトリソグラフィ一により金属層を線幅 30 m、 目の大きさ 150 X I50/ mの格子状にパターン化した。 この金属層に導電線を 接続し、 チタンブラック 1 %、 アミノ化エポキシ化ポリブタジエン 20«¾、 トリェチ ルアミン 1。を含んだ水溶液中に浸漬し、 30 Vの電圧を 3分かけて厚さ 1 の黒 色電気析出層を形成した。 この基板を 60でで 30分乾燥し、 冷却後この上にフィルム をラミネートして透光性電磁波シールド材料を得た。  A 3-mm-thick acrylic plate was used as a transparent substrate. An acrylic resin (BR-77 manufactured by Mitsubishi Rayon Mori Co., Ltd.) was applied on one side of the plate, immersed in 1% potassium hydroxide for 5 minutes, and then palladium chloride Z tin chloride They were immersed in a colloid solution, immersed in potassium hydroxide for 1 minute, and subjected to electroless nickel plating. Next, the metal layer was patterned by photolithography into a grid with a line width of 30 m and an eye size of 150 X I50 / m. A conductive wire was connected to this metal layer, and titanium black 1%, aminated epoxidized polybutadiene 20 «¾, and triethylamine 1. Was immersed in an aqueous solution containing, and a voltage of 30 V was applied for 3 minutes to form a black electrodeposited layer having a thickness of 1. The substrate was dried at 60 for 30 minutes, and after cooling, a film was laminated thereon to obtain a translucent electromagnetic wave shielding material.
実施例 1 1 Example 1 1
厚さ 0,3〃 mのニッケルを蒸着した厚さ l.lmmのホウゲイ酸ガラス板の金属層を、 フォ トリソグラフィ一で内径 100 ピッチ l lO^ mの逆水玉状にパターン化し た。 この金属層に導電線を接続し、 さらに、 ピロール 0.5M、 硫酸 0.5M、 ホウフッ 化テトラェチルアンモニゥム 0.2Mを含むァセトニリル溶液に浸潰し、 対向電極と して白金板、 参照電極として飽和カロメル電極を設置し、 0.8Vvs.SCEで 3分間通 電して厚さ 1; mの黒色電気析出層を形成した。 その後 60 で 30分乾燥し、 冷却後 この上にフィルムをラミネ一トして透光性電磁波シールド材料を得た c A metal layer of an ll mm thick borate glass plate on which a 0.3 mm thick nickel was deposited was patterned by photolithography into an inverted polka dot shape with an inner diameter of 100 pitch l lO ^ m. A conductive wire is connected to this metal layer, immersed in an acetoniril solution containing 0.5M pyrrole, 0.5M sulfuric acid, and 0.2M tetraethylammonium borofluoride, and a platinum plate as the counter electrode and saturated as the reference electrode. A calomel electrode was set up, and electricity was passed at 0.8 V vs. SCE for 3 minutes to form a black electrodeposited layer having a thickness of 1 m. Then 60 dry 30 minutes to obtain a light-transmitting electromagnetic wave shielding material after cooling film thereon by one preparative lamination c
実施例 1 2 Example 1 2
厚さ 3 5〃 mの銅箔を貼り合わせた厚さ 1 0 0 mのポリエステルフィルムの金 属層を、 フォ トリ ソグラフィ一で線幅 1 0 m、 目の大きさ 1 0 0 m x 1 0 0 mの格子状にパターン化した。 これに導電線を接続し、 硫酸ニッケル 7 0 g Z l、 硫酸ニッケルアンモニゥム 4 0 g/ 1、 硫酸亜鉛 2 0 g/ チォシアン酸ナトリ ゥム 2 0 g/ 1 を含んだ 5 5度 のめっき液中に浸潰し、 1. 0 A/dm2の電流 を 3分かけて黒色電気析出層を形成した。 この基板を 6 0°Cで 3 0分乾燥し、 冷却 後この上にフィルムをラミネートして電気めつき被膜が黒色系の色調を有する透光 性電磁波シ―ルド材料を得た。 A metal layer of a 100-m-thick polyester film laminated with a copper foil of a thickness of 35 m was applied by photolithography with a line width of 10 m and an eye size of 100 mx 100 Patterned in a grid of m. Connect the conductive wire to this, nickel sulfate 70 g Z l, It was immersed in a 55 degree plating solution containing nickel ammonium sulfate 40 g / 1, zinc sulfate 20 g / sodium thiocyanate 20 g / 1, and a current of 1.0 A / dm2 was applied. A black electrodeposition layer was formed over 3 minutes. The substrate was dried at 60 ° C. for 30 minutes, and after cooling, a film was laminated thereon to obtain a translucent electromagnetic wave shielding material having a black color tone in the electroplated film.
実施例 1 3 Example 13
透明基体として厚さ 1 00 mのボリメチルメタクリレートフィルムを用い、 その —面にニッケル蒸着して厚さ 2 の金属層を設けた。 この金属層をフォ トリソグ ラフィ一により線幅 2 0 μ τη, 目の直径 2 00 mのハニカム状にパターン化し た。 この金属層に導電線を接続し、 三酸ィヒクロム 2 0 0 g/し 酢酸バリウム 4. 5 g/し 酢酸ナトリゥム8. 5 g/ 1 を含んだ 3 0でのめつき液中に浸清し、 1 0 0 A/ dm2の電流を 5分かけて厚さ 1 mの黒色電気層を形成した。 この基板 を 6 0 で 3 0分乾燥し、 冷却後この上にフィルムをラミネートして電気めつき被 膜が黒色系の色調を有する透光性電磁波シ一ルド材料を得た。 A 100-m thick polymethyl methacrylate film was used as a transparent substrate, and a metal layer having a thickness of 2 was provided on one surface thereof by nickel vapor deposition. This metal layer was patterned into a honeycomb shape with a line width of 20 μτη and an eye diameter of 200 m by photolithography. Connect a conductive wire to this metal layer and dip it into a plating solution with 30 g containing 200 g of dichromium triacid / 4.5 g of barium acetate / 8.5 g / sodium acetate. A current of 100 A / dm 2 was applied for 5 minutes to form a black electric layer having a thickness of 1 m. The substrate was dried at 60 for 30 minutes, and after cooling, a film was laminated thereon to obtain a light-transmitting electromagnetic shielding material having an electroplated film having a black color tone.
実施例 1 4 Example 14
透明基体として厚さ 3 mmのアクリル板を用い、 その一面にアクリル樹脂 (三菱 レイヨン社製 B R - 7 7) を塗布し 1 %水酸化カリウムの中に 5分間浸漬した後、 塩化パラジウム/塩化錫コロイ ド溶液に浸 *し、 1 %7j酸化カリウム中に 1分間漫 潰し、 無電解ニッケルメツキを施した。 次にフォ トリソグラフィ一により金厲層を 線幅 3 0 / m、 目の大きさ 1 5 0 X 1 50 / mの格子状にパターン化した。 この金 厲層に導電親を接続し、 πジゥム濃度 3. 0 g/し 硫酸濃度 2 7 g/ 1の、 2 5でのめつき液由に浸潰し、 4 A/dm2の電流を 5分かけて厚さ 0. の黒 色電気析出層を形成した。 この基板を 6 0"Cで 3 0分乾燥し、 冷却後この上にフィ ルムをラミネ—トして電気めつき被膜が黒色系の色調を有する透光シールド材料を 得た。 実施例 1 5 A 3 mm thick acrylic plate was used as a transparent substrate. An acrylic resin (BR-77, manufactured by Mitsubishi Rayon Co., Ltd.) was applied on one side of the plate, immersed in 1% potassium hydroxide for 5 minutes, and then palladium chloride / tin chloride They were immersed in a colloid solution *, crushed in 1% 7j potassium oxide for 1 minute, and subjected to electroless nickel plating. Next, the metal layer was patterned into a lattice shape with a line width of 30 / m and an eye size of 150 × 150 / m by photolithography. A conductive layer was connected to this metal layer, immersed in a plating solution with a π dime concentration of 3.0 g / sulfuric acid concentration of 27 g / 1, and a current of 4 A / dm 2 of 5 g. A black electrodeposited layer having a thickness of 0 was formed over a minute. This substrate was dried at 60 "C for 30 minutes, and after cooling, a film was laminated thereon to obtain a light-transmitting shielding material having an electroplated film having a black color tone. Example 15
厚さ 0. 3;2 mのニッケルを蒸着した厚さ I . 1 mmのホウケィ酸ガラス板の金 属層をフ才 トリソグラフィ一で内径 l O O m, ピッチ 1 1 0 mの逆水玉状にパ ターン化した。 この金属層に導電線を接続し、 ピロリン酸カリウム 2 0 0 I 、 ピロリン酸スズ 1 5 g / 1、 硫酸二ッケル 1 5 g し モリブデン酸ナトリウム 1 0 5 g/し グリシン 2 0 g/ 1 を含む 5 0 のめつき溶液に浸潰し、 0. 2 A/ dm2の電流を 3分間通電して厚さ 1 の黒色電気析出層を形成した。 その後 6 0°Cで 3 0分乾燥し、 冷却後この上にフィルムをラミネ一トして電気めつき被膜が 黒色系の色調を有する透光製鼋磁波シールド材料を得た。 A metal layer of a borosilicate glass plate with a thickness of 0.3 mm and a thickness of 2 mm nickel and a thickness of 1 .1 mm was formed in reverse polka dots with an inner diameter of lOO m and a pitch of 110 m by photolithography. Patterned. Connect a conductive wire to this metal layer and add potassium pyrophosphate 200 I, tin pyrophosphate 15 g / 1, nickel sulfate 15 g, sodium molybdate 105 g / and glycine 20 g / 1. The resultant was immersed in a plating solution containing 50% and a current of 0.2 A / dm 2 was supplied for 3 minutes to form a black electrodeposited layer having a thickness of 1. Thereafter, the film was dried at 60 ° C. for 30 minutes, and after cooling, a film was laminated thereon to obtain a translucent magnetic wave shielding material having a black color tone with an electroplated film.
実施例 8〜 1 5の透光性電磁波シールド材料とその製造方法は、 上記のような構 成を有するので次のような効果を奏する。  The translucent electromagnetic wave shielding materials of Examples 8 to 15 and the method of manufacturing the same have the following configurations, and therefore have the following effects.
すなわち、 透明基体上に金属層をパターン状に積層するので、 線幅やピッチにつ いての規格による制限がなく、 視認性や罨磁波シールド効果の点で最適となる設計 が自白に行えるる。 したがって、 透光性電磁波シールド材料の視認性ゃ鼋磁波シー ルド効果が向上する。  That is, since the metal layer is laminated in a pattern on the transparent substrate, there is no restriction on the line width and the pitch according to the standard, and the design which is optimal in terms of visibility and compressive wave shielding effect can be confessed. Therefore, visibility of the translucent electromagnetic wave shielding material 材料 magnetic wave shielding effect is improved.
また、 金属層上に金属嚯と見当が一致した黒色電気析出層が積層されるので、 金 属光沢が出ない。 したがって、 透光性電磁波シールド材料の視認性が向上する。 ま た、 金属層をパターン状に積層するので、 導電材料を透明にしなくても視認性が得 られる。 したがって、 透明な導電材料に限定する必要がなく、 より広い材枓の中か ら導電性の高いものを選択することができ、 電磁波シールド効果が向上する。 (第 3発明の実施例)  Further, since a black electrodeposition layer having the same register as the metal layer is laminated on the metal layer, no metallic luster is obtained. Therefore, the visibility of the translucent electromagnetic wave shielding material is improved. Also, since the metal layers are laminated in a pattern, visibility can be obtained without making the conductive material transparent. Therefore, it is not necessary to limit to a transparent conductive material, and a material having high conductivity can be selected from a wider material, and the electromagnetic wave shielding effect is improved. (Example of the third invention)
実施例 1 6 Example 16
透明基体の一面に金属層を設けたものとして、 厚さ 35/; mの銅箔を貼り合わせた 厚さ 100; mのボリエステルフィルムを用いた。 この銅箔上にポジ型フ トレジス ト (東京 £'化工業社製 OF PR 8 00) をベタ形成し、 フォ トマスクを用いて露 光 '現像して幅 10/ m、 目の大きさ 100X100 / mの格子状にパターン化した。 次 に、 銅箔を塩化第二銅水溶液によりエッチングした後、 レジス トを剥膜した。 これを、 亜^素酸ナトリウム 3.1重量部、 リン酸ナトリウム 1.2重量部を含み、 さ らに ρΗ13·4となるように水酸化ナトリウムを加えた 95 の水溶液中に 2分間漫漬 し、 銅箔の表層部分が黒色を呈するようにして透光性電磁波シールド材料を得た。 実施例 1 7 A 100 / m-thick polyester film having a 35 /; m-thick copper foil bonded thereto was used as one having a metal layer provided on one surface of the transparent substrate. A positive type photoresist (OFPR800, manufactured by Tokyo Kogaku Kogyo Co., Ltd.) is solid-formed on this copper foil and exposed using a photomask. Photo-development patterned into a grid with a width of 10 / m and an eye size of 100 × 100 / m. Next, the copper foil was etched with an aqueous cupric chloride solution, and the resist was stripped off. This was soaked in a 95% aqueous solution containing 3.1 parts by weight of sodium phosphite and 1.2 parts by weight of sodium phosphate, and further added with sodium hydroxide so that ρΗ13.4. The transparent electromagnetic wave shielding material was obtained so that the surface layer portion of (2) was black. Example 17
透明基体の一面に金属層を設けたものとして、 厚さ 35Λ mの銅箔を貼り合わせた 厚さ lOO mのポリエステルフィルムを用いた。 この銅箔上にポジ型フォ トレジス ト (東京応化工業社製 OF PR 800) をベタ形成し、 フォ トマスクを用いて露 光 '現像して幅 10 m、 目の大きさ 100X100// mの格子状にパターン化した。 次 に、 銅萡を塩化第二銅水溶液によりエッチングした後、 レジス トを剥膜した。 これを、 過硫酸カリウム 1重量部、 水酸化ナトリウム 5重量部を含む沸騰した水 溶液中に 1分間浸清し、 銅箔の表層部分が黒色を呈するようにして透光性電磁波 シールド材料を得た。 As those metal layer provided on one surface of the transparent substrate, using a polyester film having a thickness of 35 lambda thickness Loo m by bonding copper foil of m. A positive photo-resist (OFPR 800, manufactured by Tokyo Ohka Kogyo Co., Ltd.) is solid-formed on this copper foil, exposed to light using a photomask and developed, and a grid with a width of 10 m and an eye size of 100 × 100 // m is formed. Pattern. Next, after copper (II) was etched with an aqueous cupric chloride solution, the resist was stripped. This is immersed in a boiling water solution containing 1 part by weight of potassium persulfate and 5 parts by weight of sodium hydroxide for 1 minute, so that the copper foil has a black surface layer to obtain a translucent electromagnetic wave shielding material. Was.
実施例 18 Example 18
透明基体の一面に金属層を設けたものとして、 厚さ 35 mの鉄箔を貼り合わせた 厚さ 100/ymのポリエステルフィルムを用いた。 この鉄箔上にポジ型フォ トレジス ト (東京応化工業社製 OFPR 800) をベタ形成し、 フォ トマスクを用いて露 光■現像して幅 10/um、 目の大きさ lOOXlOO mの格子状にパターン化した。 次 に、 鉄箔を塩化第二鉄水溶液によりエッチングした後、 レジス トを剥膜した。 これを、 リン酸二水素亜鉛 O.IMを含む 80 の水溶液中に 2分間浸潰し、 鉄箔の 表層部分が黒色を呈するようにして透光性電磁波シールド材料を得た。  As a metal substrate provided on one surface of the transparent substrate, a polyester film having a thickness of 100 / ym with a 35 m-thick iron foil bonded thereto was used. A positive photo resist (OFPR 800, manufactured by Tokyo Ohka Kogyo Co., Ltd.) is solid-formed on this iron foil and exposed and developed using a photomask to form a grid with a width of 10 / um and an eye size of lOOXlOO m. Patterned. Next, after the iron foil was etched with an aqueous ferric chloride solution, the resist was stripped off. This was immersed in an aqueous solution of 80 containing zinc dihydrogen phosphate O.IM for 2 minutes to obtain a translucent electromagnetic wave shielding material so that the surface layer of the iron foil was black.
第 3発明の透光性電磁波シールド材料とその製造方法は、 上記のような構成を有 するので次のような効果を奏する。  The translucent electromagnetic wave shielding material and the method of manufacturing the same according to the third aspect of the invention have the following configuration, and therefore have the following effects.
すなわち、 透明基体上に金属層をパターン状に積層するので、 線幅やピッチにつ いての規格による制限がなく、 視認性や電磁波シールド効果の点で最適となる設計 が自由に行なえた。 したがって、 透光性電磁波シ一ルド材料の視認性や電磁波シー ルド効果が向上した。 That is, since the metal layer is laminated in a pattern on the transparent substrate, There were no restrictions imposed by the standards, and the design was optimal for visibility and electromagnetic shielding. Therefore, the visibility of the translucent electromagnetic wave shielding material and the electromagnetic wave shielding effect are improved.
また、 金属層の表層部分が黒色を呈する金属化合物であるので、 金属光沢が出な い。 したがって、 透光性電磁波シールド材料の視認性が向上した。 また、 金属層を パターン状に積層するので、 導電材料を透明にしなくても視認性が得られる。 した がって、 透明な導電材料に限定する必要がなく、 より広い材料の中から導電性の高 いものを選択することができ、 電磁波シ一ルド効果が向上した。  Further, since the surface portion of the metal layer is a metal compound exhibiting black color, no metallic luster is produced. Therefore, the visibility of the translucent electromagnetic wave shielding material was improved. Also, since the metal layers are laminated in a pattern, visibility can be obtained without making the conductive material transparent. Therefore, it is not necessary to limit the material to a transparent conductive material, and a material having high conductivity can be selected from a wider range of materials, and the electromagnetic shielding effect has been improved.
(第 4発明の実施例)  (Embodiment of the fourth invention)
実施洌 1 9 Implementation Kiyoshi 1 9
透明基体として厚さ 2 mmのァクリル板を用い、 その一面にボリァクリルニトリ ルの N,N-ジメチルホルムアミ ド溶液をバーコ一ターにより塗布、 乾燥した後、 黒 色染料 (住友化学株式会社製スミアクリルブラック FFP) の染浴中に 20分間浸潰し て黒染色層を設けた。 次に、 黒染色層全面に鈸蒸着して金属層を設けた。 次に、 フォ トレジス ト材料 (東京応化製 OFPR800) を用い、 スピンコーティ ング法にて金 厲層全面にレジスト層を形成し、 フォ トマスクを用いて露光した後、 現像して線幅 20/ m、 ピッチ 150 mの格子状にパターン化した。 次いで、 硝酸第二鉄 '亜塩素酸 ナトリウム水溶液により、 レジスト層で覆われていない部分の金属層を除ますると 同時に、 金属層で覆われていない部分の黒染色層を上記エッチング液によって脱色 した。  A 2 mm thick acryl plate was used as a transparent substrate, and N, N-dimethylformamide solution of polyacrylonitrile was applied to one surface of the plate with a bar coater, dried, and then a black dye (Sumitomo Chemical Co., Ltd.) (Sumiacryl Black FFP) was immersed in a dyeing bath for 20 minutes to form a black dyed layer. Next, a metal layer was formed by vapor deposition over the entire surface of the black dyed layer. Next, using a photoresist material (OFPR800 manufactured by Tokyo Ohka Co., Ltd.), a resist layer is formed on the entire surface of the gold layer by a spin coating method, exposed using a photomask, developed, and developed to a line width of 20 / m2. It was patterned into a grid with a pitch of 150 m. Next, the metal layer in the area not covered with the resist layer was removed with an aqueous solution of ferric nitrate 'sodium chlorite, and at the same time, the black stained layer in the area not covered with the metal layer was decolorized with the above etching solution. .
実施例 2 0 Example 20
透明基体として厚さ 1 mmのセルロースァセテ一ト板を用い、 その一面にェチレ ン · ビニルアルコール共重合体 (クラレ株式会社製ェバール F ) の n-プロピルアル コール '水混合溶媒溶液の中に黒色染料 (サンド社製 Lanasyn Brill Black A ) を添 加したものをアプリケーターにより塗布、 乾燥して黒染色層を設けた。 次に、 塩化 パラジウム水溶液に浸漬した後、 無電解銅めつきを行ない、 金属層を設けた。 次 に、 フォ トレジス ト材料 (東京応化製 OFPR800) を用い、 スピンコ一ティング法に て金属層全面にレジスト層を形成し、 フォ トマスクを用いて露光した後、 現像して 幅 30 m、 ピッチ 200 mのハニカム状にパターン化した。 次いで、 塩化第二鉄水溶 液により、 レジス ト層で覆われていない部分の金属層を除ました。 最後に、 3 %水 酸化カリウム水溶液により、 レジス ト層を剥離すると同時に、 金属層で覆われてい ない部分の黒染色層を上記剥離液によつて脱色した。 A 1-mm-thick cellulose acetate plate was used as the transparent substrate, and one side of the substrate was mixed with a solution of n-propyl alcohol of an ethylene-vinyl alcohol copolymer (Eval F manufactured by Kuraray Co., Ltd.) A black dye (Lanasyn Brill Black A manufactured by Sando Co.) was added and applied with an applicator and dried to form a black dye layer. Next, chloride After immersion in an aqueous palladium solution, electroless copper plating was performed to provide a metal layer. Next, using a photoresist material (OFPR800, manufactured by Tokyo Ohka), a resist layer is formed on the entire metal layer by spin coating, exposed using a photomask, developed, and developed to a width of 30 m and a pitch of 200 μm. m was patterned into a honeycomb shape. Next, the metal layer in the area not covered with the resist layer was removed with an aqueous ferric chloride solution. Finally, the resist layer was peeled off with a 3% aqueous potassium hydroxide solution, and at the same time, the portion of the black dyed layer not covered with the metal layer was decolorized with the above peeling solution.
第 4発明の透光性電磁波シールド材料とその製造方法は、 上記のような構成を有 するので次のような効果を奏する。  The translucent electromagnetic wave shielding material and the method of manufacturing the same according to the fourth aspect of the invention have the following configuration, and therefore have the following effects.
すなわち、 透明基体上に金属層をパターン状に積層するので、 線幅やピッチにつ いての規格による制限がなく、 視認性や電磁波シールド効果の点で最適となる設計 が自由に行なえた。 したがって、 透光性電磁波シールド材料の視認性や電磁波シー ルド効果が向上した。  In other words, since the metal layer is laminated in a pattern on the transparent substrate, there is no restriction on the line width and the pitch according to the standard, and a design that is optimal in terms of visibility and electromagnetic wave shielding effect can be freely performed. Therefore, the visibility of the translucent electromagnetic wave shielding material and the electromagnetic wave shielding effect were improved.
また、 黒染色層上に黒染色層の非脱色部と見当一致した金属層が積層されている ので、 金属光沢が出ない。 したがって、 透光性電磁波シールド材料の視認性が向上 した。 また、 金属層をパターン状に積屠するので、 導電材料を透明にしなくても視 認性が得られる。 したがって、 透明な導電材料に限定する必要がなく、 より広い材 料の中から導電性の高いものを選択することができ、 電磁波シ一ルド効果が向上し た。  In addition, since a metal layer that is in register with the non-bleaching portion of the black dyed layer is laminated on the black dyed layer, no metallic luster is produced. Therefore, the visibility of the translucent electromagnetic wave shielding material was improved. In addition, since the metal layer is stacked in a pattern, visibility can be obtained without making the conductive material transparent. Therefore, it is not necessary to limit the material to a transparent conductive material, and a material having high conductivity can be selected from a wider range of materials, and the electromagnetic shielding effect has been improved.
(第 5発明〜第 1 2発明の実施例)  (Examples of Fifth Invention to Twelfth Invention)
実施例 2 1 Example 2 1
ボリエチレンテレフタレートフィルムを第一基体として用い、 その一面にポリメ チルメタクリレートをコンマコート法にて塗布し剥離層を設けた。 次に、 ニッケル を蒸着して厚さ 0.3 / mの金属層を設けた。 次いで、 ポリエチレンテレフタレート 樹脂中にカーボンブラックを含有するインキを用い、 スクリーン印刷にてニッケル 層上に厚さ 10 mの黒色レジスト層を内径 500 m、 ピッチ 700 /i mの逆水玉バタ一 ン状に設けた。 最後に、 黒色レジスト層で覆われていない部分の金属層を塩化第二 溶¾によりエッチング除去することによって転写シートを作製した。 A polyethylene terephthalate film was used as a first substrate, and a release layer was provided on one surface of the first substrate by applying methyl methacrylate by a comma coating method. Next, a metal layer having a thickness of 0.3 / m was formed by evaporating nickel. Next, using an ink containing carbon black in polyethylene terephthalate resin, On the layer, a black resist layer having a thickness of 10 m was provided in a reverse polka dot pattern with an inner diameter of 500 m and a pitch of 700 / im. Lastly, a portion of the metal layer that was not covered with the black resist layer was removed by etching with a second chloride solution to produce a transfer sheet.
—方、 厚さ】. lmmのホウケィ酸ガラス板を透明な第二基体として用い、 その一面 にビスフエノール A型ェポキシ樹脂をロールコート法にて塗布し接着層を設けた。 最後に、 転写シートを第一基体が外表面となるように第二基体上に貼り合わせた 後、 第一基体のみを剥離することにより透光性電磁波シールド材料を得た。  A borosilicate glass plate of lmm was used as a transparent second substrate, and a bisphenol A type epoxy resin was applied on one surface thereof by a roll coating method to provide an adhesive layer. Finally, after the transfer sheet was bonded onto the second substrate so that the first substrate was the outer surface, only the first substrate was peeled off to obtain a light-transmitting electromagnetic wave shielding material.
実施例 2 2 Example 22
ホ'リエチレンテレフ夕レートフィルムを第一基体として用い、 その一面にポリメ チルメタクリレートをコンマコート法にて塗布し剥雜層を設けた。 次に、 厚さ 35 mの銅箔を貼り合わせて金属層を設けた。 次に、 感光性ボリイミ ド樹脂 にカーボ ンブラックを含有するインキを用い、 ロールコ一ト法にて金属層全面に厚さ 1 μ τη の黒色レジスト層を形成し、 フォ トマスクを用いて露光した後、 炭酸ナトリウム水 溶液により現像して幅 10 m、 目の大きさ 100 X 100 /i mの格子状にパターン化し た。 最後に、 黒色レジスト層で覆われていない部分の金属層を塩化第二銅水溶液に よりエッチング除去することによって転写シ一トを作製した。  A polyethylene terephthalate film was used as a first substrate, and on one surface thereof, a polyethylene methacrylate was applied by a comma coating method to provide a peeling layer. Next, a metal layer was provided by bonding a copper foil having a thickness of 35 m. Next, a black resist layer having a thickness of 1 μτη was formed on the entire metal layer by a roll coating method using an ink containing carbon black as the photosensitive polyimide resin, and was exposed using a photomask. Then, it was developed with an aqueous solution of sodium carbonate and patterned into a lattice pattern having a width of 10 m and an eye size of 100 × 100 / im. Finally, a transfer sheet was prepared by etching away the metal layer in a portion not covered with the black resist layer using an aqueous cupric chloride solution.
—方、 厚さ 3 mmのポリエステル板を透明な第二基体として用い、 その一面にビ スフエノール F型エポキシ樹脂をロールコ一ト法にて塗布し接着層を設けた。 最後に、 転写シートを第一基体力外表面となるように第二基体上に貼り合わせた 後、 第一基体のみを剥離することにより透光性電磁波シールド材料を得た。  On the other hand, a 3 mm thick polyester plate was used as a transparent second substrate, and a bisphenol F type epoxy resin was applied on one surface thereof by a roll coating method to provide an adhesive layer. Finally, after the transfer sheet was bonded onto the second substrate so as to be the outer surface of the first substrate, only the first substrate was peeled off to obtain a light-transmitting electromagnetic wave shielding material.
実施例 2 3 Example 23
ボリメチルメタクリレ一トフィルムを透明な第一基体として用い、 その一面にァ クリル樹脂 「BR-77」 (三菱レイヨン社製) を塗布し 1 %水酸化カリウム中に 5分 間浸漬した後、 塩化パラジウムノ塩化錫コロイド溶液に浸濱し、 1 %水酸ィヒカリウ ム中に 1分間浸漬し、 無電解ニッケルメツキを施して金属層を設けた。 次に、 「力 ラーモザイク CK」 (富士ハン トエレク トロニクステクノロジ一社製) を用いて、 口一ルコート法にて金属層全面に厚さ 1.5 mの黒色レジスト層を形成し、 フ才 ト マスクを用いて露光した後、 「カラーモザィク現像液 C D」 (富士ハントエレク ト ロニクステクノロジ一社製) により現像して幅 3C m、 目の大きさ 150 X 150// の 格子状にパターン化した。 最後に、 黒色レジス ト層で覆われていない部分の金属層 を希硝酸によりエツチング除去することによつて貼付シートを作製した。 A polymethyl methacrylate film was used as a transparent first substrate, and an acrylic resin “BR-77” (manufactured by Mitsubishi Rayon Co., Ltd.) was applied on one side of the substrate and immersed in 1% potassium hydroxide for 5 minutes. The metal layer was immersed in a palladium-tin-tin chloride colloid solution, immersed in 1% sodium hydroxide for 1 minute, and subjected to electroless nickel plating to form a metal layer. Next, "Power Rosa Mosaic CK ”(manufactured by Fuji Hunt Electronics Technology Co., Ltd.), a black resist layer with a thickness of 1.5 m is formed on the entire metal layer by a single coat method, and after exposure using a mask It was developed using a “Color Mosaic Developer CD” (manufactured by Fuji Hunt Electronics Technology Co., Ltd.) and patterned into a grid with a width of 3 cm and an eye size of 150 × 150 //. Finally, an adhesive sheet was prepared by removing the metal layer in the portion not covered with the black resist layer by etching with dilute nitric acid.
—方、 厚さ 3 mmのアク リル板を透明な第二基体として用い、 その一面にグリジ シルアミン型エポキシ樹脂をロールコート法にて塗布し接着層を設けた。  On the other hand, an acrylic plate with a thickness of 3 mm was used as a transparent second substrate, and an adhesive layer was formed by applying a glycidylamine type epoxy resin to one surface of the substrate by a roll coating method.
最後に、 貼付シートを第一基体力 ?外表面となるように第二基体上に貼り合わせ透 光性電磁波シールド材料を得た。 Finally, to obtain a light-transmitting electromagnetic wave shielding material laminated on the second substrate so that sticking sheet becomes first base strength? Outer surface.
実施例 2 4 Example 2 4
ポリメチルメタクリレートフィルムを透明な第一基体として用い、 その一面に銀 蒸着して厚さ 0.2 / rnの金属層を設けた。 次に、 「ブラックレジスト V-259BK739」 (新日鉄化学社製) を用い、 スピンコート法にて金属層全面に厚さ 0.7 / mの黒色 レジスト層を形成し、 フォ トマスクを用いて露光した後、 「現像液 V-259 D」 (新 曰鉄化学社製) の 50倍希釈液によ り現像して幅 20// m、 目の直径 200 ," mのハニカム 状にパターン化した。 最後に、 黒色レジス ト層で覆われていない部分の金属層を硝 酸第二 溶液よりエッチング除去した。 さらに、 その上にァミノフエノール型ェ ボキシ榭脂をロールコート法にて塗布し接着層を設けることによつて貼付シ一トを 作製した。  A polymethyl methacrylate film was used as a transparent first substrate, and a metal layer having a thickness of 0.2 / rn was provided on one surface thereof by silver vapor deposition. Next, using a “Black Resist V-259BK739” (manufactured by Nippon Steel Chemical Co., Ltd.), a black resist layer with a thickness of 0.7 / m was formed on the entire surface of the metal layer by spin coating, and after exposure using a photomask, Developed with a 50-fold dilution of “Developer V-259D” (Shin Kogyo Co., Ltd.) and patterned into a honeycomb shape with a width of 20 // m and an eye diameter of 200 ”m. The portion of the metal layer that was not covered with the black resist layer was removed by etching with a nitric acid second solution, and an aminophenol type epoxy resin was applied thereon by a roll coating method to provide an adhesive layer. Thus, an affixed sheet was prepared.
最後に、 厚さ 2 mmのポリメチルメタクリレート板を透明な第二基体として用 レ 、 貼付シートを第一基体が外表面となるように第二基体上に貼り合わせ透光性電 磁波シールド材料を得た。  Finally, a 2 mm-thick polymethyl methacrylate plate was used as a transparent second substrate, and an adhesive sheet was attached to the second substrate so that the first substrate was the outer surface, and a translucent electromagnetic wave shielding material was applied. Obtained.
実施例 2 5  Example 2 5
ポリエチレンテレフタレートフィルムを透明な第一基体として用い、 その一面に 厚さ 18 mの銅箔を貼り合わせて金属層を設けた。 次に、 この銅箔上に水性印刷レ ジス トインキを用い、 スクリーン印刷にて金属層上に遊離層を格子幅 100 πι、 目 の大きさ 300 m X 300 y mの逆格子状パターンに設けた。 次いで、 黒色カーボンィ ンキを用い、 ロールコート法にて金属層および遊離層上面に厚さ 1;/ mの黒色レジ ス ト層を設けた。 次に、 遊離除去液として水を用い、 遊離層を狳去することにより その上の黒色レジスト層を除去した。 最後に、 黒色レジスト層を除去した部分の金 属層を塩化第二鉄水溶液によりエッチング除去した。 さらに、 その上にビスフエ ノ一ル型エポキシ樹脂を口ールコート法にて塗布し接着層を設けることによつて貼 付シ一トを作製した。 Using polyethylene terephthalate film as a transparent first substrate, one side of which A metal layer was provided by bonding a copper foil having a thickness of 18 m. Next, using a water-based printing resist ink on the copper foil, a free layer was provided on the metal layer by screen printing in a reciprocal lattice pattern having a lattice width of 100 πι and an eye size of 300 m × 300 ym. Next, a black resist layer having a thickness of 1 / m was provided on the upper surface of the metal layer and the free layer by roll coating using black carbon ink. Next, water was used as a release removing solution, and the free layer was removed to remove the black resist layer thereon. Finally, the metal layer where the black resist layer was removed was removed by etching with an aqueous ferric chloride solution. Further, a bisphenol-type epoxy resin was applied thereon by a mouth coating method, and an adhesive layer was provided, thereby producing an adhesive sheet.
最後に、 厚さ 2 mmのメタアクリル板を透明な第二基体として用い、 貼付シート を第一基体が外表面となるように第二基体上に貼り合わせ透光性電磁波シールド材 料を得た。  Finally, a translucent electromagnetic wave shielding material was obtained by using a methacrylic plate having a thickness of 2 mm as a transparent second substrate and laminating the adhesive sheet on the second substrate such that the first substrate was the outer surface. .
実施例 2 6 Example 26
ボリエチレンフィルムを第一基体として用い、 その一面にポリメチルメタクリ レートをスプレーノズル法にて塗布し剥 « を設けた。 次に、 ニッケルをスパッタ リングして厚さ 0.3m金属層を設けた。 次に、 アルカリ現像タイプのフォ トレジス ト材料を金属層上にロールコートし、 プレベーク後、 フォ トマスクを用いて露光、 現像して遊離層を格子幅 10 m、 目の大きさ 100," mX 100 μ mの逆格子状パターン に設けた。 次いで、 黒色カーボンインキを用い、 ロールコート法にて金属層および 遊離層上面に厚さ 1 の黒色レジスト層を設けた。 次に、 遊離除去液として水酸 化力リウム水溶液を用い、 遊雒層を除去することによりその上の黒色レジスト層を 除去した。 最後に、 黒色レジスト層を除去した部分の金属層を硝酸水溶液により エツチング除去することによつて転写シ一トを作製した。  A polyethylene film was used as a first substrate, and polymethyl methacrylate was applied on one surface thereof by a spray nozzle method to provide a peeling. Next, a metal layer having a thickness of 0.3 m was formed by sputtering nickel. Next, an alkali-developable photoresist material is roll-coated on the metal layer, prebaked, exposed and developed using a photomask to develop a free layer with a grid width of 10 m, eye size of 100, "mx100 Then, a black resist layer having a thickness of 1 was formed on the upper surface of the metal layer and the free layer by roll coating using black carbon ink. The black resist layer was removed by removing the floating layer using an aqueous solution of potassium oxide, and finally, the metal layer in the portion from which the black resist layer had been removed was removed by etching with a nitric acid aqueous solution. A transfer sheet was prepared.
—方、 厚さ 2 mmのボリカーボネート板を透明な第二基体として用い、 その一面 にアミノフエノール型エポキシ樹脂をロールコート法にて塗布し接着層を設けた。 最後に、 耘写シ一トを第一基体が外表面となるように第二基体上に貼り合わせた 後、 第一基体のみを剥離することにより透光性電磁波シ一ルド材料を得た。 On the other hand, a 2 mm thick polycarbonate plate was used as a transparent second substrate, and an aminophenol-type epoxy resin was applied on one side of the substrate by a roll coating method to provide an adhesive layer. Finally, after the tilling sheet was attached on the second substrate so that the first substrate was the outer surface, only the first substrate was peeled off to obtain a light-transmitting electromagnetic wave shield material.
実施例 2 7 Example 2 7
ポリメチルメタクリレートフィルムを透明な第一基体として用い、 その一面にセ ルロースアセテートプロピオネートからなる透明ィンキをロールコートしてアン 力一層を形成した後、 無電解銅メツキを施して厚さ 0.2/ mの金属層を設けた。 水 性印刷レジストインキを用い、 スクリーン印刷にて金属層上に遊離層を格子幅 80 / m、 目の大きさ 300/ mX 300; mの逆格子状パターンに設けた。 次いで、 黒色カー ボンインキを用い、 ロールコート法にて金属層および遊離層上面に厚さ 1 の黒 色レジスト層を設けた。 次に、 遊離除去液として水を用い、 遊維層を除去すること によりその上の黒色レジスト層を除去した。 最後に、 黒色レジスト層を除去した部 分の金属層を塩化第二鉄水溶液によりエツチング除去することによって貼付シート を作製した。  Using a polymethyl methacrylate film as a transparent first substrate, roll coating a transparent ink made of cellulose acetate propionate on one surface to form an energized layer, then applying electroless copper plating to a thickness of 0.2 / m metal layer was provided. Using an aqueous printing resist ink, a free layer was provided on the metal layer by screen printing in a reciprocal lattice pattern having a lattice width of 80 / m and an eye size of 300 / mx 300; m. Next, a black resist layer having a thickness of 1 was formed on the upper surface of the metal layer and the free layer by roll coating using black carbon ink. Next, water was used as a free removing solution, and the free resist layer was removed to remove the black resist layer thereon. Finally, an adhesive sheet was prepared by etching away the metal layer in an area where the black resist layer was removed with an aqueous ferric chloride solution.
—方、 厚さ 2 mmのアクリル板を透明な第二基体として用い、 その一面にグリジ シルアミン型エポキシ樹脂をロールコート法にて塗布し接着層を設けた。  On the other hand, an acrylic plate having a thickness of 2 mm was used as a transparent second substrate, and an adhesive layer was provided on one surface thereof by applying a glycidylamine type epoxy resin by a roll coating method.
最後に、 貼付シ—トを第一基体力5外表面となるように第二基体上に貼り合わせ透 光性電磁波シールド材料を得た。 Lastly, the adhesive sheet was attached on the second substrate so as to have an outer surface of the first substrate force 5 to obtain a translucent electromagnetic wave shielding material.
実施例 2 8 Example 2 8
ポリエチレンテレフタレートフイルムを第一基体として用い、 その一面にポリメ チルメタクリレートをコンマコート法にて塗布し剥離層を設けた。 次に、 厚さ 35 mの銅箔を貼り合わせて金属層を設けた。 次に、 この金属層上にポジ型フォ トレジ ス ト (東京応化工業社製 OFPR800) をベタ形成し、 フォ トマスクを用いて露光 -現 像して線幅 10/i m、 目の大きさ 100X 100 mの格子状にパターン化した。 次に、 金 属層を塩化第二鉄水溶液によりエッチングした後、 レジストを剥膜した。 この金属 層に導鼋線を接続し、 カーボンブラック 1 %、 アミノ化エポキシ化ポリブタジエン (数平均分子量約 1000) 20%、 トリエチルアミン 1 %を含んだ水溶液中 浸潰し、 10Vの電圧を 1分かけて厚さ 1 mの黒色電気析出層を形成することにより転写 シートを作製した。 A polyethylene terephthalate film was used as a first substrate, and a release layer was provided on one surface of the first substrate by applying polyethylene methacrylate by a comma coating method. Next, a metal layer was provided by bonding a copper foil having a thickness of 35 m. Next, a positive photo resist (OFPR800, manufactured by Tokyo Ohka Kogyo Co., Ltd.) is solid-formed on this metal layer, and exposed using a photomask. Patterned in a grid of m. Next, after the metal layer was etched with an aqueous ferric chloride solution, the resist was stripped. A lead wire is connected to this metal layer, and carbon black 1%, aminated epoxidized polybutadiene (Number average molecular weight: about 1000) A transfer sheet was prepared by immersion in an aqueous solution containing 20% and triethylamine 1%, and applying a voltage of 10 V for 1 minute to form a black electrodeposited layer having a thickness of 1 m.
—方、 片面にェ T Oをスパッタリングにより形成した厚さ 100 mのポリエチレ ンテレフタレートフィルムを透明な第二基体として用い、 I T Oと反対面にポリゥ レタン系接着剤をロールコート法にて塗布し接着層を設けた。  On the other hand, a 100 m-thick polyethylene terephthalate film formed by sputtering TO on one side is used as a transparent second substrate, and a polyurethane-based adhesive is applied by roll coating on the other side of the ITO and the adhesive layer is formed. Was provided.
最後に、 転写シ一トを第一基体力 s'外表面となるように第二基体上に貼り合わせた 後、 第一基体のみを剥離することにより透光性電磁波シールド材料を得た 実施例 2 9  Finally, after the transfer sheet was attached to the second substrate so as to have the outer surface of the first substrate s', a transparent electromagnetic wave shielding material was obtained by peeling off only the first substrate. 2 9
ポリエチレンテレフタレートフィルムを第一基体として用レ その一面にボリメ チルメタクリレートをコンマコート法にて塗布し剥離層を設けた。 次に、 アクリル 樹脂 (三菱レイヨン社製 BR-77) を塗布し 1 %水酸化カリウム中に 5分間浸漬した 後、 塩化パラジウムノ塩化錫コロイド溶液に浸潰し、 1 96水酸化カリウム中に 1分 間浸潰し、 無電解ニッケルメツキを施して金属層を設けた。 次に、 この金属層上に ポジ型フォ トレジスト (東京応化工業社製 OFPR800) をベタ形成し、 フォ トマスク を用いて露光 ·現像して線幅 20 πκ 目の直径 200 mのハニカム状にパターン化し た。 次に、 金属層を塩化第二鉄水溶液によりエッチングした後、 レジストを剥膜し た。 この金属層に導電線を接続し、 チタンブラック 1 «¾、 アミノ化エポキシ化ポリ ブタジエン 20%、 トリェチルァミ ン 1%を含んだ水溶液中に浸漬し、 30Vの電圧を 3分かけて厚さ 1 mの黒色電気析出層を形成を形成した。 さらに、 その上にグリ ジシルエーテル型ェポキシ樹脂をロールコート法にて塗布し接着層を設けることに よって転写シートを作製した。 A polyethylene terephthalate film was used as a first substrate. Polymethyl methacrylate was applied on one side of the substrate by a comma coating method to form a release layer. Next, an acrylic resin (BR-77 manufactured by Mitsubishi Rayon Co., Ltd.) was applied and immersed in 1% potassium hydroxide for 5 minutes, then immersed in a palladium chloride-tin chloride colloid solution, and then added to 196 potassium hydroxide for 1 minute. The metal layer was provided by immersion and electroless nickel plating. Next, a positive photoresist (OFPR800, manufactured by Tokyo Ohka Kogyo Co., Ltd.) is solid-formed on the metal layer, exposed and developed using a photomask, and patterned into a 200 m-diameter honeycomb shape with a line width of 20πκ. Was. Next, after the metal layer was etched with an aqueous ferric chloride solution, the resist was stripped. A conductive wire is connected to this metal layer, immersed in an aqueous solution containing titanium black 1%, aminated epoxidized polybutadiene 20%, and triethylamine 1%, and applied with a voltage of 30 V for 3 minutes to a thickness of 1 m. Formed a black electrodeposited layer. Further, a transfer sheet was prepared by applying a glycidyl ether type epoxy resin thereon by a roll coating method and providing an adhesive layer.
最後に、 厚さ 3 mmのポリメチルメタクリレート板を透明な第二基体として用 レ 、 転写シートを第一基体が外表面となるように第二基体上:こ貼り合わせた後、 第 —基体のみを剥離することにより透光性電磁波シールド材料を得た。 実施例 3 0 Finally, a 3 mm-thick polymethyl methacrylate plate is used as a transparent second substrate. The transfer sheet is laminated on the second substrate so that the first substrate is the outer surface. Was peeled off to obtain a translucent electromagnetic wave shielding material. Example 30
ボリエチレンテレフタレー トフィルムを第一基体として用い、 その一面にポリメ チルメタクリレ一トをコンマコート法にて塗布し剥雜層を設けた。 次に、 アクリル 榭脂 (三菱レイヨン社製 BR-77) を塗布し 1 %水酸化カリウム中に 5分間浸潸した 後、 塩化パラジウム 塩化錫コロイド溶液に浸漬し、 1 %水酸化カリウム中に 1分 間浸潰し、 無電解ニッケルメツキを施して金属層を設けた。 次に、 この金属層上に ポジ型フォ トレジス ト (東京応化工業社製 OFPR800) をベタ形成し、 フォ トマスク を用いて露光 ·現像して線幅 30/y m、 目の大きさ 150X 15C mの格子状にパターン 化した。 次に、 金属層を塩化第二 feR溶液によりエッチングした後、 レジストを剥 膜した。 この金属層に導電線を接続し、 チタンブラック 1 <¾、 アミノ化エポキシ化 ポリブタジェン 20%、 トリェチルァミン 1%を含んだ水溶液中に浸潢し、 30Vの電 圧を 3分かけて厚さ 1 μ mの黒色電気析出層を形成することによつて転写シ一トを 作製した。  A polyethylene terephthalate film was used as a first substrate, and on one surface thereof, a polyethylene methacrylate was applied by a comma coating method to provide a peeling layer. Next, an acrylic resin (BR-77, manufactured by Mitsubishi Rayon Co., Ltd.) was applied and immersed in 1% potassium hydroxide for 5 minutes, and then immersed in a palladium chloride / tin chloride colloid solution, and then immersed in 1% potassium hydroxide. It was immersed for a while and electroless nickel plating was applied to form a metal layer. Next, a positive photoresist (OFPR800 manufactured by Tokyo Ohka Kogyo Co., Ltd.) is solid-formed on the metal layer, exposed and developed using a photomask, and has a line width of 30 / ym and an eye size of 150 × 15 cm. Patterned in a grid. Next, after the metal layer was etched with a second feR chloride solution, the resist was stripped. A conductive wire was connected to this metal layer, immersed in an aqueous solution containing titanium black 1 <¾, aminated epoxidized polybutadiene 20%, and triethylamine 1%, and applied with a voltage of 30 V for 3 minutes to a thickness of 1 μm. A transfer sheet was prepared by forming a black electrodeposited layer of m.
—方、 厚さ 3 mmのアクリル板を透明な第二基体として用い、 その一面にグリジ シルエーテル型エポキシ榭脂をロールコ一ト法にて塗布し接着層を設けた。  On the other hand, an acrylic plate having a thickness of 3 mm was used as a transparent second substrate, and an adhesive layer was formed by applying a glycidyl ether type epoxy resin on one surface thereof by a roll coating method.
最後に、 転写シートを第一基体が外表面となるように第二基体上に貼り合わせた 後、 第一基体のみを剥離することにより透光性電磁波シ一ルド材料を得た。  Finally, after the transfer sheet was bonded onto the second substrate so that the first substrate was the outer surface, the first substrate alone was peeled off to obtain a light-transmitting electromagnetic wave shield material.
実施例 3 1 Example 3 1
ポリメチルメタクリレートフィルムを透明な第一基体として用い、 その一面に厚 さ のニッケルを蒸着して金属層を設けた。 次に、 この金属層上にポジ型 フォ トレジス ト (東京応化工業社製 OFPR800) をベタ形成し、 フォ トマスクを用い て露光 '現像して内径 100m、 ピッチ 110/i mの逆水玉状にパターン化した。 次に、 金属層を塩化第二鉄溶液によりエッチングした後、 レジス トを剥膜した。 この金属 層に導電線を接続し、 さらに、 ピロール 0.5M、 硫酸 0.5M、 ホウフッ化テトラェチ ルアンモニゥム 0.2Mを含むァセトニリル溶液に浸漬し、 対向電極として白金板、 参照電極として飽和力 π?メル電極を設置し、 0.8 Vvs.SCEで 3分間通電して厚さ 1 mの黒色電気析出層を形成した。 さらに、 その上にフエノールポラック型ェポキ シ樹脂を口ールコート法にて塗布し接着層を設けることによって貼付シートを作製 した- 最後に、 厚さ Ummのホウケィ酸ガラス板を透明な第二基体として用い、 貼付 シートを第一基体が外表面となるように第二基体上に貼り合わせ透光性電磁波シ— ルド材料を得た。 A polymethyl methacrylate film was used as a transparent first substrate, and a metal layer was provided on one surface thereof by vapor-depositing nickel. Next, a positive photo resist (OFPR800, manufactured by Tokyo Ohka Kogyo Co., Ltd.) is solid-formed on the metal layer, exposed and developed using a photomask, and patterned into a reverse polka dot shape with an inner diameter of 100 m and a pitch of 110 / im. did. Next, after the metal layer was etched with a ferric chloride solution, the resist was stripped. A conductive wire was connected to this metal layer, and further immersed in an acetonitrile solution containing 0.5 M of pyrrole, 0.5 M of sulfuric acid, and 0.2 M of tetraethylammonium borofluoride. A π-mel electrode having a saturation force was set as a reference electrode, and a current of 0.8 V vs. SCE was applied for 3 minutes to form a black electrodeposited layer having a thickness of 1 m. Furthermore, a phenol-polak type epoxy resin was applied thereon by a mouth coating method and an adhesive layer was provided to produce an adhesive sheet.- Finally, a borosilicate glass plate having a thickness of Umm was used as a transparent second substrate. Then, the adhesive sheet was adhered on the second substrate so that the first substrate was the outer surface, to obtain a light-transmitting electromagnetic wave shield material.
実施例 3 2 Example 3 2
ポリエチレンテレフタレ一トフィルムを透明な第一基体として用い、 その一面に 厚さ 35 ,u mの銅箔を貼り合わせて金属層を設けた。 次に、 この銅箔上にポジ型フォ トレジスト (東京応化工業社製 OFPR800) をベタ形成し、 フォ トマスクを用いて露 光 -現像して幅 10/ m、 目の大きさ lOO X lOO mの格子状にパターン化した。 次 に、 銅箔を塩化第二 «溶液によりエッチングした後、 レジス トを剥膜した。 これ を、 亜塩素酸ナトリウム 3.1重量部、 リン酸ナトリウム 1.2重置部を含み、 さらに pH13.4となるように水酸化ナトリウムを加えた 95X:の水溶液中に 2分間浸漬する 化成処理を施して、 銅箔の表層部分が黒色を呈する金属化合物とした。 さらに、 そ の上にフエノールポラック型エポキシ樹脂をロールコート法にて塗布し接着層を設 けることによって貼付シ一トを作製した。  A polyethylene terephthalate film was used as a transparent first substrate, and a metal layer was provided on one surface thereof by bonding a copper foil having a thickness of 35 μm. Next, a positive photoresist (OFPR800, manufactured by Tokyo Ohka Kogyo Co., Ltd.) is solid-formed on the copper foil, exposed and developed using a photomask, and the width is 10 / m and the eye size is lOO X lOO m. Patterned in a grid. Next, after the copper foil was etched with a second chloride solution, the resist was stripped off. This was subjected to a chemical conversion treatment in which it was immersed for 2 minutes in a 95X: aqueous solution containing 3.1 parts by weight of sodium chlorite and 1.2 parts by weight of sodium phosphate and further added with sodium hydroxide so as to have a pH of 13.4. The metal compound was such that the surface layer of the copper foil exhibited a black color. Further, a phenol-polak type epoxy resin was applied thereon by a roll coating method, and an adhesive layer was provided thereon to prepare an adhesive sheet.
最後に、 厚さ 2 mmのポリエステル板を透明な第二基体として用い、 貼付シート を第一基体が外表面となるように第二基体上に貼り合わせ透光性電磁波シールド材 料を得た。  Finally, a 2 mm-thick polyester plate was used as a transparent second substrate, and an adhesive sheet was adhered to the second substrate so that the first substrate was on the outer surface, to obtain a translucent electromagnetic wave shielding material.
実施例 3 3 Example 3 3
ポリエチレンテレフタレートフイルムを第一基体として用い、 その一面にポリメ チルメタクリレートをコンマコート法にて塗布し剥離層を設けた。 次に、 その一 ¾ に厚さ 35 / inの銅箔を貼り合わせて金属層を設けた。 次に、 この銅箔上にポジ型 フォ ト レジス ト (東京応化工業社製 OFPR800) をベタ形成し、 フォ トマスクを用い て露光■現像して幅】 0;z m、 目の大きさ lOO X lOO mの格子状にパターン化した。 次に、 銅箔を塩化第二鉄水溶液によりエッチングした後、 レジス トを剥膜した。 こ れを、 過硫酸カリウム 1重量部、 水酸化ナトリウム 5重量部を含む沸騰した水溶液 中に 1分間浸漬する化成処理を施して、 銅箔の表層部分が黒色を呈する金属化合物 とすることによって転写シートを作裂した。 A polyethylene terephthalate film was used as a first substrate, and a release layer was provided on one surface of the first substrate by applying polyethylene methacrylate by a comma coating method. Next, a metal layer was provided by bonding a copper foil having a thickness of 35 / in to one of them. Next, on this copper foil A photo resist (OFPR800, manufactured by Tokyo Ohka Kogyo Co., Ltd.) was solid-formed, exposed and developed using a photomask, and was patterned into a lattice pattern having a width of 0; zm and an eye size of lOO x lOOm. Next, the copper foil was etched with an aqueous ferric chloride solution, and the resist was stripped off. This is transferred by subjecting it to a chemical treatment in which it is immersed in a boiling aqueous solution containing 1 part by weight of potassium persulfate and 5 parts by weight of sodium hydroxide for 1 minute, and the copper foil has a black surface layer. The sheet was torn.
—方、 厚さ 2 mmのポリメチルメタクリレート板を透明な第二基体として用い、 その一面にビスフニノール A型エポキシ樹脂をロールコート法にて塗布し接着層を 設けた。  —On the other hand, a 2-mm thick polymethyl methacrylate plate was used as a transparent second substrate, and an adhesive layer was provided on one surface of the second substrate by applying a bisfuninol A-type epoxy resin by a roll coating method.
最後に、 転写シートを第一基体が外表面となるように第二基体上に貼り合わせた 後、 第一基体のみを剥離することにより透光性電磁波シールド材料を得た。  Finally, after the transfer sheet was bonded onto the second substrate so that the first substrate was the outer surface, only the first substrate was peeled off to obtain a light-transmitting electromagnetic wave shielding material.
実施例 3 4 Example 3 4
ポリエチレンテレフタレートフィルムを透明な第一基体として用い、 その一面に 厚さ の鉄箔を貼り合わせて金属層を設けた。 次に、 この鉄箔上にポジ型フォ トレジスト (東京応化工業社製 OFPR800) をベタ形成し、 フォ トマスクを用いて露 光 .現像して幅 10/i m、 目の大きさ 100X 100;/ mの格子状にパターン化した。 さら に、 鉄箔を塩化第二 K溶液によりエッチングした後、 レジストを剥瞑した。 これ を、 リン酸ニ水素亜鉛 0.1 Mを含む 80での水溶液中に 2分間浸漬する化成処理を施 して、 鉄箔の表層部分が黒色を呈する金属化合物とすることによって貼付シートを 作製した。  Using a polyethylene terephthalate film as a transparent first substrate, a metal layer was provided by bonding an iron foil having a thickness to one surface thereof. Next, a positive photoresist (OFPR800, manufactured by Tokyo Ohka Kogyo Co., Ltd.) is solid-formed on the iron foil, exposed and developed using a photomask, and developed to a width of 10 / im and an eye size of 100 × 100; / m. In a lattice pattern. Furthermore, after etching the iron foil with a 2K chloride solution, the resist was stripped off. This was subjected to a chemical conversion treatment in which it was immersed for 2 minutes in an aqueous solution containing 0.1 M of zinc dihydrogen phosphate at 80 to produce a metal compound in which the surface layer of the iron foil had a black color.
一方、 片面に粘着剤、 もう片面に低反射処理したボリウレタンフィルム (旭硝子 社製 3— 7 トップ) を接着層付きの透明な第二基体として用いた。  On the other hand, a pressure-sensitive adhesive on one side and a low-reflection-treated polyurethane film (3-7 top manufactured by Asahi Glass Co., Ltd.) on the other side were used as a transparent second substrate with an adhesive layer.
最後に、 貼付シートを第一基体が外表面となるように第二基体上に貼り合わせ透 光 A生電磁波シールド材料を得た。 Finally, the adhesive sheet was attached on the second substrate such that the first substrate was on the outer surface to obtain a transparent A raw electromagnetic wave shielding material.
実施例 3 5 ポリエチレンテレフタレートフィルムを第一基体として用い、 その一面にポリメ チルメタクリレートをコンマコート法にて塗布し剥離層を設けた。 次に、 ポリアク リル二ト リルの Ν,Ν-ジメチルホルムアミ ド溶液をバーコ一ターにより塗布、 乾燥 した後、 黒色染料 (住友化学株式会社製スミアクリルブラック FFP) の染浴中に 20 分間浸潰して黒染色層を設けた。 次に、 黒染色層全面に銀蒸着して金属層を設け た。 次に、 ポジ型フォトレジスト (東京応化工業社製 OFPR800) を用い、 スピン コート法にて金属層全面にレジスト層を形成し、 フォトマスクを用いて露光した 後、 現像して親幅 20Ai m、 ピッチ 150/ mの格子状にパターン化した。 次いで、 硝酸 第二鉄 ·亜塩素酸ナトリウム水溶液により、 レジスト層で覆われていない部分の金 厲層を涂去すると同時に、 金属層で覆われていない部分の黒染色層をエッチング液 によって脱色することにより転写シートを作製した。 Example 3 5 A polyethylene terephthalate film was used as a first substrate, and a release layer was provided on one surface of the first substrate by applying polyethylene methacrylate by a comma coating method. Next, a solution of polyacrylonitrile in Ν, Ν-dimethylformamide is applied with a bar coater, dried, and immersed in a dye bath of a black dye (Sumiacryl Black FFP manufactured by Sumitomo Chemical Co., Ltd.) for 20 minutes. It was crushed to provide a black dyed layer. Next, silver was vapor-deposited on the entire surface of the black dyeing layer to provide a metal layer. Next, using a positive photoresist (OFPR800, manufactured by Tokyo Ohka Kogyo Co., Ltd.), a resist layer is formed on the entire metal layer by spin coating, exposed using a photomask, developed, and developed to a width of 20 Aim. It was patterned in a grid pattern with a pitch of 150 / m. Next, the portion of the metal layer not covered with the resist layer is removed with an aqueous solution of ferric nitrate and sodium chlorite, and at the same time, the portion of the black stained layer not covered with the metal layer is decolorized with an etchant. Thus, a transfer sheet was prepared.
一方、 厚さ 2 mmのアクリル板を透明な第二基体として用い、 その一面にグリジ シルァミン型エポキシ樹脂をロールコ一ト法にて塗布し接着層を設けた。  On the other hand, an acrylic plate having a thickness of 2 mm was used as a transparent second substrate, and an adhesive layer was formed by applying a glycidylamine type epoxy resin to one surface thereof by a roll coating method.
最後に、 転写シ一トを第一基体が外表面となるように第二基体上に貼り合わせた 後、 第一基体のみを剥雜することにより透光性電磁波シールド材料を得た。  Finally, the transfer sheet was bonded onto the second substrate so that the first substrate was the outer surface, and then the first substrate alone was stripped to obtain a translucent electromagnetic wave shielding material.
実施例 3 6 Example 3 6
ポリカーボネートフィルムを透明な第一基体として用い、 その一面にエチレン - ビニルアルコール共重合体 (クラレ株式会社製エバ一ル F ) の n-プロピルアルコ一 ル -水混合溶媒溶液の中に黒色染料 (サンド社製 Lanasyn Brill Black A) を添加し たものをアブリケーターにより塗布、 乾燥して黒染色層を設けた。 次に、 塩化パラ ジゥム水溶液に浸漬した後、 無電解銅めつきを行ない、 金属層を設けた。 次に、 ポ ジ型フォ ト レジス ト (東京応化工業社製 OFPR800) を用い、 ロールコート法にて金 属層全面にレジスト層を形成し、 フォ トマスクを用いて露光した後、 現像して幅 30 ," m、 ピッチ 200Λ ιηのハニカム状にパターン化した。 次いで、 塩化第二鉄水溶液を エッチング液として用いて、 レジスト層で覆われていない部分の金属層を除去し た。 最後に、 3 %水酸化カリウム水溶液をレジスト除去液として用いて、 レジスト 層を除去すると同時に、 金属層で覆われていない部分の黒染色層をレジスト除ま液 によつて脱色することにより貼付シートを作製した。 A polycarbonate film was used as the transparent first substrate, and a black dye (sand sand) was placed in a mixed solvent of ethylene-vinyl alcohol copolymer (Eval F manufactured by Kuraray Co., Ltd.) and n-propyl alcohol-water. The product added with Lanasyn Brill Black A) was coated with an abricator and dried to form a black dyed layer. Next, after immersion in a palladium chloride aqueous solution, electroless copper plating was performed to provide a metal layer. Next, a resist layer is formed on the entire surface of the metal layer by a roll coating method using a post type photo resist (OFPR800 manufactured by Tokyo Ohka Kogyo Co., Ltd.), exposed using a photomask, developed, and developed. 30, "m, and a honeycomb pattern of pitch 200 Λ ιη. then, using a ferric chloride solution as an etching solution, the metal layer which is not covered with the resist layer is removed Was. Finally, using a 3% aqueous potassium hydroxide solution as a resist remover, the resist layer is removed, and at the same time, the black stained layer not covered with the metal layer is decolorized with the resist remover, and the adhesive sheet is removed. Was prepared.
—方、 厚さ l mmのセルロースアセテート板を透明な第二基体として用い、 その 一面にグリジシルァミン型ェポキシ榭脂をロールコート法にて塗布し接着層を設け た。  On the other hand, a cellulose acetate plate having a thickness of l mm was used as a transparent second substrate, and an adhesive layer was provided on one surface of the substrate by applying a glycidylamine type epoxy resin by a roll coating method.
最後に、 貼付シ—トを金属層が外表面となるように第二基体上に貼り合わせ透光 性電磁波シールド材料を得た。  Finally, the sticking sheet was stuck on the second substrate so that the metal layer became the outer surface, to obtain a light-transmitting electromagnetic wave shielding material.
第 5〜第 1 2発明の透光性電磁波シールド材料とその製造方法は、 上記のような 構成を有するので次のような効果を奏する。  The translucent electromagnetic wave shielding material and the method of manufacturing the same according to the fifth to the twelveth inventions have the above-described configuration, and thus have the following effects.
すなわち、 本発明の透光性電磁波シールド材料は、 板より重量的に扱い易いフィ ルムからなる透明な第一基体上に電磁波シ一ルド各層を形成して貼付シートを作製 した後、 板からなる透明な第二基体に貼り合わせるので、 電磁波シールド各層の形 成に際し大掛かりな設備を要しない。  That is, the translucent electromagnetic wave shielding material of the present invention comprises a plate after forming each layer of the electromagnetic wave shield on a transparent first base made of a film which is easier to handle more heavily than a plate to produce an adhesive sheet. Since it is bonded to the transparent second substrate, no large-scale equipment is required for forming each layer of the electromagnetic wave shield.
また、 フィルムからなる透明な第一基体上に電磁波シールド各層を形成して貼付 シートを作製した後、 立体物からなる透明な第二基体に沿わせて貼り合わせるの で、 どんな形状の立体物からなる透明基体にも電磁波シ一ルド効果を付与すること ができる。  Also, after each layer of electromagnetic wave shielding is formed on the transparent first substrate made of film to produce an adhesive sheet, it is adhered along the transparent second substrate made of a three-dimensional object. An electromagnetic shielding effect can be imparted to such a transparent substrate.
また、 機能性層を有するフィルムより安価な通常のフィルムからなる透明な第— 基体上に電磁波シールド各層を形成して貼付シートを作製した後、 機能性 を有す るフィルムからなる透明な第二基体に貼り合わせるので、 貼付シートの段階でピン ホール .傷等が一部分で見つかれば、 その部分の貼付シートを避けて使用すればよ く、 高価な第二基体を破棄する必要は全くない。 その結果、 本発明によって得られ た透光性電磁波シ一ルド材料は歩留まりが良く、 製品コストを安価なものとなる。 さらに、 フィルムからなる透明な第一基体上に電磁波シ一ルド各層を形成して貼 付シー トを作製した後、 板、 立体物または機能性層を有するフィルムからなる透明 な第二基体に沿わせて貼り合わせるので、 第二基体は電磁波シールド各層の形成ェ 程で必要になる加熱処理や各種薬液処理による損傷を受けることがなく、 第二基体 の材質を従来より広範囲の から選択できる。 Further, after forming each electromagnetic wave shielding layer on a transparent first substrate made of a normal film which is less expensive than a film having a functional layer to produce an adhesive sheet, a transparent second layer made of a functional film is formed. Since it is bonded to the base, if pinholes, scratches, etc. are found in a part at the stage of the bonding sheet, it can be used by avoiding the part of the bonding sheet, and there is no need to discard the expensive second base. As a result, the translucent electromagnetic wave shielding material obtained by the present invention has a good yield and a low product cost. Furthermore, each layer of electromagnetic wave shielding is formed and adhered on a transparent first substrate made of a film. After the attached sheet is prepared, it is bonded along the transparent second substrate consisting of a plate, a three-dimensional object, or a film having a functional layer, so that the second substrate is heated as required during the formation of each layer of the electromagnetic wave shield. The material of the second substrate can be selected from a wider range than before without being damaged by the treatment or various chemical treatments.
また、 本発明は、 フィルムからなる第一基体に剥離層および電磁波シールド各層 を設けた転写シートを作製した後、 板、 立体物または機能性層を有するフィルムか らなる透明な第二基体上に貼り合わせ、 さらに第一基体のみを剥離する場合でも上 記各効果を有する。  Further, the present invention provides a method for producing a transfer sheet in which a release layer and an electromagnetic wave shielding layer are provided on a first substrate made of a film, and then forming the transfer sheet on a transparent substrate made of a film having a plate, a three-dimensional object, or a functional layer. The above-described effects can be obtained even when laminating and then peeling off only the first substrate.

Claims

請求の範囲 The scope of the claims
1 - 透明基体上に金属層と黒色層とが順不同で存在し、 該金属層および黒 色層が共に見当一致してパターン化されている透光性電磁波シールド材料つ 1-A translucent electromagnetic shielding material in which a metal layer and a black layer are present on a transparent substrate in no particular order, and the metal layer and the black layer are both registered and patterned.
2 . 黒色層が黒色レジスト層である請求項 1記載の透光性電磁波シールド 材料。  2. The translucent electromagnetic wave shielding material according to claim 1, wherein the black layer is a black resist layer.
3 . 透明基体上に金属層がパターン状に積層され、 金属; S上に金属層と見 当一致した黒色レジスト層が積層されていることを特徴とする請求項 2記載の透光 性電磁波シールド材料。  3. The translucent electromagnetic wave shield according to claim 2, wherein a metal layer is laminated in a pattern on the transparent substrate, and a black resist layer corresponding to the metal layer is laminated on the metal S. material.
4 . 黒色レジス ト層が、 黒色の染顔料を含有するフォ トレジストである請 求項 3記載の透光性電磁波シ一ルド材料。  4. The translucent electromagnetic wave shielding material according to claim 3, wherein the black resist layer is a photoresist containing a black dye and pigment.
5 . 透明基体上に金属層を設ける工程、 金属層上に黒色レジス ト層をバ ターン状に設ける工程、 黒色レジスト層で覆われていない部分の金属/!をエツチン グにより除去する工程よりなることを特徴とする請求項 3記載の透光性電磁波シー ルド材料の製造方法。  5. A step of providing a metal layer on a transparent substrate, a step of providing a black resist layer in a pattern on the metal layer, and a step of etching away the metal /! Not covered by the black resist layer by etching. 4. The method for producing a translucent electromagnetic wave shield material according to claim 3, wherein:
6 . 黒色レジス ト層をパターン状に設ける工程が、 黒色の染顔料を含有す る感光性樹脂インキを塗布し、 マスクを用いて露光し、 現像するものである請求項 5記載の透光性電磁波シールド材料の製造方法。  6. The translucent film according to claim 5, wherein the step of providing a black resist layer in a pattern comprises applying a photosensitive resin ink containing a black dye and pigment, exposing using a mask, and developing. Manufacturing method of electromagnetic wave shielding material.
7 . 透明基体上に金属層を設ける工程、 金属層上にパターニングされた剥 離層を設ける工程、 金属層および剥離層上に黒色レジスト層を設ける工程、 剥離層 を剥雜液で剥雜することによりその上の黒色レジスト層を除去する工程、 黒色レジ スト層を除去した部分の金属層をエッチングにより除去する工程よりなることを特 徴とする請求項 3記載の透光性電磁波シ一ルド材料の製造方法。  7. A step of providing a metal layer on a transparent substrate, a step of providing a patterned release layer on the metal layer, a step of providing a black resist layer on the metal layer and the release layer, and peeling the release layer with a peeling liquid 4. The translucent electromagnetic wave shield according to claim 3, further comprising a step of removing the black resist layer thereover by etching, and a step of etching away the metal layer in a portion where the black resist layer has been removed. Material manufacturing method.
8 . 剥離層が印刷レジス ト材料やフォ トレジスト材料からなる請求項 記 載の透光性電磁波シールド材料の製造方法。 8. The method for producing a translucent electromagnetic wave shielding material according to claim, wherein the release layer is made of a printing resist material or a photoresist material.
9 . 黒色レジスト層の膜厚力 ¾.1 π!〜 lO mである請求項 7記載の透光性 電磁波シールド材料の製造方法。 9. Thickness of black resist layer ¾.1 π! 8. The method for producing a translucent electromagnetic wave shielding material according to claim 7, wherein the thickness is from 1 to 10 m.
1 0 . 黒色層が黒色電気析出層である請求項 1記載の透光性電磁波シール ド材料。  10. The translucent electromagnetic wave shielding material according to claim 1, wherein the black layer is a black electrodeposition layer.
1 1 . 透明基体上に金属層がパターン状に積層され、 金属層上に金属層と 見当一致した黒色電気析出層が積層されていることを特徴とする請求項 1 0記載の 透光性電磁波シールド材料。  11. The translucent electromagnetic wave according to claim 10, wherein a metal layer is laminated on the transparent substrate in a pattern, and a black electrodeposition layer which is in register with the metal layer is laminated on the metal layer. Shield material.
1 2 . 黒色電気析出層が、 イオン性高分子中に黒色系粒子を含むものであ る請求項 1 1記載の透光性電磁波シールド材料。  12. The translucent electromagnetic wave shielding material according to claim 11, wherein the black electrodeposition layer contains black particles in an ionic polymer.
1 3 . 黒色電気析出層が、 黒色系の導電性高分子からなるものである請求 項 1 1記載の透光性電磁波シールド材料。  13. The translucent electromagnetic wave shielding material according to claim 11, wherein the black electrodeposition layer is made of a black conductive polymer.
1 4 . ィ才ン性高分子が、 ァクリル樹脂、 ポリエステル榭脂、 ポリブタジ ェン樹脂、 マレイン樹脂、 エポキシ樹脂、 ウレタン樹脂、 ポリアミ ド榭脂あるいは その変性体をァミノ化またはカルボキシル化したものである請求項 1 2記載の透光 性電磁波シールド材料。  11.4. A highly functional polymer obtained by amination or carboxylation of acryl resin, polyester resin, polybutadiene resin, malee resin, epoxy resin, urethane resin, polyamide resin or a modified product thereof. 13. The translucent electromagnetic wave shielding material according to claim 12.
1 5 . 黒色系粒子が、 カーボンブラック、 チタンブラック、 ァニリンブ ラックである請求項 1 2記載の透光性電磁波シールド材料。  15. The translucent electromagnetic wave shielding material according to claim 12, wherein the black particles are carbon black, titanium black, and ananiline black.
1 6 . 導電性高分子が、 ピロール、 ァニリン、 チォフェンおよびその誘導 体の重合物である請求項 1 3記載の透光性電磁波シールド材料。  16. The translucent electromagnetic wave shielding material according to claim 13, wherein the conductive polymer is a polymer of pyrrole, aniline, thiophene, and a derivative thereof.
1 7 . 透明基体上に金属層をパターン状に積層する工程と、 黒色系粒子を 含むィォン性高分子の溶液中に前工程で金属層を積層した透明基体を対向電極と共 に浸潰して通電することにより金属層上に黒色電気析出層を 層する工程よりなる ことを特徴とする請求項 1 1記載の透光性電磁波シールド材料の製造方法。  17. A step of laminating a metal layer on a transparent substrate in a pattern, and immersing the transparent substrate having the metal layer laminated in the previous step in a solution of an ionizable polymer containing black particles together with a counter electrode. The method for producing a light-transmitting electromagnetic wave shielding material according to claim 11, comprising a step of forming a black electrodeposition layer on the metal layer by applying a current.
1 8 . 透明基体上に金属層をパターン状に穫層する工程と、 導電性高分子 のモノマーの溶液中に前工程で金属層を積層した透明基体を対向電極と共に浸潰し て通電することにより金属層上に黒色電気析出層を積層する工程よりなることを特 徴とする請求項 1 1記載の透光性電磁波シールド材料の製造方法。 18. A step of depositing a metal layer in a pattern on the transparent substrate, and immersing the transparent substrate, on which the metal layer was laminated in the previous step, together with a counter electrode in a solution of a monomer of a conductive polymer. 11. The method for producing a translucent electromagnetic wave shielding material according to claim 11, comprising a step of laminating a black electrodeposition layer on the metal layer by applying a current.
1 9 . 黒色電気析出層が、 黒色系の色調を有する電気めつき被膜である請 求項 1 1記載の透光 ^電磁波シールド材料。  19. The translucent ^ electromagnetic wave shielding material according to claim 11, wherein the black electrodeposition layer is an electroplated film having a black color tone.
2 0 . 黒色系の色調を有する電気めつき被膜が、 ニッケル系、 クロム系、 ロジウム系、 スズ -ニッケル -銅三元合金系またはスズ -ニッケル -モリブデン三 元合金系である請求項 1 9記載の透光性電磁波シールド材料。  20. The electroplated coating having a black color tone is a nickel-based, chromium-based, rhodium-based, tin-nickel-copper ternary alloy or tin-nickel-molybdenum ternary alloy-based. Transparent electromagnetic wave shielding material.
2 1 . 透明基体上に金属層をパターン状に積層する工程と、 黒色系の色調 を有する電気めつき被膜を形成するめつき液に、 前工程で金属層を積層した透明基 体を浸 *し、 金属層に通電することにより金属層上に黒色電気析出層を積層するェ 程よりなることを特徴とする第 1 1項記載の透光性電磁波シールド材料の製造方 法。  21. A process of laminating a metal layer in a pattern on a transparent substrate, and immersing the transparent substrate in which the metal layer was laminated in the previous process * in a plating solution for forming an electroplating film having a black color tone. 11. The method for producing a translucent electromagnetic wave shielding material according to claim 11, comprising a step of laminating a black electrodeposition layer on the metal layer by applying a current to the metal layer.
2 2 . 黒色層が黒色を呈する金属化合物からなり、 かつ金属層と一体化し ている請求項 1記載の透光性電磁波シールド材料。  22. The translucent electromagnetic wave shielding material according to claim 1, wherein the black layer is made of a metal compound exhibiting black, and is integrated with the metal layer.
2 3 . 透明基体上にパターン状に形成された金属層の表層部分が黒色を呈 する金属化合物であることを特徴とする請求項 2 2記載の透光性電磁波シールド材 料。  23. The translucent electromagnetic wave shielding material according to claim 22, wherein the surface layer of the metal layer formed in a pattern on the transparent substrate is a metal compound exhibiting black.
2 4 . 透明基体上に金属層をパターン状に設けた後、 化成処理を施すこと により金属層の表層部分を黒色を呈する金厲化合物とすることを特徴とする請求項 2 3記載の透光性電磁波シールド材料の製造方法。  24. The translucent light according to claim 23, wherein after forming the metal layer in a pattern on the transparent substrate, the surface layer of the metal layer is formed of a metal compound exhibiting black by performing a chemical conversion treatment. Manufacturing method of conductive electromagnetic wave shielding material.
2 5 . 透明基体上に積層された黒染色層がパターン状の脱色部とその他の 非脱色部とからなり、 黒染色層上に非脱色部と見当一致した金属層が積層されてい ることを特徴とする請求項 1記載の透光性電磁波シ一ルド材料。  25. The fact that the black dyed layer laminated on the transparent substrate is composed of a pattern-shaped bleached part and other non-bleached parts, and that the metal layer which is in register with the non-bleached part is laminated on the black stained layer. The translucent electromagnetic wave shield material according to claim 1, wherein:
2 6 . 黒染色層がァクリル系銜脂、 ポリニステル系樹脂、 セルロース系樹 脂、 ポリオレフイ ン系樹脂、 ポリビニルアルコール系樹脂、 天然高分子型樹脂また はこれらの共重合物、 混合物に染料を含むものである請求項 2 5記載の透光性電磁 波シールド材料。 26. The black dyed layer is made of acryl-based bite, polynistel-based resin, cellulose-based resin, polyolefin-based resin, polyvinyl alcohol-based resin, natural polymer type resin or 26. The translucent electromagnetic wave shielding material according to claim 25, wherein the copolymer contains a dye in the copolymer or mixture thereof.
2 7 . 透明基体上に黒染色層を設ける工程、 黒染色層上に金属層を設ける 工程、 金属層上にレジス ト層をパターン状に設ける工程、 レジス ト層で覆われてい ない部分の金属層をエツチング液により除去する工程を順次行い、 エツチング工程 においてパターン化された金属層で覆われていない部分の黒染色層をエッチング液 により 色することを特徴とする請求項 2 5記載の透光性電磁波シ―ルド材料の製 造方法。  27. The step of providing a black dyeing layer on a transparent substrate, the step of providing a metal layer on the black dyeing layer, the step of providing a resist layer on the metal layer in a pattern, the metal not covered by the resist layer 26. The translucent light according to claim 25, wherein a step of removing the layer with an etching liquid is sequentially performed, and a portion of the black stained layer that is not covered with the patterned metal layer in the etching step is colored with an etching liquid. Method for producing conductive electromagnetic shielding material.
2 8 . 透明基体上に黒染色層を設ける工程、 黒染色層上に金属層を設ける 工程、 金属層上にレジスト層をパターン状に設ける工程、 レジスト層で覆われてい ない部分の金属; gをエッチング液により除去する工程を順次行い、 次いでパターン 化された金属 層で覆われていない部分の黒染色層をエツチング液とは別個の脱色 液により脱色する工程を行うことを特徴とする請求項 2 5記載の透光性電磁波シ一 ルド材料の製造方法。  28. A step of providing a black dye layer on the transparent substrate, a step of providing a metal layer on the black dye layer, a step of providing a resist layer on the metal layer in a pattern, a portion of the metal not covered by the resist layer; g Removing the black dyed layer in a portion not covered with the patterned metal layer with a decolorizing liquid separate from the etching liquid. 25. The method for producing a transparent electromagnetic wave shield material according to item 25.
2 9 . 透明基体上に黒染色層を設ける工程、 黒染色層上に金属層を設ける 工程、 金属層上にレジスト層をパターン状に設ける工程、 レジスト層で覆われてい ない部分の金属層をエッチング液により除去する工程を順次行い、 次いでレジスト 層を剥雊液により剥離する工程を行い、 このレジスト層の剥離工程においてパター ン化された金厲層で覆われていない部分の黒染色層を剥雜液により脱色することを 特徴とする請求項 2 5記載の透光性電磁波シールド材料の製造方法。  29. A step of providing a black dyeing layer on a transparent substrate, a step of providing a metal layer on the black dyeing layer, a step of providing a resist layer on the metal layer in a pattern, and removing a portion of the metal layer not covered with the resist layer. The step of removing with an etchant is sequentially performed, and then the step of removing the resist layer with a stripping solution is performed. In the resist layer removing step, a portion of the black dyed layer which is not covered with the patterned metal layer is removed. 26. The method for producing a translucent electromagnetic wave shielding material according to claim 25, wherein the color is decolorized by a stripping liquid.
3 0 . 透明基体上に黒染色層を設ける工程、 黒染色層上に金属層を設ける 工程、 金属層上にレジスト層をパターン状に設ける工程、 レジスト層で覆われてい ない部分の金属層をエツチング液により P余去する工程を順次行い、 次いでパターン 化された金属層で覆われていない部分の黒染色層をエッチング液とは別個の脱色液 により Ρΐί色する工程、 レジスト層を剥離液により剥離する工程を行うことを特徴と する請求項 2 5記載の透光性電磁波シールド材料の製造方法。 30. A step of providing a black dyeing layer on a transparent substrate, a step of providing a metal layer on the black dyeing layer, a step of providing a resist layer on the metal layer in a pattern, and a step of forming a metal layer not covered with the resist layer. The steps of removing P with an etching solution are sequentially performed, and then the step of coloring the black stained layer not covered with the patterned metal layer with a decolorizing solution separate from the etching solution, and removing the resist layer with a stripping solution It is characterized by performing a peeling process 26. The method for producing a translucent electromagnetic wave shielding material according to claim 25.
3 1 . レジスト層の剥離工程においてパターン化された金属層で覆われて いない部分の黒染色層を剥離液により脱色する請求項 3 0記載の透光性電磁波シ ルド材料の製造方法。  31. The method for producing a translucent electromagnetic wave shielding material according to claim 30, wherein in the step of removing the resist layer, a portion of the black stained layer which is not covered with the patterned metal layer is decolorized with a stripping solution.
3 2 . エッチング工程においてパターン化された金厲層で覆われていない 部分の黒染色層をエツ千ング液により脱色する請求項 2 8〜請求項 3 1のいずれか に記載の透光性電磁波シールド材料の製造方法。  32. The translucent electromagnetic wave according to any one of claims 28 to 31, wherein the portion of the black dyed layer that is not covered with the patterned metal layer in the etching step is decolorized with an etching solution. Manufacturing method of shielding material.
3 3 . エッチング液が王水、 硝酸第二鉄水溶液、 塩化第二鉄水溶液、 塩ィ匕 第二銅水溶液または硝酸セリウム水溶液を主成分とする請求項 2 7〜請求項 3 2の いずれかに記載の透光性電磁波シールド材料の製造方法。  33. The method according to any one of claims 27 to 32, wherein the etching solution is mainly composed of aqua regia, an aqueous solution of ferric nitrate, an aqueous solution of ferric chloride, an aqueous solution of cupric chloride, or an aqueous solution of cerium nitrate. A method for producing the translucent electromagnetic wave shielding material according to the above.
3 4 . 脱色液が界面活性剤の水溶液、 亜塩素酸ナトリウム水溶液、 次亜塩 素酸ナトリウム水溶液、 過酸化水素水溶液、 硝酸ナトリゥム水溶液、 塩化第一錫水 溶液、 ホルムアルデヒドナトリウムスルホキシラート二水塩水溶液、 二酸化チ才尿 素水溶液、 ハイ ドロサルファイ トナトリウム水溶液、 無色透明の染料中間体水溶液 である請求項 2 8〜請求項 3 2記載の透光性電磁波シールド材料の製造方法。  3 4. Decolorizing solution is surfactant aqueous solution, sodium chlorite aqueous solution, sodium hypochlorite aqueous solution, hydrogen peroxide aqueous solution, sodium nitrate aqueous solution, stannous chloride aqueous solution, formaldehyde sodium sulfoxylate dihydrate 33. The method for producing a translucent electromagnetic wave shielding material according to claim 28, wherein the aqueous electromagnetic wave shielding material is an aqueous solution, an aqueous solution of urine dithioxide, an aqueous solution of sodium hydrosulfite, or an aqueous solution of a colorless and transparent dye intermediate.
3 5 . 剥離液がアルカリ水溶液、 有機溶媒またはこれらの混合液を主成分 とする請求項 2 9〜請求項 3 2記載の透光性電磁波シールド材料の製造方法。  35. The method for producing a translucent electromagnetic wave shielding material according to any one of claims 29 to 32, wherein the stripping solution mainly comprises an aqueous alkaline solution, an organic solvent, or a mixture thereof.
3 6 . アルカリ水溶液が水酸化ナトリウム、 水酸化力リウムである請求項 3 5記載の透光性電磁波シールド材料の製造方法。  36. The method according to claim 35, wherein the aqueous alkali solution is sodium hydroxide or lithium hydroxide.
3 7 . 有機溶媒がァセトン、 セロソルブアセテート系溶媒、 セロソルブ系 溶媒、 アルコ—ル系溶媒である請求項 3 5記載の透光性電磁波シ―ルド材科の製造 方法。  37. The method according to claim 35, wherein the organic solvent is acetone, a cellosolve acetate solvent, a cellosolve solvent, or an alcohol solvent.
3 8 . エッチング液および/または剥離液力 J脱色剤を含むものである請求 項 2 7〜請求項 3 2のいずれかに記載の透光性電磁波シールド材料の製造方法。 3 8. Etchants and / or manufacturing method of the light transmissive electromagnetic wave shielding material according to any one stripper forces J bleaching agents are those including the claims 2 7 3. 2.
3 9 . 脱色剤が界面活性剤、 亜^素酸ナトリウム、 次亜塩素酸ナトリゥ ム、 過酸化水素、 硝酸ナトリウム、 塩化第一錫、 ホルムアルデヒ ドナトリウムスル ホキシラートニ水塩、 二酸化チォ尿素、 ハイ ドロサルファイ トナトリウム、 無色透 明の染料中間体からなる請求項 3 8記載の透光性電磁波シールド材料の製造方法。 3 9. Decolorizing agent is surfactant, sodium hypochlorite, sodium hypochlorite 39. The translucent electromagnetic wave according to claim 38, wherein the translucent electromagnetic wave comprises a dye, an intermediate of hydrogen peroxide, sodium nitrate, stannous chloride, sodium formaldehyde sodium sulfoxylate dihydrate, thiourea dioxide, sodium hydrosulfite, and a colorless transparent dye intermediate. Manufacturing method of shielding material.
4 0 . フィルムからなる透明な第一基体上に金属層がパターン状に設けら れ、 金属層上に金属層と見当一致した黒色レジスト層が設けられた貼付シートが、 接着層を介して、 板、 立体物または機能性層を有するフィルムからなる透明な第二 基体に貼り合わせられていることを特徴とする透光性電磁波シ一ルド材料。  40. An adhesive sheet in which a metal layer is provided in a pattern on a transparent first substrate made of a film, and a black resist layer corresponding to the metal layer is provided on the metal layer, via an adhesive layer, A light-transmitting electromagnetic wave shielding material, which is attached to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer.
4 1 . フイルムからなる透明な第一基体上に金属種がパターン状に設けら れ、 金属層上に金属層と見当一致した黒色電気析出層が設けられた貼付シートカ 接着層を介して、 板、 立体物または機能性層を有するフィルムからなる透明な第二 基体に貼り合わせられていることを特徴とする透光性電磁波シールド材料。  4 1. A metal sheet is provided in a pattern on a transparent first substrate made of a film, and a black electrodeposition layer in register with the metal layer is provided on the metal layer. A translucent electromagnetic wave shielding material, which is bonded to a transparent second substrate made of a three-dimensional object or a film having a functional layer.
4 2 . フィルムからなる透明な第一基体上に金属層がパターン状に設けら れ、 金属層の表層部分が黒色を呈する金属化合物である貼付シートが、 接蓊層を介 して、 板、 立体物または機能性層を有するフィルムからなる透明な第二基体に貼り 合わせられていることを特徵とする透光性電磁波シ一ルド材料。  42. An adhesive sheet in which a metal layer is provided in a pattern on a transparent first substrate made of a film, and the surface layer of the metal layer is a metal compound having a black color, a plate, A translucent electromagnetic wave shielding material characterized in that it is bonded to a transparent second substrate made of a three-dimensional object or a film having a functional layer.
4 3 . フィルムからなる透明な第一基体上にパターン状の脱色部とその他 の非脱色部とからなる黒染色層が設けられ、 黒染色層上に非脱色部と見当一致した 金属層が設けられた貼付シートが、 接着層を介して、 板、 立体物または機能性層を 有するフィルムからなる透明な第二基体に貼り合わせられていることを特徴とする 透光性電磁波シールド材料。  4 3. A black dyed layer consisting of a pattern-shaped bleached part and other non-bleached parts is provided on a transparent first substrate made of a film, and a metal layer matching the non-bleached part is provided on the black stained layer. A translucent electromagnetic wave shielding material, wherein the applied adhesive sheet is attached to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer.
4 4 . 剥離層と、 剥離層の上にパターン状に設けられた金属層と、 金属層 の上に金属層と見当一致して設けられた黒色レジスト層とからなる転写層が、 接着 層を介して、 剥離層力5外表面となるように板、 立体物または機能性層を有するフィ ルムからなる透明な第二基体上に転写されていることを特徴とする透光性電磁波 シールド材料。 4 4. A transfer layer including a release layer, a metal layer provided in a pattern on the release layer, and a black resist layer provided in register with the metal layer on the metal layer forms an adhesive layer. A light-transmitting electromagnetic wave shielding material, which is transferred onto a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer, so as to form an outer surface of a peeling layer force 5 via a peeling layer.
4 5 . 剥能層と、 剥離層の上にパターン状に設けられた金属層と、 金属層 の上に会厲層と見当一致して設けられた黒色電気析出層とからなる転写層力 ?、 接着 層を介して、 剥離層力 s'外表面となるように板、 立体物または機能性層を有するフィ ルムからなる透明な第二基体上に転写されていることを特徴とする透光性電磁波 シールド材料。 4 5. Transfer layer force consisting of a release layer, a metal layer provided in a pattern on the release layer, and a black electrodeposited layer provided in register with the metal layer on the metal layer . , via an adhesive layer, characterized in that it is transferred to the release layer strength s' plate such that the outer surface, three-dimensional object or functional layer a second transparent substrate on consisting Fi Lum having translucency EMI shielding material.
4 6 . 剥 WISと、 剥雜層の上にパターン状に設けられ且つ表層部分が黑色 を呈する金属化合物である金属種とからなる転写層が、 接着層を介して、 剥離層が 外表面となるように板、 立体物または機能性層を有するフィルムからなる透明な第 二基体上に転写されていることを特徴とする透光性電磁波シールド材料。  46. Stripping WIS and a transfer layer made of a metal species that is a metal compound that is provided in a pattern on the stripping layer and has a surface layer exhibiting a blue color are bonded to the outer surface via an adhesive layer. A translucent electromagnetic wave shielding material, which is transferred onto a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer.
4 7 . 剥離層と、 剥離層の上に設けられたパターン状の脱色部とその他の 非脱色部とからなる黒染色層と、 黒染色 ¾の上に非脱色部と見当一致して設けられ た金属層とからなる転写層が、 接着層を介して、 剥離層が外表面となるように板、 立体物または機能性層を有するフィルムからなる透明な第二基体上に転写されてい ることを特徴とする透光性電磁波シ一ルド材科。  47. A black dyed layer consisting of a release layer, a pattern-shaped bleached portion provided on the release layer and other non-bleached portions, and a black dyed layer provided on the black dyeing surface in register with the non-bleached portion. Transfer layer consisting of a metal layer and a transparent layer made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer such that the release layer is on the outer surface. A translucent electromagnetic wave shielding material department characterized by the following.
4 8 . フィルムからなる透明な第一基体全面に金属層を設け、 金厲層上に 黒色レジスト層をパターン状に設け、 黒色レジスト層で覆われていない部分の金属 層をエッチング液を用いて除去することより作製した貼付シ一トを、 接着層を介し て、 板、 立体物または機能性層を有するフィルムからなる透明な第二基体上に貼り 合わせることを特徴とする透光性電磁波シールド材料の製造方法。  48. A metal layer is provided on the entire surface of the transparent first substrate made of a film, a black resist layer is provided in a pattern on the metal layer, and a portion of the metal layer not covered with the black resist layer is etched using an etching solution. A light-transmitting electromagnetic wave shield comprising: attaching an adhesive sheet produced by removing the adhesive sheet to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer. Material manufacturing method.
4 9 . 黒色レジスト層をパターン状に設ける工程が、 黒色の染顔科を含有 する感光性樹脂インキを金属層上に塗布し、 フォ トマスクを用いて露光し、 現像す るものである請求項 4 8記載の透光性電磁波シールド材料の製造方法。  49. The step of providing a black resist layer in a pattern form is a step of applying a photosensitive resin ink containing a black dyeing dye on the metal layer, exposing using a photomask, and developing. 48. The method for producing a translucent electromagnetic wave shielding material according to item 8.
5 0 . 黒色レジスト層をパターン状に設ける工程が、 金属層上にパター二 ングされた遊離層を設け、 金属層および遊離層上に黒色レジスト層を設け、 遊離層 を遊鲑除去液で除去することによりその上の黒色レジスト層も除去するものである 請求項 4 8記載の透光性電磁波シールド材料の製造方法。 50. In the step of providing a black resist layer in a pattern, a patterned free layer is provided on the metal layer, a black resist layer is provided on the metal layer and the free layer, and the free layer is removed with a floating removing solution. To remove the black resist layer on it A method for producing the translucent electromagnetic wave shielding material according to claim 48.
5 1 . フィルムからなる透明な第一基体上に金属層をパターン状に設け、 黒色系粒子を含むイオン性高分子の溶液中に前工程で金属層を設けた透明な第一基 体を^向電極と共に浸潰して通電することにより金属層上に黒色電気析出層を設け て作製した貼付シートを、 接着層を介して、 板、 立体物または機能性層を有する フィルムからなる透明な第二基体上に貼り合わせることを特徴とする透光性電磁波 シールド材料の製造方法。  5 1. A metal layer is provided in a pattern on a transparent first substrate composed of a film, and the transparent first substrate provided with the metal layer in the previous step is placed in a solution of an ionic polymer containing black particles. An adhesive sheet prepared by providing a black electrodeposition layer on a metal layer by immersing and energizing together with a counter electrode is connected to a transparent second layer made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer. A method for producing a light-transmitting electromagnetic wave shielding material, characterized in that the material is laminated on a substrate.
5 2 . フィルムからなる透明な第一基体上に金属層をパターン状に設け、 導電性高分子のモノマ—の溶液中に前工程で金属層を設けた透明な第一基体を対向 電極と共に浸漬して通電することにより金属層上に黒色電気析出層を設けて作製し た貼付シートを、 接着層を介して、 板、 立体物または機能性層を有するフィルムか らなる透明な第二基体上に貼り合わせることを特徴とする透光性電磁波シ一ルド材 料の製造方法。  52. A metal layer is provided in a pattern on a transparent first substrate made of a film, and the transparent first substrate provided with the metal layer in the previous step is immersed in a solution of a monomer of a conductive polymer together with a counter electrode. The adhesive sheet prepared by providing a black electrodeposition layer on the metal layer by applying a current to the metal layer is placed on a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer. A method for producing a light-transmitting electromagnetic wave shielding material, characterized in that the material is laminated.
5 3 . フィルムからなる透明な第一基体上に金属層をパタ一ン状に設け、 黒色系の色調を有する電気めつき被膜形成するメツキ液中に前工程で金属層を設け た透明な第一基体を対向電極と共に浸潰して通電することにより金属層上に黒色!: 気析出層を設けて作成した貼付シートを、 接着層を介して、 板、 立体物または機能 ' を有するフィルムからなる透明な第二基体上に貼り合わせることを特徴とする 透光性電磁波シールド材料の製造方法。  5 3. A transparent metal substrate is provided in a pattern on a transparent first substrate made of a film, and the metal layer is provided in a previous step in a plating solution for forming an electroplating film having a black color tone. When one base is immersed together with the counter electrode and energized, black color is formed on the metal layer! : A translucent electromagnetic wave shield characterized in that an adhesive sheet prepared with an air-deposited layer is adhered via an adhesive layer to a transparent second substrate made of a plate, a three-dimensional object, or a film having a function. Material manufacturing method.
5 4 . フィルムからなる透明な第一基体上に金属層をパターン状に設けた 後、 化成処理を施して金属層の表層部分を黒色を呈する金属化合物とすることによ り作製した貼付シートを、 接着層を介して、 板、 立体物または機能性層を有する フィ ルムからなる透明な第二基体上に貼り合わせることを特徴とする透光性電磁波 シールド材料の製造方法。  54. After the metal layer is provided in a pattern on the transparent first substrate made of a film, a chemical conversion treatment is performed to apply the adhesive sheet produced by making the surface layer of the metal layer a metal compound exhibiting a black color. A method for producing a light-transmitting electromagnetic wave shielding material, comprising laminating, via an adhesive layer, a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer.
5 5 . フィルムからなる透明な第一基体上に黒染色層を設け、 黒染色層上 に金属層を設け、 金属履上にレジスト層をパターン状に設け、 レジスト層で覆われ ていない部分の金属層をエッチング液を用いて除去する工程を順次行い、 エツチン グ工程においてパターン化された金属層で覆われていない部分の黒染色層をエッチ ング液により脱色することにより作製した貼付シートを、 接着層を介して、 板、 立 体物または機能性層を有するフィルムからなる透明な第二基体上に貼り合わせるこ とを特徴とする透光性電磁波シールド材料の製造方法。 5 5. A black dye layer is provided on the transparent first substrate made of film, and A metal layer, a resist layer on the metal footwear in a pattern, and a step of removing portions of the metal layer that are not covered with the resist layer using an etchant. The adhesive sheet produced by decolorizing the black dyed layer in the portion not covered with the metal layer with an etching solution is passed through an adhesive layer to form a transparent sheet made of a plate, a solid or a film having a functional layer. A method for producing a light-transmitting electromagnetic wave shielding material, characterized by laminating on two substrates.
5 6 . フィルムからなる透明な第一基体上に黒染色層を設け、 黒染色層上 に金属層を設け、 金属層上にレジスト層をパターン状に設け、 レジスト層で覆われ ていない部分の金属層をエッチング液を用いて除去する工程を順次行い、 次いでパ ターン化された金属層で覆われていない部分の黒染色層をエツチング液とは別の脱 色液により脱色することにより作製した貼付シートを、 接着餍を介して、 板、 立体 物または機能性層を有するフィルムからなる透明な第二基体上に貼り合わせること を特徴とする透光性電磁波シールド材料の製造方法。  5 6. A black dyeing layer is provided on the transparent first substrate made of film, a metal layer is provided on the black dyeing layer, a resist layer is provided on the metal layer in a pattern, and a portion not covered with the resist layer is provided. A step of sequentially removing the metal layer using an etchant was performed, and then a portion of the black dyed layer that was not covered with the patterned metal layer was decolorized with a decolorizing solution different from the etching solution. A method for producing a light-transmitting electromagnetic wave shielding material, comprising: attaching an adhesive sheet to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer.
5 7 . フィルムからなる透明な第一基体上に黒染色層を設け、 黒染色層上 に金属層を設け、 金属層上にレジスト層をパターン状に設け、 レジスト層で覆われ ていない部分の金属層をエツチング液を用いて除去する工程を順次行い、 次いでレ ジスト層をレジスト除去液を用いて除去し、 このレジスト層の除去工程においてパ タ一ン化された金属層で覆われていない部分の黒染色層をレジスト除去液により脱 色することにより作製した貼付シート、 接着屠を介して、 板、 立体物または機能性 層を有するフィルムからなる透明な第二基体上に貼り合わせることを特徴とする透 光性電磁波シールド材料の製造方法。  57. A black dyeing layer is provided on a transparent first substrate made of a film, a metal layer is provided on the black dyeing layer, a resist layer is provided on the metal layer in a pattern, and a portion not covered with the resist layer is provided. The steps of removing the metal layer using an etching solution are sequentially performed, and then the resist layer is removed using a resist removing solution, and the resist layer is not covered with the patterned metal layer in the removing step. Affixing a transparent sheet made of a plate, a three-dimensional object, or a film having a functional layer through an adhesive sheet prepared by decolorizing the black dyed layer of the portion with a resist removing solution, and bonding. Characteristic method for producing a transparent electromagnetic wave shielding material.
5 8 . 金属層をエッチング液を用いて除去する工程の後に、 レジスト層を レジスト除去液を用いて除去する請求項 5 5または請求項 5 6のいずれかに記載の 透光性電磁波シールド材料の製造方法。  58. The translucent electromagnetic wave shielding material according to claim 55, wherein the resist layer is removed using a resist removing solution after the step of removing the metal layer using an etching solution. Production method.
5 9 . レジスト層の除去工程においてパターン化された金属層で覆われて いない部分の黒染色層をレジスト除去液により脱色する請求項 5 8記載の透光性電 磁波シールド材料の製造方法。 5 9. Covered with patterned metal layer in resist layer removal process The method for producing a translucent electromagnetic shielding material according to claim 58, wherein the portion of the black dyed layer that is not present is decolorized with a resist removing solution.
6 0 . エッチング工程においてパターン化された金属層で覆われていない 部分の黒染色層をエッチング液により脱色する請求項 5 5または請求項 5 8、 請求 項 5 9のいずれかに記載の透光性電磁波シールド材料の製造方法。  60. The translucent light according to any one of claims 55, 58, and 59, wherein a portion of the black stained layer that is not covered with the patterned metal layer in the etching step is decolorized with an etchant. Manufacturing method of conductive electromagnetic wave shielding material.
6 1 . フィルムからなる第一基体全面に剥離層を設け、 剥離層上に金属層 を設け、 金属層上に黒色レジスト層をパターン状に設け、 黒色レジスト層で覆われ ていない部分の金厲層をエッチング液を用いて除去することより作製した転写シ一 トを、 接着層を介して、 第一基体が外表面となるように板、 立体物または機能性層 を有するフィルムからなる透明な第二基体上に貼り合わせた後、 第一基体のみを剥 雜することを特徴とする透光性電磁波シールド材料の製造方法。  6 1. A release layer is provided on the entire surface of the first substrate made of a film, a metal layer is provided on the release layer, a black resist layer is provided on the metal layer in a pattern, and a portion of the metal that is not covered with the black resist layer is provided. The transfer sheet produced by removing the layer using an etchant is transferred to a transparent sheet made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer such that the first substrate is an outer surface. A method for producing a light-transmitting electromagnetic wave shielding material, comprising: laminating only a first substrate after laminating on a second substrate.
6 2 . 黒色レジスト層をパターン状に設ける工程が、 黒色の染顔料を含有 する感光性樹脂インキを塗布し、 フォ トマスクを用いて露光し、 現像するものであ る請求項 6 1記載の透光性電磁波シールド材料の製造方法。  62. The transparency according to claim 61, wherein the step of providing the black resist layer in a pattern comprises applying a photosensitive resin ink containing a black dye and pigment, exposing using a photomask, and developing. Manufacturing method of optical electromagnetic wave shielding material.
6 3 . 黒色レジスト ¾をパターン状に設ける工程が、 金属層上にパター二 ングされた遊雜層を設け、 金属層および遊離層上に黒色レジスト層を設け、 遊離層 を遊雜除去液で除去することによりその上の黒色レジスト層も除去するものである 請求項 6 1記載の透光性電磁波シールド材料の製造方法。  6 3. The step of providing a black resist layer in a pattern is to provide a patterned layer on the metal layer, provide a black resist layer on the metal layer and the free layer, and remove the free layer with a removal solution. The method for producing a translucent electromagnetic wave shielding material according to claim 61, wherein the removal removes the black resist layer thereon.
6 4 . フィルムからなる第一基体全面に剥離層を設け、 剥離層上に金属層 をパターン状に設け、 黒色系粒子を含むイオン性高分子の溶液中に前工程で金属層 を設けた第一基体を対向電極と共に浸潰して通電することにより金属層上に黒色電 気析出層を設けて作製した転写シートを、 接着層を介して、 第一基体が外表面とな るように板、 立体物または機能性層を有するフィルムからなる透明な第二基体上に 貼り合わせた後、 第一基体のみを剥雜することを特徴とする透光性電磁波シ一ルド 材料の製造方法。 6 4. A release layer is provided on the entire surface of the first substrate made of a film, a metal layer is provided in a pattern on the release layer, and the metal layer is provided in a previous step in a solution of an ionic polymer containing black particles. A transfer sheet prepared by providing a black electrodeposition layer on a metal layer by immersing one substrate together with a counter electrode and passing a current through the plate is bonded via an adhesive layer so that the first substrate becomes an outer surface. A method for producing a translucent electromagnetic wave shielding material, characterized in that after laminating on a transparent second substrate made of a film having a three-dimensional object or a functional layer, only the first substrate is stripped.
6 5 . フィルムからなる第一基体全面に剥離層を設け、 剥離層上に金属層 をパターン状に設け、 導電性高分子のモノマーの溶液中に前工程で金属層を設けた 第一基体を対向電極と共に浸潰して通電することにより金属層上に黒色電気析出層 を設けて作製した転写シートを、 接着層を介して、 第一基体が外表面となるように 板、 立体物または機能性層を有するフィルムからなる透明な第二基体上に貼り合わ せた後、 第一基体のみを剥離することを特徴とする透光性電磁波シールド材料の製 造方法。 65. A release layer is provided on the entire surface of the first substrate made of a film, a metal layer is provided in a pattern on the release layer, and the first substrate provided with the metal layer in the previous step in a solution of a monomer of a conductive polymer is used. A transfer sheet prepared by providing a black electrodeposition layer on a metal layer by immersing and energizing together with the counter electrode is transferred to a plate, three-dimensional object, or functional sheet via an adhesive layer so that the first substrate becomes the outer surface. A method for producing a light-transmitting electromagnetic wave shielding material, characterized in that after laminating on a transparent second substrate made of a film having a layer, only the first substrate is peeled off.
6 6 . フィルムからなる透明な第一基体上に剥離層を設け、 剥離層上に金 属屠をパターン状に設け、 黒色系の色調を有する電気めつき被膜を形成するめつき 液中に i工程で金属層を設けた透明な第一基体を対向電極と共に浸潰して通電する ことにより金属層上に黒色電気析出層を設けて作製した転写シートを、 接着 ¾を介 して、 第一基体が外表面となるように板、 立体物または機能性層を有するフィルム からなる透明な第二基体上に貼り合わせた後、 第一基体のみを剥離することを特徴 とする透光性電磁波シ一ルド材料の製造方法。  6 6. A release layer is provided on a transparent first substrate composed of a film, a metal slaughter is provided on the release layer in a pattern, and an electroplating film having a black color tone is formed. By immersing the transparent first substrate provided with the metal layer together with the counter electrode and conducting electricity, a transfer sheet prepared by providing a black electrodeposition layer on the metal layer is bonded to the first substrate via an adhesive layer. A light-transmitting electromagnetic wave shield characterized in that only the first substrate is peeled off after being bonded to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer so as to have an outer surface. Material manufacturing method.
6 7 . フィルムからなる第一基体全面に剥離層を設け、 剥離層上に金属層 をパターン状に設けた後、 化成処理を施して金属層の表層部分を黒色を呈する金属 化合物とすることにより作製した転写シートを、 接着層を介して、 第一基体が外表 面となるように板、 立体物または機能性層を有するフィルムからなる透明な第二基 体上に貼り合わせた後、 第一基体のみを剥離することを特徴とする透光性電磁波 シールド材料の製造方法。  67. A release layer is provided on the entire surface of the first substrate made of a film, a metal layer is provided on the release layer in a pattern, and then a chemical conversion treatment is performed to make the surface layer of the metal layer a black metal compound. After laminating the prepared transfer sheet via a bonding layer on a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer so that the first substrate becomes an outer surface, A method for producing a light-transmitting electromagnetic wave shielding material, comprising separating only a base.
6 8 . フィルムからなる第一基体全面に剥離層を設け、 剥離層上に黒染色 層を設け、 黒染色層上に金属層を設け、 金属層上にレジス ト層をパターン状に設 け、 レジスト層で覆われていない部分の金属層をエッチング液を用いて除去するェ 程を順次行い、 ニッチング工程においてパターン化された金属層で覆われていない 部分の黒染色層をエツチング液により脱色することにより作製した転写シートを、 接着層を介して、 第一基体が外表面となるように板、 立体物または機能性層を有す るフィルムからなる透明な第二基体上に貼り合わせた後、 第一基体のみを剥離する ことを特徴とする透光性電磁波シ一ルド材料の製造方法。 68. A release layer is provided on the entire surface of the first substrate made of a film, a black dye layer is provided on the release layer, a metal layer is provided on the black dye layer, and a resist layer is provided on the metal layer in a pattern. The step of removing the metal layer in the portion not covered with the resist layer using an etchant is sequentially performed, and the portion of the black stained layer not covered with the patterned metal layer is decolorized in the niche process with an etching solution. The transfer sheet produced by After laminating via an adhesive layer on a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer so that the first substrate is the outer surface, only the first substrate is peeled off A method for producing a light-transmitting electromagnetic wave shield material, comprising:
6 9 . フィルムからなる第一基体全面に剥離層を設け、 剥離層上に黒染色 層を設け、 黒染色層上に金属層を設け、 会厲層上にレジスト層をパターン状に設 け、 レジスト層で覆われていない部分の金厲層をエッチング液を用いて除去するェ 程を順次行い、 次いでパターン化された金属層で覆われていない部分の黒染色層を エッチング液とは別の脱色液により脱色することにより作製した転写シートを、 接 着層を介して、 第一基体が外表面となるように板、 立体物または機能性層を有する フィルムからなる透明な第二基体上に貼り合わせた後、 第一基体のみを剥離するこ とを特徴とする透光性電磁波シールド材料の製造方法。  6 9. A release layer is provided on the entire surface of the first substrate made of the film, a black dye layer is provided on the release layer, a metal layer is provided on the black dye layer, and a resist layer is provided on the association layer in a pattern. The step of removing the metal layer in the portion not covered with the resist layer using an etchant is sequentially performed, and then the portion of the black stained layer not covered with the patterned metal layer is separated from the etchant. The transfer sheet prepared by decoloring with the decolorizing solution is placed on a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer such that the first substrate is the outer surface. A method for manufacturing a light-transmitting electromagnetic wave shielding material, comprising: after bonding, peeling off only the first substrate.
7 0 . フィルムからなる第一基体全面に剥離層を設け、 剥離層上に黒染色 層を設け、 黒染色層上に金属層を設け、 金属層上にレジスト層をパターン状に設 け、 レジスト層で覆われていない部分の金厲層をエッチング液を用いて除去するェ 程を順次行い、 次いでレジスト層をレジスト除去液を用いて除去し、 このレジスト 層の除去工程においてパターン化された金属層で覆われていない部分の黒染色層を レジスト除去液により脱色することにより作製した転写シートを、 接着層を介し て、 第一基体が外表面となるように板、 立体物または機能性層を有するフィルムか らなる透明な第二基体上に貼り合わせた後、 第一基体のみを剥雜することを特徴と する透光性電磁波シ―ルド材料の製造方法。  70. A release layer is provided on the entire surface of the first substrate made of a film, a black dye layer is provided on the release layer, a metal layer is provided on the black dye layer, a resist layer is provided on the metal layer in a pattern, and the resist is provided. The step of removing portions of the metal layer that are not covered with the layer by using an etchant is sequentially performed, and then the resist layer is removed by using a resist removing solution, and the metal layer patterned in the resist layer removing step is removed. A transfer sheet prepared by decolorizing the black dyed layer in a portion not covered with the layer with a resist removing solution is applied to a plate, a three-dimensional object, or a functional layer via an adhesive layer such that the first substrate is an outer surface. A method for producing a light-transmitting electromagnetic wave shield material, comprising: laminating a first substrate on a transparent second substrate made of a film having the following.
7 1 . 金属層をエッチング液を用いて除去する工程の後に、 レジスト層を レジスト除去液を用いて除去する請求項 6 8または請求項 6 9のいずれかに記載の 透光性電磁波シールド材料の製造方法。  71. The translucent electromagnetic wave shielding material according to claim 68, wherein the resist layer is removed using a resist removing solution after the step of removing the metal layer using an etching solution. Production method.
7 2 . レジスト層の除去工程においてパターン化された金属層で覆われて いない部分の黒染色層をレジスト除去液により脱色する請求項 7 1記載の透光性電 ¾波シールド材料の製造方法。 72. The translucent electrode according to claim 71, wherein, in the step of removing the resist layer, portions of the black stained layer which are not covered with the patterned metal layer are decolorized with a resist removing solution. 製造 Method of manufacturing wave shielding material.
7 3 . エッチング工程においてパターン化された金属層で覆われていない 部分の黒染色層をエッチング液により脱色する請求項 6 9または請求項 7 1、 請求 項 7 2のいずれかに記載の透光性電磁波シールド材料の製造方法。  73. The translucent light according to claim 69 or claim 71, wherein the portion of the black dyed layer that is not covered with the patterned metal layer in the etching step is decolorized with an etchant. Manufacturing method of conductive electromagnetic wave shielding material.
7 4 . 透明基体上に金属層がパターン上に積層され、 金属層上にアース部 を除いて金属層と見当一致した黒色層が積屠されていることを特徴とする請求項 1 記載の透光性電磁波シールド材料。  74. The transparent substrate according to claim 1, wherein a metal layer is laminated on the pattern on the transparent substrate, and a black layer which is aligned with the metal layer except for a ground portion is laminated on the metal layer. Optical electromagnetic wave shielding material.
7 5 . 透明基体上に金属層がパターン状に積層され、 金属層上にアース部 を除いて金属層と見当一致した黒色レジスト層が積層されていることを特徴とする 請求項 7 4記載の透光性電磁波シ一ルド材料。  75. The method according to claim 74, wherein a metal layer is laminated in a pattern on the transparent substrate, and a black resist layer which is in register with the metal layer except for a ground portion is laminated on the metal layer. Transparent electromagnetic shielding material.
7 6 . 黒色レジスト層が、 黒色の染顔料を含有するフォ トレジス トである 請求項 7 5記載の透光性霓磁波シールド材料。  76. The translucent magnetic shielding material according to claim 75, wherein the black resist layer is a photoresist containing a black dye and pigment.
7 7 . 透明基体上に金属層を設ける工程、 金属層上の一部にマスク層を設 ける工程、 少なくとも金属層上に黒色レジスト層をパターン状に設ける工程、 黒色 レジスト層で覆われていない部分の金属層をエッチングにより除去する工程、 マス ク層を除去して金属層の露出した部分をアース部とする工程よりなることを特 徴とする請求項 7 5記載の透光性電磁波シールド材料の製造方法。  7 7. Step of providing a metal layer on a transparent substrate, step of providing a mask layer on a part of the metal layer, step of providing a black resist layer in a pattern at least on the metal layer, not covered with the black resist layer The translucent electromagnetic wave shielding material according to claim 75, further comprising: a step of removing a portion of the metal layer by etching; and a step of removing the mask layer to make an exposed portion of the metal layer a ground portion. Manufacturing method.
7 8 . 透明基体上に金属層を設ける工程、 金属層上に黒色レジス ト層をパ ターン状に設ける工程、 露出した金厲層上の一部にマスク層を設ける工程、 黒色レ ジスト層およびマスク層で覆われていない部分の金属層をエッチングにより除去す る工程、 マスク層を除去して金属層の露出した部分をァ一ス部とする工程よりなる ことを特徴とする請求項 7 5記載の透光性電磁波シールド材料の製造方法  78. A step of providing a metal layer on a transparent substrate, a step of providing a black resist layer in a pattern on the metal layer, a step of providing a mask layer on a part of the exposed metal layer, a black resist layer, 75. A step of removing a portion of the metal layer that is not covered by the mask layer by etching, and a step of removing the mask layer to make an exposed portion of the metal layer a ground portion. For producing a translucent electromagnetic wave shielding material
7 9 . 透明基体上に金属層を設ける工程、 金属層上に黒色レジス ト層をパ ターン状に設ける工程、 黒色レジスト層で覆われていない部分の金属層をエツチン グにより除去する工程、 黒色レジス ト層の一部を除去して金属層の露出した部分を アース部とする工程よりなることを特徴とする請求項 7 5記載の透光性電磁波シ一 ルド材料の製造方法。 7. A step of providing a metal layer on a transparent substrate, a step of providing a black resist layer in a pattern on the metal layer, a step of removing portions of the metal layer not covered with the black resist layer by etching, black Remove part of the resist layer to remove the exposed metal layer. The method for producing a transparent electromagnetic wave shield material according to claim 75, comprising a step of forming a ground portion.
8 0 . 黒色レジスト層をパターン状に設ける工程が、 黒色の染顔料を含有 する感光性樹脂インキを塗布し、 フォ トマスクを用いて露光し、 現像するものであ る請求項 7 7〜 7 9のいずれかに記載の透光性電磁波シールド材料の製造方法。  80. The method according to claim 77, wherein the step of providing a black resist layer in a pattern comprises applying a photosensitive resin ink containing a black dye / pigment, exposing using a photomask, and developing. The method for producing a translucent electromagnetic wave shielding material according to any one of the above.
8 1 . 透明基体上に金属層を設ける工程、 金属層上の一部にマスク層を設 ける工程、 少なくとも金属層上にパターニングされた剥離層を設ける工程、 少なく とも金属層および剥離層上に黒色レジスト層を設ける工程、 剥離層を剥雜液で剥離 することによりその上の黒色レジスト層を除去する工程、 黒色レジスト層およびマ スク層で覆われていない部分の金属層をニッチングにより除去する工程、 マスク層 を除去して金属層の露出した部分をアース部とする工程よりなることを特徴とする 請求項 7 5記載の透光性電磁波シールド材料の製造方法。  81. Step of providing a metal layer on a transparent substrate, step of providing a mask layer on a part of the metal layer, step of providing a patterned release layer on at least the metal layer, at least on the metal layer and the release layer A step of providing a black resist layer, a step of removing the peeled layer with a stripping liquid to remove the black resist layer thereon, and a step of niche removing the metal layer in a portion not covered with the black resist layer and the mask layer. The method for producing a light-transmitting electromagnetic wave shielding material according to claim 75, comprising: a step of removing the mask layer to make an exposed portion of the metal layer a ground portion.
8 2 . 透明基体上に金属層を設ける工程、 金属層上にパターニングされた 剥離層を設ける工程、 露出した金属層の一部にマスク層を設ける工程、 少なくとも 金属層および剥離層上に黒色レジスト層を設ける工程、 剥離層を剥離液で剥離する ことによりその上の黒色レジスト層を除去する工程、 黒色レジスト層およびマスク 層で覆われていない部分の金属層をエッチングにより除去する工程、 マスク層を除 去して金属層の露出した部分をアース部とする工程よりなることを特徴とする請求 項 7 5記載の透光性電磁波シールド材料の製造方法。  8 2. A step of providing a metal layer on a transparent substrate, a step of providing a patterned release layer on the metal layer, a step of providing a mask layer on a part of the exposed metal layer, a black resist on at least the metal layer and the release layer A step of providing a layer, a step of removing the black resist layer thereon by peeling the release layer with a peeling liquid, a step of etching away the metal layer in a portion not covered by the black resist layer and the mask layer, a mask layer The method for producing a light-transmitting electromagnetic wave shielding material according to claim 75, comprising a step of removing the exposed portion of the metal layer to form a ground portion.
8 3 . 透明基体上に金属層を設ける工程、 金属層上にバタ一ニングされた 剥雜層を設ける工程、 金属層および剥離層上に黒色レジス ト層を設ける工程、 剥離 層を剥離液で剥離することによりその上の黒色レジスト層を除去する工程、 黒色レ ジスト層を除ました部分の金属層をエッチングにより除去する工程、 黒色レジスト 層の一部を除去して金属層の露出した部分をアース部とする工程よりなることを特 徴とする請求項 7 5記載の透光性電磁波シールド材料の製造方法。 83. A step of providing a metal layer on a transparent substrate, a step of providing a buttered stripping layer on the metal layer, a step of providing a black resist layer on the metal layer and the stripping layer, and stripping the stripping layer with a stripping liquid A step of removing the black resist layer thereon by peeling off, a step of etching away the metal layer in a portion where the black resist layer has been removed, and a portion of the metal layer exposed by removing a part of the black resist layer The method for producing a translucent electromagnetic wave shielding material according to claim 75, characterized by comprising a step of setting a grounding portion.
8 4 . 剥雜層が印刷レジスト材料やフォ トレジスト材料からなる請求項 8 1〜 8 3のいずれかに記載の透光性電磁波シールド材料の製造方法。 84. The method for producing a translucent electromagnetic wave shielding material according to any one of claims 81 to 83, wherein the stripping layer comprises a printing resist material or a photoresist material.
8 5 . 黒色レジスト層の膜厚が O.l / m^ lO mである請求項 8 1〜 8 3の いずれかに記載の透光性電磁波シールド材料の製造方法。  85. The method for producing a light-transmitting electromagnetic wave shielding material according to any one of claims 81 to 83, wherein the thickness of the black resist layer is O.l / m ^ lOm.
8 6 . 黒色層が黒色電気析出層である請求項 7 4記載の透光性電磁波シー ルド材料。  86. The translucent electromagnetic wave shielding material according to claim 74, wherein the black layer is a black electrodeposition layer.
8 7 . 透明基体上に金厲層がパターン状に積層され、 金属層上にアース部 を除いて金属層と見当一致した黒色電気析出層が積層されていることを特徴とする 請求項 8 6記載の透光性電磁波シールド材料。  87. A metal layer is laminated on the transparent substrate in a pattern, and a black electrodeposition layer which coincides with the metal layer except for a ground portion is laminated on the metal layer. The translucent electromagnetic wave shielding material as described in the above.
8 8 . 黒色電気析出層が、 イオン性高分子由に黒色系粒子を含むものであ る請求項 8 7記載の透光性 I磁波シールド材料。  88. The translucent I-magnetic wave shielding material according to claim 87, wherein the black electrodeposition layer contains black particles derived from an ionic polymer.
8 9 . 黒色電気析出層が、 黒色系の導電性高分子からなるものである請求 項 8 7記載の透光性電磁波シールド材料。  89. The translucent electromagnetic wave shielding material according to claim 87, wherein the black electrodeposition layer is made of a black conductive polymer.
9 0 . イオン性高分子が、 アクリル樹脂、 ポリエステル樹脂、 ボリブタジ ェン樹脂、 マレイン榭脂、 エポキシ樹脂、 ウレタン榭脂、 ポリアミ ド樹脂あるいは その変性体をアミノ化またはカルボキシル化したものである請求項 8 8記載の透光 性電磁波シールド材料。  90. The ionic polymer is obtained by aminating or carboxylating an acrylic resin, a polyester resin, a polybutadiene resin, a maleic resin, an epoxy resin, a urethane resin, a polyamide resin or a modified product thereof. 8 Transparent electromagnetic wave shielding material described in 8.
9 1 . 黒色系粒子が、 カーボンブラック、 チタンブラック、 ァニリンブ ラックである請求項 8 8記載の透光性電磁波シ一ルド材料。  91. The translucent electromagnetic wave shielding material according to claim 88, wherein the black particles are carbon black, titanium black, and ananiline black.
9 2 . 導電性高分子が、 ピロ一ル、 ァニリン、 チォフェンおよびその誘導 体の重合物である請求項 8 9記載の透光性電磁波シールド材料。  92. The translucent electromagnetic wave shielding material according to claim 89, wherein the conductive polymer is a polymer of pyrrole, aniline, thiophene and a derivative thereof.
9 3 . 透明基体上に金属層をパターン状に積層する工程と、 金属層上の一 部にマスク層を積層する工程、 黒色系粒子を含むィォン性高分子の溶液中に前工程 で金属層およびマスク層を積雇した透明基体を対向電極と共に浸漬して通電するこ とにより金属層上に黒色電気析出層を稜層する工程、 マスク層を除去して金属層の 露出した部分をアース部とする工程よりなることを特徴とする請求項 8 7記載の透 光性電磁波シールド材料の製造方法。 9 3. A step of laminating a metal layer in a pattern on a transparent substrate, a step of laminating a mask layer on a part of the metal layer, and a step of laminating the metal layer in a solution of an ionizable polymer containing black particles in a previous step. And a step of immersing the transparent substrate with the mask layer together with the counter electrode and energizing to form a black electrodeposition layer on the metal layer by energizing the metal layer. The method for producing a translucent electromagnetic wave shielding material according to claim 87, comprising a step of using the exposed portion as a ground portion.
9 4 . 透明基体上に金属層をパターン状に積層する工程と、 黒色系粒子を 含むイオン性髙分子の溶液中に前工程で金属層を積層した透明基体を対向電極と共 に浸漬して通電することにより金属層上に黒色電気析出層を稹層する工程、 黒色電 気析出層の一部を除まして金属層の露出した部分をアース部とする工程よりなるこ とを特徵とする請求項 8 7記載の透光性電磁波シールド材料の製造方法。  9 4. A step of laminating the metal layer on the transparent substrate in a pattern, and immersing the transparent substrate having the metal layer laminated in the previous step together with the counter electrode in a solution of an ionic polymer containing black particles. A step of forming a black electrodeposition layer on the metal layer by applying a current, and a step of removing a part of the black electrodeposition layer to make an exposed part of the metal layer a ground part. Item 87. The method for producing a translucent electromagnetic wave shielding material according to Item 87.
9 5 . 透明基体上に金属層を 層する工程と、 金属層上にポジ型レジスト 層をパターン状に積層する工程、 ポジ型レジスト層で覆われていない部分の金^層 をニッチングにより除去する工程、 一部を残してポジ型レジスト層を露光および現 像により除去する工程、 黒色系粒子を含むイオン性高分子の溶液中に前工程で金属 層およびポジ型レジスト屠を稷層した透明基体を対向電極と共に浸漬して通電する ことにより金属層上に黒色電気析出層を積層する工程、 残存のポジ型レジスト層を 除去して金属層の露出した部分をアース部とする工程よりなることを特徴とする請 求項 8 7記載の透光性電磁波シールド材料の製造方法。  9 5. A step of layering a metal layer on a transparent substrate, a step of laminating a positive resist layer on the metal layer in a pattern, and removing a portion of the gold layer not covered with the positive resist layer by niching. Process, exposing the positive resist layer by exposing and developing, leaving a part, transparent substrate in which a metal layer and a positive resist layer were formed in a previous step in a solution of an ionic polymer containing black particles. The black electrodeposition layer on the metal layer by immersing the black electrodeposition layer with the counter electrode and energizing it, and removing the remaining positive resist layer to make the exposed part of the metal layer a ground part. The method for producing a light-transmitting electromagnetic wave shielding material according to claim 87, wherein the method is characterized in that:
9 6 . 透明基体上に金属環をパターン状に積層する工程と、 金厲層上の一 部にマスク層を檳層する工程、 導電性高分子のモノマーの溶液中に前工程で金属層 およびマスク餍を積層した透明基体を対向電極と共に浸漬して通電することにより 金属層上に黒色電気析出層を穣層する工程、 マスク層を除去して金属層の露出した 部分をアース部とする工程よりなることを特徴とする請求項 8 7記載の透光性電磁 波シールド材料の製造方法。  96. A step of laminating a metal ring in a pattern on a transparent substrate, a step of forming a benign layer of a mask layer on a portion of the metal layer, A step of immersing the transparent substrate on which the mask 積 層 is laminated together with the counter electrode and energizing the same to deposit a black electrodeposition layer on the metal layer, and a step of removing the mask layer to make an exposed portion of the metal layer a ground portion. The method for producing a translucent electromagnetic wave shielding material according to claim 87, characterized by comprising:
9 7 . 透明基体上に金属層をパターン状に稷層する工程と、 導電性高分子 のモノマーの溶液中に前工程で金属層を積層した透明基体を対向電極と共に浸潰し て通電することにより金属餍上に黒色電気析出層を積層する工程、 黒色電気析出層 の一部を除去して金属層の露出した部分をアース部とする工程よりなることを特徴 とする請求項 8 7記載の透光性電磁波シールド材料の製造方法。 9 7. The step of forming a metal layer in a pattern on the transparent substrate, and the step of immersing the transparent substrate with the metal layer laminated in the previous step together with the counter electrode in a solution of a monomer of the conductive polymer together with the counter electrode to conduct electricity. Laminating a black electrodeposition layer on a metal layer, and removing a part of the black electrodeposition layer to make the exposed part of the metal layer a ground part. 88. The method for producing a translucent electromagnetic wave shielding material according to claim 87.
9 8 . 透明基体上に金属層を積層する工程と、 金属層上にポジ型レジス ト 層をパターン状に積層する工程、 ポジ型レジスト層で覆われていない部分の金属層 をエッチングにより除去する工程、 一部を残してポジ型レジスト層を露光および現 像によ り除去する工程、 導電性高分子のモノマーの溶液中に前工程で金属層および ポジ型レジス ト層を稜層した透明基体を対向電極と共に浸漬して通電することによ り金属層上に黒色電気析出層を積層する工程、 残存のポジ型レジスト層を除去して 金属層の露出した部分をアース部とする工程よりなることを特¾とする請求項 8 7 記載の透光性電磁波シールド材料の製造方法。  9 8. A step of laminating a metal layer on a transparent substrate, a step of laminating a positive resist layer on the metal layer in a pattern, and removing portions of the metal layer that are not covered with the positive resist layer by etching. Process, exposing and removing the positive resist layer by exposing and developing a part of the transparent resist, transparent substrate in which the metal layer and the positive resist layer were ridged in the previous process in a conductive polymer monomer solution The black electrodeposition layer on the metal layer by immersing the metal electrode with the counter electrode and energizing it, and removing the remaining positive resist layer to make the exposed part of the metal layer a ground part. 9. The method for producing a translucent electromagnetic wave shielding material according to claim 8, wherein
9 9 . 黒色電気析出層が、 黒色系の色調を有する電気めつき被膜である請 求項 8 7記載の透光性電磁波シ―ルド材料。  99. The translucent electromagnetic wave shielding material according to claim 87, wherein the black electrodeposition layer is an electroplated film having a black color tone.
1 0 0 . 黒色系の色調を有する電気めつき被膜が、 ニッケル系、 クロム 系、 ロジウム系、 スズ-ニッケル-銅三元合金系またはスズ-ニッケル-モリブデン三 元合金系である請求項 9 9記載の透光性電磁波シールド材料。  100. The electric plating film having a black color tone is a nickel-based, chromium-based, rhodium-based, tin-nickel-copper ternary alloy system or tin-nickel-molybdenum ternary alloy system. The translucent electromagnetic wave shielding material as described in the above.
1 0 1 . 透明基体上に金属層をパターン状に積層する工程と、 金属層上の 一部にマスク層を積層する工程、 黒色系の色調を有する電気めつき被膜を形成する めっき液中に前工程で金属層およびマスク層を積層した透明基体を対向電極と共に 浸潰して通電することにより金属層上に黒色鼇気析出展を積層する工程、 マスク層 を除去して金属層の露出した部分をアース部とする工程よりなることを特徴とする 8 7記載の透光性電磁波シ―ルド材料の製造方法。  101. A step of laminating a metal layer in a pattern on a transparent substrate, a step of laminating a mask layer on a part of the metal layer, and forming an electroplating film having a black color tone in a plating solution. A step in which the transparent substrate on which the metal layer and the mask layer are laminated in the previous step is immersed together with the counter electrode and a current is applied, thereby laminating a black gas deposit on the metal layer. The exposed portion of the metal layer by removing the mask layer 87. The method for producing a translucent electromagnetic wave shielding material according to 87, wherein the method comprises a step of setting a grounding portion.
1 0 2 . 透明基体上に金属層をパターン状に積層する工程と、 黒色系の色 調を有する電気めつき被膜を形成するめつき液中に前工程で金属種を積層した透明 基体をお向電極と共に浸潢して通鼋することにより金属層上に黒色電気析出層を積 層する工程、 黒色電気析出層の一部を除去して金属層の露出した部分をアース部と する工程よりなることを特徴とする請求項 8 7記載の透光性電磁波シールド材料の 製造方法。 102. A process of laminating a metal layer in a pattern on a transparent substrate, and a process of laminating a metal species in a previous step in a plating solution for forming an electroplating film having a black color tone. A step of depositing a black electrodeposited layer on the metal layer by immersing and passing through with the electrode, and a step of removing a part of the black electrodeposited layer and using the exposed part of the metal layer as a ground part. The transparent electromagnetic wave shielding material according to claim 8, wherein Production method.
1 0 3 . 透明基体上に金属層を積層する工程と、 金属層上にポジ型レジス ト層をパターン状に積層する工程、 ポジ型レジストで覆われていない部分の金属層 をエッチングにより除去する工程、 一部を残してポジ型レジスト層を露光および現 像により除去する工程、 黒色系の色調を有する電気めつき被膜を形成するめつき液 ώに前工程で金属層およびポジ型レジスト層を積層した透明基体を対向電極と共に 浸漬して通電することにより金属層上に黒色電気析出層を積層する工程、 残存のポ ジ型レジス ト層を除去して金属層の露出した部分をアース部とする工程よりなるこ とを特¾とする請求項 8 7記載の透光性電磁波シールド材料の製造方法。  103. A step of laminating a metal layer on a transparent substrate, a step of laminating a positive resist layer on the metal layer in a pattern, and removing portions of the metal layer that are not covered with the positive resist by etching. Process, exposing the positive resist layer by exposing and developing, leaving a part, laminating the metal layer and the positive resist layer in the previous process on the plating solution for forming the electroplating film having a black color tone Immersing the transparent substrate thus formed together with the counter electrode and energizing to deposit a black electrodeposition layer on the metal layer, removing the remaining post-type resist layer and leaving the exposed portion of the metal layer as the ground portion 88. The method for producing a translucent electromagnetic wave shielding material according to claim 87, comprising a step.
1 0 4 . 黒色層が黒色を呈する金属化合物からなり、 かつ金属層と一体化 している請求項 7 4記載の透光性電磁波シ一ルド材料。  104. The translucent electromagnetic wave shield material according to claim 74, wherein the black layer is made of a metal compound exhibiting black, and is integrated with the metal layer.
1 0 5 . 透明基体上にパターン状に形成された金属層の表層部分がアース 部を除いて黒色を呈する金属化合物であることを特徴とする請求項 1 0 4記載の透 光性電磁波シールド材料。  105. The translucent electromagnetic wave shielding material according to claim 104, wherein a surface portion of the metal layer formed in a pattern on the transparent substrate is a metal compound exhibiting a black color except for a ground portion. .
1 0 6 . 透明基体上に金属層をパターン状に設ける工程と、 金厲餍上の一 部にマスク層を設ける工程、 化成処理を施すことによ り金属層の表層部分を黒色を 呈する金属化合物とする工程、 マスク層を除去して金属層の露出した部分をアース 部とする工程よりなることを特徴とする請求項 1 0 5記載の透光性電磁波シ一ルド 材料の製造方法。  106. A step of providing a metal layer in a pattern on a transparent substrate, a step of providing a mask layer on a portion of the metal, and a metal in which the surface layer of the metal layer exhibits a black color by performing a chemical conversion treatment. The method for producing a translucent electromagnetic wave shielding material according to claim 105, further comprising: a step of forming a compound; and a step of removing a mask layer to make an exposed portion of the metal layer a ground portion.
1 0 7 . 透明基体上に金属層を設ける工程と、 金属層上にポジ型レジス ト層 をパターン状に設ける工程、 ポジ型レジスト層で覆われていない部分の金属層を エッチングにより除去する工程、 一部を残してポジ型レジスト層を露光および現像 により除去する工程、 化成処理を施すことにより金属層の表層部分を黒色を呈する 金属化合物とする工程、 残存のポジ型レジス ト層を除去して金属層の露出した部分 をアース部とする工程よりなることを特徴とする請求項 1 0 5記載の透光拄電磁波 シールド材料の製造方法。 107. A step of providing a metal layer on a transparent substrate, a step of providing a positive resist layer in a pattern on the metal layer, and a step of etching away a portion of the metal layer that is not covered with the positive resist layer Exposing and developing the positive resist layer by exposing and developing a part thereof, forming a black metal compound on the surface layer of the metal layer by performing a chemical conversion treatment, and removing the remaining positive resist layer. The translucent electromagnetic wave according to claim 105, further comprising the step of: setting the exposed portion of the metal layer to a ground portion. Manufacturing method of shielding material.
1 0 8 . フィルムからなる透明な第一基体上に金属層がパターン状に設け られ、 金属層上',こアース部を除いて金属層と見当一致した黒色レジス ト層が設けら れた貼付シートが、 接着層を介して、 黒色レジスト層が外表面となるように板、 立 体物または機能性層を有するフィルムからなる透明な第二基体に貼り合わせられて いることを特徴とする透光性電磁波シ一ルド材料。  108. Adhesion in which a metal layer is provided in a pattern on a transparent first substrate composed of a film, and a black resist layer is provided on the metal layer except for the ground part, which is in register with the metal layer. A sheet characterized in that the sheet is bonded via an adhesive layer to a transparent second substrate made of a plate, a solid or a film having a functional layer so that the black resist layer becomes the outer surface. Optical electromagnetic wave shield material.
1 0 9 . フィルムからなる透明な第一基体上に金属層がパターン状に設け られ、 金属層上にアース部を除いて金属層と見当一致した黒色電気析出層が設けら れた貼付シート力 接着層を介して、 黒色電気析出層が外表面となるように板、 立 体物または機能性層を有するフィ ルムからなる透明な第二基体に貼り合わせられて いることを特徴とする透光性電磁波シールド材料。  109. Adhesive sheet strength in which a metal layer is provided in a pattern on a transparent first substrate made of a film, and a black electrodeposition layer which is in register with the metal layer except for a ground portion is provided on the metal layer. Characterized by being bonded to a transparent second substrate made of a plate, a solid body or a film having a functional layer via an adhesive layer so that the black electrodeposition layer becomes the outer surface. Electromagnetic shielding material.
1 1 0 . フィルムからなる透明な第一基体上に金属層がパターン状に設け られ、 金属層の表層部分がアース部を除いて黒色を呈する金属化合物である貼付 シート力、 接着層を介して、 黒色を呈する金属化合物が外表面となるように板、 立 体物または機能性層を有するフィルムからなる透明な第二基体に貼り合わせられて いることを特徴とする透光性電磁波シ一ルド材料。  110. A metal layer is provided in a pattern on a transparent first substrate made of a film, and the surface layer of the metal layer is a metal compound that exhibits a black color excluding the ground portion. A light-transmitting electromagnetic wave shield, which is attached to a transparent second substrate made of a plate, a solid, or a film having a functional layer so that a metal compound exhibiting black color becomes an outer surface. material.
1 1 1 . 剥離層と、 剥離層の上にパターン状に設けられた金属層と、 金厲 屑の上に金属層と見当一致して設けられた黒色レジスト層とからなる転写層が、 接 着層を介して、 剥離層が外表面となるように板、 立体物または機能性層を有する フィ ルムからなる透明な第二基体上に転写されており、 かつ剥離層側で金属層が アース部のみ露出していることを特徵とする透光性電磁波シ一ルド材料 c  1 1 1. The transfer layer consisting of a release layer, a metal layer provided in a pattern on the release layer, and a black resist layer provided in register with the metal layer on the metal scrap is in contact with the transfer layer. It is transferred to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer so that the release layer becomes the outer surface via the adhesion layer, and the metal layer is grounded on the release layer side. Translucent electromagnetic wave shielding material characterized in that only the part is exposed c
1 1 2 . 剥離曆と、 剥離層の上にパターン状に設けられた金属層と、 金属 層の上に金属層と見当一致して設けられた黒色電気析出層とからなる転写層が、 接 着層を介して、 剥離層が外表面となるように板、 立体物または機能性層を有する フィルムからなる透明な第二基体上に転写されており、 かつ剥離層側で金属餍が アース部のみ露出していることを特徴とする透光性電磁波シ一ルド材料 1 1 2. The transfer layer consisting of the release layer, a metal layer provided in a pattern on the release layer, and a black electrodeposition layer provided on the metal layer in register with the metal layer is contacted. It is transferred onto a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via the attachment layer so that the release layer becomes the outer surface, and the metal layer is formed on the release layer side. A translucent electromagnetic wave shielding material characterized in that only the ground portion is exposed.
1 1 3 . 剥雜層と、 剥離層の上にパターン状に設けられ且つ表層部分が黒 色を呈する金属化合物である金属層とからなる転写層が、 接着層を介して、 剥雜層 力 s外表面となるように板、 立体物または機能性層を有するフィルムからなる透明な 第二基体上に転写されており、 かつ剥離層側で金属層がアース部のみ露出している ことを特徴とする透光性電磁波シールド材料。 1 13. The transfer layer consisting of the stripping layer and a metal layer that is a metal compound that is provided in a pattern on the stripping layer and whose surface layer exhibits a black color is formed through the adhesive layer. s It is transferred to a transparent second substrate composed of a plate, a three-dimensional object, or a film having a functional layer so as to be the outer surface, and only the ground layer is exposed on the release layer side. Translucent electromagnetic wave shielding material.
1 1 4 . 剥雜層と、 剥雜層の上に設けられたパターン状の脱色部とその他 の非脱色部とからなる黒染色層と、 黒染色層の上に非脱色部と見当一致して設けら れた金属層とからなる転写層が、 接着層を介して、 剥離層が外表面となるように 板、 立体物または機能性層を有するフィルムからなる透明な第二基体上に耘写され ており、 かつ剥離雇側で金属層がアース部のみ露出していることを特徴とする透光 性鼋磁波シールド材料。  1 1 4. The black dyed layer consisting of the stripping layer, the pattern-shaped bleached part provided on the stripping layer, and the other non-bleaching part is in register with the non-bleaching part on the black staining layer. A transfer layer composed of a metal layer provided on a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer, via an adhesive layer, such that the release layer is on the outer surface. A translucent magnetic shielding material characterized in that the metal layer is exposed only on the ground portion on the side of the peeling member, which is photographed.
1 1 5 . フィルムからなる透明な第一基体全面に金属層を設け、 金属層上 の一部にマスク層を設け、 少なくとも金属層およびマスク餍上に黒色レジスト層を パターン状に設け、 黒色レジスト層およびマスク層で覆われていない部分の金属層 をエッチング液を用いて除去し、 マスク層を除去して金属層の露出した部分をァー ス部とすることより作製した貼付シートを、 接着層を介して、 黒色レジスト層が外 表面となるように板、 立体物または機能性層を有するフィルムからなる透明な第二 基体上に貼り合わせることを特徴とする透光性電磁波シールド材料の製造方法。  1 15. A metal layer is provided on the entire surface of the transparent first substrate made of a film, a mask layer is provided on a part of the metal layer, and a black resist layer is provided in a pattern on at least the metal layer and the mask 、. Adhesive sheet produced by removing the metal layer of the layer not covered with the mask layer using an etchant and removing the mask layer to make the exposed part of the metal layer a base part is bonded. Manufacturing a light-transmitting electromagnetic wave shielding material, characterized in that a black resist layer is bonded to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via a layer so that the black resist layer becomes an outer surface. Method.
1 1 6 . フィルムからなる透明な第一基体全面に金属層を設け、 金属層上 に黒色レジスト層をパターン状に設け、 露出した金属層上の一部にマスク層を設 け、 黒色レジスト層およびマスク雇で覆われていない部分の金属 をエッチング液 を用いて除去し、 マスク ¾を除去して金属層の露出した部分をアース部とすること より作製した貼付シートを、 接着層を介して、 黒色レジスト層が外表面となるよう に板、 立体物または機能性層を有するフィルムからなる透明な第二基体上に貼り合 わせることを特徴とする透光性電磁波シ―ルド材料の製造方法 3 1 16. A metal layer is provided on the entire surface of the transparent first substrate made of a film, a black resist layer is provided on the metal layer in a pattern, and a mask layer is provided on a part of the exposed metal layer. Using an etching solution, the metal not covered by the mask is removed using an etchant, and the mask を is removed, and the exposed portion of the metal layer is used as the ground part. Bonded on a transparent second substrate composed of a plate, a three-dimensional object, or a film having a functional layer so that the black resist layer is the outer surface. Method 3 for producing translucent electromagnetic wave shielding material
1 1 7 . フィルムからなる透明な第一基体全面に金属層を設け、 金属層上 に黒色レジスト層をパターン状に設け、 黒色レジスト層で覆われていない部分の金 厲層をエッチング液を用いて除去し、 黒色レジスト層の一部を狳去して金属層の露 出した部分をアース部とすることより作製した貼付シートを、 接着層を介して、 黒 色レジスト層が外表面となるように板、 立体物または機能性層を有するフィルムか らなる透明な第二基体上に貼り合わせることを特徴とする透光性電磁波シ―ルド材 料の製造方法。 . 1 17. A metal layer is provided on the entire surface of the transparent first substrate made of a film, a black resist layer is provided in a pattern on the metal layer, and a portion of the metal layer that is not covered with the black resist layer is etched using an etchant. Then, a part of the black resist layer is removed, and the exposed part of the metal layer is used as the ground part. Then, the adhesive sheet is made, and the black resist layer becomes the outer surface via the adhesive layer. A method for producing a light-transmitting electromagnetic wave shielding material, comprising laminating a transparent substrate made of a plate, a three-dimensional object, or a film having a functional layer. .
1 1 8 . 黒色レジスト層をパターン状に設ける工程が、 黒色の染顔料を含 有する感光性樹脂インキを金属層上に塗布し、 フォ トマスクを用いて露光し、 現像 するものである請求項 1 1 4〜 1 1 7のいずれかに記載の透光性電磁波シールド材 料の製造方法。  118. The step of providing a black resist layer in a pattern, comprising applying a photosensitive resin ink containing a black dye / pigment onto the metal layer, exposing to light using a photomask, and developing. 14. The method for producing a translucent electromagnetic wave shielding material according to any one of 14 to 11.
1 1 9 . 黒色レジスト層をパターン状に設ける工程が、 金厲層上にパ夕一 ニングされた遊離層を設け、 金属層および遊離層上に黒色レジスト層を設け、 遊離 層を遊離除去液で除去することによりその上の黒色レジス ト層も除去するものであ る請求項 1 1 4〜 1 1 7のいずれかに記載の透光性電磁波シールド材科の製造方  1 19. The step of providing the black resist layer in a pattern is to provide a patterned free layer on the metal layer, provide a black resist layer on the metal layer and the free layer, and remove the free layer. The method for producing a translucent electromagnetic wave shielding material according to any one of claims 11 to 11, wherein the black resist layer thereover is also removed by removing the material.
1 2 0 . フィルムからなる透明な第一基体上に金属層をパターン状に設 け、 金属層上の一部にマスク層を設け、 黒色系粒子を含むイオン性高分子の溶液中 に前工程で金属層およびマスク層を設けた透明な第一基体を対向電極と共に浸潰し て通電することにより金属層上に黒色電気析出層を設け、 マスク層を除去して金厲 層の露出した部分をアース部とすることにより作製した貼付シ一トを、 接着 を介 して、 黒色電気析出層が外表面となるように板、 立体物または機能性層を有する フィルムからなる透明な第二基体上に貼り合わせることを特徴とする透光性電磁波 シールド材料の製造方法。 120. A metal layer is provided in a pattern on a transparent first substrate made of a film, a mask layer is provided on a part of the metal layer, and the pre-process is performed in a solution of an ionic polymer containing black particles. The transparent first substrate provided with the metal layer and the mask layer is immersed together with the counter electrode and energized to form a black electrodeposition layer on the metal layer, and the mask layer is removed to expose the exposed portion of the metal layer. The adhesive sheet prepared as the ground portion is bonded onto a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer so that the black electrodeposited layer becomes the outer surface via bonding. A method for producing a light-transmitting electromagnetic wave shielding material, characterized in that it is bonded to a material.
1 2 1 . フィルムからなる透明な第一基体上に金属層をパターン状に設 け、 黒色系粒子を含むィ才ン性高分子の溶液中に前工程で金属層を設けた透明な第 一基体を対向電極と共に浸潰して通電することにより金属層上に黒色電気析出層を 設け、 黒色電気析出層の一部を除去して金属層の露出した部分をアース部とするこ とにより作製した貼付シートを、 接着層を介して、 黒色電気析出層が外表面となる ように板、 立体物または機能性層を有するフィルムからなる透明な第二基体上に貼 り合わせることを特徴とする透光性電磁波シ一ルド材料の製造方法。 12 1. A transparent first substrate in which a metal layer is provided in a pattern on a transparent first substrate made of a film, and the metal layer is provided in a previous step in a solution of a macromolecular polymer containing black particles. The substrate was immersed together with the counter electrode and energized to provide a black electrodeposition layer on the metal layer, a part of the black electrodeposition layer was removed, and the exposed part of the metal layer was used as a ground part. The adhesive sheet is attached to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer such that the black electrodeposited layer becomes the outer surface. A method for producing a light-emitting electromagnetic shielding material.
1 2 2 . フィルムからなる透明な第一基体全面上に金属層を設け、 金属層 上にポジ型レジスト層をパターン状に設け、 ポジ型レジスト層で覆われていない部 分の金属層をエッチングにより除まし、 一部を残してポジ型レジスト層を露光およ び現像により除去し、 黒色系粒子を含むィォン性高分子の溶液中に前工程で金属層 およびポジ型レジスト層を設けた透明な第一基体を対向電極と共に浸潰して通電す ることにより金属層上に黒色電気析出層を設け、 残存のポジ型レジスト層を除去し て金属層の露出した部分をアース部とすることにより作製した貼付シートを、 接着 層を介して、 黒色電気析出層が外表面となるように板、 立体物または機能性層を有 するフィルムからなる透明な第二基体上に貼り合わせることを特徵とする透光性電 磁波シールド材料の製造方法。  1 2 2. A metal layer is provided on the entire surface of the transparent first substrate made of a film, a positive resist layer is provided in a pattern on the metal layer, and the metal layer in an area not covered with the positive resist layer is etched. The positive resist layer is removed by exposure and development except for a part, and the metal layer and the positive resist layer are provided in the previous step in a solution of the ionizable polymer containing black particles. By immersing the first base together with the counter electrode and applying a current, a black electrodeposition layer is provided on the metal layer, the remaining positive resist layer is removed, and the exposed part of the metal layer is used as a ground part. It is characterized in that the prepared adhesive sheet is bonded via an adhesive layer to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer so that the black electrodeposited layer becomes the outer surface. Translucent electricity Manufacturing method of magnetic wave shielding material.
1 2 3 . フィルムからなる透明な第一基体上に金属層をパターン状に設 け、 金属層上の一部にマスク層を設け、 導電性高分子のモノマーの溶液中に前工程 で金属層およびマスク層を設けた透明な第一基体を対向電極と共に浸潰して通電す ることにより金属層上に黒色電気析出層を設け、 マスク層を除去して金属層の露出 した部分をアース部とすることにより作製した貼付シートを、 接着層を介して、 黒 色電気析出層が外表面となるように板、 立体物または機能性層を有するフィルムか らなる透明な第二基体上に貼り合わせることを特徴とする透光性電磁波シ一ルド材 钭の製造方法。 1 2 3. A metal layer is provided in a pattern on a transparent first substrate made of a film, a mask layer is provided on a part of the metal layer, and the metal layer is formed in a solution of a conductive polymer monomer in a previous step. Then, the transparent first substrate provided with the mask layer is immersed together with the counter electrode and energized to form a black electrodeposition layer on the metal layer. The adhesive sheet prepared in this manner is bonded via an adhesive layer to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer so that the black electrodeposited layer becomes the outer surface. A method for producing a light-transmitting electromagnetic wave shield material, comprising:
1 2 4 . フィルムからなる透明な第一基体上に金属層をパターン状に設 け、 導電性高分子のモノマーの溶液中に前工程で金属層を設けた透明な第一基体を 対向電極と共に浸漬して通電することにより金属層上に黒色電気析出層を設け、 黒 色電気析出層の一部を除去して金属層の露出した部分をアース部とすることにより 作製した貼付シートを、 接着層を介して、 黒色電気析出層力 s'外表面となるように 板、 立体物または機能性層を有するフィルムからなる透明な第二基体上に貼り合わ せることを特徵とする透光性電磁波シールド材料の製造方法。 1 2 4. A metal layer is provided in a pattern on a transparent first substrate made of a film, and the transparent first substrate with a metal layer provided in a previous step in a solution of a monomer of a conductive polymer is provided together with a counter electrode. The black sheet is deposited on the metal layer by immersion and electricity is applied, a part of the black electrodeposition layer is removed, and the exposed part of the metal layer is used as the ground part to bond the adhesive sheet. A translucent electromagnetic wave characterized in that it is bonded to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer so as to have a black electrodeposition layer s ' outer surface via the layer. Manufacturing method of shielding material.
1 2 5 . フィルムからなる透明な第一基体全面上に金属層を設け、 金属層 上にポジ型レジスト層をパターン状に設け、 ポジ型レジスト層で覆われていない部 分の金属層をエッチングにより除まし、 一部を残してポジ型レジス ト雇を露光およ び現像により除去し、 導罨性高分子のモノマーの溶液中に前工程で金属層およびボ ジ型レジスト層を設けた透明な第一基体を対向電極と共に浸漬して通罨することに より金属層上に黒色電気析出層を設け、 残存のポジ型レジスト層を除まして金属層 の露出した部分をアース部とすることにより作製した貼付シートを、 接着) iを介し て、 黒色電気析出層力 f外表面となるように板、 立体物または機能性層を有するフィ ルムからなる透明な第二基体上に貼り合わせることを特徴とする透光性電磁波シ一 ルド材料の製造方法。 1 2 5. A metal layer is provided on the entire surface of the transparent first substrate made of film, a positive resist layer is provided in a pattern on the metal layer, and portions of the metal layer not covered with the positive resist layer are etched. The positive resist is removed by exposing and developing, leaving a part, and the metal layer and the body resist layer are provided in the previous step in a solution of the monomer of the compressible polymer. By immersing the first substrate together with the counter electrode and compressing it, a black electrodeposition layer is provided on the metal layer, and the exposed portion of the metal layer is used as a ground part by removing the remaining positive resist layer. The resulting adhesive sheet is bonded to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer so as to have a black electrodeposition layer force f via an adhesive (i). Characteristic translucent electromagnetic wave Method of manufacturing the field material.
1 2 6 . フィルムからなる透明な第一基体上に金属層をパターン状に設 け、 金厲層上の一部にマスク層を設け、 黒色系の色調を有する電気めつき被膜を形 成するめつき液 に前工程で金属層およびマスク層を設けた透明な第一基体を対向 電極と共に浸-潰して通電することにより金属層上に黒色電気析出層を設け、 マスク 層を除去して金属層の露出した部分をアース部とすることにより作製した貼付シ— トを、 接着層を介して、 黒色電気析出層が外表面となるように板、 立体物または機 能性層を有するフィルムからなる透明な第二基体上に貼り合わせることを特徴とす る透光性電磁波シ―ルド材料の製造方法。 1 26. A metal layer is provided in a pattern on a transparent first substrate made of a film, and a mask layer is provided on a part of the metal layer to form an electroplating film having a black color tone. The transparent first substrate provided with the metal layer and the mask layer in the previous step was immersed and crushed together with the counter electrode in the immersion liquid, and a black electrodeposition layer was provided on the metal layer by applying a current, and the mask layer was removed to remove the metal layer. The adhesive sheet produced by setting the exposed portion of the film to the ground portion is made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer such that the black electrodeposited layer becomes the outer surface. A method for producing a light-transmitting electromagnetic wave shield material, comprising laminating on a transparent second substrate.
1 2 7 . フィルムからなる透明な第一基体上に金属層をパターン状に設 け、 黒色系の色調を有する電気めつき被膜を形成するめつき液中に前工程で金属層 を設けた透明な第一基体を対向電極と共に浸漬して通電することにより金属層上に 黒色電気析出層を設け、 黒色電気析出層の一部を除去して金属層の露出した部分を アース部とすることにより作製した貼付シートを、 接着層を介して、 黒色電気析出 層が^ ·表面となるように板、 立体物または機能性層を有するフィルムからなる透明 な第二基体上に貼り合わせることを特徵とする透光性電磁波シールド材料の製造方 1 27. A metal layer is formed in a pattern on a transparent first substrate made of a film, and an electroplating film having a black color tone is formed. The first substrate is immersed together with the counter electrode and energized to provide a black electrodeposition layer on the metal layer, and a part of the black electrodeposition layer is removed to make the exposed part of the metal layer a ground part. The adhesive sheet is bonded to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer so that the black electrodeposition layer becomes a surface. How to manufacture translucent electromagnetic shielding materials
1 2 8 . フィルムからなる透明な第一基体全面上に金属層を設け、 金属層 上にポジ型レジスト層をパターン状に設け、 ポジ型レジスト層で覆われていない部 分の金厲 «をエッチングにより除去し、 一部を残してポジ型レジスト層を露光およ び現像により除去し、 黒色系の色調を有する電気めつき被膜を形成するめつき液中 に前工程で金属層およびポジ型レジスト層を設けた透明な第一基体を対向電極と共 に浸潰して通電することにより金属層上に黒色電気析出層を設け、 残存のポジ型レ ジスト層を除去して金厲層の露出した部分をアース部とすることにより作製した貼 付シートを、 接着層を介して、 黒色電気析出層が外表面となるように板、 立体物ま たは機能性層を有するフィルムからなる透明な第二基体上に貼り合わせることを特 徴とする透光性電磁波シールド材料の製造方法。 1 28. A metal layer is provided on the entire surface of the transparent first substrate made of a film, a positive resist layer is provided on the metal layer in a pattern, and a portion of the metal not covered with the positive resist layer is exposed. The positive resist layer is removed by exposure and development, leaving a part of the metal layer and the positive resist in the previous step in a plating solution that forms an electroplating film having a black color tone. The transparent first substrate provided with the layer was immersed together with the counter electrode and energized to provide a black electrodeposition layer on the metal layer, and the remaining positive resist layer was removed to expose the metal layer. The adhesive sheet produced by using the portion as a ground portion is placed on a transparent sheet made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer such that the black electrodeposition layer is on the outer surface. It is particularly suitable for bonding on two substrates. A method for producing a light-transmitting electromagnetic wave shielding material.
1 2 9 . フィルムからなる透明な第一基体上に金厲層をパターン状に設 け、 金属層上の一部にマスク層を設け、 化成処理を施して金属層のマスク層で覆わ れていない表 ®部分を黒色を呈する金属化合物とし、 マスク層を除去して金属層の 露出した部分をアース部とすることにより作製した貼付シ一トを、 接着屠を介し て、 黒色を呈する金厲化合物が外表面となるように板、 立体物または機能性層を有 するフィルムからなる透明な第二基体上に貼り合わせることを特徴とする透光性電 磁波シールド材料の製造方法。 1 2 9. A metal layer is provided in a pattern on a transparent first substrate made of a film, a mask layer is provided on a part of the metal layer, and a chemical conversion treatment is applied to cover the metal layer with the mask layer. The adhesive sheet prepared by removing the non-displayed portion with a metal compound having a black color and removing the mask layer to make the exposed portion of the metal layer a ground portion was bonded to a metal sheet having a black color by bonding. A method for producing a light-transmitting electromagnetic wave shielding material, characterized in that a compound is attached to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer so as to have an outer surface.
1 3 0 . フィルムからなる透明な第一基体全面に金属層を設け、 金属層上 にポジ型レジスト層をパターン状に設け、 ポジ型レジスト層で覆われていない部分 の金属層をエッチングにより除去し、 一部を残してポジ型レジスト層を露光および 現像により除去し、 化成処理を施して金属層のポジ型レジスト層で覆われていない 表層部分を黒色を呈する金属化合物とし、 残存のポジ型レジスト層を除去して金属 層の露出した部分をアース部とすることにより作製した貼付シートを、 接着層を介 して、 黒色を呈する金属化合物が外表面となるように板、 立体物または機能性層を 有するフィルムからなる透明な第二基体上に貼り合わせることを特徴とする透光性 電磁波シールド材料の製造方法。 130. A metal layer is provided on the entire surface of the transparent first substrate made of film, a positive resist layer is provided in a pattern on the metal layer, and the metal layer in portions not covered with the positive resist layer is removed by etching. The positive resist layer is removed by exposing and developing, leaving a part, and a chemical conversion treatment is performed to convert the surface layer of the metal layer that is not covered with the positive resist layer into a black metallic compound. The adhesive sheet prepared by removing the resist layer and making the exposed part of the metal layer an earth part, through an adhesive layer, a plate, a three-dimensional object, or a function so that the black metal compound becomes the outer surface. A method for producing a light-transmitting electromagnetic wave shielding material, comprising laminating on a transparent second substrate made of a film having a conductive layer.
1 3 1 . フィルムからなる第一基体上に剥離層を設け、 剥離層上に黒染色 層を設け、 黒染色層上に金属層を設け、 金属層上にレジスト層をパターン状に設 け、 レジスト層で覆われていない部分の金属層をエッチング液を用いて涂去するェ 程を順次行い、 エッチング工程においてパターン化された金厲層で覆われていない 部分の黒染色層をエツチング液により脱色することにより作製した転写シートを、 接着層を介して、 第一基体が外表面となるように板、 立体物または機能性層を有す るフィルムからなる透明な第二基体上に貼り合わせた後、 第一基体のみを剥雜し、 黒染色層の非脱色部の一部とその上の剥離層を除去して金属層の露出した部分を アース部とすることを特徴とする透光性電磁波シ一ルド材科の製造方法。  13 1. A release layer is provided on the first substrate made of a film, a black dye layer is provided on the release layer, a metal layer is provided on the black dye layer, and a resist layer is provided on the metal layer in a pattern. The part of the metal layer that is not covered with the resist layer is sequentially removed using an etchant, and the part of the black stained layer that is not covered with the patterned gold layer in the etching step is etched with an etching liquid. The transfer sheet prepared by decolorization is bonded via an adhesive layer to a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer, such that the first substrate is the outer surface. After that, only the first substrate is stripped, and a part of the non-bleaching part of the black dyed layer and the peeling layer thereover are removed to make the exposed part of the metal layer a ground part. Manufacturing method of conductive electromagnetic shielding materials.
1 3 2 . フィルムからなる第一基体上に剥離層を設け、 剥離層上に黒染色 層を設け、 黒染色層上に金属層を設け、 金属層上にレジスト層をパターン状に設 け、 レジスト層で覆われていない部分の金属層をエッチング液を用いて狳去するェ 程を順次行い、 次いでパターン化された金属層で覆われていない部分の黒染色層を エッチング液とは別の脱色液により脱色するこよにより作製した転写シートを、 接 着層を介して、 第一基体が外表面となるように板、 立体物または機能性層を有する フィルムからなる透明な第二基体上に貼り合わせた後、 第一基体のみを剥離し、 黒  1 32. A release layer is provided on the first substrate made of a film, a black dye layer is provided on the release layer, a metal layer is provided on the black dye layer, and a resist layer is provided on the metal layer in a pattern. The steps of removing the metal layer not covered with the resist layer by using an etchant are sequentially performed, and then the black dyed layer not covered with the patterned metal layer is separated from the etchant. A transfer sheet prepared by decoloring with a decolorizing solution is placed on a transparent second substrate made of a plate, a three-dimensional object, or a film having a functional layer via an adhesive layer such that the first substrate is an outer surface. After laminating, peel off only the first substrate, black
n o 染色層の非脱色部の一部とその上の剥離層を除去して金属層の露出した部分をァ一 ス部とすることを特徴とする透光性電磁波シ一ルド材料の製造方法。 no A method for producing a translucent electromagnetic wave shielding material, characterized in that a part of a non-bleaching part of a dyed layer and a peeling layer thereover are removed to make an exposed part of the metal layer a ground part.
1 3 3 . フィルムからなる第一基体上に剥離層を設け、 剥離層上に黒染色 層を設け、 黒染色層上に金属層を設け、 金属層上にレジス ト層をパターン状に設 け、 レジスト層で覆われていない部分の金属層をエッチング液を用いて除まするェ 程を順次行い、 次いでレジスト層をレジスト除去液を用いて狳去し、 このレジスト 屠の除ま工程においてパターン化された金属層で覆われていない部分の黒染色層を レジスト除去液により脱色することにより作製した転写シートを、 接着層を介し て、 第一基体が外表面となるように板、 立体物または機能性層を有するフィルムか らなる透明な第二基体上に貼り合わせた後、 第一基体のみを剥雜し、 黒染色層の非 脱色部の一部とその上の剥離層を除去して金属層の露出した部分をアース部とする ことを特徴とする透光性電磁波シールド材料の製造方法。  1 3 3. A release layer is provided on the first substrate composed of a film, a black dye layer is provided on the release layer, a metal layer is provided on the black dye layer, and a resist layer is provided on the metal layer in a pattern. The steps of removing the metal layer in a portion not covered with the resist layer using an etchant are sequentially performed, and then the resist layer is removed using a resist remover, and the pattern is removed in the resist stripping process. The transfer sheet produced by decolorizing the black dyed layer in the portion not covered with the modified metal layer with a resist removing solution is applied to a plate or a three-dimensional object through an adhesive layer so that the first substrate becomes the outer surface. Alternatively, after laminating on a transparent second substrate made of a film having a functional layer, only the first substrate is peeled off, and a part of the non-bleaching portion of the black dyed layer and the peeling layer thereon are removed. The exposed part of the metal layer to ground Method for producing a light transmitting electromagnetic wave shielding material characterized and.
1 3 4 . 金属層をエッチング液を用いて除去する工程の後に、 レジスト Jg をレジスト除去液を用いて除去する請求項 1 3 1または請求項 1 3 2のいずれかに 記載の透光性電磁波シールド材料の製造方法。  13 4. The translucent electromagnetic wave according to claim 13, wherein the resist Jg is removed using a resist removing solution after the step of removing the metal layer using an etching solution. Manufacturing method of shielding material.
1 3 5 . レジスト層の除去工程においてパターン化された金属層で覆われ ていない部分の黒染色層をレジスト除去液により脱色する請求項 1 3 3記載の透光 性電磁波シールド材料の製造方法。  135. The method for producing a light-transmitting electromagnetic wave shielding material according to claim 133, wherein in the resist layer removing step, a portion of the black stained layer which is not covered with the patterned metal layer is decolorized with a resist removing liquid.
1 3 6 . エッチング工程においてパターン化された金属層で覆われていな い部分の黒染色層をエッチング液により脱色する請求項 1 3 2または請求項 1 3 4、 請求項 1 3 5のいずれかに記載の透光性電磁波シールド材料の製造方法。  1 36. The method according to claim 13 or claim 13, wherein the portion of the black dyed layer that is not covered with the patterned metal layer in the etching step is decolorized with an etchant. 3. The method for producing a translucent electromagnetic wave shielding material according to item 1.
1 3 7 . 転写後に剥離層の一部を除 ΐして金覊層の露出した部分をアース 部とすることを特徴とする請求項 6 1 - 6 7のいずれかに記載の透光性電磁波シ一 ルド材料の製造方法。  13 7. The translucent electromagnetic wave according to claim 6, wherein after the transfer, a part of the release layer is removed, and an exposed portion of the gold layer is used as a ground portion. Manufacturing method of shield material.
PCT/JP1997/000626 1996-02-29 1997-02-28 Light-transmissive electromagnetic shielding material and process for producing the same WO1997032458A1 (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP8/71149 1996-02-29
JP7114996 1996-02-29
JP13428296 1996-04-30
JP8/134282 1996-04-30
JP13596796A JPH09298384A (en) 1996-05-02 1996-05-02 Transmissive electromagnetic wave shield material and method for manufacturing the same
JP8/135967 1996-05-02
JP8/157551 1996-05-28
JP15755196 1996-05-28
JP16383296 1996-06-03
JP8/163832 1996-06-03
JP8/198318 1996-07-08
JP19831896 1996-07-08

Publications (1)

Publication Number Publication Date
WO1997032458A1 true WO1997032458A1 (en) 1997-09-04

Family

ID=27551197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000626 WO1997032458A1 (en) 1996-02-29 1997-02-28 Light-transmissive electromagnetic shielding material and process for producing the same

Country Status (1)

Country Link
WO (1) WO1997032458A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0914033A2 (en) * 1997-09-29 1999-05-06 Nisshinbo Industries Inc. Electromagnetic radiation shield material and panel and method of producing the same
EP1024683A2 (en) * 1999-01-28 2000-08-02 Nisshinbo Industries, Inc. Transparent electromagnetic radiation shield material and method of producing the same
EP1215705A2 (en) * 2000-12-12 2002-06-19 Nisshinbo Industries, Inc. Transparent electromagnetic radiation shielding material
CN105075417A (en) * 2013-03-21 2015-11-18 株式会社则武 Electromagnetic shield

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154898A (en) * 1981-02-23 1982-09-24 Optical Coating Laboratory Inc Transparent electromagnetic shield and method of producing same
JPS59106176U (en) * 1983-01-06 1984-07-17 森電機株式会社 Screen filter with conductivity
JPS60257235A (en) * 1984-06-04 1985-12-19 日本電信電話株式会社 Conductive high-molecular film and manufacture thereof
JPS61134189A (en) * 1984-12-04 1986-06-21 Dainippon Printing Co Ltd Filter for electromagnetic shield
JPS62213140A (en) * 1986-03-14 1987-09-19 Nec Corp Manufacture of wiring
JPS63195800U (en) * 1987-06-03 1988-12-16
JPH0772321A (en) * 1993-08-31 1995-03-17 Toppan Printing Co Ltd Color filter and its production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154898A (en) * 1981-02-23 1982-09-24 Optical Coating Laboratory Inc Transparent electromagnetic shield and method of producing same
JPS59106176U (en) * 1983-01-06 1984-07-17 森電機株式会社 Screen filter with conductivity
JPS60257235A (en) * 1984-06-04 1985-12-19 日本電信電話株式会社 Conductive high-molecular film and manufacture thereof
JPS61134189A (en) * 1984-12-04 1986-06-21 Dainippon Printing Co Ltd Filter for electromagnetic shield
JPS62213140A (en) * 1986-03-14 1987-09-19 Nec Corp Manufacture of wiring
JPS63195800U (en) * 1987-06-03 1988-12-16
JPH0772321A (en) * 1993-08-31 1995-03-17 Toppan Printing Co Ltd Color filter and its production

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0914033A2 (en) * 1997-09-29 1999-05-06 Nisshinbo Industries Inc. Electromagnetic radiation shield material and panel and method of producing the same
EP0914033A3 (en) * 1997-09-29 2000-03-15 Nisshinbo Industries Inc. Electromagnetic radiation shield material and panel and method of producing the same
US6143674A (en) * 1997-09-29 2000-11-07 Nisshinbo Industries, Ltd. Electromagnetic radiation shield material and panel and methods of producing the same
EP1024683A2 (en) * 1999-01-28 2000-08-02 Nisshinbo Industries, Inc. Transparent electromagnetic radiation shield material and method of producing the same
EP1024683A3 (en) * 1999-01-28 2000-11-02 Nisshinbo Industries, Inc. Transparent electromagnetic radiation shield material and method of producing the same
US6433481B1 (en) 1999-01-28 2002-08-13 Nisshinbo Industries, Inc. Transparent electromagnetic radiation shield material
EP1215705A2 (en) * 2000-12-12 2002-06-19 Nisshinbo Industries, Inc. Transparent electromagnetic radiation shielding material
EP1215705A3 (en) * 2000-12-12 2003-05-21 Nisshinbo Industries, Inc. Transparent electromagnetic radiation shielding material
CN105075417A (en) * 2013-03-21 2015-11-18 株式会社则武 Electromagnetic shield
CN105075417B (en) * 2013-03-21 2018-07-10 株式会社则武 Electromagnetic wave shielding plate
US10655209B2 (en) 2013-03-21 2020-05-19 Noritake Co., Limited Electromagnetic shield

Similar Documents

Publication Publication Date Title
JP5435556B2 (en) Conductive sheet, laminated conductive sheet and conductive pattern sheet, laminated conductive sheet manufacturing method, transparent antenna or transparent display or touch input sheet manufacturing method
CN100430810C (en) Process for forming a patterned thin film conductive structure on a substrate
JP2000223886A (en) Perspective electromagnetic wave shield material and its manufacture
WO1999034658A1 (en) Transparent member for shielding electromagnetic waves and method of producing the same
JP4540883B2 (en) Translucent electromagnetic wave shield, near-infrared cut material, and manufacturing method thereof
JP2011060146A (en) Narrow frame touch input sheet and manufacturing method thereof
WO2006068175A1 (en) Method for manufacturing base material provided with conductor layer pattern, base material provided with conductor layer pattern and electromagnetic wave blocking member using such base material
US6162569A (en) Method for manufacturing fine pattern, and color filter, shading pattern filter and color LCD element formed and printed board by using the same
JPH1079594A (en) Transparent electromagnetic shielding material and manufacture thereof
WO2000013475A1 (en) Light-transmitting electromagnetic shielding material and method for manufacturing the same
CN111263545A (en) Decorative membrane, preparation method, shell assembly and electronic equipment
WO2023071451A1 (en) Metal grid conductive film and preparation method therefor
WO2003045125A1 (en) Electromagnetic wave shielded light-transmissive window material and manufacturing method thereof
WO2017010521A1 (en) Transparent electrode film, dimming element, and method for manufacturing transparent electrode film
JP2010257690A (en) Method for manufacturing pattern electrode, and pattern electrode
WO1997032458A1 (en) Light-transmissive electromagnetic shielding material and process for producing the same
JP2011129272A (en) Double-sided transparent conductive film sheet and method of manufacturing the same
JP4539786B2 (en) Method for producing transparent conductive substrate
JP2004335609A (en) Electromagnetic shielding light transmitting window material and its manufacturing method
JP2006140205A (en) Electromagnetic wave shielding material, its manufacturing method and display film
JPH11243296A (en) Transparent electromagnetic shield member and manufacture thereof
JPH11298185A (en) Transparent electromagnetic wave shielding material and its manufacture
JPH1056289A (en) Light transmissive electromagnetic wave shield material and its manufacturing method
JPH09298384A (en) Transmissive electromagnetic wave shield material and method for manufacturing the same
JP5418816B2 (en) Method for producing metal pattern and substrate with conductor layer pattern, substrate with conductor layer pattern, and electromagnetic wave shielding member using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase