WO2006068175A1 - Method for manufacturing base material provided with conductor layer pattern, base material provided with conductor layer pattern and electromagnetic wave blocking member using such base material - Google Patents

Method for manufacturing base material provided with conductor layer pattern, base material provided with conductor layer pattern and electromagnetic wave blocking member using such base material Download PDF

Info

Publication number
WO2006068175A1
WO2006068175A1 PCT/JP2005/023483 JP2005023483W WO2006068175A1 WO 2006068175 A1 WO2006068175 A1 WO 2006068175A1 JP 2005023483 W JP2005023483 W JP 2005023483W WO 2006068175 A1 WO2006068175 A1 WO 2006068175A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
conductor layer
metal
base material
conductive
Prior art date
Application number
PCT/JP2005/023483
Other languages
French (fr)
Japanese (ja)
Inventor
Minoru Tosaka
Kyosuke Suzuki
Hisashige Kanbara
Toshirou Okamura
Yasuhiro Iwasaki
Nobuyuki Yoshida
Original Assignee
Hitachi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co., Ltd. filed Critical Hitachi Chemical Co., Ltd.
Priority to JP2006549027A priority Critical patent/JPWO2006068175A1/en
Publication of WO2006068175A1 publication Critical patent/WO2006068175A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0001Rooms or chambers
    • H05K9/0003Shielded walls, floors, ceilings, e.g. wallpaper, wall panel, electro-conductive plaster, concrete, cement, mortar

Definitions

  • the present invention relates to a method for producing a substrate with a conductor layer pattern, a substrate with a conductor layer pattern, and an electromagnetic wave shielding member using the same, and is particularly patterned so as to have excellent conductivity and light transmittance.
  • the present invention relates to a method for producing a substrate with a conductor layer pattern and a conductive substrate for adhesion, a substrate with a conductor layer pattern, a conductive substrate for adhesion, and an electromagnetic wave shielding member using the same.
  • electromagnetic shielding member is required to be extremely thin, and light transmittance (transparency) and electromagnetic shielding properties contrary to this can be achieved with good tolerance. There is a demand for electromagnetic shielding members.
  • a thin film conductive layer is formed by vapor-depositing a metal or metal oxide on a transparent substrate (see Patent Document 1 and Patent Document 2), Electromagnetic shielding material (see Patent Document 3 and Patent Document 4) embedded with a transparent conductive base material itself or a conductive fiber mesh with a conductive property attached, transparent conductive resin containing metal powder, etc. Electromagnetic wave shielding material printed directly on the substrate (see Patent Document 5 and Patent Document 6), electroless plating catalyst paint pattern printed on a flat substrate, and conductive layer formed by electroless plating (patent Reference 7 and Patent Reference 8), metal layer bonded on substrate An electromagnetic wave shielding layer is formed by etching the material into a mesh by the photolithographic method (see Patent Document 9).
  • the method of forming a conductive layer by vapor-depositing a metal or metal oxide on a transparent substrate has a film thickness that can achieve transparency (several hundred A to 2,000 A). Since the surface resistance of the conductive layer becomes too large, the electromagnetic wave shielding property was insufficient.
  • An electromagnetic wave shielding material composed of a metal mesh-attached fiber mesh or an electromagnetic wave shielding material in which a fiber mesh with conductivity is embedded in a transparent base material has a sufficiently large electromagnetic wave shielding effect!
  • the fiber diameter necessary to arrange conductive fibers regularly is too large, so that the fibers can be seen (hereinafter referred to as “Visibility”). It was not suitable for display applications.
  • Visibility the fiber diameter necessary to arrange conductive fibers regularly is too large, so that the fibers can be seen. It was not suitable for display applications.
  • an electromagnetic wave shielding material in which a conductive fiber mesh is embedded in a transparent substrate unintentional distortion occurs between the fiber mesh and the resin board during thermal lamination in the manufacturing process, and the fluoroscopic image. Problems such as warping and cracking of the cling layer during thermal lamination, resulting in reduced electromagnetic shielding performance.
  • the thickness of the fibers to which conductivity is imparted is limited to about 50 m, so that the transparency is improved and the overall thickness of the electromagnetic wave shielding sheet is reduced compared to the case where the fine diameter is difficult. There was a problem that it was difficult to do.
  • Patent Document 7 a transparent resin layer is formed on a transparent substrate such as polycarbonate having a thickness of about 2 mm, and a copper mesh pattern is formed on the transparent resin layer by an electroless plating method to shield it.
  • a method for producing a member it is necessary to roughen the surface of the transparent substrate in order to ensure adhesion with electroless adhesion.
  • a highly toxic oxidizing agent such as chromic acid or permanganic acid must be used as a roughening means. This method is difficult to achieve a satisfactory roughening with a non-ABS fat. It becomes.
  • the electromagnetic wave shielding property and transparency can be achieved by this method, it is difficult to reduce the thickness of the transparent substrate, which is not suitable as a thin film method (for example, film formation). Furthermore, if the transparent substrate is thick, it cannot be brought into close contact with the display, and this force increases the leakage of electromagnetic waves. Ma On the other hand, in terms of manufacturing, the shielding material cannot be made into a scroll or the like, which makes it bulky or suitable for automation, which increases manufacturing costs!
  • Electromagnetic wave shielding members used for applications requiring transparency have a problem of poor appearance.
  • electroless plating has a problem of increasing costs.
  • the size of the electromagnetic wave shielding material depends on the size of the fitting line, when producing an electromagnetic wave shielding sheet having a large dimensional force of about 2 m in width, the electromagnetic wave shielding sheet 2 to the plating line 2 to It is necessary to connect the three sheets. Therefore, there is a concern that the joint force may be leaked and the shielding cannot be performed sufficiently.
  • an electromagnetic wave shielding member manufactured by using a photolithographic method as described in Patent Document 9 can impart excellent electromagnetic wave shielding properties and transparency.
  • a manufacturing method since it is necessary to apply a photolithographic method including an etching step for each electromagnetic wave shielding member, the number of steps increases as a whole, and there remains a problem in cost.
  • a metal electrolyte is electrodeposited on an electrodeposition substrate capable of metal electrodeposition in a mesh shape, and an electromagnetic wave shielding plate is produced by adhesive transfer onto the electromagnetic wave shielding substrate via an adhesive.
  • This method is described (see Patent Document 10).
  • a mesh pattern is formed on an electrically conductive substrate such as a metal plate with an insulating film that inhibits electrodeposition.
  • electrodeposition that enables metal electrodeposition in a mesh shape is possible. It is produced so that the part is exposed.
  • the electrodeposition is on the groove.
  • a photoresist is used as the insulating film, the durability of the insulating film is inferior, and the electromagnetic wave shielding plate can be repeatedly used only several times to several tens of times.
  • Patent Document 10 describes a method in which a convex conductive mesh layer is formed on an insulating layer support to obtain the above-mentioned electrodeposition substrate.
  • the conductive mesh is actually used.
  • Metal is also electrodeposited on the sides of the metal, which becomes resistance to adhesion transfer of the mesh electrodeposited metal layer. Even if it cannot be peeled off, the mesh pattern will be broken and the electromagnetic shielding properties will be reduced. The inventors have confirmed that a failure will occur. It was.
  • Patent Document 1 JP-A-1-278800
  • Patent Document 2 JP-A-5-323101
  • Patent Document 3 Japanese Patent Laid-Open No. 5-327274
  • Patent Document 4 JP-A-5-269912
  • Patent Document 5 Japanese Patent Laid-Open No. 62-57297
  • Patent Document 6 JP-A-2-52499
  • Patent Document 7 JP-A-5-283889
  • Patent Document 8 Japanese Patent Laid-Open No. 11 170420
  • Patent Document 9 JP-A-10-41682
  • Patent Document 10 Japanese Patent Laid-Open No. 11 26980
  • Patent Document 11 JP-A-10-29370
  • Patent Document 12 JP 2000-294981 A
  • Non-Patent Document 1 “Practical Medication for On-Site Engineers” edited by Japan Plating Association (published by Sakai Shoten in 1986)
  • the transfer method described in Patent Document 10 is intended to solve the cost problem. I can expect.
  • the electrodeposition substrate is formed on a conductive substrate such as a metal plate with a mesh pattern made of an insulating film that inhibits electrodeposition. As a result, the electrodeposited portion that can be electrodeposited in a mesh shape is exposed. It is made to make it.
  • this electrodeposition substrate When this electrodeposition substrate is used, it can be used repeatedly several times to several tens of times. There is a problem that it cannot be used repeatedly several hundred times to several thousand times and cannot be mass-produced. This is because the insulating film forming the mesh pattern on the electrodeposited substrate is subjected to peeling stress by adhesion transfer, and the insulating film is peeled off from the conductive base material after a few repeated uses.
  • Patent Document 10 describes a method using an electrodeposited substrate in which a convex conductive mesh layer is formed on an insulating layer support. According to this method, actually, the side surface of a conductive mesh is used. When the metal is electrodeposited, this causes resistance to the adhesion transfer of the mesh electrodeposited metal layer, and when it cannot be peeled off or even if it can be peeled off, the mesh pattern will be broken and the electromagnetic shielding properties will be reduced. A bad thing happens. Furthermore, in order to increase the production efficiency, if the current density during metal electrodeposition is increased, the insulating layer support is caused to generate heat by the convex conductive mesh layer formed on the insulating layer support. The present inventors have confirmed that problems such as thermal melting or ignition occur, and in particular, the above problem becomes more prominent as the current value applied in a large area increases.
  • a baffle plate or the like is installed in the plating bath, and the current density of the mesh part and the outer peripheral part is adjusted to be uniform, so that the outer peripheral part and the mesh part have a uniform thickness.
  • the current density generated in the conductive substrate is reduced as compared with the case where there is no baffle plate, so that the production speed is significantly reduced.
  • the present invention relates to a method for producing a substrate with a conductor layer pattern pattern that is patterned so as to have excellent electrical conductivity and light transmittance, and a substrate with a conductor layer pattern produced by the method.
  • a material and an electromagnetic wave shielding member using the same are provided.
  • the present invention provides a method in which the electrodeposition substrate can withstand repeated use and is excellent in mass productivity in the transfer method.
  • the purpose is to provide an efficient blackening process with less powder fall-off on the finished metal.
  • the present invention also provides a method in which the metal electrodeposited and deposited in the transfer method can be easily peeled off from the electrodeposition substrate during the transfer.
  • the present invention includes a step of forming a metal layer by plating on a conductive substrate having a pattern of convex portions having an upper surface and a concave portion having a geometrical shape drawn by the pattern, and the conductive layer. It is a manufacturing method of the base material with a conductor layer pattern including the process of transcribe
  • the present invention provides a conductive pattern having a convex pattern having a top surface and a convex pattern in which the side surface of the convex part has an inclination angle of 30 ° or more and a geometrical figure-shaped concave portion drawn thereby.
  • a method for producing a substrate with a conductor layer pattern comprising a step of forming a metal layer on a substrate by plating and a step of transferring the metal layer formed on the upper surface of the convex portion of the conductive substrate to another substrate. .
  • the present invention provides a region A having a pattern of convex portions having an upper surface and a concave portion having a geometrical shape drawn by the pattern, and the area ratio of the concave portions is 50% or more and 97% or less of the whole.
  • the area ratio of the recesses in the region A is larger than the area ratio of the recesses in the region B.
  • the present invention is also a method of using the conductive substrate in which the area ratio of the recesses in the region B is less than 0% or less than 97% in the manufacturing method.
  • the present invention provides a method for producing a substrate with a conductor layer pattern, wherein in the step of transferring the metal layer formed on the upper surface of the convex portion of the conductive substrate to another substrate, the conductive layer Of the metal layers formed on the base material, only the metal layer formed on the upper surface of the convex portion of the conductive base material is selectively transferred to another base material.
  • the present invention provides the above-described method for producing a substrate with a conductor layer pattern, wherein the conductive substrate is a conductive group having a surface roughness of convex portions of 2 or less in terms of a ten-point average roughness Rz. This is a method of using wood.
  • the present invention provides the above-mentioned method for producing a substrate with a conductor layer pattern, wherein the conductive substrate has a concave surface roughness of 3 or more in terms of a ten-point average roughness Rz of 3 or more. It is a method of using.
  • the present invention b has a pattern of a convex part having an upper surface and a concave part having a geometrical shape drawn by the pattern, and the concave part is formed so as to be a thin film at least near the upper surface end of the convex part.
  • the present invention provides the method for producing a substrate with a conductor layer pattern, wherein the surface of the metal layer formed before or after the transfer of the metal deposited on the upper surface of the convex portion of the conductive substrate is further provided. It is a method including the process of blackening.
  • the present invention provides a step of forming a metal layer by fitting on a conductive substrate having a pattern of convex portions having an upper surface and a geometrically shaped concave portion drawn thereby, the conductive substrate
  • the process of transferring the metal layer formed on the upper surface of the convex part to another substrate, and depositing a black alloy metal containing group VIII elements on the surface of the metal layer formed before or after transferring the formed metal layer It is a manufacturing method of the base material with a conductor layer pattern including the process of making it blacken.
  • the present invention provides a region A having a pattern of convex portions having an upper surface and a concave portion having a geometrical figure drawn by the pattern, and the area ratio of the concave portions is 50% or more and 97% or less of the whole.
  • a region B which has a convex pattern having an upper surface and a concave portion having a geometrical shape drawn by the convex pattern arranged on the outer side thereof, and the area ratio of the concave portion is 40% or more and less than 97% of the whole.
  • the area ratio of the recesses in the region A is larger than the area ratio of the recesses in the region B.
  • the insulating layer is such that the recesses in the two regions become a thin film at least near the end of the upper surface of the protrusions. It is an electroconductive base material coat
  • the present invention also includes a step of forming a geometric pattern-shaped pattern on the surface of the conductive base material using a photocurable or thermosetting resin, and etching the conductive base material.
  • This is a method for producing a conductive substrate for plating, which comprises a step of removing the cured resin of the photocurable resin or thermosetting resin.
  • the base material with a conductor layer pattern can be obtained by transferring a metal layer formed in a pattern to a base material.
  • the transfer can be easily and reliably performed.
  • the base material can be a transparent base material.
  • the convex pattern of the conductive base material can have a long life, and for repeated use, it can be several thousand to tens of thousands of times. It is fully compatible with mass production levels. Furthermore, the plating solution is not contaminated by contact with the conductive substrate.
  • the metal pattern can be produced and peeled continuously. This further improves production efficiency.
  • the total length of the conductive base material used can be lengthened, so that plating, blackening treatment, transfer, removal of residual metal by etching, etc. Since it can be performed in one process, the production efficiency is very high.
  • the metal can be blackened. Thereby, the transparency without reflecting the color of the metal is improved.
  • the metal remaining on the conductive substrate can be etched, removed by an adhesive film, etc. in one continuous process.
  • the production efficiency becomes very high, and the remaining metal can be easily removed by transfer removal using an adhesive film. This improves the efficiency of recycling the conductive substrate.
  • a transparent substrate is bonded to the surface having the conductor layer pattern of the substrate with the conductor layer pattern.
  • the conductor layer pattern can be protected by coating with transparent resin.
  • an adhesive layer is formed in advance on the conductor layer transfer surface of another base material, there is also an effect of preventing foreign matter from adhering to the adhesive layer.
  • the transparent substrate can be bonded by pressing the transparent substrate directly or through another adhesive to the adhesive layer. In this case, since the conductor layer pattern is embedded in the adhesive layer with an appropriate pressure, it is possible to improve transparency and adhesion to the transparent substrate.
  • the transparent base material with the conductor layer pattern is used to shield the electromagnetic wave having both high light transmittance (particularly, the conductor layer pattern has a small line width and high definition) and good conductivity (high shielding property).
  • the body can be easily obtained. For this reason, when used as an electromagnetic wave shield for a display such as a PDP, a clear image can be comfortably viewed under almost the same conditions as in a normal state without increasing the brightness.
  • the electromagnetic wave shielding body is excellent in electromagnetic wave shielding properties, it is necessary to generate a display or other electromagnetic wave, or to open a window or housing that crawls inside a measuring device, measuring device, manufacturing device, etc. that should be protected from the electromagnetic wave. The effect is great if it is used on the body, especially in parts such as windows and display surfaces where transparency is required.
  • the production method of the electromagnetic wave shielding body according to the present invention is excellent in production efficiency as in the production of the conductor layer pattern.
  • the smoothness of the metal layer formed on the upper surface can be improved.
  • the surface roughness of the concave portion a specific size, selective transfer can be reliably performed, the surface roughness of the upper surface of the convex portion is reduced, and the surface roughness of the concave portion is increased. Ensures more selective transfer
  • an insulating layer in the concave portion of the conductive base material, it is possible to selectively form a metal layer on the upper surface of the convex portion. Furthermore, when the thickness of the insulating layer is 1Z2 or less of the height of the convex pattern, the insulating layer hardly comes into contact with the adhesive when transferring the formed metal layer, so conventional strength is also a problem. The life of the convex pattern that has been formed can be extended, and with respect to repeated use, it can sufficiently handle a mass production level of several hundred to several thousand times. In addition, when an insulating layer is formed by electrodeposition coating, an insulating layer having high adhesion to metal and plating solution resistance can be obtained, and a film can be formed uniformly. wear.
  • the side surface of the convex portion of the conductive substrate has a specific taper angle, in particular, the metal layer formed on the upper surface of the convex portion is selectively transferred, and the other unnecessary metal portion. Transfer of (a metal appearing in a recess) (when the metal is copper, it is simply “copper pretend”) can be effectively suppressed.
  • the present invention by using a specific conductive substrate, a metal layer formed in a pattern on the conductive substrate is transferred to another substrate to produce a substrate with a conductor layer pattern. Therefore, the substrate with a conductor layer pattern that has been obtained with good production efficiency has high light transmittance (especially, the metal pattern has a small line width and high definition) and good conductivity (high shielding). Since it can be combined, it is useful as an electromagnetic wave shielding member.
  • the region B is formed outside the region A, and the area ratio of the recesses is made smaller in the region B than in the region A, whereby the frame of the substrate with the conductor layer pattern obtained is obtained. Pinholes, cracks, etc. during transfer and subsequent use can be reliably eliminated in the part, so that when using the metal layer formed in region B as a grounding part, It is possible to suppress an increase in connection resistance with the body.
  • the geometric figure formed in the region B can be various.
  • the surface of another substrate onto which the conductor layer pattern is transferred has adhesiveness, the transfer can be easily and reliably performed. Further, it is possible to impart near-infrared shielding to a substrate with a conductor layer pattern by imparting near-infrared shielding to this other substrate.
  • the present invention by forming the insulating layer in the concave portion of the conductive base material, it is possible to selectively form the metal layer only on the upper surface of the convex portion. For repeated use It is possible to cope with mass production levels of hundreds to thousands of times.
  • the conductor layer of the substrate with the conductor layer pattern is electrically connected and the effect of grounding is achieved. Make fruits more efficient. Further, in the present invention, when at least a portion corresponding to the region A is blackened among the conductor layers of the base material with the conductor layer pattern, the transparency without reflecting the color of the conductor layer (metal) is improved.
  • the conductive substrate is formed by etching after forming the pattern with a resist.
  • a method of forming a pattern on the material can be taken.
  • an insulating layer is formed before removing the resist, and then the resist is removed. This makes it possible to expose the convex portion efficiently and accurately.
  • the insulating layer is formed on the entire surface of the conductive support after removing the resist, and then only the insulating layer on the upper surface of the convex portion is removed, a high level of processing accuracy is required.
  • such a step can be omitted, so that a conductive substrate for plating can be produced efficiently.
  • the insulation layer is excessively peeled off during polishing, and as a result, there will be no variation in line thickness or line width of the conductor layer pattern! A conductive base material for plating can be produced.
  • an insulating layer in the concave portion of the conductive base material, it is possible to selectively form a metal layer only on the upper surface of the convex portion. Furthermore, if the thickness of the insulating layer is 1Z2 or less of the height of the convex pattern, the insulating layer will hardly come into contact with the adhesive when transferring the deposited metal, so conventional strength is also a problem. The life of the convex pattern that has been formed can be extended, and with respect to repeated use, it can sufficiently cope with a mass production level of several hundred to several thousand times. In addition, when an insulating layer is formed by electrodeposition coating, an insulating layer having high adhesion to metal and plating solution resistance can be obtained, and a film can be formed uniformly.
  • a substrate with a conductor layer pattern can be produced with high productivity.
  • the conductive base material has an insulating layer in the concave portion, unnecessary metal plating does not occur, and during the transfer, the formed metal layer is smoothly peeled off, and the transfer process is performed efficiently.
  • the surface of the metal layer selectively formed on the upper surface of the convex portion of the conductive base material can be uniformly blackened regardless of whether it is a fine line portion or a wide width portion without falling off.
  • the conductor layer pattern suppresses the reflection of light emitted from the plasma display screen and external light, and the transparency and image contrast are improved.
  • a group VIII element especially black nickel plating containing nickel as a component, and if an insulating layer is formed in the recess of the conductive substrate, the insulation is formed.
  • a black film can be formed on the surface of the metal conductor without invading the layer and without powder falling.
  • FIG. 1 is a perspective view showing an example of a conductive base material on which a geometrical figure of a concave portion with respect to a convex portion is formed.
  • FIG. 2-a is a perspective view of an example of a conductive substrate including region A and region B.
  • FIG. 2-b is a perspective view of another example of a conductive substrate including region A and region B.
  • Fig. 3-a is a cross-sectional view of an example of a conductive base material in which a geometric figure of a concave portion with respect to a convex portion is formed.
  • Fig. 3-b is a cross-sectional view of an example of a conductive base material in which a geometric pattern of a concave portion with respect to a convex portion is formed.
  • Fig. 3-c is a cross-sectional view of an example of a conductive base material in which a geometric pattern of a concave portion with respect to a convex portion is formed.
  • Fig. 3-d is a cross-sectional view of an example of a conductive base material in which a geometrical figure of a concave portion with respect to a convex portion is formed.
  • Fig. 3-e is a cross-sectional view of an example of a conductive base material in which a geometrical figure of a concave portion with respect to a convex portion is formed.
  • FIG. 4 is a part of a plan view of an example of a conductive substrate including region A and region B.
  • FIG. 5 is a part of a plan view of an example of a conductive substrate including region A and region B.
  • FIG. 6 is a part of a plan view of an example of a conductive substrate including region A and region B.
  • FIG. 7 is a part of a plan view of an example of a conductive substrate including region A and region B.
  • FIG. 8 is a part of a plan view of an example of a conductive substrate including region A and region B.
  • FIG. 9 a is a part of a sectional view showing an example of a conductive substrate for plating according to the present invention.
  • FIG. 9-b is a part of a cross-sectional view showing an example of a conductive substrate for plating according to the present invention.
  • FIG. 9-c is a part of a sectional view showing an example of the conductive substrate for plating according to the present invention.
  • FIG. 10 is a cross-sectional view sequentially showing the steps of producing a conductive substrate for adhesion according to the present invention.
  • FIG. 11-a is a cross-sectional view showing a resist pattern and an insulating film formed on the upper surface of the convex portion.
  • Fig. 11-b is a cross-sectional view showing the formation of the resist pattern and insulating film on the top surface of the protrusion.
  • Fig. 11-c is a cross-sectional view showing the formation of the resist pattern and insulating film on the top surface of the protrusion.
  • Fig. 11-d is a cross-sectional view showing the formation of the resist pattern and insulating film on the top surface of the protrusion.
  • FIG. 11-e is a cross-sectional view showing the resist pattern on the top surface of the convex portion and the formation state of the insulating film.
  • Fig. 12-a is the pattern of the convex part with the top surface and the geometrical shape drawn by it.
  • Fig. 12-b shows the pattern of the convex part having the upper surface and the geometrical shape drawn by the pattern.
  • FIG. 2 is a cross-sectional view of a conductive base material having an insulating layer formed on the surface of the conductive base material having a figure-shaped recess.
  • FIG. 13 is a cross-sectional view showing an example of a conductive substrate for plating according to the present invention.
  • FIG. 14 shows a conductive base material having a pattern of convex portions having an upper surface and a geometric figure-shaped concave portion drawn thereby, in a state where the concave portions are filled with an insulating layer. That is, it is a cross-sectional view of a plating transfer plate.
  • FIG. 15 is a cross-sectional view of a conductive substrate having a pattern of convex portions having an upper surface and a geometrically shaped concave portion drawn thereby, with an insulating layer formed in the concave portion.
  • FIG. 16 is a cross-sectional view of a conductive substrate having a pattern of convex portions having an upper surface and a geometric-shaped concave portion drawn thereby, with an insulating layer formed in the concave portion.
  • FIG. 17-a is a cross-sectional view of a state where plating is deposited on a conductive substrate.
  • Fig. 17-b is a cross-sectional view showing a state where plating is deposited on a conductive substrate.
  • Fig. 17-c is a cross-sectional view of a state where plating is deposited on a conductive substrate.
  • Fig. 17-d is a cross-sectional view showing a state where plating is deposited on a conductive substrate.
  • FIG. 17-e is a cross-sectional view showing a state where plating is deposited on a conductive substrate.
  • FIG. 18 is a cross-sectional view showing a state in which a transparent base material coated with an adhesive is laminated on a metal surface deposited on the upper surface of the convex portion of the conductive base material.
  • FIG. 19a is a cross-sectional view of a conductive layer patterned base material and a conductive base material in which metal remains.
  • FIG. 19b is a cross-sectional view of the base material with a conductor layer pattern and the conductive base material in which the metal remains.
  • FIG. 20 is a cross-sectional view of a base material with a conductor layer pattern in which the conductor pattern is blackened and has a metal pattern force.
  • FIG. 21 is a cross-sectional view of a base material with a conductor layer pattern in which the conductor layer pattern is blackened and also has a metal pattern force.
  • Fig. 22 shows the pattern of the conductor layer with the metal pattern force with the conductor layer pattern blackened.
  • FIG. 23 is a cross-sectional view showing an example of a method for producing a substrate with a conductor layer pattern.
  • FIG. 24 is a conceptual cross-sectional view of an apparatus for continuously producing a substrate with a conductor layer pattern using a rotating body.
  • FIG. 25 is a conceptual cross-sectional view of an apparatus for continuously producing a substrate with a conductor layer pattern using a hoop-like conductive substrate for plating.
  • FIG. 26 is a conceptual cross-sectional view of another example of an apparatus for continuously producing a substrate with a conductor layer pattern using a hoop-like conductive substrate for plating.
  • FIG. 27 is a chart showing characteristics of Example a.
  • FIG. 28 is a chart showing characteristics of Example b.
  • FIG. 29 is a chart showing characteristics of Example c.
  • FIG. 30 is a chart showing characteristics of Example d.
  • FIG. 31 is a chart showing characteristics of Example e.
  • FIG. 32 is a first chart showing characteristics of Example f.
  • FIG. 33 is a second chart showing the characteristics of Example f.
  • Insulating layer Photo-curable resin layer
  • Base material with conductor layer pattern 110 Hoop-like conductive substrate
  • the present inventors made conductive patterns by forming and transferring a metal layer by plating using a pattern of convex portions having an upper surface and a conductive substrate having concave portions having a geometrical shape drawn thereby as a plate. It was discovered that a conductor layer pattern patterned to have excellent light transmittance can be produced with high productivity.
  • the method for producing a conductive substrate for plating according to the present invention is further characterized by excellent dimensional accuracy even for a fine pattern as a patterning plate for repeated plating, peeling and use. A conductive base material excellent in durability that can be used can be easily produced.
  • a force that uses a conductive substrate in which a concave portion having a geometric figure shape is formed with respect to a convex portion forms a metal layer on the surface by electrical contact.
  • the conductive substrate has sufficient conductivity for that purpose, and the conductive base material has sufficient conductivity for electrodeposition coating of the insulating film.
  • the conductive base material is sufficient for anodizing the surface. It has conductivity.
  • the conductive base material is particularly preferably a metal.
  • the conductive base material is such that the metal layer formed thereon is easily peeled off so that the metal layer formed by plating on the surface can be transferred to the adhesive support. Is preferred.
  • Materials for such conductive substrates include stainless steel, chrome-plated pig iron, chrome-plated steel, titanium, titanium-lined materials, nickel and other plating releasability! Is particularly preferred!
  • Examples of the shape of the conductive base material on which the convex portions are formed include a sheet shape, a plate shape, a tool shape, and a hoop shape.
  • a sheet or plate attached to a rotating body (roll) may be used.
  • a hoop shape it is conceivable that a roll is installed at two power points inside the hoop and a hoop-shaped conductive substrate is passed through the roll. Since metal foil can be continuously produced in both roll and hoop forms, it is preferable because production efficiency is higher than sheet and plate forms.
  • the convex portion of the conductive substrate corresponds to the conductor layer pattern in the substrate with the conductor layer pattern, and the conductor layer pattern is an electromagnetic wave shield when the electromagnetic wave shielding material is finally produced. It corresponds to the layer.
  • the geometrical figure of the concave part with respect to this convex part includes triangles such as regular triangles, isosceles triangles, right triangles, squares, rectangles, rhombuses, parallelogram Quadrangle such as shape, trapezoid, (positive) hexagon, (positive) octagon, (positive) dodecagon, (positive) decagon, etc. (positive) n-gon (n is an integer of 3 or more), circle,
  • the pattern is a combination of ellipses, stars, etc. These units can be repeated alone or in combination of two or more.
  • the triangle is the most effective. From the point of view of visible light transmission, if the line width is the same (positive), the n number of the n-gon is larger, and the aperture ratio of the conductor layer pattern is larger. Go up. From the viewpoint of visible light transmission, the aperture ratio is required to be 50% or more, and the aperture ratio of the conductor layer pattern is more preferably 60% or more.
  • the aperture ratio of the conductor layer pattern is the effective area force with respect to the effective area of the electromagnetic wave shielding material (for example, the area of the range in which the geometric figure is drawn, such as the area that functions effectively for electromagnetic wave shielding). This is the percentage of the ratio of the area covered by the area covered by.
  • the peripheral portion of the conductor layer pattern may be a ground portion, and a ground portion may be provided around the outside of the conductor layer pattern.
  • the part corresponding to the grounding part is designated as area B, and the inside thereof is designated as area A.
  • the region A of the conductive substrate corresponds to a portion corresponding to the conductor layer pattern, and the area ratio (%) of the recesses in the region A corresponds to the opening ratio.
  • the region B is a portion corresponding to the same or different conductor layer pattern as the conductor layer pattern corresponding to the region A, and may be a flat portion having the same height as the upper surface of the convex portion 3.
  • the ground portion corresponds to a layer for grounding the electricity collected by the electromagnetic wave shielding layer when the base material with the conductor layer pattern is finally used as an electromagnetic wave shielding material.
  • the geometric figure of the concave part with respect to the convex part in the area B the geometric figure of the concave part as a planar shape drawn by the convex part
  • the same one as in the area A can be adopted.
  • a concave portion having the above geometric figure shape is formed on a conductive base material having a smooth surface.
  • the most convenient method is to carry out a caroé.
  • FIG. 1 is a perspective view showing an example of a conductive substrate on which a concave geometrical figure with respect to a convex part is formed. Illustrated in FIG. 1 is a square as the geometrical figure of the concave part 2, and the convex part 3 is formed in a lattice shape on the conductive substrate 1 so that the geometrical figure of the concave part 2 becomes a square. .
  • FIG. 2 shows an example of a conductive base material in which a geometrical figure of a concave portion with respect to a convex portion is formed.
  • FIG. Figure 2-a shows the entire region B without specifically showing region B (reference 4).
  • Figure 2-b conceptually shows how region B has a specific grid pattern. Illustrated in FIG. 2 is a square as the geometrical figure of the concave part 2, and the convex part 3 is formed in a lattice shape on the conductive substrate 1 so that the geometrical figure of the concave part 2 becomes a square. .
  • region B reference numeral 4
  • FIG. 2-b there is a region B outside the geometrical figure formed by the surface, the concave portion 2 and the convex portion 3, and in FIG. 2-b, formed by the convex portion 3 and embodied in the concave portion 2.
  • a concave portion 5 having a geometric shape with a shape different from the geometric shape is formed by the convex portion 6.
  • Fig. 3 shows a part of the A-A section of Fig. 1 or Fig. 2-a, and shows five types of Fig. 3-a to Fig. 3-e.
  • the cross-sectional view corresponding to Fig. 1 is Fig. 3-a
  • Fig. 3-b to Fig. 3-e are variants of Fig. 3-a.
  • the cross-sectional shapes of the concave portion 2 and the convex portion 3 are determined as appropriate, and the side surface 7 of the convex portion 3 includes a vertical surface (in the case of Fig. 3-a), a slope (in the case of Fig. 3-b and Fig. 3-c), a curved surface ( It is optional such as Figure 3-d) and stepped slope (Figure 3-e).
  • the convex portion 3 has an upper surface 8, and the bottom surface 9 of the concave portion 2 has various shapes.
  • the height of the convex portion 3 formed on the conductive substrate is defined as the height from the most depressed partial force of the concave portion 2 to the upper surface 4 of the convex portion 3.
  • the height of the convex portion 3 is preferably l / z m to: LOO / z m. If the height of the convex portion 3 is low, when the metal layer formed on the upper surface 8 of the convex portion 3 is transferred to the transparent substrate, the pressure-sensitive adhesive appears on the metal or the concave portion 2 that appears in the concave portion 2 of the conductive substrate.
  • the metal appearing in the recess 2 or the insulating layer formed in the recess 2 may be attached to the transparent substrate at the same time, so the height of the protrusion 3 is 5 ⁇ m. More preferably, the above is true. Further, if the height of the convex portion is increased, the aspect ratio becomes large, so that the processing becomes difficult and the processing cost increases. Therefore, the height of the convex portion is more preferably 50 m or less. Further, the width of the upper surface 8 of the convex portion 3 and the interval thereof are set such that the width (line width) of the upper surface 8 of the convex portion 3 is 1 111 to 40 111 so that the aperture ratio of the conductor layer pattern is 50% or more.
  • the center spacing (line pitch) force of the upper surface of the part is preferably ⁇ m to 1000 ⁇ m.
  • the width of the upper surface 8 (line width) of the convex portion 3 is 1 111-to improve the non-visibility, transparency, and electromagnetic shielding properties of the substrate with the conductive layer pattern. 20 111, center distance (line pitch) force between convex portions S 250 ⁇ m to 500 ⁇ m is more preferable.
  • the center interval (line pitch) of the upper surface of the convex portion is a figure with a complicated pattern. If it cannot be easily determined because it is a combination of multiple figures, the area is converted to a square area based on the pattern repeat unit and defined as the length of one side.
  • the height of the convex portion 6 formed on the conductive substrate is defined as the height of the concave portion 5 where the concave portion is most depressed to the upper surface of the convex portion 6.
  • the height of the convex portion 6 is preferably LOO / zm. If the height of the convex portion 6 is low, the adhesive is transferred to the metal or concave portion 5 that appears in the concave portion 5 of the conductive substrate when the metal layer formed on the upper surface of the convex portion 6 is transferred to another base material.
  • the height of the convex portion 6 is 5 m or more because the insulating layer formed in the concave portion 5 may be attached to the transparent substrate at the same time because it easily comes into contact with the formed insulating layer. . Further, when the height of the convex portion is increased, the aspect ratio increases, so that the processing becomes difficult and the processing cost becomes high.
  • the height of the convex portion is more preferably 50 m or less.
  • a indicates the inclination angle (taper angle) of the side surface of the convex portion. This taper angle is measured with respect to the top surface.
  • the side surface of the convex portion having a taper angle of 30 ° or more is preferably 5 ⁇ m or more in depth from the upper surface, particularly preferably 7 ⁇ m or more.
  • the taper angle is preferably 45 degrees or more in order to surely reduce copper swing.
  • the shape of the metal layer formed by plating is continuous on the top surface of the convex portion. It is preferably formed of a film and formed of a discontinuous film in the recess.
  • the metal layer on which the adhesive is formed on the upper surface of the convex part when transferred to another substrate is also formed on the top surface of the projections in order to peel off from the conductive substrate. It is difficult to selectively transfer only the metal layer.
  • the metal appearing in the recess is a discontinuous film, the metal appearing in the recess or the side is transferred to the metal layer formed on the upper surface of the protrusion when transferring to another substrate. Since it does not follow and peel, the metal layer formed on the upper surface of the convex portion can be selectively transferred to another substrate.
  • the surface roughness of the upper surface of the convex portion in the conductive substrate is low, and conversely the surface roughness in the concave portion.
  • the coarseness is that the metal appearing in the recesses becomes granular and tends to be discontinuously deposited, so that only the metal layer formed on the upper surface of the protrusions by another substrate is selectively transferred. Preferred above.
  • the surface roughness of the top surface of the convex part is preferably 10 ⁇ m or less (measured according to the ten-point average roughness Rz CFIS B 0601—1994), and the Rz is 1 or less. More preferably, it is 0 ⁇ m or less. Further, the surface roughness in the recess is preferably such that Rz exceeds 2.0 m, more preferably Rz is 3.0 m or more.
  • the width of the upper surface of the convex portion and the interval between the convex portions are such that the width of the upper surface of the convex portion is l / zm to 40 ⁇ m and the central interval of the convex portion is 100 ⁇ m so that the aperture ratio of the conductor layer pattern is 60% or more. It is preferable that it is m-1000 micrometers.
  • Conductor layer By optimizing the pattern shape of the substrate with no turn, the line width, line pitch, and line thickness of the substrate with the conductor layer pattern can be transferred from the substrate, or the transfer of metal in unnecessary parts can be suppressed. In order to optimize the thickness of the projection and easily produce it, the width of the upper surface of the convex portion is particularly preferably in the range of 1 to 20 m.
  • Examples of the method for forming the convex portion on the conductive substrate include the following methods.
  • a portion of the conductive base material where the concave portion should be formed (the portion corresponding to the opening of the conductive layer pattern of the base material with the conductive layer pattern) is directly irradiated with laser light to form a concave portion, and the conductive layer A method of forming a convex portion corresponding to the pattern,
  • the material of the conductive substrate is hard, it is preferable to use the method (1) (laser processing method) or (2) (etching method) for direct processing. When using a material with excellent solid workability, it can be processed by the above method (3) (engraving method). At this time, further, hard plating such as chromium is applied to the surface to increase the strength. You can. [0063]
  • the region B will be mainly described with reference to FIGS. 4 to 8 show a part of a plan view of the conductive substrate including region A and region B.
  • the planar shape 10 of the concave portion is black
  • the upper surface 11 of the convex portion is white
  • the region A shows only a lattice pattern with a bias angle of 45 °.
  • the geometric figure formed in region B is selected as appropriate.
  • the top surface at the end of region A is continuous with the top surface of region B (Fig. 4)
  • part of the line at the end of region A is region B.
  • the geometrical figure formed in region B is round (Fig. 6)
  • the geometrical figure force formed in region B is S stripe shape (Fig. 5). 7), if the geometric figure formed in region B is a large rectangle ( Figure 8), etc.
  • the width of the convex portion formed in the region B is too thin, the width of the formed conductor layer is reduced, the ground area is reduced, the connection resistance is increased, and the electromagnetic shielding property is reduced. There is. Conversely, if the width of the convex portion formed in region B is too large, the width of the formed conductor layer becomes large, and the ground area transferred to another substrate becomes large, so that the connection resistance is stable. However, cracks and pinholes are likely to occur in the transferred conductor layer.
  • the metal layer formed on the upper surface of the conductive base material is transferred to another base material, if the metal layer is cracked, the transfer is performed (when the conductive base material is peeled off). It is considered that the metal layer cannot follow the deformation of another base material (or, in some cases, the deformation of the adhesive layer laminated on another base material). If the metal layer formed on the upper surface of the recess is selectively transferred by increasing the thickness or by disposing an insulating layer in the recess so that the metal is not plated in the recess, It is considered that cracking can be prevented in order to relieve the stress generated in the transfer of the geometric figure corresponding to the concave figure.
  • the width of the upper surface of the convex portion (line width) in region B is p and the center interval (line pitch) of the upper surface of the convex portion is q, the smaller p is, the larger q is, the metal during transfer Layer cracking is reduced. If p is small, the pinhole at the outer peripheral edge for grounding reduces the force q. If the p is small, the peeling stress of the adhesive due to the opening is not sufficiently relaxed. ) q is at least 3 times the width of the top surface of the convex part (line width) p in region B (q ⁇ 3p), in other words, the width of the concave part is at least twice the width of the front of the convex part. I like it.
  • the spacing q between the top surfaces of the protrusions is less than 10 times the line width (q ⁇ That is, it is preferable that the width of the concave portion is not more than 9 times the width of the front surface of the convex portion.
  • the area ratio of the recesses in the region A is preferably 50% to 97% or less, and the area ratio of the region B is preferably 40% to less than 97%.
  • the area ratio of the recesses in region A is 70% to More preferably, it is 95%.
  • the area ratio of the recesses in area B is more preferably 45% to 70% in order to ensure both crack resistance and pinhole resistance.
  • the intersection of the convex portions tends to be rounded at a right angle. If the corner is a right angle, it is easy to start the cracking of the metal, but if the corner is rounded or the opening is round or curved, the stress applied to the metal plating line during transfer Since it can be made more uniform, it becomes a crack.
  • etching methods when a printing method is used, various methods can be used as a printing method for forming a resist pattern. For example, screen printing, letterpress printing, letterpress offset printing, letterpress reverse printing, intaglio printing, letterpress offset printing Inkjet printing, flexographic printing, and the like can be used.
  • a dry film resist or the like is laminated, a mask is attached, and after exposure and development, an etching process can be performed. After applying a liquid resist, the solvent is dried or dried. A similar process can be performed after the temporary curing. If the photocurable resin can be patterned by irradiating active energy rays through a mask, the mode is not limited.
  • the method of laminating a dry film resist and exposing through a mask is preferable from the viewpoint of productivity.
  • direct processing a method in which a dry film resist is bonded or a liquid resist is applied and then directly exposed with a laser or the like without using a mask is preferable.
  • the polishing method may be a well-known! / Or any other method, but can be performed by puffing, general mechanical polishing using a puffol, polishing paper, belt sander, or the like. If the polishing puff is rough, the line width of the convex part after polishing may become extremely thick. Therefore, it is preferable to use an extremely fine polishing puff of # 1500 or more.
  • FIG. 9 shows a cross section of the conductive base material in a state where an insulating layer is formed in the concave portion of the conductive base material having the convex pattern having the upper surface and the concave portion of the geometrical shape drawn by the upper surface in the region A. A part of the figure is shown.
  • a conductive substrate having the cross-sectional shape shown in FIG. 3D is used.
  • the insulating layer 12 is formed by a pattern of convex portions 3 having an upper surface 8 and a concave portion 2 of the geometrical shape drawn thereby.
  • the insulating layer 12 is formed so as to be flush with the upper surface 8 from the end of the upper surface 8 of the protrusion 3. In this way, it is particularly preferable that the insulating layer 12 protrudes above the upper surface 8 when the conductive substrate is leveled.
  • the insulating layer 12 may be formed so that the bottom portion of the concave portion 2 is thicker than the side portion 7. Further, as shown in FIG. The thickness of the insulating layer 12 may gradually decrease near the edge of the insulating layer 12, and the thickness of the insulating layer 12 may be zero in the same plane direction as the upper surface 8. This can be obtained by forming the insulating layer shown in FIGS. 9a and 9-b and then processing it by the polishing method as described above.
  • the thickness of the insulating layer on the side surface 7 of the convex portion is preferably 10 m or less. At the end of the upper surface 8, the thickness is 0 ⁇ m in the same plane direction as the upper surface 8. Especially preferred to be! /.
  • the insulating height of the convex portion 3 is defined as the height from the most depressed portion when the concave portion 2 is covered with the insulating layer 12 to the upper surface 8 of the convex portion 3 (this is the force defined in the region A) Define area B in the same way). At this time, it is preferable to form the insulating layer 12 so that the insulating height of the convex portion 3 is 1Z2 or more of the height of the convex portion 3 of the conductive substrate. The thinner the insulating layer 12, the lower the possibility that the insulating layer 12 will come into contact with another substrate (or the adhesive or adhesive layered on the surface thereof).
  • the insulating layer 12 is formed so that the height of the convex portion is 3Z4 or more. If the insulation height of the protrusion is smaller than 1Z2 which is the height of the protrusion, the base material (or the adhesive or adhesive layered on the surface) separates from the insulating layer due to deformation of the adhesive during transfer. Since it becomes easy to contact, the lifetime of a convex part pattern becomes short.
  • an insulating material having good adhesion to the conductive substrate 1 can be used. The insulating layer 12 easily peels from the conductive substrate 1 due to repeated peeling stress.
  • the insulating height of the convex part 3 is preferably 10 m or more lower than the height of the convex part 3.
  • the thickness is preferably 1 ⁇ m or more.
  • the insulating layer 12 Since the formation of the insulating layer 12 is easier to form when it is uniform, it is preferably 1 to 10 ⁇ m as a whole, preferably a thin film insulating layer.
  • FIG. 11 is a cross-sectional view showing an example of a process showing a method for producing a conductive substrate for plating.
  • FIG. 11 shows an example using a conductive substrate having the cross-sectional shape shown in FIG. 3d.
  • a photocurable resin layer 7 is formed on the surface of the conductive substrate 1 (FIG. 11a).
  • Photolithographic method 13 is used to pattern the photocurable resin layer 13 ( Figure 11-b). By etching the conductive substrate using the patterned photocurable resin layer 13 as an etching resist, the etched conductive substrate shown in FIG. 11 is obtained (FIG. 11- c ). At that time, the photocurable resin layer 13 as an etching resist is left without being peeled off.
  • an insulating layer 8 is formed in the recess 2 of the conductive substrate 1 (FIG. 11d).
  • the photocurable resin layer 13 as an etching resist remains on the upper surface 8 of the convex portion of the conductive base material, no insulating layer is formed.
  • the etching resist can be selectively peeled off, and the insulating layer 12 can be selectively formed in a portion other than the upper surface 8 of the convex portion of the conductive substrate, that is, in the concave portion (FIG. 11e).
  • the surface of the photocurable resin layer 13 as a resist can be lightly polished in order to remove dirt on the surface.
  • the force varies depending on the type of the conductive base material, so it cannot be generally stated, but it is preferable to polish with a weak force.
  • polishing it is possible to perform treatment with a chemical solution using a degreasing treatment agent or the like. In this case, it is possible to appropriately select a chemical solution such as V in which the insulating layer is not broken.
  • the width of the upper surface of the convex pattern after etching becomes narrower than the width of the etching resist pattern.
  • Etching is preferred (see Figure 11-c).
  • the width of the etching resist pattern is preferably 20 m or more from the viewpoint of facilitating the formation of a good pattern or a good pattern. If you try to form a pattern with a narrower width than this, the etching resist pattern will blur. It is also a force that easily causes disconnection or the like. For safety in this respect, the width of the etching resist pattern may be 30 m or more.
  • the width of the etching resist pattern is too large, the degree of over-etching becomes too large, so it is preferable that the width is 100 ⁇ m or less, particularly 50 ⁇ m or less. If the width of the etching resist pattern exceeds 100 ⁇ m, it tends to be difficult to make the width of the upper surface of the convex portion of the conductive substrate after overetching 40 m or less.
  • the line width by etching can be adjusted by the width of the original resist and the etching time.
  • etching liquids depending on the conductive metal material, and since etching liquids are commercially available for the respective metals, they can be used.
  • conductive metal strength S stainless steel it is common to use salty ferric iron, and in the case of titanium, a hydrofluoric acid-based etching solution is often used.
  • FIGS. 12-a to 12-c are enlarged cross-sectional views of the upper surface portion of the convex portion 3 after the insulating layer 8 is formed and before the etching resist pattern 13 is peeled off.
  • Fig. 12-a is an example of the case where the over-etching method is not applied!
  • the insulating layer 12 is deposited on the side surface of the resist pattern 13 above the upper surface of the convex portion 3 of the conductive substrate. Resulting in. In this case, the etching resist 13 may be removed.
  • contact between the insulating layer 12 and the adhesive of the transfer substrate tends to occur, and the insulating layer 12 tends to be partially broken. If the degree is too small or the insulating layer 12 is formed too thick, as shown in FIG.
  • the over-etched width z is obtained by the following equation (1).
  • Equation 2 [Equation 2] w ⁇ z ⁇ , 2) w is preferably a force that is the same size as z, smaller than that, as shown in Figure 12-c.
  • the photocurable resin layer 13 as an etching resist was peeled off, and then the insulating layer 12 was removed.
  • the insulating layer 12 is formed not only on the concave portion 2 but also on the upper surface 8 of the convex portion, as shown in FIG. Only the insulating layer 12 formed on the upper surface 8 of the convex portion by processing may be removed.
  • a force that requires a certain amount of accuracy is required. According to the above method, the step of selectively removing the insulating layer 12 is not necessary. The number of processes is reduced, and the fabrication becomes easy.
  • the photo-curable resin layer 13 using a photolithographic method has been described as an etching resist.
  • the upper surface of the convex portion is finally plated with a hard metal such as nickel or chrome in the above process.
  • the insulating material for the insulating layer used in the present invention a material having high chemical resistance and high adhesion to a metal is preferably used. In the process of electroplating or electroless plating, it is immersed in the pretreatment solution or plating solution, so that the strong material is more resistant to both acid resistance and alkali resistance. Is preferred.
  • resins for example, thermosetting resins are preferred, such as bamboo resin, epoxy resin, urea resin, errin resin, melamine resin. , Phenolic resin (including alkylphenolic resin), formalin resin, metal oxide, metal chloride, oxime, etc., which are self-curing (even if a curing catalyst is used) Good).
  • thermosetting resin can be used as a thermosetting resin.
  • a resin having a functional group such as a carboxyl group, a hydroxyl group, an epoxy group, an amino group, and an unsaturated hydrocarbon group, and an epoxy group, a hydroxyl group, an amino group, an amide group, a carboxyl group, and a thiol group.
  • a curing agent having a functional group or a curing agent such as a metal chloride, isocyanate, acid anhydride, metal oxide, peroxide, etc., which has a functional group reactive with the above resin. There is something to be done.
  • additives such as general-purpose catalysts can also be used.
  • Specific examples include curable acrylic resin compositions, unsaturated polyester resin compositions, diallyl phthalate resins, epoxy resin compositions, polyurethane resin compositions, and the like.
  • Examples of the method for forming the insulating layer include brush coating, spray coating, and after dubbing, removing the grease with a squeegee blade and drying it.
  • the electrodeposition coating is preferred because of the uniformity of the film, the ease of formation, and the environmental load.
  • Electrodeposition paints can be used in any known cationic type or eron type. Here, an example of electrodeposition paints that can be used is shown.
  • a resin paste having a basic amino group is prepared, and this is neutralized with an acid and water-solubilized (water-dispersed). Paint is included.
  • the cationic electrodeposition coating is applied using the conductive substrate (object to be coated) as a cathode.
  • the resin having a basic amino group includes, for example, bisphenol type epoxy resin, epoxy group (or glycidyl group) -containing acrylic resin, glycidyl ether of alkylene glycol, epoxidized polybutadiene, and epoxidized product of novolac phenol resin.
  • An epoxy group (oxysilane ring) of an epoxy group-containing resin with an amine compound added, or an unsaturated compound having a basic amino group for example, dimethylaminoethyl methacrylate, N-biphenyl).
  • amine compound is a basic amine compound, which is an aliphatic, cycloaliphatic or araliphatic primary or secondary amine, alkanolamine, tertiary amine.
  • amine compounds such as quaternary ammonia salts. Typical examples of these amine compounds having a basic amino group include the following. (1)
  • Primary amines such as methylamine, ethylamine, n- or iso-propylamine, monoethanolamine, n- or iso-propanolamine; (2) jetylamine, diethanolamine, di-n- or iso-propanolamine Secondary amines such as amine, N-methylethanolamine, N-ethylethanolamine; (3) ethylenediamine, diethylenetriamine, hydroxyethylaminoethylamine, ethylaminoethylamine, methylaminopropylamine , Polyamines such as dimethylaminoethylamine and dimethylaminopropylamine. Of these, alkanolamines having a hydroxyl group are preferred.
  • the primary amino group may be blocked by reacting with a ketone in advance, and then reacted with an epoxy group with the remaining active hydrogen.
  • basic compounds such as ammonia, guanidine, hydroxylamine, hydrazine, and hydroxyethyl hydrazine can be used in the same manner.
  • the basic group formed using these compounds can be converted to a cationic group by protonation with an acid, particularly preferably a water-soluble organic carboxylic acid such as formic acid, acetic acid or lactic acid.
  • tertiary grades such as triethylamine, triethanolamine, ⁇ , ⁇ -dimethylethanolamine, ⁇ -methyljetanolamine, ⁇ , ⁇ -jetylethanolamine, ⁇ -ethylethylethanolamine, etc.
  • Amines can also be used, which can be pre-protonated with acid and quaternized with epoxy groups.
  • sulfides such as dimethylsulfide, diphenylsulfide, tetramethylenesulfide, and thiodiethanol, which react with epoxy groups to form cationic groups, boric acid, carbonic acid, and organic monocarboxylic acids.
  • This salt may be reacted with an epoxy group to form a tertiary sulfo-um salt.
  • triethyl phosphine, phenol dimethyl A quaternary phosphonium salt can also be obtained by reacting a salt of a phosphine such as phosphine, diphenylmethylphosphine, triphenylphosphine and the like with an acid as described above with an epoxy group to form a quaternary phosphonium salt. Phosphine salts can also be used.
  • Examples of the acid that is a neutralizing agent for neutralizing the coconut resin having a basic amino group and making it water-soluble (water-dispersed) include acetic acid, hydroxylacetic acid, propionic acid, butyric acid, lactic acid, glycine, etc. Inorganic acids such as organic acids, sulfuric acid, hydrochloric acid and phosphoric acid can be used.
  • the amount of neutralizing agent used is suitably in the range of about 0.1 to 0.4 neutralizing equivalent to the base number of the resin (about 20 to 200).
  • a crosslinking agent can be mix
  • a crosslinking agent a blocked polyisocyanate compound is well known, but when the coating film is heated (about 140 ° C or higher), the blocking agent is dissociated to regenerate the isocyanate group, Crosslinking reaction is carried out with respect to the isocyanate groups such as hydroxyl groups in the cationic resin as described above and reactive groups, and the cationic electrodeposition paints include pigments (colored pigments, extender pigments, antifouling pigments, etc. face).
  • the blending amount of the material is preferably 40 parts by weight or less per 100 parts by weight of the resin solid content), hydrophilic solvent, water, additives and the like can be blended as necessary.
  • the cationic electrodeposition paint is preferably diluted with deionized water or the like so that its solid content concentration is about 5 to 40% by weight, and the pH is adjusted within the range of 5.5 to 8.0.
  • Cationic electrodeposition paints using cationic electrodeposition paints prepared in this way can usually be carried out with the substrate to be coated as a cathode under conditions of a bath temperature of 15 to 35 ° C and a load voltage of 100 to 400V. it can.
  • a baking temperature of the coating film is generally suitable in the range of 100 to 200 ° C.
  • the ion-on electrodeposition paint is based on a resin having a carboxyl group and is preferably an anodic deposition electrodeposition paint that is neutralized and water-solubilized (water-dispersed) with a basic compound. It is coated with the conductive substrate (object) as the anode.
  • maley coconut oil resin obtained by adding maleic anhydride to dry oil (such as linseed oil, dehydrated castor oil, tung oil), polybutadiene (1, 2-type, 1, 4-type, etc.) Maleated polybutadiene with maleic anhydride attached to it, epoxy resin with unsaturated fatty acid ester with maleic anhydride added, and high molecular weight polyhydric alcohol (molecule It can be obtained by adding polybasic acid (trimellitic anhydride, maleated fatty acid, maleated oil, etc.) to an amount of about 1000 or more, including a partial ester of epoxy resin and styrene alcohol alcohol copolymer).
  • Reaction product of polymerizable unsaturated monomer and unsaturated fatty acid containing carboxyl group-containing polyester resin including fatty acid-modified one
  • carboxyl group-containing acrylic resin including glycidyl group or hydroxyl group
  • a resin or a copolymer formed by adding maleic anhydride or the like to a polymer or copolymer formed by using carboxylic acid, and a carboxyl group content strength For example, a resin or a copolymer formed by adding maleic anhydride or the like to a polymer or copolymer formed by using carboxylic acid, and a carboxyl group content strength.
  • an acid value in the range of about 30 to 200 is suitable. is doing.
  • Examples of the basic compound that is a neutralizing agent for neutralizing these carboxyl group-containing resins and making them water-soluble (dispersed) include alkanolamines such as monoethanolamine, diethanolamine, and dimethylaminoethanol. Further, alkylamines such as jetylamine and triethylamine, and inorganic alkalis such as potassium hydroxide and sodium hydroxide can be used.
  • the amount of these neutralizing agents used is suitably in the range of about 0.1 to 1.0 times equivalent (preferably 0.4 to 0.8 times equivalent) of the theoretical neutralization equivalent to the acid value of the resin.
  • a cross-linking agent can be blended in the ion-on electrodeposition paint.
  • the cross-linking agent low molecular weight melamine greaves such as hexakis methoxymethyl melamine, butoxylated methyl melamine, and ethoxylated methyl melamine can be used as necessary.
  • pigments colored pigments, extender pigments, anti-fouling pigments, etc.
  • the amount of pigment is preferably 40 parts by weight or less per 100 parts by weight of the solid content of the resin), hydrophilic Solvents, water, additives, etc. can be blended as necessary.
  • the on-electrode coating can be carried out according to a conventional method.
  • the coating can be carried out with the object to be coated as an anode under conditions of a bath temperature of 15 to 35 ° C. and a load voltage of 100 to 350 V.
  • the electrode-on electrodeposition coating can be cured by heating in the range of 100 to 200 ° C, preferably 140 to 200 ° C. If so, dry at room temperature.
  • durability is not limited to ceramics or the like. Machine materials can also be used.
  • Inorganic materials include alkali metal, organopolymetal, organoalkoxymetal, alkoxymetal, modified acetylethylacetonate metal, and other metal oxide polymers and inorganic fillers when wet coating is used.
  • the applied paint can be applied by spray, dispenser, datebing, roll, spin coat, etc. with a solvent such as alcohol or water.
  • An insulating layer can also be formed by a liquid layer deposition method (LPD method) using a metal fluoride complex.
  • a coating method it can be produced by using a PVD method such as vapor deposition, sputtering, ion plating, a CVD method such as plasma CVD or thermal CVD, or a thermal spraying method.
  • the insulating material may be used alone, but it is preferable to form a film of two or more layers by combining the above methods.
  • An insulating film formed by a single wet coating method such as sol-gel has a large difference in expansion coefficient from the underlying metal, so cracks are likely to occur. Therefore, it is preferable to form one layer or two or more layers of metals, oxides, nitrides, carbides, etc. as an intermediate layer so as to alleviate the difference in expansion coefficient by dry coating. If the layer coated on the outermost surface has an insulating property, the lower layer does not necessarily have an insulating property.
  • film types formed by dry coating include Al, Au, Co, Cr, Cu, Ge, In, Mo, Nb, Ni, Pb, Pd, Pt, Ru, Si, Sn, Ta, Ti, W, In addition to pure metals such as Y, Zn, Zr and their alloys, Al O, BaTiO, Cr O, Fe O, InO,
  • Metals such as O, indium tin oxide (ITO), and antimontin oxide (ATO)
  • a carbide such as TiC can be used. These metals and metal compounds can also be used in combination.
  • the conductive substrate is an iron-based material, nitrides and carbides are particularly preferred because of their good adhesion to the conductive substrate.
  • an insulating layer may be formed by stacking dry coating layers, or wet coating on the dry coating.
  • a film may be formed by
  • a high-strength and high-hardness film as an insulating layer
  • at least the surface of the carbon thin film similar to diamond or the so-called diamond-like carbon (hereinafter referred to as DLC thin film) is insulated. It is preferable to form it with what has property.
  • the insulating layer may be formed entirely by the above-mentioned insulating DLC thin film, but it improves the adhesion of the DLC thin film to a conductive substrate such as a metal plate, thereby improving the durability of the insulating layer.
  • the above S or SiC thin film has excellent adhesion to a metal such as stainless steel, and also forms SiC at the interface with the insulating DLC thin film to be laminated on it. Has the effect of improving the performance.
  • S, SiC and DLC thin films can be formed by the dry coating method described above.
  • a well-known method can be employ
  • the plating method an electric plating method, an electroless plating method, or other plating methods can be applied.
  • Electric plating will be further described.
  • a copper sulfate bath, a copper borofluoride bath, a copper pyrophosphate bath, or a copper cyanide bath can be used as an electrolytic bath for plating.
  • a stress relaxation agent also having an effect as a brightening agent
  • electro nickel plating a Watt bath, a sulfamic acid bath, or the like can be used.
  • additives such as saccharin, paratoluenesulfonamide, sodium benzenesulfonate, sodium naphthalenetrisulfonate, and commercially available additives which are their preparations are used as necessary. Additives may be added.
  • alloy plating using cyan gold potassium or pure gold plating using citrate ammonium bath or potassium citrate bath is used.
  • alloy plating binary alloys of gold copper, gold silver, gold cobalt, and ternary alloys of gold copper silver are used.
  • other known methods can be used for other metals. For example, see pages 87 to 504 of Non-Patent Document 1 for the electrical plating method. can do.
  • electroless plating examples include copper plating, nickel plating, and other methods, such as tin plating, gold plating, silver plating, cobalt plating, iron plating, and chromium plating.
  • a reducing agent is added to the plating solution, and electrons generated by the oxidation reaction are used for metal deposition reaction. It consists of salt, complexing agent, reducing agent, pH adjuster, pH buffer, stabilizer and so on.
  • copper sulfate is preferably used as the metal salt, formalin as the reducing agent, and Rossel salt or ethylenediamine tetraacetic acid (EDTA) as the complexing agent.
  • the pH is mainly adjusted with sodium hydroxide, but potassium hydroxide and lithium hydroxide can also be used.
  • Carbonates and phosphates are used as buffers, and stabilizers are used.
  • Cyanides preferentially complexed with monovalent copper, thiourea, bibilidyl, 0-phenantorin, neocuproin, etc. are used.
  • nickel sulfate is preferably used as the metal salt
  • sodium hypophosphite, hydrazine, borohydride compounds, etc. are preferably used as the reducing agent.
  • sodium hypophosphite is used, phosphorus is contained in the plating film, and corrosion resistance and wear resistance are excellent.
  • the buffering agent a monocarboxylic acid or an alkali metal salt thereof is often used.
  • Complexing agents that form stable soluble complexes with nickel ions in the plating solution are used, and acetic acid, lactic acid, tartaric acid, malic acid, citrate, glycine, alanine, EDTA, etc. are used. For example, sulfur compounds and lead ions are added.
  • Non-Patent Document 1 pages 505 to 545 of Non-Patent Document 1 can be referred to. Furthermore, in order to obtain the reducing action of the reducing agent, it is necessary to activate the catalyst on the metal surface.
  • the substrate is a metal such as iron, steel, or nickel
  • the metal has catalytic activity, so it can be deposited just by immersing it in an electroless plating solution.
  • copper, silver, their alloys, and stainless steel are the base materials.
  • a method of immersing the covering object in an acidic hydrochloric acid solution of palladium chloride and depositing palladium on the surface by ion substitution is used.
  • the electroless plating that can be used in the present invention is, for example, the convex pattern of the convex portion having the upper surface described above and the convex portion of the conductive base material having the concave portion of the geometrical drawing shape drawn thereby.
  • a copper catalyst is applied by adhering a palladium catalyst if necessary and then immersing it in an electroless copper plating solution at a temperature of about 60 to 90 ° C.
  • the substrate need not necessarily be conductive.
  • the base material needs to be conductive, and is deposited on the base material in preparation for electroless plating.
  • the substrate needs to be conductive.
  • the material of the conductive base material is Ni
  • the conductive base material having the convex pattern having the upper surface and the geometrical figure-shaped concave portion drawn thereby is anodized.
  • copper is deposited by dipping in an electroless copper plating solution.
  • conductive materials such as silver, copper, gold, aluminum, tandasten, nickel, iron, and chromium are used.
  • Volume resistivity at 20 ° C (specific resistance) It is desirable to contain at least one type of metal with a Q Zcm or less.
  • the metal constituting it is grounded as an electric current, so that the higher the conductivity, the better the electromagnetic wave shielding property.
  • These metals include silver (1.62 ⁇ Q Zcm), copper (1.72 ⁇ Q Zcm), gold (2.4 ⁇ Q Zcm), aluminum (2.75 ⁇ Q Zcm), tungsten (5 .5 ⁇ Q Zcm), nickel (7.24 ⁇ ) , Iron (9. ⁇ ⁇ 0 ⁇ 11), chromium (17 ⁇ / cm, all values at 20 ° C), etc., but are not limited thereto.
  • the volume resistivity is more preferably 10 Q Zcm, more preferably 5 Q Zcm.
  • copper is most preferably used.
  • These metals may be used alone or may be an alloy with another metal or a metal oxide to give further functionality.
  • the thickness of the metal layer (plating thickness) formed by plating on the upper surface of the convex portion of the conductive base material having the insulating layer in the concave portion described above exhibits sufficient conductivity (in this case, the electromagnetic wave shielding property is sufficient).
  • the thickness is not less than / zm.
  • the thickness of the formed metal is 20 m or less. In order to shorten the plating time and increase the production efficiency, The thickness of is more preferably 10 ⁇ m or less.
  • FIGS. 14 to 16 A method for forming a plastic substrate with a conductive layer pattern will be described with reference to FIGS. 14 to 16, taking as an example the case where convex portions 3 having a trapezoidal cross section are formed on a conductive substrate.
  • FIG. 14 is a cross-sectional view of a state in which a metal layer is formed on the conductive substrate 1.
  • the metal layer formed on the conductive substrate 1 is composed of a metal layer 14 formed on the upper surface of the convex portion, a metal 15 appearing on the bottom surface of the concave portion 2, and a side surface of the convex portion, depending on where the metal layer is formed.
  • metal 16 that appeared in For metals appearing on the conductive substrate 1, depending on the conditions such as the composition of the plating bath, the type of additive, the surface shape of the conductive substrate, the height of the projections, and the current density, metals 14, 15, 16, It is possible to change the thickness and shape of each. For example, when the current density is high, the embedding of the surface having a large surface roughness is poor and the particles are deposited in a granular form.In addition, when the height of the convex portion is high, the metal film thickness appearing in the concave portion is thin. Become. In any case, as long as only the metal 14 can be selectively transferred to the transparent substrate under the above-described conditions, there is no limitation on the above-mentioned conditions.
  • the plating thickness is preferably 0.5 m or more in order to exhibit sufficient electromagnetic shielding properties. Furthermore, if the plating thickness is too thick, the metal 15 appearing on the bottom surface of the recess 2 and the metal 16 appearing on the side surface also grow, so the metal 15 and 16 are also transferred at the same time and formed on the top surface of the projection. Since it may be difficult to selectively transfer only the deposited metal layer 14 (selective transferability), the thickness of the metal layer 14 formed on the upper surface of the convex portion should be 20 m or less. It is preferable to do. Furthermore, in order to shorten the plating time and increase the production efficiency, the thickness of the plating is more preferably 10 m or less.
  • FIG. 15 is a cross-sectional view showing a state in which a transparent substrate 18 coated with an adhesive 17 is laminated on the surface of the metal layer 14 formed on the upper surface of the convex portion of the conductive substrate 1 as shown in FIG.
  • FIG. Fig. 16 shows that the transparent substrate 18 coated with the adhesive 17 is peeled off, and only the metal layer 14 formed on the upper surface 8 of the convex portion of the conductive substrate 1 is removed, and the adhesive 17 is applied to the transparent substrate 18.
  • FIG. 6 is a cross-sectional view showing a base material 19 with a conductor layer pattern produced by transfer through and a conductive base material 1 in which metals 15 and 16 remain on the bottom and side surfaces of a recess 2.
  • an adhesive including an adhesive
  • an adhesive is applied.
  • the adhesive 17 is applied to any part of the conductive base material 1 as long as only the metal 14 is transferred.
  • the metal 17 and 16 may be transferred to the transparent substrate simultaneously with the metal 14, so that the adhesive 17 is applied to the upper surface 8 of the convex portion. It is preferable to contact only the formed metal layer 14. Also, if the adhesive is too thin, adhesion to the metal 14 may be reduced and transfer failure may occur, and if the adhesive is too thick, the manufacturing cost of the adhesive will increase. Since the amount of deformation of the adhesive increases when laminating, it is easy to come into contact with the metals 15 and 16, so the thickness of the adhesive is preferably smaller than the height of the convex part. Since the chance of coming into contact with the metal 15 is reduced, the height is more preferably half or less of the height of the convex portion. The thickness of the adhesive is preferably 1 to 50 m, and preferably 5 to 30 / zm.
  • the conductive base material 1 metal, the metal 15, 16 and, in some cases, a part of the metal 14 are repeatedly plated.
  • the metal layer 14 formed on the upper surface 8 of the convex portion 3 in a favorable state during the subsequent transfer.
  • a method of etching the remaining metal is preferable.
  • the etching solution is preferably a solution that dissolves the remaining metal and does not corrode the conductive substrate 1.
  • the metal that appears in the plating is copper
  • ferric chloride solution, copper chloride solution, sulfuric acid / hydrogen peroxide solution, ammonium persulfate solution, etc. are preferably used as the etching solution.
  • the etching solution is a force that can be used when the conductive substrate 1 is titanium.
  • ferric chloride solution or copper chloride solution is used, stainless steel is corroded, so it cannot be used.
  • Etching solution is used without corroding stainless steel such as ammonium persulfate.
  • the etching solution is appropriately selected depending on the remaining metal and the material of the conductive substrate 1.
  • Other methods for removing the metal remaining on the conductive substrate include a method of removing the residual metal by transferring it to an adhesive film.
  • the thickness of the adhesive of the adhesive film that removes the residual metal is such that the thickness of the adhesive layer is equal to or greater than the height of the convex portion in order to facilitate contact with the metal remaining in the concave portion. More preferably, it has a thickness that is at least twice the height of the preferred protrusion. After the transfer, the metal can be removed from the conductive substrate 1 and then staking can be performed again.
  • FIG. 17 An example of a method for producing a plastic substrate with a conductive layer pattern is explained with reference to Fig. 17, taking as an example the case where convex part 3 (see Fig. 3-b) with a trapezoidal cross-section is formed on a conductive substrate. To do.
  • FIG. 17-a shows the pattern of the convex portion 3 having the upper surface 8 and the thin film insulating layer 12 formed on the entire surface having the convex portion of the conductive substrate 1 having the geometrical shape-shaped concave portion drawn thereby. It is sectional drawing which shows the state which carried out.
  • the thin film insulating layer 12 can be formed by electrodeposition coating as described above.
  • the upper surface 8 of the convex portion 3 is polished until the upper surface 8 of the convex portion 3 is exposed.
  • Figure 17-b shows a cross-sectional view of this state.
  • the metal 14 is attached to the adhesive layer 21 and peeled off from the conductive substrate 1, that is, transferred to another substrate 20 to obtain a substrate 22 with a conductor layer pattern.
  • a cross-sectional view of this state is shown in FIG.
  • the thickness of the metal layer (plating thickness) formed by plating on the upper surface of the convex portion of the conductive base material having the insulating layer in the concave portion described above should exhibit sufficient conductivity (at this time, In order for the base material with a conductor layer pattern to exhibit sufficient electromagnetic shielding properties, a pinhole is formed in the conductor layer, which is preferably 0.5 m or more in the region B. In order to reduce the possibility that the electromagnetic wave shielding property will be reduced at this time, the thickness is more preferably 3 m or more.
  • the thickness of the metal layer to be formed is preferably 20 m or less. In addition, in order to shorten the plating time and increase the production efficiency, More preferably, the plating thickness is 10 m or less.
  • Examples of the other base material include glass, a plate such as a plastic, a plastic film, and a plastic sheet.
  • glass such as soda glass, non-alkali glass, and tempered glass can be used.
  • Plastics include polystyrene resin, acrylic resin, polymethylmethacrylate resin, polycarbonate resin, polyvinyl chloride resin, polysalt vinylidene resin, polyethylene resin, polypropylene resin, polyamide resin, Polyamideimide resin, polyetherimide resin, polyetheretherketone resin, polyarylate resin, polyacetal resin, polybutylene terephthalate resin, polyethylene terephthalate resin, etc., thermoplastic polyester resin, cellulose acetate resin, Thermoplastic resins such as fluorine resins, polysulfone resins, polyether sulfonate resins, polymethylpentene resins, polyurethane resins, diallyl phthalate resins and the like can be mentioned.
  • plastics polystyrene resin, acrylic resin, polymethyl methacrylate resin, polycarbonate resin, and polyvinyl chloride resin that are excellent in transparency are suitably used.
  • Another base material thickness is 0.5mn! ⁇ 5mm is also preferred for display protection and strength, handling and sexuality.
  • Another substrate in the present invention is preferably a plastic film.
  • This plastic film includes polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate, polyolefins such as polyethylene, polypropylene, polystyrene, and EVA, and burres such as polyvinyl chloride and polyvinyl chloride vinylidene.
  • a film made of plastic such as polysulfone, polyether nosale phone, polycarbonate, polyamide, polyimide, acrylic resin, etc., having a total visible light transmittance of 70% or more is preferable. These can be used as a single layer, but may be used as a multilayer film combining two or more layers.
  • plastic films a polyethylene terephthalate film or a polycarbonate film is particularly preferable from the viewpoints of transparency, heat resistance, ease of handling, and cost.
  • the thickness of the plastic film is not particularly limited, but a thickness of 1 mm or less is preferable. If it is too thick, the visible light transmittance tends to decrease. In view of the fact that if the film is too thin, the handleability deteriorates, and the thickness of the plastic film is more preferably 50 to 200 / ⁇ ⁇ , more preferably 5 to 500 ⁇ m.
  • These substrates such as plastic films are preferably transparent (that is, transparent substrates) in order to be used as an electromagnetic wave shielding film for preventing leakage of electromagnetic waves from the front surface of the display.
  • the surface of the other substrate on which the conductor layer pattern is transferred needs to have adhesiveness when transferred.
  • the substrate itself may have the necessary adhesiveness, but it is preferable to laminate an adhesive layer on the transfer surface.
  • the adhesive layer is preferably one that has adhesiveness at the time of transfer or one that exhibits adhesiveness under heating or pressure.
  • the material having adhesiveness it is most preferable to use a resin having a glass transition temperature of 0 ° C. or less, which is preferable to a resin having a glass transition temperature of 20 ° C. or less.
  • thermoplastic resin, thermosetting resin, resin cured by irradiation with an activated energy line, and the like can be used.
  • thermoplastic resin, thermosetting resin, active energy ray It is preferable that the glass transition point of the resin cured by irradiation of 80 ° C or less.
  • the weight average molecular weight of the thermoplastic resin, the thermosetting resin, and the resin cured by irradiation with active energy rays is 5 It is preferable to use 00 or more. If the molecular weight is less than 500, the cohesive strength of the resin is too low, which may reduce the adhesion to the metal.
  • thermoplastic rosin examples include the following.
  • natural rubber polyisoprene, poly 1,2-butadiene, polyisobutene, polybutene, poly 2 heptilo, 1,3 butadiene, poly 2 tert-butyl-1,3 butadiene, poly-1,3-butadiene)
  • Polyethers such as polyoxyethylene, polyoxypropylene, polyvinylino ethinoreateoret, polyvinylinolehexenoleatenore, polyvinylinolebutinoleate, polybutylacetate, polybulupropionate, etc.
  • Polyesters Polyurethane, Ethylcellulose, Polyvinyl chloride, Polyacrylonitrile, Polymethallyl-tolyl, Polysulfone, Polysulfide, Phenoxy resin, Polyethyl acrylate, Polybutyl acrylate, Poly 2-ethylhexyl acrylate, Poly tert-butyl Luata Relay , Poly-3-ethoxypropyl acrylate), polyoxycarbonyltetramethacrylate, polymethylacrylate, polyisopropylmethacrylate, polydodecylmethacrylate, polytetradecylmethacrylate, polyn-propylmethacrylate, poly-3 , 3, 5 Trimethylcyclohexyl metatalylate, Polyethyl metatalylate, Poly 1-Traw 2-Methylpropyl metatalylate, Poly 1,1-jetylpropyl metatalylate, Polymethyl metatalylate Poly (meth) acrylic acid esters such as
  • acrylic resin, epoxy resin, polyester resin, urethane resin, etc. are used as base polymers, and each is provided with radically polymerizable or cationically polymerizable functional groups.
  • the material made can be illustrated.
  • radically polymerizable functional groups there are carbon-carbon double bonds such as acryl group (attalyloyl group), methacryl group (methacryloyl group), bur group, allyl group, etc., and highly reactive acrylic group (attalyloyl group). ) Is preferably used.
  • an epoxy group (glycidyl ether group or glycidylamine group) is typical, and a highly reactive alicyclic epoxy group is preferably used.
  • Specific materials include acrylic urethane, epoxy (meth) acrylate, epoxy-modified poly Examples include butadiene, epoxy-modified polyester, polybutadiene (meth) acrylate, and acrylic-modified polyester.
  • active energy rays ultraviolet rays, electron beams and the like are used.
  • Photoinitiators include benzophenone, anthraquinone, benzoin, snorephonium salt, diazo-um salt, and oum. Known materials such as salt and haum-um salt can be used. Moreover, you may blend general purpose thermoplastic resin other than said material.
  • thermosetting resins include natural rubber, isoprene rubber, chloroprene rubber, polyisobutylene, butyl rubber, halogenated butyl, acrylonitrile butadiene rubber, styrene-butadiene rubber, polyisobutene, carboxy rubber, neoprene, and polybutadiene.
  • thermosetting resin those using a curing agent include a resin having a functional group such as a carboxyl group, a hydroxyl group, an epoxy group, an amino group, an unsaturated hydrocarbon group, an epoxy group, and a hydroxyl group.
  • a curing agent having a functional group such as a group, amino group, amide group, carboxyl group or thiol group, or a curing agent such as a metal chloride, isocyanate, acid anhydride, metal oxide or peroxide.
  • an additive such as a general-purpose catalyst can be used. Specifically, curable acrylic resin composition, unsaturated polyester resin composition, diallyl phthalate resin, epoxy resin composition, polyurethane resin composition and the like are exemplified.
  • thermosetting resins or resins cured with active energy rays examples include acrylic acid or methacrylic acid adducts.
  • urethane acrylate, epoxy acrylate, and polyether acrylate are excellent from the viewpoint of adhesion.
  • epoxy acrylate 1,6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether are used.
  • a crosslinking agent for those having adhesiveness! / Scratching or exhibiting adhesiveness (hereinafter referred to as "adhesive"), a crosslinking agent, a curing agent, a dilution agent are used as necessary.
  • Additives such as additives, plasticizers, antioxidants, fillers, colorants, UV absorbers and tackifiers may be added.
  • the thickness of the pressure-sensitive adhesive layer is more preferably 3 / zm or more in order to ensure transfer reliability during mass production, which is preferably 1 ⁇ m or more.
  • the adhesive layer is thick, the manufacturing cost of the adhesive layer increases, and the amount of deformation of the adhesive layer increases when laminated. The thickness is more preferably 10 m or less because it reduces the chance of contact between the thin-film insulating layer and the adhesive layer, which are preferred below.
  • the line width of the conductor layer pattern of the substrate with the conductor layer pattern that is finally obtained is 40 m.
  • the line spacing is preferably in the range of 100 m or more.
  • the line width is more preferably 25 ⁇ m or less from the viewpoint of non-visibility of the conductor layer pattern (geometrical figure), and the line interval is more preferably 120 m or more from the viewpoint of visible light transmittance. If the line width is too small and thin, the surface resistance becomes too large and the shielding effect is poor, so 1 ⁇ m or more is preferable.
  • the larger the line spacing the better the aperture ratio and the visible light transmittance.
  • the aperture ratio needs to be 50% or more, more preferably 60% or more. If the line spacing becomes too large, the electromagnetic wave shielding property is deteriorated. Therefore, the line spacing is preferably 1000 m (lmm) or less.
  • the line interval is complicated by a combination of geometric figures, etc., the area is converted into a square area based on the repetition unit, and the length of one side is used as the line interval.
  • the aperture ratio of the portion that performs the electromagnetic wave shielding function is required to be 50% or more from the viewpoint of visible light transmittance. A certain force of 60% or more is more preferable. If the aperture ratio is too large, the line width becomes too small, so the aperture ratio is preferably 97% or less. From the viewpoint of line spacing, the line spacing is preferably 1000 m (lmm) or less. If the line spacing becomes too large, the electromagnetic shielding properties tend to decrease. When the line spacing is complicated by a combination of geometric figures, etc., the area is converted to a square area based on the repetition unit, and the length of one side is taken as the line spacing. From the viewpoint of visible light transmittance, the line spacing is preferably 100 m or more, more preferably 120 / z m or more. The larger the line spacing, the better the aperture ratio and the visible light transmittance.
  • the thickness of the conductor layer pattern line is preferably 100 ⁇ m or less
  • the thinner the thickness the wider the viewing angle of the display and the better the electromagnetic shielding material.
  • the thickness of the conductor layer pattern line in the portion that assumes the grounding function is preferably 0.5 m or more, and more preferably 1 m or more, in order to ensure sufficient electric resistance. Furthermore, if the difference between the line thickness of the conductor layer pattern at the part that is responsible for the electromagnetic wave shielding function is large, a step is formed during transfer, and the boundary part is not transferred or folds are likely to occur. For this reason, the difference between the conductor layer pattern line thickness of the part that performs the electromagnetic shielding function is preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the aperture ratio of the conductor layer pattern can be increased, thereby making it possible to improve the translucency.
  • a metal such as copper, silver or nickel
  • the conductivity is particularly excellent.
  • the base material with a conductor layer pattern in the present invention can be used as a translucent electromagnetic wave shielding member.
  • an antireflection layer, a near infrared shielding layer, or the like may be further laminated.
  • the base material itself that transfers the metal layer formed on the conductive base material 1 may also serve as a functional layer such as an antireflection layer or a near infrared shielding layer.
  • the cover film used when coating the resin layer pattern layer with a resin may also serve as a functional layer such as an antireflection layer or a near infrared shielding layer.
  • the conductive layer pattern in the present invention is blackened to ensure visibility including antireflection. It is preferable that it has been subjected to a soot treatment.
  • the front surface of the electromagnetic wave shielding member is preferably black because it satisfies the requirements such as high contrast and a black screen when the display is turned off! /
  • the blackening treatment various methods such as plating, oxidation treatment, and printing can be used for the metal layer.
  • various methods such as plating, oxidation treatment, and printing can be used for the metal layer.
  • the surface of the metal layer is oxidized and blackened by chemical conversion treatment, a fine black powder is generated in the conductor layer pattern line portion, the transmitted light intensity of the electromagnetic wave shielding member is lowered, and color unevenness occurs.
  • a black material such as carbon black is mixed with a screen or the like
  • it is difficult to blacken only the metal layer and the translucency of the electromagnetic wave shielding member is also impaired. Therefore, the insulating film formed on the concave portion of the conductive base material is not affected, and the metal layer and other portions are not blackened by the plating process.
  • Black nickel plating that can treat only the surface of the metal layer without generating powder is most effective.
  • Black nickel plating is a plating method for forming a black alloy film containing nickel sulfate as a main component by electrodeposition. it can.
  • sulfur-nickel has a suitable black color and also has good adhesion to the underlying metal.
  • silver, mercury, copper, lead, etc. can be used.
  • a blackening treatment layer (black layer) with good adhesion should be formed only on the metal layer that does not fall off even when using an alloy plating such as tin and nickel, tin and cobalt, or black chromium plating. Is possible.
  • the process of forming these blackening treatment layers can be performed before or after forming the metal layer on the upper surface of the convex portion of the conductive base material, and before transferring to another base material. It can also be done after the transfer.
  • FIGS. 18 to 20 are cross-sectional views of a base material with a conductor layer pattern which also has a metal pattern force in which the conductor layer pattern is blackened.
  • Fig. 18 shows the conductor layer pattern obtained by transferring the metal layer 14 formed on the convex portion from the conductive substrate to the substrate 18 via the adhesive 17, and then blackening the metal surface. It is sectional drawing of the base material with a conductor layer pattern which has. A conductor layer pattern in which a black layer 23 is formed on the side surface and the upper surface of the metal 14 is attached to a transparent substrate 18 as a substrate via an adhesive 17. Also, FIGS.
  • FIG. 2 is a cross-sectional view of a base material with a conductor layer pattern obtained by blackening and then transferring the blackened metal (conductor layer pattern) to the base material 18 through an adhesive 17.
  • the black layer 24 is attached to the transparent base material 18 as a base material via the adhesive 17.
  • the metal 14 side is also blackened, but in Fig. 19b the metal side is blackened.
  • the above electromagnetic shielding member is generally used so that the surface on which the black layer is provided faces the viewer side of the display.
  • a plating solution containing nickel sulfate 60-: LOOgZL, nickel sulfate 30-50 g / L, zinc sulfate 20-40 gZL, sodium thiocyanate 10-20 gZL can be used.
  • Temperature: 45 ⁇ 55 ° C Current density 0.5 ⁇ 3. OAZdm 2 conditions, stainless steel or nickel anode, circulation pump and air agitation for agitation.
  • a black nickel plating layer suitable for a display panel can be formed.
  • the pretreatment for black nickel plating it is more preferable to perform appropriate alkaline degreasing and acid cleaning in order to improve the adhesion to the metal layer as the base.
  • plating is performed at a concentration exceeding the concentration range of each component, it becomes difficult to obtain a good black color as soon as the clinging liquid decomposes.
  • plating is performed at a temperature exceeding 55 ° C, the clinging solution is easily decomposed.
  • the product becomes rough and easy to fall off, which also shortens the life of the liquid. Less than 45 ° C 1.
  • the optimum temperature range when performing black nickel plating in a short time using the plating solution with the above concentration composition is 45-55 ° C.
  • the current density can be less than 0.5 AZdm 2 within the temperature range, but long plating is required to obtain the desired black color. 3.
  • a black coating is formed that decomposes the adhesive solution and easily breaks down.
  • the plating solution life will be shortened, so it is usually desirable to use a nickel anode.
  • the thickness of the black treatment layer plating of 0.5 m or less does not result in complete blackness, and rainbow-like color unevenness tends to occur on the surface.
  • the thickness of the blackening treatment layer is preferably 0.5 / ⁇ ⁇ to 3. O / z m.
  • a fender treatment can be further performed.
  • a chromate treatment, benzotriazole, or the like can be used as a known means.
  • a commercially available antifungal agent can also be used.
  • the blackened layer is formed again by the same method after transferring the conductive layer pattern with the blackened layer to another substrate, it is desirable to carry out the same antifouling treatment.
  • the substrate with a conductor layer pattern according to the present invention is used as an electromagnetic wave shielding member, it can be used as it is by being attached to the display screen through another adhesive as appropriate or not. It may be applied to other substrates by applying to other substrates. Other substrates need to be transparent to be used to block the electromagnetic waves that are the front power of the display.
  • FIG. 20 shows a cross-sectional view of an electromagnetic wave shielding member obtained by pasting a base material with a conductor layer pattern onto another base material.
  • a conductor layer pattern made of a metal 14 is embedded in an adhesive layer 21 laminated on a base material (another base material) 20, and the adhesive layer 21 and the metal 14 are connected to another base material 2.
  • the conductor layer pattern of the substrate with the conductor layer pattern having the conductor layer pattern made of the metal 14 bonded to the substrate (another substrate) 20 via the adhesive 21 exists. It can be produced by a method of pressure-bonding to another base material 25 with an appropriate pressure. In this case, the metal 14 is embedded in the adhesive layer 21 by applying an appropriate pressure while the adhesive layer 21 has sufficient fluidity or sufficient fluidity. In this electromagnetic wave shielding body, the adhesive layer 21 and the other base material 25 are in direct contact with each other, and good adhesion can be obtained.
  • the base material (another base material) 20 is the base material (other base material) 25, which has transparency, and has a high transparency by using a material that has excellent strength and smoothness on its surface. It is possible to obtain an electromagnetic shield.
  • Fig. 21 shows a cross-sectional view of an electromagnetic wave shielding member in which the base material with a conductor layer pattern is covered with a protective resin.
  • a conductor layer pattern made of metal 14 is attached to an adhesive layer 21 laminated on a base material (another base material) 20, and this is covered with a transparent protective resin 26.
  • FIG. 22 is a cross-sectional view of an electromagnetic wave shielding body according to another aspect. This electromagnetic wave shield is shown in Fig. 21.
  • the electromagnetic shielding member is bonded to another substrate 28 via an adhesive 27 on the surface opposite to the surface on which the conductor layer pattern of the substrate (another substrate) 20 is provided.
  • FIG. 23 further shows a cross-sectional view of an electromagnetic wave shielding member according to another embodiment.
  • a conductor layer pattern made of metal 14 is bonded to a base material (another base material) 20 through an adhesive layer 21, and the conductive layer pattern is covered with an adhesive or an adhesive 29 made of a transparent resin. Furthermore, a protective film 30 is laminated thereon.
  • Another substrate 28 such as a glass plate is attached to the other surface of the substrate 20 via an adhesive layer 27.
  • the surface on which the conductor layer pattern of the substrate with the conductor layer pattern having the conductor layer pattern adhered to the substrate (another substrate) 20 via the adhesive 21 is disposed on the transparent resin.
  • a protective film 30 is further laminated, and then an adhesive is applied to the other side (the surface on which nothing is laminated) of the base material 20 of the obtained laminate to form an adhesive layer 27. It can be produced by forming it and pressing it against another substrate 28 for adhesion.
  • a resin that is cured with active energy rays can be used. It is preferable to use a resin that hardens with active energy rays because it hardens instantaneously or in a short time, and thus the productivity increases.
  • a rotating body can be used as the conductive base material used in the present invention, and further details thereof will be described.
  • the rotating body (roll) is preferably made of metal.
  • a drum electrode or the like used in the drum-type electrolytic deposition method as the rotating body.
  • the material that forms the surface of the drum electrode has relatively low adhesion to stainless steel, chromium-plated pig iron, chromium-plated steel, titanium, and titanium-lined materials. , Prefer to use the material.
  • a rotating body as the conductive base material, it is possible to obtain a base material with a conductor layer pattern as a roll, and in this case, productivity is greatly increased.
  • FIG. Fig. 24 shows an apparatus for continuously depositing metal by electric plating while continuously rotating the drum electrode when a drum electrode is used as the conductive base material. It is sectional drawing (partial front view) which shows a concept. That is, the electrolytic solution 101 in the electrolytic bath 100 is supplied to the space between the anode 102 and the rotating body 103 such as the drum electrode by the pipe 104 and the pump 105.
  • a convex portion and a concave portion having a geometric diagram shape drawn thereby are formed on the surface of the rotating body 103.
  • the surface of the rotating body 103 is subjected to etching cleaning (not shown) before being immersed in the electrolytic solution 101.
  • the upper end of the anode 102 may be installed with a draining roll to prevent the electrolyte circulating at high speed from being ejected upward. Returns from outside the anode 102 to the lower electrolyte bath and is circulated by the pump.
  • a hoop-shaped conductive substrate can be produced by forming a convex portion on the surface of a strip-shaped conductive substrate and then joining the end portions.
  • the material that forms the surface of the conductive base material has relatively high adhesion to stainless steel, chromium-plated pig iron, chromium-plated steel, titanium, titanium-lined materials, etc. It is preferable to use a small wrinkle material.
  • the blackening process, anti-bacterial treatment, transfer process, etc. can be processed in one continuous process, so the productivity of the substrate with a conductive pattern is high.
  • a substrate with a conductive pattern can be continuously produced to obtain a product as a scroll.
  • the thickness of the hoop-like conductive substrate may be determined as appropriate, but is 100 to 1000 m. Preferably there is.
  • FIG. 25 is a conceptual diagram of an apparatus for continuously peeling a conductor layer pattern by electroplating when a hoop-like conductive substrate is used as the conductive substrate.
  • the hoop-like conductive substrate 110 is transferred to the pretreatment tank 129, the plating tank 130, the water washing tank 131, the blackening treatment tank 132, the water washing tank 133, and the fender treatment tank 134 using the transport rolls 111 to 128.
  • the water tank 1 35 will be installed so that it can orbit around.
  • the conductive substrate 110 is degreased, acid-treated, etched, etc. to remove the metal remaining on the conductive substrate. Thereafter, metal is deposited on the conductive substrate 110 in a plating bath (electrolytic bath) 130.
  • the water washing tank 131, the blackening treatment tank 132, the water washing tank 133, the antifouling treatment tank 134, and the water washing tank 135 are sequentially passed, and the surface of the metal deposited on the conductive substrate 110 is blackened. Further anti-bacterial treatment is performed. Although only one tank is shown after each treatment process, a plurality of tanks may be used as necessary, or some pretreatment tank may be provided before each treatment process.
  • the plastic film substrate 136 with the adhesive layer laminated is transferred between the conductive substrate 110 and the pressure roll 137 on the transport roll 128 so that the metal deposited on the upper surface of the convex portion of the conductive substrate 110 is transferred.
  • the metal can be transferred to the plastic film substrate 136 and the substrate 138 with a conductive layer pattern can be continuously produced.
  • the obtained base material 138 with a conductive layer pattern can be wound into a roll.
  • the pressure-bonding roll 137 can be heated.
  • the plastic film substrate 136 may be preheated through a preheating tank before passing through the pressure-bonding roll.
  • release PET or the like may be inserted as needed to remove the transferred film.
  • the hoop-like conductive base material repeats the above process. In this way, it is possible to continuously produce a substrate with a conductor layer pattern with high productivity.
  • FIG. Fig. 26 shows another example in which a conductive layer material is continuously peeled while being deposited by electrical contact when a hoop-like conductive substrate is used as the conductive substrate. It is a conceptual diagram of the apparatus shown.
  • the hoop-like conductive substrate 110 is installed through the transport rolls 111 to 116, 140 to 143, 127 and 128.
  • a pretreatment tank 129 for example, an etching tank for removing residual metal in the conductive base 110 after transfer
  • the metal is deposited on the conductive substrate in two plating baths (electrolytic baths) 130 and 150.
  • a blackening treatment tank 151 may be installed to blacken the surface of the deposited metal.
  • a fender treatment tank or the like may be provided (not shown). These baths may be a single plating bath (electrolytic bath) 130, a blackening treatment bath 150, and a fender treatment bath 151.
  • the metal deposited on the upper surface of the convex portion of the conductive substrate 110 is transferred to the plastic film substrate 136 using the plastic film substrate 136 and the pressure roll 137 on which the adhesive layer is stacked, and the conductive layer pattern is transferred.
  • the point that the base material 138 with a lead is continuously manufactured is the same as in FIG.
  • an antireflection layer, a near infrared shielding layer, or the like may be further laminated.
  • the base material itself that transfers the metal deposited on the conductive base material 1 may also serve as a functional layer such as an antireflection layer or a near infrared shielding layer.
  • the cover film used when coating the resin layer pattern layer with a resin may also serve as a functional layer such as an antireflection layer or a near infrared shielding layer.
  • the present invention is not limited to the plating method as described above, and it is also possible to produce a single wafer.
  • the drum When performed on a single wafer, the drum is easy to handle during the production of the conductive substrate for plating, and the insulation layer peels off only once after the same conductive substrate for plating is used repeatedly. It is difficult to extract or replace only a specific part if it is a substrate in the shape of a hoop or a hoop, but if it is a sheet, it is possible to extract or replace only the conductive substrate for plating in which a defect has occurred. is there. Thus, by making it by a single wafer, it is easy to cope when a defect occurs in the conductive substrate for plating.
  • the thickness of the sheet-like conductive substrate may be determined as appropriate, but the thickness is preferably 20 m or more in consideration of providing sufficient strength that is not affected by the stirring of the liquid in the plating tank. If it is too thick, the weight increases and it is difficult to handle.
  • fixing the insulating layer to the conductive base means that the resin corresponding to the insulating layer is hardened. This process is generally called a curing or baking process.
  • Inert gas refers to V and gas that do not react with the resin component that forms the thin-film insulation layer.
  • an inert gas refers to a gas that is not reactive with neon or argon, but in the present invention, a gas that is not reactive with a thin film insulating layer, such as nitrogen, is not limited thereto. Etc. Nitrogen is also preferred for points such as availability, price and consideration for the environment.
  • An electrodeposition paint will be described as an example.
  • pre-curing or pre-drying in which water or solvent adhering to the surface is dried at a low temperature after the electrodeposition coating is applied to the conductive substrate.
  • the resin is not completely cured, and the atmosphere at this time does not have to be an inert gas atmosphere.
  • the resin is reacted at a high temperature for the purpose of completely curing the resin.
  • UV-curing electrodeposition paints UV rays are irradiated instead of baking at high temperatures. At this time, the electrodeposition paint reacts with reactive functional groups in the resin so that it is highly reactive and easily causes side reactions.
  • a typical example is the oxidation reaction by reaction with oxygen in the air, and the resin tends to deteriorate due to the acid-acid reaction, especially when it is attempted to cure the resin completely for a long time at a high temperature. It is in. It is important to cure or bake in an inert gas atmosphere in order to prevent such side reactions.
  • the concentration of these inert gases may vary slightly depending on the ratio between the size of the curing furnace and the area of the insulating layer to be cured.
  • the volume ratio of the inert gas is preferably 90% or more with respect to the entire atmosphere. It is more preferably 95% or more, more preferably 98% or more, and even more preferably 99% or more.
  • the line width, pitch, and aperture ratio were measured based on micrographs.
  • the thickness of the line and the thickness of the copper foil were measured by partially cutting the obtained base material with a conductor layer pattern, casting it with a resin, and observing the cross section under a microscope.
  • the visible light transmittance was determined by measuring the transmittance of 400 to 700 nm using a double beam spectrophotometer (200-10 type, manufactured by Hitachi, Ltd.), and calculating the average value. The presence or absence of pattern abnormality was confirmed with the naked eye using a magnifier.
  • Electromagnetic shielding uses the Advantest method, Measurement was performed at a frequency of 300 MHz.
  • the durability of the conductive substrate was confirmed by observing the conductive substrate directly with a magnifier after repeated fitting and peeling.
  • the average transmittance of 850 to 1 lOOnm was determined by measuring the transmittance of 850 to LlOOnm using a double beam spectrophotometer (200-10, manufactured by Hitachi, Ltd.).
  • a resist film (Photec H-Y920, manufactured by Hitachi Chemical Co., Ltd.) was bonded to a 10 cm square stainless steel (SUS304) plate.
  • the bonding conditions were a roll temperature of 105 ° C, a pressure of 0.5 MPa, and a line speed of lmZmin.
  • the negative film formed in a lattice shape with the line width of the light transmitting portion of 30 m, the line pitch of 300 ⁇ m, and the bias angle force of 5 ° was left on the stainless steel plate bonded with the resist film. .
  • ultraviolet irradiation device ultraviolet rays were irradiated at 120 miZcm 2 from above the negative film under a vacuum of 600 mmHg or less. further.
  • electrolytic copper plating with a stainless steel plate (a conductive substrate having a convex pattern having an upper surface and a geometrical figure-shaped concave portion drawn thereby) having a lattice pattern as a cathode.
  • Electrolytic copper plating bath (copper sulfate (pentahydrate) 80gZL, sulfuric acid 180g ZL, Cubelite VF1 (supplied by Ebara Eugene Co., Ltd., additive) 20mlZL aqueous solution, 25 ° C) A stainless steel plate was immersed, and phosphorous copper was immersed in the electrolytic copper plating bath as an anode.
  • a primer HP-1; manufactured by Hitachi Chemical Co., Ltd.
  • PTT polyethylene terephthalate
  • A-4100 manufactured by Toyobo Co., Ltd.
  • an acrylic polymer HTR-280, manufactured by Nagase Chemtech was sequentially applied to a thickness of 10 m to prepare an adhesive film.
  • the pressure-sensitive adhesive surface of this pressure-sensitive adhesive film was bonded to the surface of the stainless steel plate with copper plating using a roll laminator.
  • Lamination conditions were a roll temperature of 25 ° C, a pressure of 0. IMP a, and a line speed of lmZmin.
  • the copper layer formed on the upper surface of the convex portion of the SUS plate was buried by about 0.5 m in the adhesive layer of the adhesive film.
  • the adhesive film bonded to the stainless steel plate is peeled off, the copper deposited on the upper surface of the convex portion of the stainless steel plate is a continuous film, so it is transferred to the adhesive film, whereas it is deposited on the concave portion and the side portion.
  • the copper was a granular and discontinuous film, it remained on the stainless steel plate without following the copper deposited on the upper surface of the convex portion, and was not transferred to the adhesive film. In this way, a metal pattern having a line width of 20 m, a line pitch of 300 ⁇ m, and a conductor thickness of 5 ⁇ m was selectively transferred onto the adhesive film.
  • the adhesive film onto which the metal pattern obtained above was transferred was immersed in an aqueous solution obtained by diluting alkaline degreasing solution Degree A (Odec Co., Ltd.) 5 times at room temperature for 3 minutes. Next, after washing with water, it was immersed in a 10% nitric acid aqueous solution at room temperature for 2 minutes. Further, after washing with water, the substrate was immersed in a 4-fold diluted aqueous solution of blackening solution copar (Odec Co., Ltd.), and the metal pattern was blackened to produce a substrate with a conductor layer pattern of the present invention.
  • the stainless steel plate on which the convex pattern was formed was immersed in lOOgZ liters of ammonium persulfate solution heated to 40 ° C to form the convex pattern. Copper remaining in the concave portion and the side portion of the formed stainless steel plate was dissolved.
  • a grid pattern (line width 10 / ⁇ ⁇ , pitch) was formed on the SUS plate in the same manner as in Example 1 except that the etching was performed until the line width of the convex portion formed on the SUS plate was 10 ⁇ m.
  • a stainless steel plate etched in a lattice pattern (a conductive substrate having a convex pattern having an upper surface and a geometric pattern-shaped concave portion drawn thereby) is used as a cathode for electrolytic copper plating.
  • Electrolytic bath (copper sulfate (pentahydrate) 150gZL, sulfuric acid 150gZL, Kaparaside HL (manufactured by Atotech Japan Co., Ltd., additive) 50ml ZL in water, 30 ° C) Immerse in the bath. Voltage was applied to both poles, the current density was lOAZdm 2 , and the metal deposited on the top surface of the protrusions reached the thickness of 3 ⁇ m. The force with which copper was deposited as a continuous film on the upper surface of the convex part of the stainless steel plate.
  • Granular copper with a particle size of about 1 ⁇ m was deposited in a continuous manner on the concave part and side part.
  • a primer HP-1; manufactured by Hitachi Chemical Co., Ltd.
  • a 100 m thick polyethersulfone film Silicon FS-1300, manufactured by Sumitomo Beta Light Co., Ltd.
  • the adhesive surface of the adhesive film and the copper-plated surface of the stainless steel plate were bonded together using a roll laminator.
  • Lamination conditions are: roll temperature 150 ° C, pressure 0.1M Pa and line speed were set to 0.5 mZmin. Since lamination was performed at a temperature exceeding the Tg of the adhesive, tackiness was developed on the adhesive surface.
  • the blackened copper layer formed on the upper surface of the convex portion of the SUS plate was buried in the adhesive layer of the adhesive film by about 1 ⁇ m.
  • the adhesive film bonded to the stainless steel plate was peeled off, the copper deposited on the upper surface of the convex portion of the stainless steel plate was a continuous film, and thus transferred to the adhesive film.
  • the copper deposited on the concave portions and the side portions is a granular and non-continuous film, it remains on the SUS plate without following the copper deposited on the upper surface of the convex portions and transferred to the adhesive film. There was no. In this way, a metal pattern having a line width of 10 ⁇ m, a line pitch of 300 ⁇ m, and a conductor thickness of 3 ⁇ m and further blackened is selectively transferred onto the adhesive film, and the conductor of the present invention. A substrate with a layer pattern was produced.
  • a UV curable resin hyaloid 7983AA3 manufactured by Hitachi Chemical Co., Ltd.
  • PET film A-4100, manufactured by Toyobo Co., Ltd., 75 m
  • UV curable resin to form a conductive layer pattern. It was embedded in a curable type rosin.
  • the UV curable resin was cured by irradiating UV light of UZcm 2 using an ultraviolet lamp, and then the PET film (A-4100, manufactured by Toyobo Co., Ltd., 75 m) was peeled off.
  • the copper remaining on the concave portions and the side portions of the stainless steel plate on which the convex pattern was formed was dissolved in the same manner as in Example al.
  • Byron UR-1350 adheresive, manufactured by Toyobo Co., Ltd.
  • SUS304 foil Takeuchi Metal Foil Powder Co., Ltd., thickness 100 m
  • PET film A-4100, manufactured by Toyobo Co., Ltd.
  • the adhesive film produced by applying the dry coating thickness to 20 m was pasted with a press.
  • the pressing conditions were a hot press at 130 ° C, a pressure of 4 MPa, and pressing for 30 minutes. The sample was taken out after cooling to 25 ° C with pressure applied.
  • the SUS foil with PET film obtained above was etched under the same conditions as in Example al until the width of the convex portion was 15 / zm, and a lattice pattern (line width 15 / zm pitch 300 / zm
  • the height of the convex part is 20 m
  • the cross-sectional shape of the convex part is a curved surface (similar to Fig. 3-d).
  • electrolysis using a SUS foil with a PET film on which a lattice-like pattern is formed (a conductive base material having a notch of a convex part having an upper surface and a concave part of a geometrical figure drawn by the same) as a cathode.
  • an electrolytic bath for copper plating copper sulfate (pentahydrate) 180gZL, sulfuric acid 10 OgZL, Kaparaside HL (manufactured by Atotech Japan Co., Ltd.), 70mlZL aqueous solution, 30 ° C), and use phosphorous copper as an anode
  • a voltage was applied to both electrodes, the current density was set to 30 AZdm 2 , and plating was performed until the thickness of the metal deposited on the top surface of the protrusion became 1 ⁇ m.
  • the SUS foil with PET film on which copper plating was deposited was immersed in an aqueous solution obtained by diluting alkaline degreasing solution Degrease A (Odec Co., Ltd.) 5 times at room temperature for 3 minutes.
  • a 10% nitric acid aqueous solution was immersed in a 10% nitric acid aqueous solution at room temperature for 10 seconds.
  • blackening solution copal Odec Co., Ltd.
  • Resin composition 1 was applied to the easy-adhesion surface of a 100 ⁇ m thick PET film (A-4100, manufactured by Toyobo Co., Ltd.) so that the dry coating thickness was .
  • a composition comprising 100 parts by weight of AS-406 (acrylic polymer, manufactured by Katsushi Yushi Co., Ltd.) and 2 parts by weight of Tetrad X (manufactured by Mitsubishi Gas Chemical Co., Ltd., curing agent).
  • This adhesive film and the above-mentioned SUS foil with PET film on which a blackened copper plating is laminated are combined with the former adhesive surface and the latter blackened copper plating surface. As expected, they were bonded in the same manner as in Example 1. At this time, the black copper-treated copper layer formed on the upper surface of the convex portion of the SUS foil was buried in the adhesive layer of the adhesive film by about 0.5 m.
  • the copper deposited on the upper surface of the convex part of the SUS foil with PET film is a continuous film, so that it is transferred to the adhesive film, whereas the copper and Since the copper deposited on the part is a granular and discontinuous film, the upper surface of the convex part It remained on the SUS plate without following the copper deposited on it and was not transferred to the adhesive film.
  • a blackened metal pattern with a line width of 15 ⁇ m, a line pitch of 300 m, and a thickness of 1 m was selectively transferred onto the adhesive film.
  • the dissolution and removal of the copper remaining on the concave portions and side portions of the SUS foil with PET film on which the convex pattern was formed was performed in the same manner as in Example al.
  • the pressure-sensitive adhesive surface of the pressure-sensitive adhesive film obtained above (the surface on which the copper plating was transferred) was applied to a glass sheet having a thickness of 2 mm and laminated.
  • Lamination conditions were a temperature of 25 ° C, a pressure of 0.5 MPa, and a line speed of 0.5 mZmin.
  • the 1 m thick conductor layer pattern was embedded in the adhesive, and a highly transparent electromagnetic shielding body was obtained.
  • a Ni foil with PET film was prepared in the same manner as Example a3 except that electrolytic Ni foil (Fukuda Metal Co., Ltd., thickness 35 ⁇ m) was used instead of SUS304 foil.
  • a lattice pattern (line width 15 / ⁇ ⁇ , pitch 300 / ⁇ ⁇ , convex height 20 / ⁇ ⁇ , convex sectional shape is curved (similar to Fig. 3-d)) was formed.
  • an acid film was formed on the Ni surface with Ni anodic acid. The anodic oxidation was performed in a 10% aqueous solution of sodium hydroxide and sodium hydroxide for 30 seconds using a Ni foil as the anode and a SUS plate as the cathode, with a voltage of IV applied to both electrodes.
  • Ni foil with PET film etched in a lattice pattern was used as the cathode for electrolytic copper plating Soaked in an electrolytic bath (copper sulfate (pentahydrate) 180gZL, sulfuric acid 100gZL, power Noracid HL (manufactured by Atotech Japan Co., Ltd., 70ml ZL aqueous solution, 30 ° C)) Immerse in an electrolytic bath. Voltage was applied to both poles, and the current density was set to 30 AZdm 2 until the thickness of the metal deposited on the upper surface of the protrusion reached 10 ⁇ m.
  • Copper was deposited as a continuous film on the upper surface of the convex part of the Ni foil with PET film. On the side, granular copper having a particle size of about 0.8 m was discontinuously deposited.
  • the thickness of the PET film (Mylar D, manufactured by Teijin DuPont Films Co., Ltd.) with a thickness of 100 ⁇ m on the surface of the resin composition a2 containing the following infrared absorber is 20 ⁇ m after drying.
  • An adhesive film was prepared by applying to the above.
  • BR-80 Mitsubishi Rayon Co., Ltd., PMMA
  • IRG-022 Nippon Kayaku Co., Ltd., Dimo-um salt-based infrared absorber
  • MEK Methyl ethyl ketone
  • the resin composition a3 was applied to the release-treated surface of release PET (S-32, manufactured by Teijin DuPont Co., Ltd.) so that the dry application thickness was 8 m.
  • An adhesive film having a near-infrared shielding property was prepared by laminating a film coated with the resin composition a3 on the surface coated with the resin composition a2 of an adhesive film containing a near-infrared absorber.
  • HTR-860- P3 (Nagase Chemtech Co., Ltd., acrylic polymer) 100 parts by weight and Coupnate L (Nihon Polyurethane Co., Ltd., isocyanate compound) 3 parts by weight of toluene 100 parts by weight of ethyl acetate 300 parts by weight Part of a mixed solvent.
  • the copper deposited on the concave portions and the side portions is a granular and discontinuous film, it remains on the Ni foil that does not follow the copper deposited on the upper surface of the convex portions and is transferred to the adhesive film. Hana was strong.
  • the obtained adhesive film with a conductor layer pattern was subjected to blackening. Processed. Further, after the blackening treatment, the surface on which the conductor layer pattern of the substrate with the conductor layer pattern is present is coated with an ultraviolet curable resin (Hitaroid 7851, manufactured by Hitachi Chemical Co., Ltd.), and a polycarbonate film ( After laminating Macro Hall DE, Bayer Co., Ltd. (75 m), UZcm 2 ultraviolet rays were irradiated using an ultraviolet lamp, and the conductor layer pattern was coated with resin. Next, an adhesive layer was formed on the surface of the film obtained above opposite to the surface on which the conductor layer pattern was formed, and was bonded to a 3 mm thick PMMA plate (Comoglass) to obtain an electromagnetic wave shielding member.
  • an ultraviolet curable resin Haitaroid 7851, manufactured by Hitachi Chemical Co., Ltd.
  • Example a3 SUS foil with PET film treated with copper plating and black wrinkle in the same manner as Example a3 (line width 15 m, pitch 300 m, convex height 20 m, convex sectional shape is curved surface ( Fig. 3d)) was formed. Furthermore, the following resin composition a4 was applied to the surface of a 100 m thick polyethersulfone film (Sumilite FS-1300, manufactured by Sumitomo Bakelite Co., Ltd.) so that the thickness after drying was 13 m. An adhesive film was obtained. Drying conditions were 90 ° C for 5 minutes.
  • the obtained adhesive film and a stainless steel foil with a PET film having a blackened metal pattern on the convex part obtained in Example a3 were bonded with a laminator.
  • Lamination conditions were a roll temperature of 120 ° C, a pressure of 3 MPa, and a line speed of lmZmin.
  • the blackened metal existing on the upper surface of the convex part of the stainless steel plate is selectively transferred to the adhesive surface, and the line width is 15 m, the line pitch is 300 m, and the conductor thickness is 1 ⁇ m.
  • a conductor layer pattern was formed on the adhesive film.
  • the transferred stainless steel plate is the same as in Example al, and the copper remaining on the surface is removed.
  • the adhesive film having the conductor layer pattern obtained above was treated at 150 ° C for 60 minutes to cure the adhesive, thereby obtaining a substrate with a conductor layer pattern.
  • PET After coating the surface of the base material with the conductor layer pattern obtained above with the UV curable resin hyaloid 7983AA3 (manufactured by Hitachi Chemical Co., Ltd.) in the same manner as in Example al, PET
  • the surface of the film (A-4100, manufactured by Toyobo Co., Ltd., 75 / zm) that has not been subjected to easy adhesion treatment is laminated with UV curable resin to embed the conductor layer pattern in UV curable resin.
  • the PET film (A-4100, manufactured by Toyobo Co., Ltd., 75 / zm) was peeled off.
  • the dissolution of the copper remaining on the concave portions and the side portions of the stainless steel plate on which the convex pattern was formed was performed in the same manner as in Example al.
  • S-32 manufactured by Teijin DuPont Co., Ltd.
  • Resist film (Photec LF-1515, manufactured by Hitachi Chemical Co., Ltd.) The film was bonded to a 10 cm copper plate (thickness 2 mm). The bonding conditions were a roll temperature of 105 ° C, a pressure of 0.5 MPa, and a line speed of lmZmin. Next, a negative film formed in a lattice shape with a line width of the light transmitting portion of 30 m, a line pitch of 200 ⁇ m, and a bias angle of 30 ° was left on a copper plate bonded with a resist film.
  • ultraviolet rays were irradiated from the top of the negative film at 120 mjZcm 2 under a vacuum of 60 OmmHg or less. further.
  • a resist film having a line width of 30 ⁇ m, a line pitch of 200 ⁇ m, and a bias angle of 30 ° was formed on a copper plate.
  • the copper plate was etched using a salty ferric aqueous solution heated to 40 ° C. Etching was performed until the line width of the copper plate reached 25 m.
  • the resist film formed on the copper plate is peeled off to form a lattice pattern (line width 25 / ⁇ ⁇ , line pitch 200 / ⁇ ⁇ , convex
  • the height of the part is 11 / ⁇ ⁇
  • the cross-sectional shape of the convex part is a curved surface ( Figure 3-—same as d).
  • a chromium layer was formed by sputtering on the surface of the copper plate on which the lattice pattern was formed so as to have a thickness of 0.3 ⁇ m.
  • the copper plating applied thereon is easily peeled off.
  • Electrolytic copper plating was performed using the copper plate sputtered with chromium as a cathode. In the electrolytic copper plating bath (copper sulfate (pentahydrate) 100g / L, sulfuric acid 180gZL, Topchina H-380 (Okuno Pharmaceutical Co., Ltd., additive) 2.
  • the copper plate on which the chromium layer plated with copper was formed was immersed in the black solution 1 and treated at 80 ° C. for 1 minute to blacken the copper. Transfer the blackened copper to the same adhesive film as in Example a 1 except that the thickness of the adhesive layer was 5 m, line width 25 ⁇ m, line pitch 200 ⁇ m, conductor thickness 3 ⁇ m A substrate with a conductor layer no turn was prepared. Further, the copper plate on which the chromium layer after transfer was formed was the same as in Example al, and the copper remaining on the surface was removed.
  • the substrate with a conductor layer pattern obtained above and a glass plate having a thickness of 2 mm were heated so that the surface on which the conductor layer pattern of the substrate was formed was in contact with the glass plate. 30 ° C, pressure 2. Laminated with OMPa and bonded together. The conductor layer pattern was embedded in the pressure-sensitive adhesive, and a highly transparent and electromagnetic shielding member was obtained.
  • a grid pattern (line width 20 / ⁇ ⁇ , pitch 300 / ⁇ ⁇ , convex height 15 / ⁇ ⁇ , convex section) on a stainless steel roll with a diameter of 150 mm in the same manner as in Example al.
  • the shape was a curved surface (similar to Fig. 3-d).
  • the current density of 40AZdm 2 were plated to the metal thickness to be deposited on the upper surface of the protrusion by applying a voltage to the both electrodes becomes 5 mu m thick.
  • the upper surface of the convex portion of the stainless steel roll was the force of copper deposition as a continuous film. In the concave portion, granular copper with a particle diameter of about 3 ⁇ m precipitated discontinuously.
  • Example al The pressure-sensitive adhesive film used in Example al was produced in a roll shape, and the adhesive surface of copper and the pressure-sensitive adhesive film deposited on the upper surface of the convex portion of the stainless steel roll was bonded together under the same lamination conditions as in Example al. . At this time, the copper layer formed on the upper surface of the convex portion of the stainless steel roll was buried by about 0.5 m in the adhesive layer of the adhesive film.
  • the copper deposited on the upper surface of the convex portion of the stainless steel roll is a continuous film, so it is transferred to the adhesive film, whereas the copper deposited in the concave portion is Since it is a granular and discontinuous film, it remained on the SUS plate without following the copper deposited on the upper surface of the convex part, and was not transferred to the adhesive film.
  • a conductor layer pattern having a line width of 20 m, a line pitch of 300 ⁇ m, and a conductor thickness of 5 ⁇ m was selectively transferred onto the adhesive film.
  • the adhesive film on which the metal pattern obtained above was transferred was blackened in the same manner as in Example al to produce a substrate with a conductor layer pattern of the present invention.
  • the surface of the substrate with the conductor layer pattern obtained, on which the conductor layer pattern is formed is coated with a UV curable resin (ALONIX UV-3701, manufactured by Toagosei Co., Ltd.) with a thickness of 15 m, and a PET film (Mylar 1D, made by Teijin DuPont Films, Ltd., 75 m), and then irradiated with lj / cm 2 ultraviolet rays using an ultraviolet lamp.
  • a UV curable resin ALONIX UV-3701, manufactured by Toagosei Co., Ltd.
  • PET film Mylar 1D, made by Teijin DuPont Films, Ltd., 75 m
  • Example a8 Rolled SUS304 foil (thickness 100 ⁇ m), PET film (A-4100, manufactured by Toyobo Co., Ltd.) and Byron UR-1350 (adhesive, manufactured by Toyobo Co., Ltd.) with a dry coating thickness of 20
  • a roll-like adhesive film prepared by coating so as to be m was pasted with a roll laminator to produce a SUS foil with a roll-like PET film.
  • Lamination conditions were a roll temperature of 120 ° C, a preheat of 120 ° C for 30 seconds, a pressure of 3 MPa, and a line speed of 0.5 mZmin.
  • the SUS foil with PET film was etched in the same manner as in Example a3 except that the roll was continuously transferred from roll to roll in the same manner as in Example a7, and a lattice-like pattern (line) was formed on the SUS foil.
  • the width was 15 / ⁇ ⁇
  • the pitch was 300 / ⁇ ⁇
  • the height of the convex portion was 20 / ⁇ ⁇
  • the cross-sectional shape of the convex portion was a curved surface (same as in Fig. 3-d).
  • the surface roughness Rz of the top surface of the convex portion formed on the SUS foil was 0.4 m, whereas the surface roughness Rz of the concave portion was 5.
  • paper was passed through an apparatus as shown in FIG. 26 using the SUS foil having a lattice pattern formed on the roll obtained above. The joints were bonded with Mylar tape to form a hoop-like conductive substrate.
  • the pressure-sensitive adhesive surface of the pressure-sensitive adhesive film with a conductor layer pattern obtained above (the surface on which the copper plating was transferred) was applied to a glass sheet having a thickness of 2 mm and laminated.
  • Lamination conditions were a temperature of 25 ° C, a pressure of 0.5 MPa, and a line speed of 0.5 m / min.
  • the 1 m thick conductor layer pattern was embedded in the adhesive, and a highly transparent electromagnetic shielding body was obtained.
  • a dry film photoresist (HY-920 (manufactured by Hitachi Chemical Co., Ltd., thickness 20 / zm)) was bonded to a stainless steel (SUS304) plate at a roll temperature of 100 ° C, a linear pressure of 0.3 MPa, and a line speed of lmZmin.
  • a negative pattern with a line width of 30 m and a line pitch of 300 m is placed on a stainless steel plate with a resist film attached, and the upper force of the negative pattern is also irradiated with UV under the condition of lOOmj / cm 2.
  • Development was performed with a 1% aqueous sodium carbonate solution to form a resist film having a groove with a width of 30 m on a SUS plate, and then heat-cured at 150 ° C. for 1 hour.
  • an electrolytic bath for electrolytic copper plating using the SUS plate on which the resist is formed as a cathode [copper sulfate (pentahydrate) 100gZL, sulfuric acid 180gZL, Top Lucina H-380 (Okuno Pharmaceutical Co., Ltd., (Additives) (What is this?) 2.
  • a voltage was applied to both electrodes to set the current density to 3 A / dm 2 and plating was performed with a thickness of 20 m so that the resist groove was completely filled.
  • a metal plated in a non-turn pattern is adhesive when transferred to an adhesive film, for example. Since the layer is in contact with the insulator that forms the pattern, a peel stress is applied to the insulator every time the adhesive film to which the metal pattern is transferred is peeled off. Furthermore, since the insulator is formed in a pattern, the contact area of the insulator with SUS is very small, so the process of plating ⁇ transfer in a pattern is repeated several to several hundred times. However, at the mass production level of several thousand to several tens of thousands of times, the insulation is peeled off from the conductive substrate! /, And the pattern life is short.
  • the resin used to form the pattern and the adhesive used to peel the conductor layer from the conductive substrate Organic strength such as film peeling residue
  • the plating solution is contaminated, so the life of the plating solution is shortened and plating deposition failure is likely to occur.
  • Example 9 (hereinafter, also referred to as “Example bl”. The same applies to Example 15) will be described. (Manufacture of conductive substrate having notched convex part with upper surface and concave part of geometric figure drawn by it)
  • a resist film (Photech H-Y920, manufactured by Hitachi Chemical Co., Ltd.) was bonded to a 10 cm square stainless steel (SUS304, finished 3Z4H, thickness 100 m, manufactured by Nisshin Steel Co., Ltd.).
  • the shelling conditions were as follows: roll temperature 105 ° C, pressure 0.5 MPa, line speed lm Zmin.
  • a negative film formed in a lattice pattern with a line width of 30 ⁇ m, a line pitch of 300 ⁇ m, and a bias angle force of S45 ° is allowed to stand on a stainless steel plate to which a resist film is bonded. did.
  • ultraviolet rays were irradiated at 120 mjZcm 2 from above the negative film under a vacuum of 600 mmHg or less. further. 1
  • a resist mask having a line width of 30 m, a line pitch of 300 ⁇ m, and a bias angle of 45 ° was formed on the SUS plate.
  • the SUS plate was etched using a ferric chloride aqueous solution (45 ° Be ', manufactured by Tsurumi Soda Co., Ltd.) heated to 40 ° C. Etching was performed until the line width of the SUS plate reached 20 / zm.
  • the resist film formed on the SUS plate is peeled off to form a lattice pattern (line width, that is, the width of the upper surface of the convex portion is 20 m, the pitch is 300 m).
  • line width that is, the width of the upper surface of the convex portion is 20 m, the pitch is 300 m.
  • m height of convex part 15; ⁇ ⁇ , cross-sectional shape of convex part forms a curved surface (similar to Fig. 3-d)), convex part of convex part with upper surface and geometric figure shape drawn by it
  • a conductive base material having a recess was prepared.
  • the above conductive base material is used as a cathode, and the anode is used as a titanium plate.
  • a cationic electrodeposition paint (Insuleed 3020, manufactured by Nippon Paint Co., Ltd.), it is etched into a lattice pattern under the condition of 15 V for 10 seconds.
  • a stainless steel plate was electrodeposited. After washing with water and drying at 100 ° C for 10 minutes, baking was performed at 190 ° C for 25 minutes. The coating thickness of the electrodeposition paint was 2.
  • the electrodeposited stainless steel plate is polished on the top surface of the convex part using polishing powder (alumina solution B0. 05 ⁇ m, manufactured by Refinetech) and polishing cloth (made by CONSUMABLES Buehler GMBH).
  • the SUS surface was exposed, and a conductive substrate having an insulating film was produced.
  • the thickness of the electrodeposition coating on the top edge of the convex part of this conductive substrate is 2.5 m (however, measured in the plane direction of the top surface), and the thickness of the electrodeposition coating in the concave part is 2. It was 5 m.
  • This conductive substrate was covered with an insulating film except for the upper surface of the convex portion.
  • Electrolytic copper plating bath (copper sulfate (pentahydrate) 80gZL, sulfuric acid 180gZL, Cubelite VF1 (supplied by Sakakibara Eulite Co., Ltd., additive) 20mlZL aqueous solution, 25 ° C) etched into a lattice pattern
  • the stainless steel plate was immersed, and immersed in the electrolytic copper plating bath using phosphorous copper as an anode.
  • a current density of 25AZdm 2 the thickness of the metal deposited on the upper surface of the convex portion of the conductive substrate was plated to a 5 mu m.
  • the pressure-sensitive adhesive surface of the pressure-sensitive adhesive film and the copper-coated surface of the conductive substrate were bonded together using a roll laminator.
  • Lamination conditions were a roll temperature of 25 ° C, a pressure of 0.1 IMPa, and a line speed of lmZmin.
  • copper deposited on the upper surface of the convex portion of the conductive substrate was transferred to the adhesive film. From this, a substrate with a conductor layer pattern consisting of a metal pattern having a line width of 28 ⁇ m, a line pitch of 300 ⁇ m, and a conductor thickness of 5 ⁇ m was obtained.
  • the portion where the insulating film was peeled off was strong.
  • the substrate with the conductor layer obtained above was immersed in an aqueous solution obtained by diluting alkaline degreasing solution Degrease A (Odec Co., Ltd.) 5 times at room temperature for 3 minutes, then washed with water, and then 10% nitric acid solution Immerse it in a solution at room temperature for 2 minutes, and after washing with water, immerse it in a 4-fold diluted aqueous solution of black candy treatment liquid COPAL (Odek Co., Ltd.) to obtain a conductor layer pattern that has been blackened. A substrate was obtained.
  • Degrease A Odec Co., Ltd.
  • UV curable resin hyaloid 7983AA3 manufactured by Hitachi Chemical Co., Ltd.
  • a polycarbonate film Micro Hall DE, Bayer Co., Ltd., 75 ⁇ m
  • UV curable resin was cured to obtain a substrate with a conductor layer pattern having a protective film.
  • a grid pattern (line width 7 / ⁇ ⁇ , pitch) was formed on the SUS plate in the same manner as in Example bl except that the line width of the protrusions formed on the SUS plate was etched to 7 ⁇ m. 300 m, the height of the convex part 30 m, the cross-sectional shape of the convex part forms a curved surface (similar to Fig. 3-d)), the convex part of the convex part with the upper surface and the geometric figure shape drawn by it A conductive substrate having a recess was obtained.
  • the above conductive base material is used under the condition of 10 V 60 seconds in an on-type electrodeposition paint (AMG-5EZ5W, manufactured by Shimizu Co., Ltd.) using the above conductive base material as the anode and the cathode as the titanium plate.
  • the material was electrodeposited. After washing with water and drying at 100 ° C for 10 minutes, it was baked at 180 ° C for 30 minutes. The coating thickness of the electrodeposition paint was 2.6 m.
  • the electrodeposited conductive base material is polished with polishing powder (TypeO. 1R, manufactured by Baikalox) and polishing cloth (made by CONSUMABLES Buehler G MBH) to expose the SUS surface.
  • polishing powder TypeO. 1R, manufactured by Baikalox
  • polishing cloth made by CONSUMABLES Buehler G MBH
  • the thickness of the electrodeposition coating film in the recesses of this conductive substrate was 2.6 m. However, the thickness of the electrodeposition coating at the edge of the upper surface of the convex portion was 0 (measured in the plane direction of the upper surface).
  • This conductive base material was covered with an insulating film except for the upper surface of the convex portion.
  • This conductive base material was covered with an insulating film except for the upper surface of the convex portion.
  • the sample was immersed in an aqueous solution (30 ° C), and immersed in an electrolytic copper plating bath using phosphorous copper as an anode. Voltage was applied to both poles, the current density was lOAZdm 2 , and the metal deposited on the top surface of the protrusions was stuck to 3 ⁇ m.
  • composition of bl was applied to a 125 m thick PET film (A-4100, manufactured by Toyobo Co., Ltd.) so that the dry coating thickness was 5 m, and an adhesive film was prepared.
  • A-4100 manufactured by Toyobo Co., Ltd.
  • Nylon UR— 1350 (Toyobo Co., Ltd., polyester resin) 100 parts by weight Coronate L (Nihon Polyurethane Co., Ltd., isocyanate compound) 3 parts by weight [0175] (Transfer blackening treatment)
  • the adhesive surface of the adhesive film obtained above and the surface of the conductive substrate that had been subjected to copper plating and blackening treatment were bonded together using a roll laminator.
  • Lamination conditions were a roll temperature of 100 ° C, a pressure of 0.1 lMPa, and a line speed of 0.3 mZmin. Since lamination was performed at a temperature exceeding the glass transition point (Tg) of the adhesive, tackiness was exhibited on the adhesive surface.
  • Tg glass transition point
  • UV curing type resin hyaloid 7983AA3 manufactured by Hitachi Chemical Co., Ltd.
  • PET film A-4100, manufactured by Toyobo Co., Ltd., 75 m
  • UV curable resin to form the conductor layer pattern in UV curable resin. Buried in.
  • the PET film (A-4100, manufactured by Toyobo Co., Ltd., 75 m) was peeled off to form a protective film.
  • the base material with a conductor layer pattern was obtained.
  • Example bl Except for etching using stainless steel (SUS304 finish H, Takeuchi Metal Foil Powder Co., Ltd., thickness 100 m) until the line width of the protrusions reaches 15 m, the same conditions as in Example bl were applied. Form a pattern (line width 15 m, pitch 300 m, convex height 20 m, convex cross-section is curved (similar to Fig. 3-d)). And a conductive substrate having recesses in the shape of the geometrical drawing drawn thereby.
  • stainless steel SUS304 finish H, Takeuchi Metal Foil Powder Co., Ltd., thickness 100 m
  • the cathode as the titanium plate, and etching into a lattice pattern in a cationic electrodeposition paint (UC-2000, manufactured by Shimizu Corporation) under the conditions of 30 V 60 seconds.
  • the coated stainless steel plate was electrodeposited. After washing with water and drying at 100 ° C. for 10 minutes, it was cured under irradiation conditions of 3jZcm 2.
  • the coating thickness of the electrodeposition paint was 3.9 m.
  • the electrodeposited stainless steel plate was polished with # 4000 abrasive paper, and the thickness of the electrodeposition coating film in the recess of this conductive substrate was 3.9 m.
  • the thickness of the electrodeposition coating film at the end of the upper surface of the convex portion was 0.5 m (measured in the plane direction of the upper surface).
  • This conductive substrate was covered with an insulating film except for the upper surface of the convex portion.
  • a cathode copper sulfate (pentahydrate) 180 gZL, sulfuric acid 100 gZL, Kavalaside HL (manufactured by Atotech Japan Co., Ltd., additive) 70 ml ZL aqueous solution, 30 ° C.
  • composition of rosin composition b2 Composition of rosin composition b2
  • the pressure-sensitive adhesive surface of the pressure-sensitive adhesive film obtained above was bonded to the conductive base material using a copper laminator and a blackened surface using a roll laminator.
  • Lamination conditions were a roll temperature of 25 ° C, a pressure of 0.1 MPa, and a line speed of lmZmin.
  • copper (blackened) deposited on the upper surface of the convex portion of the conductive substrate was transferred to the adhesive surface of the pressure-sensitive adhesive film.
  • a metal pattern having a line width of 17 m, a line pitch of 300 m, and a conductor thickness of 1 ⁇ m and further blackened is selectively transferred onto the adhesive film, and the conductor layer of the present invention is thus transferred.
  • a substrate with a pattern was manufactured.
  • the pressure-sensitive adhesive surface (surface having a conductor layer pattern) of the substrate with a conductor layer pattern obtained above was laminated on and bonded to glass having a thickness of 2 mm.
  • Lamination conditions are temperature 25. C, pressure 0.5 MPa, line speed 0.5 mZmin.
  • the conductor layer pattern with a thickness of 1 ⁇ m was embedded in the adhesive, and a highly transparent electromagnetic shielding body was obtained.
  • IRG— 022 (Nippon Yakuyaku Co., Ltd., Dimo-um salt-based infrared absorber) 3.3 parts by weight
  • IR—12 (Nippon Shokubai Co., Ltd., phthalocyanine-based infrared absorber) 1.5 parts by weight
  • the resin composition 4 was applied to the release-treated surface of the release PET film (S-32, manufactured by Teijin DuPont Co., Ltd.) so that the dry coating thickness was 8 m.
  • An adhesive film having a near-infrared shielding property was prepared by laminating a film coated with the resin composition 4 on the surface of the adhesive film containing the near-infrared absorber coated with the resin.
  • composition of rosin composition b4 Composition of rosin composition b4
  • a substrate with a conductor layer pattern was used in the same manner as Example bl except that the adhesive film having the near infrared shielding property obtained above was used as the adhesive film (except that the release PET film was peeled off). And the base material with a conductor layer pattern by which the conductor layer pattern was blackened was manufactured.
  • the surface of the base material with the conductor layer pattern obtained by blackening the conductor layer pattern obtained above is coated with an ultraviolet curable resin (Hitaroid 7851, manufactured by Hitachi Chemical Co., Ltd.), and After laminating polycarbonate film (Macro Hall DE, manufactured by Bayer Co., Ltd., 75 m), UZcm 2 ultraviolet rays were irradiated with an ultraviolet lamp to coat the conductor layer pattern with resin. Then, of the film obtained above An adhesive layer was formed on the surface opposite to the surface on which the conductor layer pattern was formed, and was bonded to a 3 mm thick PMMA plate (Comoglass) to obtain an electromagnetic wave shielding member.
  • an ultraviolet curable resin Haroid 7851, manufactured by Hitachi Chemical Co., Ltd.
  • Micro Hall DE manufactured by Bayer Co., Ltd. 75 m
  • UZcm 2 ultraviolet rays were irradiated with an ultraviolet lamp to coat the conductor layer pattern with resin.
  • An adhesive layer was formed on the surface opposite to the
  • the (copper plating black spot treatment) process and the (transfer black spot treatment) process were performed. As in Example b2, the test was repeated 100 times. As a result, no peeling of the insulating film where there was no change in the transferability of copper plating was observed.
  • a substrate with a conductor layer pattern was produced in the same manner as in Example b2, except that in Example b2 (Preparation of adhesive film), the dry coating thickness of the resin composition bl was 10 / zm.
  • the substrate with the conductor layer pattern was immersed in the following black wrinkle treatment solution heated to 80 ° C for 3 minutes to blacken the conductor layer and the surface of the conductor layer was blackened.
  • the base material with a conductor layer pattern which has a pattern was manufactured.
  • An electromagnetic wave shielding member was obtained in the same manner as in Example b4 (Preparation of electromagnetic wave shielding body), using the base material with a conductive layer pattern having a conductive layer pattern whose surface was blackened.
  • Stainless steel with a diameter of 150 mm and a width of 200 mm for the continuous production of rolls, tows and rolls By applying the same method as in Example b 1 to the surface of the loess roll, a lattice pattern (line width, ie, the width of the upper surface of the convex portion 20 ⁇ m, the pitch 300 ⁇ m, the height of the convex portion 15 m, the cross-sectional shape of the convex part was a curved surface (similar to Fig. 3-d).
  • the above-mentioned stainless steel roll is used as a cathode
  • the anode is used as a titanium plate
  • it is etched into a lattice pattern in a cationic electrodeposition paint (Insuleed 3020, manufactured by Nippon Paint Co., Ltd.) under the condition of 15 V for 10 seconds.
  • Electrodeposition coating was applied to a stainless steel roll. After washing with water and drying at 100 ° C for 10 minutes, it was baked at 190 ° C for 25 minutes. The coating thickness of the electrodeposition paint was 2.
  • the surface of the stainless steel roll coated with the above electrodeposition was polished by applying the same method as in Example bl to expose the upper surface of the convex portion.
  • electrolytic copper plating was performed with the apparatus configuration shown in FIG.
  • the anode 102 was an insoluble titanium electrode coated with iridium oxide, and the stainless steel roll 103 was used as a drum electrode for the cathode.
  • the adhesive film of copper and the adhesive film (107) deposited on the upper surface of the convex portion of the stainless steel tool was laminated under the same laminating conditions as in Example b 1, and the adhesive film was bonded to the stainless steel roll as shown in FIG. Bonding was performed continuously between 103 and the pressure roll 108.
  • the adhesive film to which the conductor layer pattern (copper layer) was transferred was wound around a roll.
  • a conductor layer pattern with a line width of 28 ⁇ m, a line pitch of 300 ⁇ m, and a conductor thickness of 5 m was transferred onto the adhesive film.
  • Blocking at the time of scraping is performed by winding release PET (S 32, manufactured by Teijin Dubon Co., Ltd.) while laminating it on the surface of the substrate with the conductor layer pattern (109) onto which the conductor layer pattern is transferred. Prevented.
  • the adhesive film was continuously rolled with a so-called roll “toe” roll in which the roll force was also pushed out and the conductor layer pattern was wound around the roll after transfer. Even after 50 m of the adhesive film to which the copper plating had been transferred, the copper plating on the stainless steel roll and the insulating film peeling point where the transferability did not change were observed.
  • the surface of the obtained substrate with the conductor layer pattern on which the conductor layer pattern is formed is coated with a UV curable resin (Alonics UV-3701, manufactured by Toagosei Co., Ltd.) with a thickness of 15 m, and a PET film ( After laminating with Mylar D, manufactured by Teijin DuPont Films, Ltd., 75 m), a protective film was formed by irradiating UZcm 2 ultraviolet rays using an ultraviolet lamp.
  • a UV curable resin Alonics UV-3701, manufactured by Toagosei Co., Ltd.
  • PET film After laminating with Mylar D, manufactured by Teijin DuPont Films, Ltd., 75 m), a protective film was formed by irradiating UZcm 2 ultraviolet rays using an ultraviolet lamp.
  • Rolled SUS304 foil (Nisshin Steel Co., Ltd., finish 3Z4H, width 200mm, thickness 100 / zm), PET film (A-4100, manufactured by Toyobo), Byron UR-1350 (adhesive, Toyo A roll-like adhesive film produced by applying Spinning Co., Ltd.) to a dry coating thickness of 20 ⁇ m was bonded with a roll laminator to produce a rolled SUS foil with a PET film.
  • Lamination conditions were a roll temperature of 120 ° C, a preheat of 120 ° C for 30 seconds, a pressure of 3 MPa, and a line speed of 0.5 mZmin.
  • the SUS foil with PET film is etched under the same conditions as in Example b3 except that the roll-to-roll is performed, and the SUS foil has a lattice pattern (line width, that is, the upper surface of the convex portion).
  • the width was 15 / ⁇ ⁇
  • the pitch was 30 O ⁇ m
  • the height of the protrusion was 20 m
  • the cross-sectional shape of the protrusion was a curved surface (similar to FIG. 3D).
  • the etched SUS foil with PET film was cut to a length of lm, and then the above SUS foil with PET film was used as the anode, and the cathode was used as the titanium plate.
  • Cationic electrodeposition paint (UC-2000, Co., Ltd.) (Shimizu) was electrodeposited on a stainless steel plate etched in a lattice pattern under the condition of 30V 60 seconds. After drying 100 ° C10 minutes after washing with water and cured at irradiation conditions 3jZcm 2. The coating thickness of the electrodeposition paint was 3.9 m. In addition, the electrodeposition coating The stainless steel plate was polished with # 4000 polishing paper to expose the conductive substrate only on the upper surface of the convex portion. In the same manner, 10 SUS foils with PET film were electrodeposited and polished.
  • the PET film surface of the SUS foil with the 10 PET films prepared above was formed without any gaps.
  • a SUS foil with a PET film having a lattice pattern of 10 m in length was obtained.
  • a SUS foil with a PET film having the above-described lattice pattern was passed through an apparatus as shown in FIG. The joint was bonded using a commercially available gum tape to form a hoop-like conductive support.
  • one electrolytic bath for electrolytic copper plating ((copper sulfate (pentahydrate) 180gZL, sulfuric acid 100gZL, Kaparaside HL (Atotech)) using the rolled lattice pattern obtained above as a cathode. Japan Co., Ltd., additive) 70mlZL aqueous solution, 30 ° C) (Fig. 26-130), current density is 30AZdm 2 with phosphorous copper as anode and the thickness of the metal deposited on the upper surface of the convex part is: After washing with water, the same blackening treatment as in Example bl was performed in the blackening treatment layer (Fig. 26-150; in this example, a black soot treatment tank).
  • Example b3 plastic substrate, Fig. 26 — Conductor layer pattern that has been blackened using roll 137 to 136), line width of 17 ⁇ m, line pitch of 300 m, thickness of 1 m.
  • the substrate was continuously transferred onto the adhesive film to obtain a substrate 138 with a conductor layer pattern, and when the substrate 138 with a conductor layer pattern was rolled up, it was separated from the surface of the conductor layer pattern.
  • Type PET (S-32, manufactured by Teijin DuPont Co., Ltd.) was laminated so that the process of copper plating, black wrinkle treatment and transfer could be performed in one line. Even after the substrate 33 with the conductor layer pattern was wound up by 50 m, the insulation film peeled off where there was no change in the transferability of the copper plating was observed.
  • the etching tank 129 is omitted in this example.
  • the pressure-sensitive adhesive surface of the pressure-sensitive adhesive film with a conductor layer pattern obtained above (the surface to which the copper plating was transferred) was applied to a glass sheet having a thickness of 2 mm and laminated.
  • Lamination conditions were a temperature of 25 ° C, a pressure of 0.5 MPa, and a line speed of 0.5 m / min.
  • the 1 m thick conductor layer pattern is embedded in the adhesive, and a highly transparent electromagnetic wave shield Obtained.
  • a dry film photoresist (HY-920 (manufactured by Hitachi Chemical Co., Ltd., thickness 20 / zm)) was bonded to a stainless steel (SUS304) plate at a roll temperature of 100 ° C, a linear pressure of 0.3 MPa, and a line speed of lmZmin.
  • a negative pattern with a line width of 30 m and a line pitch of 300 m is placed on a stainless steel plate with a resist film attached, and the upper force of the negative pattern is also irradiated with UV under the condition of lOOmj / cm 2.
  • Development was performed with a 1% aqueous sodium carbonate solution to form a resist film having a groove with a width of 30 m on a SUS plate, and then heat-cured at 150 ° C. for 1 hour.
  • an electrolytic bath for electrolytic copper plating using the SUS plate on which the resist is formed as a cathode [copper sulfate (pentahydrate) 100 gZL, sulfuric acid 180 gZL, Top Lucina H-380 (Okuno Pharmaceutical Co., Ltd., Additive) 2. Dipped in 5 ml ZL aqueous solution, 30 ° C], and immersed in the same electrolytic bath with phosphorous copper as anode. As 3AZdm 2 current density by applying a voltage to both electrodes, grooves of the resist is plated to completely fill.
  • Example bl was used as an adhesive film.
  • the pressure-sensitive adhesive surface of the pressure-sensitive adhesive film was bonded to the surface of the SUS plate that had been subjected to copper plating using a roll laminator.
  • Lamination conditions were a roll temperature of 25 ° C, a pressure of 0.1 lMPa, and a line speed of lmZmin.
  • the adhesive film bonded to the conductive substrate was peeled off, the copper deposited in the resist grooves of the SUS plate was transferred to the adhesive film.
  • Example bl was performed in the same manner as Example bl except that the electrodeposition condition was 150 V for 10 seconds.
  • the thickness of the electrodeposition paint was 25 / zm.
  • the concave portion of the convex portion pattern is formed as shown in FIG. The shape was completely filled with an insulating layer.
  • copper plating was performed in the same manner as in Example bl, and the copper plating was transferred onto the adhesive film. If the process of (copper plating and blackening process) and the process of (transfer blackening process) are repeated 7 times, a part of the insulating film is peeled off. Copper was deposited at the locations where the peeled off. As a result of transferring the copper plating to the adhesive film, the copper plating at the part where the insulating film peeled off was not transferred.
  • Conductive substrate having the aperture ratio, visible light transmittance, presence / absence of pattern abnormality, visibility, electromagnetic wave shielding (300 MHz), and pattern of the conductor layer pattern obtained in the above examples or comparative examples Fig. 28 shows the results of evaluating the durability of the conductive substrate after repeated peeling and peeling 30 times.
  • Example 16 (hereinafter, also referred to as “Example cl”, the same applies to Example 23) will be described.
  • a resist film (Photec H-Y920, manufactured by Hitachi Chemical Co., Ltd.) was bonded to a 10 cm stainless steel (SUS304) plate.
  • the bonding conditions were a roll temperature of 105 ° C, a pressure of 0.5 MPa, and a line speed of lmZmin.
  • the negative film formed in a lattice shape with the line width of the light transmitting portion of 30 m, the line pitch of 300 ⁇ m, and the bias angle force of 5 ° was left on the stainless steel plate bonded with the resist film. .
  • ultraviolet rays were irradiated at 120 miZcm 2 from above the negative film under a vacuum of 600 mmHg or less. further.
  • a resist film having a line width of 30 ⁇ m, a line pitch of 300 ⁇ m, and a bias angle of 45 ° was formed on the SUS plate.
  • the SUS plate was etched using a salty ferric aqueous solution heated to 40 ° C. Etching was performed until the line width of the SUS plate reached 20 m.
  • the resist film formed on the SUS plate was peeled off to form a lattice pattern (line width 20 ⁇ m, pitch 300 ⁇ m, convex height 15 ⁇ m in length, taper angle 60 °
  • the cross-sectional shape of the convex part was a curved surface (similar to Fig. 3-d).
  • the surface roughness Rz of the upper surface of the convex portion was 0.3 m, whereas the surface roughness Rz of the concave portion was 4.2 m.
  • a stainless steel plate (a conductive base material having a convex pattern having an upper surface and a concave part having a geometrical shape drawn by the stainless steel plate) on which a lattice pattern is formed is used as a cathode.
  • Electrolytic copper plating bath (copper sulfate (pentahydrate) 80gZL, sulfuric acid 180g ZL, Cubelite VF1 (supplied by Ebara Eugene Co., Ltd., additive) 20mlZL aqueous solution, 25 ° C) A stainless steel plate was immersed, and phosphorous copper was immersed in the electrolytic copper plating bath as an anode.
  • the current density was 25AZdm 2 and the metal deposited on the top surface of the convex part of the stainless steel plate was stuck to 5 m.
  • the line width was 30 / zm. Copper was deposited as a continuous film on the upper surface of the convex part of the stainless steel plate, but a small amount of particulate copper was also deposited on the concave part and the side part.
  • the pressure-sensitive adhesive surface of the pressure-sensitive adhesive film was bonded to the surface of the stainless steel plate with copper plating using a roll laminator.
  • Lamination conditions were a roll temperature of 25 ° C, a pressure of 0. IMP a, and a line speed of lmZmin.
  • the copper layer on the upper surface of the convex portion of the SUS plate was partially buried in the adhesive layer of the adhesive film.
  • the adhesive film bonded to the stainless steel plate was peeled off, the copper deposited on the upper surface of the convex portion of the stainless steel plate was a continuous film, and thus transferred to the adhesive film.
  • a metal pattern having a line width of 20 ⁇ m, a line pitch of 300 m, and a conductor thickness of 5 ⁇ m was selectively transferred onto the adhesive film.
  • the adhesive film onto which the metal pattern obtained above was transferred was immersed in an aqueous solution obtained by diluting alkaline degreasing solution Degree A (Odec Co., Ltd.) 5 times at room temperature for 3 minutes. Next, after washing with water, it was immersed in a 10% nitric acid aqueous solution at room temperature for 2 minutes. Further, after washing with water, the substrate was immersed in a 4-fold diluted aqueous solution of blackening solution copar (Odec Co., Ltd.), and the metal pattern was blackened to produce a substrate with a conductor layer pattern of the present invention.
  • the surface of the substrate with the conductor layer pattern obtained above, on which the conductor layer pattern is present, is coated with UV-cured rosin hyaloid 7983AA3 (manufactured by Hitachi Chemical Co., Ltd.), and then a polycarbonate film. (Macro Hall DE, Bayer Co., Ltd., 75 m) is laminated and the conductor layer pattern is buried in UV curable resin, and then an ultraviolet lamp is used. The UV curable resin was cured by irradiating UZcm 2 ultraviolet rays.
  • the stainless steel plate on which the convex pattern was formed was dipped in lOOgZ liters of ammonium persulfate solution heated to 40 ° C after copper was transferred to the adhesive film. A small amount of copper remaining in the concave and side portions of the formed stainless steel plate was dissolved.
  • a lattice pattern (the cross-sectional shape of the convex part is a curved surface (similar to Fig. 3-d)) was formed on the SUS plate.
  • Electrolytic bath copper sulfate (pentahydrate) 150gZL, sulfuric acid 150gZL, Kaparaside HL (manufactured by Atotech Japan Co., Ltd., additive) 50ml ZL in water, 30 ° C) Immerse in the bath.
  • the SUS plate on which the copper plating was deposited was immersed for 3 minutes in a black wrinkle treatment solution having the following composition heated to 80 ° C, and the copper plating deposited on the stainless steel plate was blackened. It was processed.
  • Dried primer HP-1; Hitachi Chemical Co., Ltd.
  • 100 / zm thick polyethersulfone film Silicon FS-1300, manufactured by Sumitomo Beta Light Co., Ltd.
  • an adhesive film was prepared by coating sequentially.
  • the adhesive surface of the adhesive film and the copper-plated surface of the stainless steel plate were bonded together using a roll laminator.
  • Lamination conditions were a roll temperature of 150 ° C., a pressure of 0.1 MPa, and a line speed of 0.5 mZmin. Since lamination was performed at a temperature exceeding the Tg of the adhesive, tackiness was developed on the adhesive surface.
  • the blackened copper layer on the upper surface of the convex portion of the SUS plate was partially embedded in the adhesive layer of the adhesive film.
  • the adhesive film bonded to the stainless steel plate was peeled off, the copper deposited on the upper surface of the convex portion of the stainless steel plate was a continuous film, and thus transferred to the adhesive film.
  • a small amount of copper deposited on the concave and side portions is a granular and discontinuous film, so it remains on the SUS plate without following the copper deposited on the upper surface of the convex portion and transferred to the adhesive film. It was very powerful. In this way, the metal pattern having a line width of 16 ⁇ m, a line pitch of 300 ⁇ m, and a conductor thickness of 3 ⁇ m, and further blackened, is selectively transferred onto the adhesive film, and the conductor layer of the present invention. A patterned substrate was produced.
  • a UV curable resin hyaloid 7983AA3 (manufactured by Hitachi Chemical Co., Ltd.) is copied in the same manner as in Example cl.
  • PET film A-4100, manufactured by Toyobo Co., Ltd., 75 m
  • UV curable resin to form a conductive layer pattern. It was embedded in a curable type rosin.
  • the UV curable resin was cured by irradiating UV light of UZcm 2 using an ultraviolet lamp, and then the PET film (A-4100, manufactured by Toyobo Co., Ltd., 75 m) was peeled off. A small amount of copper remaining on the concave portions and side portions of the stainless steel plate on which the convex portion pattern was formed was dissolved in the same manner as in Example cl.
  • Byron UR-1350 adheresive, manufactured by Toyobo Co., Ltd.
  • SUS304 foil Takeuchi Metal Foil Powder Co., Ltd., thickness 100 m
  • PET film A-4100, manufactured by Toyobo Co., Ltd.
  • the adhesive film produced by applying the dry coating thickness to 20 m was pasted with a press. press The conditions were a hot press at 130 ° C, a pressure of 4 MPa, and a press for 30 minutes. The sample was taken out after cooling to 25 ° C with pressure applied.
  • Example cl Using the SUS foil with PET film obtained above in the same manner as in Example cl, a no-turn pattern (line width 15 m, pitch 300 m, convex height 15 m, taper angle 70) was applied to the SUS foil. ° The cross-sectional shape of the convex part was curved (similar to Fig. 3-d)).
  • electrolysis using a SUS foil with a PET film on which a lattice-like pattern is formed (a conductive base material having a notch of a convex part having an upper surface and a concave part of a geometrical figure drawn by the same) as a cathode.
  • an electrolytic bath for copper plating copper sulfate (pentahydrate) 180gZL, sulfuric acid 10 OgZL, Kaparaside HL (manufactured by Atotech Japan Co., Ltd.), 70mlZL aqueous solution, 30 ° C), and use phosphorous copper as an anode And immersed in the same electrolytic bath.
  • the current density was set to 30 AZdm 2 and plating was performed until the thickness of the metal deposited on the top surface of the convex portion reached 1 ⁇ m. Natsu.
  • Copper was deposited as a continuous film on the upper surface of the convex part of the SUS foil with PET film, but a small amount of particulate copper was also deposited on the concave part and the side part.
  • the SUS foil with PET film on which copper plating was deposited was immersed in an aqueous solution in which alkaline degreasing solution Degrease A (Odec Co., Ltd.) was diluted 5 times at room temperature for 3 minutes.
  • alkaline degreasing solution Degrease A Odec Co., Ltd.
  • it was immersed in a 10% nitric acid aqueous solution at room temperature for 10 seconds.
  • blackening solution copal Odec Co., Ltd.
  • Resin composition 1 was applied to the easy-adhesion surface of a 100 ⁇ m thick PET film (A-4100, manufactured by Toyobo Co., Ltd.) so that the dry coating thickness was 20 m. Produced.
  • AS-406 Analic polymer, manufactured by Yukisha Co., Ltd.
  • the pressure-sensitive adhesive surface of the pressure-sensitive adhesive film obtained above (the surface to which the copper plating was transferred) was applied to a glass sheet having a thickness of 2 mm and laminated and bonded.
  • Lamination conditions were a temperature of 25 ° C, a pressure of 0.5 MPa, and a line speed of 0.5 mZmin.
  • the 1 m thick conductor layer pattern was embedded in the adhesive, and a highly transparent electromagnetic shielding body was obtained.
  • a grid pattern (line width) was applied to the Ni foil in the same manner as in Example c3 except that electrolytic Ni foil (Fukuda Metal Co., Ltd., 35 ⁇ m thick) was used instead of SUS foil 304. 15 / ⁇ ⁇ , pitch 300 m, height of convex part 20 m, taper angle 60 °
  • the cross-sectional shape of the convex part was a curved surface (similar to Fig. 3-d).
  • an acid film was formed on the Ni surface with Ni anodic acid. The anodic oxidation was performed in a 10% aqueous solution of sodium hydroxide and sodium hydroxide for 30 seconds using a Ni foil as the anode and a SUS plate as the cathode, with a voltage of IV applied to both electrodes.
  • Electrolysis bath for plating (copper sulfate (pentahydrate) 180gZL, sulfuric acid lOOgZ L, Kaparaside HL (manufactured by Atotech Japan Co., Ltd., additive) immersed in an aqueous solution of 70 ml ZL, 30 ° C), and immersed in the same electrolytic bath with phosphorous copper as an anode.
  • the current density was 30AZdm 2
  • the metal deposited on the top surface of the convex part was 10 m thick, the plated metal also deposited on both sides, so the line width was 35 / zm
  • Copper was deposited as a continuous film on the upper surface of the convex part of the Ni foil with PET film, but a small amount of particulate copper was also deposited on the concave part and the side part.
  • the thickness of the PET film (Mylar D, manufactured by Teijin DuPont Films Co., Ltd.) with a thickness of 100 ⁇ m on the surface of the resin composition 2 containing the following infrared absorber is 20 ⁇ m after drying.
  • An adhesive film was prepared by coating the film.
  • IRG-022 (Nippon Kayaku Co., Ltd., dimo-um salt infrared absorber) 3.3 parts by weight Tolene 60 parts by weight
  • the resin composition c3 was applied to the release-treated surface of release PET (S-32, manufactured by Teijin DuPont Co., Ltd.) so that the dry application thickness was 8 m.
  • An adhesive film having a near infrared shielding property was prepared by laminating a film coated with the resin composition 3 on the surface coated with the resin composition c2 of an adhesive film containing a near infrared absorber.
  • the obtained adhesive film with a conductor layer pattern was blackened in the same manner as in Example cl. Further, after the blackening treatment, the surface on which the conductor layer pattern of the substrate with the conductor layer pattern is present is coated with an ultraviolet curable resin (Hitaroid 7851, manufactured by Hitachi Chemical Co., Ltd.), and a polycarbonate film ( After laminating Macro Hall DE, Bayer Co., Ltd. (75 m), UZcm 2 ultraviolet rays were irradiated using an ultraviolet lamp, and the conductor layer pattern was coated with resin. Next, an adhesive layer was formed on the surface of the film obtained above opposite to the surface on which the conductor layer pattern was formed, and was bonded to a 3 mm thick PMMA plate (Comoglass) to obtain an electromagnetic wave shielding member.
  • Example c3 SUS foil with PET film treated with copper plating and black wrinkle treatment in the same manner as Example c3 (line width 15 ⁇ m, pitch 300 ⁇ m, convex height 20 ⁇ m, taper angle 60 ° convex
  • the cross-sectional shape of the part formed a curved surface (similar to Fig. 3-d).
  • the metal thickness reached l / z m, the plated metal deposited on both sides, resulting in a line width of 17 m.
  • the following resin composition c4 was applied to the surface of a polyether sulfone film (Sumilite FS-1300, manufactured by Sumitomo Bakelite Co., Ltd.) having a thickness of 100 / zm so that the thickness after drying was 13 m.
  • An adhesive film was obtained. Drying conditions were 90 ° C for 5 minutes.
  • the blackened metal present on the upper surface of the convex portion of the stainless steel plate is selectively transferred to the adhesive surface, and the line width is 17 m, line pitch is 300 m, and conductor thickness is 1 ⁇ m.
  • a conductor layer pattern was formed on the adhesive film.
  • the transferred stainless steel plate was the same as in Example cl, and a small amount of copper remaining on the surface was removed.
  • the adhesive film having the conductor layer pattern obtained above was treated at 150 ° C for 60 minutes to cure the adhesive, to obtain a substrate with a conductor layer pattern.
  • UV-cured mortar hyaloid 7983AA3 manufactured by Hitachi Chemical Co., Ltd.
  • the surface of the film (A-4100, manufactured by Toyobo Co., Ltd., 75 / zm) that has not been subjected to easy adhesion treatment is laminated with UV curable resin to embed the conductor layer pattern in UV curable resin. It was.
  • the PET film (A-4100, manufactured by Toyobo Co., Ltd., 75 / zm) was peeled off.
  • the dissolution of a small amount of copper remaining on the concave portions and side portions of the stainless steel plate on which the convex portion pattern was formed was performed in the same manner as in Example cl.
  • a resist film (Photec LF-1515, manufactured by Hitachi Chemical Co., Ltd.) was bonded to a 10 cm-thick copper plate (thickness 2 mm).
  • the bonding conditions were a roll temperature of 105 ° C., a pressure of 0.5 MPa, and a line speed of lmZmin.
  • a negative film formed in a lattice shape with a line width of 30 m for the light transmitting portion, a line pitch of 200 ⁇ m, and a bias angle of 30 ° Then, it was allowed to stand on a copper plate to which a resist film was bonded.
  • ultraviolet rays were irradiated from the top of the negative film at 120 mjZcm 2 under a vacuum of 6 OOmmHg or less. Further, by developing with a 1% aqueous sodium carbonate solution, a resist film having a line width of 30 ⁇ m, a line pitch of 200 ⁇ m, and a bias angle of 30 ° was formed on the copper plate. Further, the copper plate was etched using a salty ferric aqueous solution heated to 40 ° C. Etching was performed until the line width of the copper plate reached 25 m.
  • the resist film formed on the copper plate is peeled off to form a lattice pattern (line width 25 / ⁇ ⁇ , line pitch 200 / ⁇ ⁇ , convex
  • the height of the part was 11 / ⁇ ⁇
  • the cross-sectional shape of the convex part was a curved surface (similar to Fig. 3-d).
  • a chromium layer was formed by sputtering on the surface of the copper plate on which the lattice pattern was formed so as to have a thickness of 0.3 m.
  • the copper plating applied thereon is easily peeled off.
  • Electrolytic copper plating was performed using the copper plate sputtered with chromium as a cathode. In an electrolytic copper plating bath (copper sulfate (pentahydrate) 100g / L, sulfuric acid 180gZL, Topchina H-380 (Okuno Pharmaceutical Co., Ltd., additive) 2.
  • a copper plate sputtered with chromium was immersed in the same electrolytic copper plating bath with phosphorous copper as an anode. Voltage was applied to both electrodes, and the current density was 25 AZdm 2 until the thickness of the copper deposited on the upper surface of the convex portion of the copper plate sputtered with chromium was 3 ⁇ m. Copper was deposited as a continuous film on the upper surface of the convex portion of the copper plate sputtered with chromium, but granular copper having a particle size of about 1 m was discontinuously deposited on the concave portion and side portions. Further, the copper plate on which copper plating was formed was immersed in a black bath treatment solution 1 and treated at 80 ° C. for 1 minute to blacken the copper plating.
  • the above-obtained substrate with a conductor layer pattern and a glass plate having a thickness of 2 mm were laminated so that the surface of the substrate with the conductor layer pattern formed thereon was in contact with the glass plate (30 ° C, 2. OMPa) and pasted together.
  • the conductor layer pattern was embedded in the adhesive, and a highly transparent electromagnetic wave shielding member was obtained.
  • a stainless steel roll with a diameter of 150 mm was applied to a grid pattern (line width 20 m, pitch 300 m, convex height 15 m, taper in the same manner as in Example cl.
  • the cross-sectional shape of the convex part with a 60 ° angle formed a curved surface (similar to Fig. 3-d).
  • electrolytic bath for electrolytic copper plating using the processed stainless steel roll as the cathode copper sulfate (pentahydrate) 80gZL, sulfuric acid 180gZL, Cubelite VF1 (supplied by Ebara New Light Co., Ltd.), 20ml ZL aqueous solution, 25 ° C) and immersed in the same electrolytic bath with phosphorous copper as an anode.
  • the current density was 40 AZdm 2 and voltage was applied to both poles until the thickness of the metal deposited on the upper surface of the convex portion reached 5 m, the plated metal deposited on both sides, so the line width was 30 m. It became. Copper was deposited as a continuous film on the upper surface of the convex portion of the stainless steel roll, but granular copper having a particle size of about 3 ⁇ m was deposited discontinuously on the concave portion and side portions.
  • Example cl The pressure-sensitive adhesive film used in Example cl was produced in a roll shape, and the adhesive surface of copper and the pressure-sensitive adhesive film deposited on the upper surface of the convex portion of the stainless steel roll was bonded together under the same lamination conditions as in Example cl. . At this time, the copper layer formed on the upper surface of the convex portion of the stainless steel roll was partially buried in the adhesive layer of the adhesive film. Next, when the adhesive film bonded to the stainless steel roll is peeled off, the copper deposited on the upper surface of the convex part of the stainless steel roll is a continuous film, so it is transferred to the adhesive film, but is deposited on the concave part and the side part.
  • the deposited copper was a discontinuous film in a small amount, it remained on the SUS plate without following the copper deposited on the upper surface of the convex portion.
  • a conductor layer pattern having a line width of 30 ⁇ m, a line pitch of 300 ⁇ m, and a conductor thickness of 5 ⁇ m was selectively transferred onto the adhesive film.
  • the adhesive film (substrate with the conductor layer pattern) to which the conductor layer pattern was transferred was released from the release PET (S-32, Teijin DuPont). The product was wound up in a roll shape while laminating (made by Co., Ltd.).
  • Example c4 After the transfer, in the same line as in Example c4, a small amount of copper remaining on the concave portion and the side portion of the stainless steel roll was removed by etching, and then the stainless steel roll was subjected to copper plating again. In this way, the three steps of copper plating, transfer to adhesive, and etching of residual copper were continuously performed with a roll 'toe' roll.
  • the adhesive film to which the metal pattern obtained above was transferred was blackened in the same manner as in Example cl to produce a substrate with a conductor layer pattern of the present invention.
  • the surface of the substrate with the conductor layer pattern obtained, on which the conductor layer pattern is formed is coated with a UV curable resin (Alonics UV-3701, manufactured by Toagosei Co., Ltd.) with a thickness of 15 m, and a PET film (Mylar 1D, made by Teijin DuPont Films, Ltd., 75 m), and then irradiated with UZcm 2 ultraviolet rays using an ultraviolet lamp.
  • a UV curable resin Alonics UV-3701, manufactured by Toagosei Co., Ltd.
  • PET film Mylar 1D, made by Teijin DuPont Films, Ltd., 75 m
  • Rolled SUS304 foil (thickness 100 ⁇ m) and PET film (A-4100, manufactured by Toyobo Co., Ltd.), Neuron UR-1350 (adhesive, manufactured by Toyobo Co., Ltd.) is applied to a dry coating thickness of 20 ⁇ m.
  • the roll-shaped adhesive film produced by coating in this manner was bonded with a roll laminator to produce a rolled SUS foil with a PET film.
  • Lamination conditions were a roll temperature of 120 ° C, a preheat of 120 ° C for 30 seconds, a pressure of 3 MPa, and a line speed of 0.5 m / min.
  • the SUS foil with PET film is etched in the same manner as in Example c7 except that the roll-to-roll process is performed, and a lattice pattern (line width 15 m, pitch 300 m, protrusions) is formed on the SUS foil.
  • the length of 20m, taper angle 60 °, and the cross-sectional shape of the convex part was a long curved surface (similar to Fig. 3-d).
  • paper was passed through an apparatus as shown in FIG.
  • the joints were bonded with Mylar tape to form a hoop-like conductive substrate.
  • the etching tank (129 in Fig. 26) is passed through the SUS foil (hoop-like conductive base material) with PET film obtained above, washed appropriately, and then the hoop-like conductivity is obtained.
  • Electrolytic bath for electrolytic copper plating with the base material as the cathode ((copper sulfate (pentahydrate) 180gZL, sulfuric acid lOOgZL , Cupracid HL (Atotech Japan Co., additives) aqueous 70MlZL, at 30 ° C) (130 in FIG.
  • the current density phosphorous-containing copper as the anode as 30AZdm 2 convex hoop conductive substrate
  • the metal width deposited on both sides resulted in a line width of 17 m.
  • Copper was deposited as a continuous film on the upper surface of the convex part of the SUS foil with PET film, but a slight amount of granular copper having a particle size of about 0.3 m was deposited on the concave part and the side part.
  • the black smoke treatment similar to that of Example cl was performed in the black smoke treatment tank (150 in FIG. 26), passed through the fouling treatment tank (151 in FIG. 26), and continuously transferred. After the transfer, the copper remaining in the recesses and side portions of the SUS foil was removed in an etching tank (129 in FIG. 26) (lOOgZl aqueous ammonium persulfate solution, liquid temperature 40 ° C.).
  • the conductor layer was continuously transferred to the roll-shaped adhesive film (136 in FIG. 26) used in Example c3, the line width was 17 ⁇ m, the line pitch was 300 ⁇ m, the thickness was At 1 m, an adhesive film with a conductor layer pattern was obtained in which the conductor layer pattern (138 in FIG. 26) subjected to blackening treatment was selectively transferred onto the adhesive film. Since the copper deposited on the top surface of the convex part of the SUS foil with PET film is a continuous film, it is transferred to the adhesive film, whereas the copper deposited on the concave part and the side part is granular and discontinuous.
  • the pressure-sensitive adhesive surface of the pressure-sensitive adhesive film with a conductor layer pattern obtained above (the surface to which the copper plating was transferred) was applied to a glass sheet having a thickness of 2 mm and laminated.
  • Lamination conditions were a temperature of 25 ° C, a pressure of 0.5 MPa, and a line speed of 0.5 m / min.
  • the 1 m thick conductor layer pattern was embedded in the adhesive, and a highly transparent electromagnetic shielding body was obtained.
  • the depth from the top surface of the portion of the convex side surface where the taper angle) has the angle indicated in each example is a vertical distance. There was at least half of the height of the protrusion.
  • a metal plated in a non-turn pattern is adhesive when transferred to an adhesive film, for example. Since the layer is in contact with the insulator that forms the pattern, a peel stress is applied to the insulator every time the adhesive film to which the metal pattern is transferred is peeled off. Furthermore, since the insulator is formed in a pattern, the contact area of the insulator with SUS is very small, so the process of plating ⁇ transfer in a pattern is repeated several to several hundred times. However, at the mass production level of several thousand to several tens of thousands of times, the insulation is peeled off from the conductive substrate! /, And the pattern life is short.
  • the resin used to form the pattern and the adhesive used to peel the conductor layer from the conductive substrate Organic strength such as film peeling residue
  • the plating solution is contaminated, so the life of the plating solution is shortened and plating deposition failure is likely to occur.
  • Example 24 (hereinafter, also referred to as “Example dl”. The same applies to Example 30) will be described. (Negative film specifications 1)
  • the size of the pattern drawing part is 300mm square, and the line width of the light transmission part is 100 ⁇ m, the line pitch is 300 ⁇ m, and the bias angle is 45 ° on the four sides (corresponding to the area B) 30 mm inside from the outermost periphery of the pattern drawing part.
  • a grid pattern is formed (in the regular square, the line is arranged at an angle of 45 degrees with respect to the side of the regular square), and light is applied to the entire inner surface (corresponding to the area A).
  • a grid pattern with a line width of 30 m at the transmission part, a line pitch of 300 m, and a bias angle of 45 ° was formed. Each inner line is connected to the outer line at the inner and outer boundary.
  • This negative film pattern corresponds to the pattern shown in Figure 3-d.
  • Resist film (Photech H—Y920, manufactured by Hitachi Chemical Co., Ltd.) was bonded to both sides of 300 mm square stainless steel (SUS304, finished 3Z4H, thickness 100 / ⁇ ⁇ , manufactured by Nisshin Steel Co., Ltd.).
  • the bonding conditions were a roll temperature of 105 ° C, a pressure of 0.5 MPa, and a line speed of lmZmin.
  • the negative film specification 1 was allowed to stand on one surface of the stainless steel plate to which the resist film was bonded.
  • the resist pattern line width formed on the outside of the SUS plate was 100 ⁇ m
  • the line pitch was 300 m
  • the bias angle was 45 °
  • the resist pattern was formed on the inside.
  • a resist pattern having a line width of 30 m, a line pitch of 300 ⁇ m, and a bias angle of 45 ° was formed. Note that the opposite surface of the surface on which the pattern is formed is exposed to the whole surface, so that it is not developed and a resist film is formed on the entire surface.
  • the SUS plate was etched using a salty ferric aqueous solution (45 ° Be ', manufactured by Tsurumi Soda Co., Ltd.) heated to 40 ° C. Etching was performed until the width (line width) of the upper surface of the convex portion in region A reached 20 / zm. The surface opposite to the surface on which the pattern was formed was not etched because a resist film was formed on the entire surface.
  • a salty ferric aqueous solution 45 ° Be ', manufactured by Tsurumi Soda Co., Ltd.
  • the resist film (including the resist film on the back surface) formed on the SUS plate is peeled off using a 5% by weight sodium hydroxide / sodium salt solution, and a convex pattern having an upper surface is drawn.
  • a conductive base material having a recess having a geometrical figure shape was obtained.
  • This conductive base material has a width of the upper surface of the convex portion (line width) of 20 m, an interval of the upper surface of the convex portion (line pitch) of 300 / ⁇ ⁇ , and a height of the convex portion of 15 m.
  • the width of the upper surface of the convex part is 90 / ⁇ ⁇
  • the distance between the upper surfaces of the convex part is 300 m
  • the height of the convex part is 15 m. This was the same as in FIG.
  • the cross-sectional shape of the recesses in the regions A and B was a curved surface (similar to Fig. 3-d).
  • the anode as a titanium plate, and applying a voltage for 10 seconds at 15 V in a cationic electrodeposition paint (Insuleed 3020, Nippon Paint Co., Ltd.)
  • a cationic electrodeposition paint Insuleed 3020, Nippon Paint Co., Ltd.
  • the coating thickness of the electrodeposition paint was 2.5 m.
  • the upper surface of the convex part of the electrodeposited stainless steel plate is polished with polishing powder (alumina solution BO. 0,5 m, manufactured by Refinetech Co., Ltd.) and polishing cloth (manufactured by CONSUMABLES Buehler GMBH).
  • polishing powder alumina solution BO. 0,5 m, manufactured by Refinetech Co., Ltd.
  • polishing cloth manufactured by CONSUMABLES Buehler GMBH.
  • a conductive base material having an insulating film was produced by exposing the top surface of the surface.
  • the thickness of the electrodeposition coating film in the concave portion of this conductive substrate was 2.5 m.
  • the electrodeposition coating film at the edge of the upper surface of the convex portion was flush with the upper surface.
  • the concave portions were covered with a thin film insulating film in both the regions A and B.
  • a thin film insulating layer was formed on the entire surface opposite to the surface on which the convex and concave portions exist.
  • Electrolytic copper plating bath (copper sulfate (pentahydrate) 80gZL, sulfuric acid 180gZL, Cubelite VF1 (supplied by Ebara Eugene, Inc., 20ml ZL aqueous solution, 25 ° C), conductive base with insulating film
  • the material was immersed and immersed in the electrolytic copper plating bath using phosphorous copper as an anode.
  • a voltage was applied to both electrodes, and the current density was set to lOAZdm 2 until the thickness of the metal deposited on the upper surface of the convex portion in the region A of the conductive substrate reached 5 / zm.
  • the thickness of the metal (grounding part) deposited on the upper surface of the convex part in region B was 4 m, and there were almost no pinholes.
  • the entire surface was covered with a thin film insulating layer, so that the copper plating did not precipitate.
  • a primer HP-1; manufactured by Hitachi Chemical Co., Ltd. 1 m thick on the surface of a 100 m thick polyethylene terephthalate (PET) film (A-4100, manufactured by Toyobo Co., Ltd.) as an adhesive layer Acrylic polymer (HTR-280, manufactured by Nagase ChemteX Corporation) was sequentially applied to a thickness of 10 ⁇ m to prepare an adhesive film.
  • PET polyethylene terephthalate
  • A-4100 manufactured by Toyobo Co., Ltd.
  • Acrylic polymer HTR-280, manufactured by Nagase ChemteX Corporation
  • the pressure-sensitive adhesive surface of the pressure-sensitive adhesive film and the surface on which the conductive layer pattern of the conductive substrate was present were bonded together using a roll laminator.
  • Lamination conditions were a roll temperature of 25 ° C, a pressure of 0.1 lMPa, and a line speed of lmZmin.
  • the adhesive film was peeled off, the copper deposited on the upper surface of the convex portion of the conductive substrate was transferred to the adhesive film, and the transfer residue was also strong.
  • the copper plating pattern transferred to the adhesive film has a partial force corresponding to area A, S line width of 28 ⁇ m, line pitch of 300 ⁇ m, conductor thickness of 5 ⁇ m, and a part corresponding to area B (grounding part)
  • the line width was 97 ⁇ m
  • the line pitch was 300 ⁇ m
  • the conductor thickness was 4 ⁇ m.
  • the substrate with the conductor layer obtained above is immersed in an aqueous solution obtained by diluting alkaline degreasing solution Degrease A (Odec Co., Ltd.) 5 times at room temperature for 3 minutes, then washed with water, 10% by weight glass Immerse in an acid aqueous solution at room temperature for 2 minutes, and after washing with water, immerse it in a 4-fold diluted aqueous solution of blackening solution Copal (Odek Co., Ltd.) to make the conductor layer pattern blackened.
  • a substrate with an adhesive was obtained.
  • UV curable resin hyaloid 7983AA3 (Hitachi Chemical Co., Ltd.)
  • a polycarbonate film (Macro Hall DE, Bayer, 75 ⁇ m) is laminated on it, and UV light of UZcm 2 is applied using an ultraviolet lamp. Irradiation was performed to harden the UV curable resin to obtain a substrate with a conductor layer pattern having a protective film having a thickness of 20 m.
  • a grid pattern with a light transmission part line width of 70 ⁇ m, a line pitch of 350 ⁇ m, and a bias angle of 45 ° is formed on four sides 30 mm inside from the outermost periphery of the pattern drawing part Furthermore, a lattice pattern with a line width of 30 m, a line pitch of 300 m, and a bias angle of 45 ° was formed on the entire inner surface. The inner and outer lines have different line pitch, so there are some unconnected areas .
  • This negative film pattern corresponds to the pattern shown in FIG.
  • the negative film produced in the negative film specification 2 was used in the same manner as in Example dl, except that etching was performed until the width (line width) of the upper surface of the convex portion in region A reached 7 ⁇ m.
  • a conductive base material having a pattern of parts and a concave part of the geometrical figure drawn by the pattern was obtained.
  • This conductive substrate has a width (line width) 7 / ⁇ ⁇ at the top surface of the convex portion in region A, a distance of 300 m between the top surfaces of the convex portion, and a height of 19 m at the convex portion.
  • the surface opposite to the surface on which the pattern was formed was not etched because the resist film was formed on the entire surface, and the resist was removed after the etching as described above.
  • the shape of the pattern is as shown in FIG. 5.
  • the convex part of region A and the convex part of region B are continuous, and there are also parts.
  • the cross-sectional shape of the recesses in region A and region B was a curved surface (similar to Fig. 3-d).
  • Electrodeposition coating was performed on the entire surface of the stainless steel plate etched into a lattice pattern of the conductive base material (including the back side that was etched!). After washing with water and drying at 100 ° C for 10 minutes, baking was performed at 180 ° C for 30 minutes. The coating thickness of the electrodeposition paint was 2.6 m.
  • the upper surface of the convex part of the electrodeposited conductive substrate is polished with polishing powder (TypeO. 1R, manufactured by Baikalox) and polishing cloth (manufactured by CONSUMABLES Buehler GMBH), and the upper surface (SUS surface) was exposed to produce a conductive substrate having an insulating film.
  • the thickness of the electrodeposition coating in the recess of this conductive substrate is 2.6 m.
  • the thickness of the electrodeposition coating near the top edge of the force projection was 0.2 m.
  • the electrodeposition coating film at the edge of the upper surface of the convex portion was flush with the upper surface.
  • the concave portions were covered with a thin film insulating film in both the region A and the region B.
  • Neuron UR— 1350 (Toyobo Co., Ltd., polyester resin) 100 parts by weight Coronate L (Nihon Polyurethane Co., Ltd., isocyanate compound) 3 parts by weight [0247] (Transfer)
  • the adhesive surface of the adhesive film obtained above and the surface of the conductive substrate on which the blackened copper plating was present were bonded using a roll laminator.
  • Lamination conditions were a roll temperature of 100 ° C, a pressure of 0.1 MPa, and a line speed of 0.3 mZmin. Since it was laminated at a temperature exceeding the glass transition point (Tg) of the adhesive, tackiness appeared on the adhesive surface.
  • Tg glass transition point
  • Conductive substrate pattern A pattern formed by transferring the copper plating deposited on the top of the convex part of area A to the adhesive film is 11 ⁇ m in line width, 300 ⁇ m in line pitch, 3 ⁇ m in conductor thickness.
  • the pattern formed by transferring the copper plating (grounding part) deposited on the upper surface of the convex part in area B to the adhesive film is a line width of 63 ⁇ m, a line pitch of 350 ⁇ m, and a conductor thickness of 2. It was 8 ⁇ m. After the transfer to the adhesive film, the transferred line was observed with a microscope. As a result, the cracks on the entire surface were ineffective. In this way, the blackened metal pattern is bonded to the adhesive film. It was transcribe
  • the PET film (A-4100, manufactured by Toyobo Co., Ltd., 75 ⁇ m) was peeled off, A substrate with a conductor layer pattern having a protective film having a thickness of 20 ⁇ m was obtained.
  • the size of the pattern drawing part is 300 mm square, and the stripe pattern with a line width of 250 ⁇ m and a line pitch of 750 ⁇ m on the four sides, 30 mm inside from the outermost periphery of the pattern drawing part. It was formed perpendicular to the drawing part.
  • a grid pattern with a line width of 20 ⁇ m, a line pitch of 250 ⁇ m, and a bias angle of 30 ° was formed on the entire inner surface. Because the outer line is striped, there are some areas that are not connected to the inner line and the outer line.
  • This negative film pattern corresponds to FIG.
  • the width of the convex part in area A (line width) S Conducted under the same conditions as in Example dl, except that etching was performed until 15 m, to obtain a conductive substrate having a convex pattern having a top surface and a geometrical figure-shaped concave portion drawn thereby. It was.
  • the width of the upper surface of the convex portion (line width) of the conductive substrate region A (line width) is 15 m
  • the spacing between the upper surfaces of the convex portion (line pitch) is 250 m
  • the height of the convex portion is 13 m.
  • the width of the convex pattern (line width) is 245 ⁇ m, and the distance between the top surfaces of the convex parts (line pitch) H)
  • the height of the convex part was 750 ⁇ m and the height was 13 ⁇ m.
  • the planar shape of the pattern in region A and the pattern in region B was the same as that shown in FIG.
  • the cross-sectional shape of the recesses in region A and region B was curved (similar to Fig. 3-d).
  • the lattice pattern The entire surface of the etched stainless steel plate (etched, including the back side) was electrodeposited. After washing with water and drying at 100 ° C. for 10 minutes, it was cured under irradiation conditions of 3jZcm 2 .
  • the coating thickness of the electrodeposition paint was 3.
  • the upper surface of the convex portion of the electroconductive substrate coated with electrodeposition was polished with # 4000 abrasive paper to expose the upper surface of the convex portion. At this time, the thickness of the electrodeposition coating film at the edge of the upper surface of the convex portion of the conductive substrate was 0.5 ⁇ m.
  • an electrolytic bath for electrolytic copper plating using a conductive substrate having an insulating film as a cathode copper sulfate (pentahydrate) 180 gZL, sulfuric acid 100 gZL, Kavalaside HL (manufactured by Atotech Japan Co., Ltd., additive) 70 ml ZL aqueous solution, 30 ° C.
  • Voltage was applied to both electrodes, and the current density was 25 AZdm 2 until the thickness of the copper deposited on the upper surface of the convex part in region A of the conductive substrate reached 6 m.
  • the thickness of the metal (grounding part) deposited on the upper surface of the convex part in area B was 3.5 m, and there was almost no pinhole.
  • copper plating did not deposit on the surface opposite to the surface on which the pattern was formed because the entire surface was covered with a thin film insulating layer.
  • the copper plating deposited on the upper surface of the convex portion of the conductive base material was subjected to blackening treatment under the same conditions as in Example dl.
  • the following resin composition 2 was applied to the easy attachment surface of a 100 / zm thick PET film (A-4100, manufactured by Toyobo Co., Ltd.) so that the dry coating thickness was 15 m. Was made.
  • the pressure-sensitive adhesive surface of the pressure-sensitive adhesive film obtained above and the surface of the conductive substrate on which the blackened copper was present were bonded using a roll laminator.
  • Lamination conditions were a roll temperature of 25 ° C, a pressure of 0.1 MPa, and a line speed of lmZmin.
  • the pressure-sensitive adhesive film was peeled off from the conductive substrate, the copper deposited on the upper surface of the convex portion of the conductive substrate (the one that was blackened) was transferred to the adhesive surface of the pressure-sensitive adhesive film, and the transfer residue There was not.
  • the pattern formed by transferring the copper plating deposited on the upper surface of the convex part of area A of the conductive substrate onto the adhesive film is 25 ⁇ m in line width, 250 ⁇ m in line pitch, and 6 ⁇ m in conductor thickness.
  • the striped pattern formed by transferring the copper plating deposited on the upper surface of the convex part in area B to the adhesive film has a line width of 255 ⁇ m, a line pitch of 750 ⁇ m, and a conductor thickness of 3. It was 5 ⁇ m.
  • the transferred line was observed with a microscope. As a result, the line was completely broken on the entire surface. In this way, the metal pattern subjected to the blackening treatment was transferred onto the adhesive film to obtain a substrate with a conductor layer pattern of the present invention.
  • the pressure-sensitive adhesive surface (surface having a conductor layer pattern) of the substrate with a conductor layer pattern obtained above was laminated on and bonded to glass having a thickness of 2 mm. Bonding was performed only on the entire surface of region A, and the entire surface of region B was protruded from the glass.
  • the lamination conditions when bonded to glass were a temperature of 25 ° C, a pressure of 0.5 MPa, and a line speed of 0.5 m / min. By roll lamination, the 6 m thick conductor layer pattern was embedded in the adhesive, and a highly transparent electromagnetic shielding material was obtained.
  • BR-80 Mitsubishi Rayon Co., PMMA 100 parts by weight IRG— 022 (Nippon Yakuyaku Co., Ltd., Dimo-um salt-based infrared absorber) 3.3 parts by weight IR—12 (Nippon Shokubai Co., Ltd., phthalocyanine-based infrared absorber) 1.5 parts by weight Tolenene 60 Parts by weight
  • the resin composition d4 was applied to the release treated surface of the release PET film (S-32, manufactured by Teijin DuPont Co., Ltd.) so that the dry coating thickness was 8 m and dried.
  • a film coated with the resin composition d4 was bonded to the surface of the adhesive film containing the near-infrared absorber coated with a resin to produce a pressure-sensitive adhesive film having a near-infrared shielding property.
  • a substrate with a conductor layer pattern was used in the same manner as in Example dl except that the adhesive film having the near-infrared shielding property obtained above (but used after peeling the release PET film) was used as the adhesive film. And the base material with a conductor layer pattern by which the conductor layer pattern was blackened was manufactured.
  • the surface of the substrate with the conductor layer pattern of the substrate with the conductor layer pattern obtained by the blackening of the conductor layer pattern obtained above was irradiated with UV curable resin (Hitaloy 7851, Hitachi Chemical) After coating with polycarbonate film (Macro Hall DE, Bayer Co., Ltd., 75 ⁇ m), it was irradiated with lj / cm 2 ultraviolet rays using an ultraviolet lamp, and the conductor layer The pattern was coated with greaves. Next, an adhesive layer is formed on the surface of the film obtained above opposite to the surface on which the conductor layer pattern is formed, and is attached to a 3 mm thick PMMA plate (Comoglass) to attach the electromagnetic wave shielding member. Obtained.
  • UV curable resin Hydrophilic acid
  • a substrate with a conductor layer pattern was produced in the same manner as in Example d2 except that in Example d2 (Preparation of adhesive film), the dry coating thickness of the resin composition dl was 10 / zm.
  • the substrate with the conductor layer pattern was immersed in the following black wrinkle treatment solution heated to 80 ° C for 3 minutes to blacken the conductor layer and the surface of the conductor layer was blackened.
  • the base material with a conductor layer pattern which has a pattern was manufactured.
  • An electromagnetic wave shielding member was obtained in the same manner as in (Production of electromagnetic wave shielding body) of Example d4 using the base material with a conductive layer pattern having a conductive layer pattern whose surface was blackened.
  • a grid pattern with a line width of 100 ⁇ m, a line pitch of 300 ⁇ m, and a noise angle of 45 ° is formed on four sides 30 mm inside from the outermost periphery of the pattern drawing area. Further, a lattice pattern having a light transmission portion line width of 30 ⁇ m, a line pitch of 300 ⁇ m, and a bias angle of 45 ° was formed on the entire inner surface. The inner line and the outer line are all connected.
  • This negative film pattern corresponds to the pattern shown in Figure 6.
  • Example dl Similar to Example dl, except that the size of the SUS plate was 470 mm X 200 mm, a conductive substrate having a convex pattern having an upper surface and a geometrical figure-shaped concave portion drawn thereby. A material was prepared. In area A of this conductive substrate, the width of the upper surface of the convex part (line width) 20 / zm The distance between the upper surfaces of the convex part (line pitch) is 300 m, and the height of the convex part is 15.
  • Width (line width) 90 ⁇ m, spacing between top surfaces of protrusions (line pitch) 300 ⁇ m, height of protrusions 15 / zm, and the planar shape of the pattern of protrusions and recesses in region A and region B is Fig 6 It was the same. Further, in the region A and the region B, the cross-sectional shape of the concave portion was a curved surface (similar to FIG. 3D). Note that the surface opposite to the surface on which the pattern was formed was not etched because the resist film was formed on the entire surface, and the resist was removed after the etching as described above.
  • Example dl production of a conductive substrate having an insulating film
  • a commercially available adhesive film was bonded to the opposite side of the surface on which the pattern was formed, and then electrodeposition coating was performed.
  • electrodeposition coating, baking, and polishing of the upper surface of the convex portion were performed to obtain a conductive base material in which the concave portion was covered with an insulating film in both the region A and the region B.
  • a substrate with a conductive layer pattern was continuously produced using an apparatus as shown in FIG. That is, as the rotating body 103, the conductive base material in which the recesses are covered with an insulating film in both the area A and the area B prepared above is wound on the surface of an iron rotating body (roll) having a diameter of 150 mm and a width of 200 mm. A drum electrode in which seams were bonded with tape was used. When the conductive substrate is wound around the rotating body, the adhesive bonded to the opposite side of the surface on which the pattern is formed is used to ensure electrical connection between the rotating body and the conductive substrate. The film was peeled off and wound so that the SUS surface and the rotating body surface were in contact.
  • electrolytic copper was attached to the rotating body 103 with the apparatus configuration shown in FIG.
  • anode 102 an insoluble electrode made of titanium coated with iridium oxide was used.
  • the cathode is the drum electrode.
  • electrolytic bath 100 for electrolytic copper plating copper sulfate (pentahydrate) 80gZL, sulfuric acid 180gZL, Cubelite VF1 (supplied by Ebara Eugene Co., Ltd., additive) 20mlZL aqueous solution 25 ° C charge solution 101 It is accommodated and sent between the anode 102 and the rotating body 103 by the pump 105 through the pipe 104 and filled. About half of the rotating body 103 is immersed in this electrolytic solution.
  • a voltage was applied to both electrodes so that the current density was 40 AZdm 2, and the metal deposited on the upper surface of the convex portion of the region A of the conductive base material was stuck to a thickness of 5 ⁇ m. At this time.
  • the above stainless steel roll was rotated at a speed of lmZ.
  • Example 1 The adhesive film produced in dl was rolled up in a roll shape to obtain a roll-shaped adhesive film.
  • the pressure-sensitive adhesive film 107 is unwound from the roll-shaped pressure-sensitive adhesive film, and the surface of the pressure-sensitive adhesive layer is deposited on the metal (copper) 106 deposited on the upper surface of the convex portion of the rotating body.
  • More Example Under the same laminating conditions as in dl, by continuously bonding and peeling, the metal 106 was transferred to the adhesive layer of the adhesive film, and a substrate with a conductor layer pattern 109 was continuously produced. . The obtained base material 109 with a conductor layer pattern was wound into a roll.
  • the conductor layer pattern formed by transferring the copper plating deposited on the upper surface of the convex part formed on the inner side to the adhesive film corresponds to the area A of the conductive substrate.
  • the line width is 28 ⁇ m
  • the line pitch is 300 ⁇ m
  • the conductor thickness is 5 / zm.
  • the area corresponding to the region B (ground part) is the line width of 97 m
  • the conductor thickness is 4 m. Met.
  • the substrate with the conductor layer pattern wound up in a roll was cut, sampled at three force points at equal intervals in the width direction, and the conductor layer pattern was observed with a microscope.
  • the base material with the conductor layer pattern obtained above was rolled up while peeling the release PET, and continuously blackened.
  • the substrate with a conductor layer pattern in which the conductor layer pattern was blackened was wound into a roll through a 4-fold diluted aqueous solution tank.
  • the release layer (S-32, manufactured by Teijin DuPont Co., Ltd.) is laminated on the surface of the adhesive film to which the conductor layer pattern has been transferred. Prevented.
  • the adhesive film was continuously rolled out by a so-called roll-to-roll, in which the roller was also unwound and the conductor layer pattern was wound around the roll after transfer.
  • the copper plating on the stainless steel roll and its transferability remained unchanged. Furthermore, almost no pinholes were generated in the portion where the copper plating deposited on the pattern formed on the outside was transferred.
  • the pressure-sensitive adhesive surface of the pressure-sensitive adhesive film with the conductor layer pattern obtained above (the surface on which the copper plating was transferred) was applied to a glass sheet having a thickness of 2 mm and laminated.
  • Lamination conditions are temperature The temperature was 25 ° C, the pressure was 0.5 MPa, and the line speed was 0.5 m / min.
  • the 1 m thick conductor layer pattern was embedded in the adhesive, and a highly transparent electromagnetic shielding body was obtained.
  • Rolled SUS304 foil (made by Nisshin Steel Co., Ltd., finish 3Z4H, width 350mm, thickness 100 / ⁇ ⁇ ), PET film ( ⁇ -4100, manufactured by Toyobo Co., Ltd.) 1350 [Adhesive, manufactured by Toyobo Co., Ltd.] is applied to a dry adhesive thickness of 20 ⁇ m.
  • SUS foil was produced as a conductive substrate (unprocessed). Lamination conditions were a roll temperature of 120 ° C, a preheat of 120 ° C for 30 seconds, a pressure of 3 MPa, and a line speed of 0.5 mZmin.
  • a resist film (Phototech H-Y920, manufactured by Hitachi Chemical Co., Ltd.) is continuously bonded to one surface of the raw roll-shaped conductive substrate with a roll laminator, and wound into a roll. It was. Shell occupying conditions were a roll temperature of 105 ° C, a pressure of 0.5 MPa, and a line speed of lm / min. Further, using the negative film used in Example d2, set a pair on the resist film formed on the conductive substrate so that the distance between the pattern including the set of areas A and B is 10 mm. The pattern consisting of area A and area B was exposed 30 times intermittently. Exposure was performed only to the pattern forming section each time.
  • Ultraviolet rays were irradiated with 120 mJ Zcm 2 of ultraviolet rays from above the negative film under a vacuum of lOOmmHg or less.
  • the conductive substrate exposed to the above pattern is set in a developing machine having a roll unwinding part and a scooping part, and the film is flowed at a line speed of 2 mZmin, developed, washed, dried, and then wound into a roll. I took it.
  • the development was performed by showering, the length of the developing tank was 2 m, and the developer was a 1% by weight aqueous sodium carbonate solution.
  • the conductive base material having the resist pattern obtained above is set in an etching apparatus having a roll unwinding part and a scooping part, and is flowed at a line speed of 1.5 mZmin. After etching, washing with water, and drying, Rolled up into a roll. Etching is done with shower ring, The length of the etching tank was 4 m, and the etching solution was a salty ferric aqueous solution (45 ° Be ′, manufactured by Tsurumi Soda Co., Ltd.) heated to 40 ° C. In this way, a conductive base material was prepared in which a set of region A and region B force patterns were arranged at regular intervals.
  • the upper surfaces of the convex portions of the regions B and A had a part that was not continuous, and the shape of the opening was the same as that shown in FIG.
  • the size of the pattern consisting of a pair of area A and area B is 300 mm square, and area B is set on four sides, 30 mm inside from the outermost periphery of the pattern drawing area. Thirty patterns, each consisting of a pair of region A and region B, were produced at an interval of 10 mm.
  • a cationic electrodeposition paint (UC-2000, manufactured by Shimizu Corporation) with the conductive substrate having the pattern consisting of the above-mentioned pair of regions A and B as the anode and the cathode as the titanium plate.
  • a voltage was applied for 60 seconds to electrodeposit the SUS foil surface of the conductive substrate.
  • the electrodeposition paint was irradiated with ultraviolet rays under an irradiation condition of 3jZcm 2 to be cured.
  • the coating thickness of the electrodeposition paint was 3.9 m.
  • the electrodeposition-coated stainless steel plate was polished with # 4000 polishing paper, and only the upper surface of the convex portion was exposed, and a conductive base material in which the concave portion was covered with an insulating film was produced.
  • the above operation was performed on the other 29 conductive substrates having a pattern composed of the above-described pair of regions A and B.
  • Each of the 30 conductive substrates whose recesses were covered with an insulating film was cut to 300 mm square, each of which was cut off unnecessary portions.
  • a substrate with a conductor layer pattern was prepared using the apparatus shown in FIG. This apparatus will be described using.
  • the hoop-like conductive substrate 110 obtained above is pre-treated tank 129, electrolytic bath 130, water washing tank 131, blackening treatment tank 132, water washing tank 133, anti-bacterial treatment by rolls 111-128. It is configured to circulate through the tank 134 and the rinsing tank 135.
  • the pretreatment tank 129 contains a 5% sulfuric acid aqueous solution
  • the electrolytic bath 130 contains copper sulfate (pentahydrate) 180 gZL, sulfuric acid lOOgZL, and Kaparaside HL (manufactured by Atotech Japan Co., Ltd., additive) 70 mlZL. It contains an electrolyte whose temperature is adjusted to 30 ° C.
  • the black soot treatment tank 132 contains a 4-fold diluted solution of Copal (Odek Co., Ltd.).
  • 0.5% benzotriazole aqueous solution is stored in the fender tank 134.
  • the electrolytic bath 130 is configured such that the hoop-like conductive substrate 110 is used as a cathode, phosphorous copper is used as an anode, and the current density is 30 AZdm 2 .
  • the metal layer deposited on the upper surface of the convex portion in region A was attached to a thickness of 3 m, and a conductor layer pattern was formed on the conductive substrate.
  • the conductive layer pattern on the conductive substrate was subjected to blackening treatment in the blackening treatment layer 132 in the same manner as in Example dl using copal liquid (manufactured by Odec Co., Ltd.). After washing with water in the rinsing tank 132, it was rust-treated in the rust-proofing tank 134, further washed with water in the rinsing tank 135, and then rolled into Example d3 using the adhesive film 136 used in Example d3. Under the same conditions, using the crimping roll 137, the conductor layer pattern was continuously transferred onto the adhesive film 136 to obtain the substrate 138 with the conductor layer pattern continuously. It was wound up into a roll.
  • the pattern formed by transferring the copper plating deposited on the upper surface of the convex part in area A to the adhesive film has a line width of 11 ⁇ m, a line pitch of 300 ⁇ m, and a conductor thickness of 3 ⁇ m.
  • the pattern formed by transferring the copper plating deposited on the top of the protrusions onto the adhesive film had a line width of 63 ⁇ m, a line pitch of 350 ⁇ m, and a conductor thickness of 2.8 ⁇ m.
  • the transferred line was observed with a microscope. As a result, the line was completely broken on the entire surface.
  • the substrate 138 with the conductor layer pattern was wound up in a roll shape, lamination was performed so that the release PET (S-32, manufactured by Teijin DuPont) was in contact with the surface of the conductor layer pattern. Even after the substrate with the conductor layer pattern is wound up to 50 meters, the peeling of the insulating film formed in the recess of the conductive substrate where the transferability of the copper plating deposited on the conductive substrate remains unchanged is also observed. It was n’t. Furthermore, there were almost no pinholes with no cracks in the line of the portion corresponding to region B (grounding portion) of the obtained substrate with a conductor layer pattern.
  • a protective film was continuously formed with a so-called roll-to-roll by irradiating UV light of / cm 2 to obtain a substrate with a conductor layer pattern having a protective tank.
  • a dry film photoresist (HY-920 (manufactured by Hitachi Chemical Co., Ltd., thickness 20 / zm)) was bonded to a stainless steel (SUS304) plate at a roll temperature of 100 ° C, a linear pressure of 0.3 MPa, and a line speed of lmZmin.
  • a negative pattern with an optically opaque frame (corresponding to the grounding part) with a line width of 30 m and a line pitch of 300 m at the outer periphery and a resist film on the stainless steel plate
  • the negative pattern was applied with UV light under the conditions of lOOmjZcm 2.
  • the resist film was developed with 1% sodium carbonate aqueous solution to form a 30 / zm wide groove on the SUS plate. Heat cure at 1 ° C for 1 hour I let you.
  • an electrolytic bath for electrolytic copper plating using the SUS plate formed with the above resist as a cathode [copper sulfate (pentahydrate) 100gZL, sulfuric acid 180gZL, Top Lucina H-380 (Okuno Pharmaceutical Co., Ltd., Additive) 2. Dipped in 5 ml ZL aqueous solution, 30 ° C], and immersed in the same electrolytic bath with phosphorous copper as anode. As 3AZdm 2 current density by applying a voltage to both electrodes, grooves of the line portion formed in the resist is plated to completely fill.
  • Example dl was used as an adhesive film.
  • the pressure-sensitive adhesive surface of the pressure-sensitive adhesive film was bonded to the surface of the SUS plate that had been subjected to copper plating using a roll laminator.
  • Lamination conditions were a roll temperature of 25 ° C, a pressure of 0.1 lMPa, and a line speed of lmZmin.
  • the adhesive film bonded to the conductive substrate was peeled off, the copper deposited in the resist groove of the SUS plate was transferred to the adhesive film, but the copper (grounding part) formed on the frame portion was Some parts remained on the conductive substrate without being transferred.
  • the copper skin film was cracked.
  • Example dl a conductor layer pattern obtained by attaching the entire surface of the portion corresponding to the region B of the conductive base material to the light opaque portion without patterning the portion corresponding to the region B in the negative film Except for the formation of the grounding part of the base material with an adhesive, all of the pinholes were generated in the copper of the grounding part as a result of producing a substrate with a conductive layer pattern that had been blackened in the same manner as Example dl. In addition, it was confirmed that cracks occurred over the entire surface of the grounding portion.
  • Figure 30 shows the results of evaluating the durability of the conductive substrate after repeating the 30th peeling and peeling.
  • Example 31 (hereinafter, also referred to as “Example el”. The same applies to Example 35) will be described. (Manufacture of conductive substrate having notched convex part with upper surface and concave part of geometric figure drawn by it)
  • Resist film (Photech H—Y920, 20 ⁇ m thick, manufactured by Hitachi Chemical Co., Ltd.) on both sides of 1 Ocm square stainless steel (SUS304, finished 3Z4H, thickness 100 / ⁇ ⁇ , manufactured by Nisshin Steel Co., Ltd.) Pasted together.
  • the shelling conditions were as follows: roll temperature 105 ° C, pressure 0.5 MPa, line speed lmZmin. Next, the line width of the light transmitting part is 40 m, the line pitch is 300 ⁇ m, and the bias angle is 45 ° (in the regular square, the line is arranged at an angle of 45 degrees with respect to the side of the regular square.
  • the negative film formed in a lattice shape was allowed to stand on one surface of a stainless steel plate to which a resist film was bonded.
  • ultraviolet rays were irradiated at 120 miZcm 2 from above and below the stainless steel plate on which the negative film was placed under a vacuum of 600 mmHg or less. further.
  • a resist mask having a line width of 40 m, a line pitch of 300 m, and a bias angle of 45 ° was formed on the SUS plate. Note that the surface opposite to the surface on which the pattern is formed is exposed to the whole surface, so that it is not developed and a resist film is formed on the entire surface.
  • the SUS plate was etched using a salty ferric aqueous solution (45 ° Be ', manufactured by Tsurumi Soda Co., Ltd.) heated to 40 ° C. Etching is carried out until the line width of the SUS plate (the width of the upper surface of the convex portion) reaches about 7 m, on the conductive substrate having the convex portion pattern having the upper surface and the concave portion of the geometrical drawing shape drawn thereby.
  • a conductive base material for intermediate (intermediate product) was prepared in which a resist mask remained. When the surface of the resist mask was observed with a microscope, the width of the line (the width of the upper surface of the convex portion) was 5 to 8 / ⁇ ⁇ . The surface opposite to the surface on which the pattern was formed was not etched because a resist film was formed on the entire surface.
  • the anode as a stainless steel (SUS 304) plate, and in a cationic electrodeposition paint (Insuleed3020, manufactured by Nippon Paint Co., Ltd.) under the condition of 15V10 seconds
  • electrodeposition was applied to a stainless steel plate etched into a lattice pattern. After washing with water and drying at 100 ° C for 10 minutes, the resist mask was peeled off with a 2% aqueous sodium hydroxide solution, and then the electrodeposition coating film was baked at 230 ° C for 40 minutes in a nitrogen stream. The oxygen concentration in the furnace is 1% Met.
  • the coating thickness of the electrodeposition paint was 2.
  • the conductive base material for plating in which the recesses thus obtained were covered with an insulating film had an insulating film selectively formed in the recesses as shown in FIG. 11-e.
  • Electrolytic copper plating was performed using the conductive substrate for plating with the adhesive film attached as a cathode.
  • Electrolytic copper plating bath (copper sulfate (pentahydrate) 230gZL, sulfuric acid 55gZL, cube light # 1AHH (Sugawara Eugilite, additive) 4mlZL aqueous solution, 25 ° C)
  • the porous substrate was immersed in the cathode and the phosphorous copper was immersed in the anode.
  • Voltage was applied to both electrodes, and the current density was set to 5AZdm 2 until the thickness of the metal deposited on the upper surface of the convex part of the conductive base material for plating reached 5 ⁇ m.
  • a primer HP-1; manufactured by Hitachi Chemical Co., Ltd. 1 m thick on the surface of a 100 m thick polyethylene terephthalate (PET) film (A-4100, manufactured by Toyobo Co., Ltd.) as an adhesive layer Acrylic polymer (HTR-280, manufactured by Nagase Chemtech) was sequentially applied to a thickness of 10 m to prepare an adhesive film for transfer.
  • PET polyethylene terephthalate
  • A-4100 manufactured by Toyobo Co., Ltd.
  • Acrylic polymer HTR-280, manufactured by Nagase Chemtech
  • the surface of the pressure-sensitive adhesive layer of the transfer pressure-sensitive adhesive film and the surface subjected to copper plating of the conductive substrate for adhesion were bonded together using a roll laminator.
  • Lamination conditions were a roll temperature of 25 ° C, a pressure of 0.1 MPa, and a line speed of lmZmin. Subsequently, when the adhesive film bonded to the plating transfer plate was peeled off, the copper deposited on the upper surface of the convex portion of the adhesive conductive substrate was transferred to the adhesive film.
  • a substrate with a conductor layer pattern having a line width of 11 to 18 / ⁇ ⁇ , a line pitch of 300 ⁇ m, and a conductor thickness of 5 ⁇ m and having a grid-like metal pattern force was obtained.
  • the insulating film was peeled off, and the part where the insulation film was peeled was strong.
  • UV Coated curable resin hyaloid 7983AA3 manufactured by Hitachi Chemical Co., Ltd.
  • polycarbonate film laminated with polycarbonate film (macro hole DE, Bayer Co., Ltd., 75 ⁇ m).
  • Conductor layer pattern in UV curable resin was coated with a conductor layer pattern having a protective film by irradiating UV light of UZc m 2 with an ultraviolet lamp to cure the UV curable resin.
  • the process of one transfer of copper plating was repeated 250 times in the same manner as described above, and as a result, the insulating film was peeled off with no change in the transfer performance of copper plating. Was also not observed. Further, the visible light transmittance of the obtained base material with a conductor layer pattern (with a protective film) was 80% or more.
  • the SUS plate was etched using a ferric chloride aqueous solution (45 ° Be ′, manufactured by Tsurumi Soda Co., Ltd.) heated to 40 ° C. Etching is performed until the width (line width) of the upper surface of the convex portion formed on the SUS plate reaches 30 m, and the conductive substrate having the convex portion pattern having the upper surface and the geometrical figure-shaped concave portion drawn thereby.
  • a ferric chloride aqueous solution 45 ° Be ′, manufactured by Tsurumi Soda Co., Ltd.
  • a conductive base material for adhesion (intermediate) in which the resist mask remained on the material was produced.
  • the width of the line was 29 to 32 ⁇ m as observed with a microscope over the resist mask.
  • Electroconductive coating (intermediate) was electrodeposited. After washing with water and drying at 100 ° C for 10 minutes, the resist mask was peeled off with a 2% aqueous sodium hydroxide solution, and then the electrodeposition coating film was baked under a nitrogen stream at 180 ° C for 30 minutes. The oxygen concentration in the furnace was 0.5%. The coating thickness of the electrodeposition paint was 3. l / z m.
  • the conductive substrate for plating in which the recesses thus obtained were covered with an insulating film was such that the insulating film was selectively formed in the recesses as shown in FIG. 11-e.
  • an adhesive film (Hitalex K-3940B, manufactured by Hitachi Chemical Co., Ltd.) was attached to the surface (back surface) where the uneven pattern of the conductive substrate for plating obtained above was not formed.
  • Electrolytic bath for electrolytic copper plating (copper sulfate (pentahydrate) 250gZL, sulfuric acid 70gZL, Cubright AR) using the conductive substrate for plating with this adhesive film as the cathode and phosphorous copper as the anode (Supplied by EBARA Eugeneite Co., Ltd., 4mlZL in water, 25 ° C), voltage is applied to both electrodes, the current density is 2 OAZdm 2 , and deposits on the top of the convex part of the conductive substrate for plating Until the thickness of the finished metal reached 3 ⁇ m.
  • Example el the same adhesive film for transfer as obtained in Example el was bonded using a roll laminator so that the adhesive layer strength was in contact with the copper-plated surface of the conductive substrate for bonding.
  • Lamination conditions were a roll temperature of 25 ° C, a pressure of 0.1 MPa, and a line speed of 1 mZmin.
  • the adhesive substrate film for plating was peeled off, the copper deposited on the upper surface of the convex portion of the conductive substrate for plating was transferred to the surface of the adhesive layer.
  • UV curable resin hyaloid 7983AA3 manufactured by Hitachi Chemical Co., Ltd.
  • PET film A-4100, manufactured by Toyobo Co., Ltd., 75 m
  • UV curable resin was laminated with UV curable resin to form a conductor layer pattern. It was embedded in UV-cured cocoon.
  • the PET film (A-4100, manufactured by Toyobo Co., Ltd., 75 m) was peeled off to form a protective film. A base material with a conductor layer pattern was obtained.
  • the process of one transfer with copper was repeated 250 times in the same manner as above, and as a result, the peeled part of the insulating film with no change in the transfer property of copper plating was observed. The power was not. Further, the visible light transmittance of the obtained base material with a conductor layer pattern (with a protective film) was 80% or more.
  • a resist film (Phototech H—Y920, 20 / zm thickness, manufactured by Hitachi Chemical Co., Ltd.) is wrapped around a stainless steel roll with a diameter of 150 mm and a width of 200 mm, and is applied with pressure using a hand roll at room temperature. Combined. Next, a negative film formed in a lattice shape with a line width of 35 m, a line pitch of 275 ⁇ m, and a bias angle of 45 ° was also wrapped around the resist film's upper force, under a parallel exposure machine. It was exposed while turning by hand.
  • a resist mask having a line width of 60 ⁇ m and a line pitch of 275 ⁇ m was formed on the surface of the stainless steel roll by developing with a 1% sodium carbonate aqueous solution. Because the part of the negative film wrapped around the curved surface was exposed with a parallel exposure machine, the resist mask line width was thicker than the negative film line width. Furthermore, the stainless steel roll was etched using a salted ferric iron solution heated to 40 ° C., and a lattice pattern (line width, ie, the width of the upper surface of the convex portion 20) was formed on the surface of the stainless steel roll. ⁇ 27 111, pitch 275 m, convex height 30 m). At this stage, the resist mask still remains on the upper surface of the convex portion.
  • the above-mentioned stainless steel roll is used as the cathode, the anode as the stainless steel (SUS304) plate, and in a cationic electrodeposition paint (Insuleed3020, manufactured by Nippon Paint Co., Ltd.) in a grid pattern at 15V10 seconds.
  • Electrodeposition coating was performed on an etched stainless steel roll. After washing with water and drying at 100 ° C for 10 minutes, the resist mask was peeled off with a 2% aqueous sodium hydroxide solution. Baking was performed under an argon atmosphere at 230 ° C. for 40 minutes. The oxygen concentration at that time was 2%.
  • the coating thickness of the electrodeposition paint was 2.
  • Electroplated copper was attached to the rotating body 103 with the apparatus configuration shown in FIG.
  • As the anode 102 an insoluble electrode made of titanium coated with platinum was used.
  • the stainless steel tool was used as the drum electrode for the cathode.
  • electrolytic bath 100 for electrolytic copper plating copper sulfate (pentahydrate) 70gZ L, sulfuric acid 180gZL, Kabaraside HL (manufactured by Atotech Japan Co., Ltd.) 20mlZ L of aqueous solution 25 ° C electrolyte 101 It is accommodated and sent between the anode 102 and the rotating body 103 by the pump 105 through the pipe 104 and filled. About half of the rotating body 103 is immersed in this electrolytic solution.
  • Example el A voltage was applied to both electrodes so that the current density was 7 AZdm 2, and plating was performed until the thickness of the metal deposited on the upper surface of the convex portion in the region A of the conductive substrate became 2 m. At this time.
  • the above-mentioned stainless steel roll was rotated at a speed of lmZ.
  • the pressure-sensitive adhesive film produced in Example el was rolled up in a roll shape to obtain a roll-shaped pressure-sensitive adhesive film.
  • the pressure-sensitive adhesive film 107 is unwound from the roll-shaped pressure-sensitive adhesive film, and the surface of the pressure-sensitive adhesive layer is applied to the metal (copper) 106 deposited on the upper surface of the convex portion of the rotating body (stainless steel roll) by the pressure-bonding roll 108 and the el.
  • the metal 106 was transferred to the pressure-sensitive adhesive layer of the pressure-sensitive adhesive film, and the substrate 109 with a conductor layer pattern was continuously produced.
  • the substrate 109 with the conductor layer pattern was wound up in a roll (not shown).
  • the conductor layer pattern had a line width of 22 to 31 m, a line pitch of 275 ⁇ m, and a conductor thickness of 2 ⁇ m. Even after 50 m of the adhesive film to which the copper plating had been transferred, the copper plating on the stainless steel roll and the insulating film peeling site where there was no change in the transferability were observed.
  • a portion of the obtained base material with a conductor layer pattern is cut off, and a UV curable resin (Alonics UV-3701, manufactured by Toagosei Co., Ltd.) is applied to the surface on which the conductor layer pattern is formed (Yoshimi Seiki Co., Ltd.).
  • a UV curable resin Alonics UV-3701, manufactured by Toagosei Co., Ltd.
  • PEBA made by company
  • PE T film Mylar D, manufactured by Teijin DuPont Film Co., Ltd., 75 m
  • a protective film was formed.
  • the resulting substrate with a conductor layer pattern (with a protective film) has a visible light transmittance of 80% or more.
  • Rolled SUS304 foil (Nisshin Steel Co., Ltd., finished 3Z4H, width 200mm, thickness 100 / zm), PET film (A-4100, manufactured by Toyobo), Byron UR-1350 (adhesive, Toyobo) Roll-type adhesive film made by applying (Co., Ltd.) to a dry coating thickness of 20 ⁇ m is pasted together using a roll laminator to produce a rolled SUS foil with PET film (unprocessed) did.
  • Lamination conditions were a roll temperature of 120 ° C, a preheat of 120 ° C for 30 seconds, a pressure of 3 MPa, and a line speed of 0.5 mZmin.
  • This process was repeated 10 times to expose 10 patterns on SUS304 foil. This is developed through a developing machine using 1% sodium carbonate, and the line width is 40 ⁇ m on the SUS foil. Then, a SUS304 foil with a PET film in which resist masks having a line pitch of 400 ⁇ m were arranged at regular intervals was formed. Next, this SUS foil with PET film is passed through an etching line, and a lattice-like pattern (line width, that is, the width of the upper surface of the convex portion is 9 to 14 ⁇ m, the pitch is 400 ⁇ m, the height of the convex portion is 20 A conductive base material with ⁇ m) arranged at regular intervals was produced.
  • line width that is, the width of the upper surface of the convex portion is 9 to 14 ⁇ m, the pitch is 400 ⁇ m, the height of the convex portion is 20 A conductive base material with ⁇ m
  • the etched SUS foil with PET film was cut into patterns, and each SUS foil with PET film was made into a cathode, and the anode was made into a stainless steel (SUS304) plate.
  • 5EZ5W manufactured by Shimizu Co., Ltd.
  • electrodeposition was applied to a stainless steel plate etched in a lattice pattern under the condition of 20V 60 seconds. After washing with water and drying at 100 ° C for 15 minutes, the resist mask is peeled off with 2% sodium hydroxide, and the electrodeposition coating film is baked at 200 ° C for 30 minutes in a nitrogen atmosphere. A conductive base material for plating with a PET film covered with a coating was obtained. The oxygen concentration at that time was 0.5%.
  • the coating thickness of the electrodeposition paint was: In the same manner, a total of 10 conductive substrates for stencil attachment with PET film in which the recesses were covered with an insulating layer were manufactured.
  • the PET film with the 10 recesses prepared above covered with an insulating layer is attached on the adhesive surface of an adhesive film (SGA, manufactured by Hitachi Chemical Co., Ltd.) with a width of 200 mm and a length of 10 m.
  • the PET film surface of the conductive substrate for bonding is bonded without gaps, and the 10m long recess is covered with an insulating layer.
  • the long conductive substrate for plating was passed through an apparatus as shown in FIG. 25 to obtain a hoop-like conductive substrate.
  • the joint was bonded from the back side of the joint using a commercially available gum tape, and the front side was bonded with a copper tape (CHO-FOIL, 50 mm width, manufactured by Taiyo Wire Mesh Co., Ltd.).
  • a substrate with a conductor layer pattern was produced according to Example d7 using the apparatus shown in FIG.
  • the obtained conductor layer pattern of the substrate with the conductor layer pattern has a line width of 11 to 16 m and a line width of 11 to 16 m.
  • the pitch was 400 m and the thickness was 1 m.
  • the surface of the obtained substrate with the conductor layer pattern on which the conductor layer pattern was formed was applied to the UV curable resin (Aronix UV-3701, Toagosei Co., Ltd.). Co., Ltd.) is coated with a thickness of 15 m, laminated with PET film (Mylar D, Teijin DuPont Films Co., Ltd., 75 m), and then irradiated with UZcm 2 ultraviolet rays using an ultraviolet lamp.
  • a protective film was continuously formed by roll-to-roll to obtain a substrate with a conductor layer pattern having a protective tank.
  • the substrate with a conductor layer pattern (with a protective film) having this protective tank had a visible light transmittance of 80% or more.
  • a resist film (Photech H—Y920, 20 ⁇ m thickness, manufactured by Hitachi Chemical Co., Ltd.) was bonded to a 10 cm square stainless steel (SUS304, finished 3Z4H, thickness 100 m, manufactured by Nisshin Steel Co., Ltd.) plate.
  • the bonding conditions were a roll temperature of 105 ° C, a pressure of 0.5 MPa, and a line speed of lmZmin.
  • a negative film formed in a lattice pattern with a line width of 40 m, a line pitch of 300 ⁇ m, and a bias angle force of 5 ° was allowed to stand on a stainless steel plate bonded with a resist film. .
  • ultraviolet rays were irradiated at 120 miZcm 2 from above the negative film under a vacuum of 600 mm Hg or less. further.
  • a resist mask having a line width of 40 m, a line pitch of 300 ⁇ m, and a bias angle of 45 ° was formed on the SUS plate.
  • 40 ° C The SUS plate was etched using an aqueous ferric chloride solution (45 ° Be ', manufactured by Tsurumi Soda Co., Ltd.). Etching was performed until the line width of the SUS plate reached 7 m.
  • the resist mask formed on the SUS plate is peeled off, and the pattern on the lattice pattern (line width, that is, the width of the upper surface of the convex portion is 5 to 8). / ⁇ ⁇ , pitch 300 m, convex height 15 m) was formed, and a conductive substrate having a convex pattern having an upper surface and a concave portion having a geometric shape drawn thereby was produced.
  • the anode as a stainless steel (SUS304) plate, and in the force thio-based electrodeposition paint (Insuleed 3020, manufactured by Nippon Paint Co., Ltd.), the above conductive group
  • the material was electrodeposited. After washing with water and drying at 110 ° C for 10 minutes, it was baked under a nitrogen stream at 230 ° C for 40 minutes. The oxygen concentration in the furnace was 0.1%.
  • the coating thickness of the electrodeposition paint was 2.6 m. Furthermore, the electrodeposited conductive base material is polished with an abrasive powder (TypeO. 1R, manufactured by Baikalox) and a polishing cloth (Microcloth, manufactured by BUEHLER) to expose the SUS surface, A conductive substrate having an insulating film was produced.
  • the thickness of the electrodeposition coating film in the concave portion of the electroconductive substrate for adhesion was 2.6 m.
  • the thickness of the electrodeposition coating film at the edge of the upper surface of the convex portion was 0.2 m (measured in the plane direction of the upper surface).
  • the line width after polishing that is, the width of the upper surface of the convex portion was 5 to 15 m. In this conductive base material for plating, the concave portion was covered with an insulating film.
  • an electroplating bath for electrolytic copper plating (copper sulfate (pentahydrate) 250gZL, sulfuric acid 50gZL, Cubelite # 1A (supplied by Ebara Eugleite Co., Ltd., additive) ) It was immersed in a 4 ml / L aqueous solution (25 ° C), and immersed in the same electrolytic bath using phosphorous copper as an anode.
  • 7AZdm 2 current density by applying a voltage to both electrodes, the thickness of the metal deposited on the protrusion upper surface was plated to a 5 mu m.
  • the pressure-sensitive adhesive surface of the same pressure-sensitive adhesive film as prepared in Example el and the surface of the conductive substrate for plating that had been subjected to copper plating were bonded using a roll laminator.
  • Lamination conditions were a roll temperature of 25 ° C, a pressure of 0.1 lMPa, and a line speed of lmZmin. Then When the pressure-sensitive adhesive film adhered to the sticky transfer plate was peeled off, the copper deposited on the upper surface of the convex portion of the sticky transfer plate was transferred to the pressure-sensitive adhesive surface.
  • a metal pattern having a line width (width of the upper surface of the protrusion) of 11 to 30 ⁇ m, a line pitch of 300 ⁇ m, and a conductor thickness of 5 ⁇ m was transferred onto the adhesive film.
  • the plating transfer plate prepared by polishing had a variation in line width, and some lines were wobbled.
  • the conductor layer pattern thus obtained also had a line width variation.
  • the obtained substrate with the conductor layer pattern had a visible light transmittance of 80% or more.
  • Conductive base material for adhesion in which a resist mask remains on a conductive base material having a pattern of convex portions having an upper surface and a geometrical figure-shaped concave portion drawn thereby in the same manner as in Example el ) was produced.
  • the obtained conductive substrate had a line width of 14 to 19 m, a line pitch of 350 ⁇ m, and a height of the convex part of 20 ⁇ m.
  • the anode as a stainless steel (SUS 304) plate, in a cationic electrodeposition paint (Insuleed 3020, Nippon Paint Co., Ltd.) The material was electrodeposited. After washing with water and drying at 110 ° C.
  • the resist mask was peeled off with a 2% aqueous sodium hydroxide solution. Next, it was baked under a nitrogen stream at 230 ° C for 40 minutes. The thickness of the electrodeposition paint was 20 ⁇ m. Since the resist mask width was 40 ⁇ m, the electrodeposition paint was electrodeposited beyond the width of the resist mask in the calculation. The resin flowed and flattened during baking. Almost no protrusion was found above the upper surface of the convex pattern. In this conductive base material for plating, the concave portion was covered with an insulating film. As shown in FIG. 10, the obtained plate for plating transfer had a shape in which the concave portions of the convex pattern were completely filled with the insulating layer.
  • an electrolytic bath for electrolytic copper plating using the above plate for plate transfer as a cathode (copper sulfate (pentahydrate) 250gZL, 50gZL sulfuric acid, Cubelite AR (manufactured by Ebara Eugene Corporation, additive) ) It was immersed in an aqueous solution of 4 ml ZL, 30 ° C), and immersed in the same electrolytic bath with phosphorous copper as an anode. Voltage was applied to both poles to obtain a current density of 25AZdm 2 until the thickness of the metal deposited on the upper surface of the protrusion reached 5 ⁇ m.
  • the line width and pitch were measured based on micrographs.
  • the line thickness was measured by cutting a portion of the obtained conductor layer pattern, casting it with resin, and observing the cross section under a microscope.
  • the copper pattern transferred to the adhesive film was observed with a magnifying glass, and the case where there was no transfer failure was judged good and the case where a transfer failure occurred was judged as bad.
  • the presence / absence of transfer failure before peeling of the electrodeposition paint was described.
  • the presence or absence of pattern abnormality was confirmed with the naked eye using a magnifier.
  • the durability of the plating transfer plate was confirmed by directly observing the plating transfer plate after repeated fitting and peeling with a magnifier.
  • Example 36 (hereinafter, also referred to as “Example fl”. The same applies to Example 42) will be described. (Manufacture of conductive substrate having notched convex part with upper surface and concave part of geometric figure drawn by it)
  • a resist film (Photech H-Y920, manufactured by Hitachi Chemical Co., Ltd.) was bonded to a 10 cm square stainless steel (SUS304, finished 3Z4H, thickness 100 m, manufactured by Nisshin Steel Co., Ltd.).
  • the shelling conditions were as follows: roll temperature 105 ° C, pressure 0.5 MPa, line speed lm Zmin. Next, the line width of the light transmission part is 30 ⁇ m, the line pitch is 300 ⁇ m, A negative film formed in a lattice shape with a bias angle force of S45 ° was allowed to stand on a stainless steel plate to which a resist film was bonded.
  • ultraviolet rays were irradiated at 120 mjZcm 2 from above the negative film under a vacuum of 600 mmHg or less. further.
  • a resist mask with a line width of 30 m, a line pitch of 300 ⁇ m, and a bias angle of 45 ° was formed on the SUS plate.
  • the SUS plate was etched using a ferric chloride aqueous solution (45 ° Be ', manufactured by Tsurumi Soda Co., Ltd.) heated to 40 ° C. Etching was performed until the line width of the SUS plate reached 20 / zm.
  • the resist film formed on the SUS plate is peeled off to form a lattice-like pattern (line width, that is, the width of the upper surface of the convex portion 20 m, line pitch).
  • line width that is, the width of the upper surface of the convex portion 20 m, line pitch.
  • the distance between the top surfaces of the protrusions is 300 m
  • the height of the protrusions is 15 m
  • the cross-sectional shape of the protrusions is a curved surface (similar to Fig. 3-d).
  • a conductive base material having a concave portion having a geometric diagram shape to be drawn was produced.
  • the above conductive base material is used as a cathode, and the anode is used as a titanium plate.
  • a cationic electrodeposition paint (Insuleed 3020, manufactured by Nippon Paint Co., Ltd.), it is etched into a lattice pattern under the condition of 15 V for 10 seconds.
  • a stainless steel plate was electrodeposited. After washing with water and drying at 100 ° C for 10 minutes, baking was performed at 190 ° C for 25 minutes. The coating thickness of the electrodeposition paint was 2.
  • the electrodeposited stainless steel plate is polished with polishing powder (alumina solution B0. 05 ⁇ m, manufactured by Refinetech Co., Ltd.) and polishing cloth (CONSUMABLES manufactured by BUEHLER).
  • the thickness of the electrodeposition coating film on the upper surface edge of the convex portion of this conductive substrate was 2.5 111, and the thickness of the electrodeposition coating film on the concave portion was 2.
  • This conductive substrate was covered with an insulating film except for the upper surface of the convex portion.
  • Electrolytic copper plating bath (copper sulfate (pentahydrate) 80gZL, sulfuric acid 180gZL, Cubelite VF1 (supplied by Sakakibara Eulite Co., Ltd., additive) 20mlZL aqueous solution, 25 ° C) etched into a lattice pattern
  • the stainless steel plate was immersed, and immersed in the electrolytic copper plating bath using phosphorous copper as an anode. Both poles A voltage was applied to the substrate, and the current density was set to 25 AZdm 2 until the thickness of the metal deposited on the upper surface of the convex portion of the conductive substrate reached 5 ⁇ m.
  • the conductive layer pattern on the conductive substrate obtained above was treated in the order of alkaline degreasing, water washing, pickling and water washing, then nickel sulfate 75gZL, nickel sulfate 45gZL, zinc sulfate 38gZL, sodium thiocyanate Use a dip solution containing 15 g ZL 50. C, 2.
  • the thickness of the blackening treatment layer under the conditions of 5AZdm 2 makes a black nickel Me with so as to 0. 6 m.
  • the plate was washed with pure water, immersed in a 20 mL ZL aqueous solution of water-soluble antifungal agent Evafin G800 (manufactured by Ebara Eugleite Co., Ltd.) at 40 ° C for 30 seconds, and then dried at 50 ° C. Unevenness of color of the black treatment layer and powder falling off did not occur.
  • Evafin G800 manufactured by Ebara Eugleite Co., Ltd.
  • a primer HP-1; manufactured by Hitachi Chemical Co., Ltd. 1 m thick on the surface of a 100 m thick polyethylene terephthalate (PET) film (A-4100, manufactured by Toyobo Co., Ltd.) as an adhesive layer Acrylic polymer (HTR-280, manufactured by Nagase ChemteX Corporation) was sequentially applied to a thickness of 10 ⁇ m to prepare an adhesive film.
  • PET polyethylene terephthalate
  • A-4100 manufactured by Toyobo Co., Ltd.
  • Acrylic polymer HTR-280, manufactured by Nagase ChemteX Corporation
  • the pressure-sensitive adhesive surface of the pressure-sensitive adhesive film and the copper-plated surface of the conductive substrate were bonded together using a roll laminator.
  • Lamination conditions were a roll temperature of 25 ° C, a pressure of 0. IMP a, and a line speed of lmZmin.
  • copper deposited on the upper surface of the convex portion of the conductive substrate was transferred to the adhesive film. From this, a substrate with a conductor layer pattern consisting of a metal pattern having a line width of 28 ⁇ m, a line pitch of 300 ⁇ m, and a conductor thickness of 5 ⁇ m was obtained.
  • the portion where the insulating film was peeled off was strong.
  • UV curable resin hyaloid 7983AA3 manufactured by Hitachi Chemical Co., Ltd. Laminated with polycarbonate film (Macro Hall DE, Bayer Co., Ltd., 75 ⁇ m) and the conductor layer pattern was buried in UV curable resin. Thereafter, the UV curable resin was cured by irradiating UZcm 2 ultraviolet rays using an ultraviolet lamp to obtain a substrate with a conductor layer pattern having a protective film.
  • a grid pattern (line width 7 m, pitch 300 m) was formed on the SUS plate in the same manner as in Example fl except that etching was performed until the line width of the convex portion formed on the SUS plate was 7 ⁇ m.
  • the height of the convex part is 30 m, and the cross-sectional shape of the convex part is a curved surface (similar to Fig. 3-d)), and the convex part of the convex part having the upper surface and the concave part of the geometric figure drawn by it are formed.
  • a conductive base material was obtained.
  • the above conductive base material is used under the condition of 10 V 60 seconds in an on-type electrodeposition paint (AMG-5EZ5W, manufactured by Shimizu Co., Ltd.) using the above conductive base material as the anode and the cathode as the titanium plate.
  • the material was electrodeposited. After washing with water and drying at 100 ° C for 10 minutes, baking was performed at 180 ° C for 30 minutes. The coating thickness of the electrodeposition paint was 2.6 m.
  • the electrodeposited conductive base material is polished with polishing powder (TypeO. 1R, manufactured by Baikalox) and polishing cloth (CONSUMABLES, manufactured by BUEHLER) to expose the SUS surface, A conductive substrate having an insulating film was produced.
  • the thickness of the electrodeposition coating film on the upper surface edge of the convex portion of this conductive substrate was 0.2 ⁇ , and the thickness of the electrodeposition coating film on the concave portion was 2.
  • This conductive base material was covered with an insulating film except for the upper surface of the convex portion.
  • This conductive base material was covered with an insulating film except for the upper surface of the convex portion.
  • the sample was immersed in an aqueous solution (30 ° C), and immersed in an electrolytic copper plating bath using phosphorous copper as an anode. Voltage was applied to both poles, the current density was lOAZdm 2 , and the metal deposited on the top surface of the protrusions was stuck to 3 ⁇ m.
  • the conductive layer pattern on the conductive substrate obtained above was treated in the order of alkaline degreasing, water washing, pickling and water washing, then nickel sulfate 62gZL, nickel sulfate ammonium 40gZL, zinc sulfate 23gZL, sodium thiocyanate Use a dip solution containing 20 g ZL 50. C, 2.
  • the thickness of the blackening treatment layer under the conditions of 5AZdm 2 makes a black nickel Me with so as to 0. 6 m.
  • the plate was washed with pure water, immersed in a 20 mL ZL aqueous solution of water-soluble antifungal agent Evafin G800 (manufactured by Ebara Eugleite Co., Ltd.) at 40 ° C for 30 seconds, and then dried at 50 ° C. Unevenness of color of the black treatment layer and powder falling off did not occur.
  • Evafin G800 manufactured by Ebara Eugleite Co., Ltd.
  • Nylon UR— 1350 (made by Toyobo Co., Ltd., polyester resin) 100 parts by weight Coronate L (made by Nippon Polyurethane Co., Ltd., isocyanate compound) 3 parts by weight
  • the adhesive surface of the adhesive film obtained above and the surface of the conductive substrate that had been subjected to copper plating and blackening treatment were bonded together using a roll laminator.
  • Lamination conditions were a roll temperature of 100 ° C, a pressure of 0.1 lMPa, and a line speed of 0.3 mZmin. Since lamination was performed at a temperature exceeding the glass transition point (Tg) of the adhesive, tackiness was exhibited on the adhesive surface.
  • Tg glass transition point
  • UV curing type resin hyaloid 7983AA3 manufactured by Hitachi Chemical Co., Ltd.
  • PET film A-4100, manufactured by Toyobo Co., Ltd., 75 m
  • UV curable resin to UV cure the conductor layer pattern. It was buried in the mold.
  • the PET film (A-4100, manufactured by Toyobo Co., Ltd., 75 m) is peeled off to form a protective film.
  • the cathode as the titanium plate, and etching into a lattice pattern in a cationic electrodeposition paint (UC-2000, manufactured by Shimizu Corporation) under the conditions of 30 V 60 seconds.
  • the coated stainless steel plate was electrodeposited. After washing with water and drying at 100 ° C. for 10 minutes, it was cured under irradiation conditions of 3jZcm 2.
  • the coating thickness of the electrodeposition paint was 3.9 m.
  • the electrodeposited stainless steel plate was polished with # 4000 abrasive paper, and the thickness of the electrodeposition coating on the top of the convex part of this conductive substrate was 0.5 m.
  • the film thickness was 3.9 m o
  • This conductive substrate was covered with an insulating film except for the upper surface of the convex portion.
  • an electrolytic bath for electrolytic copper plating using a conductive substrate having an insulating film as a cathode copper sulfate (pentahydrate) 180 gZL, sulfuric acid 100 gZL, Kavalaside HL (manufactured by Atotech Japan Co., Ltd., additive) 70 ml ZL aqueous solution, 30 ° C.) and immersed in the same electrolytic bath using phosphorous copper as an anode. Voltage was applied to both electrodes, the current density was set to 30 AZdm 2 , and the metal deposited on the top surface of the protrusion was stuck to 1 ⁇ m. [0314] (Blackening treatment-Anti-bacterial treatment)
  • the conductive layer pattern on the conductive substrate obtained above was treated in the order of alkaline degreasing, water washing, pickling and water washing, and then nickel sulfate 100gZL, nickel sulfate ammonium 30gZL, zinc sulfate 15g / L, thiocyan Use a moisturizing solution containing 10 g / L of sodium acid 50. C, 2.
  • the thickness of the blackening treatment layer under the conditions of 5AZdm 2 makes a black nickel Me with so as to 0. 6 m.
  • the plate was washed with pure water, immersed in a 20 mL ZL aqueous solution of water-soluble antifungal agent Evafin G800 (manufactured by Ebara Eugleite Co., Ltd.) at 40 ° C for 30 seconds, and then dried at 50 ° C. Unevenness of color of the black treatment layer and powder falling off did not occur.
  • Evafin G800 manufactured by Ebara Eugleite Co., Ltd.
  • the following resin composition 2 was applied to the easy attachment surface of a 100 / zm thick PET film (A-4100, manufactured by Toyobo Co., Ltd.) so that the dry coating thickness was 15 m. Was made.
  • the pressure-sensitive adhesive surface of the pressure-sensitive adhesive film obtained above was bonded to the conductive base material using a copper laminator and a blackened surface using a roll laminator.
  • Lamination conditions were a roll temperature of 25 ° C, a pressure of 0.1 MPa, and a line speed of lmZmin.
  • copper (blackened) deposited on the upper surface of the convex portion of the conductive substrate was transferred to the adhesive surface of the pressure-sensitive adhesive film.
  • a metal pattern having a line width of 17 m, a line pitch of 300 m, and a conductor thickness of 1 ⁇ m and further blackened is selectively transferred onto the adhesive film, and the conductor layer of the present invention is thus transferred.
  • a substrate with a pattern was manufactured.
  • the pressure-sensitive adhesive surface (surface having a conductor layer pattern) of the substrate with a conductor layer pattern obtained above was laminated on and bonded to glass having a thickness of 2 mm.
  • Lamination conditions were a temperature of 25 ° C, a pressure of 0.5 MPa, and a line speed of 0.5 mZmin. Thick by roll lamination
  • the 1 m conductor layer pattern was embedded in the adhesive, and a highly transparent electromagnetic wave shield was obtained.
  • Example f2 Preparation of adhesive film, except that the dry coating thickness of the resin composition 1 was 10 m, a substrate with a conductor layer pattern was produced in the same manner as in Example f2. It was.
  • the conductive layer of the base material with the conductive layer pattern is subjected to blackening treatment under the same conditions as the blackening treatment in Example f2 and the surface is blackened on the surface.
  • the material was manufactured. Color unevenness of the black treatment layer and powder omission did not occur.
  • An electromagnetic wave shielding member was obtained in the same manner as in Example f 3 (Preparation of electromagnetic wave shielding body), using the substrate with a conductive layer pattern having a conductive layer pattern whose surface was blackened.
  • the surface of the conductor layer was oxidized by immersing the substrate with the conductor layer pattern in the following blackening treatment solution heated to 80 ° C for 3 minutes.
  • the same base material with a conductor layer pattern was produced except that a base material having a conductor layer pattern that had been blackened was manufactured.
  • Example 41 Using the base material having the conductor layer pattern with the black surface treated as obtained above, a base material with a conductor layer pattern having a protective film was obtained in the same manner as in Example fl. As a result, black powder powder is generated in the vicinity of the conductor layer pattern. As a result, the dropped light intensity as an electromagnetic wave shielding plate is reduced to about 10% as L * as shown in FIG. Color irregularities appear on the appearance. As a result, the electromagnetic wave shielding performance was evaluated by the Advantest method. As a result, it was 48 dB, and the electromagnetic wave shielding performance was not significantly reduced.
  • Example 41 Example 41
  • Example 1 blackening treatment Ichigo
  • the substrate with the conductor layer pattern was immersed in Meltex Co., Ltd. Ebonol C special aqueous solution heated to 80 ° C for 3 minutes, so that the surface of the conductor layer was A similar base material with a conductor layer pattern was produced except that a base material having a conductor layer pattern oxidized and blackened was manufactured.
  • a base material having a conductor layer pattern whose surface was blackened a base material with a conductor layer pattern having a protective film was obtained in the same manner as in Example fl.
  • black powder powder is generated in the vicinity of the conductor layer pattern.
  • the dropped light intensity as an electromagnetic wave shielding plate is impaired by about 10% as shown in FIG. Color unevenness occurred.
  • it was 47 dB it was 47 dB, and the electromagnetic wave shielding property was not significantly lowered.
  • the surface of the conductor layer was oxidized by immersing the substrate with the conductor layer pattern in an aqueous solution of Copper Black No. 65, Isolate Institute of Science Ltd. at room temperature for 1 minute.
  • the same base material with a conductor layer pattern was produced except that a base material having a conductor layer pattern that had been blackened was manufactured.
  • a base material with a conductor layer pattern having a protective film was obtained in the same manner as in Example fl.
  • Example f6 black powder powdered off in the vicinity of the conductor layer pattern, and as a result, the transmitted light intensity as an electromagnetic wave shielding plate was reduced by about 10% to L * as shown in FIG. In addition, uneven color occurred in the appearance of the conductor layer.
  • the electromagnetic wave shielding property by the Advantest method it was 46 dB, and the electromagnetic wave shielding property was not deteriorated.
  • Embodiment 1 of the present invention is a method in which a metal is formed by plating on a conductive substrate having a pattern of convex portions having an upper surface and a concave portion having a geometric diagram shape drawn thereby. It is a manufacturing method of the base material with a conductor layer pattern characterized by including the process of forming a layer, and the process of transferring the metal layer formed in the upper surface of the convex part of the said conductive base material to another base material.
  • Embodiment 2 of the present invention is a method for producing a base material with a conductor layer pattern according to Embodiment 1 in which a conductive base material having an inclination angle of a side surface of a convex portion having an upper surface of 30 ° or more is used. .
  • the conductive substrate is arranged on the outside of the region A in which the area ratio of the recesses is 50% or more and 97% or less of the entire recess, and the area ratio of the recesses is the entire area ratio.
  • Production of a substrate with a conductor layer pattern according to Embodiment 1 or 2, which has region B that is 0% or less than 97%, and the area ratio of the recesses in region A is larger than the area ratio of the recesses in region B Is the method.
  • Embodiment 4 of the present invention is a method for manufacturing a substrate with a conductor layer pattern of Embodiment 3 in which the area ratio of the recesses in region B is 40% or more and less than 97% of the whole.
  • the upper surface of the convex portion of region A and the upper surface of the convex portion of region B are continuous at least at one force point. It is a manufacturing method.
  • Embodiment 6 of the present invention in the step of transferring the metal deposited on the upper surface of the convex portion of the conductive base material to another base material, the conductive material out of the metal precipitated on the conductive base material. It is a manufacturing method of the base material with any one conductor layer pattern of Embodiment 1-5 which selectively transcribe
  • the surface roughness of the convex portion has a ten-point average roughness Rz of 2 or less.
  • the conductive base material according to any one of the embodiments 1 to 6 is used. This is a method for manufacturing a substrate.
  • Embodiment 8 of the present invention is a method for producing a substrate with a conductor layer pattern according to Embodiment 6 or 7, wherein a conductive substrate having a concave surface roughness of 3 or more in terms of 10-point average roughness Rz is used. It is.
  • Embodiment 9 of the present invention is any one of Embodiments 1 to 8, wherein the conductive base material is such that a recess is covered with an insulating layer so as to be a thin film at least in the vicinity of the upper surface end of the protrusion. This is a method for producing a substrate with a conductor layer pattern.
  • Embodiment 10 of the present invention is a method for manufacturing a substrate with a conductor layer pattern of Embodiment 9, wherein the thickness of the insulating layer is 1Z2 or less of the height of the convex portion.
  • Embodiment 11 of the present invention is the method for producing a substrate with a conductor layer pattern according to Embodiment 9 or 10, wherein the conductive substrate has a recess coated with a thin film insulating layer.
  • Embodiment 12 of the present invention is the production of a substrate with a conductor layer pattern according to Embodiment 11, wherein the thickness of the thin film insulating layer at the end of the upper surface of the convex portion of the conductive substrate is lO / zm or less. Is the method.
  • Embodiment 13 of the present invention is a method for producing a substrate with a conductor layer pattern according to Embodiment 11 or 12, wherein the thin film insulating layer covering the recesses of the conductive substrate is formed by electrodeposition coating. is there.
  • Embodiment 14 of the present invention further includes a step of blackening the surface of the metal deposited before or after transfer of the formed metal layer.
  • the fifteenth embodiment of the present invention is performed after the manufacturing method of any one of the first to thirteenth embodiments is performed.
  • Embodiment 16 of the present invention is the production of a substrate with a conductor layer pattern according to Embodiment 14 or 15, wherein the blackening treatment is performed by depositing a black alloy metal containing a Group VIII element on the surface of the formed metal layer. Is the method.
  • Embodiment 17 of the present invention is such that the black wrinkle treatment is black nickel plating, nickel sulfate 60 to: LOOgZL, nickel sulfate ammonium 30 to 50g ZL, zinc sulfate 20 to 40g 17 is a process for producing a substrate with a conductor layer pattern according to Embodiment 16, using a plating solution containing ZL and sodium thiocyanide in an amount of 10 to 20 g ZL.
  • Embodiment 18 of the present invention is a method for producing a substrate with a conductor layer pattern according to any one of Embodiments 14 to 17, wherein the thickness of the blackened layer is 0.5 ⁇ m to 3 ⁇ m It is.
  • Embodiment 19 of the present invention is Embodiments 14 to 18 in which the blackened layer has no powder fallout in portions other than the conductive layer pattern that adheres well to the metal deposited on the conductive substrate.
  • Embodiment 20 of the present invention is Embodiment 14 having an antifouling treatment step after the blackening treatment.
  • Embodiment 21 of the present invention is any one of Embodiments 1 to 20, in which another substrate has adhesiveness.
  • Embodiment 22 of the present invention is the method for producing a substrate with a conductor layer pattern of Embodiment 21, wherein another substrate has an adhesive layer or a pressure-sensitive adhesive layer on the surface.
  • Embodiment 23 of the present invention any one of Embodiments 1 to 22, wherein the other substrate has an average transmittance of 900% or less in the near infrared region of LlOOnm of 15% or less 1
  • This is a method for producing a substrate with two conductor layer patterns.
  • the height of the convex pattern of the conductive substrate is: L m to 10
  • Embodiment 1 in which 0 m, width is 1 ⁇ m to 40 ⁇ m, and the distance between the upper surfaces of the convex portions is 100 ⁇ m to 1000 ⁇ m. Manufacturing method of substrate with one conductor layer pattern It is.
  • the metal thickness on the upper surface of the convex portion of the conductive substrate is 0.1-20 / A method for producing a substrate with a single conductor layer pattern according to any one of Embodiments 1 to 24, in which metal is deposited so as to be ⁇ ⁇ .
  • Embodiment 26 of the present invention includes at least one metal having a volume resistivity of 20 ⁇ / cm or less at a metal force of 20 ° C used for plating. It is a manufacturing method of a base material with two conductor layer patterns.

Abstract

A method for manufacturing a base material (1) provided with a conductor layer pattern includes a process of depositing a metal by plating a conductive base material (2), which has a pattern of a protruding section having an upper plane and a recessed section having a geometrical configuration (3) provided by the pattern; and a process of transferring the metal deposited on the upper plane of the protruding section of the conductive base material to other base material. In the process of transferring the metal deposited on the upper plane of the protruding section of the conductive base material to other base material, only the metal deposited on the upper plane of the protruding section of the conductive base material is selectively transferred to other base material from the metal deposited on the conductive base material.

Description

導体層パターン付き基材の製造法、導体層パターン付き基材及びそれを 用いた電磁波遮蔽部材  Manufacturing method of base material with conductor layer pattern, base material with conductor layer pattern and electromagnetic wave shielding member using the same
技術分野  Technical field
[0001] 本発明は、導体層パターン付き基材の製造法、導体層パターン付き基材及びそれ を用いた電磁波遮蔽部材に関し、特に導電性に優れかつ光透過性を有するようにパ ターユングされた導体層パターン付き基材とめつき用導電性基材の製造法、導体層 ノターン付き基材とめつき用導電性基材並びにそれを用いた電磁波遮蔽部材に関 する。  The present invention relates to a method for producing a substrate with a conductor layer pattern, a substrate with a conductor layer pattern, and an electromagnetic wave shielding member using the same, and is particularly patterned so as to have excellent conductivity and light transmittance. The present invention relates to a method for producing a substrate with a conductor layer pattern and a conductive substrate for adhesion, a substrate with a conductor layer pattern, a conductive substrate for adhesion, and an electromagnetic wave shielding member using the same.
背景技術  Background art
[0002] 公共施設、ホール、病院、学校、企業ビル、住宅等の壁面、ガラス窓、榭脂パネル 、電磁波を発生するディスプレイの表示面等を電磁波遮蔽する方法は、従来種々提 案されている。例えば、被遮蔽面上に電磁波遮蔽塗料を全面塗布する方法、被遮蔽 面上に金属箔を貼り合わせる方法、金属めつきされた繊維メッシュを榭脂板に熱ラミ ネートしてなる電磁波遮蔽シートを、被遮蔽面に貼り合わせる方法、導電性繊維をメ ッシュ状に編んだものを被遮蔽面に貼り合わせる方法等が一般的に行われている。  [0002] Various methods have been proposed for shielding electromagnetic waves on the walls of public facilities, halls, hospitals, schools, corporate buildings, houses, etc., glass windows, resin panels, and display surfaces of displays that generate electromagnetic waves. . For example, there is a method of applying an electromagnetic shielding paint on the shielded surface, a method of attaching a metal foil on the shielded surface, and an electromagnetic shielding sheet obtained by thermally laminating a metal mesh to a resin plate. In general, a method of bonding to a shielded surface, a method of bonding conductive fibers knitted in a mesh shape to a shielded surface, and the like are generally performed.
[0003] これらのうち、透明ガラス面、透明榭脂パネル面、 CRTや PDPなどのディスプレイ の表示面等を電磁波遮蔽する場合にお!、ては、電磁波遮蔽用部材がなるベく薄 、 ことが要求されるととも〖こ、光透過性 (透明性)と、これに相反する電磁波遮蔽性とを ノ ランスよく両立させることができる電磁波遮蔽用部材が要求されている。  [0003] Of these, when shielding transparent electromagnetic waves, transparent resin panel surfaces, display surfaces of displays such as CRT and PDP, etc.! In addition, the electromagnetic shielding member is required to be extremely thin, and light transmittance (transparency) and electromagnetic shielding properties contrary to this can be achieved with good tolerance. There is a demand for electromagnetic shielding members.
[0004] このような電磁波遮蔽用部材としては、透明性基材上に金属または金属酸ィ匕物を 蒸着して薄膜導電層を形成したもの (特許文献 1、特許文献 2参照)、金属めつきされ た良導電性繊維メッシュそのものや導電性が付与された繊維メッシュを透明基材に 埋め込んだ電磁波遮蔽材 (特許文献 3、特許文献 4参照)、金属粉末等を含む導電 性榭脂を透明基板上に直接印刷した電磁波遮蔽材料 (特許文献 5、特許文献 6参照 )、平面基材上に無電解めつき触媒塗料をパターン印刷した後に無電解めつきで導 電層を形成したもの (特許文献 7、特許文献 8参照)、基材上に貼り合わせた金属層 をフォトリソグラフ法でメッシュ状にエッチングして電磁波シールド層形成したもの(特 許文献 9参照)などが提案されて!、る。 As such an electromagnetic wave shielding member, a thin film conductive layer is formed by vapor-depositing a metal or metal oxide on a transparent substrate (see Patent Document 1 and Patent Document 2), Electromagnetic shielding material (see Patent Document 3 and Patent Document 4) embedded with a transparent conductive base material itself or a conductive fiber mesh with a conductive property attached, transparent conductive resin containing metal powder, etc. Electromagnetic wave shielding material printed directly on the substrate (see Patent Document 5 and Patent Document 6), electroless plating catalyst paint pattern printed on a flat substrate, and conductive layer formed by electroless plating (patent Reference 7 and Patent Reference 8), metal layer bonded on substrate An electromagnetic wave shielding layer is formed by etching the material into a mesh by the photolithographic method (see Patent Document 9).
[0005] しかしながら、透明性基材上に金属または金属酸化物を蒸着して導電層を形成す る方法は、透明性が達成できる程度の膜厚 (数 100 A〜2、 000 A)にすると導電層 の表面抵抗が大きくなりすぎるため、電磁波遮蔽性が不十分であった。  [0005] However, the method of forming a conductive layer by vapor-depositing a metal or metal oxide on a transparent substrate has a film thickness that can achieve transparency (several hundred A to 2,000 A). Since the surface resistance of the conductive layer becomes too large, the electromagnetic wave shielding property was insufficient.
[0006] 金属めつきされた繊維メッシュからなる電磁波遮蔽材ゃ導電性が付与された繊維メ ッシュを透明基材に埋め込んだ電磁波遮蔽材では、電磁波遮蔽効果は十分大き!/ヽ 力 電磁波漏れのな!ヽように導電性繊維を規則配置させるために必要な繊維径が太 すぎるため、繊維が見えてしま ヽ(以後視認性と ヽぅ)ディスプレイ用途には適したも のではなかった。また、導電性が付与された繊維メッシュを透明基材に埋め込んだ電 磁波遮蔽材においては、その製造工程の熱ラミネート時に、繊維メッシュと榭脂板と の間で意図しない歪みが生じて透視画像がゆがんだり、熱ラミネートの際にめつき層 にクラックが発生して電磁波遮蔽性能が低下したりするなどの問題が生じていた。ま た、その製法上、導電性を付与した繊維の太さは 50 m程度が限界であり、細径ィ匕 が難しぐより透視性を向上させたり、電磁波遮蔽シート全体の厚さを薄くしたりするこ とが困難であるという問題があった。  [0006] An electromagnetic wave shielding material composed of a metal mesh-attached fiber mesh or an electromagnetic wave shielding material in which a fiber mesh with conductivity is embedded in a transparent base material has a sufficiently large electromagnetic wave shielding effect! The fiber diameter necessary to arrange conductive fibers regularly is too large, so that the fibers can be seen (hereinafter referred to as “Visibility”). It was not suitable for display applications. In addition, in an electromagnetic wave shielding material in which a conductive fiber mesh is embedded in a transparent substrate, unintentional distortion occurs between the fiber mesh and the resin board during thermal lamination in the manufacturing process, and the fluoroscopic image. Problems such as warping and cracking of the cling layer during thermal lamination, resulting in reduced electromagnetic shielding performance. In addition, due to its manufacturing method, the thickness of the fibers to which conductivity is imparted is limited to about 50 m, so that the transparency is improved and the overall thickness of the electromagnetic wave shielding sheet is reduced compared to the case where the fine diameter is difficult. There was a problem that it was difficult to do.
[0007] また、金属粉末等を含む導電性榭脂を透明基板上に直接印刷した電磁波遮蔽材 料の場合も同様に、印刷精度の限界力もライン幅は、 100 m前後となり視認性が発 現するため適したものではな力つた。  [0007] Similarly, in the case of an electromagnetic shielding material in which conductive resin containing metal powder or the like is directly printed on a transparent substrate, the limit force of printing accuracy is about 100 m, and visibility is realized. It wasn't suitable to do.
[0008] 前記した特許文献 7には、厚さが 2mm程度のポリカーボネート等の透明基板上に 透明榭脂層を形成し、その上に無電解めつき法により銅のメッシュパターンを形成し て遮蔽部材を作製する方法が記載されるが、無電解めつきの密着力を確保するため に、透明基板の表面を粗ィ匕する必要がある。この粗ィ匕手段として、一般にクロム酸や 過マンガン酸などの毒性の高い酸化剤を使用しなければならず、この方法は、 ABS 以外の榭脂では、満足できる粗ィ匕を行うことは困難となる。この方法により、電磁波遮 蔽性と透明性は達成できたとしても、透明基板の厚さを小さくすることは困難で、薄膜 ィ匕 (例えば、フィルム化)の方法としては適していな力つた。さらに透明基板が厚いと、 ディスプレイに密着させることができないため、そこ力も電磁波の漏洩が大きくなる。ま た製造面においては、遮蔽材料を巻物等にすることができないため嵩高くなることや 自動化に適して 、な 、ために製造コストがかさむと!、う欠点もあった。 [0008] In Patent Document 7 described above, a transparent resin layer is formed on a transparent substrate such as polycarbonate having a thickness of about 2 mm, and a copper mesh pattern is formed on the transparent resin layer by an electroless plating method to shield it. Although a method for producing a member is described, it is necessary to roughen the surface of the transparent substrate in order to ensure adhesion with electroless adhesion. In general, a highly toxic oxidizing agent such as chromic acid or permanganic acid must be used as a roughening means. This method is difficult to achieve a satisfactory roughening with a non-ABS fat. It becomes. Even if the electromagnetic wave shielding property and transparency can be achieved by this method, it is difficult to reduce the thickness of the transparent substrate, which is not suitable as a thin film method (for example, film formation). Furthermore, if the transparent substrate is thick, it cannot be brought into close contact with the display, and this force increases the leakage of electromagnetic waves. Ma On the other hand, in terms of manufacturing, the shielding material cannot be made into a scroll or the like, which makes it bulky or suitable for automation, which increases manufacturing costs!
[0009] また、無電解めつきで導電層を形成する方法が、例えば、前記特許文献 8に記載さ れているが、形成された導電層の線幅に太りや滲み等があり、特に、透視性が要求さ れる用途に使用される電磁波遮蔽用部材においては、外観が劣るという問題があつ た。また、無電解めつきはコストがかさむという問題もあった。さらに、電磁波遮蔽用部 材の大きさはめつきラインの大きさに依存するので、幅 2m程度の大きな寸法力 なる 電磁波遮蔽シートを製造する場合には、めっきラインに供された電磁波遮蔽シート 2 〜3枚を繋ぎ合わせる必要があり、そのため、繋ぎ目力 電磁波がもれて遮蔽を十分 に行うことができな 、おそれもあった。  [0009] Further, a method for forming a conductive layer by electroless plating is described in, for example, Patent Document 8, but the formed conductive layer has line widths, bleeding, etc. Electromagnetic wave shielding members used for applications requiring transparency have a problem of poor appearance. In addition, electroless plating has a problem of increasing costs. Furthermore, since the size of the electromagnetic wave shielding material depends on the size of the fitting line, when producing an electromagnetic wave shielding sheet having a large dimensional force of about 2 m in width, the electromagnetic wave shielding sheet 2 to the plating line 2 to It is necessary to connect the three sheets. Therefore, there is a concern that the joint force may be leaked and the shielding cannot be performed sufficiently.
[0010] さらに、特許文献 9に記載されるようなフォトリソグラフ法を利用して製造された電磁 波遮蔽用部材は、優れた電磁波遮蔽性と透明性をも付与することができるが、それを 製造する方法として、電磁波遮蔽部材毎に、エッチング工程を含むフォトリソグラフ法 を適用する必要があるため、全体として工程が多くなり、コスト面に問題が残る。  [0010] Further, an electromagnetic wave shielding member manufactured by using a photolithographic method as described in Patent Document 9 can impart excellent electromagnetic wave shielding properties and transparency. As a manufacturing method, since it is necessary to apply a photolithographic method including an etching step for each electromagnetic wave shielding member, the number of steps increases as a whole, and there remains a problem in cost.
[0011] また、メッシュ状に金属電着が可能な電着基板上に金属電解液を使用して金属を 電着し、接着剤を介して電磁波遮蔽基板に接着転写して電磁波遮蔽板を作製する 方法が記載されている (特許文献 10参照)。上記の電着基板は、金属板等の導電性 基板の上に、電着を阻害する絶縁性膜でメッシュバタ—ンを形成し、この結果、メッシ ュ状に金属電着が可能な電着部を露出させるようにして作製される。電着部は溝上 になっている。この絶縁膜として、フォトレジストを用いた場合、絶縁膜の耐久性に劣 り数回〜数十回しか反復使用が可能ではなぐ電磁波遮蔽板の量産性に劣る。そこ で、耐久性のよい絶縁膜として、二酸ィ匕珪素の膜が示されるが、これの絶縁膜は、具 体例としてはスパッタリングで形成されるように、その作製において、やはり、量産性 に劣る。特許文献 10には、絶縁層支持体上に凸状の導電性メッシュ層を形成して上 記の電着基板とする方法が記載されるが、この方法によれば、実際は、導電性メッシ ュの側面にも金属が電着され、このことがメッシュ状電着金属層の接着転写に対する 抵抗となり、剥離ができなかったり、剥離できたとしてもメッシュパターンに折れが発生 し、電磁波シールド性が低下するといつた不良が起こることを、本発明者らは確認し た。 [0011] Also, a metal electrolyte is electrodeposited on an electrodeposition substrate capable of metal electrodeposition in a mesh shape, and an electromagnetic wave shielding plate is produced by adhesive transfer onto the electromagnetic wave shielding substrate via an adhesive. This method is described (see Patent Document 10). In the above electrodeposition substrate, a mesh pattern is formed on an electrically conductive substrate such as a metal plate with an insulating film that inhibits electrodeposition. As a result, electrodeposition that enables metal electrodeposition in a mesh shape is possible. It is produced so that the part is exposed. The electrodeposition is on the groove. When a photoresist is used as the insulating film, the durability of the insulating film is inferior, and the electromagnetic wave shielding plate can be repeatedly used only several times to several tens of times. Therefore, a silicon dioxide silicon film is shown as a highly durable insulating film. However, this insulating film is formed by sputtering as a specific example, and in its production, it is still mass-productive. Inferior. Patent Document 10 describes a method in which a convex conductive mesh layer is formed on an insulating layer support to obtain the above-mentioned electrodeposition substrate. However, according to this method, the conductive mesh is actually used. Metal is also electrodeposited on the sides of the metal, which becomes resistance to adhesion transfer of the mesh electrodeposited metal layer. Even if it cannot be peeled off, the mesh pattern will be broken and the electromagnetic shielding properties will be reduced. The inventors have confirmed that a failure will occur. It was.
[0012] さらに、ディスプレイ力も放射される電磁波を効率よく遮蔽するためには、電磁波遮 蔽部材をアース接続する必要がある。このアース接続の方法としては、アースされた ディスプレイの筐体に電磁波遮蔽部材の導体層を接触させる方法が一般的であり、 筐体部との接続抵抗を低減させるため透光性遮蔽部の外側にベタの導体層を額縁 状に形成する方式が記載されて ヽる(特許文献 11)。  [0012] Further, in order to efficiently shield the electromagnetic wave emitted from the display force, it is necessary to ground the electromagnetic wave shielding member. As a method for this ground connection, a method of bringing a conductor layer of an electromagnetic wave shielding member into contact with a grounded display housing is generally used. In order to reduce connection resistance with the housing portion, the outer side of the light-shielding shielding portion is used. Describes a method of forming a solid conductor layer in a frame shape (Patent Document 11).
[0013] また、 PDPなどのディスプレイ表示面等を電磁波遮蔽する目的で使用する電磁波 シールド性透明フィルムの製造には、プラズマ発光体及び外光の反射を抑えてディ スプレイ画像のコントラストを向上させることを目的に、導体層を黒化処理する工程が 含まれる。その方法の一つとして特許文献 12に示されている圧延銅箔または電解銅 箔を酸化処理し、その後導体層を形成する方法などが挙げられる。 [0013] In addition, in the production of an electromagnetic wave shielding transparent film used for the purpose of shielding an electromagnetic wave on a display surface of a PDP or the like, the contrast of a display image is improved by suppressing the reflection of a plasma illuminant and external light. For this purpose, a process of blackening the conductor layer is included. As one of the methods, there is a method of oxidizing a rolled copper foil or electrolytic copper foil shown in Patent Document 12 and then forming a conductor layer.
特許文献 1:特開平 1― 278800号公報  Patent Document 1: JP-A-1-278800
特許文献 2 :特開平 5— 323101号公報  Patent Document 2: JP-A-5-323101
特許文献 3:特開平 5— 327274号公報  Patent Document 3: Japanese Patent Laid-Open No. 5-327274
特許文献 4:特開平 5— 269912号公報  Patent Document 4: JP-A-5-269912
特許文献 5:特開昭 62— 57297号公報  Patent Document 5: Japanese Patent Laid-Open No. 62-57297
特許文献 6:特開平 2— 52499号公報  Patent Document 6: JP-A-2-52499
特許文献 7:特開平 5 - 283889号公報  Patent Document 7: JP-A-5-283889
特許文献 8:特開平 11 170420号公報  Patent Document 8: Japanese Patent Laid-Open No. 11 170420
特許文献 9 :特開平 10—41682号公報  Patent Document 9: JP-A-10-41682
特許文献 10:特開平 11 26980号公報  Patent Document 10: Japanese Patent Laid-Open No. 11 26980
特許文献 11 :特開平 10— 29370号公報  Patent Document 11: JP-A-10-29370
特許文献 12 :特開 2000— 294981号公報  Patent Document 12: JP 2000-294981 A
非特許文献 1:「現場技術者のための実用めつき」、 日本プレーティング協会編(198 6年稹書店発行)  Non-Patent Document 1: “Practical Medication for On-Site Engineers” edited by Japan Plating Association (published by Sakai Shoten in 1986)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0014] 前記特許文献 10に記載の転写法は、前記のコスト面の問題を解決するものとして 期待できる。電着基板は、金属板等の導電性基板の上に、電着を阻害する絶縁性 膜でメッシュバタ—ンを形成し、この結果、メッシュ状に金属電着が可能な電着部を 露出させるようにして作製されている。この電着基板を用いた場合、数回〜数十回程 度の繰り返し使用は可能である力 数百回〜数千回繰り返し使用が出来ず量産レべ ルにはならないという問題がある。これは、電着基板上のメッシュパターンを形成する 絶縁膜が、接着転写により剥離応力を受け、少々の繰り返し使用で導電性基材から 絶縁膜が剥離してしまうためである。 [0014] The transfer method described in Patent Document 10 is intended to solve the cost problem. I can expect. The electrodeposition substrate is formed on a conductive substrate such as a metal plate with a mesh pattern made of an insulating film that inhibits electrodeposition. As a result, the electrodeposited portion that can be electrodeposited in a mesh shape is exposed. It is made to make it. When this electrodeposition substrate is used, it can be used repeatedly several times to several tens of times. There is a problem that it cannot be used repeatedly several hundred times to several thousand times and cannot be mass-produced. This is because the insulating film forming the mesh pattern on the electrodeposited substrate is subjected to peeling stress by adhesion transfer, and the insulating film is peeled off from the conductive base material after a few repeated uses.
また、特許文献 10には、絶縁層支持体上に凸状の導電性メッシュ層を形成した電 着基板を用いる方法が記載されている力 この方法によれば、実際は、導電性メッシ ュの側面にも金属が電着され、このことがメッシュ状電着金属層の接着転写に対する 抵抗となり、剥離ができなかったり、剥離できたとしてもメッシュパターンに折れが発生 し、電磁波シールド性が低下するといつた不良が起こる。さらに、生産効率を上昇さ せるために、金属電着する際の電流密度を増大させると、絶縁層支持体上に形成さ れた凸状の導電性メッシュ層の発熱により、絶縁層支持体が熱溶融もしくは発火する 等の問題が発生し、特に、大面積で印加する電流値が大きいほど上記課題が顕著 になることを本発明者らは確認した。  Further, Patent Document 10 describes a method using an electrodeposited substrate in which a convex conductive mesh layer is formed on an insulating layer support. According to this method, actually, the side surface of a conductive mesh is used. When the metal is electrodeposited, this causes resistance to the adhesion transfer of the mesh electrodeposited metal layer, and when it cannot be peeled off or even if it can be peeled off, the mesh pattern will be broken and the electromagnetic shielding properties will be reduced. A bad thing happens. Furthermore, in order to increase the production efficiency, if the current density during metal electrodeposition is increased, the insulating layer support is caused to generate heat by the convex conductive mesh layer formed on the insulating layer support. The present inventors have confirmed that problems such as thermal melting or ignition occur, and in particular, the above problem becomes more prominent as the current value applied in a large area increases.
さらに、特許文献 10に記載されている電磁波遮蔽部材の作製方法で、上記額縁部 を有する電磁波遮蔽部材を作製しょうとする場合、電着基板のメッシュパターンの外 側周縁部(額縁部に対応)に、電着部を露出させておくことが必要である。このとき、 電気めつきの工程において、電着基板のメッシュ部での金属の析出速度が速ぐ逆 に、外側周縁部での金属の析出速度が遅くなることから、メッシュ部の導体層の厚み が十分であっても、額縁部の厚みが不十分でピンホールが多発し、結果的に額縁部 の抵抗が高くなつたり、逆に、額縁部を十分な厚みとした場合には、メッシュ部のライ ン幅が太くなるという問題点があることを確認した。  Further, when an electromagnetic wave shielding member having the above frame portion is to be produced by the method for producing an electromagnetic wave shielding member described in Patent Document 10, the outer peripheral edge portion (corresponding to the frame portion) of the mesh pattern of the electrodeposition substrate In addition, it is necessary to expose the electrodeposition portion. At this time, in the electroplating process, the deposition rate of the metal at the mesh portion of the electrodeposited substrate is fast, whereas the deposition rate of the metal at the outer peripheral edge is slow, so that the thickness of the conductor layer in the mesh portion is reduced. Even if it is sufficient, the thickness of the frame part is insufficient and pinholes occur frequently.As a result, the resistance of the frame part becomes high, or conversely, if the frame part has a sufficient thickness, It was confirmed that there was a problem that the line width became thick.
これは、電気めつきの場合、導電体の突出した先端部に電気力線が集中する性質 があることから、内側の微細なメッシュに電気力線が集中するために起こる現象であ る。例えば、めっき浴内に邪魔板などを設置して、メッシュ部と外側周縁部の電流密 度を均一になるよう調整して、外側周縁部とメッシュ部の厚みを均一に形成すること は可能であるが、導電性基材にカゝかる電流密度が、邪魔板がない場合に比較すると 低減するため、生産スピードが著しく低下する。 This is a phenomenon that occurs because the electric lines of force concentrate on the inner fine mesh because electric lines of force concentrate on the protruding tip of the conductor. For example, a baffle plate or the like is installed in the plating bath, and the current density of the mesh part and the outer peripheral part is adjusted to be uniform, so that the outer peripheral part and the mesh part have a uniform thickness. Although it is possible, the current density generated in the conductive substrate is reduced as compared with the case where there is no baffle plate, so that the production speed is significantly reduced.
[0016] さらに、特許文献 10に記載されて ヽる電磁波遮蔽板の作製方法で、上記額縁部を 形成した場合、接着転写した後の額縁部が割れやすいという問題点があることを確 認した。めっきした金属層を接着転写する際に、転写する金属層に曲げ応力がかか るため、特にベタの金属層である額縁部層は、曲げの応力に追随できず、非常にク ラックが入りやすい。さらに、転写の効率を上げるために、転写層として粘着層を用い た場合、室温でかつ低い転写圧力で転写することが可能であるが、粘着層の変形量 が大きいため、額縁部にクラックが入りやすいという問題があることを、本発明者らが 確認した。  [0016] Furthermore, it was confirmed that when the frame portion was formed by the method for producing an electromagnetic wave shielding plate described in Patent Document 10, there was a problem that the frame portion after adhesion transfer was easily broken. . When adhesively transferring a plated metal layer, bending stress is applied to the metal layer to be transferred, so the frame layer, which is a solid metal layer in particular, cannot follow bending stress and is extremely cracked. Cheap. Furthermore, when an adhesive layer is used as the transfer layer to increase the transfer efficiency, it is possible to transfer at room temperature and at a low transfer pressure. However, since the amount of deformation of the adhesive layer is large, there is a crack in the frame portion. The present inventors have confirmed that there is a problem that it is easy to enter.
[0017] また、前記特許文献 12に示されている黒ィ匕処理方法では導体層を 80°C以上の高 温で処理する必要がある。また、銅と銅の上に形成された酸化皮膜の密着性が低い ため、黒化処理中もしくは処理後に酸化皮膜が銅から剥離する、いわゆる粉落ち現 象が見られる。粉落ち現象の結果、開口部に酸化皮膜が付着し、電磁波遮蔽板の透 光性が低下する課題がある。さらに酸化処理の場合、銅を酸化させて形成するため、 導体厚が小さくなり、表面抵抗が高くなることでシールド性が低下することを本発明者 らは確認した。  [0017] Further, in the black soot treatment method disclosed in Patent Document 12, it is necessary to treat the conductor layer at a high temperature of 80 ° C or higher. In addition, since the adhesion between copper and the oxide film formed on the copper is low, a so-called powder falling phenomenon is observed in which the oxide film peels off from the copper during or after the blackening process. As a result of the powder falling phenomenon, an oxide film adheres to the opening, and there is a problem that the translucency of the electromagnetic wave shielding plate is lowered. Furthermore, in the case of oxidation treatment, the present inventors have confirmed that since the copper is oxidized and formed, the conductor thickness is reduced and the surface resistance is increased, so that the shielding property is lowered.
[0018] 本発明は、導電性に優れかつ光透過性を有するようにパターユングされた導体層 パターンパターン付き基材を生産性よく製造する方法、その方法による製造される導 体層パターン付き基材及びそれを用いた電磁波遮蔽部材を提供する。  [0018] The present invention relates to a method for producing a substrate with a conductor layer pattern pattern that is patterned so as to have excellent electrical conductivity and light transmittance, and a substrate with a conductor layer pattern produced by the method. A material and an electromagnetic wave shielding member using the same are provided.
[0019] そして、本発明は、上記の問題点を鑑み、転写法において、電着基板が繰り返しの 使用に耐え、量産性に優れた方法を提供すること、又、転写法において、電着析出 した金属に対し、粉落ちが少なぐ効率的な黒化処理を行う方法を提供することを目 的とする。さらに、本発明は転写法において電着析出した金属が転写に際し電着基 板から容易に剥離する方法をも提供するものである。  [0019] In view of the above problems, the present invention provides a method in which the electrodeposition substrate can withstand repeated use and is excellent in mass productivity in the transfer method. The purpose is to provide an efficient blackening process with less powder fall-off on the finished metal. Furthermore, the present invention also provides a method in which the metal electrodeposited and deposited in the transfer method can be easily peeled off from the electrodeposition substrate during the transfer.
課題を解決するための手段  Means for solving the problem
[0020] 本発明は、上面を有する凸部のパターン及びそれによつて描かれる幾何学図形状 の凹部を有する導電性基材上にめっきにより金属層を形成する工程及び上記導電 性基材の凸部の上面に形成した金属層を別の基材に転写する工程を含む導体層パ ターン付き基材の製造方法である。 [0020] The present invention includes a step of forming a metal layer by plating on a conductive substrate having a pattern of convex portions having an upper surface and a concave portion having a geometrical shape drawn by the pattern, and the conductive layer. It is a manufacturing method of the base material with a conductor layer pattern including the process of transcribe | transferring the metal layer formed in the upper surface of the convex part of a conductive base material to another base material.
[0021] そして、本発明は、上面を有する凸部であって凸部の側面の傾斜角が 30° 以上で ある凸部のパターン及びそれによつて描かれる幾何学図形状の凹部を有する導電性 基材上にめっきにより金属層を形成する工程及び上記導電性基材の凸部の上面に 形成した金属層を別の基材に転写する工程を含む導体層パターン付き基材の製造 方法である。  [0021] Then, the present invention provides a conductive pattern having a convex pattern having a top surface and a convex pattern in which the side surface of the convex part has an inclination angle of 30 ° or more and a geometrical figure-shaped concave portion drawn thereby. A method for producing a substrate with a conductor layer pattern, comprising a step of forming a metal layer on a substrate by plating and a step of transferring the metal layer formed on the upper surface of the convex portion of the conductive substrate to another substrate. .
[0022] 更に、本発明は、上面を有する凸部のパターン及びそれによつて描かれる幾何学 図形状の凹部を有し、凹部の面積比率が全体の 50%以上 97%以下である領域 A、 並びに、その外側に配され、上面を有する凸部のパターン及びそれによつて描かれ る幾何学図形状の凹部を有し、凹部の面積比率が全体の 0%又は 97%未満である 領域 Bを有し、領域 Aにおける凹部の面積比率が領域 Bにおける凹部の面積比率よ りも大き 、導電性基材を用いて、前記の導体層パターン付き基材の製造方法である 。本発明は、また、この製造方法において、上記の導電性基材のうち領域 Bにおける 凹部の面積比率が全体の 0%又は 97%未満であるもの使用する方法である。  [0022] Further, the present invention provides a region A having a pattern of convex portions having an upper surface and a concave portion having a geometrical shape drawn by the pattern, and the area ratio of the concave portions is 50% or more and 97% or less of the whole. In addition, a region B having a convex pattern having an upper surface and a concave portion of the geometrical shape drawn by the convex pattern, the area ratio of the concave portion being less than 0% or less than 97%, is arranged on the outer side. And the area ratio of the recesses in the region A is larger than the area ratio of the recesses in the region B. The present invention is also a method of using the conductive substrate in which the area ratio of the recesses in the region B is less than 0% or less than 97% in the manufacturing method.
[0023] 更に、本発明は、前記の導体層パターン付き基材の製造方法において、前記導電 性基材の凸部の上面に形成した金属層を別の基材に転写する工程において、導電 性基材上に形成した金属層のうち、導電性基材の凸部の上面に形成した金属層の みを選択的に別の基材に転写する方法である。  [0023] Furthermore, the present invention provides a method for producing a substrate with a conductor layer pattern, wherein in the step of transferring the metal layer formed on the upper surface of the convex portion of the conductive substrate to another substrate, the conductive layer Of the metal layers formed on the base material, only the metal layer formed on the upper surface of the convex portion of the conductive base material is selectively transferred to another base material.
[0024] 更に、本発明は、前記の導体層パターン付き基材の製造方法において、前記導電 性基材が、凸部の表面粗さが十点平均粗さ Rzで 2以下である導電性基材を使用す る方法である。  [0024] Furthermore, the present invention provides the above-described method for producing a substrate with a conductor layer pattern, wherein the conductive substrate is a conductive group having a surface roughness of convex portions of 2 or less in terms of a ten-point average roughness Rz. This is a method of using wood.
[0025] 更に、本発明は、前記の導体層パターン付き基材の製造方法において、前記導電 性基材が、凹部の表面粗さが十点平均粗さ Rzで 3以上である導電性基材を使用す る方法である。  [0025] Further, the present invention provides the above-mentioned method for producing a substrate with a conductor layer pattern, wherein the conductive substrate has a concave surface roughness of 3 or more in terms of a ten-point average roughness Rz of 3 or more. It is a method of using.
[0026] また、本発明 bは、上面を有する凸部のパターン及びそれによつて描かれる幾何学 図形状の凹部を有し、少なくとも上記凸部の上面端部付近では薄膜になるように凹 部を絶縁層で被覆した導電性基材にめつきにより金属層を形成する工程及び上記 導電性基材の凸部の上面に形成した金属層を別の基材に転写する工程を含む導体 層パターン付き基材の製造方法である。 [0026] Further, the present invention b has a pattern of a convex part having an upper surface and a concave part having a geometrical shape drawn by the pattern, and the concave part is formed so as to be a thin film at least near the upper surface end of the convex part. Forming a metal layer by plating on a conductive substrate coated with an insulating layer and the above It is a manufacturing method of the base material with a conductor layer pattern including the process of transferring the metal layer formed in the upper surface of the convex part of an electroconductive base material to another base material.
[0027] さらに、本発明は、前記の導体層パターン付き基材の製造方法において、さらに、 導電性基材の凸部上面に析出させた金属の転写前又は転写後に形成した金属層 の表面を黒化処理する工程を含む方法である。  [0027] Furthermore, the present invention provides the method for producing a substrate with a conductor layer pattern, wherein the surface of the metal layer formed before or after the transfer of the metal deposited on the upper surface of the convex portion of the conductive substrate is further provided. It is a method including the process of blackening.
[0028] そして、本発明は、上面を有する凸部のパターン及びそれによつて描かれる幾何学 図形状の凹部を有する導電性基材にめつきにより金属層を形成する工程、上記導電 性基材の凸部上面に形成した金属層を別の基材に転写する工程、及び形成した金 属層の転写前又は転写後に形成した金属層の表面に VIII族元素を含む黒色合金 金属を表面に析出させて黒化処理する工程を含む導体層パターン付き基材の製造 方法である。  [0028] Then, the present invention provides a step of forming a metal layer by fitting on a conductive substrate having a pattern of convex portions having an upper surface and a geometrically shaped concave portion drawn thereby, the conductive substrate The process of transferring the metal layer formed on the upper surface of the convex part to another substrate, and depositing a black alloy metal containing group VIII elements on the surface of the metal layer formed before or after transferring the formed metal layer It is a manufacturing method of the base material with a conductor layer pattern including the process of making it blacken.
[0029] 更に、本発明は、上面を有する凸部のパターン及びそれによつて描かれる幾何学 図形状の凹部を有し、凹部の面積比率が全体の 50%以上 97%以下である領域 A、 並びに、その外側に配され、上面を有する凸部のパターン及びそれによつて描かれ る幾何学図形状の凹部を有し、凹部の面積比率が全体の 40%以上 97%未満であ る領域 Bを有し、領域 Aにおける凹部の面積比率が領域 Bにおける凹部の面積比率 よりも大きぐし力も、上記の二つの領域における凹部が少なくとも上記凸部の上面の 端付近では薄膜になるように絶縁層で被覆されてなる導電性基材である。  [0029] Further, the present invention provides a region A having a pattern of convex portions having an upper surface and a concave portion having a geometrical figure drawn by the pattern, and the area ratio of the concave portions is 50% or more and 97% or less of the whole. In addition, a region B which has a convex pattern having an upper surface and a concave portion having a geometrical shape drawn by the convex pattern arranged on the outer side thereof, and the area ratio of the concave portion is 40% or more and less than 97% of the whole. And the area ratio of the recesses in the region A is larger than the area ratio of the recesses in the region B. The insulating layer is such that the recesses in the two regions become a thin film at least near the end of the upper surface of the protrusions. It is an electroconductive base material coat | covered with.
[0030] また、本発明は、導電性基材の表面に光硬化性榭脂又は熱硬化性榭脂の硬化榭 脂により幾何学図形状のノターンを形成する工程、導電性基材をエッチングすること により上面を有する凸部のパターン及びそれによつて描かれる幾何学図形状の凹部 を形成する工程、少なくとも上記凸部の上面の端付近では薄膜になるように凹部に 絶縁層を形成する工程、上記光硬化性榭脂又は熱硬化性榭脂の硬化榭脂を剥離 する工程を含むめっき用導電性基材の製造法である。  [0030] The present invention also includes a step of forming a geometric pattern-shaped pattern on the surface of the conductive base material using a photocurable or thermosetting resin, and etching the conductive base material. A step of forming a pattern of convex portions having an upper surface and a concave portion having a geometric diagram shape drawn thereby, a step of forming an insulating layer in the concave portion so as to be a thin film at least near the end of the upper surface of the convex portion, This is a method for producing a conductive substrate for plating, which comprises a step of removing the cured resin of the photocurable resin or thermosetting resin.
発明の効果  The invention's effect
[0031] 本発明において、導体層パターン付き基材は、パターン状に形成した金属層を基 材に転写させて得ることができるため、生産効率がよぐそのパターン状に形成した 金属層には、高い光透過性 (特に、金属パターンの線幅が小さく高精細)で、良導電 性 (高シールド性)を兼ね備えさせることができので、導体層パターン付き基材の導体 層パターンも同様に高い光透過性と良導電性を有するようにできる。特に、導電性基 材の凸部の上面に形成した金属層を選択的に転写することにより、この効果を確実 にすることができる。 [0031] In the present invention, the base material with a conductor layer pattern can be obtained by transferring a metal layer formed in a pattern to a base material. High light transmission (especially metal pattern line width is small and high definition) and good conductivity Therefore, the conductor layer pattern of the substrate with the conductor layer pattern can also have high light transmittance and good conductivity. In particular, this effect can be ensured by selectively transferring the metal layer formed on the upper surface of the convex portion of the conductive substrate.
[0032] また、基材の表面が接着性を有することにより、転写を容易に確実に行うことができ る。  [0032] Further, since the surface of the substrate has adhesiveness, the transfer can be easily and reliably performed.
また、金属パターンが転写される基材に、あらかじめ、近赤外線遮蔽性を付与する ことにより導体層パターン付き基材に、近赤外線遮蔽性を付与することも可能である 。なお、基材を透明基材とすることができる。  It is also possible to impart near infrared shielding properties to a substrate with a conductor layer pattern by previously imparting near infrared shielding properties to the substrate to which the metal pattern is transferred. The base material can be a transparent base material.
[0033] 本発明において、導電性基材の素材を金属とすることにより、導電性基材の凸状パ ターンを長寿命にでき、また、繰り返し使用に関しては、数千回〜数万回の量産レべ ルに十分対応可能である。さらに、導電性基材の接触によってもめっき液を汚染する ことがない。 [0033] In the present invention, by making the conductive base material a metal, the convex pattern of the conductive base material can have a long life, and for repeated use, it can be several thousand to tens of thousands of times. It is fully compatible with mass production levels. Furthermore, the plating solution is not contaminated by contact with the conductive substrate.
これにより、繰り返しの使用において、めっき不良を防ぐことができる。  Thereby, in repeated use, plating defects can be prevented.
[0034] また、導電性基材として回転体もしくは、フープ状の導電性基材を用いることにより 金属パターンの作製と剥離を連続して行うことができる。これによつてさらに生産効率 が良くなる。特に、フープ状の導電性基材を用いた場合には、使用する導電性基材 の総延長を長くすることができるため、めっき、黒化処理、転写、残金属のエッチング による除去等を、 1つの工程で行うことが可能となることから、生産効率が非常に高く なる。 [0034] Further, by using a rotating body or a hoop-like conductive substrate as the conductive substrate, the metal pattern can be produced and peeled continuously. This further improves production efficiency. In particular, when a hoop-like conductive base material is used, the total length of the conductive base material used can be lengthened, so that plating, blackening treatment, transfer, removal of residual metal by etching, etc. Since it can be performed in one process, the production efficiency is very high.
[0035] 本発明において、金属を黒化処理することができる。これにより、金属の色が反映さ れることなぐ透視性が良くなる。  [0035] In the present invention, the metal can be blackened. Thereby, the transparency without reflecting the color of the metal is improved.
[0036] また、導電性基材の凸部の金属を転写した後、導電性基材に残存した金属は、ェ ツチング、粘着フィルムによる除去等を、 1つの連続した工程で行うことが可能となるこ とから、生産効率が非常に高くなり、また、粘着フィルムを利用した転写除去により、 残存した金属を容易に除去することができる。これにより、導電性基材の再利用の効 率がよくなる。  [0036] Further, after the metal of the convex portion of the conductive substrate is transferred, the metal remaining on the conductive substrate can be etched, removed by an adhesive film, etc. in one continuous process. As a result, the production efficiency becomes very high, and the remaining metal can be easily removed by transfer removal using an adhesive film. This improves the efficiency of recycling the conductive substrate.
[0037] 上記導体層パターン付き基材の導体層パターンを有する面に、透明基板を貼り合 わせたり、透明榭脂をコーティングすることで、導体層ノターンを保護することができ る。別の基材の導体層転写面に予め、接着剤層を形成していた場合は、この接着剤 層への異物の付着の防止効果もある。また、このとき、透明基板の貼り合わせは、接 着剤層に透明基板を直接又は別の接着剤を介して加圧して貼り合わせることにより 行うができる。この場合、適度な圧力により、導体層パターンが接着剤層に埋設され るので、透明性や透明基板との密着性を向上させることが可能である。 [0037] A transparent substrate is bonded to the surface having the conductor layer pattern of the substrate with the conductor layer pattern. The conductor layer pattern can be protected by coating with transparent resin. In the case where an adhesive layer is formed in advance on the conductor layer transfer surface of another base material, there is also an effect of preventing foreign matter from adhering to the adhesive layer. At this time, the transparent substrate can be bonded by pressing the transparent substrate directly or through another adhesive to the adhesive layer. In this case, since the conductor layer pattern is embedded in the adhesive layer with an appropriate pressure, it is possible to improve transparency and adhesion to the transparent substrate.
[0038] 導体層パターン付き透明基材は、これを利用して、高い光透過性 (特に、導体層パ ターンの線幅が小さく高精細)と良導電性 (高シールド性)を兼ね備える電磁波遮蔽 体を容易に得ることができる。このため PDP等のディスプレイの電磁波遮蔽体として 使用した場合、その輝度を高めることなく通常の状態とほぼ同様の条件下で鮮明な 画像を快適に鑑賞することができる。また、その電磁波遮蔽体は電磁波遮蔽性に優 れているため、ディスプレイその他の電磁波を発生したり、あるいは電磁波から保護さ れるべき測定装置、測定機器、製造装置等の内部を覼く窓や筐体、特に透明性を要 求される窓やディスプレイ表面のような部位に設けて使用すると効果が大きい。さらに 、本発明における電磁波遮蔽体の製造法は、上記の導体層パターンの製造に於け ると同様、生産効率が優れる。  [0038] By using this, the transparent base material with the conductor layer pattern is used to shield the electromagnetic wave having both high light transmittance (particularly, the conductor layer pattern has a small line width and high definition) and good conductivity (high shielding property). The body can be easily obtained. For this reason, when used as an electromagnetic wave shield for a display such as a PDP, a clear image can be comfortably viewed under almost the same conditions as in a normal state without increasing the brightness. In addition, since the electromagnetic wave shielding body is excellent in electromagnetic wave shielding properties, it is necessary to generate a display or other electromagnetic wave, or to open a window or housing that crawls inside a measuring device, measuring device, manufacturing device, etc. that should be protected from the electromagnetic wave. The effect is great if it is used on the body, especially in parts such as windows and display surfaces where transparency is required. Furthermore, the production method of the electromagnetic wave shielding body according to the present invention is excellent in production efficiency as in the production of the conductor layer pattern.
[0039] 本発明おいて、導電性基材の凸部上面の表面粗さを小さくすることにより、その上 面に形成した金属層の平滑性をより良くすることができる。また、凹部の表面粗さを特 定の大きさにすることで、選択的な転写を確実に行うことができ、凸部上面の表面粗 さを小さくし、凹部の表面粗さを大きくすることにより、選択的な転写がより確実になる  [0039] In the present invention, by reducing the surface roughness of the upper surface of the convex portion of the conductive substrate, the smoothness of the metal layer formed on the upper surface can be improved. In addition, by making the surface roughness of the concave portion a specific size, selective transfer can be reliably performed, the surface roughness of the upper surface of the convex portion is reduced, and the surface roughness of the concave portion is increased. Ensures more selective transfer
[0040] 本発明において、導電性基材の凹部に絶縁層を形成することにより、凸部の上面 に選択的に金属層を形成することが可能となる。さらに、絶縁層の厚さが凸部パター ンの高さの 1Z2以下とすることで、形成した金属層を転写する際に、絶縁層が接着 剤とほとんど接触することがなくなるため、従来力も課題となっていた凸状パターンの 寿命を長くすることができ、また、繰り返し使用に関しては、数百回〜数千回の量産レ ベルに十分対応可能である。また、電着塗装で絶縁層を形成すると、金属に対する 密着性、耐めっき液性が高い絶縁層が得られ、さらに皮膜も均一に形成することがで きる。 In the present invention, by forming an insulating layer in the concave portion of the conductive base material, it is possible to selectively form a metal layer on the upper surface of the convex portion. Furthermore, when the thickness of the insulating layer is 1Z2 or less of the height of the convex pattern, the insulating layer hardly comes into contact with the adhesive when transferring the formed metal layer, so conventional strength is also a problem. The life of the convex pattern that has been formed can be extended, and with respect to repeated use, it can sufficiently handle a mass production level of several hundred to several thousand times. In addition, when an insulating layer is formed by electrodeposition coating, an insulating layer having high adhesion to metal and plating solution resistance can be obtained, and a film can be formed uniformly. wear.
[0041] 本発明では、導電性基材の凸部の側面が特定のテーパ角を有するので、特に、凸 部の上面に形成した金属層を選択的に転写し、それ以外の不要部分の金属(凹部 に出現した金属)の転写 (金属が銅の場合、簡単に「銅ふり」 、う)を効果的に抑制 することができる。その時に使用する導体層ノターン付き基材のパターン形状を最適 ィ匕させること〖こよって、導体層パターン付き基材のライン幅、ラインピッチ、ライン厚や 基材からの転写性、あるいは不要部分の金属の転写の抑制などを最適化させ、かつ 容易に作製することが可能である。  [0041] In the present invention, since the side surface of the convex portion of the conductive substrate has a specific taper angle, in particular, the metal layer formed on the upper surface of the convex portion is selectively transferred, and the other unnecessary metal portion. Transfer of (a metal appearing in a recess) (when the metal is copper, it is simply “copper pretend”) can be effectively suppressed. By optimizing the pattern shape of the substrate with the conductor layer pattern used at that time, the line width, line pitch, line thickness, transferability from the substrate, or unnecessary parts It is possible to optimize the suppression of metal transfer and to easily produce it.
[0042] 本発明において、特定の導電性基材を使用することにより、その導電性基材上に パターン状に形成した金属層を別の基材に転写して導体層パターン付き基材を作製 することができるので、生産効率がよぐ得られた導体層パターン付き基材は、高い 光透過性 (特に、金属パターンの線幅が小さく高精細)で、良導電性 (高シールド性) を兼ね備えさせることができるので、電磁波遮蔽部材として有用である。  [0042] In the present invention, by using a specific conductive substrate, a metal layer formed in a pattern on the conductive substrate is transferred to another substrate to produce a substrate with a conductor layer pattern. Therefore, the substrate with a conductor layer pattern that has been obtained with good production efficiency has high light transmittance (especially, the metal pattern has a small line width and high definition) and good conductivity (high shielding). Since it can be combined, it is useful as an electromagnetic wave shielding member.
本発明では、導体層パターンを囲むように接地部を配置して導体層パターン付き 基材を作製することが可能である。  In the present invention, it is possible to produce a substrate with a conductor layer pattern by arranging a grounding portion so as to surround the conductor layer pattern.
特に、上記の導電性基材において、領域 Aの外側に領域 Bを形成し、凹部の面積 比率を領域 Bにおいて領域 Aにおけるより小さくすることにより、得られる導体層パタ ーン付き基材の額縁部には、ピンホールの発生、転写時やその後の使用において 割れ等の発生を確実になくすことができ、これによつて、領域 Bに形成した金属層を 接地部として使用するときは、筐体との接続抵抗の上昇を抑制することが可能となる 前記の領域 Bに形成される幾何学図形は、種々のものが可能である。  In particular, in the conductive substrate described above, the region B is formed outside the region A, and the area ratio of the recesses is made smaller in the region B than in the region A, whereby the frame of the substrate with the conductor layer pattern obtained is obtained. Pinholes, cracks, etc. during transfer and subsequent use can be reliably eliminated in the part, so that when using the metal layer formed in region B as a grounding part, It is possible to suppress an increase in connection resistance with the body. The geometric figure formed in the region B can be various.
[0043] また、導体層パターンが転写される別の基材の表面が接着性を有することにより、 転写を容易に確実に行うことができる。また、この別の基材に、あら力じめ、近赤外線 遮蔽性を付与することにより導体層パターン付き基材に、近赤外線遮蔽性を付与す ることち可會である。 [0043] Further, since the surface of another substrate onto which the conductor layer pattern is transferred has adhesiveness, the transfer can be easily and reliably performed. Further, it is possible to impart near-infrared shielding to a substrate with a conductor layer pattern by imparting near-infrared shielding to this other substrate.
[0044] 本発明において、導電性基材の凹部に絶縁層を形成することにより、凸部の上面 のみに選択的に金属層を形成することが可能となる。また、繰り返し使用に関しては 、数百回〜数千回の量産レベルに十分対応可能である。 In the present invention, by forming the insulating layer in the concave portion of the conductive base material, it is possible to selectively form the metal layer only on the upper surface of the convex portion. For repeated use It is possible to cope with mass production levels of hundreds to thousands of times.
[0045] 本発明の導電性支持体の領域 A及び領域 Bにおける凸部の上面が少なくとも 1力 所で連続していることにより、導体層パターン付き基材の導体層が導通し、接地の効 果を効率よくする。また、本発明において、導体層パターン付き基材の導体層のうち 少なくとも領域 Aに相当する部分を黒化処理すると、導体層 (金属)の色が反映され ることなぐ透視性が良くなる。  [0045] Since the upper surfaces of the convex portions in the regions A and B of the conductive support of the present invention are continuous at least at one place, the conductor layer of the substrate with the conductor layer pattern is electrically connected and the effect of grounding is achieved. Make fruits more efficient. Further, in the present invention, when at least a portion corresponding to the region A is blackened among the conductor layers of the base material with the conductor layer pattern, the transparency without reflecting the color of the conductor layer (metal) is improved.
[0046] 本発明によれば、導電性基材上に凸部のパターン及びそれによつて描かれる幾何 学図形状の凹部を形成する際に、レジストでパターンを形成した後にエッチングで導 電性基材にパターンを形成させる工法を取ることが出来る。さらに、レジストを剥離す る前に絶縁層を形成させ、次いでレジストを剥離する。これ〖こより、凸部上を効率的に 又精度良く露出させることができる。さらに言うと、レジストを剥離した後に絶縁層を導 電性支持体表面全体に形成し、次いで、凸部上面の絶縁層のみの除去使用とする と、力なり高レベルの加工精度が要求される力 本発明ではこのよう工程を省略する ことができるため、めっき用導電性基材を効率よく作製することができる。また、研磨 の際に絶縁層を余計に剥離し、結果として導体層パターンのライン太りやライン幅の ばらつきと!/、う t 、う問題を起こすことがな!、な!、ので、精度良くめつき用導電性基材 を作製できる。  [0046] According to the present invention, when forming a pattern of convex portions and a concave portion having a geometric diagram drawn by the pattern on the conductive substrate, the conductive substrate is formed by etching after forming the pattern with a resist. A method of forming a pattern on the material can be taken. Further, an insulating layer is formed before removing the resist, and then the resist is removed. This makes it possible to expose the convex portion efficiently and accurately. Furthermore, if the insulating layer is formed on the entire surface of the conductive support after removing the resist, and then only the insulating layer on the upper surface of the convex portion is removed, a high level of processing accuracy is required. Strength In the present invention, such a step can be omitted, so that a conductive substrate for plating can be produced efficiently. In addition, the insulation layer is excessively peeled off during polishing, and as a result, there will be no variation in line thickness or line width of the conductor layer pattern! A conductive base material for plating can be produced.
[0047] 本発明において、導電性基材の凹部に絶縁層を形成することにより、凸部の上面 のみに選択的に金属層を形成することが可能となる。さらに、絶縁層の厚さが凸部パ ターンの高さの 1Z2以下とすることで、析出した金属を転写する際に、絶縁層が接 着剤とほとんど接触することがなくなるため、従来力も課題となっていた凸状パターン の寿命を長くすることができ、また、繰り返し使用に関しては、数百回〜数千回の量 産レベルに十分対応可能である。また、電着塗装で絶縁層を形成すると、金属に対 する密着性、耐めっき液性が高い絶縁層が得られ、さらに皮膜も均一に形成すること ができる。  In the present invention, by forming an insulating layer in the concave portion of the conductive base material, it is possible to selectively form a metal layer only on the upper surface of the convex portion. Furthermore, if the thickness of the insulating layer is 1Z2 or less of the height of the convex pattern, the insulating layer will hardly come into contact with the adhesive when transferring the deposited metal, so conventional strength is also a problem. The life of the convex pattern that has been formed can be extended, and with respect to repeated use, it can sufficiently cope with a mass production level of several hundred to several thousand times. In addition, when an insulating layer is formed by electrodeposition coating, an insulating layer having high adhesion to metal and plating solution resistance can be obtained, and a film can be formed uniformly.
[0048] そして、絶縁層を導電性基材に定着させる際に、不活性ガス雰囲気下で行うこと〖こ より絶縁層を構成する榭脂の硬化時における副反応などによる変成を防ぐことができ 、より強固な絶縁層を形成することができる。このことによりめっき用導電性基材の耐 久性をさらに向上させることが出来る。 [0048] Then, when fixing the insulating layer to the conductive base material, it is performed under an inert gas atmosphere, so that it is possible to prevent transformation due to side reactions during curing of the resin constituting the insulating layer. A stronger insulating layer can be formed. This ensures the resistance of the conductive substrate for plating. Permanence can be further improved.
[0049] 本発明によれば、生産性よく導体層パターン付き基材を作製することができる。特 に、導電性基材が凹部に絶縁層を有する場合は、不要な金属めつきがなぐ又転写 に際し、形成した金属層の剥離も円滑に行われ、転写工程が効率よく行われる。また 、本発明において導電性基材の凸部上面に選択的に形成した金属層表面を細線部 、広幅部を問わず均一に粉落ちなく黒ィ匕処理することができる。これにより、導体層 ノターンがプラズマ表示画面からの出射光や外光の反射を抑制し、透視性及び画 像のコンストラストが良くなる。黒化処理法には VIII族元素、その中でもニッケルを成 分の一つとして含む黒色ニッケルめっきを選択することで、導電性基材の凹部に絶 縁層が形成されている場合にはその絶縁層を侵すことなぐまた金属導体の表面の みに、粉落ちが発生しない黒色皮膜を形成することが出来る。 [0049] According to the present invention, a substrate with a conductor layer pattern can be produced with high productivity. In particular, when the conductive base material has an insulating layer in the concave portion, unnecessary metal plating does not occur, and during the transfer, the formed metal layer is smoothly peeled off, and the transfer process is performed efficiently. In addition, in the present invention, the surface of the metal layer selectively formed on the upper surface of the convex portion of the conductive base material can be uniformly blackened regardless of whether it is a fine line portion or a wide width portion without falling off. As a result, the conductor layer pattern suppresses the reflection of light emitted from the plasma display screen and external light, and the transparency and image contrast are improved. For the blackening treatment method, select a group VIII element, especially black nickel plating containing nickel as a component, and if an insulating layer is formed in the recess of the conductive substrate, the insulation is formed. A black film can be formed on the surface of the metal conductor without invading the layer and without powder falling.
図面の簡単な説明  Brief Description of Drawings
[0050] [図 1]図 1は凸部に対する凹部の幾何学図形が形成されている導電性基材の一例を 示す斜視図である。  FIG. 1 is a perspective view showing an example of a conductive base material on which a geometrical figure of a concave portion with respect to a convex portion is formed.
[図 2-a]図 2— aは領域 A及び領域 Bを含む導電性基材の一例の斜視図である。  [FIG. 2-a] FIG. 2-a is a perspective view of an example of a conductive substrate including region A and region B.
[図 2-b]図 2— bは領域 A及び領域 Bを含む導電性基材の別の一例の斜視図である。  [FIG. 2-b] FIG. 2-b is a perspective view of another example of a conductive substrate including region A and region B.
[図 3-a]図 3— aは凸部に対する凹部の幾何学図形が形成されている導電性基材の 一例の断面図である。  [Fig. 3-a] Fig. 3-a is a cross-sectional view of an example of a conductive base material in which a geometric figure of a concave portion with respect to a convex portion is formed.
[図 3-b]図 3—bは凸部に対する凹部の幾何学図形が形成されている導電性基材の 一例の断面図である。  [Fig. 3-b] Fig. 3-b is a cross-sectional view of an example of a conductive base material in which a geometric pattern of a concave portion with respect to a convex portion is formed.
[図 3-c]図 3— cは凸部に対する凹部の幾何学図形が形成されている導電性基材の 一例の断面図である。  [Fig. 3-c] Fig. 3-c is a cross-sectional view of an example of a conductive base material in which a geometric pattern of a concave portion with respect to a convex portion is formed.
[図 3-d]図 3— dは凸部に対する凹部の幾何学図形が形成されている導電性基材の 一例の断面図である。  [Fig. 3-d] Fig. 3-d is a cross-sectional view of an example of a conductive base material in which a geometrical figure of a concave portion with respect to a convex portion is formed.
[図 3-e]図 3— eは凸部に対する凹部の幾何学図形が形成されている導電性基材の 一例の断面図である。  [Fig. 3-e] Fig. 3-e is a cross-sectional view of an example of a conductive base material in which a geometrical figure of a concave portion with respect to a convex portion is formed.
[図 4]図 4は領域 A及び領域 Bを含む導電性基材の一例の平面図の一部である。  FIG. 4 is a part of a plan view of an example of a conductive substrate including region A and region B.
[図 5]図 5は領域 A及び領域 Bを含む導電性基材の一例の平面図の一部である。 [図 6]図 6は領域 A及び領域 Bを含む導電性基材の一例の平面図の一部である。 FIG. 5 is a part of a plan view of an example of a conductive substrate including region A and region B. FIG. 6 is a part of a plan view of an example of a conductive substrate including region A and region B.
[図 7]図 7は領域 A及び領域 Bを含む導電性基材の一例の平面図の一部である。 FIG. 7 is a part of a plan view of an example of a conductive substrate including region A and region B.
[図 8]図 8は領域 A及び領域 Bを含む導電性基材の一例の平面図の一部である。 圆 9-a]図 9 aは本発明に係るめっき用導電性基材の一例を示す断面図の一部で ある。 FIG. 8 is a part of a plan view of an example of a conductive substrate including region A and region B. [9-a] FIG. 9 a is a part of a sectional view showing an example of a conductive substrate for plating according to the present invention.
圆 9- b]図 9— bは本発明に係るめっき用導電性基材の一例を示す断面図の一部で ある。 [9-b] FIG. 9-b is a part of a cross-sectional view showing an example of a conductive substrate for plating according to the present invention.
圆 9- c]図 9— cは本発明に係るめっき用導電性基材の一例を示す断面図の一部で ある。 [9-c] FIG. 9-c is a part of a sectional view showing an example of the conductive substrate for plating according to the present invention.
圆 10]図 10は本発明によりめつき用導電性基材を作製する工程を順に示した断面 図である。 [10] FIG. 10 is a cross-sectional view sequentially showing the steps of producing a conductive substrate for adhesion according to the present invention.
圆 11- a]図 11— aは凸部上面のレジストパターンと絶縁膜の形成状態を示す断面図 である。 [11-a] FIG. 11-a is a cross-sectional view showing a resist pattern and an insulating film formed on the upper surface of the convex portion.
圆 11- b]図 11— bは凸部上面のレジストパターンと絶縁膜の形成状態を示す断面図 である。 [11-b] Fig. 11-b is a cross-sectional view showing the formation of the resist pattern and insulating film on the top surface of the protrusion.
圆 11- c]図 11— cは凸部上面のレジストパターンと絶縁膜の形成状態を示す断面図 である。 [11-c] Fig. 11-c is a cross-sectional view showing the formation of the resist pattern and insulating film on the top surface of the protrusion.
圆 1ト d]図 11— dは凸部上面のレジストパターンと絶縁膜の形成状態を示す断面図 である。 [1] d] Fig. 11-d is a cross-sectional view showing the formation of the resist pattern and insulating film on the top surface of the protrusion.
圆 11- e]図 11— eは凸部上面のレジストパターンと絶縁膜の形成状態を示す断面図 である。 [11-e] FIG. 11-e is a cross-sectional view showing the resist pattern on the top surface of the convex portion and the formation state of the insulating film.
[図 12- a]図 12— aは上面を有する凸部のパターン及びそれによつて描かれる幾何学 図形状の凹部を有する導電性基材において、その表面に絶縁層を形成した状態の 導電性基材の断面図である。  [Fig. 12-a] Fig. 12- a is the pattern of the convex part with the top surface and the geometrical shape drawn by it. The conductive base material with the insulating layer formed on the surface of the conductive base material with the concave figure It is sectional drawing of a base material.
[図 12-b]図 12— bは上面を有する凸部のパターン及びそれによつて描かれる幾何学 図形状の凹部を有する導電性基材において、その表面に絶縁層を形成した状態の 導電性基材の断面図である。  [Fig. 12-b] Fig. 12-b shows the pattern of the convex part having the upper surface and the geometrical shape drawn by the pattern. The conductive base material with the insulating layer formed on the surface of the conductive substrate having the concave part of the figure It is sectional drawing of a base material.
[図 12- c]図 12— cは上面を有する凸部のパターン及びそれによつて描かれる幾何学 図形状の凹部を有する導電性基材において、その表面に絶縁層を形成した状態の 導電性基材の断面図である。 [Fig. 12-c] Fig. 12-c shows the pattern of the convex part with the upper surface and the geometry drawn by it FIG. 2 is a cross-sectional view of a conductive base material having an insulating layer formed on the surface of the conductive base material having a figure-shaped recess.
圆 13]図 13は本発明に係るめっき用導電性基材の一例を示す断面図である。 13] FIG. 13 is a cross-sectional view showing an example of a conductive substrate for plating according to the present invention.
[図 14]図 14は上面を有する凸部のパターン及びそれによつて描かれる幾何学図形 状の凹部を有する導電性基材において、その凹部を絶縁層で埋め尽くした状態の導 電性基材、すなわちめっき転写用版の断面図である。 [FIG. 14] FIG. 14 shows a conductive base material having a pattern of convex portions having an upper surface and a geometric figure-shaped concave portion drawn thereby, in a state where the concave portions are filled with an insulating layer. That is, it is a cross-sectional view of a plating transfer plate.
[図 15]図 15は上面を有する凸部のパターン及びそれによつて描かれる幾何学図形 状の凹部を有する導電性基材において、その凹部に絶縁層を形成した状態の導電 性基材の断面図である。  [FIG. 15] FIG. 15 is a cross-sectional view of a conductive substrate having a pattern of convex portions having an upper surface and a geometrically shaped concave portion drawn thereby, with an insulating layer formed in the concave portion. FIG.
[図 16]図 16は上面を有する凸部のパターン及びそれによつて描かれる幾何学図形 状の凹部を有する導電性基材において、その凹部に絶縁層を形成した状態の導電 性基材の断面図である。  [FIG. 16] FIG. 16 is a cross-sectional view of a conductive substrate having a pattern of convex portions having an upper surface and a geometric-shaped concave portion drawn thereby, with an insulating layer formed in the concave portion. FIG.
圆 17-a]図 17— aは導電性基材上にめっきを析出させた状態の断面図である。 圆 17-b]図 17— bは導電性基材上にめっきを析出させた状態の断面図である。 圆 17-c]図 17— cは導電性基材上にめっきを析出させた状態の断面図である。 圆 17-d]図 17— dは導電性基材上にめっきを析出させた状態の断面図である。 圆 17-e]図 17— eは導電性基材上にめっきを析出させた状態の断面図である。 圆 18]図 18は導電性基材の凸部上面に析出させた金属面に、接着剤を塗布した透 明基材をラミネートした状態を示す断面図である。 [17-a] FIG. 17-a is a cross-sectional view of a state where plating is deposited on a conductive substrate. [17-b] Fig. 17-b is a cross-sectional view showing a state where plating is deposited on a conductive substrate. [17-c] Fig. 17-c is a cross-sectional view of a state where plating is deposited on a conductive substrate. [17-d] Fig. 17-d is a cross-sectional view showing a state where plating is deposited on a conductive substrate. [17-e] FIG. 17-e is a cross-sectional view showing a state where plating is deposited on a conductive substrate. [18] FIG. 18 is a cross-sectional view showing a state in which a transparent base material coated with an adhesive is laminated on a metal surface deposited on the upper surface of the convex portion of the conductive base material.
[図 19-a]図 19 aは導体層パターン付基材と金属が残存している導電性基材の断 面図である。  [FIG. 19-a] FIG. 19a is a cross-sectional view of a conductive layer patterned base material and a conductive base material in which metal remains.
[図 19-b]図 19 bは導体層パターン付基材と金属が残存している導電性基材の断 面図である。  [FIG. 19-b] FIG. 19b is a cross-sectional view of the base material with a conductor layer pattern and the conductive base material in which the metal remains.
[図 20]図 20は導体層パターンが黒ィ匕処理された金属パターン力もなる導体層パター ン付基材の断面図である。  [FIG. 20] FIG. 20 is a cross-sectional view of a base material with a conductor layer pattern in which the conductor pattern is blackened and has a metal pattern force.
圆 21]図 21は導体層パターンが黒ィ匕処理された金属パターン力もなる導体層パター ン付基材の断面図である。 [21] FIG. 21 is a cross-sectional view of a base material with a conductor layer pattern in which the conductor layer pattern is blackened and also has a metal pattern force.
圆 22]図 22は導体層パターンが黒ィ匕処理された金属パターン力もなる導体層パター ン付基材の断面図である。 [22] Fig. 22 shows the pattern of the conductor layer with the metal pattern force with the conductor layer pattern blackened. FIG.
圆 23]図 23は導体層パターン付き基材の作製方法の一例を示す断面図である。 圆 24]図 24は回転体を用いて導体層パターン付き基材を連続的に作製するための 装置の概念断面図である。 23] FIG. 23 is a cross-sectional view showing an example of a method for producing a substrate with a conductor layer pattern. [24] FIG. 24 is a conceptual cross-sectional view of an apparatus for continuously producing a substrate with a conductor layer pattern using a rotating body.
圆 25]図 25はフープ状のめっき用導電性基材を用いて導体層パターン付き基材を 連続的に作製するための装置の概念断面図である。 25] FIG. 25 is a conceptual cross-sectional view of an apparatus for continuously producing a substrate with a conductor layer pattern using a hoop-like conductive substrate for plating.
圆 26]図 26はフープ状のめっき用導電性基材を用いて導体層パターン付き基材を 連続的に作製するための装置の別の例の概念断面図である。 [26] FIG. 26 is a conceptual cross-sectional view of another example of an apparatus for continuously producing a substrate with a conductor layer pattern using a hoop-like conductive substrate for plating.
[図 27]図 27は実施例 aの特性を示す図表である。  FIG. 27 is a chart showing characteristics of Example a.
[図 28]図 28は実施例 bの特性を示す図表である。  FIG. 28 is a chart showing characteristics of Example b.
[図 29]図 29は実施例 cの特性を示す図表である。  FIG. 29 is a chart showing characteristics of Example c.
[図 30]図 30は実施例 dの特性を示す図表である。  FIG. 30 is a chart showing characteristics of Example d.
[図 31]図 31は実施例 eの特性を示す図表である。  FIG. 31 is a chart showing characteristics of Example e.
[図 32]図 32は実施例 fの特性を示す第 1の図表である。  FIG. 32 is a first chart showing characteristics of Example f.
[図 33]図 33は実施例 fの特性を示す第 2の図表である。  FIG. 33 is a second chart showing the characteristics of Example f.
符号の説明 Explanation of symbols
1 : :めっき用導電性基材  1:: Conductive substrate for plating
2 : :凹部  2: Recess
3 : :凸部  3:: Convex part
4 : :領域 B  4:: Area B
5 : :凹部  5:: recess
6 : :凸部  6:: Convex
7 : :凸部の側面  7:: Side of convex part
8 : :凸部の上面  8:: Top surface of convex part
9 : :凹部の底面  9:: Bottom of recess
10 :凹部 (平面形状)  10: Recess (planar shape)
11:凸部  11: Convex
12 :絶縁層 :光硬化性榭脂層 12: Insulating layer : Photo-curable resin layer
:凸部の上面に形成された金属層:凹部の底面に出現した金属: Metal layer formed on the top surface of the protrusion: Metal that appeared on the bottom surface of the recess
:凸部の側面に出現した金属: Metal that appeared on the side of the convex
:接着剤:adhesive
:透明基材: Transparent substrate
:導体層パターン付き基材: Substrate with conductor layer pattern
:別の基材 (透明基材): Another substrate (transparent substrate)
:粘着層: Adhesive layer
:導体層パターン付き基材: Substrate with conductor layer pattern
:黒色層: Black layer
:黒色層: Black layer
:他の基材: Other base materials
:保護榭脂: Protective oil
:接着剤:adhesive
:他の基材: Other base materials
:透明樹脂からなる接着剤又は粘着剤:保護フィルム: Adhesive or adhesive made of transparent resin: Protective film
:電解浴 : Electrolytic bath
1 :電解液1: Electrolyte
:陽極 :anode
:回転体 :Rotating body
:配管 :Piping
:ポンプ :pump
:金属 :metal
:フィルム :the film
:圧着ロール  : Crimp roll
:導体層パターン付き基材 110:フープ状の導電性基材 : Base material with conductor layer pattern 110: Hoop-like conductive substrate
111〜128:搬送ロール  111 to 128: Transport roll
129 :前処理槽  129: Pretreatment tank
130 :めっき槽  130: Plating tank
131 :水洗槽  131: Washing tank
132 :黒化処理槽  132: Blackening treatment tank
133 :水洗槽  133: Washing tank
134 :防鲭処理槽  134: Antifungal treatment tank
135 :水洗槽  135: Water tank
136 :プラスチックフィルム基材  136: Plastic film substrate
137 :圧着ロール  137: Crimp roll
138:導電層パターン付き基材  138: Base material with conductive layer pattern
140〜143:搬送ロール  140-143: Transport roll
150:めっき槽 (電解浴)又は黒化処理槽  150: Plating bath (electrolytic bath) or blackening bath
151 :黒化処理槽又は防鲭処理槽  151: Blackening treatment tank or fender treatment tank
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明者らは、上面を有する凸部のパターン及びそれによつて描かれる幾何学図 形状の凹部を有する導電性基材を版として、めっきにより金属層を形成して転写する ことで導電性に優れかつ光透過性を有するようにパターユングされた導体層パターン を生産性よく製造できることを発見した。本発明に係るめっき用導電性基材の製造法 は、さらに、繰り返しめっきし、剥離して使用するためのパターユングされためつき用 版として、微細なパターンであっても寸法精度に優れ、繰り返し使用可能な耐久性に 優れた導電性基材を容易に作製することができる。  The present inventors made conductive patterns by forming and transferring a metal layer by plating using a pattern of convex portions having an upper surface and a conductive substrate having concave portions having a geometrical shape drawn thereby as a plate. It was discovered that a conductor layer pattern patterned to have excellent light transmittance can be produced with high productivity. The method for producing a conductive substrate for plating according to the present invention is further characterized by excellent dimensional accuracy even for a fine pattern as a patterning plate for repeated plating, peeling and use. A conductive base material excellent in durability that can be used can be easily produced.
本発明において、凸部に対して幾何学図形状の凹部が形成されている導電性基 材が用いられる力 この基材に用いられる導電性材料は、その表面に電気めつきで 金属層を形成する場合には、そのために十分な導電性を有するものであり、また、導 電性基材は、絶縁膜を電着塗装する場合に、そのために十分な導電性を有するもの である。また、導電性基材は、その表面を陽極酸化する場合に、そのために十分な 導電性を有するものである。導電性基材は、金属であることが特に好ましい。また、導 電性基材は、その表面にめっきにより形成された金属層を接着性支持体に転写させ ることができるように、その上に形成された金属層が剥離しやすいものであることが好 ましい。 In the present invention, a force that uses a conductive substrate in which a concave portion having a geometric figure shape is formed with respect to a convex portion. The conductive material used for this base material forms a metal layer on the surface by electrical contact. In this case, the conductive substrate has sufficient conductivity for that purpose, and the conductive base material has sufficient conductivity for electrodeposition coating of the insulating film. In addition, the conductive base material is sufficient for anodizing the surface. It has conductivity. The conductive base material is particularly preferably a metal. In addition, the conductive base material is such that the metal layer formed thereon is easily peeled off so that the metal layer formed by plating on the surface can be transferred to the adhesive support. Is preferred.
このような導電性基材の材料としてはステンレス鋼、クロムめつきされた铸鉄、クロム めっきされた鋼、チタン、チタンをライニングした材料、ニッケルなどのめっき剥離性の よ!、材料力もなることが特に好まし!/、。  Materials for such conductive substrates include stainless steel, chrome-plated pig iron, chrome-plated steel, titanium, titanium-lined materials, nickel and other plating releasability! Is particularly preferred!
上記の凸部が形成されている導電性基材の形状としては、シート状、プレート状、口 ール状、フープ状等がある。ロール状の場合は、シート状、プレート状のものを回転 体(ロール)に取り付けたものであってもよい。フープ状の場合は、フープの内側の 2 箇所力 数箇所にロールを設置し、そのロールにフープ状の導電性基材を通すよう な形態等が考えられる。ロール状、フープ状ともに金属箔を連続的に生産することが 可能であるため、シート状、プレート状に比較すると、生産効率が高ぐ好ましい。  Examples of the shape of the conductive base material on which the convex portions are formed include a sheet shape, a plate shape, a tool shape, and a hoop shape. In the case of a roll, a sheet or plate attached to a rotating body (roll) may be used. In the case of a hoop shape, it is conceivable that a roll is installed at two power points inside the hoop and a hoop-shaped conductive substrate is passed through the roll. Since metal foil can be continuously produced in both roll and hoop forms, it is preferable because production efficiency is higher than sheet and plate forms.
[0053] 上記導電性基材の凸部は、導体層パターン付き基材における導体層パターンに対 応するものであり、その導体層パターンは、最終的に電磁波遮蔽材を作製したときの 電磁波シールド層に対応するものである。この凸部に対する凹部の幾何学図形(凸 部によって描かれる平面形状としての凹部の幾何学図形)としては、正三角形、二等 辺三角形、直角三角形などの三角形、正方形、長方形、ひし形、平行四辺形、台形 などの四角形、(正)六角形、(正)八角形、(正)十二角形、(正)二十角形などの (正 ) n角形 (nは 3以上の整数)、円、だ円、星型などを組合せた模様であり、これらの単 位は、単独で又は 2種類以上組合せて繰り返されることが可能である。  The convex portion of the conductive substrate corresponds to the conductor layer pattern in the substrate with the conductor layer pattern, and the conductor layer pattern is an electromagnetic wave shield when the electromagnetic wave shielding material is finally produced. It corresponds to the layer. The geometrical figure of the concave part with respect to this convex part (the geometrical figure of the concave part as a planar shape drawn by the convex part) includes triangles such as regular triangles, isosceles triangles, right triangles, squares, rectangles, rhombuses, parallelogram Quadrangle such as shape, trapezoid, (positive) hexagon, (positive) octagon, (positive) dodecagon, (positive) decagon, etc. (positive) n-gon (n is an integer of 3 or more), circle, The pattern is a combination of ellipses, stars, etc. These units can be repeated alone or in combination of two or more.
[0054] 電磁波遮蔽性の観点からは三角形が最も有効であり、可視光透過性の点からは同 一のライン幅なら(正) n角形の n数が大き 、ほど導体層パターンの開口率が上がる。 可視光透過性の点から開口率は 50%以上が必要とされ、導体層パターンの開口率 は 60%以上であることがさらに好ましい。導体層パターンの開口率は、電磁波遮蔽 材の有効面積 (例えば、上記の幾何学図形が描かれている範囲の面積等電磁波遮 蔽に有効に機能する範囲の面積)に対するその有効面積力 導電層で覆われてい る面積を引 、た面積の比の百分率である。 [0055] 上記の導体層パターンの周縁部を接地部とし、また、上記の導体層パターンの外 側周囲に接地部を設けてもよい。上記の導電性基材において、接地部に対応する部 分を領域 Bとし、その内側を領域 Aとする。導電性基材の領域 Aは、前記の導体層パ ターンに対応した部分に相当し、領域 Aにおける凹部の面積比率(%)は、前記の開 口率に相当する。領域 Bは、領域 Aに対応した導体層パターンと同一の又は異なる 導体層パターンに対応する部分であり、また、前記凸部 3の上面と同じ高さの平面部 であってもよい。 [0054] From the viewpoint of electromagnetic wave shielding, the triangle is the most effective. From the point of view of visible light transmission, if the line width is the same (positive), the n number of the n-gon is larger, and the aperture ratio of the conductor layer pattern is larger. Go up. From the viewpoint of visible light transmission, the aperture ratio is required to be 50% or more, and the aperture ratio of the conductor layer pattern is more preferably 60% or more. The aperture ratio of the conductor layer pattern is the effective area force with respect to the effective area of the electromagnetic wave shielding material (for example, the area of the range in which the geometric figure is drawn, such as the area that functions effectively for electromagnetic wave shielding). This is the percentage of the ratio of the area covered by the area covered by. [0055] The peripheral portion of the conductor layer pattern may be a ground portion, and a ground portion may be provided around the outside of the conductor layer pattern. In the above conductive base material, the part corresponding to the grounding part is designated as area B, and the inside thereof is designated as area A. The region A of the conductive substrate corresponds to a portion corresponding to the conductor layer pattern, and the area ratio (%) of the recesses in the region A corresponds to the opening ratio. The region B is a portion corresponding to the same or different conductor layer pattern as the conductor layer pattern corresponding to the region A, and may be a flat portion having the same height as the upper surface of the convex portion 3.
[0056] 接地部とは、導体層パターン付き基材を最終的に電磁波遮蔽材としたときに前記 電磁波シールド層により集電された電気を接地するための層に対応するものである。 領域 Bにおける凸部に対する凹部の幾何学図形 (凸部によって描かれる平面形状 としての凹部の幾何学図形)としては、領域 Aにおけるのと同様のものを採用すること ができる。特に例示すれば、  [0056] The ground portion corresponds to a layer for grounding the electricity collected by the electromagnetic wave shielding layer when the base material with the conductor layer pattern is finally used as an electromagnetic wave shielding material. As the geometric figure of the concave part with respect to the convex part in the area B (the geometric figure of the concave part as a planar shape drawn by the convex part), the same one as in the area A can be adopted. For example,
(1)全体としてメッシュ状幾何学的模様  (1) Mesh-like geometric pattern as a whole
(2)所定間隔で規則的に配列された方形状幾何学的模様  (2) Square geometric pattern regularly arranged at predetermined intervals
(3)所定間隔で規則的に配列された平行四辺形模様  (3) Parallelogram pattern regularly arranged at predetermined intervals
(4)円模様又は楕円模様  (4) Circular or oval pattern
(5)三角形模様  (5) Triangle pattern
(6)五角形以上の多角形模様  (6) Polygon pattern more than pentagon
(7)星形模様  (7) Star pattern
などがある。  and so on.
[0057] 導電性基材上に凸部に対する凹部の幾何学図形を形成する方法としては、表面が 滑らかな導電性基材に対して、上記の幾何学図形カゝらなる凹部を形成するようにカロ ェする方法が最も簡便である。  [0057] As a method for forming a geometric figure of a concave portion with respect to a convex portion on a conductive base material, a concave portion having the above geometric figure shape is formed on a conductive base material having a smooth surface. The most convenient method is to carry out a caroé.
図 1は、凸部に対する凹部の幾何学図形が形成されている導電性基材の一例を示 す斜視図である。図 1で例示しているのは凹部 2の幾何学図形としては正方形であり 、導電性基材 1に凹部 2の幾何学図形が正方形になるように凸部 3が格子状に形成 されている。  FIG. 1 is a perspective view showing an example of a conductive substrate on which a concave geometrical figure with respect to a convex part is formed. Illustrated in FIG. 1 is a square as the geometrical figure of the concave part 2, and the convex part 3 is formed in a lattice shape on the conductive substrate 1 so that the geometrical figure of the concave part 2 becomes a square. .
[0058] 図 2は、凸部に対する凹部の幾何学図形が形成されている導電性基材の一例を示 す斜視図である。図 2— aは、領域 B (符号 4)を具体的に示さず領域 Bの全体の領域 を示す。図 2— bでは、領域 Bが具体的な格子模様となっている様子を概念的に示す 。図 2で例示しているのは凹部 2の幾何学図形としては正方形であり、導電性基材 1 に凹部 2の幾何学図形が正方形になるように凸部 3が格子状に形成されている。 さら〖こ、凹部 2及び凸部 3で形成される幾何学図形の外側に、領域 B (符号 4)が存 在し、図 2— bでは、凸部 3で形成され凹部 2に体現されている幾何学図形とは異なる 形状の幾何学図形を有する凹部 5が凸部 6によって形成されている。 FIG. 2 shows an example of a conductive base material in which a geometrical figure of a concave portion with respect to a convex portion is formed. FIG. Figure 2-a shows the entire region B without specifically showing region B (reference 4). Figure 2-b conceptually shows how region B has a specific grid pattern. Illustrated in FIG. 2 is a square as the geometrical figure of the concave part 2, and the convex part 3 is formed in a lattice shape on the conductive substrate 1 so that the geometrical figure of the concave part 2 becomes a square. . In addition, there is a region B (reference numeral 4) outside the geometrical figure formed by the surface, the concave portion 2 and the convex portion 3, and in FIG. 2-b, formed by the convex portion 3 and embodied in the concave portion 2. A concave portion 5 having a geometric shape with a shape different from the geometric shape is formed by the convex portion 6.
図 3は、図 1又は図 2— aの A— A断面の一部を示し、図 3— a〜図 3— eの 5種を示 す。図 1に対応する断面図は図 3— aであり、図 3— b〜図 3— eは図 3— aの変形であ る。凹部 2及び凸部 3の断面形状は適宜決定され、凸部 3の側面 7が、垂直面(図 3— aの場合)、斜面 (図 3— b、図 3— cの場合)、曲面 (図 3— dの場合)、段階的斜面 (図 3— eの場合)等任意である。凸部 3は上面 8を有し、凹部 2の底面 9も種々の形状が ある。  Fig. 3 shows a part of the A-A section of Fig. 1 or Fig. 2-a, and shows five types of Fig. 3-a to Fig. 3-e. The cross-sectional view corresponding to Fig. 1 is Fig. 3-a, and Fig. 3-b to Fig. 3-e are variants of Fig. 3-a. The cross-sectional shapes of the concave portion 2 and the convex portion 3 are determined as appropriate, and the side surface 7 of the convex portion 3 includes a vertical surface (in the case of Fig. 3-a), a slope (in the case of Fig. 3-b and Fig. 3-c), a curved surface ( It is optional such as Figure 3-d) and stepped slope (Figure 3-e). The convex portion 3 has an upper surface 8, and the bottom surface 9 of the concave portion 2 has various shapes.
導電性基材に形成した凸部 3の高さを、凹部 2の最も窪んだ部分力ゝら凸部 3の上面 4までの高さと規定する。凸部 3の高さは l /z m〜: LOO /z mが好ましい。凸部 3の高さ が低いと、透明基材に凸部 3の上面 8に形成された金属層を転写するときに、粘着剤 が導電性基材の凹部 2に出現した金属又は凹部 2に形成した絶縁層に接触しやすく なるため、凹部 2に出現した金属又は凹部 2に形成した絶縁層も同時に、透明基材 に付着する恐れがあることから、凸部 3の高さは 5 μ m以上であることが更に好ましい 。また、凸部の高さを高くすると、アスペクト比が大きくなるため、加工が難しくなり、加 工費も高くなることから、凸部の高さは 50 m以下であることがさらに好ましい。 また、凸部 3の上面 8の幅及びその間隔は、導体層パターンの開口率を 50%以上 とするために、凸部3の上面8の幅(ラィン幅)が1 111〜40 111、凸部上面の中心間 隔(ラインピッチ)力 μ m〜1000 μ mであることが好ましい。転写後に得られるム (導電層パターン付き基材の非視認性、透明性,電磁波シールド性を良好なものとす るためには、凸部3の上面8の幅(ラィン幅)が1 111〜20 111、凸部の中心間隔(ラ インピッチ)力 S250 μ m〜500 μ mであることがさらに好ましい。  The height of the convex portion 3 formed on the conductive substrate is defined as the height from the most depressed partial force of the concave portion 2 to the upper surface 4 of the convex portion 3. The height of the convex portion 3 is preferably l / z m to: LOO / z m. If the height of the convex portion 3 is low, when the metal layer formed on the upper surface 8 of the convex portion 3 is transferred to the transparent substrate, the pressure-sensitive adhesive appears on the metal or the concave portion 2 that appears in the concave portion 2 of the conductive substrate. Since it becomes easy to contact the formed insulating layer, the metal appearing in the recess 2 or the insulating layer formed in the recess 2 may be attached to the transparent substrate at the same time, so the height of the protrusion 3 is 5 μm. More preferably, the above is true. Further, if the height of the convex portion is increased, the aspect ratio becomes large, so that the processing becomes difficult and the processing cost increases. Therefore, the height of the convex portion is more preferably 50 m or less. Further, the width of the upper surface 8 of the convex portion 3 and the interval thereof are set such that the width (line width) of the upper surface 8 of the convex portion 3 is 1 111 to 40 111 so that the aperture ratio of the conductor layer pattern is 50% or more. The center spacing (line pitch) force of the upper surface of the part is preferably μm to 1000 μm. After the transfer, the width of the upper surface 8 (line width) of the convex portion 3 is 1 111-to improve the non-visibility, transparency, and electromagnetic shielding properties of the substrate with the conductive layer pattern. 20 111, center distance (line pitch) force between convex portions S 250 μm to 500 μm is more preferable.
本発明において、凸部上面の中心間隔 (ラインピッチ)は、パターンが複雑な図形 であったり、複数の図形の組み合わせであったりして簡単に決定できない場合は、パ ターンの繰り返し単位を基準としてその面積を正方形の面積に換算し、その一辺の 長さであると定義する。 In the present invention, the center interval (line pitch) of the upper surface of the convex portion is a figure with a complicated pattern. If it cannot be easily determined because it is a combination of multiple figures, the area is converted to a square area based on the pattern repeat unit and defined as the length of one side.
[0060] 図 3と同様の断面図が、領域 Bのものであってもよい。  [0060] A cross-sectional view similar to FIG.
領域 Bにおいて、導電性基材に形成した凸部 6の高さを、凹部 5の最も窪んだ部分 力も凸部 6の上面までの高さと規定する。凸部 6の高さは 〜: LOO /z mが好ましい 。凸部 6の高さが低いと、別の基材に凸部 6の上面に形成された金属層を転写すると きに、粘着剤が導電性基材の凹部 5に出現した金属又は凹部 5に形成した絶縁層に 接触しやすくなるため、凹部 5に形成した絶縁層も同時に、透明基材に付着する恐 れがあることから、凸部 6の高さは 5 m以上であることが更に好ましい。また、凸部の 高さを高くすると、アスペクト比が大きくなるため、加工が難しくなり、加工費も高くなる こと力 、凸部の高さは 50 m以下であることがさらに好ましい。  In the region B, the height of the convex portion 6 formed on the conductive substrate is defined as the height of the concave portion 5 where the concave portion is most depressed to the upper surface of the convex portion 6. The height of the convex portion 6 is preferably LOO / zm. If the height of the convex portion 6 is low, the adhesive is transferred to the metal or concave portion 5 that appears in the concave portion 5 of the conductive substrate when the metal layer formed on the upper surface of the convex portion 6 is transferred to another base material. It is more preferable that the height of the convex portion 6 is 5 m or more because the insulating layer formed in the concave portion 5 may be attached to the transparent substrate at the same time because it easily comes into contact with the formed insulating layer. . Further, when the height of the convex portion is increased, the aspect ratio increases, so that the processing becomes difficult and the processing cost becomes high. The height of the convex portion is more preferably 50 m or less.
[0061] 図 3において、 aは、凸部の側面の傾斜角(テーパ角)を示す。このテーパ角は、上 面を基準にして測定する。凸部のテーパ角が 30度以上である側面は、上面からの深 さにして、 5 μ m以上であることが好ましぐ特に 7 μ m以上であることが好ましい。テ ーパ角は、 45度以上であることが、銅ふりを確実に減らす上で好ましい。  In FIG. 3, a indicates the inclination angle (taper angle) of the side surface of the convex portion. This taper angle is measured with respect to the top surface. The side surface of the convex portion having a taper angle of 30 ° or more is preferably 5 μm or more in depth from the upper surface, particularly preferably 7 μm or more. The taper angle is preferably 45 degrees or more in order to surely reduce copper swing.
さらに、本方式では凸部の上面に形成された金属層のみを、選択的に透明基材に 転写する必要があることから、めっきにより形成された金属層の形状が、凸部の上面 では連続膜で形成され、凹部内では、非連続膜で形成されることが好ましい。凸部の 上面及び凹部内に析出する金属が全て連続膜で形成されると、別の基材 (粘着フィ ルム等)に転写する際に、粘着剤が凸部の上面に形成された金属層にのみ接触した 場合であっても、凸部の上面に形成された金属層だけではなぐ凹部内に出現した 金属も、追随して導電性基材から剥離するため、凸部の上面に形成された金属層の みを選択的に転写することは困難である。これに対し、凹部内に出現する金属が非 連続膜である場合には、別の基材に転写する際に、凹部や側部に出現した金属が 凸部の上面に形成された金属層に追随して剥離することがないため、凸部の上面に 形成された金属層を選択的に別の基材に転写することが可能である。  Furthermore, in this method, since only the metal layer formed on the top surface of the convex portion needs to be selectively transferred to the transparent substrate, the shape of the metal layer formed by plating is continuous on the top surface of the convex portion. It is preferably formed of a film and formed of a discontinuous film in the recess. When all of the metal deposited in the upper surface of the convex part and the concave part is formed as a continuous film, the metal layer on which the adhesive is formed on the upper surface of the convex part when transferred to another substrate (adhesive film, etc.) Even if it is only in contact with the metal, metal that appears in the recesses, not just the metal layer formed on the top surface of the projections, is also formed on the top surface of the projections in order to peel off from the conductive substrate. It is difficult to selectively transfer only the metal layer. On the other hand, when the metal appearing in the recess is a discontinuous film, the metal appearing in the recess or the side is transferred to the metal layer formed on the upper surface of the protrusion when transferring to another substrate. Since it does not follow and peel, the metal layer formed on the upper surface of the convex portion can be selectively transferred to another substrate.
さらに、導電性基材における凸部の上面の表面粗さが低ぐ逆に凹部内の表面粗 さが粗いことは、凹部内に出現する金属が粒状となり、非連続的に析出する傾向があ るため、別の基材により凸部の上面に形成された金属層のみを選択的に転写する上 で好ましい。 Furthermore, the surface roughness of the upper surface of the convex portion in the conductive substrate is low, and conversely the surface roughness in the concave portion. The coarseness is that the metal appearing in the recesses becomes granular and tends to be discontinuously deposited, so that only the metal layer formed on the upper surface of the protrusions by another substrate is selectively transferred. Preferred above.
具体的には、凸部の上面の表面粗さは、十点平均粗さ Rz CFIS B 0601— 1994に 準拠して測定する)で 2. 0 μ m以下であることが好ましぐ Rzが 1. 0 μ m以下であるこ とがさらに好ましい。また、凹部内の表面粗さは、 Rzが 2. 0 mを超えることが好まし ぐ Rzが 3. 0 m以上であることがさらに好ましい。また、凸部の上面の幅及びその 間隔は、導体層パターンの開口率を 60%以上とするために、凸部上面の幅が l /z m 〜40 μ m、凸部の中心間隔が 100 μ m〜1000 μ mであることが好ましい。導体層 ノターン付き基材のパターン形状を最適化させることによって、導体層パターン付き 基材のライン幅、ラインピッチ、ライン厚ゃ基材からの転写性、あるいは不要部分の金 属の転写の抑制などを最適化させ、かつ容易に作製するためには、凸部上面の幅は 、 1〜20 mの範囲にすることが特に好ましい。 Specifically, the surface roughness of the top surface of the convex part is preferably 10 μm or less (measured according to the ten-point average roughness Rz CFIS B 0601—1994), and the Rz is 1 or less. More preferably, it is 0 μm or less. Further, the surface roughness in the recess is preferably such that Rz exceeds 2.0 m, more preferably Rz is 3.0 m or more. In addition, the width of the upper surface of the convex portion and the interval between the convex portions are such that the width of the upper surface of the convex portion is l / zm to 40 μm and the central interval of the convex portion is 100 μm so that the aperture ratio of the conductor layer pattern is 60% or more. It is preferable that it is m-1000 micrometers. Conductor layer By optimizing the pattern shape of the substrate with no turn, the line width, line pitch, and line thickness of the substrate with the conductor layer pattern can be transferred from the substrate, or the transfer of metal in unnecessary parts can be suppressed. In order to optimize the thickness of the projection and easily produce it, the width of the upper surface of the convex portion is particularly preferably in the range of 1 to 20 m.
導電性基材上に凸部を形成させる方法としては、次のような方法をあげることができ る。  Examples of the method for forming the convex portion on the conductive substrate include the following methods.
(1)導電性基材の凹部を形成すべき部分 (導体層パターン付き基材の導体層パター ンの開口部に対応する部分)に、直接レーザ光を照射し、凹部を形成し、導電層バタ ーンに対応した凸部を形成する方法、  (1) A portion of the conductive base material where the concave portion should be formed (the portion corresponding to the opening of the conductive layer pattern of the base material with the conductive layer pattern) is directly irradiated with laser light to form a concave portion, and the conductive layer A method of forming a convex portion corresponding to the pattern,
(2)フォトリソグラフ法又は印刷法によって、導電性基材に光硬化性榭脂あるいは熱 硬化性榭脂により幾何学図形状のノターン (レジストパターン)を形成する工程を行 なった後、導電性基材をエッチングする方法、  (2) After conducting a step of forming a geometric pattern shape resist (resist pattern) on the conductive substrate by photo-curing method or printing method by photo-curing resin or thermosetting resin, A method of etching a substrate,
(3)彫刻により導電性基材の凹部を形成すべき部分 (導体層パターン付き基材の導 体層パターンの開口部に対応する部分)を掘削する方法などがある。  (3) There is a method of excavating a portion (a portion corresponding to the opening of the conductor layer pattern of the substrate with the conductor layer pattern) where the concave portion of the conductive substrate is to be formed by engraving.
導電性基材の材質が硬!ヽ場合、直接加工するには上記( 1)方法 (レーザ加工法) 又は(2)の方法 (エッチング法)などを用いることが好ましいが、銅などの柔ら力べ加工 性に優れた材料を用いる場合は、上記(3)の方法 (彫刻法)により加工することができ 、このとき、さらに、クロム等の硬質のめっきを表面に施して、強度を上げることができ る。 [0063] 図 4〜8を用いて主に領域 Bについて説明する。図 4〜8は領域 A及び領域 Bを含 む導電性基材の平面図の一部を示す。図 2—bにおけるように凹部 5と凸部 6によつ て形成される領域 Bの幾何学図形は、図 4〜8の 5種を示す。但し、凹部の平面形状 10を黒色で、凸部上面 11を白色で示し、領域 Aはバイアス角度 45° の格子模様の みを示す。領域 Bに形成される幾何学図形は適宜選択され、領域 Aの端にある上面 が領域 Bの上面と連続している場合(図 4)、領域 Aの端にあるラインの一部が領域 B のラインと連続している場合(図 5)、領域 Bに形成された幾何学図形の角が丸い場合 (図 6)、領域 Bに形成された幾何学図形力 Sストライプ状である場合(図 7)、領域 Bに 形成された幾何学図形が大きな矩形状である場合 (図 8)等任意である。 If the material of the conductive substrate is hard, it is preferable to use the method (1) (laser processing method) or (2) (etching method) for direct processing. When using a material with excellent solid workability, it can be processed by the above method (3) (engraving method). At this time, further, hard plating such as chromium is applied to the surface to increase the strength. You can. [0063] The region B will be mainly described with reference to FIGS. 4 to 8 show a part of a plan view of the conductive substrate including region A and region B. FIG. As shown in Fig. 2-b, the geometrical shapes of the region B formed by the concave portion 5 and the convex portion 6 show the five types shown in Figs. However, the planar shape 10 of the concave portion is black, the upper surface 11 of the convex portion is white, and the region A shows only a lattice pattern with a bias angle of 45 °. The geometric figure formed in region B is selected as appropriate. When the top surface at the end of region A is continuous with the top surface of region B (Fig. 4), part of the line at the end of region A is region B. When the geometrical figure formed in region B is round (Fig. 6), the geometrical figure force formed in region B is S stripe shape (Fig. 5). 7), if the geometric figure formed in region B is a large rectangle (Figure 8), etc.
[0064] 領域 Bに形成される凸部の幅が細すぎると、形成される導体層の幅が小さくなり、接 地面積が小さくなり、接続抵抗が上昇し、電磁波シールド性の低下をもたらす傾向が ある。また、逆に、領域 Bに形成される凸部の幅が太すぎると形成された導体層の幅 が大きくなり、別の基材に転写された接地面積が大きくなるため、接続抵抗は安定す るが、転写された導体層に割れや、ピンホールが発生しやすくなる。  [0064] If the width of the convex portion formed in the region B is too thin, the width of the formed conductor layer is reduced, the ground area is reduced, the connection resistance is increased, and the electromagnetic shielding property is reduced. There is. Conversely, if the width of the convex portion formed in region B is too large, the width of the formed conductor layer becomes large, and the ground area transferred to another substrate becomes large, so that the connection resistance is stable. However, cracks and pinholes are likely to occur in the transferred conductor layer.
[0065] さらに、導電性基材の上面に形成された金属層を別の基材に転写するに際し、金 属層に割れが生じる場合は、転写時 (導電性基材カもの剥離時)における別の基材 の変形 (又は場合により、別の基材に積層されている接着層の変形)に金属層が追 随できずに発生するものと考えられるが、領域 Bにおいて、凹部の表面粗さを大きくし たり、凹部に絶縁層を配して凹部に金属がめっきされないようにしたりして、凹部の上 面に形成された金属層を選択的に転写するようにすると、導体層パターンにおいて 上記の凹部の幾何学図形に対応する幾何学図形の開口部が転写の際に発生する 応力を緩和するために、割れを防止することができるものと考えられる。  [0065] Further, when the metal layer formed on the upper surface of the conductive base material is transferred to another base material, if the metal layer is cracked, the transfer is performed (when the conductive base material is peeled off). It is considered that the metal layer cannot follow the deformation of another base material (or, in some cases, the deformation of the adhesive layer laminated on another base material). If the metal layer formed on the upper surface of the recess is selectively transferred by increasing the thickness or by disposing an insulating layer in the recess so that the metal is not plated in the recess, It is considered that cracking can be prevented in order to relieve the stress generated in the transfer of the geometric figure corresponding to the concave figure.
また、電気めつきの場合、導電体の突出した先端部に電気力線が集中する性質が ある。従って、導電性基材の内側 (領域 A)の凹部面積の比率の大きいパターンに対 し、接地部に対応する外側 (領域 B)に凹部面積の比率の小さいパターンが存在する と、電気力線が内側の凸部に集中するために、内側の凸部上面での金属めつきの析 出速度に比べて、外側の凸部上面での金属めつきの析出速度が遅くなり、ピンホー ルが多数発生しやすくなると考えられる。しかし、外側の幾何学図形状の凹部に絶縁 層を配すると、内側の凸部への電気力線の集中が緩和されるため、外側でのピンホ ールの発生を防止することができるものと考えられる。めっき浴内に邪魔板などを設 置して、導電性基材の内側と外側の電流密度を均一になるよう調整して、金属めつき の厚さを内側と外側で均一に形成することは可能であるが、導電性基材に力かる電 流密度が、邪魔板がない場合に比較すると低減するため、めっきスピードが低下する In addition, in the case of electrical plating, there is a property that the lines of electric force concentrate on the protruding tip of the conductor. Therefore, if there is a pattern with a small ratio of the concave area on the outer side (area B) corresponding to the grounding portion with respect to a pattern with a large ratio of the concave area on the inner side (area A) of the conductive substrate, the electric field lines As a result, the deposition rate of metal plating on the upper surface of the outer convex portion is slower than the deposition rate of metal plating on the upper surface of the inner convex portion, so that many pinholes are generated. It will be easier. But insulate in the recess of the outer geometric figure shape When the layers are arranged, the concentration of electric lines of force on the inner convex part is alleviated, and it is considered that the occurrence of pinholes on the outer side can be prevented. It is not possible to install a baffle plate in the plating bath and adjust the current density inside and outside of the conductive substrate to be uniform so that the metal plating thickness is uniformly formed on the inside and outside. Although possible, the current density exerted on the conductive substrate is reduced compared to the case where there is no baffle plate, thus reducing the plating speed.
[0066] また、領域 Bにおける凸部上面の幅 (ライン幅)を p、凸部の上面の中心間隔 (ライン ピッチ)を qとすると、 pが小さぐ qが大きいほど、転写時等における金属層の割れは 低減される。 pが小さいと、接地のための外周縁部のピンホールは低減する力 qも小 さいと開口部による粘着剤の剥離応力の緩和が十分でないため、凸部の上面の中 心間隔 (ラインピッチ) qが領域 Bにおける凸部上面の幅 (ライン幅) pの 3倍以上である (q≥3p)こと、換言すれば、凹部の幅は凸部正面の幅の 2倍以上であることが好まし い。また、 pに対して qが大きすぎると、開口部が大きくなりすぎ、筐体アースとの接続 抵抗が上昇するため、凸部の上面の間隔 qはライン幅の 10倍以下である(q≤ ΙΟρ) こと、すなわち、凹部の幅は凸部正面の幅の 9倍以下であることが好ましい。以上のこ とから、領域 Aの凹部の面積比率は、 50%〜97%以下であることが好ましぐ領域 B の面積比率は 40%〜97%未満が好ましい。さらに、金属めつき層を転写した別の基 材 (導体層パターン付き基材)のメッシュの視認性、透明性を良好なものとするために 、領域 Aの凹部の面積比率は、 70%〜95%であることがさらに好ましい。また、領域 Bでは、耐割れ性と耐ピンホールの両立を確実なものとするために,領域 Bの凹部の 面積比率は、 45%〜70%であることがさらに好ましい。また、特に、凸部を形成させ る方法として、フォトリソグラフ法を用いた場合には、凸部の交点部が直角ではなぐ 丸みを帯びる傾向にある。角が直角の場合には、金属めつきの割れの起点となりや すいが、角に丸みを持たせる、あるいは、開口部を円形又は曲線とすることで、転写 の際に金属めつきのラインにかかる応力をより均一化できるため、割れに《なる。 [0066] If the width of the upper surface of the convex portion (line width) in region B is p and the center interval (line pitch) of the upper surface of the convex portion is q, the smaller p is, the larger q is, the metal during transfer Layer cracking is reduced. If p is small, the pinhole at the outer peripheral edge for grounding reduces the force q. If the p is small, the peeling stress of the adhesive due to the opening is not sufficiently relaxed. ) q is at least 3 times the width of the top surface of the convex part (line width) p in region B (q≥3p), in other words, the width of the concave part is at least twice the width of the front of the convex part. I like it. If q is too large with respect to p, the opening becomes too large and the connection resistance to the chassis ground increases, so the spacing q between the top surfaces of the protrusions is less than 10 times the line width (q≤ That is, it is preferable that the width of the concave portion is not more than 9 times the width of the front surface of the convex portion. From the above, the area ratio of the recesses in the region A is preferably 50% to 97% or less, and the area ratio of the region B is preferably 40% to less than 97%. Furthermore, in order to improve the visibility and transparency of the mesh of another substrate (substrate with a conductor layer pattern) to which the metal plating layer is transferred, the area ratio of the recesses in region A is 70% to More preferably, it is 95%. In area B, the area ratio of the recesses in area B is more preferably 45% to 70% in order to ensure both crack resistance and pinhole resistance. In particular, when the photolithographic method is used as a method for forming the convex portion, the intersection of the convex portions tends to be rounded at a right angle. If the corner is a right angle, it is easy to start the cracking of the metal, but if the corner is rounded or the opening is round or curved, the stress applied to the metal plating line during transfer Since it can be made more uniform, it becomes a crack.
[0067] 前記エッチング法のうち、印刷法を用いる場合には、レジストパターン形成するため の印刷方法としては様々な方法を用いることが出来る。例えば、スクリーン印刷、凸版 印刷、凸版オフセット印刷、凸版反転オフセット印刷、凹版印刷、凹版オフセット印刷 、インクジェット印刷、フレキソ印刷などを用いることが出来る。また、フォトリソグラフ法 を用いる場合には例えば、ドライフィルムレジストなどをラミネートし、マスクを装着して 露光、現像した後にエッチング工程を経ることも出来るし、液状レジストを塗布した後 に溶剤を乾燥あるいは仮硬化させた後に、同様の工程を経ることも出来る。光硬化性 の榭脂にマスクを介して活性エネルギー線を照射することでパターユングできればそ の態様は問わない。枚葉で版のサイズが大きい場合、あるいはロール 'トウ'ロールで 作製する場合などはドライフィルムレジストをラミネートしてマスクを介して露光する方 法が生産性の観点からは好ましぐめっきドラムなどに直接加工する場合にはドライフ イルムレジストを貼り合わせるあるいは液状レジストを塗布した後にマスクを介さずに レーザなどでダイレクトに露光する方法が好ましい。 [0067] Among the etching methods, when a printing method is used, various methods can be used as a printing method for forming a resist pattern. For example, screen printing, letterpress printing, letterpress offset printing, letterpress reverse printing, intaglio printing, letterpress offset printing Inkjet printing, flexographic printing, and the like can be used. In addition, when using the photolithographic method, for example, a dry film resist or the like is laminated, a mask is attached, and after exposure and development, an etching process can be performed. After applying a liquid resist, the solvent is dried or dried. A similar process can be performed after the temporary curing. If the photocurable resin can be patterned by irradiating active energy rays through a mask, the mode is not limited. When the size of the plate is large, or when it is made with a roll 'toe' roll, the method of laminating a dry film resist and exposing through a mask is preferable from the viewpoint of productivity. In the case of direct processing, a method in which a dry film resist is bonded or a liquid resist is applied and then directly exposed with a laser or the like without using a mask is preferable.
上面を有する凸部のパターン及びそれによつて描かれる幾何学図形状の凹部を有 する導電性基材の凹部への絶縁層の形成は、導電性基材の全表面に絶縁層を形 成した後、研磨により凸部の上面に積層された絶縁層を除去し、凸部上面の金属面 を露出させる方法により行うことができる。研磨の方法は公知の!/、かなる方法で行つ てもよいが、パフによる研磨、パフロールや研磨紙、ベルトサンダ等を使用した一般 的な機械研磨等により行うことができる。研磨用のパフが荒いと,研磨後の凸部のラ イン幅が著しく太くなることがあるので, # 1500以上の極めの細かい研磨用のパフを 用いることが好ましい。  The formation of the insulating layer on the concave portion of the conductive base material having the convex pattern having the upper surface and the concave portion of the geometrical drawing shape drawn thereby formed the insulating layer on the entire surface of the conductive base material. Thereafter, the insulating layer laminated on the upper surface of the convex portion can be removed by polishing, and the metal surface on the upper surface of the convex portion can be exposed. The polishing method may be a well-known! / Or any other method, but can be performed by puffing, general mechanical polishing using a puffol, polishing paper, belt sander, or the like. If the polishing puff is rough, the line width of the convex part after polishing may become extremely thick. Therefore, it is preferable to use an extremely fine polishing puff of # 1500 or more.
上面を有する凸部のノターン及びそれによつて描かれる幾何学図形状の凹部を有 する導電性基材の凹部への絶縁層の形成は、導電性基材の全表面に絶縁層を形 成した後、により凸部の上面に積層された絶縁層を除去し、凸部上面の金属面を露 出させる方法により行うことができる。  The formation of the insulating layer on the concave portion of the conductive base material having the concave portion of the convex portion having the upper surface and the concave portion of the geometrical drawing shape drawn thereby formed the insulating layer on the entire surface of the conductive base material. Thereafter, the insulating layer laminated on the upper surface of the convex portion can be removed, and the metal surface on the upper surface of the convex portion can be exposed.
凸部の上面に積層された絶縁層の除去は、研磨以外にスキージゃブレード等によ り搔き取る方法により行ってもよい。図 9は、領域 Aについて、上面を有する凸部のパ ターン及びそれによつて描かれる幾何学図形状の凹部を有する導電性基材の凹部 に絶縁層を形成した状態の導電性基材の断面図の一部を示す。図 9では、図 3— d で示す断面形状を有する導電性基材を使用している。図 9 aでは、絶縁層 12は、 上面 8を有する凸部 3のパターン及びそれによつて描かれる幾何学図形状の凹部 2 を有する導電性基材 1の凹部 2に均一に形成されている。但し、絶縁層 12は凸部 3 の上面 8の端から上面 8と面一になるように形成されている。このように、導電性基材 を水平にしたとき絶縁層 12が上面 8より上に出て ヽな 、ことが特に好ま U、。図 9— b に示すように、絶縁層 12が、凹部 2の底部の部分が側面 7の部分より厚く形成されて もよぐさらに、図 9— cに示すように、凸部 3の上面 8の端近くにおいて徐々に絶縁層 12の厚さが小さくなり、上面 8と同一平面の方向で絶縁層 12の厚みが 0となっていて もよい。このようにするには、図 9 aや図 9—bの絶縁層を形成後に、上記に示したよ うな研磨方法により加工することによって得ることができる。 The insulating layer laminated on the upper surface of the convex portion may be removed by a method of scraping with a squeegee or blade other than polishing. FIG. 9 shows a cross section of the conductive base material in a state where an insulating layer is formed in the concave portion of the conductive base material having the convex pattern having the upper surface and the concave portion of the geometrical shape drawn by the upper surface in the region A. A part of the figure is shown. In FIG. 9, a conductive substrate having the cross-sectional shape shown in FIG. 3D is used. In FIG. 9 a, the insulating layer 12 is formed by a pattern of convex portions 3 having an upper surface 8 and a concave portion 2 of the geometrical shape drawn thereby. Is uniformly formed in the recess 2 of the conductive substrate 1 having However, the insulating layer 12 is formed so as to be flush with the upper surface 8 from the end of the upper surface 8 of the protrusion 3. In this way, it is particularly preferable that the insulating layer 12 protrudes above the upper surface 8 when the conductive substrate is leveled. As shown in FIG. 9-b, the insulating layer 12 may be formed so that the bottom portion of the concave portion 2 is thicker than the side portion 7. Further, as shown in FIG. The thickness of the insulating layer 12 may gradually decrease near the edge of the insulating layer 12, and the thickness of the insulating layer 12 may be zero in the same plane direction as the upper surface 8. This can be obtained by forming the insulating layer shown in FIGS. 9a and 9-b and then processing it by the polishing method as described above.
[0069] 上記のように凹部に絶縁層を形成した場合、絶縁層の寿命を長くするためには、凸 部 3の上面 8に形成された金属層を別の基材に転写する際に、別の基材 (又はその 表面に積層されている粘着剤若しくは接着剤)と絶縁層 12の接触を低減することが 好ましい。その接触を低減するために、凸部の側面 7における絶縁層の厚さは、 10 m以下とすることが好ましぐ上面 8の端において、上面 8と同一平面方向で厚みが 0 μ mであることが特に好まし!/、。  [0069] When the insulating layer is formed in the concave portion as described above, in order to extend the life of the insulating layer, when transferring the metal layer formed on the upper surface 8 of the convex portion 3 to another substrate, It is preferable to reduce contact between the insulating layer 12 and another substrate (or a pressure-sensitive adhesive or adhesive layered on the surface). In order to reduce the contact, the thickness of the insulating layer on the side surface 7 of the convex portion is preferably 10 m or less. At the end of the upper surface 8, the thickness is 0 μm in the same plane direction as the upper surface 8. Especially preferred to be! /.
[0070] 凸部 3の絶縁高さを、凹部 2を絶縁層 12で被覆した時の最も窪んだ部分から凸部 3 の上面 8までの高さと定義する(これは領域 Aにおける定義である力 領域 Bについて も同様に定義する)。このとき、凸部 3の絶縁高さが、前記した導電性基材の凸部 3の 高さの 1Z2以上になるように絶縁層 12を形成することが好ま U、。絶縁層 12の厚さ が薄 、ほど、絶縁層 12と別の基材 (又はその表面に積層されて 、る粘着剤若しくは 接着剤)が接触する可能性が低くなるため、凸部の絶縁高さは、凸部の高さの 3Z4 以上になるように絶縁層 12を形成することがさらに好ま 、。凸部の絶縁高さが凸部 の高さの 1Z2より小さくなると、転写時における粘着剤の変形により絶縁層と別の基 材 (又はその表面に積層されて ヽる粘着剤若しくは接着剤)が接触しやすくなるため 、凸部パターンの寿命が短くなる。特に、図 10に示すように凸部 3の上面 8と絶縁層 1 2が同一面又はほぼ同一面に配置されると、導電性基材 1との密着性が良好な絶縁 材料を用いても、繰り返しの剥離応力により、容易に絶縁層 12が導電性基材 1から 剥離してしまう。凸部 3の絶縁高さは凸部 3の高さよりも 10 m以上低いことが好まし い。 また、絶縁層 12の厚みは、薄いとピンホール等が発生しやすくなり、めっきに際し、 この部分にも金属が出現するため、 1 μ m以上であることが好ましい。 [0070] The insulating height of the convex portion 3 is defined as the height from the most depressed portion when the concave portion 2 is covered with the insulating layer 12 to the upper surface 8 of the convex portion 3 (this is the force defined in the region A) Define area B in the same way). At this time, it is preferable to form the insulating layer 12 so that the insulating height of the convex portion 3 is 1Z2 or more of the height of the convex portion 3 of the conductive substrate. The thinner the insulating layer 12, the lower the possibility that the insulating layer 12 will come into contact with another substrate (or the adhesive or adhesive layered on the surface thereof). More preferably, the insulating layer 12 is formed so that the height of the convex portion is 3Z4 or more. If the insulation height of the protrusion is smaller than 1Z2 which is the height of the protrusion, the base material (or the adhesive or adhesive layered on the surface) separates from the insulating layer due to deformation of the adhesive during transfer. Since it becomes easy to contact, the lifetime of a convex part pattern becomes short. In particular, as shown in FIG. 10, when the upper surface 8 of the protrusion 3 and the insulating layer 12 are arranged on the same surface or substantially the same surface, an insulating material having good adhesion to the conductive substrate 1 can be used. The insulating layer 12 easily peels from the conductive substrate 1 due to repeated peeling stress. The insulating height of the convex part 3 is preferably 10 m or more lower than the height of the convex part 3. In addition, if the thickness of the insulating layer 12 is thin, pinholes or the like are likely to occur, and metal appears in this portion at the time of plating. Therefore, the thickness is preferably 1 μm or more.
絶縁層 12の形成は、均一である方が形成しやすいため、全体として薄膜絶縁層で あることが好ましぐ 1〜10 μ mであることが好ましい。  Since the formation of the insulating layer 12 is easier to form when it is uniform, it is preferably 1 to 10 μm as a whole, preferably a thin film insulating layer.
以上の説明は、領域 Bにおいても同様に成り立つ。  The above description holds true for region B as well.
[0071] 図 11は、めっき用導電性基材の作製方法を示す工程の一例を断面図で示したも のである。図 11では図 3 dで示す断面形状を有する導電性基材を用いて例示する 。導電性基材 1の表面に光硬化性榭脂層 7を形成する(図 11 a)。フォトリソグラフ 法を用 、て光硬化性榭脂層 13をパターン化する(図 11— b)。パターン化された光 硬化性榭脂層 13をエッチングレジストとして導電性基材をエッチングすることにより、 に示すエッチングされた導電性基材が得られる(図 11— c)。その際、エッチングレジ ストとしての光硬化性榭脂層 13は剥離しないで残したままにしておく。次いで、この 導電性基材 1の凹部 2に絶縁層 8を形成させる(図 11 d)。このとき、導電性基材の 凸部上面 8にはエッチングレジストとしての光硬化性榭脂層 13が残っているので絶 縁層は形成されない。し力る後にエッチングレジストのみを選択的に剥離し、導電性 基材の凸部上面 8以外の部分、すなわち凹部に選択的に絶縁層 12を形成させること ができる(図 11 e)。場合によってはレジストとしての光硬化性榭脂層 13の残渣ゃ 表面の汚れを除去するために表面を軽く研磨することも可能である。この場合凸部の 上面を研削してしまわな 、ように、導電性基材の種類によってその力は異なるので一 概には言えないが、弱い力で研磨することが好ましい。また、研磨のかわりに脱脂処 理剤などで薬液による処理を施すことも可能である。この場合、絶縁層がおかされな V、ような薬液を適宜選択することができる。 FIG. 11 is a cross-sectional view showing an example of a process showing a method for producing a conductive substrate for plating. FIG. 11 shows an example using a conductive substrate having the cross-sectional shape shown in FIG. 3d. A photocurable resin layer 7 is formed on the surface of the conductive substrate 1 (FIG. 11a). Photolithographic method 13 is used to pattern the photocurable resin layer 13 (Figure 11-b). By etching the conductive substrate using the patterned photocurable resin layer 13 as an etching resist, the etched conductive substrate shown in FIG. 11 is obtained (FIG. 11- c ). At that time, the photocurable resin layer 13 as an etching resist is left without being peeled off. Next, an insulating layer 8 is formed in the recess 2 of the conductive substrate 1 (FIG. 11d). At this time, since the photocurable resin layer 13 as an etching resist remains on the upper surface 8 of the convex portion of the conductive base material, no insulating layer is formed. After the pressing force, only the etching resist can be selectively peeled off, and the insulating layer 12 can be selectively formed in a portion other than the upper surface 8 of the convex portion of the conductive substrate, that is, in the concave portion (FIG. 11e). In some cases, the surface of the photocurable resin layer 13 as a resist can be lightly polished in order to remove dirt on the surface. In this case, as the upper surface of the convex portion is not ground, the force varies depending on the type of the conductive base material, so it cannot be generally stated, but it is preferable to polish with a weak force. Further, instead of polishing, it is possible to perform treatment with a chemical solution using a degreasing treatment agent or the like. In this case, it is possible to appropriately select a chemical solution such as V in which the insulating layer is not broken.
[0072] 本発明において絶縁層を形成するにあたり、エッチングレジストをより有効に活用す るためにはエッチングレジストパターンの幅よりもエッチング後の凸部パターン上面の 幅が狭くなる、 V、わゆるオーバーエッチング法を行うことが好ま 、(図 11— c参照)。 このとき、エッチングレジストパターンの幅は、良好なパターン形成又は良好なパター ンの形成を容易にするという観点からは、 20 m以上であることが好ましい。これより も狭い幅のパターンを形成しょうとすると、エッチングレジストパターンのにじみやかす れ、断線等が発生しやすくなる力もである。このような点で安全のためには、エツチン グレジストパターンの幅は、 30 m以上にしてもよい。そこで、オーバーエッチングす ることにより断線がなぐし力も、良好なより微細な導電性基材の凸部パターンを形成 することができる。エッチングレジストパターンの幅は、大きすぎるとオーバーエツチン グの度合いが大きくなりすぎるため、 100 μ m以下、特に 50 μ m以下であることが好 ましい。エッチングレジストパターンの幅が 100 μ mを超えるとオーバーエッチング後 の導電性基材の凸部上面の幅を 40 m以下にするのは困難となる傾向がある。 In forming the insulating layer in the present invention, in order to use the etching resist more effectively, the width of the upper surface of the convex pattern after etching becomes narrower than the width of the etching resist pattern. Etching is preferred (see Figure 11-c). At this time, the width of the etching resist pattern is preferably 20 m or more from the viewpoint of facilitating the formation of a good pattern or a good pattern. If you try to form a pattern with a narrower width than this, the etching resist pattern will blur. It is also a force that easily causes disconnection or the like. For safety in this respect, the width of the etching resist pattern may be 30 m or more. Therefore, by performing over-etching, it is possible to form a convex pattern of a finer conductive base material with good breaking force. If the width of the etching resist pattern is too large, the degree of over-etching becomes too large, so it is preferable that the width is 100 μm or less, particularly 50 μm or less. If the width of the etching resist pattern exceeds 100 μm, it tends to be difficult to make the width of the upper surface of the convex portion of the conductive substrate after overetching 40 m or less.
[0073] エッチングによるライン幅は元のレジストの幅とエッチング時間により調整可能であ る。エッチング液としては導電性金属の材質によって様々な種類があり、それぞれの 金属に対してエッチング液が市販されているのでそれらを使用することができる。例 えば、導電性金属力 Sステンレスであれば、塩ィ匕第二鉄を用いることが一般的であり、 チタンであればふつ酸系のエッチング液がよく用いられる。  The line width by etching can be adjusted by the width of the original resist and the etching time. There are various kinds of etching liquids depending on the conductive metal material, and since etching liquids are commercially available for the respective metals, they can be used. For example, in the case of conductive metal strength S stainless steel, it is common to use salty ferric iron, and in the case of titanium, a hydrofluoric acid-based etching solution is often used.
[0074] 図 12— a〜図 12— cは、絶縁層 8を形成させた後、エッチングレジストパターン 13を 剥離する前の凸部 3上面部分を拡大した断面図である。図 12— aは、オーバーエツ チング法を適用しな!、場合の例であり、導電性基材の凸部 3の上面よりも上方でレジ ストパターン 13の側面にまでに絶縁層 12が析出してしまう。この場合、エッチングレ ジスト 13を剥離しに《なる可能性がある。また、絶縁層 12と転写用基材の粘着剤と の接触が起こりやすくなり、絶縁層 12の部分的な破壊が起こりやすくなる傾向がある さらに、オーバーエッチング法を適用したとしても、オーバーエッチングの程度が小 さすぎたり、絶縁層 12を厚く形成しすぎると、図 12— bに示すように、上記と同様の現 象; 0ゝ起こる。  FIGS. 12-a to 12-c are enlarged cross-sectional views of the upper surface portion of the convex portion 3 after the insulating layer 8 is formed and before the etching resist pattern 13 is peeled off. Fig. 12-a is an example of the case where the over-etching method is not applied! The insulating layer 12 is deposited on the side surface of the resist pattern 13 above the upper surface of the convex portion 3 of the conductive substrate. Resulting in. In this case, the etching resist 13 may be removed. In addition, contact between the insulating layer 12 and the adhesive of the transfer substrate tends to occur, and the insulating layer 12 tends to be partially broken. If the degree is too small or the insulating layer 12 is formed too thick, as shown in FIG.
エッチングレジストパターン 13の幅を x、エッチングで得られた凸部 3上面の幅を yと した場合、オーバーエッチングされた幅 zは次式(1)で求められる。  When the width of the etching resist pattern 13 is x and the width of the upper surface of the protrusion 3 obtained by etching is y, the over-etched width z is obtained by the following equation (1).
[0075] [数 1]
Figure imgf000031_0001
絶縁層の凸部上面の端における水平方向の厚さ(凸部の上面の端力 水平方向 に測定した値)を Wとした場合、オーバーエッチングの幅 Zと上記 Wの間には、次の関 係式(2)が成り立って 、ることが好まし 、。
[0075] [Equation 1]
Figure imgf000031_0001
Thickness in the horizontal direction at the edge of the upper surface of the convex portion of the insulating layer (end force on the upper surface of the convex portion, horizontal direction When W is the measured value), it is preferable that the following relational expression (2) holds between the overetching width Z and the above W.
[0076] [数 2] w ^ z · · · · 、 2 ) wは、 zと同じ大きさである力、図 12— cに示すように、それよりも小さいことが好まし い。 [0076] [Equation 2] w ^ z ···, 2) w is preferably a force that is the same size as z, smaller than that, as shown in Figure 12-c.
[0077] 図 11 eに断面で示す導電性基材を作製しょうとして、図 11— bに示す状態の後、 エッチングレジストとしての光硬化性榭脂層 13を剥離してから、絶縁層 12を形成する と、図 13に示すように、凹部 2だけでなく凸部上面 8にも絶縁層 12が形成されること になり、凸部上面 8を露出させるには、前記したように研磨等の加工で凸部上面 8に 形成させた絶縁層 12のみを除去すればよい。この絶縁層 12の除去に際し、凹部 2 ( 特に凸部側面 7)に形成された絶縁層 12を除去しないように注意する。その加工をす るには、それなりにカ卩ェ精度が要る力 上記の方法によれば、この絶縁層 12の選択 的な除去の工程が不要であるため、めっき用導電性基材の作製工程数がへり、また 、その作製が容易になる。  [0077] In order to produce a conductive substrate shown in cross section in Fig. 11e, after the state shown in Fig. 11-b, the photocurable resin layer 13 as an etching resist was peeled off, and then the insulating layer 12 was removed. As shown in FIG. 13, the insulating layer 12 is formed not only on the concave portion 2 but also on the upper surface 8 of the convex portion, as shown in FIG. Only the insulating layer 12 formed on the upper surface 8 of the convex portion by processing may be removed. When removing the insulating layer 12, care should be taken not to remove the insulating layer 12 formed in the concave portion 2 (particularly the convex side surface 7). In order to carry out the processing, a force that requires a certain amount of accuracy is required. According to the above method, the step of selectively removing the insulating layer 12 is not necessary. The number of processes is reduced, and the fabrication becomes easy.
今まで、エッチングレジストとして、フォトリソグラフ法を利用した光硬化性榭脂層 13 で説明したが、これを印刷法で形成した熱硬化性榭脂層又は光硬化性榭脂層でも 同様であることは、言うまでもない。  Up to now, the photo-curable resin layer 13 using a photolithographic method has been described as an etching resist. However, the same applies to a thermosetting resin layer or a photo-curable resin layer formed by a printing method. Needless to say.
導電性基材の材質として、銅のような比較的柔らかい金属を使用した場合、上記ェ 程において、最後に凸部上面をニッケル、クロム等の硬い金属でめっきすることが好 ましい。  When a relatively soft metal such as copper is used as the material for the conductive base material, it is preferable that the upper surface of the convex portion is finally plated with a hard metal such as nickel or chrome in the above process.
上記の図 11による説明では、図 9 aの絶縁層を有する導電性支持体が得られる 力 図 9—bのような絶縁層が得られるように調整しても良ぐ図 9— cのような絶縁層 が得られるように後でカ卩ェしてもょ 、。  In the explanation according to FIG. 11 above, it is possible to obtain the conductive support having the insulating layer of FIG. 9a. The adjustment can be made so as to obtain the insulating layer as shown in FIG. 9-b. Let's look at it later to get a good insulating layer.
[0078] 本発明で用いられる絶縁層のための絶縁材料は、金属との密着性が高ぐ耐薬品 性が強い材料が好んで用いられる。電気めつきもしくは無電解めつきの工程では、前 処理液やめつき液に浸漬されるため、耐酸性と耐アルカリ性双方に強 ヽ材料がさら に好ましい。このような榭脂の中では、たとえば、熱硬化性榭脂が好ましぐこのような 榭脂としては、リグ-ン榭脂、エポキシ榭脂、尿素樹脂、ァ-リン榭脂、メラミン榭脂、 フエノール榭脂(アルキルフエノール榭脂を含む)、ホルマリン榭脂、金属酸化物、金 属塩化物、ォキシム等が用いられ、これらは自己硬化性のものである (硬化触媒を使 用してもよい)。 [0078] As the insulating material for the insulating layer used in the present invention, a material having high chemical resistance and high adhesion to a metal is preferably used. In the process of electroplating or electroless plating, it is immersed in the pretreatment solution or plating solution, so that the strong material is more resistant to both acid resistance and alkali resistance. Is preferred. Among such resins, for example, thermosetting resins are preferred, such as ligne resin, epoxy resin, urea resin, errin resin, melamine resin. , Phenolic resin (including alkylphenolic resin), formalin resin, metal oxide, metal chloride, oxime, etc., which are self-curing (even if a curing catalyst is used) Good).
熱硬化性榭脂として、硬化剤を利用するものが使用できる。このようなものとしては、 カルボキシル基、水酸基、エポキシ基、アミノ基、不飽和炭化水素基等の官能基を有 する樹脂とエポキシ基、水酸基、アミノ基、アミド基、カルボキシル基、チオール基等 の官能基を有する硬化剤あるいは金属塩化物、イソシァネート、酸無水物、金属酸 化物、過酸化物等の硬化剤であって上記樹脂の官能基と反応性の官能基を有する ものとの組み合わせで用いられるものがある。なお、硬化反応速度を増加する目的で 、汎用の触媒等の添加剤を使用することもできる。具体的には、硬化性アクリル榭脂 組成物、不飽和ポリエステル榭脂組成物、ジァリルフタレート榭脂、エポキシ榭脂組 成物、ポリウレタン榭脂組成物等が例示される。絶縁層の形成方法としては、例えば 、刷毛塗りや、スプレー塗装、さらには、デイツビングした後にスキージゃブレード等 で榭脂を搔き取った後に乾燥させるなどの方法が挙げられる。  What uses a hardening | curing agent can be used as a thermosetting resin. Examples of such a resin include a resin having a functional group such as a carboxyl group, a hydroxyl group, an epoxy group, an amino group, and an unsaturated hydrocarbon group, and an epoxy group, a hydroxyl group, an amino group, an amide group, a carboxyl group, and a thiol group. Used in combination with a curing agent having a functional group or a curing agent such as a metal chloride, isocyanate, acid anhydride, metal oxide, peroxide, etc., which has a functional group reactive with the above resin. There is something to be done. For the purpose of increasing the curing reaction rate, additives such as general-purpose catalysts can also be used. Specific examples include curable acrylic resin compositions, unsaturated polyester resin compositions, diallyl phthalate resins, epoxy resin compositions, polyurethane resin compositions, and the like. Examples of the method for forming the insulating layer include brush coating, spray coating, and after dubbing, removing the grease with a squeegee blade and drying it.
[0079] さらに、絶縁材料としては、皮膜の均一性や、形成の簡便さ、さらに環境に対する 負荷が少な 、ことから、電着塗料が好ま 、。  [0079] Further, as the insulating material, the electrodeposition coating is preferred because of the uniformity of the film, the ease of formation, and the environmental load.
電着塗料は、それ自体既知のカチオン型及びァ-オン型の ヽずれでも使用できる oここでは、使用できる電着塗料の一例を示す。  Electrodeposition paints can be used in any known cationic type or eron type. Here, an example of electrodeposition paints that can be used is shown.
[0080] カチオン型電着塗料には、塩基性アミノ基をもつ樹脂のペーストを作製し、これを酸 で中和、水溶化 (水分散化)してなる陰極析出型の熱硬化性電着塗料が包含される 。カチオン型電着塗料は前記導電性基材 (被塗物)を陰極にして塗装される。  [0080] For the cationic electrodeposition coating material, a resin paste having a basic amino group is prepared, and this is neutralized with an acid and water-solubilized (water-dispersed). Paint is included. The cationic electrodeposition coating is applied using the conductive substrate (object to be coated) as a cathode.
塩基性アミノ基をもつ榭脂は、例えば、ビスフエノール型エポキシ榭脂、エポキシ基 (またはグリシジル基)含有アクリル榭脂、アルキレングリコールのグリシジルエーテル 、エポキシ化ポリブタジエンならびにノボラックフエノール榭脂のエポキシ化物などの エポキシ基含有樹脂のエポキシ基 (ォキシラン環)にアミンィ匕合物を付加したもの、塩 基性アミノ基をもつ不飽和化合物(例えば、メタクリル酸ジメチルアミノエチル、 N—ビ -ルピラゾール、 N—ジェチルアミノエチルアタリレートなど)を重合させたもの、第 3 級ァミノ基含有グリコール(例えば、 N—メチルジェタノールァミン)をグリコールの一 成分とするダリコール成分とポリイソシァネート化合物との反応物、さらに、酸無水物 とジァミンィ匕合物との反応でイミノアミンが生成することによって、榭脂ヘアミノ基を導 入したものなどがある。ここで、上記したアミンィ匕合物としては、塩基性アミンィ匕合物で あって、脂肪族、脂環式もしくは芳香脂肪族系の第 1級もしくは第 2級ァミン、アルカノ ールァミン、第 3級ァミン、第 4級アンモ-ゥム塩等のアミンィ匕合物が挙げられる。これ らの塩基性アミノ基を有するアミンィ匕合物の代表例としては次のものを挙げることがで きる。 (1) The resin having a basic amino group includes, for example, bisphenol type epoxy resin, epoxy group (or glycidyl group) -containing acrylic resin, glycidyl ether of alkylene glycol, epoxidized polybutadiene, and epoxidized product of novolac phenol resin. An epoxy group (oxysilane ring) of an epoxy group-containing resin with an amine compound added, or an unsaturated compound having a basic amino group (for example, dimethylaminoethyl methacrylate, N-biphenyl). -Lupyrazole, polymerized N-jetylaminoethyl acrylate, etc., and a daricol component and polyisocyanate containing a tertiary amino group-containing glycol (for example, N-methyljetanolamine) as one component of glycol. A reaction product with an nate compound, and a product in which a fatty acid amino group is introduced by the formation of iminoamine by the reaction of an acid anhydride and a diamine compound. Here, the above-mentioned amine compound is a basic amine compound, which is an aliphatic, cycloaliphatic or araliphatic primary or secondary amine, alkanolamine, tertiary amine. And amine compounds such as quaternary ammonia salts. Typical examples of these amine compounds having a basic amino group include the following. (1)
メチルァミン、ェチルァミン、 n-または iso-プロピルァミン、モノエタノールァミン、 n-ま たは iso-プロパノールァミンなどの第 1級ァミン;(2)ジェチルァミン、ジエタノールァ ミン、ジ n-または iso-プロパノールァミン、 N-メチルエタノールァミン、 N-ェチルェタノ ールァミンなどの第 2級ァミン;(3)エチレンジァミン、ジエチレントリァミン、ヒドロキシ ェチルアミノエチルァミン、ェチルアミノエチルァミン、メチルァミノプロピルァミン、ジ メチルアミノエチルァミン、ジメチルァミノプロピルァミンなどのポリアミン。これらの中 で水酸基を有するアルカノールァミン類が好ましぐまた第 1級アミノ基は予めケトンと 反応させてブロックした後、残りの活性水素でエポキシ基と反応させてもよい。さらに 、上記アミン化合物以外に、アンモニア、グァ-ジン、ヒドロキシルァミン、ヒドラジン、 ヒドロキシェチルヒドラジンなどの塩基性ィ匕合物も同様に使用できる。これらの化合物 を用いて形成される塩基性基は酸、特に好ましくはギ酸、酢酸、乳酸などの水溶性有 機カルボン酸でプロトンィ匕してカチオン性基とすることができる。さらに、トリェチルアミ ン、トリエタノールァミン、 Ν,Ν-ジメチルエタノールァミン、 Ν-メチルジェタノールァミン 、 Ν,Ν-ジェチルエタノールァミン、 Ν-ェチルジェタノールァミンなどの第 3級ァミンも 使用でき、これらは酸で予めプロトンィ匕し、エポキシ基と共に 4級塩ィ匕することができ る。また、ァミン化合物以外に、エポキシ基と反応してカチオン性基を生成する、ジェ チルスルフイド、ジフエ-ルスルフイド、テトラメチレンスルフイド、チォジエタノールな どのスルフイド類とホウ酸、炭酸、有機モノカルボン酸との塩をエポキシ基と反応させ て第 3級スルホ -ゥム塩としてもよい。さらに、トリェチルホスフィン、フエ-ルジメチル ホスフィン、ジフエ-ルメチルホスフィン、トリフエ-ルホスフィンなどのホスフィン類と 上記の如き酸との塩をエポキシ基と反応させて、第 4級ホスホニゥム塩としてもまた、 第 2級スルフイド塩、第 3級ホスフィン塩も使用できる。 Primary amines such as methylamine, ethylamine, n- or iso-propylamine, monoethanolamine, n- or iso-propanolamine; (2) jetylamine, diethanolamine, di-n- or iso-propanolamine Secondary amines such as amine, N-methylethanolamine, N-ethylethanolamine; (3) ethylenediamine, diethylenetriamine, hydroxyethylaminoethylamine, ethylaminoethylamine, methylaminopropylamine , Polyamines such as dimethylaminoethylamine and dimethylaminopropylamine. Of these, alkanolamines having a hydroxyl group are preferred. The primary amino group may be blocked by reacting with a ketone in advance, and then reacted with an epoxy group with the remaining active hydrogen. In addition to the above amine compounds, basic compounds such as ammonia, guanidine, hydroxylamine, hydrazine, and hydroxyethyl hydrazine can be used in the same manner. The basic group formed using these compounds can be converted to a cationic group by protonation with an acid, particularly preferably a water-soluble organic carboxylic acid such as formic acid, acetic acid or lactic acid. Furthermore, tertiary grades such as triethylamine, triethanolamine, Ν, Ν-dimethylethanolamine, Ν-methyljetanolamine, Ν, Ν-jetylethanolamine, Ν-ethylethylethanolamine, etc. Amines can also be used, which can be pre-protonated with acid and quaternized with epoxy groups. In addition to amine compounds, sulfides such as dimethylsulfide, diphenylsulfide, tetramethylenesulfide, and thiodiethanol, which react with epoxy groups to form cationic groups, boric acid, carbonic acid, and organic monocarboxylic acids. This salt may be reacted with an epoxy group to form a tertiary sulfo-um salt. In addition, triethyl phosphine, phenol dimethyl A quaternary phosphonium salt can also be obtained by reacting a salt of a phosphine such as phosphine, diphenylmethylphosphine, triphenylphosphine and the like with an acid as described above with an epoxy group to form a quaternary phosphonium salt. Phosphine salts can also be used.
上記塩基性アミノ基を有する榭脂を中和し、水溶ィ匕 (水分散)するための中和剤で ある酸としては、例えば、酢酸、ヒドロキシル酢酸、プロピオン酸、酪酸、乳酸、グリシ ンなどの有機酸、硫酸、塩酸、リン酸等の無機酸が使用できる。中和剤の使用量は、 上記樹脂の塩基価 (約 20〜200)に対し中和当量約 0. 1〜0. 4の範囲が適当であ る。  Examples of the acid that is a neutralizing agent for neutralizing the coconut resin having a basic amino group and making it water-soluble (water-dispersed) include acetic acid, hydroxylacetic acid, propionic acid, butyric acid, lactic acid, glycine, etc. Inorganic acids such as organic acids, sulfuric acid, hydrochloric acid and phosphoric acid can be used. The amount of neutralizing agent used is suitably in the range of about 0.1 to 0.4 neutralizing equivalent to the base number of the resin (about 20 to 200).
また、カチオン電着塗料には、架橋剤を配合することができる。架橋剤としては、ブ ロック化したポリイソシァネートイ匕合物がよく知られているが、塗膜を加熱 (約 140°C 以上)するとブロック剤が解離して、イソシァネート基が再生し、上記の如きカチオン 性榭脂中の水酸基などのイソシァネート基と反応性の基に対し架橋反応し硬化する さらに、カチオン型電着塗料には、顔料 (着色顔料、体質顔料、防鲭顔料など。顔 料の配合量は榭脂固形分 100重量部あたり 40重量部以下が好ましい)、親水性溶 剤、水、添加剤などを必要に応じて配合することができる。  Moreover, a crosslinking agent can be mix | blended with a cationic electrodeposition coating material. As a crosslinking agent, a blocked polyisocyanate compound is well known, but when the coating film is heated (about 140 ° C or higher), the blocking agent is dissociated to regenerate the isocyanate group, Crosslinking reaction is carried out with respect to the isocyanate groups such as hydroxyl groups in the cationic resin as described above and reactive groups, and the cationic electrodeposition paints include pigments (colored pigments, extender pigments, antifouling pigments, etc. face). The blending amount of the material is preferably 40 parts by weight or less per 100 parts by weight of the resin solid content), hydrophilic solvent, water, additives and the like can be blended as necessary.
カチオン型電着塗料は、その固形分濃度を約 5〜40重量%となるように脱イオン水 などで希釈し、 pHを 5. 5〜8. 0の範囲内に調整することが好ましい。このようにして 調製されたカチオン型電着塗料を用いてのカチオン電着塗料は、通常、浴温 15〜3 5°C、負荷電圧 100〜400Vの条件で被塗物を陰極として行なうことができる。塗膜 の焼付硬化温度は一般に 100〜200°Cの範囲が適している。  The cationic electrodeposition paint is preferably diluted with deionized water or the like so that its solid content concentration is about 5 to 40% by weight, and the pH is adjusted within the range of 5.5 to 8.0. Cationic electrodeposition paints using cationic electrodeposition paints prepared in this way can usually be carried out with the substrate to be coated as a cathode under conditions of a bath temperature of 15 to 35 ° C and a load voltage of 100 to 400V. it can. A baking temperature of the coating film is generally suitable in the range of 100 to 200 ° C.
ァ-オン型電着塗料は、カルボキシル基を持つ榭脂をベースとし、これを塩基性ィ匕 合物で中和、水溶化 (水分散化)してなる陽極析出型の電着塗料が好ましぐ前記導 電性基材 (被塗物)を陽極として塗装される。  The ion-on electrodeposition paint is based on a resin having a carboxyl group and is preferably an anodic deposition electrodeposition paint that is neutralized and water-solubilized (water-dispersed) with a basic compound. It is coated with the conductive substrate (object) as the anode.
カルボキシル基を持つ榭脂としては、乾性油(あまに油、脱水ひまし油、桐油など) に無水マレイン酸を付加したマレインィ匕油榭脂、ポリブタジエン(1, 2—型、 1, 4—型 など)に無水マレイン酸を付カ卩したマレイン化ポリブタジエン、エポキシ榭脂の不飽和 脂肪酸エステルに無水マレイン酸を付加した榭脂、高分子量多価アルコール (分子 量約 1000以上で、エポキシ榭脂の部分エステルおよびスチレン ァリルアルコール 共重合体なども含まれる)に多塩基酸 (無水トリメリット酸、マレイン化脂肪酸、マレイ ン化油など)を付加して得られる榭脂、カルボキシル基含有ポリエステル榭脂 (脂肪 酸変性したものも含む)、カルボキシル基含有アクリル榭脂、グリシジル基もしくは水 酸基を含有する重合性不飽和モノマーと不飽和脂肪酸との反応生成物を用いて形 成された重合体もしくは共重合体に無水マレイン酸などを付加せしめた榭脂などがあ げられ、カルボキシル基の含有量力 一般に、酸価で約 30〜200の範囲のものが適 している。 As the coconut resin having a carboxyl group, maley coconut oil resin obtained by adding maleic anhydride to dry oil (such as linseed oil, dehydrated castor oil, tung oil), polybutadiene (1, 2-type, 1, 4-type, etc.) Maleated polybutadiene with maleic anhydride attached to it, epoxy resin with unsaturated fatty acid ester with maleic anhydride added, and high molecular weight polyhydric alcohol (molecule It can be obtained by adding polybasic acid (trimellitic anhydride, maleated fatty acid, maleated oil, etc.) to an amount of about 1000 or more, including a partial ester of epoxy resin and styrene alcohol alcohol copolymer). Reaction product of polymerizable unsaturated monomer and unsaturated fatty acid containing carboxyl group-containing polyester resin (including fatty acid-modified one), carboxyl group-containing acrylic resin, glycidyl group or hydroxyl group For example, a resin or a copolymer formed by adding maleic anhydride or the like to a polymer or copolymer formed by using carboxylic acid, and a carboxyl group content strength. Generally, an acid value in the range of about 30 to 200 is suitable. is doing.
これらカルボキシル基含有榭脂を、中和し、水溶 (分散)化するための中和剤である 塩基性化合物としては、例えば、モノエタノールァミン、ジエタノールァミン、ジメチル アミノエタノールなどのアルカノールァミン、ジェチルァミン、トリェチルァミンなどのァ ルキルァミン、水酸ィ匕カリウム、水酸ィ匕ナトリウムなどの無機アルカリなどが使用できる 。これら中和剤の使用量は、上記樹脂の酸価に対する理論中和当量の約 0. 1〜1. 0倍当量 (好ましくは 0. 4〜0. 8倍当量)の範囲が適当である。  Examples of the basic compound that is a neutralizing agent for neutralizing these carboxyl group-containing resins and making them water-soluble (dispersed) include alkanolamines such as monoethanolamine, diethanolamine, and dimethylaminoethanol. Further, alkylamines such as jetylamine and triethylamine, and inorganic alkalis such as potassium hydroxide and sodium hydroxide can be used. The amount of these neutralizing agents used is suitably in the range of about 0.1 to 1.0 times equivalent (preferably 0.4 to 0.8 times equivalent) of the theoretical neutralization equivalent to the acid value of the resin.
また、ァ-オン型電着塗料には、架橋剤を配合することができる。架橋剤としては、 へキサキスメトキシメチルメラミン、ブトキシ化メチルメラミン、エトキシ化メチルメラミン などの低分子量メラミン榭脂を必要に応じて使用することができる。さらに、ァ-オン 型電着塗料には顔料 (着色顔料、体質顔料、防鲭顔料など。顔料の配合量は榭脂 固形分 100重量部あたり 40重量部以下とすることが好ましい)、親水性溶剤、水、添 加剤などを必要に応じて配合することができる。  In addition, a cross-linking agent can be blended in the ion-on electrodeposition paint. As the cross-linking agent, low molecular weight melamine greaves such as hexakis methoxymethyl melamine, butoxylated methyl melamine, and ethoxylated methyl melamine can be used as necessary. In addition, it is necessary to use pigments (colored pigments, extender pigments, anti-fouling pigments, etc. The amount of pigment is preferably 40 parts by weight or less per 100 parts by weight of the solid content of the resin), hydrophilic Solvents, water, additives, etc. can be blended as necessary.
ァ-オン型電着塗料には、固形分濃度を約 5〜40重量%に脱イオン水などで調整 し、 pH7〜9の範囲に保ってァ-オン電着塗装に供することが好ましい。ァ-オン電 着塗装は常法に従って行うことができ、例えば、浴温 15〜35°C、負荷電圧 100〜35 0Vの条件で、被塗物を陽極として実施することができる。ァ-オン電着塗膜は原則と して 100〜200°C、好ましくは 140〜200°Cの範囲に加熱して硬化せしめられるが、 空気乾燥性の不飽和脂肪酸で変性した榭脂を用いた場合には室温で乾燥させるこ とちでさる。  It is preferable to adjust the solid content concentration to about 5 to 40% by weight with deionized water, etc., and keep it in the pH range of 7 to 9 for use in the on-ion electrodeposition coating. The on-electrode coating can be carried out according to a conventional method. For example, the coating can be carried out with the object to be coated as an anode under conditions of a bath temperature of 15 to 35 ° C. and a load voltage of 100 to 350 V. As a general rule, the electrode-on electrodeposition coating can be cured by heating in the range of 100 to 200 ° C, preferably 140 to 200 ° C. If so, dry at room temperature.
本発明で用いられる絶縁層の材料としては、耐久性の観点力もセラミックなどの無 機材料を用いることもできる。 As a material for the insulating layer used in the present invention, durability is not limited to ceramics or the like. Machine materials can also be used.
無機材料としては、ウエットコーティング法を用いる場合にはアルカリ金属、オルガノ ポリ金属、オルガノアルコキシ金属、アルコキシ金属、変性ァセチルァセトネート金属 等力もなる金属酸ィ匕物系ポリマーや、無機フィラーを含有した塗料を、アルコールや 水などの溶剤をカ卩えた状態でスプレー、ディスペンサー、デイツビング、ロール、スピ ンコート等により塗布できる。また、金属のフッ化物錯体を用いて液層析出法 (LPD 法)などにより絶縁層を形成させることもできる。  Inorganic materials include alkali metal, organopolymetal, organoalkoxymetal, alkoxymetal, modified acetylethylacetonate metal, and other metal oxide polymers and inorganic fillers when wet coating is used. The applied paint can be applied by spray, dispenser, datebing, roll, spin coat, etc. with a solvent such as alcohol or water. An insulating layer can also be formed by a liquid layer deposition method (LPD method) using a metal fluoride complex.
また、無機材料としてドライコーティング法で各種金属の酸ィ匕物、窒化物、炭化物を 形成させることも可能である。コーティングする方法としては、蒸着、スパッタリング、ィ オンプレーティングといった PVD法や、プラズマ CVD,熱 CVDといった CVD法の他 、溶射などの方法を用いて作製することができる。  It is also possible to form various metal oxides, nitrides, and carbides by dry coating as an inorganic material. As a coating method, it can be produced by using a PVD method such as vapor deposition, sputtering, ion plating, a CVD method such as plasma CVD or thermal CVD, or a thermal spraying method.
絶縁材料は単体で用いても良 、が、上記方法を組み合わせて二層以上の膜を形 成させて用いることが好まし 、。ゾルゲルなどのウエットコーティング法単体で形成さ せた絶縁膜などは、下地の金属との膨張係数差が大きいため、クラック等が入りやす い。そこで中間層としてドライコーティング法により膨張係数差を緩和するように金属 、酸化物、窒化物、炭化物などを一層あるいは二層以上形成させることが好ましい。 最表面にコ一ティングする層が絶縁性を有して ヽればその下層は必ずしも絶縁性を 有している必要はない。ドライコーティングで形成する膜種としては、例えば、 Al、 Au 、 Co、 Cr、 Cu、 Ge、 In、 Mo、 Nb、 Ni、 Pb、 Pd、 Pt、 Ru、 Si、 Sn、 Ta、 Ti、 W、 Y、 Z n、 Zrなどの純金属やそれらの合金の他、 Al O、 BaTiO、 Cr O、 Fe O、 InO、  The insulating material may be used alone, but it is preferable to form a film of two or more layers by combining the above methods. An insulating film formed by a single wet coating method such as sol-gel has a large difference in expansion coefficient from the underlying metal, so cracks are likely to occur. Therefore, it is preferable to form one layer or two or more layers of metals, oxides, nitrides, carbides, etc. as an intermediate layer so as to alleviate the difference in expansion coefficient by dry coating. If the layer coated on the outermost surface has an insulating property, the lower layer does not necessarily have an insulating property. Examples of film types formed by dry coating include Al, Au, Co, Cr, Cu, Ge, In, Mo, Nb, Ni, Pb, Pd, Pt, Ru, Si, Sn, Ta, Ti, W, In addition to pure metals such as Y, Zn, Zr and their alloys, Al O, BaTiO, Cr O, Fe O, InO,
2 3 3 2 3 2 3 3 2 3 3 2 3 2 3 3
MgO、 SiO、 SiO、 SnO、 SrTiO、 TaO、 TiO、 WO、 Y O、 ZnO、 ZnO、 Zr MgO, SiO, SiO, SnO, SrTiO, TaO, TiO, WO, YO, ZnO, ZnO, Zr
2 2 3 5 2 3 2 3 2 2 2 3 5 2 3 2 3 2
O、インジウムチンオキサイド (ITO)、アンチモンチンオキサイド (ATO)などの金属Metals such as O, indium tin oxide (ITO), and antimontin oxide (ATO)
2 2
酸化物、 A1N、 BN、 CrN、 Si N、 TiN、 TiAlN、 TiCNなどの窒化物、 B C、 SiC、 Oxides, nitrides such as A1N, BN, CrN, Si N, TiN, TiAlN, TiCN, B C, SiC,
2 3 4  2 3 4
TiCなどの炭化物を用いることが出来る。また、これらの金属、金属化合物を組み合 わせて用いることもできる。導電性基材が鉄系の材料の場合、窒化物や炭化物が特 に導電性基材との密着性がよく好まし 、。  A carbide such as TiC can be used. These metals and metal compounds can also be used in combination. When the conductive substrate is an iron-based material, nitrides and carbides are particularly preferred because of their good adhesion to the conductive substrate.
二層以上の膜を形成させてコーティングする場合にはドライコーティングの層を積 層させて絶縁膜を形成させても良いし、ドライコ一ティングの上にウエットコーティング で膜を形成させても良い。 When two or more layers are formed and coated, an insulating layer may be formed by stacking dry coating layers, or wet coating on the dry coating. A film may be formed by
特に、絶縁層として高強度で高硬度の膜を形成させたい場合には少なくともその表 面をダイヤモンドに類似したカーボン薄膜、 、わゆるダイヤモンドライクカーボン (以 下、 DLC薄膜とする)のうち、絶縁性を有するものにて形成させることが好ましい。 絶縁層は、その全体を、上述した絶縁性の DLC薄膜によって形成してもよいが、当 該 DLC薄膜の、金属板等の導電性基材に対する密着性を向上して、絶縁層の耐久 性をさらに向上するためには、この両者の間に、 Sほたは SiCの薄膜からなる中間層 を介揷するのが好ましい。  In particular, when it is desired to form a high-strength and high-hardness film as an insulating layer, at least the surface of the carbon thin film similar to diamond or the so-called diamond-like carbon (hereinafter referred to as DLC thin film) is insulated. It is preferable to form it with what has property. The insulating layer may be formed entirely by the above-mentioned insulating DLC thin film, but it improves the adhesion of the DLC thin film to a conductive substrate such as a metal plate, thereby improving the durability of the insulating layer. In order to further improve the above, it is preferable to interpose an intermediate layer composed of a thin film of SiC between the two.
上記 Sほたは SiCの薄膜は、例えばステンレス鋼などの金属との密着性に優れる上 、その上に積層する絶縁性の DLC薄膜との界面において SiCを形成して、当該 DL C薄膜の密着性を向上する効果を有している。  The above S or SiC thin film has excellent adhesion to a metal such as stainless steel, and also forms SiC at the interface with the insulating DLC thin film to be laminated on it. Has the effect of improving the performance.
Sほたは SiC及び DLC薄膜は、上記に記載したドライコーティング法により形成さ せることができる。  S, SiC and DLC thin films can be formed by the dry coating method described above.
本発明におけるめっき法は公知の方法を採用することができる。めっき法としては、 電気めつき法、無電解めつき法その他のめっき法を適用することができる。  A well-known method can be employ | adopted for the plating method in this invention. As the plating method, an electric plating method, an electroless plating method, or other plating methods can be applied.
電気めつきについてさらに説明する。例えば、電気銅めつきであれば、めっき用の 電解浴には硫酸銅浴、ほうふつ化銅浴、ピロリン酸銅浴、または、シアン化銅浴など を用いることができる。このときに、めっき浴中に有機物等による応力緩和剤(光沢剤 としての効果も有する)を添加すれば、より電着応力のばらつきを低下させることがで きることが知られている。また、電気ニッケルめっきであれば、ワット浴、スルファミン酸 浴などを使用することができる。これらの浴にニッケル箔の柔軟性を調整するため、 必要に応じてサッカリン、パラトルエンスルホンアミド、ベンゼンスルホン酸ナトリウム、 ナフタリントリスルホン酸ナトリウムのような添加剤、及びその調合剤である市販の添 加剤を添加してもよい。さら〖こ、電気金めつきの場合は、シアンィ匕金カリウムを用いた 合金めつきや、クェン酸アンモ-ゥム浴ゃクェン酸カリウム浴を用いた純金めつきなど が用いられる。合金めつきの場合は、金 銅、金 銀、金 コバルトの 2元合金や、 金 銅 銀の 3元合金が用いられる。他の金属に関しても同様に公知の方法を用い ることができる。電気めつき法としては、例えば、非特許文献 1第 87〜504頁を参照 することができる。 Electric plating will be further described. For example, in the case of electrolytic copper plating, a copper sulfate bath, a copper borofluoride bath, a copper pyrophosphate bath, or a copper cyanide bath can be used as an electrolytic bath for plating. At this time, it is known that the dispersion of the electrodeposition stress can be further reduced by adding a stress relaxation agent (also having an effect as a brightening agent) due to an organic substance or the like to the plating bath. For electro nickel plating, a Watt bath, a sulfamic acid bath, or the like can be used. In order to adjust the flexibility of the nickel foil in these baths, additives such as saccharin, paratoluenesulfonamide, sodium benzenesulfonate, sodium naphthalenetrisulfonate, and commercially available additives which are their preparations are used as necessary. Additives may be added. In addition, in the case of galvanizing and electric gold plating, alloy plating using cyan gold potassium or pure gold plating using citrate ammonium bath or potassium citrate bath is used. In the case of alloy plating, binary alloys of gold copper, gold silver, gold cobalt, and ternary alloys of gold copper silver are used. Similarly, other known methods can be used for other metals. For example, see pages 87 to 504 of Non-Patent Document 1 for the electrical plating method. can do.
次に、無電解めつきについてさらに説明する。無電解めつき法としては、銅めつき、二 ッケルめっき、代表的であるが、その他、すずめつき、金めつき、銀めつき、コバルトめ つき、鉄めつき、クロムめつき等が挙げられる。工業的に利用されている無電解めつき のプロセスでは、還元剤をめつき液に添カ卩し、その酸化反応によって生ずる電子を金 属の析出反応に利用するのであり、めっき液は、金属塩、錯化剤、還元剤、 pH調整 剤、 pH緩衝材、安定剤等から成り立つている。無電解銅めつきの場合は、金属塩とし て硫酸銅、還元剤としてホルマリン、錯化剤としてロッセル塩ゃエチレンジァミン四酢 酸 (EDTA)が好んで用いられる。また、 pHは主として水酸ィ匕ナトリウムによって調整さ れるが、水酸ィ匕カリウムや水酸化リチウムなども使用でき、緩衝剤としては、炭酸塩や リン酸塩が用いられ、安定化剤としては、 1価の銅と優先的に錯形成するシアン化物 、チォ尿素、ビビリジル、 0—フエナント口リン、ネオクプロイン等が用いられる。また、 無電解ニッケルめっきの場合は、金属塩として硫酸ニッケル、還元剤には、次亜りん 酸ナトリウムやヒドラジン、水素化ホウ素化合物等が好んで用いられる。次亜りん酸ナ トリウムを用いた場合には、めっき皮膜中にりんが含有され、耐食性ゃ耐摩耗性が優 れている。また、緩衝剤としては、モノカルボン酸またはそのアルカリ金属塩を使用す る場合が多い。錯化剤は、めっき液中でニッケルイオンと安定な可溶性錯体を形成 するものが使用され、酢酸、乳酸、酒石酸、りんご酸、クェン酸、グリシン、ァラニン、 E DTA等が用いられ、安定化剤としては、硫黄ィ匕合物や鉛イオンが添加される。無電 解めつき法については上記非特許文献 1の第 505〜545頁を参照することができる。 さらに、還元剤の還元作用を得るためには、金属表面の触媒活性化が必要になるこ と力 Sある。素地が鉄、鋼、ニッケルなどの金属の場合には、それらの金属が触媒活性 を持っため、無電解めつき液に浸漬するだけで析出するが、銅、銀あるいはそれらの 合金、ステンレスが素地となる場合には、触媒活性化を付与するために、塩化パラジ ゥムの塩酸酸性溶液中に被めつき物を浸漬し、イオン置換によって、表面にパラジゥ ムを析出させる方法が用いられる。 Next, electroless plating will be further described. Examples of electroless plating methods include copper plating, nickel plating, and other methods, such as tin plating, gold plating, silver plating, cobalt plating, iron plating, and chromium plating. . In the process of electroless plating used in industry, a reducing agent is added to the plating solution, and electrons generated by the oxidation reaction are used for metal deposition reaction. It consists of salt, complexing agent, reducing agent, pH adjuster, pH buffer, stabilizer and so on. In the case of electroless copper plating, copper sulfate is preferably used as the metal salt, formalin as the reducing agent, and Rossel salt or ethylenediamine tetraacetic acid (EDTA) as the complexing agent. The pH is mainly adjusted with sodium hydroxide, but potassium hydroxide and lithium hydroxide can also be used. Carbonates and phosphates are used as buffers, and stabilizers are used. Cyanides preferentially complexed with monovalent copper, thiourea, bibilidyl, 0-phenantorin, neocuproin, etc. are used. In the case of electroless nickel plating, nickel sulfate is preferably used as the metal salt, and sodium hypophosphite, hydrazine, borohydride compounds, etc. are preferably used as the reducing agent. When sodium hypophosphite is used, phosphorus is contained in the plating film, and corrosion resistance and wear resistance are excellent. As the buffering agent, a monocarboxylic acid or an alkali metal salt thereof is often used. Complexing agents that form stable soluble complexes with nickel ions in the plating solution are used, and acetic acid, lactic acid, tartaric acid, malic acid, citrate, glycine, alanine, EDTA, etc. are used. For example, sulfur compounds and lead ions are added. For the non-electrolytic method, pages 505 to 545 of Non-Patent Document 1 can be referred to. Furthermore, in order to obtain the reducing action of the reducing agent, it is necessary to activate the catalyst on the metal surface. When the substrate is a metal such as iron, steel, or nickel, the metal has catalytic activity, so it can be deposited just by immersing it in an electroless plating solution. However, copper, silver, their alloys, and stainless steel are the base materials. In order to impart catalyst activation, a method of immersing the covering object in an acidic hydrochloric acid solution of palladium chloride and depositing palladium on the surface by ion substitution is used.
本発明で利用できる無電解めつきは、例えば、前記した上面を有する凸部のパター ン及びそれによって描かれる幾何学図形状の凹部を有する導電性基材の凸部に、 必要に応じてパラジウム触媒を付着させたあと、温度 60〜90°C程度とした無電解銅 めっき液に浸漬して、銅めつきを施す方法がある。 The electroless plating that can be used in the present invention is, for example, the convex pattern of the convex portion having the upper surface described above and the convex portion of the conductive base material having the concave portion of the geometrical drawing shape drawn thereby. There is a method in which a copper catalyst is applied by adhering a palladium catalyst if necessary and then immersing it in an electroless copper plating solution at a temperature of about 60 to 90 ° C.
無電解めつきでは、基材は必ずしも導電性である必要はない。しかし、前記したよう に基材の凹部に絶縁層を電着により形成する場合には、基材は導電性である必要 があり、また、無電解めつきの準備として、基材上にに析出した金属を容易に剥離す るための処理として、基材の無電解めつきされるべき箇所を、陽極酸化処理するよう な場合は、基材は導電性である必要がある。 For electroless plating, the substrate need not necessarily be conductive. However, as described above, when the insulating layer is formed by electrodeposition in the concave portion of the base material, the base material needs to be conductive, and is deposited on the base material in preparation for electroless plating. In the case of anodizing the portion of the substrate to be electrolessly attached as a treatment for easily peeling the metal, the substrate needs to be conductive.
特に、導電性基材の材質が Niである場合、無電解めつきするには、上面を有する 凸部のパターン及びそれによつて描かれる幾何学図形状の凹部を有する導電性基 材を陽極酸化した後、無電解銅めつき液に浸漬して、銅を析出させる方法がある。 めっきによって出現又は析出する金属としては、銀、銅、金、アルミニウム、タンダス テン、ニッケル、鉄、クロム等の導電性を有するものが使用される力 20°Cでの体積 抵抗率 (比抵抗)が Q Zcm以下の金属を少なくとも 1種類以上含むことが望ま L ヽ。本発明により得られる構造体を電磁波遮蔽シートとして用いる場合には電磁波 を電流としてアースするためにこれを構成する金属は導電性が高い方が電磁波遮蔽 性に優れるためである。このような金属としては、銀(1. 62 μ Q Zcm)、銅(1. 72 μ Q Zcm)、金(2. 4 μ Q Zcm)、アルミニウム(2. 75 μ Q Zcm)、タングステン(5. 5 μ Q Zcm)、ニッケル(7. 24 μ Ω
Figure imgf000040_0001
、鉄(9. Ο μ 0 《11)、クロム(17 Ω /c m、全て 20°Cでの値)などがあるが特にこれらに限定するものではない。できれば体 積抵抗率が 10 Q Zcmであることがより好ましぐ 5 Q Zcmであることがさらに好 ましい。金属の価格や入手の容易さを考慮すると銅を用いることが最も好ましい。これ らの金属は単体で用いてもよぐさらに機能性を付与するために他の金属との合金で も構わないし、金属の酸ィ匕物であってもよい。ただし、体積抵抗率が 20 Q Zcmで ある金属が成分として最も多く含まれて ヽることが導電性の観点カゝら好ま 、。
In particular, when the material of the conductive base material is Ni, in order to electrolessly attach, the conductive base material having the convex pattern having the upper surface and the geometrical figure-shaped concave portion drawn thereby is anodized. Then, there is a method in which copper is deposited by dipping in an electroless copper plating solution. As metal that appears or precipitates by plating, conductive materials such as silver, copper, gold, aluminum, tandasten, nickel, iron, and chromium are used. Volume resistivity at 20 ° C (specific resistance) It is desirable to contain at least one type of metal with a Q Zcm or less. This is because when the structure obtained by the present invention is used as an electromagnetic wave shielding sheet, the metal constituting it is grounded as an electric current, so that the higher the conductivity, the better the electromagnetic wave shielding property. These metals include silver (1.62 μQ Zcm), copper (1.72 μQ Zcm), gold (2.4 μQ Zcm), aluminum (2.75 μQ Zcm), tungsten (5 .5 μQ Zcm), nickel (7.24 μΩ)
Figure imgf000040_0001
, Iron (9. Ο μ 0 << 11), chromium (17 Ω / cm, all values at 20 ° C), etc., but are not limited thereto. If possible, the volume resistivity is more preferably 10 Q Zcm, more preferably 5 Q Zcm. In view of the price of metal and availability, copper is most preferably used. These metals may be used alone or may be an alloy with another metal or a metal oxide to give further functionality. However, it is preferable from the viewpoint of conductivity that a metal having a volume resistivity of 20 Q Zcm is contained most as a component.
前記した凹部に絶縁層を有する導電性基材の凸部上面にめっきにより形成される 金属層の厚さ(めっき厚さ)は、十分な導電性を示す (このとき電磁波シールド性が十 分に発現する)ためには、 0. 5 m以上であることが好ましぐ導体層にピンホールが 形成される(このとき、電磁波シールド性が低下する)可能性を小さくするためには、 3 /z m以上の厚さであることがさらに好ましい。また、めっき厚さが大きすぎると、形成さ れた金属層は幅方向にも広がるため、転写したラインの幅が広くなり、導体層付きパ ターン基材の開口率が低下し、透明性、非視認性が低下する。したがって、透明性、 非視認性を確保するためには、形成された金属の厚みを 20 m以下とすることが好 ましぐさらに、めっきの時間を短縮し、生産効率をあげるためには、めっきの厚みは 10 μ m以下であることがさらに好ましい。 The thickness of the metal layer (plating thickness) formed by plating on the upper surface of the convex portion of the conductive base material having the insulating layer in the concave portion described above exhibits sufficient conductivity (in this case, the electromagnetic wave shielding property is sufficient). In order to reduce the possibility of pinholes being formed in the conductor layer, which is preferably 0.5 m or more (in this case, the electromagnetic wave shielding property is reduced), 3 More preferably, the thickness is not less than / zm. In addition, if the plating thickness is too large, the formed metal layer also spreads in the width direction, so the width of the transferred line becomes wider, the aperture ratio of the pattern base material with the conductor layer decreases, transparency, Non-visibility decreases. Therefore, in order to ensure transparency and invisibility, it is preferable that the thickness of the formed metal is 20 m or less. In order to shorten the plating time and increase the production efficiency, The thickness of is more preferably 10 μm or less.
導電層パターン付きプラスチック基材の形成方法を、導電性基材に、断面形状が 台形である凸部 3を形成した場合を例に、図 14〜16を用いて説明する。  A method for forming a plastic substrate with a conductive layer pattern will be described with reference to FIGS. 14 to 16, taking as an example the case where convex portions 3 having a trapezoidal cross section are formed on a conductive substrate.
先ず、凸部 3が形成された導電性基材 1上にめっきを施して金属層を形成する。図 14は、導電性基材 1上に金属層を形成した状態の断面図である。導電性基材 1上に 形成された金属層は、金属層が形成された箇所により、凸部の上面に形成された金 属層 14、凹部 2の底面に出現した金属 15、凸部の側面に出現した金属 16に分類さ れる。導電性基材 1に出現する金属において、めっき浴の組成、添加剤の種類、導 電性基材の表面形状、凸部の高さ、電流密度等の条件により、金属 14、 15、 16、そ れぞれの厚みや形状を変えることが可能である。例えば、電流密度が高い方が、表 面粗さの大きい面の埋め込み性が悪く粒状に析出しやすぐまた、凸部の高さが高 い方が、凹部に出現する金属の膜厚は薄くなる。いづれにしても、前述のような条件 で金属 14のみを選択的に透明基材に転写できる限り上記めつきの条件に制限はな い。めっき厚みは、十分な電磁波シールド性を発現させるために、 0. 5 m以上であ ることが好ましい。さらに、めっき厚みが厚すぎると、凹部 2の底面に出現した金属 15 、側面に出現した金属 16も生長するため、転写の際に金属 15、 16も同時に転写さ れ、凸部の上面に形成された金属層 14のみを選択的に転写すること (選択転写性) が困難となる恐れがあることから、凸部の上面に形成された金属層 14の厚さが 20 m以下となるようにすることが好ましい。さらに、めっきの時間を短縮し、生産効率をあ げるためには、めっきの厚みは 10 m以下であることがさらに好ましい。凸部の側面 及び底面の表面粗さがあることは、金属 15、金属 16がそれらの面に一面に粒状に 金属が出現し、し力も、粒状の金属は不連続体とすることができるので、この場合は、 金属 14のみを選択的に別の基材に容易に転写することができる。 [0086] 図 15は、図 14に示すように導電性基材 1の凸部上面に形成された金属層 14の面 に、接着剤 17を塗布した透明基材 18をラミネートした状態を示す断面図である。 図 16は、接着剤 17を塗布した透明基材 18を剥離して、導電性基材 1の凸部の上 面 8に形成された金属層 14のみを、透明基材 18に接着剤 17を介して転写して作製 した導体層パターン付き基材 19と、凹部 2の底面及び側面に金属 15、 16が残存し て ヽる導電性基材 1を示す断面図である。導電性基材 1に形成された金属層を透明 基材に転写する際には、透明基材に接着剤 (粘着剤を含む)を塗布することが好まし ぐ転写が容易であることから、粘着剤を塗布することがさらに好ましい。また、接着剤 17を塗布した透明基材 18を、めっきを施した導電性基材 1にラミネートする場合、金 属 14のみを転写する限り、接着剤 17は導電性基材 1のどの部分に接触していてもよ いが、金属 15及び金属 16に接触すると、金属 15及び 16も金属 14と同時に透明基 材に転写されることがあるため、接着剤 17は、凸部の上面 8に形成された金属層 14 のみに接触することが好ましい。また、接着剤の厚さが薄すぎると、金属 14との密着 性が低下し転写不良を起こすことがあり、また接着剤の厚さが厚すぎると、接着剤の 製造コストが高くなるとともに、ラミネートした際に、接着剤の変形量が多くなるため、 金属 15、 16に接触しやすくなることから、接着剤の厚みは、凸部の高さよりも小さい ことが好ましぐ接着剤が底部の金属 15に接する機会が少なくなるため、凸部の高さ の半分以下であることが更に好ましい。接着剤の厚さは、 1〜50 mが好ましぐ 5〜 30 /z mが好ましい。 First, plating is performed on the conductive base material 1 on which the convex portions 3 are formed to form a metal layer. FIG. 14 is a cross-sectional view of a state in which a metal layer is formed on the conductive substrate 1. The metal layer formed on the conductive substrate 1 is composed of a metal layer 14 formed on the upper surface of the convex portion, a metal 15 appearing on the bottom surface of the concave portion 2, and a side surface of the convex portion, depending on where the metal layer is formed. It is classified as metal 16 that appeared in For metals appearing on the conductive substrate 1, depending on the conditions such as the composition of the plating bath, the type of additive, the surface shape of the conductive substrate, the height of the projections, and the current density, metals 14, 15, 16, It is possible to change the thickness and shape of each. For example, when the current density is high, the embedding of the surface having a large surface roughness is poor and the particles are deposited in a granular form.In addition, when the height of the convex portion is high, the metal film thickness appearing in the concave portion is thin. Become. In any case, as long as only the metal 14 can be selectively transferred to the transparent substrate under the above-described conditions, there is no limitation on the above-mentioned conditions. The plating thickness is preferably 0.5 m or more in order to exhibit sufficient electromagnetic shielding properties. Furthermore, if the plating thickness is too thick, the metal 15 appearing on the bottom surface of the recess 2 and the metal 16 appearing on the side surface also grow, so the metal 15 and 16 are also transferred at the same time and formed on the top surface of the projection. Since it may be difficult to selectively transfer only the deposited metal layer 14 (selective transferability), the thickness of the metal layer 14 formed on the upper surface of the convex portion should be 20 m or less. It is preferable to do. Furthermore, in order to shorten the plating time and increase the production efficiency, the thickness of the plating is more preferably 10 m or less. The surface roughness of the side surface and bottom surface of the convex part is that the metal 15 and metal 16 appear in a granular shape on one side, and the granular metal can be discontinuous. In this case, only the metal 14 can be selectively transferred to another substrate easily. FIG. 15 is a cross-sectional view showing a state in which a transparent substrate 18 coated with an adhesive 17 is laminated on the surface of the metal layer 14 formed on the upper surface of the convex portion of the conductive substrate 1 as shown in FIG. FIG. Fig. 16 shows that the transparent substrate 18 coated with the adhesive 17 is peeled off, and only the metal layer 14 formed on the upper surface 8 of the convex portion of the conductive substrate 1 is removed, and the adhesive 17 is applied to the transparent substrate 18. FIG. 6 is a cross-sectional view showing a base material 19 with a conductor layer pattern produced by transfer through and a conductive base material 1 in which metals 15 and 16 remain on the bottom and side surfaces of a recess 2. When transferring the metal layer formed on the conductive substrate 1 to a transparent substrate, it is preferable to apply an adhesive (including an adhesive) to the transparent substrate. More preferably, an adhesive is applied. In addition, when laminating the transparent base material 18 coated with the adhesive 17 to the plated conductive base material 1, the adhesive 17 is applied to any part of the conductive base material 1 as long as only the metal 14 is transferred. Although it may be in contact with the metal 15, the metal 17 and 16 may be transferred to the transparent substrate simultaneously with the metal 14, so that the adhesive 17 is applied to the upper surface 8 of the convex portion. It is preferable to contact only the formed metal layer 14. Also, if the adhesive is too thin, adhesion to the metal 14 may be reduced and transfer failure may occur, and if the adhesive is too thick, the manufacturing cost of the adhesive will increase. Since the amount of deformation of the adhesive increases when laminating, it is easy to come into contact with the metals 15 and 16, so the thickness of the adhesive is preferably smaller than the height of the convex part. Since the chance of coming into contact with the metal 15 is reduced, the height is more preferably half or less of the height of the convex portion. The thickness of the adhesive is preferably 1 to 50 m, and preferably 5 to 30 / zm.
[0087] 形成された金属層 14を接着剤 17を有する透明基材 18に転写後、導電性基材 1〖こ 金属 15, 16及び場合により金属 14の一部を残存させたまま繰り返しめっきする場合 、導電性基材 1に残存するそれらの金属が生長するため、それ以後の転写の際に良 好な状態で凸部 3の上面 8に形成された金属層 14を転写することが困難となる。必 要に応じて、転写後に導電性基材 1に残存する金属を除去することが好ましい。導電 性基材 1に残存する金属を除去するには、残存金属をエッチングする方法が好まし い。エッチング液は、残存金属を溶解しかつ導電性基材 1を腐食しない液が好ましい 。例えば、めっきで出現させた金属が銅の場合には、エッチング液は、塩化第二鉄溶 液、塩化銅溶液、硫酸過水、過硫酸アンモ-ゥム溶液等が好んで用いられる。上記 エッチング液は、導電性基材 1がチタンの場合には使用可能である力 ステンレスの 場合には、塩化第二鉄溶液、塩化銅溶液を用いると、ステンレスが腐食されるため、 使用できず、過硫酸アンモ-ゥム等のステンレスを腐食しな 、エッチング液が用いら れる。このように、エッチング液は、残存金属と導電性基材 1の材質により適宜選択さ れる。 [0087] After the formed metal layer 14 is transferred to the transparent base material 18 having the adhesive 17, the conductive base material 1 metal, the metal 15, 16 and, in some cases, a part of the metal 14 are repeatedly plated. In this case, since those metals remaining on the conductive substrate 1 grow, it is difficult to transfer the metal layer 14 formed on the upper surface 8 of the convex portion 3 in a favorable state during the subsequent transfer. Become. If necessary, it is preferable to remove the metal remaining on the conductive substrate 1 after the transfer. In order to remove the metal remaining on the conductive substrate 1, a method of etching the remaining metal is preferable. The etching solution is preferably a solution that dissolves the remaining metal and does not corrode the conductive substrate 1. For example, when the metal that appears in the plating is copper, ferric chloride solution, copper chloride solution, sulfuric acid / hydrogen peroxide solution, ammonium persulfate solution, etc. are preferably used as the etching solution. the above The etching solution is a force that can be used when the conductive substrate 1 is titanium. In the case of stainless steel, if ferric chloride solution or copper chloride solution is used, stainless steel is corroded, so it cannot be used. Etching solution is used without corroding stainless steel such as ammonium persulfate. As described above, the etching solution is appropriately selected depending on the remaining metal and the material of the conductive substrate 1.
他に導電性基材に残存する金属を除去する方法としては、粘着フィルムに残存金 属を転写させて除去する方法が挙げられる。この場合、残存金属を除去する粘着フィ ルムの粘着剤の厚みは、容易に凹部内に残存する金属に接触しやすくするために、 粘着層の厚さが、凸部の高さ以上であることが好ましぐ凸部の高さの 2倍以上の厚 みを有して 、ることがさらに好ま 、。転写後に導電性基材 1に金属を除去した後、 再度めつきを行うことができる。  Other methods for removing the metal remaining on the conductive substrate include a method of removing the residual metal by transferring it to an adhesive film. In this case, the thickness of the adhesive of the adhesive film that removes the residual metal is such that the thickness of the adhesive layer is equal to or greater than the height of the convex portion in order to facilitate contact with the metal remaining in the concave portion. More preferably, it has a thickness that is at least twice the height of the preferred protrusion. After the transfer, the metal can be removed from the conductive substrate 1 and then staking can be performed again.
導電層パターン付きプラスチック基材の作製方法の一例を、導電性基材に、断面 形状が台形である凸部 3 (図 3—b参照)を形成した場合を例に、図 17を用いて説明 する。  An example of a method for producing a plastic substrate with a conductive layer pattern is explained with reference to Fig. 17, taking as an example the case where convex part 3 (see Fig. 3-b) with a trapezoidal cross-section is formed on a conductive substrate. To do.
まず、図 17— aは、上面 8を有する凸部 3のパターン及びそれによつて描かれる幾 何学図形状の凹部を有する導電性基材 1の凸部を有する面の全面に薄膜絶縁層 12 を形成した状態を示す断面図である。薄膜絶縁層 12は、前記したように電着塗装な どにより形成できる。上記の薄膜絶縁層 12のうち、凸部 3の上面 8のものを凸部 3の 上面 8が露出するまで研磨する。図 17— bは、この状態の断面図を示す。  First, FIG. 17-a shows the pattern of the convex portion 3 having the upper surface 8 and the thin film insulating layer 12 formed on the entire surface having the convex portion of the conductive substrate 1 having the geometrical shape-shaped concave portion drawn thereby. It is sectional drawing which shows the state which carried out. The thin film insulating layer 12 can be formed by electrodeposition coating as described above. Of the thin film insulating layer 12 described above, the upper surface 8 of the convex portion 3 is polished until the upper surface 8 of the convex portion 3 is exposed. Figure 17-b shows a cross-sectional view of this state.
次に、このように凹部 2に薄膜絶縁層 12を有し、凸部 3の上面 8が露出している導 電性基材 1にめつきを施して、凸部 3の上面 8に金属層 14を形成する。図 17— cは、 この状態の断面図を示す。  Next, the conductive base material 1 having the thin film insulating layer 12 in the concave portion 2 and the upper surface 8 of the convex portion 3 exposed in this manner is applied, and a metal layer is formed on the upper surface 8 of the convex portion 3. 14 is formed. Figure 17-c shows a cross-sectional view of this state.
次いで、別の基材 (透明基材) 20に粘着層 21を塗布したフィルムを、導電性基材 1 の金属層 14が形成されている面に貼り合わせる。図 17— Idはこの状態の断面図を 示す。透明基材 20に粘着剤を塗布して形成した粘着層 21を有するフィルムを、金属 14が析出している面に貼り合わせる際には、粘着剤の特性に応じて、必要なら加熱 される。  Subsequently, the film which apply | coated the adhesion layer 21 to another base material (transparent base material) 20 is bonded together to the surface in which the metal layer 14 of the electroconductive base material 1 is formed. Figure 17—Id shows a cross-sectional view of this state. When the film having the pressure-sensitive adhesive layer 21 formed by applying a pressure-sensitive adhesive to the transparent substrate 20 is bonded to the surface on which the metal 14 is deposited, the film is heated according to the characteristics of the pressure-sensitive adhesive.
そして、上記の別の基材 20に粘着層 21を塗布したフィルムを剥離することにより、 金属 14が粘着層 21に貼り付いて導電性基材 1から剥離し、すなわち、別の基材 20 に転写され、導体層パターン付き基材 22を得ることとなる。この状態の断面図を図 17And by peeling the film which apply | coated the adhesion layer 21 to said another base material 20, The metal 14 is attached to the adhesive layer 21 and peeled off from the conductive substrate 1, that is, transferred to another substrate 20 to obtain a substrate 22 with a conductor layer pattern. A cross-sectional view of this state is shown in FIG.
—eに示す。 Shown in -e.
[0089] 前記した凹部に絶縁層を有する導電性基材の凸部上面にめっきにより形成される 金属層の厚さ(めっき厚さ)は、十分な導電性を示すようにする (このとき、導体層バタ ーン付き基材は、電磁波シールド性が十分に発現するようなる)ためには、領域 Bに おいて 0. 5 m以上であることが好ましぐ導体層にピンホールが形成される(このと き、電磁波シールド性が低下する)可能性を小さくするためには、 3 m以上の厚さで あることがさらに好ましい。また、めっき厚さが大きすぎると、形成される金属層は幅方 向にも広がるため、転写する金属の幅が広くなり、領域 Aに形成される導体層パター ン付き基材の開口率が低下し、透明性、非視認性が低下する。したがって、透明性、 非視認性を確保するためには、形成される金属層の厚みを 20 m以下とすることが 好ましぐさらに、めっきの時間を短縮し、生産効率をあげるためには、めっきの厚み は 10 m以下であることがさらに好ましい。  [0089] The thickness of the metal layer (plating thickness) formed by plating on the upper surface of the convex portion of the conductive base material having the insulating layer in the concave portion described above should exhibit sufficient conductivity (at this time, In order for the base material with a conductor layer pattern to exhibit sufficient electromagnetic shielding properties, a pinhole is formed in the conductor layer, which is preferably 0.5 m or more in the region B. In order to reduce the possibility that the electromagnetic wave shielding property will be reduced at this time, the thickness is more preferably 3 m or more. In addition, if the plating thickness is too large, the formed metal layer also spreads in the width direction, so that the width of the metal to be transferred becomes wide, and the opening ratio of the base material with the conductor layer pattern formed in the region A is increased. The transparency and invisibility are lowered. Therefore, in order to ensure transparency and invisibility, the thickness of the metal layer to be formed is preferably 20 m or less. In addition, in order to shorten the plating time and increase the production efficiency, More preferably, the plating thickness is 10 m or less.
[0090] 前記した別の基材 (導体層パターンが転写される基材)としては、ガラス、プラスチッ ク等カもなる板、プラスチックフィルム、プラスチックシートなどがある。ガラスとしては、 ソーダガラス、無アルカリガラス、強化ガラス等のガラスを使用することができる。  [0090] Examples of the other base material (the base material on which the conductor layer pattern is transferred) include glass, a plate such as a plastic, a plastic film, and a plastic sheet. As the glass, glass such as soda glass, non-alkali glass, and tempered glass can be used.
プラスチックとしては、ポリスチレン榭脂、アクリル榭脂、ポリメチルメタタリレート榭脂 、ポリカーボネート榭脂、ポリ塩化ビニル榭脂、ポリ塩ィ匕ビユリデン榭脂、ポリエチレン 榭脂、ポリプロピレン榭脂、ポリアミド榭脂、ポリアミドイミド榭脂、ポリエーテルイミド榭 脂、ポリエーテルエーテルケトン樹脂、ポリアリレート榭脂、ポリアセタール榭脂、ポリ ブチレンテレフタレート榭脂、ポリエチレンテレフタレート榭脂などの熱可塑性ポリエス テル榭脂、酢酸セルロース榭脂、フッ素榭脂、ポリスルホン樹脂、ポリエーテルスルホ ン榭脂、ポリメチルペンテン榭脂、ポリウレタン榭脂、フタル酸ジァリル榭脂などの熱 可塑性榭脂ゃ熱硬化性榭脂が挙げられる。プラスチックの中では、透明性に優れる ポリスチレン榭脂、アクリル榭脂、ポリメチルメタタリレート榭脂、ポリカーボネート榭脂 、ポリ塩化ビニル榭脂が好適に用いられる。別の基材の厚みは、 0. 5mn!〜 5mmが ディスプレイの保護や強度、取扱 、性力も好ま 、。 [0091] 本発明における別の基材は、プラスチックフィルムが好まし 、。このプラスチックフィ ルムとしては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレートなどのポリ エステル類、ポリエチレン、ポリプロピレン、ポリスチレン、 EVAなどのポリオレフイン類 、ポリ塩化ビニル、ポリ塩ィ匕ビユリデンなどのビュル系榭脂、ポリサルホン、ポリエーテ ノレサノレホン、ポリカーボネート、ポリアミド、ポリイミド、アクリル榭脂などのプラスチック 力 なるフィルムで全可視光透過率が 70%以上のものが好ましい。これらは単層で 使うこともできるが、 2層以上を組合せた多層フィルムとして使用してもよい。前記ブラ スチックフィルムのうち透明性、耐熱性、取り扱いやすさ、価格の点からポリエチレン テレフタレートフィルムまたはポリカーボネートフィルムが特に好ましい。 Plastics include polystyrene resin, acrylic resin, polymethylmethacrylate resin, polycarbonate resin, polyvinyl chloride resin, polysalt vinylidene resin, polyethylene resin, polypropylene resin, polyamide resin, Polyamideimide resin, polyetherimide resin, polyetheretherketone resin, polyarylate resin, polyacetal resin, polybutylene terephthalate resin, polyethylene terephthalate resin, etc., thermoplastic polyester resin, cellulose acetate resin, Thermoplastic resins such as fluorine resins, polysulfone resins, polyether sulfonate resins, polymethylpentene resins, polyurethane resins, diallyl phthalate resins and the like can be mentioned. Among plastics, polystyrene resin, acrylic resin, polymethyl methacrylate resin, polycarbonate resin, and polyvinyl chloride resin that are excellent in transparency are suitably used. Another base material thickness is 0.5mn! ~ 5mm is also preferred for display protection and strength, handling and sexuality. [0091] Another substrate in the present invention is preferably a plastic film. This plastic film includes polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate, polyolefins such as polyethylene, polypropylene, polystyrene, and EVA, and burres such as polyvinyl chloride and polyvinyl chloride vinylidene. A film made of plastic such as polysulfone, polyether nosale phone, polycarbonate, polyamide, polyimide, acrylic resin, etc., having a total visible light transmittance of 70% or more is preferable. These can be used as a single layer, but may be used as a multilayer film combining two or more layers. Among the plastic films, a polyethylene terephthalate film or a polycarbonate film is particularly preferable from the viewpoints of transparency, heat resistance, ease of handling, and cost.
上記プラスチックフィルムの厚さは特に制限はないが、 1mm以下のものが好ましぐ 厚すぎると可視光透過率が低下しやすくなる傾向がある。また、薄く成りすぎると取扱 い性が悪くなることを勘案すると、上記プラスチックフィルムの厚さは 5〜500 μ mがよ り好ましぐ 50〜200 /ζ πιとすることがさらに好ましい。  The thickness of the plastic film is not particularly limited, but a thickness of 1 mm or less is preferable. If it is too thick, the visible light transmittance tends to decrease. In view of the fact that if the film is too thin, the handleability deteriorates, and the thickness of the plastic film is more preferably 50 to 200 / ζ πι, more preferably 5 to 500 μm.
これらのプラスチックフィルム等の基材は、ディスプレイの前面からの電磁波の漏洩 を防ぐための電磁波シールドフィルムとして使用するためには、透明であるもの(すな わち、透明基材)が好ましい。  These substrates such as plastic films are preferably transparent (that is, transparent substrates) in order to be used as an electromagnetic wave shielding film for preventing leakage of electromagnetic waves from the front surface of the display.
[0092] 上記の別の基材の導体層パターンが転写される面は、転写する際に粘着性を有し ていることが必要である。そのためには、基材自体が必要な粘着性を有していてもよ いが、転写面に粘着層を積層しておくことが好ましい。 [0092] The surface of the other substrate on which the conductor layer pattern is transferred needs to have adhesiveness when transferred. For this purpose, the substrate itself may have the necessary adhesiveness, but it is preferable to laminate an adhesive layer on the transfer surface.
上記の粘着層は、転写時に粘着性を有しているもの又は加熱若しくは加圧下に粘 着性を示すものが好ましい。粘着性を有しているものとしては、ガラス転移温度が 20 °C以下の榭脂が好ましぐガラス転移温度が 0°C以下である榭脂を用いることが最も 好ましい。粘着層に用いる材料としては、熱可塑性榭脂、熱硬化性榭脂、活性エネ ルギ一線の照射で硬化する榭脂等を使用することができる。加熱時に粘着性を示す 場合、そのときの温度が高すぎると、透明基材にうねりやたるみ、カール等の変形が 起こることがあるので、熱可塑性榭脂、熱硬化性榭脂、活性エネルギー線の照射で 硬化する榭脂のガラス転移点は 80°C以下であることが好ま 、。上記熱可塑性榭脂 、熱硬化性榭脂、活性エネルギー線の照射で硬化する榭脂の重量平均分子量は、 5 00以上のものを使用することが好ましい。分子量が 500未満では榭脂の凝集力が低 すぎるために金属との密着性が低下するおそれがある。 The adhesive layer is preferably one that has adhesiveness at the time of transfer or one that exhibits adhesiveness under heating or pressure. As the material having adhesiveness, it is most preferable to use a resin having a glass transition temperature of 0 ° C. or less, which is preferable to a resin having a glass transition temperature of 20 ° C. or less. As a material used for the adhesive layer, thermoplastic resin, thermosetting resin, resin cured by irradiation with an activated energy line, and the like can be used. If it shows adhesiveness when heated, if the temperature at that time is too high, the transparent substrate may be deformed such as swell, sagging, curl, etc., so thermoplastic resin, thermosetting resin, active energy ray It is preferable that the glass transition point of the resin cured by irradiation of 80 ° C or less. The weight average molecular weight of the thermoplastic resin, the thermosetting resin, and the resin cured by irradiation with active energy rays is 5 It is preferable to use 00 or more. If the molecular weight is less than 500, the cohesive strength of the resin is too low, which may reduce the adhesion to the metal.
[0093] 上記の熱可塑性榭脂として代表的なものとして以下のものがあげられる。たとえば 天然ゴム、ポリイソプレン、ポリ 1, 2—ブタジエン、ポリイソブテン、ポリブテン、ポリ 2 へプチルー 1, 3 ブタジエン、ポリ 2 tーブチルー 1, 3 ブタジエン、ポリ - 1, 3—ブタジエン)などの(ジ)ェン類、ポリオキシエチレン、ポリオキシプロピレン、 ポリビニノレエチノレエーテノレ、ポリビニノレへキシノレエーテノレ、ポリビニノレブチノレエーテ ルなどのポリエーテル類、ポリビュルアセテート、ポリビュルプロピオネートなどのポリ エステル類、ポリウレタン、ェチルセルロース、ポリ塩化ビニル、ポリアクリロニトリル、 ポリメタタリ口-トリル、ポリスルホン、ポリスルフイド、フヱノキシ榭脂、ポリェチルアタリ レート、ポリブチルアタリレート、ポリ 2—ェチルへキシルアタリレート、ポリ tーブチ ルアタリレート、ポリー3—エトキシプロピルアタリレート)、ポリオキシカルボニルテトラ メタタリレート、ポリメチルアタリレート、ポリイソプロピルメタタリレート、ポリドデシルメタ タリレート、ポリテトラデシルメタタリレート、ポリ n—プロピルメタタリレート、ポリ 3, 3, 5 トリメチルシクロへキシルメタタリレート、ポリェチルメタタリレート、ポリ一 2 -ト ロー 2—メチルプロピルメタタリレート、ポリ 1, 1ージェチルプロピルメタタリレート、 ポリメチルメタタリレートなどのポリ (メタ)アクリル酸エステルが使用可能である。これら のポリマを構成するモノマーは、必要に応じて、 2種以上共重合させて得られるコポリ マとして用いてもよいし、以上のポリマ又はコポリマを 2種類以上ブレンドして使用す ることち可會である。 [0093] Typical examples of the thermoplastic rosin include the following. For example, natural rubber, polyisoprene, poly 1,2-butadiene, polyisobutene, polybutene, poly 2 heptilo, 1,3 butadiene, poly 2 tert-butyl-1,3 butadiene, poly-1,3-butadiene) Polyethers such as polyoxyethylene, polyoxypropylene, polyvinylino ethinoreateoret, polyvinylinolehexenoleatenore, polyvinylinolebutinoleate, polybutylacetate, polybulupropionate, etc. Polyesters, Polyurethane, Ethylcellulose, Polyvinyl chloride, Polyacrylonitrile, Polymethallyl-tolyl, Polysulfone, Polysulfide, Phenoxy resin, Polyethyl acrylate, Polybutyl acrylate, Poly 2-ethylhexyl acrylate, Poly tert-butyl Luata Relay , Poly-3-ethoxypropyl acrylate), polyoxycarbonyltetramethacrylate, polymethylacrylate, polyisopropylmethacrylate, polydodecylmethacrylate, polytetradecylmethacrylate, polyn-propylmethacrylate, poly-3 , 3, 5 Trimethylcyclohexyl metatalylate, Polyethyl metatalylate, Poly 1-Traw 2-Methylpropyl metatalylate, Poly 1,1-jetylpropyl metatalylate, Polymethyl metatalylate Poly (meth) acrylic acid esters such as can be used. The monomers constituting these polymers may be used as a copolymer obtained by copolymerization of two or more, if necessary, or a blend of two or more of the above polymers or copolymers may be used. It is a spear.
[0094] 活性エネルギー線で硬化する榭脂としては、アクリル榭脂、エポキシ榭脂、ポリエス テル榭脂、ウレタン榭脂等をベースポリマとし、各々にラジカル重合性あるいはカチォ ン重合性官能基を付与させた材料が例示できる。ラジカル重合性官能基として、ァク リル基 (アタリロイル基),メタクリル基 (メタクリロイル基),ビュル基,ァリル基などの炭 素—炭素二重結合があり、反応性の良好なアクリル基 (アタリロイル基)が好適に用い られる。カチオン重合性官能基としては、エポキシ基 (グリシジルエーテル基、グリシ ジルァミン基)が代表的であり、高反応性の脂環エポキシ基が好適に用いられる。具 体的な材料としては、アクリルウレタン、エポキシ (メタ)アタリレート、エポキシ変性ポリ ブタジエン、エポキシ変性ポリエステル、ポリブタジエン (メタ)アタリレート、アクリル変 性ポリエステル等が挙げられる。活性エネルギー線としては、紫外線、電子線等が利 用される。 [0094] As the resin cured with active energy rays, acrylic resin, epoxy resin, polyester resin, urethane resin, etc. are used as base polymers, and each is provided with radically polymerizable or cationically polymerizable functional groups. The material made can be illustrated. As radically polymerizable functional groups, there are carbon-carbon double bonds such as acryl group (attalyloyl group), methacryl group (methacryloyl group), bur group, allyl group, etc., and highly reactive acrylic group (attalyloyl group). ) Is preferably used. As the cationically polymerizable functional group, an epoxy group (glycidyl ether group or glycidylamine group) is typical, and a highly reactive alicyclic epoxy group is preferably used. Specific materials include acrylic urethane, epoxy (meth) acrylate, epoxy-modified poly Examples include butadiene, epoxy-modified polyester, polybutadiene (meth) acrylate, and acrylic-modified polyester. As the active energy rays, ultraviolet rays, electron beams and the like are used.
活性エネルギー線が紫外線の場合、紫外線硬化時に添加される光増感剤ある ヽ は光開始剤としては、ベンゾフエノン系、アントラキノン系、ベンゾイン系、スノレホニゥ ム塩、ジァゾ -ゥム塩、ォ -ゥム塩、ハ口-ゥム塩等の公知の材料を使用することがで きる。また、上記の材料の他に汎用の熱可塑性榭脂をブレンドしても良い。  When the active energy ray is ultraviolet light, it is a photosensitizer added during UV curing. ヽ Photoinitiators include benzophenone, anthraquinone, benzoin, snorephonium salt, diazo-um salt, and oum. Known materials such as salt and haum-um salt can be used. Moreover, you may blend general purpose thermoplastic resin other than said material.
[0095] 熱硬化性榭脂としては、天然ゴム、イソプレンゴム、クロロプレンゴム、ポリイソブチレ ン、ブチルゴム、ハロゲン化ブチル、アクリロニトリル ブタジエンゴム、スチレンーブ タジェンゴム、ポリイソブテン、カルボキシゴム、ネオプレン、ポリブタジエン等の榭脂 と架橋剤としての硫黄、ァ-リンホルムアルデヒド榭脂、尿素ホルムアルデヒド榭脂、 フエノールホルムアルデヒド榭脂、リグリン榭脂、キシレンホルムアルデヒド榭脂、キシ レンホルムアルデヒド榭脂、メラミンホルムアルデヒド榭脂、エポキシ榭脂、尿素樹脂、 ァニリン榭脂、メラミン榭脂、フエノール榭脂、ホルマリン榭脂、金属酸化物、金属塩 化物、ォキシム、アルキルフ ノール榭脂等の組み合わせで用いられるものがある。 なおこれらには、架橋反応速度を増加する目的で、汎用の加硫促進剤等の添加剤 を使用することちできる。  [0095] Examples of thermosetting resins include natural rubber, isoprene rubber, chloroprene rubber, polyisobutylene, butyl rubber, halogenated butyl, acrylonitrile butadiene rubber, styrene-butadiene rubber, polyisobutene, carboxy rubber, neoprene, and polybutadiene. Sulfur, aline formaldehyde resin, urea formaldehyde resin, phenol formaldehyde resin, ligrin resin, xylene formaldehyde resin, xylene formaldehyde resin, melamine formaldehyde resin, epoxy resin, urea resin, aniline Some of these are used in combination with rosin, melamine, phenol, formalin, metal oxide, metal chloride, oxime, alkylphenol, etc. For these purposes, additives such as general-purpose vulcanization accelerators can be used for the purpose of increasing the crosslinking reaction rate.
[0096] 熱硬化性榭脂として、硬化剤を利用するものとしては、カルボキシル基、水酸基、ェ ポキシ基、アミノ基、不飽和炭化水素基等の官能基を有する榭脂とエポキシ基、水酸 基、アミノ基、アミド基、カルボキシル基、チオール基等の官能基を有する硬化剤ある いは金属塩化物、イソシァネート、酸無水物、金属酸化物、過酸化物等の硬化剤と の組み合わせで用いられるものがある。なお、硬化反応速度を増加する目的で、汎 用の触媒等の添加剤を使用することもできる。具体的には、硬化性アクリル榭脂組成 物、不飽和ポリエステル榭脂組成物、ジァリルフタレート榭脂、エポキシ榭脂組成物、 ポリウレタン榭脂組成物等が例示される。  [0096] As the thermosetting resin, those using a curing agent include a resin having a functional group such as a carboxyl group, a hydroxyl group, an epoxy group, an amino group, an unsaturated hydrocarbon group, an epoxy group, and a hydroxyl group. Used in combination with a curing agent having a functional group such as a group, amino group, amide group, carboxyl group or thiol group, or a curing agent such as a metal chloride, isocyanate, acid anhydride, metal oxide or peroxide. There is something to be done. For the purpose of increasing the curing reaction rate, an additive such as a general-purpose catalyst can be used. Specifically, curable acrylic resin composition, unsaturated polyester resin composition, diallyl phthalate resin, epoxy resin composition, polyurethane resin composition and the like are exemplified.
[0097] さらに、熱硬化性榭脂又は活性エネルギー線で硬化する榭脂としては、アクリル酸 又はメタクリル酸の付加物が好ましいものとして例示できる。  [0097] Further, examples of preferable examples of thermosetting resins or resins cured with active energy rays include acrylic acid or methacrylic acid adducts.
アクリル酸又はメタクリル酸の付加物としては、エポキシアタリレート(n= l. 48〜: L 60)、ウレタンアタリレート(n= l. 5〜1. 6)、ポリエーテルアタリレート(n= l. 48〜1 . 49)、ポリエステルアタリレート(n= l. 48-1. 54)なども使うこともできる。特に接 着性の点から、ウレタンアタリレート、エポキシアタリレート、ポリエーテルアタリレートが 優れており、エポキシアタリレートとしては、 1、 6—へキサンジオールジグリシジルェ 一テル、ネオペンチルグリコールジグリシジルエーテル、ァリルアルコールジグリシジ ルエーテル、レゾルシノールジグリシジルエーテル、アジピン酸ジグリシジルエステル 、フタル酸ジグリシジルエステル、ポリエチレングリコールジグリシジルエーテル、トリメ チロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテル、ペンタエ リスリトールテトラグリシジルエーテル、ソルビトールテトラグリシジルエーテル等の(メ タ)アクリル酸付加物が挙げられる。エポキシアタリレートなどのように分子内に水酸基 を有するポリマは接着性向上に有効である。これらの共重合榭脂は必要に応じて、 2 種以上併用することができる。 As an adduct of acrylic acid or methacrylic acid, epoxy acrylate (n = l. 48 ~: L 60), urethane acrylate (n = l. 5 to 1.6), polyether acrylate (n = l. 48 to 1.49), polyester acrylate (n = l. 48-1. 54), etc. It can also be used. In particular, urethane acrylate, epoxy acrylate, and polyether acrylate are excellent from the viewpoint of adhesion. As epoxy acrylate, 1,6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether are used. , Aryl alcohol diglycidyl ether, resorcinol diglycidyl ether, adipic acid diglycidyl ester, phthalic acid diglycidyl ester, polyethylene glycol diglycidyl ether, trimethylolpropane triglycidyl ether, glycerin triglycidyl ether, pentaerythritol tetraglycidyl ether, Examples include (meth) acrylic acid adducts such as sorbitol tetraglycidyl ether. Polymers having a hydroxyl group in the molecule, such as epoxy acrylate, are effective in improving adhesion. These copolymerized resins can be used in combination of two or more as required.
[0098] 本発明で粘着性を有して!/ヽるもの又は粘着性を示すもの(以下、これらを、「粘着剤 」という)には、必要に応じて、架橋剤、硬化剤、希釈剤、可塑剤、酸化防止剤、充填 剤、着色剤、紫外線吸収剤や粘着付与剤などの添加剤を配合してもよい。  [0098] In the present invention, for those having adhesiveness! / Scratching or exhibiting adhesiveness (hereinafter referred to as "adhesive"), a crosslinking agent, a curing agent, a dilution agent are used as necessary. Additives such as additives, plasticizers, antioxidants, fillers, colorants, UV absorbers and tackifiers may be added.
[0099] 粘着層の厚さは、薄すぎると十分な強度を得られないため、めっきで形成された金 属層を転写する際に、金属が粘着層に密着せず、転写不良が発生することがある。 したがって、粘着層の厚みは、 1 μ m以上であることが好ましぐ量産時の転写信頼 性を確保するためには 3 /z m以上であることが更に好ましい。また、粘着層の厚さが 厚いと、粘着層の製造コストが高くなるとともに、ラミネートした際に、粘着層の変形量 が多くなるため、薄膜絶縁層に接触する機会が増えるため、粘着層の厚みは 以下が好ましぐ薄膜絶縁層と粘着層が接触する機会を低減させることから 10 m 以下がさらに好ましい。  [0099] If the thickness of the pressure-sensitive adhesive layer is too thin, sufficient strength cannot be obtained. Therefore, when transferring a metal layer formed by plating, the metal does not adhere to the pressure-sensitive adhesive layer, and transfer failure occurs. Sometimes. Therefore, the thickness of the pressure-sensitive adhesive layer is more preferably 3 / zm or more in order to ensure transfer reliability during mass production, which is preferably 1 μm or more. In addition, if the adhesive layer is thick, the manufacturing cost of the adhesive layer increases, and the amount of deformation of the adhesive layer increases when laminated. The thickness is more preferably 10 m or less because it reduces the chance of contact between the thin-film insulating layer and the adhesive layer, which are preferred below.
別の基材に粘着剤を塗布して形成した粘着層を有するフィルムを、金属層が形成 されている面に貼り合わせる際には、粘着剤の特性に応じて、必要ならば加熱される  When a film having a pressure-sensitive adhesive layer formed by applying a pressure-sensitive adhesive to another substrate is bonded to the surface on which the metal layer is formed, the film is heated if necessary according to the characteristics of the pressure-sensitive adhesive.
[0100] 最終的に得られる導体層パターン付き基材の導体層ノターン (金属パターンを黒 化処理したときは黒化処理された導体層パターンを意味する)のライン幅は、 40 m 以下、ライン間隔は 100 m以上の範囲とすることが好ましい。また、導体層パターン (幾何学図形)の非視認性の観点からライン幅は 25 μ m以下、可視光透過率の点か らライン間隔は 120 m以上がさらに好ましい。ライン幅は、あまりに小さく細くなると 表面抵抗が大きくなりすぎて遮蔽効果に劣るので 1 μ m以上が好ましい。ライン間隔 は、大きいほど開口率は向上し、可視光透過率は向上する。本発明によって得られ る導体層パターンをディスプレイ前面に使用する場合、開口率は 50%以上が必要で あるが、 60%以上がさらに好ましい。ライン間隔が大きくなり過ぎると、電磁波遮蔽性 が低下するため、ライン間隔は 1000 m(lmm)以下とするのが好ましい。なお、ラ イン間隔は、幾何学図形等の組合せで複雑となる場合、繰り返し単位を基準として、 その面積を正方形の面積に換算してその一辺の長さをライン間隔とする。 [0100] The line width of the conductor layer pattern of the substrate with the conductor layer pattern that is finally obtained (meaning the conductor layer pattern that is blackened when the metal pattern is blackened) is 40 m. In the following, the line spacing is preferably in the range of 100 m or more. The line width is more preferably 25 μm or less from the viewpoint of non-visibility of the conductor layer pattern (geometrical figure), and the line interval is more preferably 120 m or more from the viewpoint of visible light transmittance. If the line width is too small and thin, the surface resistance becomes too large and the shielding effect is poor, so 1 μm or more is preferable. The larger the line spacing, the better the aperture ratio and the visible light transmittance. When the conductor layer pattern obtained by the present invention is used on the front surface of the display, the aperture ratio needs to be 50% or more, more preferably 60% or more. If the line spacing becomes too large, the electromagnetic wave shielding property is deteriorated. Therefore, the line spacing is preferably 1000 m (lmm) or less. When the line interval is complicated by a combination of geometric figures, etc., the area is converted into a square area based on the repetition unit, and the length of one side is used as the line interval.
[0101] また、本発明によって得られる導体層パターン付き基材をディスプレイ前面用途に 使用する場合、可視光透過率の点から、電磁波シールド機能を担わせる部分の開口 率は 50%以上が必要である力 60%以上がさらに好ましい。開口率が大きすぎると ライン幅が小さくなりすぎるため、開口率は 97%以下であることが好ましい。ライン間 隔という観点からは、ライン間隔は 1000 m (lmm)以下とするのが好ましい。ライン 間隔が大きくなり過ぎると、電磁波遮蔽性が低下する傾向がある。なお、ライン間隔は 、幾何学図形等の組合せで複雑となる場合、繰り返し単位を基準として、その面積を 正方形の面積に換算してその一辺の長さをライン間隔とする。可視光透過率の点か らライン間隔は、 100 m以上が好ましぐ 120 /z m以上がさらに好ましい。ライン間 隔は、大きいほど開口率は向上し、可視光透過率は向上する。  [0101] In addition, when the substrate with a conductor layer pattern obtained by the present invention is used for a display front application, the aperture ratio of the portion that performs the electromagnetic wave shielding function is required to be 50% or more from the viewpoint of visible light transmittance. A certain force of 60% or more is more preferable. If the aperture ratio is too large, the line width becomes too small, so the aperture ratio is preferably 97% or less. From the viewpoint of line spacing, the line spacing is preferably 1000 m (lmm) or less. If the line spacing becomes too large, the electromagnetic shielding properties tend to decrease. When the line spacing is complicated by a combination of geometric figures, etc., the area is converted to a square area based on the repetition unit, and the length of one side is taken as the line spacing. From the viewpoint of visible light transmittance, the line spacing is preferably 100 m or more, more preferably 120 / z m or more. The larger the line spacing, the better the aperture ratio and the visible light transmittance.
[0102] また、導体層パターンのラインの厚みは 100 μ m以下が好ましぐディスプレイ前面 の電磁波遮蔽シートとして適用した場合、厚みが薄いほどディスプレイの視野角が広 力 Sり電磁波遮蔽材料として好ましぐまた、金属層をめつきにより形成させるのにかか る時間を短縮することにもなるので 40 μ m以下とすることがより好ましぐ 18 μ m以下 であることがさらに好ま 、。あまりに厚みが薄 、と表面抵抗が大きくなりすぎて電磁 波遮蔽効果に劣るようになり、また、導体層パターンの強度が劣り、転写時の導電性 基材からの剥離が困難になるため 0. 5 μ m以上が好ましぐさらに 1 μ m以上がさら に好ましい。 [0103] また、接地機能を担わせる部分の導体層パターンのラインの厚みは、十分な電気 抵抗を確保するために、同様に 0. 5 m以上が好ましぐさらに 1 m以上力さらに 好ましい。さらに、電磁波シールド機能を担わせる部分の導体層パターンのラインの 厚みとの差が大きいと,転写する際に段差となるために、境目の部分が転写されなか つたり、折れが発生しやすくなるため、電磁波シールド機能を担わせる部分の導体層 パターンのラインの厚みとの差は 10 μ m以下が好ましぐ 5 μ m以下がさらに好まし い。 [0102] Also, when applied as an electromagnetic shielding sheet on the front of a display where the thickness of the conductor layer pattern line is preferably 100 μm or less, the thinner the thickness, the wider the viewing angle of the display and the better the electromagnetic shielding material. Furthermore, since it also shortens the time required for forming the metal layer by staking, it is more preferable to set it to 18 μm or less, more preferably 40 μm or less. If the thickness is too thin, the surface resistance will be too high and the electromagnetic shielding effect will be inferior, and the strength of the conductor layer pattern will be inferior and it will be difficult to peel off from the conductive substrate during transfer. 5 μm or more is preferable, and 1 μm or more is more preferable. [0103] In addition, the thickness of the conductor layer pattern line in the portion that assumes the grounding function is preferably 0.5 m or more, and more preferably 1 m or more, in order to ensure sufficient electric resistance. Furthermore, if the difference between the line thickness of the conductor layer pattern at the part that is responsible for the electromagnetic wave shielding function is large, a step is formed during transfer, and the boundary part is not transferred or folds are likely to occur. For this reason, the difference between the conductor layer pattern line thickness of the part that performs the electromagnetic shielding function is preferably 10 μm or less, and more preferably 5 μm or less.
[0104] 本発明における導体層パターン付き基材において、導体層パターンの開口率を高 くすることができ、これにより透光性を優良にできる。導体層として、銅、銀、ニッケル 等の金属を使用すると導電性が特に優れている。本発明における導体層パターン付 き基材は、透光性電磁波遮蔽部材として使用することができる。  [0104] In the base material with a conductor layer pattern in the present invention, the aperture ratio of the conductor layer pattern can be increased, thereby making it possible to improve the translucency. When a metal such as copper, silver or nickel is used as the conductor layer, the conductivity is particularly excellent. The base material with a conductor layer pattern in the present invention can be used as a translucent electromagnetic wave shielding member.
[0105] 本発明における導体層パターン付き基材を遮蔽体として用いる場合には、反射防 止層、近赤外線遮蔽層等をさらに積層してもよい。導電性基材 1に形成された金属 層を転写する基材そのものが反射防止層、近赤外線遮蔽層等の機能層を兼ねてい てもよい。さらに、導体層パターン層に榭脂をコーティングする際に用いられるカバー フィルムに、反射防止層、近赤外線遮蔽層等の機能層を兼ねていてもよい。  [0105] When the substrate with a conductor layer pattern in the present invention is used as a shield, an antireflection layer, a near infrared shielding layer, or the like may be further laminated. The base material itself that transfers the metal layer formed on the conductive base material 1 may also serve as a functional layer such as an antireflection layer or a near infrared shielding layer. Furthermore, the cover film used when coating the resin layer pattern layer with a resin may also serve as a functional layer such as an antireflection layer or a near infrared shielding layer.
[0106] また、本発明における導体層パターン付き基材を電磁波遮蔽部材として、ディスプ レイ等の前面に用いる場合には、反射防止等を含む視認性確保を図るために導電 層パターンは、黒ィ匕処理したものであることが好ましい。電磁波遮蔽部材はその前面 が黒色であることがハイコントラストの実現及びディスプレイの電源切断時に画面が 黒 、こと等の要求を満たすことから好ま 、とされて!/、る。  [0106] In addition, when the substrate with a conductor layer pattern in the present invention is used as an electromagnetic wave shielding member on the front surface of a display or the like, the conductive layer pattern is blackened to ensure visibility including antireflection. It is preferable that it has been subjected to a soot treatment. The front surface of the electromagnetic wave shielding member is preferably black because it satisfies the requirements such as high contrast and a black screen when the display is turned off! /
上記黒化処理としては金属層にめっきや酸化処理、印刷などの様々な方法を用い ることができる。しかし、金属層表面を化成処理で酸化し、黒化すると導体層パターン ライン部に微小な黒色粉末が発生し、電磁波遮蔽部材の透過光強度が低下し、かつ 色むらが生ずる。また、例えばカーボンブラック等の黒色材料を混入させた塗料をス クリーン等で印刷する印刷法では金属層のみを黒ィヒすることが困難であり、やはり電 磁波遮蔽部材の透光性を損じる。よって、導電性基材の凹部に形成した絶縁性皮膜 を侵すことが無ぐまた、めっきプロセスにより金属層及びそれ以外の部分に黒色粉 末を発生させること無く、金属層表面のみを黒ィヒ処理することができる黒色ニッケル めっきが最も有効である。黒色ニッケルめっきは硫ィ匕ニッケルを主成分とする黒色合 金皮膜を電着で形成するめつき法である力 VIII族元素の鉄、コバルトもいずれも硫 化物としたとき黒色を呈すので用いることができる。同じ VIII族元素の中でも硫ィ匕-ッ ケルは目的にかなった黒色を呈し、さらに下地金属とも良好な密着性を有する。 VIII 族元素以外の硫化物では銀、水銀、銅、鉛などを、用いることが可能である。またス ズとニッケル、スズとコバルトなどの合金めつきや黒色クロムめつきを用いても粉落ち が無ぐ金属層のみに良好な密着性を有する黒化処理層(黒色層)を形成することが できる。これら黒化処理層を形成する工程は、導電性基材の凸部上面に金属層を形 成する前後で、また別の基材に転写する前に行うこともできるし、別の基材に転写し た後に行うこともできる。 As the blackening treatment, various methods such as plating, oxidation treatment, and printing can be used for the metal layer. However, if the surface of the metal layer is oxidized and blackened by chemical conversion treatment, a fine black powder is generated in the conductor layer pattern line portion, the transmitted light intensity of the electromagnetic wave shielding member is lowered, and color unevenness occurs. In addition, in a printing method in which a black material such as carbon black is mixed with a screen or the like, it is difficult to blacken only the metal layer, and the translucency of the electromagnetic wave shielding member is also impaired. Therefore, the insulating film formed on the concave portion of the conductive base material is not affected, and the metal layer and other portions are not blackened by the plating process. Black nickel plating that can treat only the surface of the metal layer without generating powder is most effective. Black nickel plating is a plating method for forming a black alloy film containing nickel sulfate as a main component by electrodeposition. it can. Among the same group VIII elements, sulfur-nickel has a suitable black color and also has good adhesion to the underlying metal. For sulfides other than Group VIII elements, silver, mercury, copper, lead, etc. can be used. In addition, a blackening treatment layer (black layer) with good adhesion should be formed only on the metal layer that does not fall off even when using an alloy plating such as tin and nickel, tin and cobalt, or black chromium plating. Is possible. The process of forming these blackening treatment layers can be performed before or after forming the metal layer on the upper surface of the convex portion of the conductive base material, and before transferring to another base material. It can also be done after the transfer.
[0107] 図 18〜20は、導体層パターンが黒ィ匕処理された金属パターン力もなる導体層パタ ーン付き基材の断面図である。図 18は、導電性基材からその凸部に形成された金属 層 14を、接着剤 17を介して基材 18に転写した後、金属の表面を黒化処理して得た 導体層パターンを有する導体層パターン付き基材の断面図である。金属 14の側面 及び上面に黒色層 23を形成させた導体層パターンが接着剤 17を介して基材である 透明基材 18に貼着されている。また、図 19— a及び図 19— bは、導電性支持体の凸 部に形成された金属層を、その金属を転写する前に (前述の図 14の状態や図 17— cの状態で)黒化処理し、この後、黒化処理した金属 (導体層パターン)を、接着剤 17 を介して基材 18に転写して得た導体層パターン付き基材の断面図である。金属 14と 黒色層 24カゝらなる導体層パターンは、黒色層 24が接着剤 17を介して基材である透 明基材 18に貼着されている。図 19— aでは、金属 14の側面も黒ィ匕処理されているが 、図 19 bでは金属の側面は黒ィ匕処理されて ヽな 、。  FIGS. 18 to 20 are cross-sectional views of a base material with a conductor layer pattern which also has a metal pattern force in which the conductor layer pattern is blackened. Fig. 18 shows the conductor layer pattern obtained by transferring the metal layer 14 formed on the convex portion from the conductive substrate to the substrate 18 via the adhesive 17, and then blackening the metal surface. It is sectional drawing of the base material with a conductor layer pattern which has. A conductor layer pattern in which a black layer 23 is formed on the side surface and the upper surface of the metal 14 is attached to a transparent substrate 18 as a substrate via an adhesive 17. Also, FIGS. 19-a and 19-b show that the metal layer formed on the convex portion of the conductive support is transferred before the metal is transferred (in the state of FIG. 14 and the state of FIG. 17-c described above). FIG. 2 is a cross-sectional view of a base material with a conductor layer pattern obtained by blackening and then transferring the blackened metal (conductor layer pattern) to the base material 18 through an adhesive 17. In the conductor layer pattern consisting of the metal 14 and the black layer 24, the black layer 24 is attached to the transparent base material 18 as a base material via the adhesive 17. In Fig. 19a, the metal 14 side is also blackened, but in Fig. 19b the metal side is blackened.
以上の電磁波遮蔽部材は、一般に、黒色層を設けた方の面がディスプレイの視聴 者側に向くようにして用いられる。  The above electromagnetic shielding member is generally used so that the surface on which the black layer is provided faces the viewer side of the display.
[0108] 黒色ニッケルめっき層を形成するに際しては、硫酸ニッケル 60〜: LOOgZL、硫酸 ニッケルアンモ-ゥム 30〜50g/L、硫酸亜鉛 20〜40gZL、チォシアン酸ナトリウム 10〜20gZLを含有するめつき液を用いることができる。このめつき浴を用い、 pH:4 〜7、温度: 45〜55° C、電流密度 0. 5〜3. OAZdm2の条件で、ステンレスァノー ド又はニッケルアノード、攪拌には循環ポンプ並びにエアー攪拌を使用することによ り、プラズマディスプレーパネル用として好適な黒色ニッケルめっき層を形成すること ができる。黒色ニッケルめっきの前処理としては下地となる金属層との密着性を高め るために適切なアルカリ脱脂、酸洗浄を行うことがより好ましい。各成分の濃度範囲を 超えたところでめっきを行うとめつき液が分解しやすぐ良好な黒色を得ることが困難 になる。また、温度に関しても 55°Cを超える温度でめっきを行うとめつき液が分解しや すくなる。逆に 45°C未満では 1. OAZdm2以上のめっきを行うと、製品にざらつきが 生じて粉落ちしやすくなり、やはりめつき液寿命が短くなる。 45°C未満で 1. OA/dm 2以下の電流密度でめっきを行うことは可能である力 望む黒色を得るのに長時間の めっきが必要となり、生産性を低下させてしまう。それゆえ、上の濃度組成のめっき液 を使用して短時間で黒色ニッケルめっきを行う際の温度範囲は 45〜55°Cが最適で ある。また、電流密度に関しては温度範囲内で 0. 5AZdm2以下でも可能であるが、 望む黒色を得るのに長時間のめっきが必要となる。 3. OAZdm2以上でめっきを行う とめつき液が分解しやすぐ粉落ちしやすい黒色皮膜が形成される。黒色ニッケルめ つきではステンレスアノードを使用した場合、めっき液寿命が短くなるので、通常-ッ ケルアノードを使用するのが望ましい。 [0108] In forming the black nickel plating layer, a plating solution containing nickel sulfate 60-: LOOgZL, nickel sulfate 30-50 g / L, zinc sulfate 20-40 gZL, sodium thiocyanate 10-20 gZL Can be used. Using this bath, pH: 4 ~ 7, Temperature: 45 ~ 55 ° C, Current density 0.5 ~ 3. OAZdm 2 conditions, stainless steel or nickel anode, circulation pump and air agitation for agitation. A black nickel plating layer suitable for a display panel can be formed. As the pretreatment for black nickel plating, it is more preferable to perform appropriate alkaline degreasing and acid cleaning in order to improve the adhesion to the metal layer as the base. When plating is performed at a concentration exceeding the concentration range of each component, it becomes difficult to obtain a good black color as soon as the clinging liquid decomposes. In addition, when plating is performed at a temperature exceeding 55 ° C, the clinging solution is easily decomposed. On the other hand, at temperatures below 45 ° C: 1. When plating over OAZdm 2 or more, the product becomes rough and easy to fall off, which also shortens the life of the liquid. Less than 45 ° C 1. Possibility of plating at a current density of OA / dm 2 or less Long plating is required to obtain the desired black color, which reduces productivity. Therefore, the optimum temperature range when performing black nickel plating in a short time using the plating solution with the above concentration composition is 45-55 ° C. In addition, the current density can be less than 0.5 AZdm 2 within the temperature range, but long plating is required to obtain the desired black color. 3. When plating with OAZdm 2 or more, a black coating is formed that decomposes the adhesive solution and easily breaks down. When using a stainless steel anode for black nickel plating, the plating solution life will be shortened, so it is usually desirable to use a nickel anode.
[0109] 黒色処理層の厚さに関しては 0. 5 m以下のめっきでは完全な黒色にならず、表 面に虹状の色むらが発生する傾向がある。また 3 m以上の黒色処理層を形成する と生産性が低下する上に、ライン幅が大きくなるために透過率が低下し、かつ細線部 に粉落ちが発生しやすくなる。よって黒化処理層の厚みは 0. 5 /ζ πι〜3. O /z mであ ることが望ましい。 [0109] With regard to the thickness of the black treatment layer, plating of 0.5 m or less does not result in complete blackness, and rainbow-like color unevenness tends to occur on the surface. In addition, when a black treatment layer of 3 m or more is formed, productivity is lowered, and the line width is increased, so that the transmittance is lowered and the fine lines are liable to fall off. Therefore, the thickness of the blackening treatment layer is preferably 0.5 / ζ πι to 3. O / z m.
[0110] 黒化処理の後、さらに、防鲭処理を行うことができる。防鲭処理としては公知の手段 としてクロメート処理、ベンゾトリアゾールなどを使用することができる。また、市販され ている防鲭剤を使用することもできる。また、黒化処理層つき導体層パターンを別の 基材に転写した後に再度同じ方法で黒化処理層を形成する場合も同様に防鲭処理 を行うことが望ましい。  [0110] After the blackening treatment, a fender treatment can be further performed. As the antifungal treatment, a chromate treatment, benzotriazole, or the like can be used as a known means. A commercially available antifungal agent can also be used. Also, when the blackened layer is formed again by the same method after transferring the conductive layer pattern with the blackened layer to another substrate, it is desirable to carry out the same antifouling treatment.
[Oil 1] 黒ィ匕処理層の色合いに関しては市販の測色計を用いて CIE標準表色系に準じて 検討を行った。明度 L*が 40. 00未満では、表面の金属光沢により外光及び迷光の 反射率が大きくなり、画像のコンストラストが低下する。また、黒化処理層の色度 I a* |、 | b* |が 5. 00以上では導体層パターンの着色が強ぐ色の再現性が低下する 。よって黒ィ匕処理層を有する導体層パターン付きプラスチック基材の明度、色度は上 の範囲を満たすことが望ましいが、例えば L* < 35. 00、 | a* I < 1. 00、 | b * | < 4. 00であることがより望ましい。 [Oil 1] The color of the black wrinkle-treated layer was measured according to the CIE standard color system using a commercially available colorimeter. Study was carried out. When the lightness L * is less than 40.00, the reflectance of external light and stray light increases due to the metallic luster of the surface, and the image contrast decreases. In addition, when the chromaticity I a * |, | b * | of the blackening layer is 5.00 or more, the reproducibility of the color with the strong coloring of the conductor layer pattern is lowered. Therefore, it is desirable that the lightness and chromaticity of a plastic substrate with a conductive layer pattern having a blackish-colored layer satisfy the above ranges. For example, L * <35. 00, | a * I <1.00, | b * | <4.00 is more desirable.
[0112] 本発明における導体層パターン付き基材を電磁波遮蔽部材として用いる場合は、 そのまま、ディスプレイ画面に適宜別の接着剤を介して又は介さな 、で貼着して使用 することができるが、他の基材に貼着して力 ディスプレイに適用してもよい。他の基 材は、ディスプレイの前面力もの電磁波を遮断するために使用するには透明であるこ とが必要である。 [0112] When the substrate with a conductor layer pattern according to the present invention is used as an electromagnetic wave shielding member, it can be used as it is by being attached to the display screen through another adhesive as appropriate or not. It may be applied to other substrates by applying to other substrates. Other substrates need to be transparent to be used to block the electromagnetic waves that are the front power of the display.
図 20に導体層パターン付き基材が他の基材に貼着されて得られた電磁波遮蔽部 材の断面図を示す。図 20において、基材 (別の基材) 20に積層されている粘着層 21 に金属 14からなる導体層パターンが埋設され、粘着層 21及び金属 14が他の基材 2 FIG. 20 shows a cross-sectional view of an electromagnetic wave shielding member obtained by pasting a base material with a conductor layer pattern onto another base material. In FIG. 20, a conductor layer pattern made of a metal 14 is embedded in an adhesive layer 21 laminated on a base material (another base material) 20, and the adhesive layer 21 and the metal 14 are connected to another base material 2.
5により覆われている。これは、基材 (別の基材) 20に粘着剤 21を介して接着されて いる金属 14からなる導体層パターンを有する導体層パターン付き基材の導体層バタ ーンが存在する面を、適度な圧力で他の基材 25に圧着する方法により作製すること ができる。この場合、粘着層 21が十分な流動性を有するものであるか十分な流動性 を有するうちに、適度な圧力を加えることにより金属 14を粘着層 21に埋設する。この 電磁波遮蔽体では、粘着層 21と他の基材 25が直接接触し、良好な密着性が得られ る。また、基材 (別の基材) 20ゃ基材 (他の基材) 25は、透明性を有し、し力もその表 面の平滑性が優れるものを使用することにより、透明性も高い電磁波遮蔽体を得るこ とがでさる。 5 covered. This is because the conductor layer pattern of the substrate with the conductor layer pattern having the conductor layer pattern made of the metal 14 bonded to the substrate (another substrate) 20 via the adhesive 21 exists. It can be produced by a method of pressure-bonding to another base material 25 with an appropriate pressure. In this case, the metal 14 is embedded in the adhesive layer 21 by applying an appropriate pressure while the adhesive layer 21 has sufficient fluidity or sufficient fluidity. In this electromagnetic wave shielding body, the adhesive layer 21 and the other base material 25 are in direct contact with each other, and good adhesion can be obtained. In addition, the base material (another base material) 20 is the base material (other base material) 25, which has transparency, and has a high transparency by using a material that has excellent strength and smoothness on its surface. It is possible to obtain an electromagnetic shield.
図 21に導体層パターン付き基材が保護樹脂で覆われた電磁波遮蔽部材の断面図 を示す。  Fig. 21 shows a cross-sectional view of an electromagnetic wave shielding member in which the base material with a conductor layer pattern is covered with a protective resin.
基材 (別の基材) 20に積層されている粘着層 21上に金属 14からなる導体層パター ンが貼り付いており、この上を透明な保護榭脂 26で被覆している。  A conductor layer pattern made of metal 14 is attached to an adhesive layer 21 laminated on a base material (another base material) 20, and this is covered with a transparent protective resin 26.
[0113] 図 22は、別の態様の電磁波遮蔽体の断面図を示す。この電磁波遮蔽体は、図 21 の電磁波遮蔽部材が、基材 (別の基材) 20の導体層ノターンがある面とは反対の面 で、接着剤 27を介して他の基材 28に貼り合わされたものである。 FIG. 22 is a cross-sectional view of an electromagnetic wave shielding body according to another aspect. This electromagnetic wave shield is shown in Fig. 21. The electromagnetic shielding member is bonded to another substrate 28 via an adhesive 27 on the surface opposite to the surface on which the conductor layer pattern of the substrate (another substrate) 20 is provided.
図 23は、さらに、別の態様の電磁波遮蔽体の断面図を示す。図 23において、基材 (別の基材) 20に粘着層 21を介して金属 14からなる導体層パターンが接着されてお り、その上を透明樹脂からなる接着剤又は粘着剤 29により被覆され、さらにその上に 保護フィルム 30が積層されている。基材 20のもう一方の面には接着層 27を介してガ ラス板等の他の基材 28が貼着されている。この電磁波遮蔽部材では、基材 (別の基 材) 20に粘着剤 21を介して接着されている導体層パターンを有する導体層パターン 付き基材の導体層パターンが存在する面を、透明榭脂 29によりコーティングし、さら に保護フィルム 30を積層し、ついで、得られた積層物の基材 20のもう一方の面 (何も 積層されていない面)に接着剤を塗布して接着層 27を形成し、これを他の基材 28に 押しつけて接着することにより作製することができる。上記の透明榭脂 29としては、前 記熱可塑性榭脂、熱硬化性榭脂のほかに活性エネルギー線で硬化する榭脂を用い ることもできる。活性エネルギー線で硬化する榭脂を用いることは、それが瞬時に又 は短時間に硬化することから、生産性が高くなるので好ましい。  FIG. 23 further shows a cross-sectional view of an electromagnetic wave shielding member according to another embodiment. In FIG. 23, a conductor layer pattern made of metal 14 is bonded to a base material (another base material) 20 through an adhesive layer 21, and the conductive layer pattern is covered with an adhesive or an adhesive 29 made of a transparent resin. Furthermore, a protective film 30 is laminated thereon. Another substrate 28 such as a glass plate is attached to the other surface of the substrate 20 via an adhesive layer 27. In this electromagnetic wave shielding member, the surface on which the conductor layer pattern of the substrate with the conductor layer pattern having the conductor layer pattern adhered to the substrate (another substrate) 20 via the adhesive 21 is disposed on the transparent resin. 29, and a protective film 30 is further laminated, and then an adhesive is applied to the other side (the surface on which nothing is laminated) of the base material 20 of the obtained laminate to form an adhesive layer 27. It can be produced by forming it and pressing it against another substrate 28 for adhesion. As the transparent resin 29, in addition to the thermoplastic resin and the thermosetting resin, a resin that is cured with active energy rays can be used. It is preferable to use a resin that hardens with active energy rays because it hardens instantaneously or in a short time, and thus the productivity increases.
[0114] また、本発明で用いられる導電性基材として、回転体 (ロール)を用いることができる ことは前記したが、さらに、この詳細を説明する。回転体 (ロール)は金属製が好まし い。さらに、回転体としてはドラム式電解析出法に用いるドラム電極などを用いること が好ましい。ドラム電極の表面を形成する物質としては上述のようにステンレス鋼、ク ロムめつきされた铸鉄、クロムめつきされた鋼、チタン、チタンをライニングした材料な どのめつき付着性が比較的低 、材料を用いることが好ま 、。導電性基材として回転 体を用いることにより連続的に作製して巻物として導体層パターン付き基材を得ること が可能となるため、この場合、生産性が飛躍的に大きくなる。  [0114] Further, as described above, a rotating body (roll) can be used as the conductive base material used in the present invention, and further details thereof will be described. The rotating body (roll) is preferably made of metal. Furthermore, it is preferable to use a drum electrode or the like used in the drum-type electrolytic deposition method as the rotating body. As described above, the material that forms the surface of the drum electrode has relatively low adhesion to stainless steel, chromium-plated pig iron, chromium-plated steel, titanium, and titanium-lined materials. , Prefer to use the material. By using a rotating body as the conductive base material, it is possible to obtain a base material with a conductor layer pattern as a roll, and in this case, productivity is greatly increased.
[0115] 回転体を用いて、電気めつきにより形成されたパターンを連続的に剥離しながら、 構造体を巻物として得る工程を、図 24を用いて説明する。図 24は、導電性基材とし てドラム電極を用いた場合に、ドラム電極を回転させつつ、金属を電気めつきにより 連続的に析出させ、また、析出した金属を連続的に剥離する装置の概念を示す断面 図(一部正面図)である。 [0116] すなわち、電解浴 100内の電解液 101が陽極 102とドラム電極などの回転体 103 の間のスペースに配管 104とポンプ 105により供給されるようになっている。陽極 102 と回転体 103の間に電圧をかけ、回転体 103を一定速度で回転させると、回転体 10 3の表面に金属が電解析出し、電解液 101の外で、回転体 103表面の凸部の上面 に析出した金属 106に、粘着層を形成したフィルム 107の粘着層を圧着ロール 108 で圧着し、連続的に回転体 103から金属 106を剥離しつつ粘着層を形成したフィル ム 107にその金属 106を転写し、導体層パターン付き基材 109とする。これはロール (図示せず)に巻き取ることができる。このようにして導体層パターン付き基材 108を 製造することができる。なお、上記の回転体 103の表面には、凸部とそれにより描か れている幾何学図形状の凹部が形成されている。また、回転中の回転体 103から、 凸部の上面に析出した金属 106が剥離させられた後で、電解液 101に浸力る前に、 回転体 103表面をエッチング洗浄したり(図示せず)してもよい。なお、図示していな いが陽極 102の上端には高速で循環している電解液が上方へ噴出するのを防ぐた めに水切りロールを設置しても良ぐ水切りロールによってせき止められた電解液は 陽極 102の外部から下の電解液の浴槽へと戻り、ポンプにより循環される。また、図 示しないがこの循環の間に消費された銅イオン源や添加剤等を必要に応じて追加す る態様をカ卩えることが好まし 、。 [0115] A process of obtaining a structure as a scroll while continuously peeling off a pattern formed by electroplating using a rotating body will be described with reference to FIG. Fig. 24 shows an apparatus for continuously depositing metal by electric plating while continuously rotating the drum electrode when a drum electrode is used as the conductive base material. It is sectional drawing (partial front view) which shows a concept. That is, the electrolytic solution 101 in the electrolytic bath 100 is supplied to the space between the anode 102 and the rotating body 103 such as the drum electrode by the pipe 104 and the pump 105. When a voltage is applied between the anode 102 and the rotating body 103 and the rotating body 103 is rotated at a constant speed, metal is electrolytically deposited on the surface of the rotating body 103, and the surface of the rotating body 103 is projected out of the electrolytic solution 101. The adhesive layer of the film 107 on which the adhesive layer is formed is pressure-bonded to the metal 106 deposited on the upper surface of the part with the pressure roller 108, and the metal 106 is continuously peeled off from the rotating body 103 to form the adhesive layer on the film 107. The metal 106 is transferred to form a base material 109 with a conductor layer pattern. This can be wound on a roll (not shown). In this way, the substrate 108 with a conductor layer pattern can be manufactured. Note that a convex portion and a concave portion having a geometric diagram shape drawn thereby are formed on the surface of the rotating body 103. In addition, after the metal 106 deposited on the upper surface of the convex portion is peeled off from the rotating rotor 103 that is rotating, the surface of the rotating body 103 is subjected to etching cleaning (not shown) before being immersed in the electrolytic solution 101. ) Although not shown, the upper end of the anode 102 may be installed with a draining roll to prevent the electrolyte circulating at high speed from being ejected upward. Returns from outside the anode 102 to the lower electrolyte bath and is circulated by the pump. Although not shown, it is preferable to add a copper ion source or additive consumed during the circulation as needed.
[0117] さらに、本発明で用いられる導電性基材として、フープ状の導電性基材を用いるこ とができることは前記した力 さらに、この詳細を説明する。  [0117] Further, the fact that a hoop-like conductive substrate can be used as the conductive substrate used in the present invention will be described in detail.
フープ状の導電性基材に関しては、帯状の導電性基材の表面に凸部を形成した 後、端部をつなぎ合わせるなどして作製できる。導電性基材の表面を形成する物質 としては上述のようにステンレス鋼、クロムめつきされた铸鉄、クロムめつきされた鋼、 チタン、チタンをライニングした材料などのめつき付着性が比較的小さ ヽ材料を用い ることが好ましい。  A hoop-shaped conductive substrate can be produced by forming a convex portion on the surface of a strip-shaped conductive substrate and then joining the end portions. As described above, the material that forms the surface of the conductive base material has relatively high adhesion to stainless steel, chromium-plated pig iron, chromium-plated steel, titanium, titanium-lined materials, etc. It is preferable to use a small wrinkle material.
フープ状の導電性基材を用いた場合には、黒化処理、防鲭処理、転写等の工程を、 1つの連続した工程で処理可能となるため導電性パターン付き基材の生産性が高く 、また、導電性パターン付き基材を連続的に作製して巻物として製品とすることがで きる。フープ状の導電性基材の厚さは適宜決定すればよいが、 100〜1000 mで あることが好ましい。 When a hoop-like conductive substrate is used, the blackening process, anti-bacterial treatment, transfer process, etc. can be processed in one continuous process, so the productivity of the substrate with a conductive pattern is high. In addition, a substrate with a conductive pattern can be continuously produced to obtain a product as a scroll. The thickness of the hoop-like conductive substrate may be determined as appropriate, but is 100 to 1000 m. Preferably there is.
[0118] フープ状の導電性基材を用いて、電気めつきにより形成された導体層パターンを連 続的に剥離しながら、構造体を巻物として得る工程を、図 25を用いて説明する。図 2 5は、導電性基材としてフープ状導電性基材を用いた場合に、連続的に導体層バタ ーンを電気めつきにより析出させながら剥離する装置の概念図である。  [0118] A process of obtaining a structure as a scroll while continuously peeling off a conductor layer pattern formed by electric plating using a hoop-like conductive substrate will be described with reference to FIG. FIG. 25 is a conceptual diagram of an apparatus for continuously peeling a conductor layer pattern by electroplating when a hoop-like conductive substrate is used as the conductive substrate.
[0119] フープ状の導電性基材 110を、搬送ロール 111〜128を用い、前処理槽 129、め つき槽 130、水洗槽 131、黒化処理槽 132、水洗槽 133、防鲭処理槽 134、水洗槽 1 35を順次とおり、周回運動するように設置する。前処理槽 129で導電性基材 110の 脱脂処理、酸処理、エッチング処理等による導電性基材に残存していた金属を取り 除くための処理を行う。その後、めっき槽 (電解浴) 130で、導電性基材 110上に金 属を析出させる。この後に、水洗槽 131、黒化処理槽 132、水洗槽 133、防鲭処理槽 134、水洗槽 135を順次通して、それぞれで、導電性基材 110上に析出した金属の 表面を黒化し、さらに防鲭処理する。各処理工程後にある水洗槽は、 1槽しか図示し ていないが、必要に応じて複数の槽を用いたり、各処理工程の前になんらかの前処 理槽等があってもよい。次いで、接着層を積層したプラスチックフィルム基材 136を導 電性基材 110の凸部の上面に析出した金属が転写されるように搬送ロール 128上の 導電性基材 110と圧着ロール 137の間を通し、上記金属をプラスチックフィルム基材 136に転写して、導電層パターン付き基材 138を連続的に製造することができる。得 られる導電層パターン付き基材 138は、ロール状に巻き取ることができる。必要に応 じて、圧着ロール 137を加熱することもできるし、図示はしないが、プラスチックフィル ム基材 136を圧着ロールを通過させる前にプレヒート槽を通して予備加熱してもよい 。また、転写したフィルムの卷取りには、必要に応じて、離型 PET等を挿入してもよい 。さらに、金属が転写された後、フープ状導電性基材は、上記の工程を繰り返すこと となる。このようにして、連続的に、高い生産性で導体層パターン付き基材を製造す ることがでさる。  [0119] The hoop-like conductive substrate 110 is transferred to the pretreatment tank 129, the plating tank 130, the water washing tank 131, the blackening treatment tank 132, the water washing tank 133, and the fender treatment tank 134 using the transport rolls 111 to 128. The water tank 1 35 will be installed so that it can orbit around. In the pretreatment tank 129, the conductive substrate 110 is degreased, acid-treated, etched, etc. to remove the metal remaining on the conductive substrate. Thereafter, metal is deposited on the conductive substrate 110 in a plating bath (electrolytic bath) 130. After this, the water washing tank 131, the blackening treatment tank 132, the water washing tank 133, the antifouling treatment tank 134, and the water washing tank 135 are sequentially passed, and the surface of the metal deposited on the conductive substrate 110 is blackened. Further anti-bacterial treatment is performed. Although only one tank is shown after each treatment process, a plurality of tanks may be used as necessary, or some pretreatment tank may be provided before each treatment process. Next, the plastic film substrate 136 with the adhesive layer laminated is transferred between the conductive substrate 110 and the pressure roll 137 on the transport roll 128 so that the metal deposited on the upper surface of the convex portion of the conductive substrate 110 is transferred. The metal can be transferred to the plastic film substrate 136 and the substrate 138 with a conductive layer pattern can be continuously produced. The obtained base material 138 with a conductive layer pattern can be wound into a roll. If necessary, the pressure-bonding roll 137 can be heated. Although not shown, the plastic film substrate 136 may be preheated through a preheating tank before passing through the pressure-bonding roll. In addition, release PET or the like may be inserted as needed to remove the transferred film. Furthermore, after the metal is transferred, the hoop-like conductive base material repeats the above process. In this way, it is possible to continuously produce a substrate with a conductor layer pattern with high productivity.
[0120] フープ状の導電性基材を用いて導体層パターン付き基材を製造する別の例を図 2 6を用いて説明する。図 26は、導電性基材としてフープ状導電性基材を用いた場合 に、連続的に導体層ノ^ーンを電気めつきにより析出させながら剥離する別の例を 示す装置の概念図である。 [0120] Another example of producing a substrate with a conductor layer pattern using a hoop-like conductive substrate will be described with reference to FIG. Fig. 26 shows another example in which a conductive layer material is continuously peeled while being deposited by electrical contact when a hoop-like conductive substrate is used as the conductive substrate. It is a conceptual diagram of the apparatus shown.
[0121] フープ状の導電性基材 110を、搬送ロール 111〜116、 140〜143、 127及び 12 8を通して設置する。まず、前処理槽 129 (例えば、転写後に導電性基材 110に残存 金属がある場合その残存金属を除去するためのエッチング槽)を通過させ、さらに必 要に応じて水洗する(図示省略)。その後、 2個のめっき槽 (電解浴) 130、 150で、導 電性基材上に金属を析出させる。この後に、黒化処理槽 151を設置して、析出した 金属の表面を黒ィ匕してもよい。さらに、防鲭処理槽等を設けても良い(図示せず)。 これらの槽は、 1個のめっき槽 (電解浴) 130、黒化処理槽 150、防鲭処理槽 151と してちよい。 [0121] The hoop-like conductive substrate 110 is installed through the transport rolls 111 to 116, 140 to 143, 127 and 128. First, the sample is passed through a pretreatment tank 129 (for example, an etching tank for removing residual metal in the conductive base 110 after transfer), and further washed with water as necessary (not shown). Thereafter, the metal is deposited on the conductive substrate in two plating baths (electrolytic baths) 130 and 150. Thereafter, a blackening treatment tank 151 may be installed to blacken the surface of the deposited metal. Further, a fender treatment tank or the like may be provided (not shown). These baths may be a single plating bath (electrolytic bath) 130, a blackening treatment bath 150, and a fender treatment bath 151.
これらの各槽の間には、水洗槽ゃ前処理槽等があってもよい。次いで、接着層を積 層したプラスチックフィルム基材 136、圧着ロール 137を利用して、導電性基材 110 の凸部の上面に析出した金属をプラスチックフィルム基材 136に転写し、導電層パタ ーン付き基材 138を連続的に製造する点は前記図 25におけると同様である。  Between each of these tanks, there may be a washing tank or a pretreatment tank. Next, the metal deposited on the upper surface of the convex portion of the conductive substrate 110 is transferred to the plastic film substrate 136 using the plastic film substrate 136 and the pressure roll 137 on which the adhesive layer is stacked, and the conductive layer pattern is transferred. The point that the base material 138 with a lead is continuously manufactured is the same as in FIG.
[0122] 本発明における導体層パターン付き基材を遮蔽体として用いる場合には、反射防 止層、近赤外線遮蔽層等をさらに積層してもよい。導電性基材 1に析出した金属を転 写する基材そのものが反射防止層、近赤外線遮蔽層等の機能層を兼ねていてもよ い。さら〖こ、導体層パターン層に榭脂をコーティングする際に用いられるカバーフィル ムに、反射防止層、近赤外線遮蔽層等の機能層を兼ねていてもよい。  [0122] When the substrate with a conductor layer pattern in the present invention is used as a shield, an antireflection layer, a near infrared shielding layer, or the like may be further laminated. The base material itself that transfers the metal deposited on the conductive base material 1 may also serve as a functional layer such as an antireflection layer or a near infrared shielding layer. Furthermore, the cover film used when coating the resin layer pattern layer with a resin may also serve as a functional layer such as an antireflection layer or a near infrared shielding layer.
[0123] また、本発明は、上記のようなめっき方法に限らず枚葉で作製することも可能である 。枚葉で行った場合、めっき用導電性基材の作製時の取扱が容易であり、同一のめ つき用導電性基材を繰り返し使用した後に一箇所だけ絶縁層が剥離した、といった 場合でもドラム状やフープ状の基材であると特定部分だけの抜き取りあるいは交換は 困難であるが、枚葉であれば不良が発生しためっき用導電性基材のみを抜き取りあ るいは交換することが可能である。このように枚葉で作製することにより、めっき用導 電性基材に不具合が発生したときの対応が容易である。枚葉状の導電性基材の厚 みは適宜決定すればよいが、めっき槽内で液の攪拌等に左右されない十分な強度 を持たせることを考慮すると厚みは 20 m以上が好ましい。厚すぎると重量が増え取 扱が困難であるため 10cm以下の厚みであることが好まし 、。 [0124] 本発明にお ヽて絶縁層を導電性基材に定着させるとは、絶縁層にあたる榭脂を硬 化させることを指す。この工程は一般に硬化あるいは焼き付け工程と呼ばれている。 また、本発明にお!ヽて不活性ガスとは薄膜絶縁層を形成する榭脂成分と反応しな V、ガスのことを指す。一般に不活性ガスとはネオンやアルゴンと!/ヽつた反応性のな!ヽ 気体を指すことが多いが、本発明においてはそれらに限定することなぐ薄膜絶縁層 と反応性のない気体、例えば窒素などを含むものとする。入手のしゃすさ、価格、環 境への配慮などの点力も窒素を用いることが好まし 、。 [0123] Further, the present invention is not limited to the plating method as described above, and it is also possible to produce a single wafer. When performed on a single wafer, the drum is easy to handle during the production of the conductive substrate for plating, and the insulation layer peels off only once after the same conductive substrate for plating is used repeatedly. It is difficult to extract or replace only a specific part if it is a substrate in the shape of a hoop or a hoop, but if it is a sheet, it is possible to extract or replace only the conductive substrate for plating in which a defect has occurred. is there. Thus, by making it by a single wafer, it is easy to cope when a defect occurs in the conductive substrate for plating. The thickness of the sheet-like conductive substrate may be determined as appropriate, but the thickness is preferably 20 m or more in consideration of providing sufficient strength that is not affected by the stirring of the liquid in the plating tank. If it is too thick, the weight increases and it is difficult to handle. [0124] In the present invention, fixing the insulating layer to the conductive base means that the resin corresponding to the insulating layer is hardened. This process is generally called a curing or baking process. In addition, the present invention! Inert gas refers to V and gas that do not react with the resin component that forms the thin-film insulation layer. In general, an inert gas refers to a gas that is not reactive with neon or argon, but in the present invention, a gas that is not reactive with a thin film insulating layer, such as nitrogen, is not limited thereto. Etc. Nitrogen is also preferred for points such as availability, price and consideration for the environment.
電着塗料を例に挙げて説明する。電着塗料を導電性基材に塗布した後に、表面に 付着した水分や溶剤等を低温で乾燥させる仮硬化あるいは仮乾燥と呼ばれる工程 がある。この時点では水分や溶剤を乾燥させるだけなので榭脂は完全に硬化されず 、このときの雰囲気は不活性ガス雰囲気下でなくても良い。次に榭脂を完全に硬化さ せる目的で高温にて榭脂を反応させる。紫外線硬化型の電着塗料であれば高温で 焼き付けるかわりに紫外線を照射する。このとき、電着塗料は榭脂中の反応活性な 官能基が反応するため、反応性に富み副反応などが起きやすい。代表的な例が空 気中の酸素との反応による酸化反応であり、特に高温で長時間処理して完全に榭脂 を硬化させようとしたときに酸ィ匕反応により樹脂が劣化しやすい傾向にある。このよう な副反応を防ぐため不活性ガス雰囲気下で硬化あるいは焼き付けをすることが重要 である。  An electrodeposition paint will be described as an example. There is a process called pre-curing or pre-drying, in which water or solvent adhering to the surface is dried at a low temperature after the electrodeposition coating is applied to the conductive substrate. At this time, since the moisture and solvent are only dried, the resin is not completely cured, and the atmosphere at this time does not have to be an inert gas atmosphere. Next, the resin is reacted at a high temperature for the purpose of completely curing the resin. In the case of UV-curing electrodeposition paints, UV rays are irradiated instead of baking at high temperatures. At this time, the electrodeposition paint reacts with reactive functional groups in the resin so that it is highly reactive and easily causes side reactions. A typical example is the oxidation reaction by reaction with oxygen in the air, and the resin tends to deteriorate due to the acid-acid reaction, especially when it is attempted to cure the resin completely for a long time at a high temperature. It is in. It is important to cure or bake in an inert gas atmosphere in order to prevent such side reactions.
これら不活性ガスの濃度は、硬化炉の大きさと硬化する絶縁層の面積の比によって 多少変わることがある力 一般的には全体の雰囲気に対して体積比で 90%以上であ ることが好ましぐ 95%以上であることがより好ましぐ 98%以上であることがさらに好 ましぐ 99%以上であることが最も好ましい。  The concentration of these inert gases may vary slightly depending on the ratio between the size of the curing furnace and the area of the insulating layer to be cured. In general, the volume ratio of the inert gas is preferably 90% or more with respect to the entire atmosphere. It is more preferably 95% or more, more preferably 98% or more, and even more preferably 99% or more.
[0125] 下記の実施例及び比較例にお!、て、ライン幅、ピッチ、開口率は顕微鏡写真を元 に実測した。ライン厚み及び銅箔部厚みは得られた導体層パターン付き基材を一部 切り取って樹脂で注型し、断面を顕微鏡観察することにより実測した。可視光透過率 はダブルビーム分光光度計 (200— 10型、株式会社日立製作所製)を用いて、 400 〜700nmの透過率を測定し、その平均値を求めた。パターン異常の有無は拡大鏡 を用いて肉眼にて確認した。電磁波遮蔽性 (シールド性)はアドバンテスト法を用い、 周波数 300MHzで測定した。導電性基材の耐久性はめつき及び剥離を繰り返した 後の導電性基材を直接拡大鏡で観察して確認した。 850〜1 lOOnm平均透過率は 、ダブルビーム分光光度計 (200— 10型、株式会社日立製作所製)を用いて、 850 〜: L lOOnmの透過率を測定し、その平均値を求めた。 [0125] In the following examples and comparative examples, the line width, pitch, and aperture ratio were measured based on micrographs. The thickness of the line and the thickness of the copper foil were measured by partially cutting the obtained base material with a conductor layer pattern, casting it with a resin, and observing the cross section under a microscope. The visible light transmittance was determined by measuring the transmittance of 400 to 700 nm using a double beam spectrophotometer (200-10 type, manufactured by Hitachi, Ltd.), and calculating the average value. The presence or absence of pattern abnormality was confirmed with the naked eye using a magnifier. Electromagnetic shielding (shielding) uses the Advantest method, Measurement was performed at a frequency of 300 MHz. The durability of the conductive substrate was confirmed by observing the conductive substrate directly with a magnifier after repeated fitting and peeling. The average transmittance of 850 to 1 lOOnm was determined by measuring the transmittance of 850 to LlOOnm using a double beam spectrophotometer (200-10, manufactured by Hitachi, Ltd.).
実施例 1 Example 1
[実施例 al]  [Example al]
レジストフイルム(フォテック H— Y920、 日立化成工業株式会社製)を 10cm角のス テンレス(SUS304)板に貼り合わせた。貼り合わせの条件は、ロール温度 105°C、 圧力 0. 5MPa、ラインスピード lmZminで行った。次いで、光透過部のライン幅が 3 0 m、ラインピッチが 300 μ m、バイアス角度力 5° で、格子状に形成したネガフィ ルムを、レジストフイルムを貼り合わせたステンレス板の上に静置した。紫外線照射装 置を用いて、 600mmHg以下の真空下において、ネガフィルムの上から、紫外線を 1 20miZcm2照射した。さらに。 1%炭酸ナトリウム水溶液で現像することで、 SUS板 の上にライン幅 30 μ m、ラインピッチ 300 μ m、バイアス角度 45° のレジストフイルム を形成した。さらに、 40°Cに加温した塩ィ匕第二鉄水溶液を用いて、 SUS板をエッチ ングした。エッチングは、 SUS板のライン幅が 20 mになるまで行った。次いで、 5% 水酸ィ匕ナトリウム溶液を用いて、 SUS板の上に形成されたレジストフイルムを剥離し て、格子模様状のパターン(ライン幅 20 μ m、ピッチ 300 μ m、凸部の高さ 15 μ m、 凸部の断面形状は曲面(図 3— dと同様))を形成した。凸部の上面の表面粗さ (十点 平均粗さ、以下同じ) Rz = 0. 3 mであったのに対し、凹部内の表面粗さ Rz=4. 2 μ mであった。 A resist film (Photec H-Y920, manufactured by Hitachi Chemical Co., Ltd.) was bonded to a 10 cm square stainless steel (SUS304) plate. The bonding conditions were a roll temperature of 105 ° C, a pressure of 0.5 MPa, and a line speed of lmZmin. Next, the negative film formed in a lattice shape with the line width of the light transmitting portion of 30 m, the line pitch of 300 μm, and the bias angle force of 5 ° was left on the stainless steel plate bonded with the resist film. . Using an ultraviolet irradiation device, ultraviolet rays were irradiated at 120 miZcm 2 from above the negative film under a vacuum of 600 mmHg or less. further. By developing with a 1% sodium carbonate aqueous solution, a resist film having a line width of 30 μm, a line pitch of 300 μm, and a bias angle of 45 ° was formed on the SUS plate. Furthermore, the SUS plate was etched using a salty ferric aqueous solution heated to 40 ° C. Etching was performed until the line width of the SUS plate reached 20 m. Next, using a 5% sodium hydroxide solution, the resist film formed on the SUS plate is peeled off to form a lattice pattern (line width 20 μm, pitch 300 μm, convex height The cross-sectional shape of the convex part was a curved surface (similar to Fig. 3-d). The surface roughness of the upper surface of the convex portion (ten-point average roughness, the same applies hereinafter) was Rz = 0.3 m, whereas the surface roughness in the concave portion was Rz = 4.2 μm.
次 、で、格子模様状のパターンが形成されたステンレス板 (上面を有する凸部のパ ターン及びそれによつて描かれる幾何学図形状の凹部を有する導電性基材)を陰極 として電解銅めつきを行った。電解銅めつき浴 (硫酸銅(5水塩) 80gZL、硫酸 180g ZL、キューブライト VF1 (荏原ユージライト株式会社製、添加剤) 20mlZLの水溶液 、 25°C)中に、格子模様状にエッチングされたステンレス板を浸し、含燐銅を陽極とし て同電解銅めつき浴中に浸した。両極に電圧をかけて、電流密度を 25AZdm2とし て、ステンレス板の凸部の上面に析出した金属の厚さが 5 mになるまでめつきした。 ステンレス板の凸部の上面には連続膜として銅が析出した力 凹部内には粒径 3 μ m程度の粒状の銅が非連続的に析出した。 Next, electrolytic copper plating with a stainless steel plate (a conductive substrate having a convex pattern having an upper surface and a geometrical figure-shaped concave portion drawn thereby) having a lattice pattern as a cathode. Went. Electrolytic copper plating bath (copper sulfate (pentahydrate) 80gZL, sulfuric acid 180g ZL, Cubelite VF1 (supplied by Ebara Eugene Co., Ltd., additive) 20mlZL aqueous solution, 25 ° C) A stainless steel plate was immersed, and phosphorous copper was immersed in the electrolytic copper plating bath as an anode. Voltage was applied to both electrodes, and the current density was 25AZdm 2 until the thickness of the metal deposited on the upper surface of the convex part of the stainless steel plate reached 5 m. Force where copper was deposited as a continuous film on the upper surface of the convex part of the stainless steel plate. Granular copper with a particle size of about 3 μm was deposited in the concave part discontinuously.
[0127] 厚さ 100 mのポリエチレンテレフタレート(PET)フィルム(A— 4100、東洋紡績株 式会社製)の表面にプライマー (HP— 1、日立化成工業株式会社製)を厚さ 1 m) に、粘着層としてアクリルポリマ (HTR— 280、長瀬ケムテック製)を厚さ 10 mに順 次塗布して粘着フィルムを作製した。  [0127] A primer (HP-1; manufactured by Hitachi Chemical Co., Ltd.) is applied to the surface of a polyethylene terephthalate (PET) film (A-4100, manufactured by Toyobo Co., Ltd.) having a thickness of 100 m. As an adhesive layer, an acrylic polymer (HTR-280, manufactured by Nagase Chemtech) was sequentially applied to a thickness of 10 m to prepare an adhesive film.
[0128] この粘着フィルムの粘着剤面と、上記ステンレス板の銅メツキを施した面を、ロール ラミネータを用いて貼り合わせた。ラミネート条件は、ロール温度 25°C、圧力 0. IMP a、ラインスピード lmZminとした。この時、 SUS板の凸部上面に形成された銅層が 、粘着フィルムの粘着剤層に 0. 5 m程度だけ埋没した。次いで、ステンレス板に貼 り合わせた粘着フィルムを剥離すると、上記ステンレス板の凸部の上面に析出した銅 は、連続膜であるため、粘着フィルムに転写するのに対し、凹部及び側部に析出した 銅は、粒状で非連続膜であるため、凸部の上面に析出した銅に追随することなぐ S US板に残存し、粘着フィルムに転写されることはなかった。このようにして、ライン幅 2 0 m、ラインピッチ 300 μ m、導体厚 5 μ mの金属パターンが粘着フィルム上に選択 的に転写された。  [0128] The pressure-sensitive adhesive surface of this pressure-sensitive adhesive film was bonded to the surface of the stainless steel plate with copper plating using a roll laminator. Lamination conditions were a roll temperature of 25 ° C, a pressure of 0. IMP a, and a line speed of lmZmin. At this time, the copper layer formed on the upper surface of the convex portion of the SUS plate was buried by about 0.5 m in the adhesive layer of the adhesive film. Next, when the adhesive film bonded to the stainless steel plate is peeled off, the copper deposited on the upper surface of the convex portion of the stainless steel plate is a continuous film, so it is transferred to the adhesive film, whereas it is deposited on the concave portion and the side portion. Since the copper was a granular and discontinuous film, it remained on the stainless steel plate without following the copper deposited on the upper surface of the convex portion, and was not transferred to the adhesive film. In this way, a metal pattern having a line width of 20 m, a line pitch of 300 μm, and a conductor thickness of 5 μm was selectively transferred onto the adhesive film.
[0129] 上記で得られた金属パターンが転写された粘着フィルムをアルカリ脱脂液デグリー ス A ( (株)オーデック)を 5倍希釈した水溶液に室温で 3分間浸漬した。次 、で、水洗 後、 10%硝酸水溶液に室温で 2分間浸漬した。さらに、水洗後、黒化処理液コパー ル((株)オーデック)の 4倍希釈水溶液に浸漬し、金属パターンを黒ィ匕処理して、本 発明の導体層パターン付き基材を製造した。  [0129] The adhesive film onto which the metal pattern obtained above was transferred was immersed in an aqueous solution obtained by diluting alkaline degreasing solution Degree A (Odec Co., Ltd.) 5 times at room temperature for 3 minutes. Next, after washing with water, it was immersed in a 10% nitric acid aqueous solution at room temperature for 2 minutes. Further, after washing with water, the substrate was immersed in a 4-fold diluted aqueous solution of blackening solution copar (Odec Co., Ltd.), and the metal pattern was blackened to produce a substrate with a conductor layer pattern of the present invention.
[0130] 上記で得られた導体層パターン付き基材の導体層パターンが存在する面に、 UV 硬化型榭脂ヒタロイド 7983AA3 (日立化成工業 (株)製)をコーティングし、その上か らポリカーボネートフィルム(マクロホール DE、バイエル株式会社製、 75 m)でラミ ネートして導体層パターンを UV硬化型榭脂中に埋没させた後、紫外線ランプを用い て UZcm2の紫外線を照射して UV硬化型榭脂を硬化させた。 [0130] The surface of the substrate with the conductor layer pattern obtained above, on which the conductor layer pattern is present, is coated with UV-cured rosin hyaloid 7983AA3 (manufactured by Hitachi Chemical Co., Ltd.), and then a polycarbonate film. (Macro Hall DE, Bayer Co., Ltd., 75 m) was laminated and the conductor layer pattern was buried in UV curable resin, and then irradiated with UV light of UZcm 2 using an UV lamp. The rosin was cured.
[0131] 粘着フィルムに銅を転写した後、凸部パターンを形成したステンレス板を、 40°Cに 加熱した lOOgZリットルの過硫酸アンモ-ゥム溶液中に浸漬し、凸部パターンを形 成したステンレス板の凹部と側部に残存する銅を溶解した。 [0131] After transferring the copper to the adhesive film, the stainless steel plate on which the convex pattern was formed was immersed in lOOgZ liters of ammonium persulfate solution heated to 40 ° C to form the convex pattern. Copper remaining in the concave portion and the side portion of the formed stainless steel plate was dissolved.
実施例 2  Example 2
[0132] [実施例 a2] [0132] [Example a2]
SUS板に形成される凸部のライン幅が 10 μ mになるまでエッチングしたこと以外は 、実施例 1と同様にして、 SUS板上に格子模様状のパターン (ライン幅 10 /ζ πι、ピッ チ 300 /ζ πι、凸部の高さ 30 m、凸部の断面形状は曲面(図 3— dと同様))を形成し た。凸部の上面の表面粗さ Rz = 0. であったのに対し、凹部の表面粗さ Rz = 5 . 5 μ mであつ 7こ。  A grid pattern (line width 10 / ζ πι, pitch) was formed on the SUS plate in the same manner as in Example 1 except that the etching was performed until the line width of the convex portion formed on the SUS plate was 10 μm. H 300 / ζ πι, the height of the convex part was 30 m, and the cross-sectional shape of the convex part was a curved surface (similar to Fig. 3-d). The surface roughness of the upper surface of the convex part was Rz = 0. Whereas the surface roughness of the concave part was Rz = 5.5 μm.
次 、で、格子模様状にエッチングされたステンレス板 (上面を有する凸部のパター ン及びそれによって描かれる幾何学図形状の凹部を有する導電性基材)を陰極とし て電解銅めつき用の電解浴 (硫酸銅(5水塩) 150gZL、硫酸 150gZL、カパラシド HL (アトテックジャパン株式会社製、添加剤) 50mlZLの水溶液、 30°C)中に浸し、 含燐銅を陽極として同電解銅めつき浴中に浸した。両極に電圧をかけて電流密度を lOAZdm2として、凸部の上面に析出した金属の厚さが 3 μ mになるまでめつきした 。ステンレス板の凸部の上面には連続膜として銅が析出した力 凹部及び側部には 粒径 1 μ m程度の粒状の銅が非連続的に析出した。 Next, a stainless steel plate etched in a lattice pattern (a conductive substrate having a convex pattern having an upper surface and a geometric pattern-shaped concave portion drawn thereby) is used as a cathode for electrolytic copper plating. Electrolytic bath (copper sulfate (pentahydrate) 150gZL, sulfuric acid 150gZL, Kaparaside HL (manufactured by Atotech Japan Co., Ltd., additive) 50ml ZL in water, 30 ° C) Immerse in the bath. Voltage was applied to both poles, the current density was lOAZdm 2 , and the metal deposited on the top surface of the protrusions reached the thickness of 3 μm. The force with which copper was deposited as a continuous film on the upper surface of the convex part of the stainless steel plate. Granular copper with a particle size of about 1 μm was deposited in a continuous manner on the concave part and side part.
[0133] 次 、で、銅めつきを析出させた SUS板を、 80°Cに加温した下記組成の黒ィ匕処理液 alに 3分間浸漬して、ステンレス板に析出した銅めつきを黒ィ匕処理した。 [0133] Next, the SUS plate on which copper plating was deposited was immersed for 3 minutes in a black wrinkle treatment solution al having the following composition heated to 80 ° C to remove the copper plating deposited on the stainless steel plate. Black candy was processed.
(黒化処理液 al)  (Blackening solution al)
亜塩素酸ナトリウム 30gZL、水酸ィ匕ナトリウム 10gZL、及び三リン酸ナトリウム 5g ZLが溶解された水溶液。  An aqueous solution in which 30 g ZL of sodium chlorite, 10 g ZL of sodium hydroxide and 5 g ZL of sodium triphosphate are dissolved.
[0134] 厚さ 100 mのポリエーテルサルフォンフィルム(スミライト FS— 1300、住友ベータ ライト株式会社製)の表面にプライマ (HP— 1、日立化成工業株式会社製)を乾燥塗 布厚が: mになるように塗布し、ついで、接着層としてポリエステル榭脂 (バイロン U R- 1400 (Tg=約 80°C)、東洋紡績株式会社製)を乾燥塗布厚が 10 μ mとなるよう に順次塗布して接着性フィルムを作製した。 [0134] A primer (HP-1; manufactured by Hitachi Chemical Co., Ltd.) was dried on the surface of a 100 m thick polyethersulfone film (Sumilite FS-1300, manufactured by Sumitomo Beta Light Co., Ltd.). Next, apply polyester resin (Byron UR-1400 (Tg = approx. 80 ° C), manufactured by Toyobo Co., Ltd.) as an adhesive layer in order so that the dry coating thickness is 10 μm. Thus, an adhesive film was produced.
上記接着フィルムの接着剤面と、上記ステンレス板の銅メツキを施した面を、ロール ラミネータを用いて貼り合わせた。ラミネート条件は、ロール温度 150°C、圧力 0. 1M Pa、ラインスピード 0. 5mZminとした。接着剤の Tgを超える温度でラミネートされた ため、接着剤表面にタック性が発現した。上記のラミネート後、 SUS板の凸部上面に 形成された黒化処理された銅層は、接着フィルムの接着剤層に 1 μ m程度だけ埋没 した。次いで、ステンレス板に貼り合わせた接着フィルムを剥離すると、上記ステンレ ス板の凸部の上面に析出した銅は、連続膜であるため、粘着フィルムに転写した。こ れに対し、凹部及び側部に析出した銅は、粒状で非連続膜であるため、凸部の上面 に析出した銅に追随することなぐ SUS板に残存し、粘着フィルムに転写されることは なかった。このようにして、ライン幅 10 μ m、ラインピッチ 300 μ m、導体厚 3 μ mで、 さらに黒ィ匕処理が施された金属パターンが接着フィルム上に選択的に転写され、本 発明の導体層パターン付き基材を製造した。 The adhesive surface of the adhesive film and the copper-plated surface of the stainless steel plate were bonded together using a roll laminator. Lamination conditions are: roll temperature 150 ° C, pressure 0.1M Pa and line speed were set to 0.5 mZmin. Since lamination was performed at a temperature exceeding the Tg of the adhesive, tackiness was developed on the adhesive surface. After the above lamination, the blackened copper layer formed on the upper surface of the convex portion of the SUS plate was buried in the adhesive layer of the adhesive film by about 1 μm. Next, when the adhesive film bonded to the stainless steel plate was peeled off, the copper deposited on the upper surface of the convex portion of the stainless steel plate was a continuous film, and thus transferred to the adhesive film. On the other hand, since the copper deposited on the concave portions and the side portions is a granular and non-continuous film, it remains on the SUS plate without following the copper deposited on the upper surface of the convex portions and transferred to the adhesive film. There was no. In this way, a metal pattern having a line width of 10 μm, a line pitch of 300 μm, and a conductor thickness of 3 μm and further blackened is selectively transferred onto the adhesive film, and the conductor of the present invention. A substrate with a layer pattern was produced.
[0135] 上記で得られた導体層パターン付き基材の導体層パターンが存在する面に、実施 例 alと同様にして UV硬化型榭脂ヒタロイド 7983AA3 (日立化成工業 (株)製)をコ 一ティングした後、 PETフィルム (A— 4100、東洋紡 (株)製、 75 m)の易接着処理 を施して ヽな 、面を、 UV硬化型榭脂を介してでラミネートして導体層パターンを UV 硬化型榭脂中に埋没させた。さらに、紫外線ランプを用いて UZcm2の紫外線を照 射して UV硬化型榭脂を硬化させた後、 PETフィルム (A— 4100、東洋紡 (株)製、 7 5 m)を剥離した。凸部パターンを形成したステンレス板の凹部と側部に残存する 銅の溶解は、実施例 alと同様に行った。 [0135] On the surface where the conductor layer pattern of the base material with the conductor layer pattern obtained above is present, a UV curable resin hyaloid 7983AA3 (manufactured by Hitachi Chemical Co., Ltd.) is copied in the same manner as in Example al. After coating, PET film (A-4100, manufactured by Toyobo Co., Ltd., 75 m) was subjected to easy adhesion treatment, and the surface was laminated with UV curable resin to form a conductive layer pattern. It was embedded in a curable type rosin. In addition, the UV curable resin was cured by irradiating UV light of UZcm 2 using an ultraviolet lamp, and then the PET film (A-4100, manufactured by Toyobo Co., Ltd., 75 m) was peeled off. The copper remaining on the concave portions and the side portions of the stainless steel plate on which the convex pattern was formed was dissolved in the same manner as in Example al.
実施例 3  Example 3
[0136] [実施例 a3] [Example a3]
SUS304箔 (竹内金属箔粉 (株)製、厚さ 100 m)と、 PETフィルム (A— 4100、 東洋紡績 (株)製)にバイロン UR- 1350 (接着剤、東洋紡績 (株)製)を乾燥塗布厚 が 20 mとなるように塗布して作製した接着フィルムをプレスで貼り合わせた。プレス 条件は、 130°Cのホットプレスで、圧力 4MPaとし、 30分間プレスした。なお、圧力を かけたまま 25°Cまで冷却した後、サンプルを取り出した。上記で得られた PETフィル ム付き SUS箔を、実施例 alと同様の条件で、凸部の幅が 15 /z mとなるまでエツチン グし、 SUS箔に格子模様状のパターン (ライン幅 15 /z m ピッチ 300 /z m 凸部の高 さ 20 m、凸部の断面形状は曲面(図 3— dと同様))を形成した。 SUS箔に形成された凸部の上面の表面粗さ Rz = 0. であったのに対し、凹 部の表面粗さ Rz = 5. であった。 Byron UR-1350 (adhesive, manufactured by Toyobo Co., Ltd.) on SUS304 foil (Takeuchi Metal Foil Powder Co., Ltd., thickness 100 m) and PET film (A-4100, manufactured by Toyobo Co., Ltd.) The adhesive film produced by applying the dry coating thickness to 20 m was pasted with a press. The pressing conditions were a hot press at 130 ° C, a pressure of 4 MPa, and pressing for 30 minutes. The sample was taken out after cooling to 25 ° C with pressure applied. The SUS foil with PET film obtained above was etched under the same conditions as in Example al until the width of the convex portion was 15 / zm, and a lattice pattern (line width 15 / zm pitch 300 / zm The height of the convex part is 20 m, and the cross-sectional shape of the convex part is a curved surface (similar to Fig. 3-d). The surface roughness Rz of the upper surface of the convex portion formed on the SUS foil was Rz = 0, whereas the surface roughness Rz of the concave portion was 5.
次 、で、格子模様状のパターンが形成された PETフィルム付き SUS箔(上面を有 する凸部のノターン及びそれによつて描かれる幾何学図形状の凹部を有する導電 性基材)を陰極として電解銅めつき用の電解浴 (硫酸銅(5水塩) 180gZL、硫酸 10 OgZL、カパラシド HL (アトテックジャパン株式会社製、添加剤) 70mlZLの水溶液 、 30°C)中に浸し、含燐銅を陽極として同電解浴中に浸した。両極に電圧をかけて、 電流密度を 30AZdm2として、凸部の上面に析出した金属の厚さが 1 μ mになるまで めっきした。 Next, electrolysis using a SUS foil with a PET film on which a lattice-like pattern is formed (a conductive base material having a notch of a convex part having an upper surface and a concave part of a geometrical figure drawn by the same) as a cathode. Immerse it in an electrolytic bath for copper plating (copper sulfate (pentahydrate) 180gZL, sulfuric acid 10 OgZL, Kaparaside HL (manufactured by Atotech Japan Co., Ltd.), 70mlZL aqueous solution, 30 ° C), and use phosphorous copper as an anode And immersed in the same electrolytic bath. A voltage was applied to both electrodes, the current density was set to 30 AZdm 2 , and plating was performed until the thickness of the metal deposited on the top surface of the protrusion became 1 μm.
PETフィルム付き SUS箔の凸部の上面には連続膜として銅が析出した力 凹部及 び側部には粒径 0. 3 m程度の粒状の銅が非連続的に析出した。  Force on which copper was deposited as a continuous film on the upper surface of the convex part of the SUS foil with PET film Particulate copper with a particle size of about 0.3 m was discontinuously deposited on the concave part and side part.
[0137] 次 、で、銅めつきを析出させた PETフィルム付き SUS箔を、アルカリ脱脂液デグリ ース A ( (株)オーデック)を 5倍希釈した水溶液に室温で 3分間浸漬した。次 、で、水 洗後、 10%硝酸水溶液に室温で 10秒間浸漬した。さらに、水洗後、黒化処理液コパ ール( (株)オーデック)の 4倍希釈水溶液に 1分間浸漬し、 PET付き SUS箔に析出し た銅めつきを黒ィ匕処理した。  Next, the SUS foil with PET film on which copper plating was deposited was immersed in an aqueous solution obtained by diluting alkaline degreasing solution Degrease A (Odec Co., Ltd.) 5 times at room temperature for 3 minutes. Next, after washing with water, it was immersed in a 10% nitric acid aqueous solution at room temperature for 10 seconds. Furthermore, after washing with water, it was immersed in a 4-fold diluted aqueous solution of blackening solution copal (Odec Co., Ltd.) for 1 minute, and the copper plating deposited on the SUS foil with PET was blackened.
[0138] 厚さ 100 μ mの PETフィルム (A— 4100、東洋紡績株式会社製)の易接着面に榭 脂組成物 1を乾燥塗布厚が となるように塗布して、粘着フィルムを作製した。  [0138] Resin composition 1 was applied to the easy-adhesion surface of a 100 μm thick PET film (A-4100, manufactured by Toyobo Co., Ltd.) so that the dry coating thickness was .
(榭脂組成物 al)  (Coffin composition al)
AS— 406 (—方社油脂工業株式会社製、アクリルポリマ) 100重量部、及びテトラド X(三菱ガス化学株式会社製、硬化剤) 2重量部を含む組成物。  A composition comprising 100 parts by weight of AS-406 (acrylic polymer, manufactured by Katsushi Yushi Co., Ltd.) and 2 parts by weight of Tetrad X (manufactured by Mitsubishi Gas Chemical Co., Ltd., curing agent).
[0139] この粘着フィルムと黒ィ匕処理された銅メツキが積層された上記 PETフィルム付き SU S箔とを前者の粘着剤面と後者の黒ィ匕処理された銅メツキが施された面があわさるよ うに、実施例 1と同様にして貼り合わせた。この時、 SUS箔の凸部上面に形成された 黒ィ匕処理された銅層は、粘着フィルムの粘着剤層に 0. 5 m程度だけ埋没した。次 いで、ステンレス箔に貼り合わせた粘着フィルムを剥離すると、上記 PETフィルム付き SUS箔の凸部の上面に析出した銅は、連続膜であるため、粘着フィルムに転写する のに対し、凹部及び側部に析出した銅は、粒状で非連続膜であるため、凸部の上面 に析出した銅に追随することなぐ SUS板に残存し、粘着フィルムに転写されることは なかった。このようにして、ライン幅 15 μ m、ラインピッチ 300 m、厚さ 1 mで、黒 化処理の施された金属パターンが粘着フィルム上に選択的に転写された。凸部バタ ーンを形成した PETフィルム付き SUS箔の凹部と側部に残存する銅の溶解除去は、 実施例 alと同様に行った。 [0139] This adhesive film and the above-mentioned SUS foil with PET film on which a blackened copper plating is laminated are combined with the former adhesive surface and the latter blackened copper plating surface. As expected, they were bonded in the same manner as in Example 1. At this time, the black copper-treated copper layer formed on the upper surface of the convex portion of the SUS foil was buried in the adhesive layer of the adhesive film by about 0.5 m. Next, when the adhesive film bonded to the stainless steel foil is peeled off, the copper deposited on the upper surface of the convex part of the SUS foil with PET film is a continuous film, so that it is transferred to the adhesive film, whereas the copper and Since the copper deposited on the part is a granular and discontinuous film, the upper surface of the convex part It remained on the SUS plate without following the copper deposited on it and was not transferred to the adhesive film. In this manner, a blackened metal pattern with a line width of 15 μm, a line pitch of 300 m, and a thickness of 1 m was selectively transferred onto the adhesive film. The dissolution and removal of the copper remaining on the concave portions and side portions of the SUS foil with PET film on which the convex pattern was formed was performed in the same manner as in Example al.
[0140] 上記で得られた粘着フィルムの粘着剤面 (銅めつきを転写した面)を厚さ 2mmのガ ラスに当ててラミネートして貼り合わせた。ラミネート条件は、温度 25°C、圧力 0. 5M Pa、ラインスピード 0. 5mZminとした。ロールラミネートによって、厚さ 1 mの導体 層パターンは粘着剤に埋設され、透明性の高い電磁波遮蔽体が得られた。 [0140] The pressure-sensitive adhesive surface of the pressure-sensitive adhesive film obtained above (the surface on which the copper plating was transferred) was applied to a glass sheet having a thickness of 2 mm and laminated. Lamination conditions were a temperature of 25 ° C, a pressure of 0.5 MPa, and a line speed of 0.5 mZmin. By roll laminating, the 1 m thick conductor layer pattern was embedded in the adhesive, and a highly transparent electromagnetic shielding body was obtained.
実施例 4  Example 4
[0141] [実施例 a4] [0141] [Example a4]
SUS304箔の代わりに電解 Ni箔 (福田金属 (株)製、厚さ 35 μ m)を用いたこと以 外は実施例 a3と同様に行って、 PETフィルム付き Ni箔を作製し、 Ni箔に格子模様状 のパターン(ライン幅 15 /ζ πι、ピッチ 300 /ζ πι、凸部の高さ 20 /ζ πι、凸部の断面形状 は曲面(図 3— dと同様))を形成した。  A Ni foil with PET film was prepared in the same manner as Example a3 except that electrolytic Ni foil (Fukuda Metal Co., Ltd., thickness 35 μm) was used instead of SUS304 foil. A lattice pattern (line width 15 / ζ πι, pitch 300 / ζ πι, convex height 20 / ζ πι, convex sectional shape is curved (similar to Fig. 3-d)) was formed.
Ni箔に形成された凸部の上面の表面粗さ Rz= l. 4 mであったのに対し、凹部の 表面粗さ Rz = 3. 9 mであった。まず、転写時における Ni箔と電気銅めつきの剥離 性を向上するため、 Niの陽極酸ィ匕によって Ni表面に酸ィ匕皮膜を形成した。陽極酸 化は、 10%水酸ィ匕ナトリウム水溶液中で、 Ni箔を陽極に、 SUS板を陰極として、両 極に IVの電圧をかけて 30秒間処理した。  The surface roughness Rz of the top surface of the convex portion formed on the Ni foil was Rz = l.4 m, whereas the surface roughness of the concave portion was Rz = 3.9 m. First, in order to improve the releasability between the Ni foil and the copper electroplating during transfer, an acid film was formed on the Ni surface with Ni anodic acid. The anodic oxidation was performed in a 10% aqueous solution of sodium hydroxide and sodium hydroxide for 30 seconds using a Ni foil as the anode and a SUS plate as the cathode, with a voltage of IV applied to both electrodes.
次 、で、格子模様状にエッチングされた PETフィルム付き Ni箔(上面を有する凸部 のパターン及びそれによつて描かれる幾何学図形状の凹部を有する導電性基材)を 陰極として電解銅めつき用の電解浴 (硫酸銅(5水塩) 180gZL、硫酸 100gZL、力 ノ ラシド HL (アトテックジャパン株式会社製、添加剤) 70mlZLの水溶液、 30°C)中 に浸し、含燐銅を陽極として同電解浴中に浸した。両極に電圧をかけて、電流密度 を 30AZdm2として、凸部の上面に析出した金属の厚さが 10 μ mになるまでめつきし た。 Next, Ni foil with PET film etched in a lattice pattern (electroconductive substrate with convex pattern having upper surface and geometrical figure-shaped concave part drawn by it) was used as the cathode for electrolytic copper plating Soaked in an electrolytic bath (copper sulfate (pentahydrate) 180gZL, sulfuric acid 100gZL, power Noracid HL (manufactured by Atotech Japan Co., Ltd., 70ml ZL aqueous solution, 30 ° C)) Immerse in an electrolytic bath. Voltage was applied to both poles, and the current density was set to 30 AZdm 2 until the thickness of the metal deposited on the upper surface of the protrusion reached 10 μm.
PETフィルム付き Ni箔の凸部の上面には連続膜として銅が析出したが、凹部及び 側部には粒径 0. 8 m程度の粒状の銅が非連続的に析出した。 Copper was deposited as a continuous film on the upper surface of the convex part of the Ni foil with PET film. On the side, granular copper having a particle size of about 0.8 m was discontinuously deposited.
[0142] 厚さ 100 μ mの PETフィルム(マイラー D、帝人デュポンフィルム株式会社製)の表 面に下記赤外線吸収剤を含有する榭脂組成物 a2を乾燥後の厚みが 20 μ mになる ように塗布して接着性フィルムを作製した。 [0142] The thickness of the PET film (Mylar D, manufactured by Teijin DuPont Films Co., Ltd.) with a thickness of 100 μm on the surface of the resin composition a2 containing the following infrared absorber is 20 μm after drying. An adhesive film was prepared by applying to the above.
(榭脂組成物 a2)  (Coffin composition a2)
BR— 80 (三菱レーヨン株式会社製、 PMMA) 100重量部、及び IRG— 022 (日本 化薬株式会社製、ジィモ -ゥム塩系赤外線吸収剤) 3. 3重量部を、トルエン 60重量 部とメチルェチルケトン (MEK) 300重量部の混合溶媒に溶解した組成物。  BR-80 (Mitsubishi Rayon Co., Ltd., PMMA) 100 parts by weight, and IRG-022 (Nippon Kayaku Co., Ltd., Dimo-um salt-based infrared absorber) 3. 3 parts by weight of toluene 60 parts by weight Methyl ethyl ketone (MEK) A composition dissolved in 300 parts by weight of a mixed solvent.
[0143] 次いで、離型 PET (S— 32、帝人デュポン (株)製)の離型処理面に榭脂組成物 a3 を、乾燥塗布厚が 8 mとなるように塗布した。近赤外線吸収剤を含有する接着性フ イルムの榭脂組成物 a2を塗布した面に、榭脂組成物 a3を塗布したフィルムを貼り合 わせ、近赤外線遮蔽性を有する粘着フィルムを作製した。 [0143] Next, the resin composition a3 was applied to the release-treated surface of release PET (S-32, manufactured by Teijin DuPont Co., Ltd.) so that the dry application thickness was 8 m. An adhesive film having a near-infrared shielding property was prepared by laminating a film coated with the resin composition a3 on the surface coated with the resin composition a2 of an adhesive film containing a near-infrared absorber.
(榭脂組成物 a3)  (Coffin composition a3)
HTR—860— P3 (長瀬ケムテック株式会社製、アクリルポリマ) 100重量部、及びコ 口ネート L (日本ポリウレタン株式会社製、イソシァネートイ匕合物) 3重量部をトルエン 1 00重量部と酢酸ェチル 300重量部の混合溶媒に溶解した組成物。  HTR-860- P3 (Nagase Chemtech Co., Ltd., acrylic polymer) 100 parts by weight and Coupnate L (Nihon Polyurethane Co., Ltd., isocyanate compound) 3 parts by weight of toluene 100 parts by weight of ethyl acetate 300 parts by weight Part of a mixed solvent.
[0144] 近赤外線遮蔽性を有する粘着フィルムの粘着剤面と、上記 PETフィルム付き Ni箔 の銅メツキを施した面を、実施例 alと同様にして貼り合わせた。この時、 Ni箔の凸部 上面に形成された銅層は、粘着フィルムの粘着剤層に 0. 1 μ m程度だけ埋没した。 次 ヽで、 Ni箔に貼り合わせた近赤外線遮蔽性を有する粘着フィルムを剥離すると、 上記 PETフィルム付き Ni箔の凸部の上面に析出した銅は、連続膜であるため、粘着 フィルムに転写するのに対し、凹部及び側部に析出した銅は、粒状で非連続膜であ るため、凸部の上面に析出した銅に追随することなぐ Ni箔に残存し、粘着フィルム に転写されることはな力つた。  [0144] The pressure-sensitive adhesive surface of the pressure-sensitive adhesive film having near-infrared shielding property and the surface of the above-mentioned Ni foil with PET film that had been subjected to copper plating were bonded together in the same manner as in Example al. At this time, the copper layer formed on the upper surface of the convex portion of the Ni foil was buried by about 0.1 μm in the adhesive layer of the adhesive film. Next, when the adhesive film with near-infrared shielding attached to the Ni foil is peeled off, the copper deposited on the upper surface of the convex part of the Ni foil with PET film is a continuous film, so it is transferred to the adhesive film. On the other hand, since the copper deposited on the concave portions and the side portions is a granular and discontinuous film, it remains on the Ni foil that does not follow the copper deposited on the upper surface of the convex portions and is transferred to the adhesive film. Hana was strong.
このようにして、ライン幅 15 m、ラインピッチ 300 m、厚さ 10 mの金属パター ンが粘着フィルム上に選択的に転写された。凸部パターンを形成した PETフィルム 付き Ni箔の凹部内に残存する銅の溶解除去は、実施例 alと同様に行った。  In this way, a metal pattern having a line width of 15 m, a line pitch of 300 m, and a thickness of 10 m was selectively transferred onto the adhesive film. The removal and dissolution of copper remaining in the concave portions of the Ni foil with PET film on which the convex pattern was formed was performed in the same manner as in Example al.
[0145] 次 、で、得られた導体層パターン付き粘着フィルムを実施例 alと同様にして、黒ィ匕 処理した。さらに、黒化処理後、上記の導体層パターン付き基材の導体層パターン が存在する面に、紫外線硬化型榭脂 (ヒタロイド 7851、 日立化成工業株式会社製) をコーティングし、さらに、ポリカーボネートフィルム(マクロホール DE、バイエル株式 会社製、 75 m)をラミネートした後、紫外線ランプを用いて UZcm2の紫外線を照 射し、導体層パターンを榭脂で被覆した。次いで、上記で得られたフィルムの導体層 パターンが形成されている面とは反対の面に粘着層を形成し、 3mm厚の PMMA板 (コモグラス)に貼りあわせて、電磁波遮蔽部材を得た。 Next, in the same manner as in Example al, the obtained adhesive film with a conductor layer pattern was subjected to blackening. Processed. Further, after the blackening treatment, the surface on which the conductor layer pattern of the substrate with the conductor layer pattern is present is coated with an ultraviolet curable resin (Hitaroid 7851, manufactured by Hitachi Chemical Co., Ltd.), and a polycarbonate film ( After laminating Macro Hall DE, Bayer Co., Ltd. (75 m), UZcm 2 ultraviolet rays were irradiated using an ultraviolet lamp, and the conductor layer pattern was coated with resin. Next, an adhesive layer was formed on the surface of the film obtained above opposite to the surface on which the conductor layer pattern was formed, and was bonded to a 3 mm thick PMMA plate (Comoglass) to obtain an electromagnetic wave shielding member.
実施例 5  Example 5
[0146] [実施例 a5] [Example a5]
実施例 a3と同様にして、銅めつき及び黒ィ匕処理を施した PETフィルム付き SUS箔( ライン幅 15 m、ピッチ 300 m、凸部の高さ 20 m、凸部の断面形状は曲面(図 3 dと同様))を形成した。さらに、厚さ 100 mのポリエーテルサルフォンフィルム(ス ミライト FS— 1300、住友ベークライト株式会社製)の表面に下記の榭脂組成物 a4を 乾燥後の厚みが 13 mとなるように塗布して接着フィルムを得た。乾燥条件は、 90 °Cで 5分間とした。  SUS foil with PET film treated with copper plating and black wrinkle in the same manner as Example a3 (line width 15 m, pitch 300 m, convex height 20 m, convex sectional shape is curved surface ( Fig. 3d)) was formed. Furthermore, the following resin composition a4 was applied to the surface of a 100 m thick polyethersulfone film (Sumilite FS-1300, manufactured by Sumitomo Bakelite Co., Ltd.) so that the thickness after drying was 13 m. An adhesive film was obtained. Drying conditions were 90 ° C for 5 minutes.
(榭脂組成物 a4)  (Coffin composition a4)
YD— 8125 (東都化成株式会社製、ビスフエノール A型フエノキシ榭脂) 100重量 部、及び IPDI (日立化成工業株式会社製、マスクイソホロンジイソシァネート) 10重 量部力 メチルェチルケトン 330重量部及びシクロへキサノン 15重量部の混合溶媒 に溶解させられた榭脂溶液。  YD-8125 (Toto Kasei Co., Ltd., bisphenol A type phenoxy resin) 100 parts by weight, and IPDI (Hitachi Chemical Industry Co., Ltd., masked isophorone diisocyanate) 10 parts by weight Methyl ethyl ketone 330 parts by weight Part and cyclohexanone in a mixed solvent of 15 parts by weight of a resin solution.
[0147] 得られた接着フィルムと実施例 a3で得た凸部上に黒ィ匕処理した金属パターンを有 する PETフィルム付きステンレス箔を、ラミネータで貼り合わせた。ラミネート条件は、 ロール温度 120°C、圧力 3MPa、ラインスピード lmZminとした。空冷後剥離すると 、接着剤表面に、ステンレス板の凸部の上面に存在する黒ィ匕処理された金属が選択 的に転写され、ライン幅 15 m、ラインピッチ 300 m、導体厚 1 μ mの導体層パタ ーンが接着フィルム上に形成された。 [0147] The obtained adhesive film and a stainless steel foil with a PET film having a blackened metal pattern on the convex part obtained in Example a3 were bonded with a laminator. Lamination conditions were a roll temperature of 120 ° C, a pressure of 3 MPa, and a line speed of lmZmin. When peeled after air cooling, the blackened metal existing on the upper surface of the convex part of the stainless steel plate is selectively transferred to the adhesive surface, and the line width is 15 m, the line pitch is 300 m, and the conductor thickness is 1 μm. A conductor layer pattern was formed on the adhesive film.
転写後のステンレス板は実施例 alと同様にされ、その表面に残存する銅が除去さ [0148] 上記得られた導体層パターンを有する接着フィルムを 150°Cで 60分間処理して接 着剤を硬化させ、導体層パターン付き基材を得た。上記で得られた導体層パターン 付き基材の導体層パターンが存在する面に、実施例 alと同様にして UV硬化型榭脂 ヒタロイド 7983AA3 (日立化成工業 (株)製)をコーティングした後、 PETフィルム (A —4100、東洋紡 (株)製、 75 /z m)の易接着処理を施していない面を、 UV硬化型榭 脂とでラミネートして導体層パターンを UV硬化型榭脂中に埋没させた。さらに、紫外 線ランプを用いて UZcm2の紫外線を照射して UV硬化型榭脂を硬化させた後、 PE Tフィルム (A— 4100、東洋紡 (株)製、 75 /z m)を剥離した。凸部パターンを形成し たステンレス板の凹部と側部に残存する銅の溶解は、実施例 alと同様に行った。こ れに、離型 PET(S— 32、帝人デュポン株式会社製)の離型処理面に、榭脂組成物 a3を乾燥塗布厚が 20 mとなるように塗布したフィルムを、上記導体層パターン付き 基材の導体層パターンが形成されている面とは反対の面に貼り合わせた。離型 PET を剥離してから、 3mm厚の PMMA板 (コモグラス)に貼りあわせて、電磁波遮蔽部材 を得た。 The transferred stainless steel plate is the same as in Example al, and the copper remaining on the surface is removed. [0148] The adhesive film having the conductor layer pattern obtained above was treated at 150 ° C for 60 minutes to cure the adhesive, thereby obtaining a substrate with a conductor layer pattern. After coating the surface of the base material with the conductor layer pattern obtained above with the UV curable resin hyaloid 7983AA3 (manufactured by Hitachi Chemical Co., Ltd.) in the same manner as in Example al, PET The surface of the film (A-4100, manufactured by Toyobo Co., Ltd., 75 / zm) that has not been subjected to easy adhesion treatment is laminated with UV curable resin to embed the conductor layer pattern in UV curable resin. It was. Furthermore, after UV-curable resin was cured by irradiating UZcm 2 ultraviolet rays using an ultraviolet lamp, the PET film (A-4100, manufactured by Toyobo Co., Ltd., 75 / zm) was peeled off. The dissolution of the copper remaining on the concave portions and the side portions of the stainless steel plate on which the convex pattern was formed was performed in the same manner as in Example al. A film obtained by coating the resin composition a3 with a dry coating thickness of 20 m on the release-treated surface of release PET (S-32, manufactured by Teijin DuPont Co., Ltd.) Attached to the surface opposite to the surface on which the conductor layer pattern of the substrate is formed. After peeling the release PET, it was bonded to a 3mm thick PMMA plate (Comoglass) to obtain an electromagnetic wave shielding member.
実施例 6  Example 6
[0149] [実施例 a6]  [0149] [Example a6]
レジストフイルム(フォテック LF— 1515、 日立化成工業株式会社製) 10cm口の銅 板 (厚さ 2mm)に貼り合わせた。貼り合わせの条件は、ロール温度 105°C、圧力 0. 5 MPa、ラインスピード lmZminで行った。次いで、光透過部のライン幅が 30 m、ラ インピッチが 200 μ m、バイアス角度が 30° で、格子状に形成したネガフィルムを、 レジストフイルムを貼り合わせた銅板の上に静置した。紫外線照射装置を用いて、 60 OmmHg以下の真空下において、ネガフィルムの上から、紫外線を 120mjZcm2照 射した。さらに。 1%炭酸ナトリウム水溶液で現像することで、銅板の上にライン幅 30 μ m、ラインピッチ 200 μ m、バイアス角度 30° のレジストフイルムを形成した。さらに 、 40°Cに加温した塩ィ匕第二鉄水溶液を用いて、銅板をエッチングした。エッチングは 、銅板のライン幅が 25 mになるまで行った。次いで、 5%水酸ィ匕ナトリウム溶液を用 いて、銅板の上に形成されたレジストフイルムを剥離して、格子模様状のパターン (ラ イン幅 25 /ζ πι、ラインピッチ 200 /ζ πι、凸部の高さ 11 /ζ πι、凸部の断面形状は曲面( 図 3— dと同様))を形成した。凸部の上面の表面粗さ Rz = 0. 5 /z mであったのに対 し、凹部の表面粗さ Rz = 3. であった。 Resist film (Photec LF-1515, manufactured by Hitachi Chemical Co., Ltd.) The film was bonded to a 10 cm copper plate (thickness 2 mm). The bonding conditions were a roll temperature of 105 ° C, a pressure of 0.5 MPa, and a line speed of lmZmin. Next, a negative film formed in a lattice shape with a line width of the light transmitting portion of 30 m, a line pitch of 200 μm, and a bias angle of 30 ° was left on a copper plate bonded with a resist film. Using an ultraviolet irradiation device, ultraviolet rays were irradiated from the top of the negative film at 120 mjZcm 2 under a vacuum of 60 OmmHg or less. further. By developing with a 1% sodium carbonate aqueous solution, a resist film having a line width of 30 μm, a line pitch of 200 μm, and a bias angle of 30 ° was formed on a copper plate. Further, the copper plate was etched using a salty ferric aqueous solution heated to 40 ° C. Etching was performed until the line width of the copper plate reached 25 m. Next, using a 5% sodium hydroxide solution, the resist film formed on the copper plate is peeled off to form a lattice pattern (line width 25 / ζ πι, line pitch 200 / ζ πι, convex The height of the part is 11 / ζ πι, and the cross-sectional shape of the convex part is a curved surface ( Figure 3-—same as d). The surface roughness of the upper surface of the convex portion was Rz = 0.5 / zm, whereas the surface roughness of the concave portion was Rz = 3.
[0150] 次いで、格子模様状のパターンが形成された銅板の表面に 0. 3 μ mの厚さとなるよ うに、クロム層をスパッタリングで形成させた。クロム層を設けることにより、その上に施 した銅めつきが剥離しやすくなる。このクロムをスパッタリングした銅板を陰極として電 解銅めつきを行った。電解銅めつき浴 (硫酸銅(5水塩) 100g/L,硫酸 180gZL、ト ップルチナ H— 380 (奥野製薬工業株式会社製、添加剤) 2. 5mlZLの水溶液、 25 °C)中に、上記のクロム層が形成された銅板を浸し、含燐銅を陽極として同電解銅め つき浴中に浸した。両極に電圧をかけて、電流密度を 25AZdm2として、クロム層を 形成した銅板の凸部の上面に析出した金属の厚さが 3 mになるまでめつきした。ク ロム層を形成した銅板の凸部の上面には連続膜として銅が析出したが、凹部及び側 部には粒径 1 μ m程度の粒状の銅が非連続的に析出した。さらに、銅がめっきされた クロム層が形成されている銅板を黒ィ匕処理液 1に浸漬し、 80°C1分間処理して、銅を 黒化処理した。粘着層の厚みを 5 mとしたこと以外は実施例 a 1と同様の粘着フィル ムに黒化処理された銅を転写し、ライン幅 25 μ m、ラインピッチ 200 μ m、導体厚 3 μ mの導体層ノターン付き基材を作製した。さらに、転写後のクロム層が形成されてい る銅板は実施例 alと同様にされ、その表面に残存する銅が除去された。 [0150] Next, a chromium layer was formed by sputtering on the surface of the copper plate on which the lattice pattern was formed so as to have a thickness of 0.3 µm. By providing a chromium layer, the copper plating applied thereon is easily peeled off. Electrolytic copper plating was performed using the copper plate sputtered with chromium as a cathode. In the electrolytic copper plating bath (copper sulfate (pentahydrate) 100g / L, sulfuric acid 180gZL, Topchina H-380 (Okuno Pharmaceutical Co., Ltd., additive) 2. 5ml ZL aqueous solution, 25 ° C) A copper plate on which the chromium layer was formed was dipped, and immersed in the electrolytic copper plating bath using phosphorous copper as an anode. Voltage was applied to both electrodes, and the current density was 25AZdm 2 until the thickness of the metal deposited on the upper surface of the convex part of the copper plate with the chromium layer reached 3 m. Copper was deposited as a continuous film on the upper surface of the convex part of the copper plate on which the chromium layer was formed, but granular copper having a particle size of about 1 μm was deposited discontinuously on the concave part and the side part. Furthermore, the copper plate on which the chromium layer plated with copper was formed was immersed in the black solution 1 and treated at 80 ° C. for 1 minute to blacken the copper. Transfer the blackened copper to the same adhesive film as in Example a 1 except that the thickness of the adhesive layer was 5 m, line width 25 μm, line pitch 200 μm, conductor thickness 3 μm A substrate with a conductor layer no turn was prepared. Further, the copper plate on which the chromium layer after transfer was formed was the same as in Example al, and the copper remaining on the surface was removed.
[0151] 上記で得られた導体層パターン付き基材と厚さ 2mmのガラス板を、その基材の導 体層パターンが形成されて ヽる面がそのガラス板に接触するようにして、温度 30°C、 圧力 2. OMPaでラミネートし、貼り合わせた。導体層パターンが粘着剤に埋まりこみ、 透明性の高!、電磁波遮蔽部材が得られた。  [0151] The substrate with a conductor layer pattern obtained above and a glass plate having a thickness of 2 mm were heated so that the surface on which the conductor layer pattern of the substrate was formed was in contact with the glass plate. 30 ° C, pressure 2. Laminated with OMPa and bonded together. The conductor layer pattern was embedded in the pressure-sensitive adhesive, and a highly transparent and electromagnetic shielding member was obtained.
実施例 7  Example 7
[0152] [実施例 a7]  [0152] [Example a7]
直径 150mmのステンレスロールに、実施例 alと同様の方法で格子模様状のパタ ーン(ライン幅 20 /ζ πι、ピッチ 300 /ζ πι、凸部の高さ 15 /ζ πι、凸部の断面形状は曲面 (図 3— dと同様))を形成した。凸部の上面の表面粗さ Rz = 0. 3 /z mであったのに対 し、凹部内の表面粗さ Rz=4. 2 mであった。次いで、加工したステンレスロールを 陰極として電解銅めつき用の電解浴 (硫酸銅(5水塩) 80gZL、硫酸 180gZL、キュ 一ブライト VF1 (荏原ユージライト株式会社製、添加剤) 20mlZLの水溶液、 25°C) 中に浸し、含燐銅を陽極として同電解浴中に浸した。電流密度を 40AZdm2として、 両極に電圧をかけて凸部の上面に析出する金属の厚みが 5 μ m厚になるまでめつき した。ステンレスロールの凸部の上面は連続膜として銅が析出した力 凹部内には粒 径 3 μ m程度の粒状の銅が非連続的に析出した。 A grid pattern (line width 20 / ζ πι, pitch 300 / ζ πι, convex height 15 / ζ πι, convex section) on a stainless steel roll with a diameter of 150 mm in the same manner as in Example al. The shape was a curved surface (similar to Fig. 3-d). The surface roughness Rz = 0.3 / zm on the upper surface of the convex portion, whereas the surface roughness Rz = 4.2 m in the concave portion. Next, an electrolytic bath for copper plating with the processed stainless steel roll as the cathode (copper sulfate (pentahydrate) 80gZL, sulfuric acid 180gZL, One Bright VF1 (manufactured by Ebara Euligite Co., Ltd., additive) immersed in 20 ml ZL aqueous solution, 25 ° C), and immersed in the same electrolytic bath with phosphorous copper as an anode. The current density of 40AZdm 2, were plated to the metal thickness to be deposited on the upper surface of the protrusion by applying a voltage to the both electrodes becomes 5 mu m thick. The upper surface of the convex portion of the stainless steel roll was the force of copper deposition as a continuous film. In the concave portion, granular copper with a particle diameter of about 3 μm precipitated discontinuously.
[0153] 実施例 alで用いた粘着フィルムをロール状で作製し、上記ステンレスロールの凸部 の上面に析出した銅と粘着フィルムの粘着剤面を実施例 alと同様のラミネート条件 で貼り合わせた。この時、ステンレスロールの凸部上面に形成された銅層は、粘着フ イルムの粘着剤層に 0. 5 m程度だけ埋没した。次いで、ステンレスロールに貼り合 わせた粘着フィルムを剥離すると、上記ステンレスロールの凸部の上面に析出した銅 は、連続膜であるため、粘着フィルムに転写するのに対し、凹部内に析出した銅は、 粒状で非連続膜であるため、凸部の上面に析出した銅に追随することなぐ SUS板 に残存し、粘着フィルムに転写されることはな力つた。このようにして、ライン幅 20 m 、ラインピッチ 300 μ m、導体厚 5 μ mの導体層パターンが粘着フィルム上に選択的 に転写された。さらに、導体層パターンを転写した粘着フィルム (導体層パターン付き 基材)に離型 PET(S— 32、帝人デュポン株式会社製)をラミネートしながら、ロール 状に巻き取った。さらに、転写後、同一ラインで実施例 alと同様に、ステンレスロール の凹部内に残存する銅をエッチング除去してから、再びステンレスロールに銅めつき を施した。このようにして、銅めつき、粘着剤への転写、残存銅のエッチングの 3つの 工程をロールからロールへ連続的に行った。 [0153] The pressure-sensitive adhesive film used in Example al was produced in a roll shape, and the adhesive surface of copper and the pressure-sensitive adhesive film deposited on the upper surface of the convex portion of the stainless steel roll was bonded together under the same lamination conditions as in Example al. . At this time, the copper layer formed on the upper surface of the convex portion of the stainless steel roll was buried by about 0.5 m in the adhesive layer of the adhesive film. Next, when the adhesive film bonded to the stainless steel roll is peeled off, the copper deposited on the upper surface of the convex portion of the stainless steel roll is a continuous film, so it is transferred to the adhesive film, whereas the copper deposited in the concave portion is Since it is a granular and discontinuous film, it remained on the SUS plate without following the copper deposited on the upper surface of the convex part, and was not transferred to the adhesive film. In this way, a conductor layer pattern having a line width of 20 m, a line pitch of 300 μm, and a conductor thickness of 5 μm was selectively transferred onto the adhesive film. Furthermore, it was wound into a roll while laminating release PET (S-32, manufactured by Teijin DuPont Co., Ltd.) to the adhesive film (substrate with conductor layer pattern) onto which the conductor layer pattern was transferred. Further, after the transfer, the copper remaining in the recesses of the stainless steel roll was removed by etching in the same line as in Example al, and the stainless steel roll was again subjected to copper plating. In this way, the three processes of copper adhesion, transfer to adhesive, and etching of residual copper were continuously performed from roll to roll.
[0154] 上記で得られた金属パターンが転写された粘着フィルムを実施例 alと同様に黒ィ匕 処理して、本発明の導体層パターン付き基材を製造した。得られた導体層パターン 付き基材の導体層パターンが形成されている面に、 UV硬化型榭脂(ァロニックス UV - 3701、東亞合成株式会社製)を 15 m厚でコーティングし、 PETフィルム (マイラ 一 D、帝人デュポンフィルム株式会社製、 75 m)でラミネートした後、紫外線ランプ を用いて lj/cm2の紫外線を照射した。 [0154] The adhesive film on which the metal pattern obtained above was transferred was blackened in the same manner as in Example al to produce a substrate with a conductor layer pattern of the present invention. The surface of the substrate with the conductor layer pattern obtained, on which the conductor layer pattern is formed, is coated with a UV curable resin (ALONIX UV-3701, manufactured by Toagosei Co., Ltd.) with a thickness of 15 m, and a PET film (Mylar 1D, made by Teijin DuPont Films, Ltd., 75 m), and then irradiated with lj / cm 2 ultraviolet rays using an ultraviolet lamp.
実施例 8  Example 8
[0155] [実施例 a8] ロール状の SUS304箔(厚さ 100 μ m)と、 PETフィルム(A— 4100、東洋紡績株 式会社製)にバイロン UR— 1350 (接着剤、東洋紡績 (株)製)を乾燥塗布厚が 20 mとなるように塗布して作製したロール状の接着フィルムをロールラミネータで貼りあ わせて、ロール状の PETフィルム付き SUS箔を作製した。ラミネート条件は、ロール 温度 120°C、プレヒート 120°C30秒、圧力 3MPa、ラインスピード 0. 5mZminとした 。次いで、実施例 a7と同様にロールからロールへ連続的に行ったこと以外は、実施 例 a3と同様にして、上記 PETフィルム付き SUS箔をエッチングし、 SUS箔に格子模 様状のパターン(ライン幅 15 /ζ πι、ピッチ 300 /ζ πι、凸部の高さ 20 /ζ πι、凸部の断面 形状は曲面(図 3— dと同様))を長尺で形成した。 SUS箔に形成された凸部の上面 の表面粗さ Rz = 0. 4 mであったのに対し、凹部の表面粗さ Rz = 5. であった 。さら〖こ、上記で得られたロールに巻き取られている、格子模様状のパターンが形成 された SUS箔を用いて、図 26に示すような装置に通紙した。つなぎ目は、マイラーテ ープで貼り合わせて、フープ状導電性基材とした。 [0155] [Example a8] Rolled SUS304 foil (thickness 100 μm), PET film (A-4100, manufactured by Toyobo Co., Ltd.) and Byron UR-1350 (adhesive, manufactured by Toyobo Co., Ltd.) with a dry coating thickness of 20 A roll-like adhesive film prepared by coating so as to be m was pasted with a roll laminator to produce a SUS foil with a roll-like PET film. Lamination conditions were a roll temperature of 120 ° C, a preheat of 120 ° C for 30 seconds, a pressure of 3 MPa, and a line speed of 0.5 mZmin. Next, the SUS foil with PET film was etched in the same manner as in Example a3 except that the roll was continuously transferred from roll to roll in the same manner as in Example a7, and a lattice-like pattern (line) was formed on the SUS foil. The width was 15 / ζ πι, the pitch was 300 / ζ πι, the height of the convex portion was 20 / ζ πι, and the cross-sectional shape of the convex portion was a curved surface (same as in Fig. 3-d). The surface roughness Rz of the top surface of the convex portion formed on the SUS foil was 0.4 m, whereas the surface roughness Rz of the concave portion was 5. Furthermore, paper was passed through an apparatus as shown in FIG. 26 using the SUS foil having a lattice pattern formed on the roll obtained above. The joints were bonded with Mylar tape to form a hoop-like conductive substrate.
まず初めに、上記で得られた PETフィルム付き SUS箔 (フープ状導電性基材)にェ ツチング槽(図 26— 129)通過させた後、フープ状導電性基材を陰極として、それを 電解銅めつき用の電解浴((硫酸銅(5水塩) 180gZL、硫酸 100gZL、カパラシド H L (アトテックジャパン株式会社製、添加剤) 70mlZLの水溶液、 30°C)に続けて 2個 (図 26— 130、 150)通し、それぞれ含燐銅を陽極として電流密度を 30AZdm2とし て、凸部の上面に析出した金属の厚さが l /z mになるまでめつきした。 PETフィルム 付き SUS箔の凸部の上面は連続膜として銅が析出したが、凹部及び側部には粒径 0. 3 m程度の粒状の銅が非連続的に析出した。水洗後、実施例 alと同様の黒ィ匕 処理を黒化処理槽 (図 26— 151)で行った後、黒化処理された金属は、接着槽を有 する PETフィルム 136に連続的に転写された。転写後、 SUS箔の凹部、側部に残存 する銅を、エッチング槽(図 26— 129) (lOOgZl過硫酸アンモ-ゥム水溶液、液温 4 0°C)で除去した。ロール状の状態力も巻きだした実施例 a3で用いた粘着フィルム( 図 26— 136)に連続的に導体層が転写され、ライン幅 15 /ζ πι、ラインピッチ 300 m 、厚さ 1 mで、黒化処理の施された導体層パターンが粘着フィルム上に選択的に転 写された導体層パターン付き粘着フィルム(図 26— 138)が得られた。上記 PETフィ ルム付き sus箔の凸部の上面に析出した銅は、連続膜であるため、粘着フィルムに 転写するのに対し、凹部及び側部に析出した銅は、粒状で非連続膜であるため、凸 部の上面に析出した銅に追随することなぐ SUS板に残存し、粘着フィルムに転写さ れることはな力つた。このようにして、銅めつき、黒化処理、転写、残銅除去の工程を、First, after passing the etching tank (Fig. 26-129) through the SUS foil (hoop-like conductive substrate) with PET film obtained above, electrolysis of the hoop-like conductive substrate as a cathode is performed. Two electrolytic baths for copper plating ((copper sulfate (pentahydrate) 180gZL, sulfuric acid 100gZL, Kaparaside HL (manufactured by Atotech Japan Co., Ltd., additive) 70mlZL aqueous solution, 30 ° C)) (Fig. 26— 130, 150), and with each containing phosphorous copper as an anode and a current density of 30 AZdm 2 , the metal deposited on the upper surface of the convex part was plated until l / zm. Although copper was deposited as a continuous film on the upper surface of the part, granular copper having a particle size of about 0.3 m was discontinuously deposited on the concave part and the side part. After the treatment was performed in the blackening treatment tank (Fig. 26-151), the blackened metal was continuously applied to the PET film 136 with the adhesion tank. After transfer, the copper remaining on the concave and side portions of the SUS foil was removed with an etching bath (Fig. 26-129) (lOOgZl aqueous ammonium persulfate solution, liquid temperature 40 ° C). The conductor layer was continuously transferred to the adhesive film (Fig. 26-136) used in Example a3 where the state force was also unwound. As a result, an adhesive film with a conductor layer pattern (Fig. 26-138) was obtained, in which the conductive layer pattern that had been treated was selectively transferred onto the adhesive film. Since the copper deposited on the upper surface of the convex part of the sus foil with a lump is a continuous film, it is transferred to the adhesive film. It remained on the SUS plate without following the copper deposited on the upper surface of the part, and was not transferred to the adhesive film. In this way, the process of copper plating, blackening treatment, transfer, residual copper removal,
1ラインで行うことができた。 I could do it in one line.
[0157] 上記で得られた導体層パターン付き粘着フィルムの粘着剤面 (銅めつきを転写した 面)を厚さ 2mmのガラスに当ててラミネートして貼り合わせた。ラミネート条件は、温度 25°C、圧力 0. 5MPa、ラインスピード 0. 5m/minとした。ロールラミネートによって、 厚さ 1 mの導体層パターンは粘着剤に埋設され、透明性の高い電磁波遮蔽体が 得られた。  [0157] The pressure-sensitive adhesive surface of the pressure-sensitive adhesive film with a conductor layer pattern obtained above (the surface on which the copper plating was transferred) was applied to a glass sheet having a thickness of 2 mm and laminated. Lamination conditions were a temperature of 25 ° C, a pressure of 0.5 MPa, and a line speed of 0.5 m / min. By roll laminating, the 1 m thick conductor layer pattern was embedded in the adhesive, and a highly transparent electromagnetic shielding body was obtained.
[0158] [比較例 al]  [0158] [Comparative Example al]
ステンレス(SUS304)板にドライフィルムフォトレジスト(HY— 920 (日立化成工業( 株)製、厚み 20 /z m)をロール温度 100°C、線圧 0. 3MPa、ラインスピード lmZmin で貼り合わせた。次に、光不透過部のライン幅 30 m、ラインピッチ 300 mのネガ ノ ターンを、レジストフイルムを貼り合わせたステンレス板上に静置し、 lOOmj/cm2 の条件でネガパターンの上力も UV照射した。 1%炭酸ナトリウム水溶液で現像して、 SUS板の上に幅 30 mの溝を有するレジストフイルムを形成した。次いで、 150°Cで 1時間の条件で加熱硬化させた。 A dry film photoresist (HY-920 (manufactured by Hitachi Chemical Co., Ltd., thickness 20 / zm)) was bonded to a stainless steel (SUS304) plate at a roll temperature of 100 ° C, a linear pressure of 0.3 MPa, and a line speed of lmZmin. In addition, a negative pattern with a line width of 30 m and a line pitch of 300 m is placed on a stainless steel plate with a resist film attached, and the upper force of the negative pattern is also irradiated with UV under the condition of lOOmj / cm 2. Development was performed with a 1% aqueous sodium carbonate solution to form a resist film having a groove with a width of 30 m on a SUS plate, and then heat-cured at 150 ° C. for 1 hour.
[0159] 次に、上記レジストを形成した SUS板を陰極として電解銅めつき用の電解浴〔硫酸 銅(5水塩) 100gZL、硫酸 180gZL、トップルチナ H— 380 (奥野製薬工業株式会 社製、添加剤)(これは何ですか?) 2. 5mlZLの水溶液、 30°C]中に浸し、含燐銅 を陽極として同電解浴中に浸した。両極に電圧をかけて電流密度を 3A/dm2として 、レジストの溝が完全に埋まるように、 20 m厚でめっきした。 [0159] Next, an electrolytic bath for electrolytic copper plating using the SUS plate on which the resist is formed as a cathode [copper sulfate (pentahydrate) 100gZL, sulfuric acid 180gZL, Top Lucina H-380 (Okuno Pharmaceutical Co., Ltd., (Additives) (What is this?) 2. Immerse in an aqueous solution of 5mlZL, 30 ° C], and immerse it in the same electrolytic bath with phosphorous copper as the anode. A voltage was applied to both electrodes to set the current density to 3 A / dm 2 and plating was performed with a thickness of 20 m so that the resist groove was completely filled.
次いで、実施例 alと同様にして、めっきされた金属を粘着フィルムに転写した。  Next, the plated metal was transferred to an adhesive film in the same manner as in Example al.
[0160] 上記のめっきと転写の操作を 3回行ったところ、粘着フィルムへの転写不良が発生 した。顕微鏡で観察したところ、レジストが一部 SUSから剥離しており、剥離したレジ ストの下に金属が析出しているため、金属が溝力 抜けずに転写不良が発生してい ることを確認した。 [0161] 以上の実施例又は比較例で得られた導体層パターンの開口率、可視光透過率、 パターンの異常の有無、視認性、電磁波遮蔽性(300MHz)、パターンを有する導 電性基材の 30回めつき、剥離を繰り返した後の導電性基材の耐久性を評価した結 果を図 27に示す。 [0160] When the above plating and transfer operations were performed three times, a transfer failure to the adhesive film occurred. When observed under a microscope, the resist was partially peeled off from the SUS, and metal was deposited under the peeled resist, so it was confirmed that the metal did not come out of the groove and transfer defects occurred. . [0161] Conductive base material having aperture ratio, visible light transmittance, presence / absence of pattern abnormality, visibility, electromagnetic wave shielding (300 MHz), pattern of conductor layer pattern obtained in the above examples or comparative examples Figure 27 shows the results of evaluating the durability of the conductive base material after repeated peeling and peeling 30 times.
[0162] 導電性基材上に榭脂等の絶縁物でパターンを形成して作製した導体層パターンで は、ノ《ターン状にめっきされた金属を、例えば粘着フィルムに転写する際に、粘着層 がパターンを形成する絶縁物と接するため、金属パターンを転写した粘着フィルムを 剥離する度に、絶縁物に剥離応力がかかる。さらに、パターン状に絶縁物が形成さ れているため、絶縁物の SUSへの接触面積が非常に微小であるため、パターン状に めっき→転写の工程を、数回〜数百回程度繰り返し使用することは可能であるが、数 千回〜数万回の量産レベルでは、絶縁物が導電性基材から剥離してしま!/、転写不 良が発生するなど、パターンの寿命が短い。  [0162] In a conductor layer pattern formed by forming a pattern with an insulator such as a resin on a conductive substrate, a metal plated in a non-turn pattern is adhesive when transferred to an adhesive film, for example. Since the layer is in contact with the insulator that forms the pattern, a peel stress is applied to the insulator every time the adhesive film to which the metal pattern is transferred is peeled off. Furthermore, since the insulator is formed in a pattern, the contact area of the insulator with SUS is very small, so the process of plating → transfer in a pattern is repeated several to several hundred times. However, at the mass production level of several thousand to several tens of thousands of times, the insulation is peeled off from the conductive substrate! /, And the pattern life is short.
さらに、導電性基材上に榭脂等の絶縁物でパターンを形成して作製した導体層パ ターンでは、パターンを形成する榭脂や、導体層を導電性基材から剥離するために 用いる粘着フィルムの剥離残渣等の有機物力 めっき液を汚染するため、めっき液の 寿命が短くなり、めっきの析出不良が発生しやすくなる。  Furthermore, in a conductor layer pattern produced by forming a pattern with an insulator such as a resin on a conductive substrate, the resin used to form the pattern and the adhesive used to peel the conductor layer from the conductive substrate Organic strength such as film peeling residue The plating solution is contaminated, so the life of the plating solution is shortened and plating deposition failure is likely to occur.
実施例 9  Example 9
[0163] [実施例 bl] [0163] [Example bl]
以下、実施例 9 (以下「実施例 bl」ともいう。実施例 15まで同様。)を説明する。 (上面を有する凸部のノターン及びそれによつて描かれる幾何学図形状の凹部を 有する導電性基材の作製)  Hereinafter, Example 9 (hereinafter, also referred to as “Example bl”. The same applies to Example 15) will be described. (Manufacture of conductive substrate having notched convex part with upper surface and concave part of geometric figure drawn by it)
レジストフイルム(フォテック H— Y920、 日立化成工業株式会社製)を 10cm角のス テンレス(SUS304、仕上げ 3Z4H、厚さ 100 m、 日新製鋼 (株)製)板に貼り合わ せた。貝占り合わせの条件は、ロール温度 105°C、圧力 0. 5MPa、ラインスピード lm Zminで行った。次いで、光透過部のライン幅が 30 μ m、ラインピッチが 300 μ m、 バイアス角度力 S45° で、格子状に形成したネガフィルムを、レジストフイルムを貼り合 わせたステンレス板の上に静置した。紫外線照射装置を用いて、 600mmHg以下の 真空下において、ネガフィルムの上から、紫外線を 120mjZcm2照射した。さらに。 1 %炭酸ナトリウム水溶液で現像することで、 SUS板の上にライン幅 30 m、ラインピッ チ 300 μ m、バイアス角度 45° のレジストマスクを形成した。さらに、 40°Cに加温した 塩化第二鉄水溶液 (45° Be '、鶴見曹達株式会社製)を用いて、 SUS板をエツチン グした。エッチングは、 SUS板のライン幅が 20 /z mになるまで行った。次いで、 5%水 酸ィ匕ナトリウム溶液を用いて、 SUS板の上に形成されたレジストフイルムを剥離して、 格子模様状のパターン(ライン幅、すなわち、凸部上面の幅 20 m、ピッチ 300 m 、凸部の高さ 15 ;ζ ΐη、凸部の断面形状は曲面(図 3— dと同様))を形成し、上面を有 する凸部のノターン及びそれによつて描かれる幾何学図形状の凹部を有する導電 性基材を作製した。 A resist film (Photech H-Y920, manufactured by Hitachi Chemical Co., Ltd.) was bonded to a 10 cm square stainless steel (SUS304, finished 3Z4H, thickness 100 m, manufactured by Nisshin Steel Co., Ltd.). The shelling conditions were as follows: roll temperature 105 ° C, pressure 0.5 MPa, line speed lm Zmin. Next, a negative film formed in a lattice pattern with a line width of 30 μm, a line pitch of 300 μm, and a bias angle force of S45 ° is allowed to stand on a stainless steel plate to which a resist film is bonded. did. Using an ultraviolet irradiation device, ultraviolet rays were irradiated at 120 mjZcm 2 from above the negative film under a vacuum of 600 mmHg or less. further. 1 By developing with a sodium carbonate aqueous solution, a resist mask having a line width of 30 m, a line pitch of 300 μm, and a bias angle of 45 ° was formed on the SUS plate. Furthermore, the SUS plate was etched using a ferric chloride aqueous solution (45 ° Be ', manufactured by Tsurumi Soda Co., Ltd.) heated to 40 ° C. Etching was performed until the line width of the SUS plate reached 20 / zm. Next, using a 5% sodium hydroxide solution, the resist film formed on the SUS plate is peeled off to form a lattice pattern (line width, that is, the width of the upper surface of the convex portion is 20 m, the pitch is 300 m). m, height of convex part 15; ζ ΐη, cross-sectional shape of convex part forms a curved surface (similar to Fig. 3-d)), convex part of convex part with upper surface and geometric figure shape drawn by it A conductive base material having a recess was prepared.
[0164] (絶縁膜を有する導電性基材の作製)  [0164] (Preparation of conductive substrate having insulating film)
次いで、上記の導電性基材を陰極にして、陽極をチタン板として、カチオン型電着 塗料 (Insuleed3020、日本ペイント (株)製)中で、 15V10秒、の条件で、格子模様 状にエッチングされたステンレス板に電着塗装した。水洗後 100°C10分間乾燥した 後、 190°C25分の条件で焼付けした。電着塗料の塗布厚は、 2. であった。 さらに、電着塗装したステンレス板を、研磨粉 (アルミナ液 B0. 05 ^ m,リファインテ ック(株)製)と研磨布(CONSUMABLES Buehler GMBH製)を用いて凸部の 上面部分を研磨し、 SUS面を露出させ、絶縁膜を有する導電性基材を作製した。こ の導電性基材の凸部の上面の端部における電着塗膜の厚さは 2. 5 m (ただし、上 面の平面方向に測る)、凹部にける電着塗膜の厚さは 2. 5 mであった。この導電性 基材は、凸部上面以外は絶縁膜で覆われたものであった。  Next, the above conductive base material is used as a cathode, and the anode is used as a titanium plate. In a cationic electrodeposition paint (Insuleed 3020, manufactured by Nippon Paint Co., Ltd.), it is etched into a lattice pattern under the condition of 15 V for 10 seconds. A stainless steel plate was electrodeposited. After washing with water and drying at 100 ° C for 10 minutes, baking was performed at 190 ° C for 25 minutes. The coating thickness of the electrodeposition paint was 2. Furthermore, the electrodeposited stainless steel plate is polished on the top surface of the convex part using polishing powder (alumina solution B0. 05 ^ m, manufactured by Refinetech) and polishing cloth (made by CONSUMABLES Buehler GMBH). The SUS surface was exposed, and a conductive substrate having an insulating film was produced. The thickness of the electrodeposition coating on the top edge of the convex part of this conductive substrate is 2.5 m (however, measured in the plane direction of the top surface), and the thickness of the electrodeposition coating in the concave part is 2. It was 5 m. This conductive substrate was covered with an insulating film except for the upper surface of the convex portion.
[0165] (銅めつき)  [0165] (with copper)
次いで、絶縁膜を有する導電性基材を陰極として電解銅めつきを行った。電解銅め つき浴 (硫酸銅(5水塩) 80gZL、硫酸 180gZL、キューブライト VF1 (荏原ユージラ イト株式会社製、添加剤) 20mlZLの水溶液、 25°C)中に、格子模様状にエッチング されたステンレス板を浸し、含燐銅を陽極として同電解銅めつき浴中に浸した。両極 に電圧をかけて、電流密度を 25AZdm2として、導電性基材の凸部の上面に析出し た金属の厚さが 5 μ mになるまでめつきした。 Next, electrolytic copper plating was performed using a conductive substrate having an insulating film as a cathode. Electrolytic copper plating bath (copper sulfate (pentahydrate) 80gZL, sulfuric acid 180gZL, Cubelite VF1 (supplied by Sakakibara Eulite Co., Ltd., additive) 20mlZL aqueous solution, 25 ° C) etched into a lattice pattern The stainless steel plate was immersed, and immersed in the electrolytic copper plating bath using phosphorous copper as an anode. By applying a voltage to both electrodes, a current density of 25AZdm 2, the thickness of the metal deposited on the upper surface of the convex portion of the conductive substrate was plated to a 5 mu m.
[0166] (粘着フィルムの作製) 厚さ 100 mのポリエチレンテレフタレート(PET)フィルム(A— 4100、東洋紡績株 式会社製)の表面にプライマー (HP— 1、日立化成工業株式会社製)を厚さ 1 m) に、粘着層としてアクリルポリマ (HTR— 280、長瀬ケムテック製)を厚さ 10 mに順 次塗布して粘着フィルムを作製した。 [0166] (Preparation of adhesive film) A primer (HP-1; manufactured by Hitachi Chemical Co., Ltd.) 1 m thick on the surface of a 100 m thick polyethylene terephthalate (PET) film (A-4100, manufactured by Toyobo Co., Ltd.) as an adhesive layer Acrylic polymer (HTR-280, manufactured by Nagase Chemtech) was sequentially applied to a thickness of 10 m to prepare an adhesive film.
[0167] (転写) [0167] (Transcription)
この粘着フィルムの粘着剤面と、上記導電性基材の銅メツキを施した面を、ロールラ ミネータを用いて貼り合わせた。ラミネート条件は、ロール温度 25°C、圧力 0. IMPa 、ラインスピード lmZminとした。次いで、導電性基材に貼り合わせた粘着フィルム を剥離したところ、上記導電性基材の凸部の上面に析出した銅が粘着フィルムに転 写されていた。これ〖こより、ライン幅 28 μ m、ラインピッチ 300 μ m、導体厚さ 5 μ mの 金属パターンからなる導体層パターン付き基材が得られた。転写後の導電性基材を 観察した結果、絶縁膜が剥離している箇所はな力つた。  The pressure-sensitive adhesive surface of the pressure-sensitive adhesive film and the copper-coated surface of the conductive substrate were bonded together using a roll laminator. Lamination conditions were a roll temperature of 25 ° C, a pressure of 0.1 IMPa, and a line speed of lmZmin. Subsequently, when the adhesive film bonded to the conductive substrate was peeled off, copper deposited on the upper surface of the convex portion of the conductive substrate was transferred to the adhesive film. From this, a substrate with a conductor layer pattern consisting of a metal pattern having a line width of 28 μm, a line pitch of 300 μm, and a conductor thickness of 5 μm was obtained. As a result of observing the conductive substrate after the transfer, the portion where the insulating film was peeled off was strong.
[0168] (黒化処理) [0168] (Blackening treatment)
上記で得られた導体層ノ《ターン付き基材をアルカリ脱脂液デグリース A ( (株)ォー デック)を 5倍希釈した水溶液に室温で 3分間浸漬し、次いで、水洗後、 10%硝酸水 溶液に室温で 2分間浸漬し、さらに、水洗後、黒ィ匕処理液コパール((株)オーデック) の 4倍希釈水溶液に浸漬して、導体層パターンが黒化処理された導体層パターン付 さ基材を得た。  The substrate with the conductor layer obtained above was immersed in an aqueous solution obtained by diluting alkaline degreasing solution Degrease A (Odec Co., Ltd.) 5 times at room temperature for 3 minutes, then washed with water, and then 10% nitric acid solution Immerse it in a solution at room temperature for 2 minutes, and after washing with water, immerse it in a 4-fold diluted aqueous solution of black candy treatment liquid COPAL (Odek Co., Ltd.) to obtain a conductor layer pattern that has been blackened. A substrate was obtained.
[0169] (保護膜の形成) [0169] (Formation of protective film)
上記で得られた導体層パターンが黒化処理された導体層パターン付き基材の導体 層パターンが存在する面に、 UV硬化型榭脂ヒタロイド 7983AA3 (日立化成工業( 株)製)をコーティングし、ポリカーボネートフィルム(マクロホール DE、バイエル株式 会社製、 75 μ m)でラミネートして導体層パターンを UV硬化型榭脂中に埋没させた 後、紫外線ランプを用いて UZcm2の紫外線を照射して UV硬化型榭脂を硬化させ て、保護膜を有する導体層パターン付き基材を得た。 On the surface where the conductor layer pattern of the substrate with the conductor layer pattern obtained by blackening the conductor layer pattern obtained above is coated with UV curable resin hyaloid 7983AA3 (manufactured by Hitachi Chemical Co., Ltd.) After laminating with a polycarbonate film (Macro Hall DE, Bayer Co., Ltd., 75 μm) and burying the conductor layer pattern in UV curable resin, UV is irradiated with UZcm 2 UV rays using an UV lamp. The curable resin was cured to obtain a substrate with a conductor layer pattern having a protective film.
[0170] (繰り返し使用) [0170] (Repeated use)
次いで、上記の導電性基材を用いて、(銅めつき)の工程、(転写)の工程及び (黒 化処理)の工程を上記と同様にして 100回繰り返した結果、銅めつきの転写性に変 化が無ぐ絶縁膜の剥離箇所も観測されな力つた。 Next, using the conductive substrate, the copper plating process, the transfer process, and the blackening process were repeated 100 times in the same manner as described above. Turn into There was no strong observation of the delamination of the insulating film.
実施例 10  Example 10
[0171] [実施例 b2] [0171] [Example b2]
(上面を有する凸部のノターン及びそれによつて描かれる幾何学図形状の凹部を 有する導電性基材の作製)  (Manufacture of conductive substrate having notched convex part with upper surface and concave part of geometric figure drawn by it)
SUS板に形成される凸部のライン幅が 7 μ mになるまでエッチングしたこと以外は、 実施例 blと同様にして、 SUS板上に格子模様状のパターン (ライン幅 7 /ζ πι、ピッチ 300 m、凸部の高さ 30 m、凸部の断面形状は曲面(図 3— dと同様))を形成して 、上面を有する凸部のノターン及びそれによつて描かれる幾何学図形状の凹部を有 する導電性基材を得た。  A grid pattern (line width 7 / ζ πι, pitch) was formed on the SUS plate in the same manner as in Example bl except that the line width of the protrusions formed on the SUS plate was etched to 7 μm. 300 m, the height of the convex part 30 m, the cross-sectional shape of the convex part forms a curved surface (similar to Fig. 3-d)), the convex part of the convex part with the upper surface and the geometric figure shape drawn by it A conductive substrate having a recess was obtained.
[0172] (絶縁膜を有する導電性基材の作製) [0172] (Production of conductive substrate having insulating film)
次いで、上記の導電性基材を陽極にして、陰極をチタン板として、ァ-オン型電着 塗料 (AMG— 5EZ5W、(株)シミズ製)中で、 10V60秒の条件で、上記導電性基 材に電着塗装した。水洗後 100°C10分間乾燥した後、 180°C30分の条件で焼付け した。電着塗料の塗布厚は、 2. 6 mであった。さらに電着塗装した導電性基材を、 研磨粉 (TypeO. 1R、: Baikalox者製)と研磨布(CONSUMABLES Buehler G MBH製)を用いて凸部の上面部分を研磨し、 SUS面を露出させ、絶縁膜を有する 導電性基材を作製した。この導電性基材の凹部にける電着塗膜の厚さは 2. 6 mで あった。ただし、凸部の上面の端部における電着塗膜の厚さは 0. (上面の平 面方向に測る)であった。この導電性基材は、凸部上面以外は絶縁膜で覆われたも のであったこの導電性基材は、凸部上面以外は絶縁膜で覆われたものであった。  Next, the above conductive base material is used under the condition of 10 V 60 seconds in an on-type electrodeposition paint (AMG-5EZ5W, manufactured by Shimizu Co., Ltd.) using the above conductive base material as the anode and the cathode as the titanium plate. The material was electrodeposited. After washing with water and drying at 100 ° C for 10 minutes, it was baked at 180 ° C for 30 minutes. The coating thickness of the electrodeposition paint was 2.6 m. Furthermore, the electrodeposited conductive base material is polished with polishing powder (TypeO. 1R, manufactured by Baikalox) and polishing cloth (made by CONSUMABLES Buehler G MBH) to expose the SUS surface. A conductive substrate having an insulating film was prepared. The thickness of the electrodeposition coating film in the recesses of this conductive substrate was 2.6 m. However, the thickness of the electrodeposition coating at the edge of the upper surface of the convex portion was 0 (measured in the plane direction of the upper surface). This conductive base material was covered with an insulating film except for the upper surface of the convex portion. This conductive base material was covered with an insulating film except for the upper surface of the convex portion.
[0173] (銅めつき 黒ィ匕処理) [0173] (Copper metal black processing)
さらに、絶縁膜を有する導電性基材を陰極として電解銅めつき用の電解浴 (硫酸銅 (5水塩) 150gZL、硫酸 150gZL、カバラシド HL (アトテックジャパン株式会社製、 添加剤) 50ml/Lの水溶液、 30°C)中に浸し、含燐銅を陽極として電解銅めつき浴 中に浸した。両極に電圧をかけて電流密度を lOAZdm2として、凸部の上面に析出 した金属の厚さが 3 μ mになるまでめつきした。 Electrolytic bath for electrolytic copper plating with a conductive base material having an insulating film as a cathode (copper sulfate (pentahydrate) 150gZL, sulfuric acid 150gZL, Kavalaside HL (manufactured by Atotech Japan Co., Ltd., additive) 50ml / L The sample was immersed in an aqueous solution (30 ° C), and immersed in an electrolytic copper plating bath using phosphorous copper as an anode. Voltage was applied to both poles, the current density was lOAZdm 2 , and the metal deposited on the top surface of the protrusions was stuck to 3 μm.
次いで、導電性基材の凸部上面に析出させた銅めつきに、実施例 b lと同様の条件 で黒化処理を施した。 Next, the copper plating deposited on the upper surface of the convex portion of the conductive base material, the same conditions as in Example bl And blackened.
[0174] (接着フィルムの作製) [0174] (Preparation of adhesive film)
次いで、厚さ 125 mの PETフィルム (A— 4100、東洋紡績株式会社製)に下記 榭脂組成物 blを乾燥塗布厚が 5 mとなるように塗布して、接着フィルムを作製した 榭脂組成物 blの組成  Next, the following resin composition bl was applied to a 125 m thick PET film (A-4100, manufactured by Toyobo Co., Ltd.) so that the dry coating thickness was 5 m, and an adhesive film was prepared. Composition of bl
ノ ィロン UR— 1350 (東洋紡績株式会社製、ポリエステル榭脂) 100重量部 コロネート L (日本ポリウレタン株式会社製、イソシァネートイ匕合物) 3重量部 [0175] (転写 黒化処理)  Nylon UR— 1350 (Toyobo Co., Ltd., polyester resin) 100 parts by weight Coronate L (Nihon Polyurethane Co., Ltd., isocyanate compound) 3 parts by weight [0175] (Transfer blackening treatment)
次いで、上記で得た接着フィルムの接着剤面と、上記導電性基材の銅めつき及び 黒化処理を施した面を、ロールラミネータを用いて貼り合わせた。ラミネート条件は、 ロール温度 100°C、圧力 0. lMPa、ラインスピード 0. 3mZminとした。接着剤のガ ラス転移点 (Tg)を超える温度でラミネートされたため、接着剤表面にタック性が発現 した。次いで、導電性基材から接着フィルムを剥離すると、上記導電性基材の凸部の 上面に析出した銅が接着剤表面に転写された。このようにして、ライン幅 11 m、ラ インピッチ 300 m、導体厚 3 mで、さらに黒化処理が施された金属パターンが接 着フィルム上に転写され、本発明の導体層パターン付き基材を得た。  Next, the adhesive surface of the adhesive film obtained above and the surface of the conductive substrate that had been subjected to copper plating and blackening treatment were bonded together using a roll laminator. Lamination conditions were a roll temperature of 100 ° C, a pressure of 0.1 lMPa, and a line speed of 0.3 mZmin. Since lamination was performed at a temperature exceeding the glass transition point (Tg) of the adhesive, tackiness was exhibited on the adhesive surface. Next, when the adhesive film was peeled off from the conductive substrate, copper deposited on the upper surface of the convex portion of the conductive substrate was transferred to the adhesive surface. In this way, a metal pattern having a line width of 11 m, a line pitch of 300 m, and a conductor thickness of 3 m and further blackened was transferred onto the adhesive film, and the substrate with a conductor layer pattern of the present invention was thus obtained. Obtained.
[0176] (保護膜の形成) [0176] (Formation of protective film)
上記で得られた導体層パターン付き基材の導体層パターンが存在する面に、実施 例 blと同様にして UV硬化型榭脂ヒタロイド 7983AA3 (日立化成工業 (株)製)をコ 一ティングした後、 PETフィルム (A— 4100、東洋紡 (株)製、 75 m)の易接着処理 を施して 、な 、面を、 UV硬化型榭脂とでラミネートして導体層パターンを UV硬化型 榭脂中に埋没させた。さらに、紫外線ランプを用いて UZcm2の紫外線を照射して U V硬化型榭脂を硬化させた後、 PETフィルム (A— 4100、東洋紡 (株)製、 75 m) を剥離して、保護膜を有する導体層パターン付き基材を得た。 After coating the surface of the substrate with the conductor layer pattern obtained above on which the conductor layer pattern exists, UV curing type resin hyaloid 7983AA3 (manufactured by Hitachi Chemical Co., Ltd.) was applied in the same manner as in Example bl. , PET film (A-4100, manufactured by Toyobo Co., Ltd., 75 m) was subjected to easy adhesion treatment, and the surface was laminated with UV curable resin to form the conductor layer pattern in UV curable resin. Buried in. Furthermore, after UV-cured resin was cured by irradiating UZcm 2 ultraviolet rays using an ultraviolet lamp, the PET film (A-4100, manufactured by Toyobo Co., Ltd., 75 m) was peeled off to form a protective film. The base material with a conductor layer pattern was obtained.
[0177] (繰り返し使用) [0177] (Repeated use)
上記の導電性基材を用いて、(銅めつき 黒化処理)の工程及び (転写 黒ィ匕処 理)の工程を上記と同様にして 100回繰り返した結果、銅めつきの転写性に変化が無 ぐ絶縁膜の剥離箇所も観測されなカゝつた。 Using the above conductive substrate, the process of (copper plating blackening) and the (transfer blackening) process were repeated 100 times in the same manner as above, resulting in a change in copper plating transferability. No There was no observation of the peeling of the insulating film.
実施例 11  Example 11
[0178] [実施例 b3] [0178] [Example b3]
(上面を有する凸部のノターン及びそれによつて描かれる幾何学図形状の凹部を 有する導電性基材の作製)  (Manufacture of conductive substrate having notched convex part with upper surface and concave part of geometric figure drawn by it)
ステンレス(SUS304 仕上げ H 竹内金属箔粉 (株)製、厚さ 100 m)を用いて、 凸部のライン幅が 15 mとなるまでエッチングした以外は、実施例 blと同様の条件 で行い、格子模様状のパターン(ライン幅 15 m、ピッチ 300 m、凸部の高さ 20 m、凸部の断面形状は曲面(図 3— dと同様))を形成して、上面を有する凸部のバタ ーン及びそれによつて描かれる幾何学図形状の凹部を有する導電性基材を得た。  Except for etching using stainless steel (SUS304 finish H, Takeuchi Metal Foil Powder Co., Ltd., thickness 100 m) until the line width of the protrusions reaches 15 m, the same conditions as in Example bl were applied. Form a pattern (line width 15 m, pitch 300 m, convex height 20 m, convex cross-section is curved (similar to Fig. 3-d)). And a conductive substrate having recesses in the shape of the geometrical drawing drawn thereby.
[0179] (絶縁膜を有する導電性基材の作製) [0179] (Preparation of conductive substrate having insulating film)
次いで、上記の導電性基材を陽極にして、陰極をチタン板として、カチオン型電着 塗料 (UC— 2000、(株)シミズ製)中で、 30V60秒の条件で、格子模様状にエッチ ングされたステンレス板に電着塗装した。水洗後 100°C10分間乾燥した後、 3jZcm 2の照射条件で硬化した。電着塗料の塗布厚は、 3. 9 mであった。さらに電着塗装 したステンレス板を、 #4000の研磨紙で研磨し、この導電性基材の凹部にける電着 塗膜の厚さは 3. 9 mであった。ただし、凸部の上面の端部における電着塗膜の厚 さは 0. 5 m (上面の平面方向に測る)であった。この導電性基材は、凸部上面以外 は絶縁膜で覆われたものであった。  Next, using the above conductive substrate as the anode, the cathode as the titanium plate, and etching into a lattice pattern in a cationic electrodeposition paint (UC-2000, manufactured by Shimizu Corporation) under the conditions of 30 V 60 seconds. The coated stainless steel plate was electrodeposited. After washing with water and drying at 100 ° C. for 10 minutes, it was cured under irradiation conditions of 3jZcm 2. The coating thickness of the electrodeposition paint was 3.9 m. Furthermore, the electrodeposited stainless steel plate was polished with # 4000 abrasive paper, and the thickness of the electrodeposition coating film in the recess of this conductive substrate was 3.9 m. However, the thickness of the electrodeposition coating film at the end of the upper surface of the convex portion was 0.5 m (measured in the plane direction of the upper surface). This conductive substrate was covered with an insulating film except for the upper surface of the convex portion.
[0180] (銅めつき 黒ィ匕処理) [0180] (Copper metal black processing)
次いで、絶縁膜を有する導電性基材を陰極として電解銅めつき用の電解浴 (硫酸 銅(5水塩) 180gZL、硫酸 100gZL、カバラシド HL (アトテックジャパン株式会社製 、添加剤) 70mlZLの水溶液、 30°C)中に浸し、含燐銅を陽極として同電解浴中に 浸した。両極に電圧をかけて、電流密度を 30AZdm2として、凸部の上面に析出した 金属の厚さが 1 μ mになるまでめつきした。 Next, an electrolytic bath for electrolytic copper plating using a conductive substrate having an insulating film as a cathode (copper sulfate (pentahydrate) 180 gZL, sulfuric acid 100 gZL, Kavalaside HL (manufactured by Atotech Japan Co., Ltd., additive) 70 ml ZL aqueous solution, 30 ° C.) and immersed in the same electrolytic bath using phosphorous copper as an anode. Voltage was applied to both electrodes, the current density was set to 30 AZdm 2 , and the metal deposited on the top surface of the protrusion was stuck to 1 μm.
めっき後、実施例 blと同様の工程で銅めつき上に黒ィ匕処理を行った。  After the plating, black soldering was performed on the copper plating in the same process as in Example bl.
[0181] (粘着フィルムの作製) [0181] (Preparation of adhesive film)
次いで、厚さ 100 /z mの PETフィルム (A— 4100、東洋紡績株式会社製)の易接 着面に下記の榭脂組成物 2を乾燥塗布厚が 15 mとなるように塗布して粘着フィル ムを作製した。 Next, easy access to 100 / zm thick PET film (A-4100, manufactured by Toyobo Co., Ltd.) The following grease composition 2 was applied to the wearing surface so as to have a dry coating thickness of 15 m to produce an adhesive film.
(榭脂組成物 b2の組成)  (Composition of rosin composition b2)
AS—406 (—方社油脂工業株式会社製、アクリルポリマ) 100重量部 テトラド X(三菱ガス化学株式会社製、硬化剤) 2重量部  AS-406 (Afro Kogyo Co., Ltd., acrylic polymer) 100 parts by weight Tetrad X (Mitsubishi Gas Chemical Co., Ltd., curing agent) 2 parts by weight
[0182] (転写 黒化処理)  [0182] (Transfer blackening treatment)
上記で得られた粘着フィルムの粘着剤面と、上記導電性基材に銅めつき及び黒ィ匕 処理した面を、ロールラミネータを用いて貼り合わせた。ラミネート条件は、ロール温 度 25°C、圧力 0. lMPa、ラインスピード lmZminとした。次いで、導電性基材から 粘着フィルムを剥離したところ、上記導電性基材の凸部の上面に析出した銅 (黒化処 理されたもの)が粘着フィルムの接着剤表面に転写されていた。このようにして、ライ ン幅 17 m、ラインピッチ 300 m、導体厚 1 μ mで、さらに黒化処理が施された金 属パターンが接着フィルム上に選択的に転写され、本発明の導体層パターン付き基 材を製造した。  The pressure-sensitive adhesive surface of the pressure-sensitive adhesive film obtained above was bonded to the conductive base material using a copper laminator and a blackened surface using a roll laminator. Lamination conditions were a roll temperature of 25 ° C, a pressure of 0.1 MPa, and a line speed of lmZmin. Next, when the pressure-sensitive adhesive film was peeled off from the conductive substrate, copper (blackened) deposited on the upper surface of the convex portion of the conductive substrate was transferred to the adhesive surface of the pressure-sensitive adhesive film. In this way, a metal pattern having a line width of 17 m, a line pitch of 300 m, and a conductor thickness of 1 μm and further blackened is selectively transferred onto the adhesive film, and the conductor layer of the present invention is thus transferred. A substrate with a pattern was manufactured.
[0183] (電磁波遮蔽体の作製) [0183] (Production of electromagnetic wave shielding body)
上記で得られた導体層パターン付き基材の粘着剤面 (導体層パターンを有する面) を厚さ 2mmのガラスに当ててラミネートして貼り合わせた。ラミネート条件は、温度 25 。C、圧力 0. 5MPa、ラインスピード 0. 5mZminとした。ロールラミネートによって、厚 さ 1 μ mの導体層パターンは粘着剤に埋設され、透明性の高い電磁波遮蔽体が得ら れた。  The pressure-sensitive adhesive surface (surface having a conductor layer pattern) of the substrate with a conductor layer pattern obtained above was laminated on and bonded to glass having a thickness of 2 mm. Lamination conditions are temperature 25. C, pressure 0.5 MPa, line speed 0.5 mZmin. By roll lamination, the conductor layer pattern with a thickness of 1 μm was embedded in the adhesive, and a highly transparent electromagnetic shielding body was obtained.
[0184] (繰り返し使用)  [0184] (Repeated use)
上記の導電性基材を用いて、(銅めつき 黒ィ匕処理)の工程、(転写 黒化処理) の工程を上記と同様にして 100回繰り返した結果、銅めつきの転写性に変化が無ぐ 絶縁膜の剥離箇所も観測されな力つた。  Using the above conductive base material, the process of (copper plating black wrinkle treatment) and the process of (transfer blackening treatment) were repeated 100 times in the same manner as described above. Neither insulation film peeling point was observed.
実施例 12  Example 12
[0185] [実施例 b4] [0185] [Example b4]
(近赤外線遮蔽性を有する粘着フィルムの作製)  (Preparation of adhesive film with near-infrared shielding)
厚さ 100 μ mの PETフィルム(マイラー D、帝人デュポンフィルム株式会社製)の表 面に下記赤外線吸収剤を含有する榭脂組成物 3を乾燥後の厚みが 10 μ mになるよ うに塗布して、近赤外線吸収剤を含有する接着性フィルムを作製した。 Table of 100 μm thick PET film (Mylar D, manufactured by Teijin DuPont Films Ltd.) On the surface, a resin composition 3 containing the following infrared absorber was applied so that the thickness after drying was 10 μm, and an adhesive film containing a near infrared absorber was produced.
(榭脂組成物 b3の組成)  (Composition of rosin composition b3)
BR— 80 (三菱レーョン株式会社製、PMMA) 100重量部 BR-80 (Mitsubishi Rayon Co., PMMA) 100 parts by weight
IRG— 022 (日本ィ匕薬株式会社製、ジィモ -ゥム塩系赤外線吸収剤) 3. 3重量部 IR— 12 (日本触媒株式会社製、フタロシアニン系赤外線吸収剤) 1. 5重量部 トノレェン 60重量部 IRG— 022 (Nippon Yakuyaku Co., Ltd., Dimo-um salt-based infrared absorber) 3.3 parts by weight IR—12 (Nippon Shokubai Co., Ltd., phthalocyanine-based infrared absorber) 1.5 parts by weight Tolenene 60 Parts by weight
メチルェチルケトン(MEK) 300重量部  Methyl ethyl ketone (MEK) 300 parts by weight
次いで、離型 PETフィルム(S— 32、帝人デュポン (株)製)の離型処理面に榭脂組 成物 4を、乾燥塗布厚が 8 mとなるように塗布した。近赤外線吸収剤を含有する接 着性フィルムの榭脂を塗布した面に、榭脂組成物 4を塗布したフィルムを貼り合わせ 、近赤外線遮蔽性を有する粘着フィルムを作製した。  Next, the resin composition 4 was applied to the release-treated surface of the release PET film (S-32, manufactured by Teijin DuPont Co., Ltd.) so that the dry coating thickness was 8 m. An adhesive film having a near-infrared shielding property was prepared by laminating a film coated with the resin composition 4 on the surface of the adhesive film containing the near-infrared absorber coated with the resin.
(榭脂組成物 b4の組成)  (Composition of rosin composition b4)
HTR— 860— P3 (長瀬ケムテック株式会社製、アクリルポリマ) 100重量部 コロネート L (日本ポリウレタン株式会社製、イソシァネートイ匕合物) 3重量部 トルエン 100重量部  HTR— 860— P3 (Nagase Chemtech Co., Ltd., acrylic polymer) 100 parts by weight Coronate L (Nihon Polyurethane Co., Ltd., Isocyanate Compound) 3 parts by weight Toluene 100 parts by weight
酢酸ェチル 300重量咅  Ethyl acetate 300wt%
[0186] (導体層パターン付き基材等の作製)  [0186] (Production of substrate with conductor layer pattern, etc.)
粘着フィルムとして、上記で得た近赤外線遮蔽性を有する粘着フィルム (ただし、離 型 PETフィルムを剥がして使用)を用いたこと以外は、全て実施例 blと同様にして、 導体層パターン付き基材及び導体層パターンが黒化処理された導体層パターン付 き基材を製造した。  A substrate with a conductor layer pattern was used in the same manner as Example bl except that the adhesive film having the near infrared shielding property obtained above was used as the adhesive film (except that the release PET film was peeled off). And the base material with a conductor layer pattern by which the conductor layer pattern was blackened was manufactured.
[0187] (電磁波遮蔽体の作製) [0187] (Production of electromagnetic wave shielding body)
上記で得られた導体層パターンが黒化処理された導体層パターン付き基材の導体 層パターンが存在する面に紫外線硬化型榭脂 (ヒタロイド 7851、 日立化成工業株式 会社製)をコーティングし、さらに、ポリカーボネートフィルム(マクロホール DE、バイエ ル株式会社製、 75 m)をラミネートした後、紫外線ランプを用いて UZcm2の紫外 線を照射し、導体層パターンを榭脂で被覆した。次いで、上記で得られたフィルムの 導体層パターンが形成されている面とは反対の面に粘着層を形成し、 3mm厚の PM MA板 (コモグラス)に貼りあわせて、電磁波遮蔽部材を得た。 The surface of the base material with the conductor layer pattern obtained by blackening the conductor layer pattern obtained above is coated with an ultraviolet curable resin (Hitaroid 7851, manufactured by Hitachi Chemical Co., Ltd.), and After laminating polycarbonate film (Macro Hall DE, manufactured by Bayer Co., Ltd., 75 m), UZcm 2 ultraviolet rays were irradiated with an ultraviolet lamp to coat the conductor layer pattern with resin. Then, of the film obtained above An adhesive layer was formed on the surface opposite to the surface on which the conductor layer pattern was formed, and was bonded to a 3 mm thick PMMA plate (Comoglass) to obtain an electromagnetic wave shielding member.
[0188] (繰り返し使用) [0188] (Repeated use)
上記の導体層パターン付き基材を作製するときに使用した絶縁膜を有する導電性 基材を用いて、(銅めつき 黒ィ匕処理)の工程、(転写 黒ィ匕処理)の工程を実施例 b2と同様にして 100回繰り返した結果、銅めつきの転写性に変化が無ぐ絶縁膜の 剥離箇所も観測されな力つた。  Using the conductive base material with an insulating film used when preparing the base material with the conductor layer pattern described above, the (copper plating black spot treatment) process and the (transfer black spot treatment) process were performed. As in Example b2, the test was repeated 100 times. As a result, no peeling of the insulating film where there was no change in the transferability of copper plating was observed.
実施例 13  Example 13
[0189] [実施例 b5] [0189] [Example b5]
前記実施例 b2の(接着フィルムの作製)において、榭脂組成物 blの乾燥塗布厚を 10 /z mとしたこと以外は、実施例 b2と同様に行い、導体層パターン付き基材を製造 した。  A substrate with a conductor layer pattern was produced in the same manner as in Example b2, except that in Example b2 (Preparation of adhesive film), the dry coating thickness of the resin composition bl was 10 / zm.
さらに、この導体層パターン付き基材を、 80°Cに加温した下記の黒ィ匕処理液に 3分 間浸漬して、導体層を黒化処理して表面が黒化処理された導体層パターンを有する 導体層パターン付き基材を製造した。  Further, the substrate with the conductor layer pattern was immersed in the following black wrinkle treatment solution heated to 80 ° C for 3 minutes to blacken the conductor layer and the surface of the conductor layer was blackened. The base material with a conductor layer pattern which has a pattern was manufactured.
(黒化処理液の組成)  (Composition of blackening solution)
亜塩素酸ナトリウム 30gZL、水酸ィ匕ナトリウム 10gZL、及び三リン酸ナトリウム 5g ZLが溶解された水溶液。  An aqueous solution in which 30 g ZL of sodium chlorite, 10 g ZL of sodium hydroxide and 5 g ZL of sodium triphosphate are dissolved.
上記で得られた表面が黒化処理された導体層パターンを有する導体層パターン付 き基材を用いて、実施例 b4の (電磁波遮蔽体の作製)と同様にして電磁波遮蔽部材 を得た。  An electromagnetic wave shielding member was obtained in the same manner as in Example b4 (Preparation of electromagnetic wave shielding body), using the base material with a conductive layer pattern having a conductive layer pattern whose surface was blackened.
さらに、前記の導体層パターン付き基材を作製するときに使用した絶縁膜を有する 導電性基材を用いて、(銅めつき)の工程、(転写)の工程及び (黒ィ匕処理)の工程を 実施例 b2と同様にして 100回繰り返した結果、銅めつきの転写性に変化が無ぐ絶 縁膜の剥離箇所も観測されな力つた。  Furthermore, using the conductive base material having the insulating film used when producing the base material with the conductor layer pattern, the (copper plating) step, the (transfer) step, and the (black lead treatment) The process was repeated 100 times in the same manner as in Example b2, and as a result, there was no observable separation of the insulating film where there was no change in the transferability of the copper plating.
実施例 14  Example 14
[0190] [実施例 b6] [0190] [Example b6]
ロール.トウ.ロールでの連続生産を目的として、直径 150mm、幅 200mmのステン レス製ロールの表面に、実施例 b 1と同様の方法を適用して格子模様状のパターン( ライン幅、すなわち、凸部上面の幅 20 μ m、ピッチ 300 μ m、凸部の高さ 15 m、凸 部の断面形状は曲面(図 3— dと同様))を形成した。次いで、上記のステンレス製の ロールを陰極にして、陽極をチタン板として、カチオン型電着塗料 (Insuleed3020、 日本ペイント (株)製)中で、 15V10秒、の条件で、格子模様状にエッチングされたス テンレス製のロールに電着塗装した。水洗後 100°C10分間乾燥した後、 190°C25 分の条件で焼付けした。電着塗料の塗布厚は、 2. であった。 Stainless steel with a diameter of 150 mm and a width of 200 mm for the continuous production of rolls, tows and rolls By applying the same method as in Example b 1 to the surface of the loess roll, a lattice pattern (line width, ie, the width of the upper surface of the convex portion 20 μm, the pitch 300 μm, the height of the convex portion 15 m, the cross-sectional shape of the convex part was a curved surface (similar to Fig. 3-d). Next, the above-mentioned stainless steel roll is used as a cathode, the anode is used as a titanium plate, and it is etched into a lattice pattern in a cationic electrodeposition paint (Insuleed 3020, manufactured by Nippon Paint Co., Ltd.) under the condition of 15 V for 10 seconds. Electrodeposition coating was applied to a stainless steel roll. After washing with water and drying at 100 ° C for 10 minutes, it was baked at 190 ° C for 25 minutes. The coating thickness of the electrodeposition paint was 2.
さらに、上記で電着塗装を施したステンレス製のロールの表面を、やはり実施例 bl と同様の方法を適用して表面研磨して、凸部の上面を露出させた。このようにして作 製された凹部が絶縁層で覆われたステンレス製のロールを用いて、図 24に示した装 置構成で電気銅めつきした。陽極 102には酸化イリジウムでコーティングしたチタン 製の不溶性電極を用い、陰極には上記ステンレス製のロール 103をドラム電極とした 。電解銅めつき用の電解浴 (硫酸銅(5水塩) 80gZL、硫酸 180gZL、キューブライ ト VF1 (荏原ユージライト株式会社製、添加剤) 20mlZLの水溶液、 25°C)中に、図 24に示すように、ステンレス製ロール 103の半分を浸した。電流密度を 40AZdm2と して、両極に電圧をかけて凸部の上面に析出する銅の厚みが 5 m厚になるまでめ つきした。このとき。上記のステンレスロールを lmZ分の速度で回転させるようにした 実施例 blで用いた粘着フィルムをロール状に巻き取り使用した。上記ステンレス口 ールの凸部の上面に析出した銅と粘着フィルム(107)の粘着剤面を実施例 b 1と同 様のラミネート条件で、図 24に示すように粘着フィルムを上記のステンレスロール 10 3と圧着ロール 108の間を通して連続的に貼り合わせた。次いで、ステンレスロール 1 03から粘着フィルム(107)を剥離しながら、導体層パターン (銅層)が転写された粘 着フィルム、すなわち、導体層パターン付き基材(109)をロールに巻き取った。ステ ンレスロールから粘着フィルムを剥離すると、ライン幅 28 μ m、ラインピッチ 300 μ m、 導体厚 5 mの導体層パターンが粘着フィルム上に転写されていた。導体層パター ン付き基材(109)の導体層パターンが転写された面に離型 PET (S 32、帝人デュ ボン株式会社製)をラミネートしながら巻き取ることにより、卷取り時のブロッキングを 防止した。このようにして、粘着フィルムについては、ロール力も押し出し、導体層パ ターンを転写後はロールに巻き取る、いわゆる、ロール 'トウ'ロールで連続的に行つ た。銅めつきが転写された粘着フィルムを 50m巻き取った後も、ステンレスロール上 への銅めつきとその転写性に変化が無ぐ絶縁膜の剥離箇所も観測されな力つた。 Further, the surface of the stainless steel roll coated with the above electrodeposition was polished by applying the same method as in Example bl to expose the upper surface of the convex portion. Using the stainless steel roll in which the recesses thus produced were covered with an insulating layer, electrolytic copper plating was performed with the apparatus configuration shown in FIG. The anode 102 was an insoluble titanium electrode coated with iridium oxide, and the stainless steel roll 103 was used as a drum electrode for the cathode. In an electrolytic bath for electrolytic copper plating (copper sulfate (pentahydrate) 80gZL, sulfuric acid 180gZL, cube light VF1 (supplied by Ebara Eugene Corporation, additive) 20ml ZL aqueous solution, 25 ° C), in Fig. 24 As shown, half of the stainless steel roll 103 was dipped. With a current density of 40AZdm 2 , a voltage was applied to both poles until the thickness of the copper deposited on the top surface of the protrusion reached 5 m. At this time. The above stainless steel roll was rotated at a speed of lmZ. The adhesive film used in Example bl was wound into a roll and used. The adhesive film of copper and the adhesive film (107) deposited on the upper surface of the convex portion of the stainless steel tool was laminated under the same laminating conditions as in Example b 1, and the adhesive film was bonded to the stainless steel roll as shown in FIG. Bonding was performed continuously between 103 and the pressure roll 108. Next, while peeling the adhesive film (107) from the stainless steel roll 103, the adhesive film to which the conductor layer pattern (copper layer) was transferred, that is, the substrate (109) with the conductor layer pattern was wound around a roll. When the adhesive film was peeled from the stainless steel roll, a conductor layer pattern with a line width of 28 μm, a line pitch of 300 μm, and a conductor thickness of 5 m was transferred onto the adhesive film. Blocking at the time of scraping is performed by winding release PET (S 32, manufactured by Teijin Dubon Co., Ltd.) while laminating it on the surface of the substrate with the conductor layer pattern (109) onto which the conductor layer pattern is transferred. Prevented. In this way, the adhesive film was continuously rolled with a so-called roll “toe” roll in which the roll force was also pushed out and the conductor layer pattern was wound around the roll after transfer. Even after 50 m of the adhesive film to which the copper plating had been transferred, the copper plating on the stainless steel roll and the insulating film peeling point where the transferability did not change were observed.
[0192] 上記で得られた導体層パターンが転写されたロール状の粘着フィルムの離型 PET を剥離しながら、実施例 blで用いた前処理液及び黒ィ匕処理液にロール'トウ ·ロール で浸漬し黒化処理して、導体層パターンが黒化処理された導体層パターン付き基材 を製造した。なお、卷取り時には、再度離型 PETを粘着剤面にラミネートした。得られ た導体層パターン付き基材の導体層パターンが形成されている面に、 UV硬化型榭 脂(ァロニックス UV— 3701、東亞合成株式会社製)を 15 m厚でコーティングし、 P ETフィルム(マイラー D、帝人デュポンフィルム株式会社製、 75 m)でラミネートした 後、紫外線ランプを用いて UZcm2の紫外線を照射して、保護膜を形成した。 [0192] While peeling the release PET of the roll-shaped adhesive film to which the conductor layer pattern obtained above was transferred, roll the tow roll into the pretreatment liquid and black smoke treatment liquid used in Example bl. The substrate with a conductor layer pattern was manufactured by dipping in and blackened with a conductor layer pattern. At the time of scraping, the release PET was laminated again on the adhesive surface. The surface of the obtained substrate with the conductor layer pattern on which the conductor layer pattern is formed is coated with a UV curable resin (Alonics UV-3701, manufactured by Toagosei Co., Ltd.) with a thickness of 15 m, and a PET film ( After laminating with Mylar D, manufactured by Teijin DuPont Films, Ltd., 75 m), a protective film was formed by irradiating UZcm 2 ultraviolet rays using an ultraviolet lamp.
実施例 15  Example 15
[0193] [実施例 b7] [0193] [Example b7]
ロール状に巻いた SUS304箔(日新製鋼 (株)製、仕上げ 3Z4H、幅 200mm、厚 さ 100 /z m)と、 PETフィルム(A— 4100、東洋紡製)にバイロン UR— 1350 (接着剤 、東洋紡績 (株)製)を乾燥塗布厚が 20 μ mとなるように塗布して作製したロール状の 接着フィルムをロールラミネータで貼りあわせて、ロール状の PETフィルム付き SUS 箔を作製した。ラミネート条件は、ロール温度 120°C、プレヒート 120°C30秒、圧力 3 MPa、ラインスピード 0. 5mZminとした。次いで、ロール toロールで行うこと以外は 、実施例 b3と同様の条件にして、上記 PETフィルム付き SUS箔をエッチングし、 SU S箔に格子模様状のパターン (ライン幅、すなわち、凸部上面の幅 15 /ζ πι、ピッチ 30 O ^ m,凸部の高さ 20 m、凸部の断面形状は曲面(図 3— dと同様))を形成した。 次いで、エッチングした PETフィルム付き SUS箔を長さ lmで切断した後、上記の PE Tフィルム付き SUS箔を陽極にして、陰極をチタン板として、カチオン型電着塗料 (U C— 2000、(株)シミズ製)中で、 30V60秒の条件で、格子模様状にエッチングされ たステンレス板に電着塗装した。水洗後 100°C10分間乾燥した後、 3jZcm2の照射 条件で硬化した。電着塗料の塗布厚は、 3. 9 mであった。さらに電着塗装したステ ンレス板を、 # 4000の研磨紙で研磨し凸部の上面のみ、導電性基材を露出させた。 同様の作業で PETフィルム付き SUS箔を 10枚電着塗装し、研磨した。次いで、幅 2 00mm,長さ 10mの粘着フィルム(SGA、 日立化成工業 (株)製)の粘着剤面に、上 記で作製した 10枚の PETフィルム付き SUS箔の PETフィルム面を、隙間無く貼り合 わせて、長さ 10mの格子模様パターンを有する PETフィルム付き SUS箔を得た。次 いで、図 26に示すような装置に、表面研磨した上記格子模様パターンを有する PET フィルム付き SUS箔を通紙した。つなぎ目は、市販のガムテープを用いて貼り合わせ て、フープ状の導電性支持体とした。 Rolled SUS304 foil (Nisshin Steel Co., Ltd., finish 3Z4H, width 200mm, thickness 100 / zm), PET film (A-4100, manufactured by Toyobo), Byron UR-1350 (adhesive, Toyo A roll-like adhesive film produced by applying Spinning Co., Ltd.) to a dry coating thickness of 20 μm was bonded with a roll laminator to produce a rolled SUS foil with a PET film. Lamination conditions were a roll temperature of 120 ° C, a preheat of 120 ° C for 30 seconds, a pressure of 3 MPa, and a line speed of 0.5 mZmin. Next, the SUS foil with PET film is etched under the same conditions as in Example b3 except that the roll-to-roll is performed, and the SUS foil has a lattice pattern (line width, that is, the upper surface of the convex portion). The width was 15 / ζ πι, the pitch was 30 O ^ m, the height of the protrusion was 20 m, and the cross-sectional shape of the protrusion was a curved surface (similar to FIG. 3D). Next, the etched SUS foil with PET film was cut to a length of lm, and then the above SUS foil with PET film was used as the anode, and the cathode was used as the titanium plate. Cationic electrodeposition paint (UC-2000, Co., Ltd.) (Shimizu) was electrodeposited on a stainless steel plate etched in a lattice pattern under the condition of 30V 60 seconds. After drying 100 ° C10 minutes after washing with water and cured at irradiation conditions 3jZcm 2. The coating thickness of the electrodeposition paint was 3.9 m. In addition, the electrodeposition coating The stainless steel plate was polished with # 4000 polishing paper to expose the conductive substrate only on the upper surface of the convex portion. In the same manner, 10 SUS foils with PET film were electrodeposited and polished. Next, on the adhesive surface of the adhesive film (SGA, manufactured by Hitachi Chemical Co., Ltd.) with a width of 200 mm and a length of 10 m, the PET film surface of the SUS foil with the 10 PET films prepared above was formed without any gaps. By bonding, a SUS foil with a PET film having a lattice pattern of 10 m in length was obtained. Next, a SUS foil with a PET film having the above-described lattice pattern was passed through an apparatus as shown in FIG. The joint was bonded using a commercially available gum tape to form a hoop-like conductive support.
[0194] まず初めに、上記で得られたロール状の格子模様パターンを陰極として電解銅め つき用の 1個の電解浴((硫酸銅(5水塩) 180gZL、硫酸 100gZL、カパラシド HL ( アトテックジャパン株式会社製、添加剤) 70mlZLの水溶液、 30°C) (図 26— 130) で、含燐銅を陽極として電流密度を 30AZdm2として、凸部の上面に析出した金属 の厚さが: L mになるまでめつきした。水洗後、実施例 blと同様の黒化処理を黒化処 理層(図 26— 150 ;この例では黒ィ匕処理槽とした)で行い、さら〖こ、防鲭処理槽(図 2 6— 151;この例では防鲭処理槽とした)を通した後、ロール状の状態力も巻きだした 実施例 b3で用いた粘着フィルム(プラスチック基材、図 26— 136)にロール 137を用 いて、ライン幅 17 μ m、ラインピッチ 300 m、厚さ 1 mで、黒化処理の施された導 体層パターンが粘着フィルム上に連続的に転写され、導体層パターン付き基材 138 が得られた。なお、導体層パターン付き基材 138をロール状に巻き取る際には、導体 層パターンの面に離型 PET(S— 32、帝人デュポン株式会社製)が接触するようにラ ミネートした。このようにして、銅めつき、黒ィ匕処理及び転写の工程を、 1ラインで行うこ とができた。上記導体層パターン付き基材 33を 50m巻き取った後も、銅めつきの転 写性に変化が無ぐ絶縁膜の剥離箇所も観測されな力つた。 [0194] First, one electrolytic bath for electrolytic copper plating ((copper sulfate (pentahydrate) 180gZL, sulfuric acid 100gZL, Kaparaside HL (Atotech)) using the rolled lattice pattern obtained above as a cathode. Japan Co., Ltd., additive) 70mlZL aqueous solution, 30 ° C) (Fig. 26-130), current density is 30AZdm 2 with phosphorous copper as anode and the thickness of the metal deposited on the upper surface of the convex part is: After washing with water, the same blackening treatment as in Example bl was performed in the blackening treatment layer (Fig. 26-150; in this example, a black soot treatment tank). , After passing through the anti-bacterial treatment tank (Fig. 26-151; in this example, the anti-bacterial treatment tank), the roll-like state force was also unwound The adhesive film used in Example b3 (plastic substrate, Fig. 26 — Conductor layer pattern that has been blackened using roll 137 to 136), line width of 17 μm, line pitch of 300 m, thickness of 1 m. The substrate was continuously transferred onto the adhesive film to obtain a substrate 138 with a conductor layer pattern, and when the substrate 138 with a conductor layer pattern was rolled up, it was separated from the surface of the conductor layer pattern. Type PET (S-32, manufactured by Teijin DuPont Co., Ltd.) was laminated so that the process of copper plating, black wrinkle treatment and transfer could be performed in one line. Even after the substrate 33 with the conductor layer pattern was wound up by 50 m, the insulation film peeled off where there was no change in the transferability of the copper plating was observed.
上記において、本例では、エッチング槽 129は省略した。  In the above, the etching tank 129 is omitted in this example.
[0195] 上記で得られた導体層パターン付き粘着フィルムの粘着剤面 (銅めつきを転写した 面)を厚さ 2mmのガラスに当ててラミネートして貼り合わせた。ラミネート条件は、温度 25°C、圧力 0. 5MPa、ラインスピード 0. 5m/minとした。ロールラミネートによって、 厚さ 1 mの導体層パターンは粘着剤に埋設され、透明性の高い電磁波遮蔽体が 得られた。 [0195] The pressure-sensitive adhesive surface of the pressure-sensitive adhesive film with a conductor layer pattern obtained above (the surface to which the copper plating was transferred) was applied to a glass sheet having a thickness of 2 mm and laminated. Lamination conditions were a temperature of 25 ° C, a pressure of 0.5 MPa, and a line speed of 0.5 m / min. By roll laminating, the 1 m thick conductor layer pattern is embedded in the adhesive, and a highly transparent electromagnetic wave shield Obtained.
[0196] [比較例 bl]  [0196] [Comparative example bl]
ステンレス(SUS304)板にドライフィルムフォトレジスト(HY— 920 (日立化成工業( 株)製、厚み 20 /z m)をロール温度 100°C、線圧 0. 3MPa、ラインスピード lmZmin で貼り合わせた。次に、光不透過部のライン幅 30 m、ラインピッチ 300 mのネガ ノ ターンを、レジストフイルムを貼り合わせたステンレス板上に静置し、 lOOmj/cm2 の条件でネガパターンの上力も UV照射した。 1%炭酸ナトリウム水溶液で現像して、 SUS板の上に幅 30 mの溝を有するレジストフイルムを形成した。次いで、 150°Cで 1時間の条件で加熱硬化させた。 A dry film photoresist (HY-920 (manufactured by Hitachi Chemical Co., Ltd., thickness 20 / zm)) was bonded to a stainless steel (SUS304) plate at a roll temperature of 100 ° C, a linear pressure of 0.3 MPa, and a line speed of lmZmin. In addition, a negative pattern with a line width of 30 m and a line pitch of 300 m is placed on a stainless steel plate with a resist film attached, and the upper force of the negative pattern is also irradiated with UV under the condition of lOOmj / cm 2. Development was performed with a 1% aqueous sodium carbonate solution to form a resist film having a groove with a width of 30 m on a SUS plate, and then heat-cured at 150 ° C. for 1 hour.
[0197] 次に、上記レジストを形成した SUS板を陰極として電解銅めつき用の電解浴〔硫酸 銅(5水塩) 100gZL、硫酸 180gZL、トップルチナ H— 380 (奥野製薬工業株式会 社製、添加剤) 2. 5mlZLの水溶液、 30°C]中に浸し、含燐銅を陽極として同電解浴 中に浸した。両極に電圧をかけて電流密度を 3AZdm2として、レジストの溝が完全 に埋まるようにめつきした。 [0197] Next, an electrolytic bath for electrolytic copper plating using the SUS plate on which the resist is formed as a cathode [copper sulfate (pentahydrate) 100 gZL, sulfuric acid 180 gZL, Top Lucina H-380 (Okuno Pharmaceutical Co., Ltd., Additive) 2. Dipped in 5 ml ZL aqueous solution, 30 ° C], and immersed in the same electrolytic bath with phosphorous copper as anode. As 3AZdm 2 current density by applying a voltage to both electrodes, grooves of the resist is plated to completely fill.
一方、粘着フィルムとしては、実施例 blで作製したものを使用した。  On the other hand, what was produced in Example bl was used as an adhesive film.
この粘着フィルムの粘着剤面と、上記 SUS板の銅メツキを施した面を、ロールラミネ ータを用いて貼り合わせた。ラミネート条件は、ロール温度 25°C、圧力 0. lMPa、ラ インスピード lmZminとした。次いで、導電性基材に貼り合わせた粘着フィルムを剥 離したところ、上記 SUS板のレジストの溝に析出した銅が粘着フィルムに転写されて いた。  The pressure-sensitive adhesive surface of the pressure-sensitive adhesive film was bonded to the surface of the SUS plate that had been subjected to copper plating using a roll laminator. Lamination conditions were a roll temperature of 25 ° C, a pressure of 0.1 lMPa, and a line speed of lmZmin. Next, when the adhesive film bonded to the conductive substrate was peeled off, the copper deposited in the resist grooves of the SUS plate was transferred to the adhesive film.
上記のメツキと転写の操作を 3回繰り返したところで、粘着フィルムへの転写不良が 発生した。転写不良の部分に対応する SUS板の部分を顕微鏡で観察したところ、レ ジストが一部 SUS力 剥離しており、剥離したレジストの下に金属が析出しているた め、金属が溝力 抜けずに転写不良が発生していることを確認した。  When the above plating and transfer operations were repeated three times, transfer to the adhesive film failed. When the portion of the SUS plate corresponding to the transfer failure portion was observed with a microscope, the resist was partially peeled off by SUS force, and metal was deposited under the peeled resist, so that the metal was not removed from the groove. It was confirmed that a transfer defect occurred.
[0198] [比較例 b2] [0198] [Comparative Example b2]
実施例 blで、電着塗装の条件を 150V10秒としたこと以外は、実施例 blと同様に 行った。電着塗料の厚みは、 25 /z mであった。凸部の上面の導電性金属を露出させ るまで電着塗装の表面を研磨した結果、図 10に示すように、凸部パターンの凹部が 絶縁層で完全に埋まった形状をしていた。次いで実施例 blと同様にして銅めつきを 行い、粘着フィルム上に銅めつきを転写した。(銅めつき一黒ィ匕処理)の工程と (転写 黒化処理)の工程を 7回繰り返すと、絶縁膜の一部が剥離しており、 8回目のめつ きを行うと、絶縁膜が剥離した箇所に銅が析出した。粘着フィルムに銅めつきを転写 した結果、絶縁膜が剥離した箇所の銅めつきが転写しな力つた。 Example bl was performed in the same manner as Example bl except that the electrodeposition condition was 150 V for 10 seconds. The thickness of the electrodeposition paint was 25 / zm. As a result of polishing the surface of the electrodeposition coating until the conductive metal on the upper surface of the convex portion is exposed, the concave portion of the convex portion pattern is formed as shown in FIG. The shape was completely filled with an insulating layer. Next, copper plating was performed in the same manner as in Example bl, and the copper plating was transferred onto the adhesive film. If the process of (copper plating and blackening process) and the process of (transfer blackening process) are repeated 7 times, a part of the insulating film is peeled off. Copper was deposited at the locations where the peeled off. As a result of transferring the copper plating to the adhesive film, the copper plating at the part where the insulating film peeled off was not transferred.
[0199] 以上の実施例又は比較例で得られた導体層パターンの開口率、可視光透過率、 パターンの異常の有無、視認性、電磁波遮蔽性(300MHz)、パターンを有する導 電性基材の 30回めつき、剥離を繰り返した後の導電性基材の耐久性を評価した結 果を図 28に示す。 [0199] Conductive substrate having the aperture ratio, visible light transmittance, presence / absence of pattern abnormality, visibility, electromagnetic wave shielding (300 MHz), and pattern of the conductor layer pattern obtained in the above examples or comparative examples Fig. 28 shows the results of evaluating the durability of the conductive substrate after repeated peeling and peeling 30 times.
実施例 16  Example 16
[0200] [実施例 cl] [0200] [Example cl]
以下、実施例 16 (以下「実施例 cl」ともいう。実施例 23まで同様。)を説明する。 レジストフイルム(フォテック H— Y920、 日立化成工業株式会社製)を 10cm口のス テンレス(SUS304)板に貼り合わせた。貼り合わせの条件は、ロール温度 105°C、 圧力 0. 5MPa、ラインスピード lmZminで行った。次いで、光透過部のライン幅が 3 0 m、ラインピッチが 300 μ m、バイアス角度力 5° で、格子状に形成したネガフィ ルムを、レジストフイルムを貼り合わせたステンレス板の上に静置した。紫外線照射装 置を用いて、 600mmHg以下の真空下において、ネガフィルムの上から、紫外線を 1 20miZcm2照射した。さらに。 1%炭酸ナトリウム水溶液で現像することで、 SUS板 の上にライン幅 30 μ m、ラインピッチ 300 μ m、バイアス角度 45° のレジストフイルム を形成した。さらに、 40°Cに加温した塩ィ匕第二鉄水溶液を用いて、 SUS板をエッチ ングした。エッチングは、 SUS板のライン幅が 20 mになるまで行った。次いで、 5% 水酸ィ匕ナトリウム溶液を用いて、 SUS板の上に形成されたレジストフイルムを剥離し て、格子模様状のパターン(ライン幅 20 μ m、ピッチ 300 μ m、凸部の高さ 15 μ m、 テーパ角 60° 凸部の断面形状は曲面(図 3— dと同様))を形成した。凸部の上面の 表面粗さ Rz = 0. 3 mであったのに対し、凹部の表面粗さ Rz=4. 2 mであった。 次 、で、格子模様状のパターンが形成されたステンレス板 (上面を有する凸部のパ ターン及びそれによつて描かれる幾何学図形状の凹部を有する導電性基材)を陰極 として電解銅めつきを行った。電解銅めつき浴 (硫酸銅(5水塩) 80gZL、硫酸 180g ZL、キューブライト VF1 (荏原ユージライト株式会社製、添加剤) 20mlZLの水溶液 、 25°C)中に、格子模様状にエッチングされたステンレス板を浸し、含燐銅を陽極とし て同電解銅めつき浴中に浸した。両極に電圧をかけて、電流密度を 25AZdm2とし て、ステンレス板の凸部の上面に析出した金属の厚さが 5 mになるまでめつきしたと ころ、めっき金属が両サイドにも析出したため、ライン幅は 30 /z mとなった。ステンレス 板の凸部の上面には連続膜として銅が析出したが、凹部及び側部にも少量の粒子 状の銅が析出した。 Hereinafter, Example 16 (hereinafter, also referred to as “Example cl”, the same applies to Example 23) will be described. A resist film (Photec H-Y920, manufactured by Hitachi Chemical Co., Ltd.) was bonded to a 10 cm stainless steel (SUS304) plate. The bonding conditions were a roll temperature of 105 ° C, a pressure of 0.5 MPa, and a line speed of lmZmin. Next, the negative film formed in a lattice shape with the line width of the light transmitting portion of 30 m, the line pitch of 300 μm, and the bias angle force of 5 ° was left on the stainless steel plate bonded with the resist film. . Using an ultraviolet irradiation device, ultraviolet rays were irradiated at 120 miZcm 2 from above the negative film under a vacuum of 600 mmHg or less. further. By developing with a 1% sodium carbonate aqueous solution, a resist film having a line width of 30 μm, a line pitch of 300 μm, and a bias angle of 45 ° was formed on the SUS plate. Furthermore, the SUS plate was etched using a salty ferric aqueous solution heated to 40 ° C. Etching was performed until the line width of the SUS plate reached 20 m. Next, using a 5% sodium hydroxide solution, the resist film formed on the SUS plate was peeled off to form a lattice pattern (line width 20 μm, pitch 300 μm, convex height 15 μm in length, taper angle 60 ° The cross-sectional shape of the convex part was a curved surface (similar to Fig. 3-d). The surface roughness Rz of the upper surface of the convex portion was 0.3 m, whereas the surface roughness Rz of the concave portion was 4.2 m. Next, a stainless steel plate (a conductive base material having a convex pattern having an upper surface and a concave part having a geometrical shape drawn by the stainless steel plate) on which a lattice pattern is formed is used as a cathode. As an electrolytic copper plating. Electrolytic copper plating bath (copper sulfate (pentahydrate) 80gZL, sulfuric acid 180g ZL, Cubelite VF1 (supplied by Ebara Eugene Co., Ltd., additive) 20mlZL aqueous solution, 25 ° C) A stainless steel plate was immersed, and phosphorous copper was immersed in the electrolytic copper plating bath as an anode. When a voltage was applied to both poles, the current density was 25AZdm 2 and the metal deposited on the top surface of the convex part of the stainless steel plate was stuck to 5 m. The line width was 30 / zm. Copper was deposited as a continuous film on the upper surface of the convex part of the stainless steel plate, but a small amount of particulate copper was also deposited on the concave part and the side part.
[0201] 厚さ 100 mのポリエチレンテレフタレート(PET)フィルム(A— 4100、東洋紡績株 式会社製)の表面にプライマー (HP— 1、日立化成工業株式会社製)を厚さ 1 m) に、粘着層としてアクリルポリマ (HTR— 280、長瀬ケムテック製)を厚さ 10 mに順 次塗布して粘着フィルムを作製した。  [0201] On the surface of a 100 m thick polyethylene terephthalate (PET) film (A-4100, manufactured by Toyobo Co., Ltd.) with a primer (HP-1; manufactured by Hitachi Chemical Co., Ltd.) with a thickness of 1 m) As an adhesive layer, an acrylic polymer (HTR-280, manufactured by Nagase Chemtech) was sequentially applied to a thickness of 10 m to prepare an adhesive film.
[0202] この粘着フィルムの粘着剤面と、上記ステンレス板の銅メツキを施した面を、ロール ラミネータを用いて貼り合わせた。ラミネート条件は、ロール温度 25°C、圧力 0. IMP a、ラインスピード lmZminとした。この時、 SUS板の凸部上面の銅層は、粘着フィル ムの粘着剤層に一部分埋没した。次いで、ステンレス板に貼り合わせた粘着フィルム を剥離すると、上記ステンレス板の凸部の上面に析出した銅は、連続膜であるため、 粘着フィルムに転写した。このようにして、ライン幅 20 μ m、ラインピッチ 300 m、導 体厚 5 μ mの金属パターンが粘着フィルム上に選択的に転写された。  [0202] The pressure-sensitive adhesive surface of the pressure-sensitive adhesive film was bonded to the surface of the stainless steel plate with copper plating using a roll laminator. Lamination conditions were a roll temperature of 25 ° C, a pressure of 0. IMP a, and a line speed of lmZmin. At this time, the copper layer on the upper surface of the convex portion of the SUS plate was partially buried in the adhesive layer of the adhesive film. Subsequently, when the adhesive film bonded to the stainless steel plate was peeled off, the copper deposited on the upper surface of the convex portion of the stainless steel plate was a continuous film, and thus transferred to the adhesive film. In this way, a metal pattern having a line width of 20 μm, a line pitch of 300 m, and a conductor thickness of 5 μm was selectively transferred onto the adhesive film.
[0203] 上記で得られた金属パターンが転写された粘着フィルムをアルカリ脱脂液デグリー ス A ( (株)オーデック)を 5倍希釈した水溶液に室温で 3分間浸漬した。次 、で、水洗 後、 10%硝酸水溶液に室温で 2分間浸漬した。さらに、水洗後、黒化処理液コパー ル((株)オーデック)の 4倍希釈水溶液に浸漬し、金属パターンを黒ィ匕処理して、本 発明の導体層パターン付き基材を製造した。  [0203] The adhesive film onto which the metal pattern obtained above was transferred was immersed in an aqueous solution obtained by diluting alkaline degreasing solution Degree A (Odec Co., Ltd.) 5 times at room temperature for 3 minutes. Next, after washing with water, it was immersed in a 10% nitric acid aqueous solution at room temperature for 2 minutes. Further, after washing with water, the substrate was immersed in a 4-fold diluted aqueous solution of blackening solution copar (Odec Co., Ltd.), and the metal pattern was blackened to produce a substrate with a conductor layer pattern of the present invention.
[0204] 上記で得られた導体層パターン付き基材の導体層パターンが存在する面に、 UV 硬化型榭脂ヒタロイド 7983AA3 (日立化成工業 (株)製)をコーティングし、その上か らポリカーボネートフィルム(マクロホール DE、バイエル株式会社製、 75 m)でラミ ネートして導体層パターンを UV硬化型榭脂中に埋没させた後、紫外線ランプを用い て UZcm2の紫外線を照射して UV硬化型榭脂を硬化させた。 [0204] The surface of the substrate with the conductor layer pattern obtained above, on which the conductor layer pattern is present, is coated with UV-cured rosin hyaloid 7983AA3 (manufactured by Hitachi Chemical Co., Ltd.), and then a polycarbonate film. (Macro Hall DE, Bayer Co., Ltd., 75 m) is laminated and the conductor layer pattern is buried in UV curable resin, and then an ultraviolet lamp is used. The UV curable resin was cured by irradiating UZcm 2 ultraviolet rays.
[0205] 一方、凸部パターンを形成したステンレス板は、粘着フィルムに銅を転写した後、 4 0°Cに加熱した lOOgZリットルの過硫酸アンモ-ゥム溶液中に浸漬し、凸部パターン を形成したステンレス板の凹部と側部に少量残存した銅を溶解した。 [0205] On the other hand, the stainless steel plate on which the convex pattern was formed was dipped in lOOgZ liters of ammonium persulfate solution heated to 40 ° C after copper was transferred to the adhesive film. A small amount of copper remaining in the concave and side portions of the formed stainless steel plate was dissolved.
実施例 17  Example 17
[0206] [実施例 c2] [Example c2]
SUS板に形成される凸部のライン幅 10 μ m、ピッチ 300 μ m、凸部の高さ 30 μ m、 テーパ角が 35° になるまでエッチングしたこと以外は、実施例 clと同様にして、 SU S板上に格子模様状のパターン (凸部の断面形状は曲面(図 3— dと同様))を形成し た。  Except that etching was performed until the line width of the protrusions formed on the SUS plate was 10 μm, the pitch was 300 μm, the height of the protrusions was 30 μm, and the taper angle was 35 °. A lattice pattern (the cross-sectional shape of the convex part is a curved surface (similar to Fig. 3-d)) was formed on the SUS plate.
凸部の上面の表面粗さ Rz = 0. であったのに対し、凹部の表面粗さ Rz = 5. 5 μ mであった。  The surface roughness of the upper surface of the convex portion was Rz = 0. Whereas the surface roughness of the concave portion was Rz = 5.5 μm.
次 、で、格子模様状にエッチングされたステンレス板 (上面を有する凸部のパター ン及びそれによって描かれる幾何学図形状の凹部を有する導電性基材)を陰極とし て電解銅めつき用の電解浴 (硫酸銅(5水塩) 150gZL、硫酸 150gZL、カパラシド HL (アトテックジャパン株式会社製、添加剤) 50mlZLの水溶液、 30°C)中に浸し、 含燐銅を陽極として同電解銅めつき浴中に浸した。両極に電圧をかけて電流密度を lOAZdm2として、凸部の上面に析出した金属の厚さが 3 μ mになるまでめつきした ところ、めっき金属が両サイドにも析出したため、ライン幅は 16 /z mとなった。ステンレ ス板の凸部の上面には連続膜として銅が析出した力 凹部及び側部にも少量の粒子 状の銅が析出した。 Next, a stainless steel plate etched in a lattice pattern (a conductive substrate having a convex pattern having an upper surface and a geometric pattern-shaped concave portion drawn thereby) is used as a cathode for electrolytic copper plating. Electrolytic bath (copper sulfate (pentahydrate) 150gZL, sulfuric acid 150gZL, Kaparaside HL (manufactured by Atotech Japan Co., Ltd., additive) 50ml ZL in water, 30 ° C) Immerse in the bath. When voltage was applied to both poles and the current density was lOAZdm 2 until the thickness of the metal deposited on the top surface of the convex portion reached 3 μm, the plated metal also deposited on both sides, so the line width was 16 / zm Force where copper was deposited as a continuous film on the upper surface of the convex part of the stainless steel plate A small amount of particulate copper was also deposited on the concave part and the side part.
[0207] 次 、で、銅めつきを析出させた SUS板を、 80°Cに加温した下記組成の黒ィ匕処理液 に 3分間浸漬して、ステンレス板に析出した銅めつきを黒ィ匕処理した。  [0207] Next, the SUS plate on which the copper plating was deposited was immersed for 3 minutes in a black wrinkle treatment solution having the following composition heated to 80 ° C, and the copper plating deposited on the stainless steel plate was blackened. It was processed.
(黒化処理液 cl)  (Blackening solution cl)
亜塩素酸ナトリウム 30gZL、水酸ィ匕ナトリウム 10gZL、及び三リン酸ナトリウム 5g ZLが溶解された水溶液。  An aqueous solution in which 30 g ZL of sodium chlorite, 10 g ZL of sodium hydroxide and 5 g ZL of sodium triphosphate are dissolved.
[0208] 厚さ 100 /z mのポリエーテルサルフォンフィルム(スミライト FS— 1300、住友ベータ ライト株式会社製)の表面にプライマー (HP— 1、日立化成工業株式会社製)を乾燥 塗布厚が: mになるように塗布し、ついで、接着層としてポリエステル榭脂 (バイロン UR- 1400 (Tg=約 80°C)、東洋紡績株式会社製)を乾燥塗布厚が 10 μ mとなるよ うに順次塗布して接着性フィルムを作製した。 [0208] Dried primer (HP-1; Hitachi Chemical Co., Ltd.) on the surface of 100 / zm thick polyethersulfone film (Sumilite FS-1300, manufactured by Sumitomo Beta Light Co., Ltd.) Apply to a coating thickness of: m, then dry the polyester resin (Byron UR-1400 (Tg = approx. 80 ° C), Toyobo Co., Ltd.) as the adhesive layer to a dry coating thickness of 10 μm. In this manner, an adhesive film was prepared by coating sequentially.
上記接着フィルムの接着剤面と、上記ステンレス板の銅メツキを施した面を、ロール ラミネータを用いて貼り合わせた。ラミネート条件は、ロール温度 150°C、圧力 0. 1M Pa、ラインスピード 0. 5mZminとした。接着剤の Tgを超える温度でラミネートされた ため、接着剤表面にタック性が発現した。上記のラミネート後、 SUS板の凸部上面の 黒化処理された銅層は、接着フィルムの接着剤層に一部分埋没した。次いで、ステ ンレス板に貼り合わせた接着フィルムを剥離すると、上記ステンレス板の凸部の上面 に析出した銅は、連続膜であるため、粘着フィルムに転写した。これに対し、凹部及 び側部に析出した少量の銅は、粒状で非連続膜であるため、凸部の上面に析出した 銅に追随することなぐ SUS板に残存し、粘着フィルムに転写されることはな力つた。 このようにして、ライン幅 16 μ m、ラインピッチ 300 μ m、導体厚 3 μ mで、さらに黒化 処理が施された金属パターンが接着フィルム上に選択的に転写され、本発明の導体 層パターン付き基材を製造した。  The adhesive surface of the adhesive film and the copper-plated surface of the stainless steel plate were bonded together using a roll laminator. Lamination conditions were a roll temperature of 150 ° C., a pressure of 0.1 MPa, and a line speed of 0.5 mZmin. Since lamination was performed at a temperature exceeding the Tg of the adhesive, tackiness was developed on the adhesive surface. After the above lamination, the blackened copper layer on the upper surface of the convex portion of the SUS plate was partially embedded in the adhesive layer of the adhesive film. Next, when the adhesive film bonded to the stainless steel plate was peeled off, the copper deposited on the upper surface of the convex portion of the stainless steel plate was a continuous film, and thus transferred to the adhesive film. On the other hand, a small amount of copper deposited on the concave and side portions is a granular and discontinuous film, so it remains on the SUS plate without following the copper deposited on the upper surface of the convex portion and transferred to the adhesive film. It was very powerful. In this way, the metal pattern having a line width of 16 μm, a line pitch of 300 μm, and a conductor thickness of 3 μm, and further blackened, is selectively transferred onto the adhesive film, and the conductor layer of the present invention. A patterned substrate was produced.
[0209] 上記で得られた導体層ノターン付き基材の導体層パターンが存在する面に、実施 例 clと同様にして UV硬化型榭脂ヒタロイド 7983AA3 (日立化成工業 (株)製)をコ 一ティングした後、 PETフィルム (A— 4100、東洋紡 (株)製、 75 m)の易接着処理 を施して ヽな 、面を、 UV硬化型榭脂を介してでラミネートして導体層パターンを UV 硬化型榭脂中に埋没させた。さらに、紫外線ランプを用いて UZcm2の紫外線を照 射して UV硬化型榭脂を硬化させた後、 PETフィルム (A— 4100、東洋紡 (株)製、 7 5 m)を剥離した。凸部パターンを形成したステンレス板の凹部と側部に残存する 少量の銅は、実施例 clと同様にして溶解した。 [0209] On the surface where the conductor layer pattern of the substrate with a conductor layer obtained as described above is present, a UV curable resin hyaloid 7983AA3 (manufactured by Hitachi Chemical Co., Ltd.) is copied in the same manner as in Example cl. After coating, PET film (A-4100, manufactured by Toyobo Co., Ltd., 75 m) was subjected to easy adhesion treatment, and the surface was laminated with UV curable resin to form a conductive layer pattern. It was embedded in a curable type rosin. In addition, the UV curable resin was cured by irradiating UV light of UZcm 2 using an ultraviolet lamp, and then the PET film (A-4100, manufactured by Toyobo Co., Ltd., 75 m) was peeled off. A small amount of copper remaining on the concave portions and side portions of the stainless steel plate on which the convex portion pattern was formed was dissolved in the same manner as in Example cl.
実施例 18  Example 18
[0210] [実施例 c3] [0210] [Example c3]
SUS304箔 (竹内金属箔粉 (株)製、厚さ 100 m)と、 PETフィルム (A— 4100、 東洋紡績 (株)製)にバイロン UR- 1350 (接着剤、東洋紡績 (株)製)を乾燥塗布厚 が 20 mとなるように塗布して作製した接着フィルムをプレスで貼り合わせた。プレス 条件は、 130°Cのホットプレスで、圧力 4MPaとし、 30分間プレスした。なお、圧力を かけたまま 25°Cまで冷却した後、サンプルを取り出した。上記で得られた PETフィル ム付き SUS箔を、実施例 clと同様にして、 SUS箔に格子模様状のノターン (ライン 幅 15 m、ピッチ 300 m、凸部の高さ 15 m、テーパ角 70° 凸部の断面形状は 曲面(図 3— dと同様) )を形成した。 Byron UR-1350 (adhesive, manufactured by Toyobo Co., Ltd.) on SUS304 foil (Takeuchi Metal Foil Powder Co., Ltd., thickness 100 m) and PET film (A-4100, manufactured by Toyobo Co., Ltd.) The adhesive film produced by applying the dry coating thickness to 20 m was pasted with a press. press The conditions were a hot press at 130 ° C, a pressure of 4 MPa, and a press for 30 minutes. The sample was taken out after cooling to 25 ° C with pressure applied. Using the SUS foil with PET film obtained above in the same manner as in Example cl, a no-turn pattern (line width 15 m, pitch 300 m, convex height 15 m, taper angle 70) was applied to the SUS foil. ° The cross-sectional shape of the convex part was curved (similar to Fig. 3-d)).
SUS箔に形成された凸部の上面の表面粗さ Rz = 0. であったのに対し、凹 部の表面粗さ Rz = 5. であった。  The surface roughness Rz = 5. of the top surface of the convex portion formed on the SUS foil, whereas the surface roughness Rz = 5. of the concave portion.
次 、で、格子模様状のパターンが形成された PETフィルム付き SUS箔(上面を有 する凸部のノターン及びそれによつて描かれる幾何学図形状の凹部を有する導電 性基材)を陰極として電解銅めつき用の電解浴 (硫酸銅(5水塩) 180gZL、硫酸 10 OgZL、カパラシド HL (アトテックジャパン株式会社製、添加剤) 70mlZLの水溶液 、 30°C)中に浸し、含燐銅を陽極として同電解浴中に浸した。両極に電圧をかけて、 電流密度を 30AZdm2として、凸部の上面に析出した金属の厚さが 1 μ mになるまで めっきしたところ、めっき金属が両サイドにも析出したため、ライン幅は となつ た。 Next, electrolysis using a SUS foil with a PET film on which a lattice-like pattern is formed (a conductive base material having a notch of a convex part having an upper surface and a concave part of a geometrical figure drawn by the same) as a cathode. Immerse it in an electrolytic bath for copper plating (copper sulfate (pentahydrate) 180gZL, sulfuric acid 10 OgZL, Kaparaside HL (manufactured by Atotech Japan Co., Ltd.), 70mlZL aqueous solution, 30 ° C), and use phosphorous copper as an anode And immersed in the same electrolytic bath. When voltage was applied to both electrodes, the current density was set to 30 AZdm 2 and plating was performed until the thickness of the metal deposited on the top surface of the convex portion reached 1 μm. Natsu.
PETフィルム付き SUS箔の凸部の上面には連続膜として銅が析出したが、凹部及び 側部にも少量の粒子状の銅が析出した。  Copper was deposited as a continuous film on the upper surface of the convex part of the SUS foil with PET film, but a small amount of particulate copper was also deposited on the concave part and the side part.
[0211] 次いで、銅めつきを析出させた PETフィルム付き SUS箔を、アルカリ脱脂液デグリ ース A ( (株)オーデック)を 5倍希釈した水溶液に室温で 3分間浸漬した。次 、で、水 洗後、 10%硝酸水溶液に室温で 10秒間浸漬した。さらに、水洗後、黒化処理液コパ ール( (株)オーデック)の 4倍希釈水溶液に 1分間浸漬し、 PET付き SUS箔に析出し た銅めつきを黒ィ匕処理した。 [0211] Next, the SUS foil with PET film on which copper plating was deposited was immersed in an aqueous solution in which alkaline degreasing solution Degrease A (Odec Co., Ltd.) was diluted 5 times at room temperature for 3 minutes. Next, after washing with water, it was immersed in a 10% nitric acid aqueous solution at room temperature for 10 seconds. Furthermore, after washing with water, it was immersed in a 4-fold diluted aqueous solution of blackening solution copal (Odec Co., Ltd.) for 1 minute, and the copper plating deposited on the SUS foil with PET was blackened.
[0212] 厚さ 100 μ mの PETフィルム (A— 4100、東洋紡績株式会社製)の易接着面に榭 脂組成物 1を乾燥塗布厚が 20 mとなるように塗布して、粘着フィルムを作製した。 [0212] Resin composition 1 was applied to the easy-adhesion surface of a 100 μm thick PET film (A-4100, manufactured by Toyobo Co., Ltd.) so that the dry coating thickness was 20 m. Produced.
(榭脂組成物 cl)  (Coffin composition cl)
AS—406 (—方社油脂工業株式会社製、アクリルポリマ) 100重量部  100 parts by weight of AS-406 (Acrylic polymer, manufactured by Yukisha Co., Ltd.)
テトラド X(三菱ガス化学株式会社製、硬化剤) 2重量部 を含む組成物。 [0213] この粘着フィルムと黒ィ匕処理された銅メツキが積層された上記 PETフィルム付き SU S箔とを前者の粘着剤面と後者の黒ィ匕処理された銅メツキが施された面があわさるよ うに、実施例 clと同様にして貼り合わせた。この時、 SUS箔の凸部上面に形成され た黒ィ匕処理された銅層は、粘着フィルムの粘着剤層に一部分だけ埋没した。次いで 、ステンレス箔に貼り合わせた粘着フィルムを剥離すると、上記 PETフィルム付き SU S箔の凸部の上面には連続膜として銅が析出したが、凹部及び側部にも少量の粒子 状の銅が析出した。このようにして、ライン幅 17 m、ラインピッチ 300 m、厚さ 1 μ mで、黒化処理の施された金属パターンが粘着フィルム上に選択的に転写された。 凸部パターンを形成した PETフィルム付き SUS箔の凹部と側部に残存する銅の溶 解除去は、実施例 clと同様に行った。 A composition comprising 2 parts by weight of Tetrad X (manufactured by Mitsubishi Gas Chemical Co., Ltd., curing agent). [0213] This adhesive film and the above-mentioned SUS foil with PET film on which a blackened copper plating is laminated, the former adhesive surface and the latter blackened copper plating surface are applied. As expected, they were bonded together in the same manner as in Example cl. At this time, the black copper-treated copper layer formed on the upper surface of the convex portion of the SUS foil was partially buried in the adhesive layer of the adhesive film. Next, when the adhesive film bonded to the stainless steel foil was peeled off, copper was deposited as a continuous film on the upper surface of the convex portion of the above-mentioned PET foil with PET film, but a small amount of particulate copper was also formed on the concave portion and the side portion. Precipitated. In this manner, a blackened metal pattern with a line width of 17 m, a line pitch of 300 m, and a thickness of 1 μm was selectively transferred onto the adhesive film. The dissolution removal of the copper remaining on the concave portions and side portions of the SUS foil with a PET film on which the convex pattern was formed was performed in the same manner as in Example cl.
[0214] 上記で得られた粘着フィルムの粘着剤面 (銅めつきを転写した面)を厚さ 2mmのガ ラスに当ててラミネートして貼り合わせた。ラミネート条件は、温度 25°C、圧力 0. 5M Pa、ラインスピード 0. 5mZminとした。ロールラミネートによって、厚さ 1 mの導体 層パターンは粘着剤に埋設され、透明性の高い電磁波遮蔽体が得られた。  [0214] The pressure-sensitive adhesive surface of the pressure-sensitive adhesive film obtained above (the surface to which the copper plating was transferred) was applied to a glass sheet having a thickness of 2 mm and laminated and bonded. Lamination conditions were a temperature of 25 ° C, a pressure of 0.5 MPa, and a line speed of 0.5 mZmin. By roll laminating, the 1 m thick conductor layer pattern was embedded in the adhesive, and a highly transparent electromagnetic shielding body was obtained.
実施例 19  Example 19
[0215] [実施例 c4] [0215] [Example c4]
SUS箔 304の代わりに電解 Ni箔 (福田金属 (株)製、厚さ 35 μ m)を用いたこと以 外は実施例 c3と同様に行って、 Ni箔に格子模様状のパターン (ライン幅 15 /ζ πι、ピ ツチ 300 m、凸部の高さ 20 m、テーパ角 60° 凸部の断面形状は曲面(図 3— d と同様))を形成した。  A grid pattern (line width) was applied to the Ni foil in the same manner as in Example c3 except that electrolytic Ni foil (Fukuda Metal Co., Ltd., 35 μm thick) was used instead of SUS foil 304. 15 / ζ πι, pitch 300 m, height of convex part 20 m, taper angle 60 ° The cross-sectional shape of the convex part was a curved surface (similar to Fig. 3-d).
Ni箔に形成された凸部の上面の表面粗さ Rz= l. 4 mであったのに対し、凹部の 表面粗さ Rz = 3. 9 mであった。まず、転写時における Ni箔と電気銅めつきの剥離 性を向上するため、 Niの陽極酸ィ匕によって Ni表面に酸ィ匕皮膜を形成した。陽極酸 化は、 10%水酸ィ匕ナトリウム水溶液中で、 Ni箔を陽極に、 SUS板を陰極として、両 極に IVの電圧をかけて 30秒間処理した。  The surface roughness Rz of the top surface of the convex portion formed on the Ni foil was Rz = l.4 m, whereas the surface roughness of the concave portion was Rz = 3.9 m. First, in order to improve the releasability between the Ni foil and the copper electroplating during transfer, an acid film was formed on the Ni surface with Ni anodic acid. The anodic oxidation was performed in a 10% aqueous solution of sodium hydroxide and sodium hydroxide for 30 seconds using a Ni foil as the anode and a SUS plate as the cathode, with a voltage of IV applied to both electrodes.
次 、で、格子模様状のパターンが形成された PETフィルム付き Ni箔(上面を有する 凸部のパターン及びそれによつて描かれる幾何学図形状の凹部を有する導電性基 材)を陰極として電解銅めつき用の電解浴 (硫酸銅(5水塩) 180gZL、硫酸 lOOgZ L、カパラシド HL (アトテックジャパン株式会社製、添加剤) 70mlZLの水溶液、 30 °C)中に浸し、含燐銅を陽極として同電解浴中に浸した。両極に電圧をかけて、電流 密度を 30AZdm2として、凸部の上面に析出した金属の厚さが 10 mになるまでめ つきしたところ、めっき金属が両サイドにも析出したため、ライン幅は 35 /z mとなった。 Next, electrolytic copper using a Ni foil with a PET film (a pattern of convex portions having an upper surface and a conductive substrate having a concave portion having a geometrical shape drawn thereby) as a cathode. Electrolysis bath for plating (copper sulfate (pentahydrate) 180gZL, sulfuric acid lOOgZ L, Kaparaside HL (manufactured by Atotech Japan Co., Ltd., additive) immersed in an aqueous solution of 70 ml ZL, 30 ° C), and immersed in the same electrolytic bath with phosphorous copper as an anode. When voltage was applied to both electrodes and the current density was 30AZdm 2 and the metal deposited on the top surface of the convex part was 10 m thick, the plated metal also deposited on both sides, so the line width was 35 / zm
PETフィルム付き Ni箔の凸部の上面には連続膜として銅が析出したが、凹部及び 側部にも少量の粒子状の銅が析出した。  Copper was deposited as a continuous film on the upper surface of the convex part of the Ni foil with PET film, but a small amount of particulate copper was also deposited on the concave part and the side part.
[0216] 厚さ 100 μ mの PETフィルム(マイラー D、帝人デュポンフィルム株式会社製)の表 面に下記赤外線吸収剤を含有する榭脂組成物 2を乾燥後の厚みが 20 μ mになるよ うに塗布して接着性フィルムを作製した。 [0216] The thickness of the PET film (Mylar D, manufactured by Teijin DuPont Films Co., Ltd.) with a thickness of 100 μm on the surface of the resin composition 2 containing the following infrared absorber is 20 μm after drying. An adhesive film was prepared by coating the film.
(榭脂組成物 c2)  (Coffin composition c2)
BR— 80 (三菱レーヨン株式会社製、 PMMA) 100重量部 BR-80 (Mitsubishi Rayon Co., Ltd., PMMA) 100 parts by weight
IRG-022 (日本化薬株式会社製、ジィモ -ゥム塩系赤外線吸収剤) 3. 3重量部 トノレェン 60重量部 IRG-022 (Nippon Kayaku Co., Ltd., dimo-um salt infrared absorber) 3.3 parts by weight Tolene 60 parts by weight
メチルェチルケトン(MEK) 300重量部  Methyl ethyl ketone (MEK) 300 parts by weight
[0217] 次いで、離型 PET(S— 32、帝人デュポン (株)製)の離型処理面に榭脂組成物 c3 を、乾燥塗布厚が 8 mとなるように塗布した。近赤外線吸収剤を含有する接着性フ イルムの榭脂組成物 c2を塗布した面に、榭脂組成物 3を塗布したフィルムを貼り合わ せ、近赤外線遮蔽性を有する粘着フィルムを作製した。  [0217] Next, the resin composition c3 was applied to the release-treated surface of release PET (S-32, manufactured by Teijin DuPont Co., Ltd.) so that the dry application thickness was 8 m. An adhesive film having a near infrared shielding property was prepared by laminating a film coated with the resin composition 3 on the surface coated with the resin composition c2 of an adhesive film containing a near infrared absorber.
(榭脂組成物 c3)  (Coffin composition c3)
HTR— 860— P3 (長瀬ケムテック株式会社製、アクリルポリマ) 100重量部 コロネート L (日本ポリウレタン株式会社製、イソシァネートイ匕合物) 3重量部 トルエン 100重量部  HTR— 860— P3 (Nagase Chemtech Co., Ltd., acrylic polymer) 100 parts by weight Coronate L (Nihon Polyurethane Co., Ltd., Isocyanate Compound) 3 parts by weight Toluene 100 parts by weight
酢酸ェチル 300重量咅  Ethyl acetate 300wt%
[0218] 近赤外線遮蔽性を有する粘着フィルムの粘着剤面と、上記 PETフィルム付き Ni箔 の銅メツキを施した面を、実施例 clと同様にして貼り合わせた。この時、 Ni箔の凸部 上面の銅層は、粘着フィルムの粘着剤層に一部分だけ埋没した。次いで、 Ni箔に貼 り合わせた近赤外線遮蔽性を有する粘着フィルムを剥離すると、上記 PETフィルム 付き Ni箔の凸部の上面に析出した銅は、連続膜であるため、粘着フィルムに転写す るのに対し、凹部及び側部に析出した銅は、ごく少量の非連続膜であるため、凸部の 上面に析出した銅に追随することなぐ Ni箔に残存し、粘着フィルムに転写されること はなかった。 [0218] The pressure-sensitive adhesive surface of the pressure-sensitive adhesive film having near-infrared shielding property and the surface of the above-mentioned Ni foil with PET film subjected to copper plating were bonded together in the same manner as in Example cl. At this time, the copper layer on the upper surface of the convex portion of the Ni foil was partially buried in the adhesive layer of the adhesive film. Next, when the adhesive film having near-infrared shielding properties bonded to the Ni foil is peeled off, the copper deposited on the upper surface of the convex portion of the Ni foil with PET film is a continuous film, so it is transferred to the adhesive film. On the other hand, the copper deposited on the concave and side portions is a very small amount of discontinuous film, so it remains on the Ni foil without following the copper deposited on the upper surface of the convex portion and transferred to the adhesive film. It never happened.
このようにして、ライン幅 35 μ m、ラインピッチ 300 μ m、厚さ 10 μ m金属パターン が粘着フィルム上に選択的に転写された。凸部パターンを形成した PETフィルム付き Ni箔の凹部と側部に残存する銅の溶解除去は、実施例 clと同様に行った。  In this way, a metal pattern having a line width of 35 μm, a line pitch of 300 μm, and a thickness of 10 μm was selectively transferred onto the adhesive film. The removal of the copper remaining on the concave portions and the side portions of the Ni foil with PET film on which the convex pattern was formed was performed in the same manner as in Example cl.
[0219] 次いで、得られた導体層パターン付き粘着フィルムを実施例 clと同様にして、黒ィ匕 処理した。さらに、黒化処理後、上記の導体層パターン付き基材の導体層パターン が存在する面に、紫外線硬化型榭脂 (ヒタロイド 7851、 日立化成工業株式会社製) をコーティングし、さらに、ポリカーボネートフィルム(マクロホール DE、バイエル株式 会社製、 75 m)をラミネートした後、紫外線ランプを用いて UZcm2の紫外線を照 射し、導体層パターンを榭脂で被覆した。次いで、上記で得られたフィルムの導体層 パターンが形成されている面とは反対の面に粘着層を形成し、 3mm厚の PMMA板 (コモグラス)に貼りあわせて、電磁波遮蔽部材を得た。 [0219] Next, the obtained adhesive film with a conductor layer pattern was blackened in the same manner as in Example cl. Further, after the blackening treatment, the surface on which the conductor layer pattern of the substrate with the conductor layer pattern is present is coated with an ultraviolet curable resin (Hitaroid 7851, manufactured by Hitachi Chemical Co., Ltd.), and a polycarbonate film ( After laminating Macro Hall DE, Bayer Co., Ltd. (75 m), UZcm 2 ultraviolet rays were irradiated using an ultraviolet lamp, and the conductor layer pattern was coated with resin. Next, an adhesive layer was formed on the surface of the film obtained above opposite to the surface on which the conductor layer pattern was formed, and was bonded to a 3 mm thick PMMA plate (Comoglass) to obtain an electromagnetic wave shielding member.
実施例 20  Example 20
[0220] [実施例 c5] [0220] [Example c5]
実施例 c3と同様にして、銅めつき及び黒ィ匕処理を施した PETフィルム付き SUS箔( ライン幅 15 μ m、ピッチ 300 μ m、凸部の高さ 20 μ m、テーパ角 60° 凸部の断面形 状は曲面(図 3— dと同様))を形成した。金属の厚さが l /z mになるまでめつきしたとこ ろ、めっき金属が両サイドにも析出したため、ライン幅は 17 mとなった。さらに、厚さ 100 /z mのポリエーテルサルフォンフィルム(スミライト FS— 1300、住友ベークライト 株式会社製)の表面に下記の榭脂組成物 c4を乾燥後の厚みが 13 mとなるように 塗布して接着フィルムを得た。乾燥条件は、 90°C5分とした。  SUS foil with PET film treated with copper plating and black wrinkle treatment in the same manner as Example c3 (line width 15 μm, pitch 300 μm, convex height 20 μm, taper angle 60 ° convex The cross-sectional shape of the part formed a curved surface (similar to Fig. 3-d). When the metal thickness reached l / z m, the plated metal deposited on both sides, resulting in a line width of 17 m. Furthermore, the following resin composition c4 was applied to the surface of a polyether sulfone film (Sumilite FS-1300, manufactured by Sumitomo Bakelite Co., Ltd.) having a thickness of 100 / zm so that the thickness after drying was 13 m. An adhesive film was obtained. Drying conditions were 90 ° C for 5 minutes.
(榭脂組成物 c4)  (Coffin composition c4)
YD— 8125 (東都化成株式会社製、ビスフエノール A型フエノキシ榭脂) 100重量 部、及び IPDI (日立化成工業株式会社製、マスクイソホロンジイソシァネート) 10重 量部力 メチルェチルケトン 330重量部及びシクロへキサノン 15重量部の混合溶媒 に溶解させられた榭脂溶液。 [0221] 得られた接着フィルムと実施例 c3で得た凸部上に黒ィ匕処理した金属パターンを有 する PETフィルム付きステンレス箔を、ラミネータで貼り合わせた。ラミネート条件は、 ロール温度 120°C、圧力 3MPa、ラインスピード lmZminとした。空冷後剥離すると 、接着剤表面に、ステンレス板の凸部の上面に存在する黒ィ匕処理された金属が選択 的に転写され、ライン幅 17 m、ラインピッチ 300 m、導体厚 1 μ mの導体層パタ ーンが接着フィルム上に形成された。 YD-8125 (Toto Kasei Co., Ltd., bisphenol A type phenoxy resin) 100 parts by weight, and IPDI (Hitachi Chemical Industry Co., Ltd., masked isophorone diisocyanate) 10 parts by weight Methyl ethyl ketone 330 weights Part and cyclohexanone in a mixed solvent of 15 parts by weight of a resin solution. [0221] The obtained adhesive film and a stainless steel foil with a PET film having a blackened metal pattern on the convex part obtained in Example c3 were bonded with a laminator. Lamination conditions were a roll temperature of 120 ° C, a pressure of 3 MPa, and a line speed of lmZmin. When peeled after air cooling, the blackened metal present on the upper surface of the convex portion of the stainless steel plate is selectively transferred to the adhesive surface, and the line width is 17 m, line pitch is 300 m, and conductor thickness is 1 μm. A conductor layer pattern was formed on the adhesive film.
転写後のステンレス板は実施例 clと同様にされ、その表面に少量残存する銅が除 去された。  The transferred stainless steel plate was the same as in Example cl, and a small amount of copper remaining on the surface was removed.
[0222] 上記得られた導体層パターンを有する接着フィルムを 150°Cで 60分間処理して接 着剤を硬化させ、導体層パターン付き基材を得た。上記で得られた導体層パターン 付き基材の導体層パターンが存在する面に、実施例 clと同様にして UV硬化型榭脂 ヒタロイド 7983AA3 (日立化成工業 (株)製)をコーティングした後、 PETフィルム (A —4100、東洋紡 (株)製、 75 /z m)の易接着処理を施していない面を、 UV硬化型榭 脂とでラミネートして導体層パターンを UV硬化型榭脂中に埋没させた。さらに、紫外 線ランプを用いて UZcm2の紫外線を照射して UV硬化型榭脂を硬化させた後、 PE Tフィルム (A— 4100、東洋紡 (株)製、 75 /z m)を剥離した。凸部パターンを形成し たステンレス板の凹部と側部に残存する少量の銅の溶解は、実施例 clと同様に行つ た。これに、離型 PET(S— 32、帝人デュポン株式会社製)の離型処理面に、榭脂組 成物 3を乾燥塗布厚が 20 mとなるように塗布したフィルムを、上記導体層パターン 付き基材の導体層パターンが形成されている面とは反対の面に貼り合わせた。離型 PETを剥離してから、 3mm厚の PMMA板(コモグラス)に貼りあわせて、電磁波遮 蔽部材を得た。 [0222] The adhesive film having the conductor layer pattern obtained above was treated at 150 ° C for 60 minutes to cure the adhesive, to obtain a substrate with a conductor layer pattern. After coating the surface of the substrate with the conductor layer pattern obtained above on which the conductor layer pattern is present, in the same manner as in Example cl, UV-cured mortar hyaloid 7983AA3 (manufactured by Hitachi Chemical Co., Ltd.) The surface of the film (A-4100, manufactured by Toyobo Co., Ltd., 75 / zm) that has not been subjected to easy adhesion treatment is laminated with UV curable resin to embed the conductor layer pattern in UV curable resin. It was. Furthermore, after UV-curable resin was cured by irradiating UZcm 2 ultraviolet rays using an ultraviolet lamp, the PET film (A-4100, manufactured by Toyobo Co., Ltd., 75 / zm) was peeled off. The dissolution of a small amount of copper remaining on the concave portions and side portions of the stainless steel plate on which the convex portion pattern was formed was performed in the same manner as in Example cl. To this, a film in which the resin composition 3 is applied to the release-treated surface of release PET (S-32, manufactured by Teijin DuPont Co., Ltd.) so that the dry application thickness is 20 m is applied to the conductive layer pattern The substrate was attached to the surface opposite to the surface on which the conductor layer pattern was formed. After releasing the release PET, it was bonded to a 3mm thick PMMA plate (Comoglass) to obtain an electromagnetic wave shielding member.
実施例 21  Example 21
[0223] [実施例 c6]  [0223] [Example c6]
レジストフイルム(フォテック LF— 1515、日立化成工業株式会社製)を 10cm口の 銅板 (厚さ 2mm)に貼り合わせた。貼り合わせの条件は、ロール温度 105°C、圧力 0 . 5MPa、ラインスピード lmZminで行った。次いで、光透過部のライン幅が 30 m 、ラインピッチが 200 μ m、バイアス角度が 30° で、格子状に形成したネガフィルムを 、レジストフイルムを貼り合わせた銅板の上に静置した。紫外線照射装置を用いて、 6 OOmmHg以下の真空下において、ネガフィルムの上から、紫外線を 120mjZcm2 照射した。さらに 1%炭酸ナトリウム水溶液で現像することで、銅板の上にライン幅 30 μ m、ラインピッチ 200 μ m、バイアス角度 30° のレジストフイルムを形成した。さらに 、 40°Cに加温した塩ィ匕第二鉄水溶液を用いて、銅板をエッチングした。エッチングは 、銅板のライン幅が 25 mになるまで行った。次いで、 5%水酸ィ匕ナトリウム溶液を用 いて、銅板の上に形成されたレジストフイルムを剥離して、格子模様状のパターン (ラ イン幅 25 /ζ πι、ラインピッチ 200 /ζ πι、凸部の高さ 11 /ζ πι、凸部の断面形状は曲面( 図 3— dと同様))を形成した。凸部の上面の表面粗さ Rz = 0. 5 /z mであったのに対 し、凹部の表面粗さ Rz = 3. であった。 A resist film (Photec LF-1515, manufactured by Hitachi Chemical Co., Ltd.) was bonded to a 10 cm-thick copper plate (thickness 2 mm). The bonding conditions were a roll temperature of 105 ° C., a pressure of 0.5 MPa, and a line speed of lmZmin. Next, a negative film formed in a lattice shape with a line width of 30 m for the light transmitting portion, a line pitch of 200 μm, and a bias angle of 30 ° Then, it was allowed to stand on a copper plate to which a resist film was bonded. Using an ultraviolet irradiation device, ultraviolet rays were irradiated from the top of the negative film at 120 mjZcm 2 under a vacuum of 6 OOmmHg or less. Further, by developing with a 1% aqueous sodium carbonate solution, a resist film having a line width of 30 μm, a line pitch of 200 μm, and a bias angle of 30 ° was formed on the copper plate. Further, the copper plate was etched using a salty ferric aqueous solution heated to 40 ° C. Etching was performed until the line width of the copper plate reached 25 m. Next, using a 5% sodium hydroxide solution, the resist film formed on the copper plate is peeled off to form a lattice pattern (line width 25 / ζ πι, line pitch 200 / ζ πι, convex The height of the part was 11 / ζ πι, and the cross-sectional shape of the convex part was a curved surface (similar to Fig. 3-d). The surface roughness of the upper surface of the convex portion was Rz = 0.5 / zm, whereas the surface roughness of the concave portion was Rz = 3.
次いで、格子模様状のパターンが形成された銅板の表面に 0. 3 mの厚さとなるよ うに、クロム層をスパッタリングで形成させた。クロム層を設けることにより、その上に施 した銅めつきが剥離しやすくなる。このクロムをスパッタリングした銅板を陰極として電 解銅めつきを行った。電解銅めつき浴 (硫酸銅(5水塩) 100g/L,硫酸 180gZL、ト ップルチナ H— 380 (奥野製薬工業株式会社製、添加剤) 2. 5mlZLの水溶液、 25 °C)中に、上記のクロムをスパッタリングされた銅板を浸し、含燐銅を陽極として同電 解銅めつき浴中に浸した。両極に電圧をかけて、電流密度を 25AZdm2として、クロ ムをスパッタリングした銅板の凸部の上面に析出した銅の厚さが 3 μ mになるまでめ つきした。クロムをスパッタリングした銅板の凸部の上面には連続膜として銅が析出し たが、凹部及び側部には粒径 1 m程度の粒状の銅が非連続的に析出した。さらに 、銅がめっきされたクロムそうが形成されている銅板を黒ィ匕処理液 1に浸漬し、 80°C1 分間処理して、銅めつきを黒化処理した。 Next, a chromium layer was formed by sputtering on the surface of the copper plate on which the lattice pattern was formed so as to have a thickness of 0.3 m. By providing a chromium layer, the copper plating applied thereon is easily peeled off. Electrolytic copper plating was performed using the copper plate sputtered with chromium as a cathode. In an electrolytic copper plating bath (copper sulfate (pentahydrate) 100g / L, sulfuric acid 180gZL, Topchina H-380 (Okuno Pharmaceutical Co., Ltd., additive) 2. 5ml ZL aqueous solution, 25 ° C) A copper plate sputtered with chromium was immersed in the same electrolytic copper plating bath with phosphorous copper as an anode. Voltage was applied to both electrodes, and the current density was 25 AZdm 2 until the thickness of the copper deposited on the upper surface of the convex portion of the copper plate sputtered with chromium was 3 μm. Copper was deposited as a continuous film on the upper surface of the convex portion of the copper plate sputtered with chromium, but granular copper having a particle size of about 1 m was discontinuously deposited on the concave portion and side portions. Further, the copper plate on which copper plating was formed was immersed in a black bath treatment solution 1 and treated at 80 ° C. for 1 minute to blacken the copper plating.
粘着層の厚みを 5 μ mとしたこと以外は実施例 clと同様の粘着フィルムに黒ィ匕処理 された銅を転写し、ライン幅 31 μ m、ラインピッチ 200 μ m、導体厚 3 μ mの導体層パ ターン付き基材を作製した。銅の厚さが 3 mになるまでめつきしたところ、めっき金 属が両サイドにも析出したため、ライン幅は 31 mとなった。さらに、転写後のクロム をスパッタリングした銅板は実施例 c 1と同様にされ、その表面に残存する銅が除去さ [0224] 上記得られた導体層パターン付き基材と厚さ 2mmのガラス板を、その基材の導体 層パターンが形成されて 、る面がそのガラス板に接触するようにしてラミネート(30°C 、 2. OMPa)し貼り合わせた。導体層パターンが粘着剤に埋設され、透明性の高い 電磁波遮蔽部材が得られた。 Except that the thickness of the adhesive layer is 5 μm, transfer the blackened copper to the same adhesive film as in Example cl, line width 31 μm, line pitch 200 μm, conductor thickness 3 μm A substrate with a conductor layer pattern was prepared. When the copper thickness reached 3 m, the plated metal deposited on both sides, resulting in a line width of 31 m. Furthermore, the copper plate on which the chromium after the transfer was sputtered was the same as in Example c1, and the copper remaining on the surface was removed. [0224] The above-obtained substrate with a conductor layer pattern and a glass plate having a thickness of 2 mm were laminated so that the surface of the substrate with the conductor layer pattern formed thereon was in contact with the glass plate (30 ° C, 2. OMPa) and pasted together. The conductor layer pattern was embedded in the adhesive, and a highly transparent electromagnetic wave shielding member was obtained.
実施例 22  Example 22
[0225] [実施例 c7]  [0225] [Example c7]
ロール toロールでの連続生産を目的として、直径 150mmのステンレスロールに、 実施例 clと同様の方法で格子模様状のパターン (ライン幅 20 m、ピッチ 300 m、 凸部の高さ 15 m、テーパ角 60° の凸部の断面形状は曲面(図 3— dと同様))を形 成した。凸部の上面の表面粗さ Rz = 0. 3 /z mであったのに対し、凹部の表面粗さ Rz =4. 2 μ mであった。次いで、加工したステンレスロールを陰極として電解銅めつき 用の電解浴 (硫酸銅(5水塩) 80gZL、硫酸 180gZL、キューブライト VF1 (荏原ュ ージライト株式会社製、添加剤) 20mlZLの水溶液、 25°C)中に浸し、含燐銅を陽極 として同電解浴中に浸した。電流密度を 40AZdm2として、両極に電圧をかけて凸 部の上面に析出する金属の厚さが 5 mになるまでめつきしたところ、めっき金属が 両サイドにも析出したため、ライン幅は 30 mとなった。ステンレスロールの凸部の上 面は連続膜として銅が析出したが、凹部及び側部には粒径 3 μ m程度の粒状の銅が 非連続的に析出した。 For the continuous production of roll-to-roll, a stainless steel roll with a diameter of 150 mm was applied to a grid pattern (line width 20 m, pitch 300 m, convex height 15 m, taper in the same manner as in Example cl. The cross-sectional shape of the convex part with a 60 ° angle formed a curved surface (similar to Fig. 3-d). The surface roughness Rz of the upper surface of the convex portion was Rz = 0.3 / zm, whereas the surface roughness of the concave portion was Rz = 4.2 μm. Next, electrolytic bath for electrolytic copper plating using the processed stainless steel roll as the cathode (copper sulfate (pentahydrate) 80gZL, sulfuric acid 180gZL, Cubelite VF1 (supplied by Ebara New Light Co., Ltd.), 20ml ZL aqueous solution, 25 ° C) and immersed in the same electrolytic bath with phosphorous copper as an anode. When the current density was 40 AZdm 2 and voltage was applied to both poles until the thickness of the metal deposited on the upper surface of the convex portion reached 5 m, the plated metal deposited on both sides, so the line width was 30 m. It became. Copper was deposited as a continuous film on the upper surface of the convex portion of the stainless steel roll, but granular copper having a particle size of about 3 μm was deposited discontinuously on the concave portion and side portions.
[0226] 実施例 clで用いた粘着フィルムをロール状で作製し、上記ステンレスロールの凸部 の上面に析出した銅と粘着フィルムの粘着剤面を実施例 clと同様のラミネート条件 で貼り合わせた。この時、ステンレスロールの凸部上面に形成された銅層は、粘着フ イルムの粘着剤層に一部分だけ埋没した。次いで、ステンレスロールに貼り合わせた 粘着フィルムを剥離すると、上記ステンレスロールの凸部の上面に析出した銅は、連 続膜であるため、粘着フィルムに転写するのに対し、凹部及び側部に析出した銅は、 微量で非連続膜であるため、凸部の上面に析出した銅に追随することなぐ SUS板 に残存した。このようにして、ライン幅 30 μ m、ラインピッチ 300 μ m、導体厚 5 μ mの 導体層パターンが粘着フィルム上に選択的に転写された。さらに、導体層パターンを 転写した粘着フィルム (導体層パターン付き基材)を離型 PET (S— 32、帝人デュポ ン株式会社製)をラミネートしながら、ロール状に巻き取った。さらに、転写後、同一ラ インで実施例 c4と同様に、ステンレスロールの凹部と側部に少量残存する銅をエッチ ング除去してから、再びステンレスロールに銅めつきを施した。このようにして、銅めつ き、粘着剤への転写、残存銅のエッチングの 3つの工程をロール 'トウ'ロールで連続 的に行った。 [0226] The pressure-sensitive adhesive film used in Example cl was produced in a roll shape, and the adhesive surface of copper and the pressure-sensitive adhesive film deposited on the upper surface of the convex portion of the stainless steel roll was bonded together under the same lamination conditions as in Example cl. . At this time, the copper layer formed on the upper surface of the convex portion of the stainless steel roll was partially buried in the adhesive layer of the adhesive film. Next, when the adhesive film bonded to the stainless steel roll is peeled off, the copper deposited on the upper surface of the convex part of the stainless steel roll is a continuous film, so it is transferred to the adhesive film, but is deposited on the concave part and the side part. Since the deposited copper was a discontinuous film in a small amount, it remained on the SUS plate without following the copper deposited on the upper surface of the convex portion. In this way, a conductor layer pattern having a line width of 30 μm, a line pitch of 300 μm, and a conductor thickness of 5 μm was selectively transferred onto the adhesive film. Furthermore, the adhesive film (substrate with the conductor layer pattern) to which the conductor layer pattern was transferred was released from the release PET (S-32, Teijin DuPont). The product was wound up in a roll shape while laminating (made by Co., Ltd.). Further, after the transfer, in the same line as in Example c4, a small amount of copper remaining on the concave portion and the side portion of the stainless steel roll was removed by etching, and then the stainless steel roll was subjected to copper plating again. In this way, the three steps of copper plating, transfer to adhesive, and etching of residual copper were continuously performed with a roll 'toe' roll.
[0227] 上記で得られた金属パターンが転写された粘着フィルムを実施例 clと同様に黒ィ匕 処理して、本発明の導体層パターン付き基材を製造した。得られた導体層パターン 付き基材の導体層パターンが形成されている面に、 UV硬化型榭脂(ァロニックス UV - 3701、東亞合成株式会社製)を 15 m厚でコーティングし、 PETフィルム (マイラ 一 D、帝人デュポンフィルム株式会社製、 75 m)でラミネートした後、紫外線ランプ を用いて UZcm2の紫外線を照射した。 [0227] The adhesive film to which the metal pattern obtained above was transferred was blackened in the same manner as in Example cl to produce a substrate with a conductor layer pattern of the present invention. The surface of the substrate with the conductor layer pattern obtained, on which the conductor layer pattern is formed, is coated with a UV curable resin (Alonics UV-3701, manufactured by Toagosei Co., Ltd.) with a thickness of 15 m, and a PET film (Mylar 1D, made by Teijin DuPont Films, Ltd., 75 m), and then irradiated with UZcm 2 ultraviolet rays using an ultraviolet lamp.
実施例 23  Example 23
[0228] [実施例 c8]  [0228] [Example c8]
ロール状の SUS304箔(厚さ 100 μ m)と、 PETフィルム(A— 4100、東洋紡製)に ノ ィロン UR— 1350 (接着剤、東洋紡 (株)製)を乾燥塗布厚が 20 μ mとなるように塗 布して作製したロール状の接着フィルムをロールラミネータで貼りあわせて、ロール状 の PETフィルム付き SUS箔を作製した。ラミネート条件は、ロール温度 120°C、プレヒ ート 120°C30秒、、圧力 3MPa、ラインスピード 0. 5m/minとした。次いで、ローノレ to ロールで行うこと以外は、実施例 c7と同様にして、上記 PETフィルム付き SUS箔をェ ツチングし、 SUS箔に格子模様状のパターン (ライン幅 15 m、ピッチ 300 m、凸 部の高さ 20 m、テーパ角 60° 、凸部の断面形状は曲面(図 3— dと同様))を長尺 で形成した。 SUS箔に形成された凸部の上面の表面粗さ Rz = 0. 4 mであったの に対し、凹部の表面粗さ Rz = 5. であった。さら〖こ、上記で得られたロール'トウ •ロールの SUS箔を用いて、図 26に示すような装置に通紙した。  Rolled SUS304 foil (thickness 100 μm) and PET film (A-4100, manufactured by Toyobo Co., Ltd.), Neuron UR-1350 (adhesive, manufactured by Toyobo Co., Ltd.) is applied to a dry coating thickness of 20 μm. The roll-shaped adhesive film produced by coating in this manner was bonded with a roll laminator to produce a rolled SUS foil with a PET film. Lamination conditions were a roll temperature of 120 ° C, a preheat of 120 ° C for 30 seconds, a pressure of 3 MPa, and a line speed of 0.5 m / min. Next, the SUS foil with PET film is etched in the same manner as in Example c7 except that the roll-to-roll process is performed, and a lattice pattern (line width 15 m, pitch 300 m, protrusions) is formed on the SUS foil. The length of 20m, taper angle 60 °, and the cross-sectional shape of the convex part was a long curved surface (similar to Fig. 3-d). The surface roughness Rz of the top surface of the convex portion formed on the SUS foil was Rz = 0.4 m, whereas the surface roughness Rz of the concave portion was 5. Furthermore, using the roll tow roll SUS foil obtained above, paper was passed through an apparatus as shown in FIG.
つなぎ目は、マイラーテープで貼り合わせて、フープ状導電性基材とした。  The joints were bonded with Mylar tape to form a hoop-like conductive substrate.
[0229] まず初めに、上記で得られた PETフィルム付き SUS箔 (フープ状導電性基材)にェ ツチング槽(図 26の 129)を通過させ、適当に洗浄した後、そのフープ状導電性基材 を陰極として、電解銅めつき用の電解浴((硫酸銅(5水塩) 180gZL、硫酸 lOOgZL 、カパラシド HL (アトテックジャパン株式会社製、添加剤) 70mlZLの水溶液、 30°C) (図 26の 130)で、含燐銅を陽極として電流密度を 30AZdm2として、フープ状導電 性基材の凸部の上面に析出した金属の厚さが 1 mになるまでめつきしたところ、め つき金属が両サイドにも析出したため、ライン幅は 17 mとなった。 PETフィルム付き SUS箔の凸部の上面は連続膜として銅が析出したが、凹部及び側部には粒径 0. 3 m程度の粒状の銅がわずかに析出した。水洗後、実施例 clと同様の黒ィ匕処理を 黒ィ匕処理槽(図 26の 150)で行い、防鲭処理槽(図 26の 151)を通過させた後、連続 的に転写した。転写後、 SUS箔の凹部、側部に残存する銅を、エッチング槽(図 26 の 129) (lOOgZl過硫酸アンモ-ゥム水溶液、液温 40°C)で除去した。 [0229] First, the etching tank (129 in Fig. 26) is passed through the SUS foil (hoop-like conductive base material) with PET film obtained above, washed appropriately, and then the hoop-like conductivity is obtained. Electrolytic bath for electrolytic copper plating with the base material as the cathode ((copper sulfate (pentahydrate) 180gZL, sulfuric acid lOOgZL , Cupracid HL (Atotech Japan Co., additives) aqueous 70MlZL, at 30 ° C) (130 in FIG. 26), the current density phosphorous-containing copper as the anode as 30AZdm 2, convex hoop conductive substrate When the thickness of the metal deposited on the upper surface of the part was 1 m, the metal width deposited on both sides resulted in a line width of 17 m. Copper was deposited as a continuous film on the upper surface of the convex part of the SUS foil with PET film, but a slight amount of granular copper having a particle size of about 0.3 m was deposited on the concave part and the side part. After washing with water, the black smoke treatment similar to that of Example cl was performed in the black smoke treatment tank (150 in FIG. 26), passed through the fouling treatment tank (151 in FIG. 26), and continuously transferred. After the transfer, the copper remaining in the recesses and side portions of the SUS foil was removed in an etching tank (129 in FIG. 26) (lOOgZl aqueous ammonium persulfate solution, liquid temperature 40 ° C.).
この後転写ロール 137を利用して、ロール状の実施例 c3で用いた粘着フィルム(図 26の 136)に連続的に導体層が転写され、ライン幅 17 μ m、ラインピッチ 300 μ m、 厚さ 1 mで、黒化処理の施された導体層パターン(図 26の 138)が粘着フィルム上 に選択的に転写された導体層パターン付き粘着フィルムが得られた。上記 PETフィ ルム付き SUS箔の凸部の上面に析出した銅は、連続膜であるため、粘着フィルムに 転写されるのに対し、凹部及び側部に析出した銅は、粒状で非連続膜であるため、 凸部の上面に析出した銅に追随することなぐ SUS板に残存し、粘着フィルムに転写 されることはな力つた。このようにして、銅めつき、黒化処理、転写、残銅除去の工程 を、 1ラインで行うことができた。  Thereafter, using the transfer roll 137, the conductor layer was continuously transferred to the roll-shaped adhesive film (136 in FIG. 26) used in Example c3, the line width was 17 μm, the line pitch was 300 μm, the thickness was At 1 m, an adhesive film with a conductor layer pattern was obtained in which the conductor layer pattern (138 in FIG. 26) subjected to blackening treatment was selectively transferred onto the adhesive film. Since the copper deposited on the top surface of the convex part of the SUS foil with PET film is a continuous film, it is transferred to the adhesive film, whereas the copper deposited on the concave part and the side part is granular and discontinuous. Therefore, it remained on the SUS plate without following the copper deposited on the upper surface of the convex part, and it was hard to be transferred to the adhesive film. In this way, copper plating, blackening, transfer, and removal of residual copper could be performed in one line.
[0230] 上記で得られた導体層パターン付き粘着フィルムの粘着剤面 (銅めつきを転写した 面)を厚さ 2mmのガラスに当ててラミネートして貼り合わせた。ラミネート条件は、温度 25°C、圧力 0. 5MPa、ラインスピード 0. 5m/minとした。ロールラミネートによって、 厚さ 1 mの導体層パターンは粘着剤に埋設され、透明性の高い電磁波遮蔽体が 得られた。 [0230] The pressure-sensitive adhesive surface of the pressure-sensitive adhesive film with a conductor layer pattern obtained above (the surface to which the copper plating was transferred) was applied to a glass sheet having a thickness of 2 mm and laminated. Lamination conditions were a temperature of 25 ° C, a pressure of 0.5 MPa, and a line speed of 0.5 m / min. By roll laminating, the 1 m thick conductor layer pattern was embedded in the adhesive, and a highly transparent electromagnetic shielding body was obtained.
[0231] 以上の実施例において、導電性基材において、凸部側面のうち、テーパー角 ) が各実施例にお 、て表示した角度を有する部分の上面からの深さは垂直距離にし て、凸部の高さの少なくとも半分はあった。  [0231] In the above examples, in the conductive base material, the depth from the top surface of the portion of the convex side surface where the taper angle) has the angle indicated in each example is a vertical distance. There was at least half of the height of the protrusion.
[0232] 以上の実施例で得られた導体層パターンの開口率、可視光透過率、パターンの異 常の有無、視認性、電磁波遮蔽性 (300MHz)、パターンを有する導電性基材の 30 回めつき、剥離を繰り返した後の導電性基材の耐久性を評価した結果を図 29に示す [0232] The aperture ratio, visible light transmittance, presence / absence of pattern abnormality, visibility, electromagnetic wave shielding (300 MHz) of the conductive layer pattern obtained in the above examples, and 30 of the conductive substrate having the pattern. Figure 29 shows the results of evaluating the durability of the conductive substrate after repeated turning and peeling.
[0233] 導電性基材上に榭脂等の絶縁物でパターンを形成して作製した導体層パターンで は、ノ《ターン状にめっきされた金属を、例えば粘着フィルムに転写する際に、粘着層 がパターンを形成する絶縁物と接するため、金属パターンを転写した粘着フィルムを 剥離する度に、絶縁物に剥離応力がかかる。さらに、パターン状に絶縁物が形成さ れているため、絶縁物の SUSへの接触面積が非常に微小であるため、パターン状に めっき→転写の工程を、数回〜数百回程度繰り返し使用することは可能であるが、数 千回〜数万回の量産レベルでは、絶縁物が導電性基材から剥離してしま!/、転写不 良が発生するなど、パターンの寿命が短い。 [0233] In a conductor layer pattern formed by forming a pattern with an insulator such as a resin on a conductive substrate, a metal plated in a non-turn pattern is adhesive when transferred to an adhesive film, for example. Since the layer is in contact with the insulator that forms the pattern, a peel stress is applied to the insulator every time the adhesive film to which the metal pattern is transferred is peeled off. Furthermore, since the insulator is formed in a pattern, the contact area of the insulator with SUS is very small, so the process of plating → transfer in a pattern is repeated several to several hundred times. However, at the mass production level of several thousand to several tens of thousands of times, the insulation is peeled off from the conductive substrate! /, And the pattern life is short.
さらに、導電性基材上に榭脂等の絶縁物でパターンを形成して作製した導体層パ ターンでは、パターンを形成する榭脂や、導体層を導電性基材から剥離するために 用いる粘着フィルムの剥離残渣等の有機物力 めっき液を汚染するため、めっき液の 寿命が短くなり、めっきの析出不良が発生しやすくなる。  Furthermore, in a conductor layer pattern produced by forming a pattern with an insulator such as a resin on a conductive substrate, the resin used to form the pattern and the adhesive used to peel the conductor layer from the conductive substrate Organic strength such as film peeling residue The plating solution is contaminated, so the life of the plating solution is shortened and plating deposition failure is likely to occur.
実施例 24  Example 24
[0234] [実施例 dl] [0234] [Example dl]
以下、実施例 24 (以下「実施例 dl」ともいう。実施例 30まで同様。)を説明する。 (ネガフィルムの仕様 1)  Hereinafter, Example 24 (hereinafter, also referred to as “Example dl”. The same applies to Example 30) will be described. (Negative film specifications 1)
パターン描画部のサイズ力 300mm角で、パターン描画部の最外周から内側 30 mmの 4辺(領域 Bに対応)に光透過部のライン幅 100 μ m、ラインピッチ 300 μ m、 バイアス角度 45° (正四角形のなかに、ラインが正四角形の辺に対して 45度の角度 になるように配されている)の格子状パターンを形成し、さらにその内側全面 (領域 A に対応)に、光透過部のライン幅 30 m、ラインピッチ 300 m、バイアス角度 45° の格子状パターンを形成した。内側のラインはいずれも、内側と外側の境界で、外側 のラインと繋がっている。このネガフィルムのパターンは図 3— dに示すパターンに対 応するものである。  The size of the pattern drawing part is 300mm square, and the line width of the light transmission part is 100 μm, the line pitch is 300 μm, and the bias angle is 45 ° on the four sides (corresponding to the area B) 30 mm inside from the outermost periphery of the pattern drawing part. A grid pattern is formed (in the regular square, the line is arranged at an angle of 45 degrees with respect to the side of the regular square), and light is applied to the entire inner surface (corresponding to the area A). A grid pattern with a line width of 30 m at the transmission part, a line pitch of 300 m, and a bias angle of 45 ° was formed. Each inner line is connected to the outer line at the inner and outer boundary. This negative film pattern corresponds to the pattern shown in Figure 3-d.
[0235] (上面を有する凸部のパターン及びそれによつて描かれる幾何学図形状の凹部を 有する導電性基材の作製) レジストフイルム(フォテック H— Y920、 日立化成工業株式会社製)を 300mm角の ステンレス(SUS304、仕上げ 3Z4H、厚さ 100 /ζ πι、 日新製鋼 (株)製)板の両面に 貼り合わせた。貼り合わせの条件は、ロール温度 105°C、圧力 0. 5MPa、ラインスピ ード lmZminで行った。次いで、上記ネガフィルムの仕様 1を、レジストフイルムを貼 り合わせたステンレス板の一方の面上に、重なるように静置した。紫外線照射装置を 用いて、 lOOmmHg以下の真空下において、これらの積層体の上下から、紫外線を 120miZcm2照射した。次いで、 1重量%炭酸ナトリウム水溶液で現像することで、 S US板の上に外側に形成されたレジストパターンのライン幅 100 μ m、ラインピッチ 30 0 m、バイアス角度 45° 、内側に形成されたレジストパターンのライン幅 30 m、ラ インピッチ 300 μ m、バイアス角度 45° のレジストパターンを形成した。なお、パター ンが形成された面の反対面は、全面露光されているため、現像されず、全面にレジス ト膜が形成されている。 [0235] (Production of conductive substrate having convex pattern having upper surface and concave portion of geometrical shape drawn thereby) Resist film (Photech H—Y920, manufactured by Hitachi Chemical Co., Ltd.) was bonded to both sides of 300 mm square stainless steel (SUS304, finished 3Z4H, thickness 100 / ζ πι, manufactured by Nisshin Steel Co., Ltd.). The bonding conditions were a roll temperature of 105 ° C, a pressure of 0.5 MPa, and a line speed of lmZmin. Next, the negative film specification 1 was allowed to stand on one surface of the stainless steel plate to which the resist film was bonded. Using an ultraviolet irradiation device, ultraviolet rays were irradiated from the upper and lower sides of these laminates at 120 miZcm 2 under a vacuum of lOOmmHg or less. Next, by developing with a 1% by weight aqueous sodium carbonate solution, the resist pattern line width formed on the outside of the SUS plate was 100 μm, the line pitch was 300 m, the bias angle was 45 °, and the resist pattern was formed on the inside. A resist pattern having a line width of 30 m, a line pitch of 300 μm, and a bias angle of 45 ° was formed. Note that the opposite surface of the surface on which the pattern is formed is exposed to the whole surface, so that it is not developed and a resist film is formed on the entire surface.
次いで、 40°Cに加温した塩ィ匕第二鉄水溶液 (45° Be '、鶴見曹達株式会社製)を 用いて、 SUS板をエッチングした。エッチングは、領域 Aにおける凸部上面の幅 (ライ ン幅)が 20 /z mになるまで行った。なお、パターンが形成された面の反対面は、全面 にレジスト膜が形成されて ヽるため、エッチングされなかった。  Next, the SUS plate was etched using a salty ferric aqueous solution (45 ° Be ', manufactured by Tsurumi Soda Co., Ltd.) heated to 40 ° C. Etching was performed until the width (line width) of the upper surface of the convex portion in region A reached 20 / zm. The surface opposite to the surface on which the pattern was formed was not etched because a resist film was formed on the entire surface.
次いで、 5重量%水酸ィ匕ナトリウム溶液を用いて、 SUS板の上に形成されたレジス トフイルム (裏面のレジストフイルムも含む)を剥離して、上面を有する凸部のパターン 及びそれによつて描かれる幾何学図形状の凹部を有する導電性基材を得た。この導 電性基材は、領域 Aにおいて凸部上面の幅 (ライン幅)20 m、凸部上面の間隔 (ラ インピッチ) 300 /ζ πι、凸部の高さ 15 mであり、領域 Bにおいて凸部上面の幅(ライ ン幅)90 /ζ πι、凸部上面の間隔(ラインピッチ) 300 m、凸部の高さ 15 mであり、 領域 Aのパターンと領域 Bのパターンの平面形状は、図 6と同様であった。また、領域 A及び Bにおける凹部の断面形状は曲面(図 3— dと同様)であつた。  Next, the resist film (including the resist film on the back surface) formed on the SUS plate is peeled off using a 5% by weight sodium hydroxide / sodium salt solution, and a convex pattern having an upper surface is drawn. As a result, a conductive base material having a recess having a geometrical figure shape was obtained. This conductive base material has a width of the upper surface of the convex portion (line width) of 20 m, an interval of the upper surface of the convex portion (line pitch) of 300 / ζ πι, and a height of the convex portion of 15 m. The width of the upper surface of the convex part (line width) is 90 / ζ πι, the distance between the upper surfaces of the convex part (line pitch) is 300 m, and the height of the convex part is 15 m. This was the same as in FIG. In addition, the cross-sectional shape of the recesses in the regions A and B was a curved surface (similar to Fig. 3-d).
(絶縁膜を有する導電性基材の作製)  (Preparation of conductive substrate with insulating film)
次いで、上記の導電性基材を陰極にして、陽極をチタン板として、カチオン型電着 塗料 (Insuleed3020、 日本ペイント (株)製)中、 15Vで 10秒間電圧を印加して、格 子模様状にエッチングされたステンレス板全面 (エッチングされて 、な 、裏面も含む) に電着塗装した。水洗後 100°Cで 10分間乾燥した後、 190°Cで 25分間の条件で焼 付けした。電着塗料の塗布厚は、 2. 5 mであった。 Next, using the conductive substrate as a cathode, the anode as a titanium plate, and applying a voltage for 10 seconds at 15 V in a cationic electrodeposition paint (Insuleed 3020, Nippon Paint Co., Ltd.) The entire surface of the stainless steel plate etched (including the etched back side) Electrodeposited. After washing with water and drying at 100 ° C for 10 minutes, baking was performed at 190 ° C for 25 minutes. The coating thickness of the electrodeposition paint was 2.5 m.
さらに、電着塗装したステンレス板の凸部の上面部分を、研磨粉 (アルミナ液 BO. 0 5 m、リファインテック(株)製)と研磨布(CONSUMABLES Buehler GMBH 製)を用いて研磨し、 SUS面カゝらなる上面を露出させ、絶縁膜を有する導電性基材 を作製した。この導電性基材の凹部にける電着塗膜の厚さは 2. 5 mであった。凸 部の上面の端における電着塗膜は上面と面一になつていた。この導電性基材は、領 域 A及び領域 B共に凹部が薄膜絶縁膜で覆われたものであった。また、凸部凹部が 存在する面と反対の面全体にも薄膜絶縁層が形成されていた。  Furthermore, the upper surface of the convex part of the electrodeposited stainless steel plate is polished with polishing powder (alumina solution BO. 0,5 m, manufactured by Refinetech Co., Ltd.) and polishing cloth (manufactured by CONSUMABLES Buehler GMBH). A conductive base material having an insulating film was produced by exposing the top surface of the surface. The thickness of the electrodeposition coating film in the concave portion of this conductive substrate was 2.5 m. The electrodeposition coating film at the edge of the upper surface of the convex portion was flush with the upper surface. In this conductive base material, the concave portions were covered with a thin film insulating film in both the regions A and B. In addition, a thin film insulating layer was formed on the entire surface opposite to the surface on which the convex and concave portions exist.
[0237] (銅めつき)  [0237] (with copper)
次いで、絶縁膜を有する導電性基材を陰極として電解銅めつきを行った。電解銅め つき浴 (硫酸銅(5水塩) 80gZL、硫酸 180gZL、キューブライト VF1 (荏原ユージラ イト株式会社製、添加剤) 20mlZLの水溶液、 25°C)中に、絶縁膜を有する導電性 基材を浸し、含燐銅を陽極として同電解銅めつき浴中に浸した。両極に電圧をかけ て、電流密度を lOAZdm2として、導電性基材の領域 Aの凸部の上面に析出した金 属の厚さが 5 /z mになるまでめつきした。この時、領域 Bの凸部の上面に析出した金 属(接地部)の厚さは 4 mであり、ピンホールは、ほとんど存在しなかった。なお、パ ターンが形成された面の反対面には、その面の全体が薄膜絶縁層で覆われている ため、銅めつきは析出しな力つた。 Next, electrolytic copper plating was performed using a conductive substrate having an insulating film as a cathode. Electrolytic copper plating bath (copper sulfate (pentahydrate) 80gZL, sulfuric acid 180gZL, Cubelite VF1 (supplied by Ebara Eugene, Inc., 20ml ZL aqueous solution, 25 ° C), conductive base with insulating film The material was immersed and immersed in the electrolytic copper plating bath using phosphorous copper as an anode. A voltage was applied to both electrodes, and the current density was set to lOAZdm 2 until the thickness of the metal deposited on the upper surface of the convex portion in the region A of the conductive substrate reached 5 / zm. At this time, the thickness of the metal (grounding part) deposited on the upper surface of the convex part in region B was 4 m, and there were almost no pinholes. On the other side of the surface on which the pattern was formed, the entire surface was covered with a thin film insulating layer, so that the copper plating did not precipitate.
[0238] (粘着フィルムの作製)  [0238] (Preparation of adhesive film)
厚さ 100 mのポリエチレンテレフタレート(PET)フィルム(A— 4100、東洋紡績株 式会社製)の表面にプライマー (HP— 1、日立化成工業株式会社製)を厚さ 1 m) に、粘着層としてアクリルポリマ (HTR— 280、ナガセケムテックス株式会社製)を厚さ 10 μ mに順次塗布して粘着フィルムを作製した。  A primer (HP-1; manufactured by Hitachi Chemical Co., Ltd.) 1 m thick on the surface of a 100 m thick polyethylene terephthalate (PET) film (A-4100, manufactured by Toyobo Co., Ltd.) as an adhesive layer Acrylic polymer (HTR-280, manufactured by Nagase ChemteX Corporation) was sequentially applied to a thickness of 10 μm to prepare an adhesive film.
[0239] (転写)  [0239] (Transcription)
この粘着フィルムの粘着剤面と、上記導電性基材の導体層パターンが存在する面 を、ロールラミネータを用いて貼り合わせた。ラミネート条件は、ロール温度 25°C、圧 力 0. lMPa、ラインスピードを lmZminとした。次いで、導電性基材に貼り合わせた 粘着フィルムを剥離したところ、上記導電性基材の凸部の上面に析出した銅が粘着 フィルムに転写されており、転写残りもな力つた。 The pressure-sensitive adhesive surface of the pressure-sensitive adhesive film and the surface on which the conductive layer pattern of the conductive substrate was present were bonded together using a roll laminator. Lamination conditions were a roll temperature of 25 ° C, a pressure of 0.1 lMPa, and a line speed of lmZmin. Next, it was bonded to a conductive substrate When the adhesive film was peeled off, the copper deposited on the upper surface of the convex portion of the conductive substrate was transferred to the adhesive film, and the transfer residue was also strong.
粘着フィルムに転写された銅めつきのパターンは、領域 Aに対応する部分力 Sライン 幅 28 μ m、ラインピッチ 300 μ m、導体厚 5 μ mであり、領域 Bに対応する部分 (接地 部)がライン幅 97 μ m、ラインピッチ 300 μ m、導体厚 4 μ mであった。転写されたライ ンを顕微鏡で観察した結果、領域 A及び領域 Bに対応する部分のすべてで、ライン の割れは無かった。  The copper plating pattern transferred to the adhesive film has a partial force corresponding to area A, S line width of 28 μm, line pitch of 300 μm, conductor thickness of 5 μm, and a part corresponding to area B (grounding part) However, the line width was 97 μm, the line pitch was 300 μm, and the conductor thickness was 4 μm. As a result of observing the transferred line with a microscope, there was no line cracking in all of the portions corresponding to the regions A and B.
[0240] (黒化処理)  [0240] (Blackening treatment)
上記で得られた導体層ノ《ターン付き基材をアルカリ脱脂液デグリース A ( (株)ォー デック)を 5倍希釈した水溶液に室温で 3分間浸漬し、次いで、水洗後、 10重量%硝 酸水溶液に室温で 2分間浸漬し、さらに、水洗後、黒化処理液コパール((株)オーデ ック)の 4倍希釈水溶液に浸漬して、導体層パターンが黒化処理された導体層パター ン付き基材を得た。  The substrate with the conductor layer obtained above is immersed in an aqueous solution obtained by diluting alkaline degreasing solution Degrease A (Odec Co., Ltd.) 5 times at room temperature for 3 minutes, then washed with water, 10% by weight glass Immerse in an acid aqueous solution at room temperature for 2 minutes, and after washing with water, immerse it in a 4-fold diluted aqueous solution of blackening solution Copal (Odek Co., Ltd.) to make the conductor layer pattern blackened. A substrate with an adhesive was obtained.
[0241] (保護膜の形成)  [0241] (Formation of protective film)
上記で得られた導体層パターンが黒化処理された導体層パターン付き基材の導体 層パターン (接地部を除く)が存在する面に、 UV硬化型榭脂ヒタロイド 7983AA3 ( 日立化成工業 (株)製)を導体層パターンを完全に覆うようにコーティングし、その上 にポリカーボネートフィルム(マクロホール DE、バイエル株式会社製、 75 μ m)をラミ ネートして、紫外線ランプを用いて UZcm2の紫外線を照射して UV硬化型榭脂を硬 化させて、厚さ 20 mの保護膜を有する導体層パターン付き基材を得た。 On the surface where the conductor layer pattern (excluding the grounding part) of the substrate with the conductor layer pattern obtained by the blackening of the conductor layer pattern obtained above is present, UV curable resin hyaloid 7983AA3 (Hitachi Chemical Co., Ltd.) ) And a polycarbonate film (Macro Hall DE, Bayer, 75 μm) is laminated on it, and UV light of UZcm 2 is applied using an ultraviolet lamp. Irradiation was performed to harden the UV curable resin to obtain a substrate with a conductor layer pattern having a protective film having a thickness of 20 m.
実施例 25  Example 25
[0242] [実施例 d2] [0242] [Example d2]
(ネガフィルムの仕様 2)  (Negative film specifications 2)
パターン描画部のサイズ力 300mm角で、パターン描画部の最外周から内側 30 mmの 4辺に光透過部のライン幅 70 μ m、ラインピッチ 350 μ m、バイアス角度 45° の格子状パターンを形成し、さらにその内側全面に、光透過部のライン幅 30 m、ラ インピッチ 300 m、バイアス角度 45° の格子状パターンを形成した。内側のライン と外側のラインは、ラインピッチが異なっているので、一部繋がっていない箇所がある 。このネガフィルムのパターンは図 5に示すパターンに対応するものである。 With a pattern drawing unit size of 300 mm square, a grid pattern with a light transmission part line width of 70 μm, a line pitch of 350 μm, and a bias angle of 45 ° is formed on four sides 30 mm inside from the outermost periphery of the pattern drawing part Furthermore, a lattice pattern with a line width of 30 m, a line pitch of 300 m, and a bias angle of 45 ° was formed on the entire inner surface. The inner and outer lines have different line pitch, so there are some unconnected areas . This negative film pattern corresponds to the pattern shown in FIG.
[0243] (上面を有する凸部のパターン及びそれによつて描かれる幾何学図形状の凹部を 有する導電性基材の作製) [0243] (Preparation of conductive substrate having convex pattern having upper surface and concave part of geometrical shape drawn thereby)
ネガフィルムの仕様 2で作製したネガフィルムを用い、領域 Aにおける凸部上面の 幅 (ライン幅)が 7 μ mになるまでエッチングしたこと以外は、実施例 dlと同様にして、 上面を有する凸部のパターン及びそれによつて描かれる幾何学図形状の凹部を有 する導電性基材を得た。この導電性基材は、領域 Aにおいて凸部上面の幅 (ライン 幅)7 /ζ πι、凸部上面の間隔 300 m、凸部の高さ 19 mであり、領域 Bにおいて凸 部上面の幅 (ライン幅)57 m、凸部上面の間隔 (ラインピッチ) 350 m、凸部の高 さ 19 mであった。なお、パターンが形成された面の反対面は、レジスト膜が全面に 形成されていたため、エッチングされず、また、エッチング後、このレジストが除去され たことは前記と同様である。パターンの形状は、図 5の様であり、領域 Aの凸部と領域 Bの凸部が連続して 、な 、部分もある。領域 A及び領域 Bにおける凹部の断面形状 は曲面(図 3— dと同様))であった。  The negative film produced in the negative film specification 2 was used in the same manner as in Example dl, except that etching was performed until the width (line width) of the upper surface of the convex portion in region A reached 7 μm. A conductive base material having a pattern of parts and a concave part of the geometrical figure drawn by the pattern was obtained. This conductive substrate has a width (line width) 7 / ζ πι at the top surface of the convex portion in region A, a distance of 300 m between the top surfaces of the convex portion, and a height of 19 m at the convex portion. (Line width) 57 m, spacing between top surfaces of protrusions (line pitch) 350 m, and height of protrusions 19 m. Note that the surface opposite to the surface on which the pattern was formed was not etched because the resist film was formed on the entire surface, and the resist was removed after the etching as described above. The shape of the pattern is as shown in FIG. 5. The convex part of region A and the convex part of region B are continuous, and there are also parts. The cross-sectional shape of the recesses in region A and region B was a curved surface (similar to Fig. 3-d).
[0244] (絶縁膜を有する導電性基材の作製) [0244] (Preparation of conductive substrate having insulating film)
次いで、上記の導電性基材を陽極にして、陰極をチタン板として、ァ-オン型電着 塗料 (AMG— 5EZ5W、(株)シミズ製)中で、 10Vで 60秒間電圧を印加して、上記 導電性基材の格子模様状にエッチングされたステンレス板全面 (エッチングされて!/ヽ ない裏面も含む)に電着塗装した。水洗後 100°C10分間乾燥した後、 180°C30分の 条件で焼付けした。電着塗料の塗布厚は、 2. 6 mであった。  Next, a voltage was applied at 10 V for 60 seconds in an electrode-on electrodeposition paint (AMG-5EZ5W, manufactured by Shimizu Co., Ltd.) using the conductive substrate as an anode and a cathode as a titanium plate. Electrodeposition coating was performed on the entire surface of the stainless steel plate etched into a lattice pattern of the conductive base material (including the back side that was etched!). After washing with water and drying at 100 ° C for 10 minutes, baking was performed at 180 ° C for 30 minutes. The coating thickness of the electrodeposition paint was 2.6 m.
さらに、電着塗装した導電性基材の凸部の上面部分を、研磨粉 (TypeO. 1R、 Bai kalox者製)と研磨布(CONSUMABLES Buehler GMBH製)を用いて研磨し、 上面 (SUS面)を露出させ、絶縁膜を有する導電性基材を作製した。この導電性基 材の凹部にける電着塗膜の厚さは 2. 6 mである力 凸部の上面の端付近における 電着塗膜の厚さは 0. 2 mであった。また、凸部の上面の端における電着塗膜は上 面と面一になつていた。この導電性基材は、領域 A及び領域 B共に凹部が薄膜絶縁 膜で覆われたものであった。  Furthermore, the upper surface of the convex part of the electrodeposited conductive substrate is polished with polishing powder (TypeO. 1R, manufactured by Baikalox) and polishing cloth (manufactured by CONSUMABLES Buehler GMBH), and the upper surface (SUS surface) Was exposed to produce a conductive substrate having an insulating film. The thickness of the electrodeposition coating in the recess of this conductive substrate is 2.6 m. The thickness of the electrodeposition coating near the top edge of the force projection was 0.2 m. Moreover, the electrodeposition coating film at the edge of the upper surface of the convex portion was flush with the upper surface. In this conductive base material, the concave portions were covered with a thin film insulating film in both the region A and the region B.
[0245] (銅めつき 黒ィヒ処理) さらに、絶縁膜を有する導電性基材を陰極として電解銅めつき用の電解浴 (硫酸銅([0245] (Copper metal black processing) Furthermore, an electrolytic bath (copper sulfate (
5水塩) 150gZL、硫酸 150gZL、カバラシド HL (アトテックジャパン株式会社製、添 加剤) 50mlZLの水溶液、 30°C)中に浸し、含燐銅を陽極として電解銅めつき浴中 に浸した。両極に電圧をかけて電流密度を 15AZdm2として、導電性基材の領域 A の凸部の上面に析出した金属の厚さが 3 mになるまでめつきした。この時、領域 B の凸部の上面に析出した金属 (接地部)の厚さは 2. 8 mであり、ピンホールは、ほと んど存在しな力つた。なお、パターンが形成された面の反対面には、その面の全体が 薄膜絶縁層で覆われているため、銅めつきは析出しなかった。次いで、導電性基材 の凸部上面に析出させた銅めつきに、実施例 dlと同様の条件で黒ィ匕処理を施した。 5 water salt) 150 g ZL, 150 g ZL sulfuric acid, Kabaraside HL (manufactured by Atotech Japan Co., Ltd., additive) 50 ml ZL in an aqueous solution (30 ° C) and immersed in an electrolytic copper plating bath using phosphorous copper as an anode. As 15AZdm 2 current density by applying a voltage to both electrodes, the thickness of the metal deposited on the upper surface of the convex portion of the area A of the conductive substrate was plated until 3 m. At this time, the thickness of the metal (grounding part) deposited on the upper surface of the convex part in region B was 2.8 m, and the pinhole was almost nonexistent. In addition, copper plating did not deposit on the surface opposite to the surface on which the pattern was formed because the entire surface was covered with a thin film insulating layer. Next, the copper plating deposited on the upper surface of the convex portion of the conductive base material was subjected to black soot treatment under the same conditions as in Example dl.
[0246] (接着フィルムの作製) [0246] (Preparation of adhesive film)
次いで、厚さ 125 mの PETフィルム (A— 4100、東洋紡株式会社製)に下記榭 脂組成物 Idを乾燥塗布厚が となるように塗布して、接着フィルムを作製した。 榭脂組成物 Idの組成  Next, the following resin composition Id was applied to a PET film (A-4100, manufactured by Toyobo Co., Ltd.) having a thickness of 125 m so as to have a dry coating thickness to produce an adhesive film. Oil composition Id composition
ノィロン UR— 1350 (東洋紡績株式会社製、ポリエステル榭脂) 100重量部 コロネート L (日本ポリウレタン株式会社製、イソシァネートイ匕合物) 3重量部 [0247] (転写)  Neuron UR— 1350 (Toyobo Co., Ltd., polyester resin) 100 parts by weight Coronate L (Nihon Polyurethane Co., Ltd., isocyanate compound) 3 parts by weight [0247] (Transfer)
次いで、上記で得た接着フィルムの接着剤面と、上記導電性基材の黒化処理した 銅めつきが存在する面を、ロールラミネータを用いて貼り合わせた。ラミネート条件は 、ロール温度 100°C、圧力 0. lMPa、ラインスピード 0. 3mZminとした。接着剤の ガラス転移点 (Tg)を超える温度でラミネートされたため、接着剤表面にタック性が発 現した。次いで、導電性基材から接着フィルムを剥離すると、上記導電性基材の凸部 の上面の黒ィ匕処理された銅が接着剤表面に転写され、転写残りも無力つた。導電性 基材の領域 Aの凸部の上面に析出した銅めつきを、接着フィルムに転写して形成さ れたパターンは、ライン幅 11 μ m、ラインピッチ 300 μ m、導体厚 3 μ mであり、領域 Bの凸部の上面に析出した銅めつき (接地部)を、接着フィルムに転写して形成され たパターンは、ライン幅 63 μ m、ラインピッチ 350 μ m、導体厚 2. 8 μ mであった。接 着フィルムに転写後、転写されたラインを顕微鏡で観察した結果、全面において、ラ インの割れは無力つた。このようにして、黒化処理が施された金属パターンが接着フ イルム上に転写され、本発明の導体層パターン付き基材を得た。 Next, the adhesive surface of the adhesive film obtained above and the surface of the conductive substrate on which the blackened copper plating was present were bonded using a roll laminator. Lamination conditions were a roll temperature of 100 ° C, a pressure of 0.1 MPa, and a line speed of 0.3 mZmin. Since it was laminated at a temperature exceeding the glass transition point (Tg) of the adhesive, tackiness appeared on the adhesive surface. Next, when the adhesive film was peeled from the conductive substrate, the blackened copper on the upper surface of the convex portion of the conductive substrate was transferred to the adhesive surface, and the transfer residue was also helped. Conductive substrate pattern A pattern formed by transferring the copper plating deposited on the top of the convex part of area A to the adhesive film is 11 μm in line width, 300 μm in line pitch, 3 μm in conductor thickness. The pattern formed by transferring the copper plating (grounding part) deposited on the upper surface of the convex part in area B to the adhesive film is a line width of 63 μm, a line pitch of 350 μm, and a conductor thickness of 2. It was 8 μm. After the transfer to the adhesive film, the transferred line was observed with a microscope. As a result, the cracks on the entire surface were ineffective. In this way, the blackened metal pattern is bonded to the adhesive film. It was transcribe | transferred on the film and the base material with a conductor layer pattern of this invention was obtained.
[0248] (保護膜の形成)  [0248] (Formation of protective film)
上記で得られた導体層パターン付き基材の導体層パターンが存在する面に、実施 例 dlと同様にして UV硬化型榭脂ヒタロイド 7983AA3 (日立化成工業 (株)製)をコ 一ティングした後、その上カゝら PETフィルム (A— 4100、東洋紡績 (株)製、 75 m) の易接着処理を施していない面をラミネートした。さらに、紫外線ランプを用いて 1JZ cm2の紫外線を照射して UV硬化型榭脂を硬化させた後、 PETフィルム (A— 4100 、東洋紡績 (株)製、 75 μ m)を剥離して、厚さ 20 μ mの保護膜を有する導体層バタ ーン付き基材を得た。 After coating the surface of the base material with the conductor layer pattern obtained above on which the conductor layer pattern exists, in the same manner as in Example dl, after coating UV-cured rosin hyaloid 7983AA3 (manufactured by Hitachi Chemical Co., Ltd.) In addition, the surface of PET film (A-4100, manufactured by Toyobo Co., Ltd., 75 m) that had not been subjected to the easy adhesion treatment was laminated. Furthermore, after UV rays of 1 JZ cm 2 were irradiated using an ultraviolet lamp to cure the UV curable resin, the PET film (A-4100, manufactured by Toyobo Co., Ltd., 75 μm) was peeled off, A substrate with a conductor layer pattern having a protective film having a thickness of 20 μm was obtained.
実施例 26  Example 26
[0249] [実施例 d3]  [0249] [Example d3]
(ネガフィルムの仕様 3)  (Negative film specifications 3)
パターン描画部のサイズ力 300mm角で、パターン描画部の最外周から内側 30 mmの 4辺に光透過部のライン幅 250 μ m、ラインピッチ 750 μ m、のストライプ状の ノ ターンを、内側の描画部に対して垂直に形成した。さらに、内側全面に、光透過部 のライン幅 20 μ m、ラインピッチ 250 μ m、バイアス角度 30° の格子状パターンを形 成した。外側のラインが、ストライプ状であるため、内側のラインと外側のラインで一部 繋がっていない箇所がある。このネガフィルムのパターンは、図 7に対応するものであ る。  The size of the pattern drawing part is 300 mm square, and the stripe pattern with a line width of 250 μm and a line pitch of 750 μm on the four sides, 30 mm inside from the outermost periphery of the pattern drawing part. It was formed perpendicular to the drawing part. In addition, a grid pattern with a line width of 20 μm, a line pitch of 250 μm, and a bias angle of 30 ° was formed on the entire inner surface. Because the outer line is striped, there are some areas that are not connected to the inner line and the outer line. This negative film pattern corresponds to FIG.
[0250] (上面を有する凸部のパターン及びそれによつて描かれる幾何学図形状の凹部を 有する導電性基材の作製)  [0250] (Preparation of conductive substrate having convex pattern having upper surface and concave part of geometrical shape drawn thereby)
ネガフィルムの仕様 3で作製したネガフィルムを用い、ステンレス(SUS304 仕上 げ H 竹内金属箔粉 (株)製、厚さ 100 /z m)を用いて、領域 Aの凸部の幅 (ライン幅) 力 S 15 mとなるまでエッチングしたこと以外は、実施例 dlと同様の条件で行い、上面 を有する凸部のパターン及びそれによつて描かれる幾何学図形状の凹部を有する導 電性基材を得た。この導電性基材の領域 Aの凸部上面の幅 (ライン幅) 15 m、凸 部上面の間隔 (ラインピッチ) 250 m、凸部の高さ 13 mであり、領域 Bに形成され たストライプ状の凸部パターンの幅 (ライン幅) 245 μ m、凸部上面の間隔 (ラインピッ チ) 750 μ m、凸部の高さ 13 μ mであった。領域 Aのパターンと領域 Bのパターンの 平面形状は、図 7で示すものと同様であった。領域 A及び領域 Bにおける凹部の断 面形状は曲面(図 3— dと同様)であつた。 Using negative film made in negative film specification 3, using the stainless steel (SUS304 finish H Takeuchi Metal Foil Powder Co., Ltd., thickness 100 / zm), the width of the convex part in area A (line width) S Conducted under the same conditions as in Example dl, except that etching was performed until 15 m, to obtain a conductive substrate having a convex pattern having a top surface and a geometrical figure-shaped concave portion drawn thereby. It was. The width of the upper surface of the convex portion (line width) of the conductive substrate region A (line width) is 15 m, the spacing between the upper surfaces of the convex portion (line pitch) is 250 m, and the height of the convex portion is 13 m. The width of the convex pattern (line width) is 245 μm, and the distance between the top surfaces of the convex parts (line pitch) H) The height of the convex part was 750 μm and the height was 13 μm. The planar shape of the pattern in region A and the pattern in region B was the same as that shown in FIG. The cross-sectional shape of the recesses in region A and region B was curved (similar to Fig. 3-d).
[0251] (絶縁膜を有する導電性基材の作製) [0251] (Preparation of conductive substrate having insulating film)
次いで、上記の導電性基材を陽極にして、陰極をチタン板として、カチオン型電着 塗料 (UC— 2000、(株)シミズ製)中で、 30Vで 60秒間電圧を印加して、格子模様 状にエッチングされたステンレス板全面 (エッチングされて 、な 、裏面も含む)に電着 塗装した。水洗後 100°C10分間乾燥した後、 3jZcm2の照射条件で硬化した。電着 塗料の塗布厚は、 3. であった。さらに電着塗装した導電性基材の凸部の上面 部分を #4000の研磨紙で研磨し、凸部の上面を露出させた。このとき、この導電性 基材の凸部の上面の端における電着塗膜の厚さは 0. 5 μ mであった。 Next, using the above conductive substrate as the anode, the cathode as the titanium plate, and applying a voltage at 30 V for 60 seconds in a cationic electrodeposition paint (UC-2000, manufactured by Shimizu Corporation), the lattice pattern The entire surface of the etched stainless steel plate (etched, including the back side) was electrodeposited. After washing with water and drying at 100 ° C. for 10 minutes, it was cured under irradiation conditions of 3jZcm 2 . The coating thickness of the electrodeposition paint was 3. Furthermore, the upper surface of the convex portion of the electroconductive substrate coated with electrodeposition was polished with # 4000 abrasive paper to expose the upper surface of the convex portion. At this time, the thickness of the electrodeposition coating film at the edge of the upper surface of the convex portion of the conductive substrate was 0.5 μm.
[0252] (銅めつき 黒ィ匕処理) [0252] (Copper metal black processing)
次いで、絶縁膜を有する導電性基材を陰極として電解銅めつき用の電解浴 (硫酸 銅(5水塩) 180gZL、硫酸 100gZL、カバラシド HL (アトテックジャパン株式会社製 、添加剤) 70mlZLの水溶液、 30°C)中に浸し、含燐銅を陽極として同電解浴中に 浸した。両極に電圧をかけて、電流密度を 25AZdm2として、導電性基材の領域 A の凸部の上面に析出した銅の厚さが 6 mになるまでめつきした。この時、領域 Bの 凸部の上面に析出した金属 (接地部)の厚さは 3. 5 mであり、ピンホールは、ほとん ど存在しなカゝつた。なお、パターンが形成された面の反対面には、その面の全体が 薄膜絶縁層で覆われているため、銅めつきは析出しなかった。次いで、導電性基材 の凸部上面に析出させた銅めつきに、実施例 dlと同様の条件で黒化処理を施した。 Next, an electrolytic bath for electrolytic copper plating using a conductive substrate having an insulating film as a cathode (copper sulfate (pentahydrate) 180 gZL, sulfuric acid 100 gZL, Kavalaside HL (manufactured by Atotech Japan Co., Ltd., additive) 70 ml ZL aqueous solution, 30 ° C.) and immersed in the same electrolytic bath using phosphorous copper as an anode. Voltage was applied to both electrodes, and the current density was 25 AZdm 2 until the thickness of the copper deposited on the upper surface of the convex part in region A of the conductive substrate reached 6 m. At this time, the thickness of the metal (grounding part) deposited on the upper surface of the convex part in area B was 3.5 m, and there was almost no pinhole. In addition, copper plating did not deposit on the surface opposite to the surface on which the pattern was formed because the entire surface was covered with a thin film insulating layer. Next, the copper plating deposited on the upper surface of the convex portion of the conductive base material was subjected to blackening treatment under the same conditions as in Example dl.
[0253] (粘着フィルムの作製) [0253] (Preparation of adhesive film)
次いで、厚さ 100 /z mの PETフィルム (A— 4100、東洋紡績株式会社製)の易接 着面に下記の榭脂組成物 2を乾燥塗布厚が 15 mとなるように塗布して粘着フィル ムを作製した。  Next, the following resin composition 2 was applied to the easy attachment surface of a 100 / zm thick PET film (A-4100, manufactured by Toyobo Co., Ltd.) so that the dry coating thickness was 15 m. Was made.
榭脂組成物 d2の組成  Composition of sallow composition d2
AS—406 (—方社油脂工業株式会社製、アクリルポリマ) 100重量部 テトラド X(三菱ガス化学株式会社製、硬化剤) 2重量部 [0254] (転写 黒化処理) AS-406 (Afro Kogyo Co., Ltd., acrylic polymer) 100 parts by weight Tetrad X (Mitsubishi Gas Chemical Co., Ltd., curing agent) 2 parts by weight [0254] (Transfer blackening treatment)
上記で得られた粘着フィルムの粘着剤面と、上記導電性基材の黒化処理した銅が 存在する面を、ロールラミネータを用いて貼り合わせた。ラミネート条件は、ロール温 度 25°C、圧力 0. lMPa、ラインスピード lmZminとした。次いで、導電性基材から 粘着フィルムを剥離したところ、上記導電性基材の凸部の上面に析出した銅 (黒化処 理されたもの)が粘着フィルムの接着剤表面に転写され、転写残りもなかった。導電 性基材の領域 Aの凸部の上面に析出した銅めつきを、粘着フィルムに転写して形成 されたパターンは、ライン幅 25 μ m、ラインピッチ 250 μ m、導体厚 6 μ mであり、領 域 Bの凸部の上面に析出した銅めつきを、接着フィルムに転写して形成されたストライ プ状のパターンは、ライン幅 255 μ m、ラインピッチ 750 μ m、導体厚 3. 5 μ mであつ た。接着フィルムに転写後、転写されたラインを顕微鏡で観察した結果、全面におい て、ラインの割れは無力つた。このようにして、黒化処理が施された金属パターンが接 着フィルム上に転写され、本発明の導体層パターン付き基材を得た。  The pressure-sensitive adhesive surface of the pressure-sensitive adhesive film obtained above and the surface of the conductive substrate on which the blackened copper was present were bonded using a roll laminator. Lamination conditions were a roll temperature of 25 ° C, a pressure of 0.1 MPa, and a line speed of lmZmin. Next, when the pressure-sensitive adhesive film was peeled off from the conductive substrate, the copper deposited on the upper surface of the convex portion of the conductive substrate (the one that was blackened) was transferred to the adhesive surface of the pressure-sensitive adhesive film, and the transfer residue There was not. The pattern formed by transferring the copper plating deposited on the upper surface of the convex part of area A of the conductive substrate onto the adhesive film is 25 μm in line width, 250 μm in line pitch, and 6 μm in conductor thickness. Yes, the striped pattern formed by transferring the copper plating deposited on the upper surface of the convex part in area B to the adhesive film has a line width of 255 μm, a line pitch of 750 μm, and a conductor thickness of 3. It was 5 μm. After the transfer to the adhesive film, the transferred line was observed with a microscope. As a result, the line was completely broken on the entire surface. In this way, the metal pattern subjected to the blackening treatment was transferred onto the adhesive film to obtain a substrate with a conductor layer pattern of the present invention.
[0255] (電磁波遮蔽体の作製)  [0255] (Fabrication of electromagnetic wave shield)
上記で得られた導体層パターン付き基材の粘着剤面 (導体層パターンを有する面) を厚さ 2mmのガラスに当ててラミネートして貼り合わせた。なお、貼り合わせは、領域 Aの全面のみであり、領域 Bの全面は、ガラスからはみ出すようにした。ガラスに貼り 合わせた時のラミネート条件は、温度 25°C、圧力 0. 5MPa、ラインスピード 0. 5m/ minとした。ロールラミネートによって、厚さ 6 mの導体層パターンは粘着剤に埋設 され、透明性の高い電磁波遮蔽体が得られた。  The pressure-sensitive adhesive surface (surface having a conductor layer pattern) of the substrate with a conductor layer pattern obtained above was laminated on and bonded to glass having a thickness of 2 mm. Bonding was performed only on the entire surface of region A, and the entire surface of region B was protruded from the glass. The lamination conditions when bonded to glass were a temperature of 25 ° C, a pressure of 0.5 MPa, and a line speed of 0.5 m / min. By roll lamination, the 6 m thick conductor layer pattern was embedded in the adhesive, and a highly transparent electromagnetic shielding material was obtained.
実施例 27  Example 27
[0256] [実施例 d4]  [0256] [Example d4]
(近赤外線遮蔽性を有する粘着フィルムの作製)  (Preparation of adhesive film with near-infrared shielding)
厚さ 100 μ mの PETフィルム(マイラー D、帝人デュポンフィルム株式会社製)の表 面に下記赤外線吸収剤を含有する榭脂組成物 3を乾燥後の厚みが 10 μ mになるよ うに塗布乾燥して、近赤外線吸収剤を含有する接着性フィルムを作製した。  Apply and dry the resin composition 3 containing the following infrared absorber on the surface of a 100 μm thick PET film (Mylar D, manufactured by Teijin DuPont Films Ltd.) so that the thickness after drying is 10 μm. And the adhesive film containing a near-infrared absorber was produced.
(榭脂組成物 d3の組成)  (Composition of rosin composition d3)
BR— 80 (三菱レーョン株式会社製、PMMA) 100重量部 IRG— 022 (日本ィ匕薬株式会社製、ジィモ -ゥム塩系赤外線吸収剤) 3. 3重量部 IR— 12 (日本触媒株式会社製、フタロシアニン系赤外線吸収剤) 1. 5重量部 トノレェン 60重量部 BR-80 (Mitsubishi Rayon Co., PMMA) 100 parts by weight IRG— 022 (Nippon Yakuyaku Co., Ltd., Dimo-um salt-based infrared absorber) 3.3 parts by weight IR—12 (Nippon Shokubai Co., Ltd., phthalocyanine-based infrared absorber) 1.5 parts by weight Tolenene 60 Parts by weight
メチルェチルケトン(MEK) 300重量部  Methyl ethyl ketone (MEK) 300 parts by weight
次いで、離型 PETフィルム(S— 32、帝人デュポン (株)製)の離型処理面に榭脂組 成物 d4を、乾燥塗布厚が 8 mとなるように塗布 '乾燥した。近赤外線吸収剤を含有 する接着性フィルムの榭脂を塗布した面に、榭脂組成物 d4を塗布したフィルムを貼り 合わせ、近赤外線遮蔽性を有する粘着フィルムを作製した。  Next, the resin composition d4 was applied to the release treated surface of the release PET film (S-32, manufactured by Teijin DuPont Co., Ltd.) so that the dry coating thickness was 8 m and dried. A film coated with the resin composition d4 was bonded to the surface of the adhesive film containing the near-infrared absorber coated with a resin to produce a pressure-sensitive adhesive film having a near-infrared shielding property.
(榭脂組成物 d4の組成)  (Composition of rosin composition d4)
HTR— 860— P3 (長瀬ケムテック株式会社製、アクリルポリマ) 100重量部 コロネート L (日本ポリウレタン株式会社製、イソシァネートイ匕合物) 3重量部 トルエン 100重量部  HTR— 860— P3 (Nagase Chemtech Co., Ltd., acrylic polymer) 100 parts by weight Coronate L (Nihon Polyurethane Co., Ltd., Isocyanate Compound) 3 parts by weight Toluene 100 parts by weight
酢酸ェチル 300重量咅  Ethyl acetate 300wt%
[0257] (導体層パターン付き基材等の作製)  [0257] (Production of substrate with conductor layer pattern, etc.)
粘着フィルムとして、上記で得た近赤外線遮蔽性を有する粘着フィルム (ただし、離 型 PETフィルムを剥がして使用)を用いたこと以外は、全て実施例 dlと同様にして、 導体層パターン付き基材及び導体層パターンが黒化処理された導体層パターン付 き基材を製造した。  A substrate with a conductor layer pattern was used in the same manner as in Example dl except that the adhesive film having the near-infrared shielding property obtained above (but used after peeling the release PET film) was used as the adhesive film. And the base material with a conductor layer pattern by which the conductor layer pattern was blackened was manufactured.
[0258] (電磁波遮蔽体の作製) [0258] (Preparation of electromagnetic shielding material)
上記で得られた導体層パターンが黒化処理された導体層パターン付き基材の導体 層パターンが存在する面の領域 Aの存在する面にのみ紫外線硬化型榭脂(ヒタロイ ド 7851、 日立化成工業株式会社製)をコーティングし、さらに、ポリカーボネートフィ ルム(マクロホール DE、バイエル株式会社製、 75 μ m)をラミネートした後、紫外線ラ ンプを用いて lj/cm2の紫外線を照射し、導体層パターンを榭脂で被覆した。次い で、上記で得られたフィルムの導体層パターンが形成されている面とは反対の面に 粘着層を形成し、 3mm厚の PMMA板 (コモグラス)に貼りあわせて、電磁波遮蔽部 材を得た。 The surface of the substrate with the conductor layer pattern of the substrate with the conductor layer pattern obtained by the blackening of the conductor layer pattern obtained above was irradiated with UV curable resin (Hitaloy 7851, Hitachi Chemical) After coating with polycarbonate film (Macro Hall DE, Bayer Co., Ltd., 75 μm), it was irradiated with lj / cm 2 ultraviolet rays using an ultraviolet lamp, and the conductor layer The pattern was coated with greaves. Next, an adhesive layer is formed on the surface of the film obtained above opposite to the surface on which the conductor layer pattern is formed, and is attached to a 3 mm thick PMMA plate (Comoglass) to attach the electromagnetic wave shielding member. Obtained.
実施例 28 [0259] [実施例 d5] Example 28 [0259] [Example d5]
前記実施例 d2の(接着フィルムの作製)において、榭脂組成物 dlの乾燥塗布厚を 10 /z mとしたこと以外は、実施例 d2と同様に行い、導体層パターン付き基材を製造 した。  A substrate with a conductor layer pattern was produced in the same manner as in Example d2 except that in Example d2 (Preparation of adhesive film), the dry coating thickness of the resin composition dl was 10 / zm.
さらに、この導体層パターン付き基材を、 80°Cに加温した下記の黒ィ匕処理液に 3分 間浸漬して、導体層を黒化処理して表面が黒化処理された導体層パターンを有する 導体層パターン付き基材を製造した。  Further, the substrate with the conductor layer pattern was immersed in the following black wrinkle treatment solution heated to 80 ° C for 3 minutes to blacken the conductor layer and the surface of the conductor layer was blackened. The base material with a conductor layer pattern which has a pattern was manufactured.
(黒化処理液の組成)  (Composition of blackening solution)
亜塩素酸ナトリウム 30gZL、水酸ィ匕ナトリウム 10gZL、及び三リン酸ナトリウム 5g ZLが溶解された水溶液。  An aqueous solution in which 30 g ZL of sodium chlorite, 10 g ZL of sodium hydroxide and 5 g ZL of sodium triphosphate are dissolved.
上記で得られた表面が黒化処理された導体層パターンを有する導体層パターン付 き基材を用いて、実施例 d4の (電磁波遮蔽体の作製)と同様にして電磁波遮蔽部材 を得た。  An electromagnetic wave shielding member was obtained in the same manner as in (Production of electromagnetic wave shielding body) of Example d4 using the base material with a conductive layer pattern having a conductive layer pattern whose surface was blackened.
実施例 29  Example 29
[0260] [実施例 d6] [0260] [Example d6]
(ネガフィルムの仕様 4)  (Negative film specifications 4)
パターン描画部のサイズ力 450mm X 190mmで、パターン描画部の最外周から 内側 30mmの 4辺に光透過部のライン幅 100 μ m、ラインピッチ 300 μ m、ノィァス 角度 45° の格子状パターンを形成し、さらにその内側全面に、光透過部のライン幅 30 μ m、ラインピッチ 300 μ m、バイアス角度 45° の格子状パターンを形成した。内 側のラインと外側のラインは、全て繋がっている。このネガフィルムのパターンは図 6 に示すパターンに対応するものである。  With a pattern drawing area size of 450mm x 190mm, a grid pattern with a line width of 100 μm, a line pitch of 300 μm, and a noise angle of 45 ° is formed on four sides 30 mm inside from the outermost periphery of the pattern drawing area. Further, a lattice pattern having a light transmission portion line width of 30 μm, a line pitch of 300 μm, and a bias angle of 45 ° was formed on the entire inner surface. The inner line and the outer line are all connected. This negative film pattern corresponds to the pattern shown in Figure 6.
[0261] SUS板のサイズを 470mm X 200mmとしたこと以外は、実施例 dlと同様にして、 上面を有する凸部のパターン及びそれによつて描かれる幾何学図形状の凹部を有 する導電性基材を作製した。この導電性基材の領域 Aでは、凸部上面の幅 (ライン幅 ) 20 /z m 凸部上面の間隔 (ラインピッチ) 300 m、凸部の高さ 15 であり、領域 B では、凸部上面の幅 (ライン幅) 90 μ m、凸部上面の間隔 (ラインピッチ) 300 μ m、 凸部の高さ 15 /z mであり、領域 Aと領域 Bの凸部凹部のパターンの平面形状は、図 6 と同様であった。また、領域 A及び領域 Bにおいて凹部の断面形状は曲面(図 3— d と同様)であった。なお、パターンが形成された面の反対面は、レジスト膜が全面に形 成されていたため、エッチングされず、また、エッチング後、このレジストが除去された ことは前記と同様である。 [0261] Similar to Example dl, except that the size of the SUS plate was 470 mm X 200 mm, a conductive substrate having a convex pattern having an upper surface and a geometrical figure-shaped concave portion drawn thereby. A material was prepared. In area A of this conductive substrate, the width of the upper surface of the convex part (line width) 20 / zm The distance between the upper surfaces of the convex part (line pitch) is 300 m, and the height of the convex part is 15. Width (line width) 90 μm, spacing between top surfaces of protrusions (line pitch) 300 μm, height of protrusions 15 / zm, and the planar shape of the pattern of protrusions and recesses in region A and region B is Fig 6 It was the same. Further, in the region A and the region B, the cross-sectional shape of the concave portion was a curved surface (similar to FIG. 3D). Note that the surface opposite to the surface on which the pattern was formed was not etched because the resist film was formed on the entire surface, and the resist was removed after the etching as described above.
さらに、実施例 dlの(絶縁膜を有する導電性基材の作製)において、パターンが形 成された面の反対面に、市販の粘着フィルムを貼り合わせてから、電着塗装を行った こと以外は、実施例 dlと同様にして、電着塗装、焼付け及び凸部上面の研磨を行い 、領域 A及び領域 Bともに凹部が絶縁膜で被覆された導電性基材を得た。  Furthermore, in Example dl (production of a conductive substrate having an insulating film), a commercially available adhesive film was bonded to the opposite side of the surface on which the pattern was formed, and then electrodeposition coating was performed. In the same manner as in Example dl, electrodeposition coating, baking, and polishing of the upper surface of the convex portion were performed to obtain a conductive base material in which the concave portion was covered with an insulating film in both the region A and the region B.
次に、図 24に示すような装置を用いて導電層パターン付き基材を連続生産した。 すなわち、回転体 103としては、直径 150mm、幅 200mmの鉄製の回転体(ロール) の表面に、上記で作製した領域 A及び領域 Bともに凹部が絶縁膜で被覆された導電 性基材を卷きつけ、つなぎ目をテープで貼り合わせたドラム電極を用いた。なお、導 電性基材を回転体に巻きつける際には、回転体と導電性基材の電気的な接続を確 保するために、パターンが形成された面の反対面に貼り合わされた粘着フィルムを剥 離して、 SUS表面と回転体表面が接触するように、巻きつけた。このようにして作製さ れた回転体 103を用いて、図 24に示したような装置構成で回転体 103に電気銅めつ きした。陽極 102には酸化イリジウムでコーティングしたチタン製の不溶性電極を用 いた。陰極は上記ドラム電極である。電解銅めつき用の電解浴 100には、硫酸銅(5 水塩) 80gZL、硫酸 180gZL、キューブライト VF1 (荏原ユージライト株式会社製、 添加剤) 20mlZLの水溶液で 25°Cの電荷液 101が収容され配管 104を通じてポン プ 105により、陽極 102と回転体 103の間に送られ、満たされている。回転体 103の 約半分がこの電解液に浸漬している。電流密度を 40AZdm2となるように、両極に電 圧をかけて上記導電性基材の領域 Aの凸部の上面に析出する金属の厚みが 5 μ m 厚になるまでめつきした。このとき。上記のステンレスロールを lmZ分の速度で回転 させるようにした。 Next, a substrate with a conductive layer pattern was continuously produced using an apparatus as shown in FIG. That is, as the rotating body 103, the conductive base material in which the recesses are covered with an insulating film in both the area A and the area B prepared above is wound on the surface of an iron rotating body (roll) having a diameter of 150 mm and a width of 200 mm. A drum electrode in which seams were bonded with tape was used. When the conductive substrate is wound around the rotating body, the adhesive bonded to the opposite side of the surface on which the pattern is formed is used to ensure electrical connection between the rotating body and the conductive substrate. The film was peeled off and wound so that the SUS surface and the rotating body surface were in contact. Using the rotating body 103 produced in this manner, electrolytic copper was attached to the rotating body 103 with the apparatus configuration shown in FIG. As the anode 102, an insoluble electrode made of titanium coated with iridium oxide was used. The cathode is the drum electrode. In electrolytic bath 100 for electrolytic copper plating, copper sulfate (pentahydrate) 80gZL, sulfuric acid 180gZL, Cubelite VF1 (supplied by Ebara Eugene Co., Ltd., additive) 20mlZL aqueous solution 25 ° C charge solution 101 It is accommodated and sent between the anode 102 and the rotating body 103 by the pump 105 through the pipe 104 and filled. About half of the rotating body 103 is immersed in this electrolytic solution. A voltage was applied to both electrodes so that the current density was 40 AZdm 2, and the metal deposited on the upper surface of the convex portion of the region A of the conductive base material was stuck to a thickness of 5 μm. At this time. The above stainless steel roll was rotated at a speed of lmZ.
実施例 dlで作製した粘着フィルムをー且ロール状で巻き取り、ロール状の粘着フィ ルムとした。このロール状の粘着フィルムから粘着フィルム 107を巻き出し、その粘着 剤層の面を上記回転体の凸部の上面に析出した金属 (銅) 106に圧着ロール 108に より実施例 dlと同様のラミネート条件で、連続的に貼り合わせるとともに剥離すること により、金属 106を粘着フィルムの粘着剤層に転写して、導体層パターン付き基材 1 09を連続的に作製した。得られる導体層パターン付き基材 109はロール状に巻き取 つた。このとき、粘着フィルムの導体層パターンが転写された面に離型 PET (S— 32 、帝人デュポン株式会社製)をラミネートしながら巻き取ることにより、卷取り時のプロ ッキングを防止した。粘着フィルムに転写されたパターンのうち、内側に形成された凸 部の上面に析出した銅めつきを、粘着フィルムに転写して形成された導体層パターン は、導電性基材の領域 Aの対応する部分がライン幅 28 μ m、ラインピッチ 300 μ m、 導体厚 5 /z mであり、領域 Bに対応する部分 (接地部)がライン幅 97 m、ラインピッ チ 300 /ζ πι、導体厚 4 mであった。ロール状に巻き取られた導体層パターン付き基 材を切断し,幅方向で等間隔に 3力所サンプリングして導体層パターンを顕微鏡で観 察した結果、ラインの割れは無力つた。 Example The adhesive film produced in dl was rolled up in a roll shape to obtain a roll-shaped adhesive film. The pressure-sensitive adhesive film 107 is unwound from the roll-shaped pressure-sensitive adhesive film, and the surface of the pressure-sensitive adhesive layer is deposited on the metal (copper) 106 deposited on the upper surface of the convex portion of the rotating body. More Example Under the same laminating conditions as in dl, by continuously bonding and peeling, the metal 106 was transferred to the adhesive layer of the adhesive film, and a substrate with a conductor layer pattern 109 was continuously produced. . The obtained base material 109 with a conductor layer pattern was wound into a roll. At this time, it was wound up while laminating release PET (S-32, manufactured by Teijin DuPont Co., Ltd.) on the surface of the adhesive film on which the conductor layer pattern was transferred, thereby preventing blocking at the time of scraping. Of the pattern transferred to the adhesive film, the conductor layer pattern formed by transferring the copper plating deposited on the upper surface of the convex part formed on the inner side to the adhesive film corresponds to the area A of the conductive substrate. The line width is 28 μm, the line pitch is 300 μm, and the conductor thickness is 5 / zm. The area corresponding to the region B (ground part) is the line width of 97 m, the line pitch 300 / ζ πι, and the conductor thickness is 4 m. Met. The substrate with the conductor layer pattern wound up in a roll was cut, sampled at three force points at equal intervals in the width direction, and the conductor layer pattern was observed with a microscope.
[0263] (黒化処理)  [0263] (Blackening treatment)
上記で得られた導体層パターン付き基材を、離型 PETを剥離しながら巻きだして、 連続的に黒化処理を施した。まず、アルカリ脱脂液デグリース A ( (株)オーデック製) を 5倍希釈した水溶液、次いで、水洗槽、 10重量%硝酸水溶液槽、さらに、水洗槽、 黒化処理液コパール( (株)オーデック)の 4倍希釈水溶液の槽を通して、導体層バタ 一ンが黒化処理された導体層パターン付き基材をロール状に巻き取った。  The base material with the conductor layer pattern obtained above was rolled up while peeling the release PET, and continuously blackened. First, an aqueous solution in which alkaline degreasing solution Degrease A (manufactured by Odec Co., Ltd.) is diluted 5 times, followed by a water washing tank, a 10 wt% nitric acid aqueous solution tank, a water washing tank, and a blackening solution copal (Odek Corporation) The substrate with a conductor layer pattern in which the conductor layer pattern was blackened was wound into a roll through a 4-fold diluted aqueous solution tank.
黒ィ匕処理後の巻き取り時には、粘着フィルムの導体層パターンが転写された面に 離型 PET (S— 32、帝人デュポン株式会社製)をラミネートしながら巻き取ることにより 、卷取り時のブロッキングを防止した。このようにして、粘着フィルムについては、ロー ルカも巻き出し、導体層パターンを転写後はロールに巻き取る、いわゆる、ロール'ト ゥ ·ロール (roll— to—roll)で連続的に行った。銅めつきが転写された粘着フィルムを 50m巻き取った後も、ステンレスロール上への銅めつきとその転写性に変化が無ぐ 絶縁膜の剥離箇所も観測されな力つた。さらに、外側に形成されたパターンに析出し た銅めつきを転写した部分にも、割れはなぐピンホールもほとんど発生しな力つた。  When winding after black wrinkle treatment, the release layer (S-32, manufactured by Teijin DuPont Co., Ltd.) is laminated on the surface of the adhesive film to which the conductor layer pattern has been transferred. Prevented. In this way, the adhesive film was continuously rolled out by a so-called roll-to-roll, in which the roller was also unwound and the conductor layer pattern was wound around the roll after transfer. Even after winding the adhesive film on which copper plating was transferred, the copper plating on the stainless steel roll and its transferability remained unchanged. Furthermore, almost no pinholes were generated in the portion where the copper plating deposited on the pattern formed on the outside was transferred.
[0264] 上記で得られた導体層パターン付き粘着フィルムの粘着剤面 (銅めつきを転写した 面)を厚さ 2mmのガラスに当ててラミネートして貼り合わせた。ラミネート条件は、温度 25°C、圧力 0. 5MPa、ラインスピード 0. 5m/minとした。ロールラミネートによって、 厚さ 1 mの導体層パターンは粘着剤に埋設され、透明性の高い電磁波遮蔽体が 得られた。 [0264] The pressure-sensitive adhesive surface of the pressure-sensitive adhesive film with the conductor layer pattern obtained above (the surface on which the copper plating was transferred) was applied to a glass sheet having a thickness of 2 mm and laminated. Lamination conditions are temperature The temperature was 25 ° C, the pressure was 0.5 MPa, and the line speed was 0.5 m / min. By roll laminating, the 1 m thick conductor layer pattern was embedded in the adhesive, and a highly transparent electromagnetic shielding body was obtained.
実施例 30 Example 30
[実施例 d7]  [Example d7]
(上面を有する凸部のノターン及びそれによつて描かれる幾何学図形状の凹部を 有する導電性基材の作製)  (Manufacture of conductive substrate having notched convex part with upper surface and concave part of geometric figure drawn by it)
ロール状に巻いた SUS304箔〔日新製鋼 (株)製、仕上げ 3Z4H、幅 350mm、厚 さ 100 /ζ πι〕と、 PETフィルム(Α— 4100、東洋紡績 (株)製)にノ ィロン UR— 1350〔 接着剤、東洋紡績 (株)製〕を乾燥塗布厚が 20 μ mとなるように塗布して作製した口 ール状の接着フィルムをロールラミネータで貼りあわせて、ロール状の PETフィルム 付き SUS箔を導電性基材 (未加工)として作製した。ラミネート条件は、ロール温度 1 20°C、プレヒート 120°C30秒、圧力 3MPa、ラインスピード 0. 5mZminとした。  Rolled SUS304 foil (made by Nisshin Steel Co., Ltd., finish 3Z4H, width 350mm, thickness 100 / ζ πι), PET film (Α-4100, manufactured by Toyobo Co., Ltd.) 1350 [Adhesive, manufactured by Toyobo Co., Ltd.] is applied to a dry adhesive thickness of 20 μm. SUS foil was produced as a conductive substrate (unprocessed). Lamination conditions were a roll temperature of 120 ° C, a preheat of 120 ° C for 30 seconds, a pressure of 3 MPa, and a line speed of 0.5 mZmin.
次いで、上記未加工のロール状の導電性基材の一方の面に、レジストフイルム(フ ォテック H—Y920、 日立化成工業株式会社製)をロールラミネータで連続的に貼り 合わせ、ロール状に巻き取った。貝占り付け条件は、ロール温度 105°C、圧力 0. 5MP a、ラインスピード lm/minで行った。さら〖こ、実施例 d2で使用したネガフィルムを用 いて、一組の領域 A及び領域 B力もなるパターンの間隔が 10mmとなるように、導電 性基材に形成したレジストフイルム上に、一組の領域 A及び領域 Bカゝらなるパターン を断続的に、 30回露光した。露光は、各回、パターン形成部のみにおこなった。紫外 線は、 lOOmmHg以下の真空下において、ネガフィルムの上から、紫外線を 120mJ Zcm2照射した。次いで、ロールの巻き出し部と卷取り部を有する現像機に、上記パ ターンを露光した導電性基材をセットして、ラインスピード 2mZminで流し、現像、水 洗、乾燥後、ロール状に巻き取った。現像はシャワーリングで行い、現像槽の長さは 2 m、現像液は 1重量%炭酸ナトリウム水溶液を用いた。 Next, a resist film (Phototech H-Y920, manufactured by Hitachi Chemical Co., Ltd.) is continuously bonded to one surface of the raw roll-shaped conductive substrate with a roll laminator, and wound into a roll. It was. Shell occupying conditions were a roll temperature of 105 ° C, a pressure of 0.5 MPa, and a line speed of lm / min. Further, using the negative film used in Example d2, set a pair on the resist film formed on the conductive substrate so that the distance between the pattern including the set of areas A and B is 10 mm. The pattern consisting of area A and area B was exposed 30 times intermittently. Exposure was performed only to the pattern forming section each time. Ultraviolet rays were irradiated with 120 mJ Zcm 2 of ultraviolet rays from above the negative film under a vacuum of lOOmmHg or less. Next, the conductive substrate exposed to the above pattern is set in a developing machine having a roll unwinding part and a scooping part, and the film is flowed at a line speed of 2 mZmin, developed, washed, dried, and then wound into a roll. I took it. The development was performed by showering, the length of the developing tank was 2 m, and the developer was a 1% by weight aqueous sodium carbonate solution.
さらに、ロールの巻き出し部と卷取り部を有するエッチング装置に、上記で得たレジ ストパターンを有する導電性基材をセットし、ラインスピード 1. 5mZminで流し、エツ チング、水洗、乾燥後、ロール状に巻き取った。エッチングはシャワーリングで行い、 エッチング槽の長さは 4m、エッチング液は、 40°Cに加温した塩ィ匕第二鉄水溶液 (45 ° Be '、鶴見曹達株式会社製)を用いた。このようにして、一組の領域 A及び領域 B 力もなるパターンを一定間隔で配置した導電性基材を作製した。 Furthermore, the conductive base material having the resist pattern obtained above is set in an etching apparatus having a roll unwinding part and a scooping part, and is flowed at a line speed of 1.5 mZmin. After etching, washing with water, and drying, Rolled up into a roll. Etching is done with shower ring, The length of the etching tank was 4 m, and the etching solution was a salty ferric aqueous solution (45 ° Be ′, manufactured by Tsurumi Soda Co., Ltd.) heated to 40 ° C. In this way, a conductive base material was prepared in which a set of region A and region B force patterns were arranged at regular intervals.
この結果、 SUS箔に領域 Bとして凸部上面の幅 (ライン幅)57 m、凸部上面の間 隔(ラインピッチ)350 /z m 凸部の高さ 19 /z mのパターン力 また、領域 Aとして凸部 上面の幅 (ライン幅)7 m、凸部上面の間隔 (ラインピッチ) 300 m、凸部の高さ 19 mのパターンが形成された。領域 Bと領域 Aの凸部上面は、図 5の様に一部連続し ていない部分があり、さらに、開口部の形状は図 6で示すものと同様であった。  As a result, the pattern strength of the width of the upper surface of the convex part (line width) 57 m and the distance between the upper surfaces of the convex part (line pitch) 350 / zm as the area B on the SUS foil. A pattern having a width of the upper surface of the convex portion (line width) of 7 m, an interval between the upper surfaces of the convex portions (line pitch) of 300 m, and a height of the convex portion of 19 m was formed. As shown in FIG. 5, the upper surfaces of the convex portions of the regions B and A had a part that was not continuous, and the shape of the opening was the same as that shown in FIG.
一組の領域 A及び領域 Bからなるパターンのサイズは、 300mm角で、パターン描 画部の最外周から内側 30mmの 4辺を領域 Bとし、その内側を領域 Aとした。この一 組の領域 A及び領域 Bカゝらなるパターンを 10mmの間隔をあけて 30個作製した。 The size of the pattern consisting of a pair of area A and area B is 300 mm square, and area B is set on four sides, 30 mm inside from the outermost periphery of the pattern drawing area. Thirty patterns, each consisting of a pair of region A and region B, were produced at an interval of 10 mm.
、 、で、一組の領域 A及び領域 Bからなるパターンを間欠的に配置した導電性基 材を、一組の領域 A及び領域 B力もなるパターンが入るサイズで、切断して、一組の 領域 A及び領域 Bからなるパターンを有する導電性基材 30枚を作製した。 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, And B Thirty conductive substrates having a pattern consisting of region A and region B were produced.
[0266] (絶縁膜を有する導電性基材の作製) [0266] (Preparation of conductive substrate having insulating film)
上記の一組の領域 A及び領域 Bからなるパターンを有する導電性基材を陽極にし て、陰極をチタン板として、カチオン型電着塗料 (UC— 2000、(株)シミズ製)中で、 30Vで 60秒間電圧を印加して、導電性基材の SUS箔表面を電着塗装した。水洗後 100°Cで 10分間乾燥した後、 3jZcm2の照射条件で紫外線を電着塗料に照射し、 硬化させた。電着塗料の塗布厚は、 3. 9 mであった。さらに電着塗装したステンレ ス板を、 # 4000の研磨紙で研磨し、凸部の上面のみを露出させ、凹部が絶縁膜で 被覆された導電性基材を作製した。以上の操作を他の 29枚の上記の一組の領域 A 及び領域 Bからなるパターンを有する導電性基材に対しても行った。 30V in a cationic electrodeposition paint (UC-2000, manufactured by Shimizu Corporation) with the conductive substrate having the pattern consisting of the above-mentioned pair of regions A and B as the anode and the cathode as the titanium plate. A voltage was applied for 60 seconds to electrodeposit the SUS foil surface of the conductive substrate. After washing with water and drying at 100 ° C for 10 minutes, the electrodeposition paint was irradiated with ultraviolet rays under an irradiation condition of 3jZcm 2 to be cured. The coating thickness of the electrodeposition paint was 3.9 m. Further, the electrodeposition-coated stainless steel plate was polished with # 4000 polishing paper, and only the upper surface of the convex portion was exposed, and a conductive base material in which the concave portion was covered with an insulating film was produced. The above operation was performed on the other 29 conductive substrates having a pattern composed of the above-described pair of regions A and B.
凹部が絶縁膜で被覆された導電性基材 30枚にっ 、て、おのおのを不要部分を切 断してパターンが形成されている 300mm角の大きさとした。  Each of the 30 conductive substrates whose recesses were covered with an insulating film was cut to 300 mm square, each of which was cut off unnecessary portions.
[0267] (フープ状導電性基材の作製) [0267] (Production of hoop-like conductive substrate)
幅 300mm、長さ 10mの粘着フィルム(SGA、日立化成工業 (株)製)の粘着剤面 に、上記で作製した凹部が絶縁膜で被覆された導電性基材 (300mm角) 10枚を、 導電性機基材の凸部を形成した面とは反対の面を、隙間無く貼り合わせて、長さ 10 mの格子模様パターンを有する PETフィルム付き SUS箔を得た。次いで、この格子 模様パターンを有する PETフィルム付き SUS箔を図 25に示すような装置のロール 1 11〜128に対し、図 25に示すようにフープ上となるように通した。粘着フィルムで貼り 合わされた導電性基材をフープ状に形成する際のつなぎ目は、市販のガムテープを 用いて貼り合わせた。 Ten conductive substrates (300 mm square) with the recesses prepared above covered with an insulating film on the adhesive surface of a 300 mm wide and 10 m long adhesive film (SGA, manufactured by Hitachi Chemical Co., Ltd.) The surface opposite to the surface on which the convex portions of the conductive machine substrate were formed was pasted together without any gaps to obtain a SUS foil with a PET film having a lattice pattern of 10 m in length. Next, the SUS foil with PET film having this lattice pattern was passed through rolls 111 to 128 of the apparatus as shown in FIG. 25 so as to be on the hoop as shown in FIG. The joint when forming the conductive base material bonded with the adhesive film into a hoop shape was bonded using a commercially available gummed tape.
(導体層パターン付き基材の作製)  (Preparation of substrate with conductor layer pattern)
上記で得られたフープ状導電性基材を用い、図 25に示す装置により導体層パター ン付き基材を作製した。この装置については、を用いて説明する。  Using the hoop-like conductive substrate obtained above, a substrate with a conductor layer pattern was prepared using the apparatus shown in FIG. This apparatus will be described using.
まず初めに、上記で得られたフープ状導電性基材 110はロール 111〜128により、 前処理槽 129、電解浴槽 130、水洗槽 131、黒化処理槽 132、水洗槽 133、防鲭処 理槽 134、水洗槽 135を通って周回するように構成されている。  First of all, the hoop-like conductive substrate 110 obtained above is pre-treated tank 129, electrolytic bath 130, water washing tank 131, blackening treatment tank 132, water washing tank 133, anti-bacterial treatment by rolls 111-128. It is configured to circulate through the tank 134 and the rinsing tank 135.
前処理槽 129には、 5%硫酸水溶液が収容されており、電解浴槽 130には、硫酸 銅(5水塩) 180gZL、硫酸 lOOgZL及びカパラシド HL (アトテックジャパン株式会 社製、添加剤) 70mlZLの水溶液カゝらなり温度が 30°Cに調整された電解液が収容さ れている。黒ィ匕処理槽 132には、コパール (株式会社オーデック製)の 4倍希釈液が 収容されている。また、防鲭処理槽 134には 0. 5%のべンゾトリアゾール水溶液が収 容されている。  The pretreatment tank 129 contains a 5% sulfuric acid aqueous solution, and the electrolytic bath 130 contains copper sulfate (pentahydrate) 180 gZL, sulfuric acid lOOgZL, and Kaparaside HL (manufactured by Atotech Japan Co., Ltd., additive) 70 mlZL. It contains an electrolyte whose temperature is adjusted to 30 ° C. The black soot treatment tank 132 contains a 4-fold diluted solution of Copal (Odek Co., Ltd.). In addition, 0.5% benzotriazole aqueous solution is stored in the fender tank 134.
電解浴槽 130では、フープ状導電性基材 110を陰極とし、含燐銅を陽極として電 流密度を 30AZdm2で電解銅めつきされるように構成されている。本例では、領域 A の凸部の上面に析出する金属の厚さが 3 mになるまでめつきして、導電性基材上 に導体層パターン作製した。 The electrolytic bath 130 is configured such that the hoop-like conductive substrate 110 is used as a cathode, phosphorous copper is used as an anode, and the current density is 30 AZdm 2 . In this example, the metal layer deposited on the upper surface of the convex portion in region A was attached to a thickness of 3 m, and a conductor layer pattern was formed on the conductive substrate.
水洗槽 131における水洗後、導電性基材上の導体層パターンは、コパール液 (株 式会社オーデック製)を用いて実施例 dlと同様に黒ィ匕処理が黒ィ匕処理層 132で行 われ、水洗槽 132における水洗後、防鲭処理槽 134で防鲭処理され、さらに、水洗 槽 135で水洗した後、ロール状にした実施例 d3で用いた接着フィルム 136を用いて 、実施例 d3と同様の条件で、圧着ロール 137を用い、導体層パターンを接着フィル ム 136上に連続的に転写して、導体層パターン付き基材 138を連続的に得、これは ロール状に巻き取られた。 After rinsing in the rinsing tank 131, the conductive layer pattern on the conductive substrate was subjected to blackening treatment in the blackening treatment layer 132 in the same manner as in Example dl using copal liquid (manufactured by Odec Co., Ltd.). After washing with water in the rinsing tank 132, it was rust-treated in the rust-proofing tank 134, further washed with water in the rinsing tank 135, and then rolled into Example d3 using the adhesive film 136 used in Example d3. Under the same conditions, using the crimping roll 137, the conductor layer pattern was continuously transferred onto the adhesive film 136 to obtain the substrate 138 with the conductor layer pattern continuously. It was wound up into a roll.
領域 Aの凸部の上面に析出した銅めつきを、接着フィルムに転写して形成されたパ ターンは、ライン幅 11 μ m、ラインピッチ 300 μ m、導体厚 3 μ mであり、領域 Bの凸 部の上面に析出した銅めつきを、接着フィルムに転写して形成されたパターンは、ラ イン幅 63 μ m、ラインピッチ 350 μ m、導体厚 2. 8 μ mであった。  The pattern formed by transferring the copper plating deposited on the upper surface of the convex part in area A to the adhesive film has a line width of 11 μm, a line pitch of 300 μm, and a conductor thickness of 3 μm. The pattern formed by transferring the copper plating deposited on the top of the protrusions onto the adhesive film had a line width of 63 μm, a line pitch of 350 μm, and a conductor thickness of 2.8 μm.
接着フィルムに転写後、転写されたラインを顕微鏡で観察した結果、全面で、ライン の割れは無力つた。なお、導体層パターン付き基材 138をロール状に巻き取る際に は、導体層パターンの面に離型 PET(S— 32、帝人デュポン株式会社製)が接触す るようにラミネートした。上記導体層パターン付き基材を 50m巻き取った後も、導電性 基材上に析出した銅めつきの転写性に変化が無ぐ導電性基材の凹部に形成された 絶縁膜の剥離箇所も観測されなカゝつた。さらに、得られた導体層パターン付き基材の 領域 Bに対応する部分 (接地部)のラインに、割れは無ぐピンホールもほとんど存在 しなかった。  After the transfer to the adhesive film, the transferred line was observed with a microscope. As a result, the line was completely broken on the entire surface. When the substrate 138 with the conductor layer pattern was wound up in a roll shape, lamination was performed so that the release PET (S-32, manufactured by Teijin DuPont) was in contact with the surface of the conductor layer pattern. Even after the substrate with the conductor layer pattern is wound up to 50 meters, the peeling of the insulating film formed in the recess of the conductive substrate where the transferability of the copper plating deposited on the conductive substrate remains unchanged is also observed. It was n’t. Furthermore, there were almost no pinholes with no cracks in the line of the portion corresponding to region B (grounding portion) of the obtained substrate with a conductor layer pattern.
[0269] 次 ヽで、離型 PETを剥離しながら、得られた導体層パターン付き基材の導体層パ ターンが形成されている面に、接地部は除いて UV硬化型榭脂(ァロニックス UV— 3 701、東亞合成株式会社製)を 15 m厚でコーティングし、その上カゝら PETフィルム (マイラー D、帝人デュポンフィルム株式会社製、 75 m)をラミネートした後、紫外線 ランプを用いて lj/cm2の紫外線を照射して、 、わゆるロール'トウ ·ロール (roll— to -roll)で連続的に保護膜を形成して、保護槽を有する導体層パターン付き基材を 得た。 [0269] Next, while peeling the release PET, the surface of the substrate with the conductor layer pattern obtained on which the conductor layer pattern was formed, except for the grounding part, was cured with UV curable resin (Alonics UV — 3 701, manufactured by Toagosei Co., Ltd. with a thickness of 15 m, and then laminated with PET film (Mylar D, Teijin DuPont Films Co., Ltd., 75 m) and then using an ultraviolet lamp. A protective film was continuously formed with a so-called roll-to-roll by irradiating UV light of / cm 2 to obtain a substrate with a conductor layer pattern having a protective tank.
[0270] [比較例 dl]  [0270] [Comparative Example dl]
ステンレス(SUS304)板にドライフィルムフォトレジスト(HY— 920 (日立化成工業( 株)製、厚み 20 /z m)をロール温度 100°C、線圧 0. 3MPa、ラインスピード lmZmin で貼り合わせた。次に、光不透過部のライン幅 30 m、ラインピッチ 300 mで、外 周に光不透過の額縁部(接地部に対応)を形成したネガパターンを、レジストフイルム を貼り合わせたステンレス板上に静置し、 lOOmjZcm2の条件でネガパターンの上 力も UV照射した。 1%炭酸ナトリウム水溶液で現像して、 SUS板の上に幅 30 /z mの 溝を有するレジストフイルムを形成した。次いで、 150°Cで 1時間の条件で加熱硬化 させた。 A dry film photoresist (HY-920 (manufactured by Hitachi Chemical Co., Ltd., thickness 20 / zm)) was bonded to a stainless steel (SUS304) plate at a roll temperature of 100 ° C, a linear pressure of 0.3 MPa, and a line speed of lmZmin. In addition, a negative pattern with an optically opaque frame (corresponding to the grounding part) with a line width of 30 m and a line pitch of 300 m at the outer periphery and a resist film on the stainless steel plate Then, the negative pattern was applied with UV light under the conditions of lOOmjZcm 2. The resist film was developed with 1% sodium carbonate aqueous solution to form a 30 / zm wide groove on the SUS plate. Heat cure at 1 ° C for 1 hour I let you.
[0271] 次に、上記レジストを形成した SUS板を陰極として電解銅めつき用の電解浴〔硫酸 銅(5水塩) 100gZL、硫酸 180gZL、トップルチナ H— 380 (奥野製薬工業株式会 社製、添加剤) 2. 5mlZLの水溶液、 30°C]中に浸し、含燐銅を陽極として同電解浴 中に浸した。両極に電圧をかけて電流密度を 3AZdm2として、レジストで形成したラ イン部の溝が完全に埋まるようにめつきした。 [0271] Next, an electrolytic bath for electrolytic copper plating using the SUS plate formed with the above resist as a cathode [copper sulfate (pentahydrate) 100gZL, sulfuric acid 180gZL, Top Lucina H-380 (Okuno Pharmaceutical Co., Ltd., Additive) 2. Dipped in 5 ml ZL aqueous solution, 30 ° C], and immersed in the same electrolytic bath with phosphorous copper as anode. As 3AZdm 2 current density by applying a voltage to both electrodes, grooves of the line portion formed in the resist is plated to completely fill.
一方、粘着フィルムとしては、実施例 dlで作製したものを使用した。  On the other hand, what was produced in Example dl was used as an adhesive film.
この粘着フィルムの粘着剤面と、上記 SUS板の銅メツキを施した面を、ロールラミネ ータを用いて貼り合わせた。ラミネート条件は、ロール温度 25°C、圧力 0. lMPa、ラ インスピード lmZminとした。次いで、導電性基材に貼り合わせた粘着フィルムを剥 離したところ、上記 SUS板のレジストの溝に析出した銅が粘着フィルムに転写されて いたが、額縁部に形成した銅 (接地部)は一部、転写されずに導電性基材に残ってし まう箇所が発生した。さらに、正常に転写した部分の接地部を観察した結果、銅の皮 膜に割れが発生していた。  The pressure-sensitive adhesive surface of the pressure-sensitive adhesive film was bonded to the surface of the SUS plate that had been subjected to copper plating using a roll laminator. Lamination conditions were a roll temperature of 25 ° C, a pressure of 0.1 lMPa, and a line speed of lmZmin. Next, when the adhesive film bonded to the conductive substrate was peeled off, the copper deposited in the resist groove of the SUS plate was transferred to the adhesive film, but the copper (grounding part) formed on the frame portion was Some parts remained on the conductive substrate without being transferred. In addition, as a result of observing the ground contact portion of the normally transferred portion, the copper skin film was cracked.
[0272] [比較例 d2] [0272] [Comparative Example d2]
実施例 dlで、ネガフィルムで領域 Bに対応する部分をパターン化せずに光不透過 部とし、導電性基材の上記領域 Bに対応する部分の全面をめつきして得られる導体 層パターン付き基材の接地部を形成したこと以外は、全て実施例 dlと同様にして、 黒化処理を施した導体層パターン付き基材を作製した結果、接地部の銅にピンホー ルが多数発生しており、さらに、その接地部には、全面にわたって、割れが発生して 、ることを確認した。  In Example dl, a conductor layer pattern obtained by attaching the entire surface of the portion corresponding to the region B of the conductive base material to the light opaque portion without patterning the portion corresponding to the region B in the negative film Except for the formation of the grounding part of the base material with an adhesive, all of the pinholes were generated in the copper of the grounding part as a result of producing a substrate with a conductive layer pattern that had been blackened in the same manner as Example dl. In addition, it was confirmed that cracks occurred over the entire surface of the grounding portion.
[0273] 以上の実施例又は比較例で得られた導体層パターンの開口率、可視光透過率、 パターンの異常の有無、視認性、電磁波遮蔽性(300MHz)、パターンを有する導 電性基材の 30回めつき、剥離を繰り返した後の導電性基材の耐久性を評価した結 果を図 30に示す。  [0273] Conductive base material having aperture ratio, visible light transmittance, presence / absence of pattern abnormality, visibility, electromagnetic wave shielding property (300 MHz), pattern, obtained in the above examples or comparative examples Figure 30 shows the results of evaluating the durability of the conductive substrate after repeating the 30th peeling and peeling.
実施例 31  Example 31
[0274] [実施例 el] [Example el]
以下、実施例 31 (以下「実施例 el」ともいう。実施例 35まで同様。)を説明する。 (上面を有する凸部のノターン及びそれによつて描かれる幾何学図形状の凹部を 有する導電性基材の作製) Hereinafter, Example 31 (hereinafter, also referred to as “Example el”. The same applies to Example 35) will be described. (Manufacture of conductive substrate having notched convex part with upper surface and concave part of geometric figure drawn by it)
レジストフイルム(フォテック H— Y920、 20 μ m厚、 日立化成工業株式会社製)を 1 Ocm角のステンレス(SUS304、仕上げ 3Z4H、厚さ 100 /ζ πι、 日新製鋼 (株)製)板 の両面に貼り合わせた。貝占り合わせの条件は、ロール温度 105°C、圧力 0. 5MPa、 ラインスピード lmZminで行った。次いで、光透過部のライン幅が 40 m、ラインピ ツチが 300 μ m、バイアス角度が 45° (正四角形のなかに、ラインが正四角形の辺に 対して 45度の角度になるように配されている)で、格子状に形成したネガフィルムを、 レジストフイルムを貼り合わせたステンレス板の一方の面上に静置した。  Resist film (Photech H—Y920, 20 μm thick, manufactured by Hitachi Chemical Co., Ltd.) on both sides of 1 Ocm square stainless steel (SUS304, finished 3Z4H, thickness 100 / ζ πι, manufactured by Nisshin Steel Co., Ltd.) Pasted together. The shelling conditions were as follows: roll temperature 105 ° C, pressure 0.5 MPa, line speed lmZmin. Next, the line width of the light transmitting part is 40 m, the line pitch is 300 μm, and the bias angle is 45 ° (in the regular square, the line is arranged at an angle of 45 degrees with respect to the side of the regular square. The negative film formed in a lattice shape was allowed to stand on one surface of a stainless steel plate to which a resist film was bonded.
紫外線照射装置を用いて、 600mmHg以下の真空下において、ネガフィルムを載置 したステンレス板の上下から、紫外線を 120miZcm2照射した。さらに。 1%炭酸ナト リウム水溶液で現像することで、 SUS板の上にライン幅 40 m、ラインピッチ 300 m、バイアス角度 45° のレジストマスクを形成した。なお、パターンが形成された面の 反対面は、全面露光されているため、現像されず、全面にレジスト膜が形成されてい る。 Using an ultraviolet irradiation device, ultraviolet rays were irradiated at 120 miZcm 2 from above and below the stainless steel plate on which the negative film was placed under a vacuum of 600 mmHg or less. further. By developing with a 1% aqueous sodium carbonate solution, a resist mask having a line width of 40 m, a line pitch of 300 m, and a bias angle of 45 ° was formed on the SUS plate. Note that the surface opposite to the surface on which the pattern is formed is exposed to the whole surface, so that it is not developed and a resist film is formed on the entire surface.
次いで、 40°Cに加温した塩ィ匕第二鉄水溶液 (45° Be '、鶴見曹達株式会社製)を 用いて、 SUS板をエッチングした。エッチングは、 SUS板のライン幅(凸部上面の幅) が約 7 mになるまで行い、上面を有する凸部のパターン及びそれによつて描かれる 幾何学図形状の凹部を有する導電性基材上にレジストマスクが残っているめつき用 導電性基材(中間品)を作製した。レジストマスクの上カゝら顕微鏡で観察したところ、ラ インの幅(凸部上面の幅)は 5〜8 /ζ πιであった。なお、パターンが形成された面の反 対面は、全面にレジスト膜が形成されているため、エッチングされなかった。  Next, the SUS plate was etched using a salty ferric aqueous solution (45 ° Be ', manufactured by Tsurumi Soda Co., Ltd.) heated to 40 ° C. Etching is carried out until the line width of the SUS plate (the width of the upper surface of the convex portion) reaches about 7 m, on the conductive substrate having the convex portion pattern having the upper surface and the concave portion of the geometrical drawing shape drawn thereby. A conductive base material for intermediate (intermediate product) was prepared in which a resist mask remained. When the surface of the resist mask was observed with a microscope, the width of the line (the width of the upper surface of the convex portion) was 5 to 8 / ζ πι. The surface opposite to the surface on which the pattern was formed was not etched because a resist film was formed on the entire surface.
(絶縁膜を有する導電性基材の作製)  (Preparation of conductive substrate with insulating film)
次いで、上記の導電性基材(中間品)を陰極にして、陽極をステンレス(SUS 304) 板として、カチオン型電着塗料 (Insuleed3020、 日本ペイント (株)製)中で、 15V10 秒の条件で、格子模様状にエッチングされたステンレス板に電着塗装した。水洗後 1 00°C10分間乾燥した後、 2%水酸ィ匕ナトリウム水溶液でレジストマスクを剥離し、次 いで、窒素気流下、 230°Cで 40分間電着塗膜を焼付けした。炉内の酸素濃度は 1% であった。電着塗料の塗膜厚は、 2. であった。このようにして得られた凹部が 絶縁膜で覆われためっき用導電性基材は、その断面が図 11— eに示すように凹部に 選択的に絶縁膜が形成されたものであった。 Next, using the conductive substrate (intermediate product) as a cathode, the anode as a stainless steel (SUS 304) plate, and in a cationic electrodeposition paint (Insuleed3020, manufactured by Nippon Paint Co., Ltd.) under the condition of 15V10 seconds Then, electrodeposition was applied to a stainless steel plate etched into a lattice pattern. After washing with water and drying at 100 ° C for 10 minutes, the resist mask was peeled off with a 2% aqueous sodium hydroxide solution, and then the electrodeposition coating film was baked at 230 ° C for 40 minutes in a nitrogen stream. The oxygen concentration in the furnace is 1% Met. The coating thickness of the electrodeposition paint was 2. The conductive base material for plating in which the recesses thus obtained were covered with an insulating film had an insulating film selectively formed in the recesses as shown in FIG. 11-e.
[0276] (銅めつき)  [0276] (with copper)
次いで、上記で得られためっき用導電性基材の凹凸のパターンが形成されていな V、面 (裏面)に粘着フィルム (ヒタレックス K— 3940B、日立化成工業 (株)製)を貼り 付けた。この粘着フィルムを貼り付けためっき用導電性基材を陰極として電解銅めつ きを行った。電解銅めつき浴 (硫酸銅(5水塩) 230gZL、硫酸 55gZL、キューブライ ト # 1AHH (荏原ユージライト株式会社、添加剤) 4mlZLの水溶液、 25°C)中に、上 記めつき用導電性基材を陰極として、また、含燐銅を陽極としてに浸した。両極に電 圧をかけて、電流密度を 5AZdm2として、めっき用導電性基材の凸部の上面に析出 した金属の厚さが 5 μ mになるまでめつきした。 Next, an adhesive film (Hitalex K-3940B, manufactured by Hitachi Chemical Co., Ltd.) was pasted on the surface (back surface) V where the uneven pattern of the conductive substrate for plating obtained above was not formed. Electrolytic copper plating was performed using the conductive substrate for plating with the adhesive film attached as a cathode. Electrolytic copper plating bath (copper sulfate (pentahydrate) 230gZL, sulfuric acid 55gZL, cube light # 1AHH (Sugawara Eugilite, additive) 4mlZL aqueous solution, 25 ° C) The porous substrate was immersed in the cathode and the phosphorous copper was immersed in the anode. Voltage was applied to both electrodes, and the current density was set to 5AZdm 2 until the thickness of the metal deposited on the upper surface of the convex part of the conductive base material for plating reached 5 μm.
[0277] (転写用粘着フィルムの作製)  [0277] (Preparation of adhesive film for transfer)
厚さ 100 mのポリエチレンテレフタレート(PET)フィルム(A— 4100、東洋紡績株 式会社製)の表面にプライマー (HP— 1、日立化成工業株式会社製)を厚さ 1 m) に、粘着層としてアクリルポリマ (HTR— 280、長瀬ケムテック製)を厚さ 10 mに順 次塗布して転写用粘着フィルムを作製した。  A primer (HP-1; manufactured by Hitachi Chemical Co., Ltd.) 1 m thick on the surface of a 100 m thick polyethylene terephthalate (PET) film (A-4100, manufactured by Toyobo Co., Ltd.) as an adhesive layer Acrylic polymer (HTR-280, manufactured by Nagase Chemtech) was sequentially applied to a thickness of 10 m to prepare an adhesive film for transfer.
[0278] (転写)  [0278] (Transcription)
上記転写用粘着フィルムの粘着層の面と、上記めつき用導電性基材の銅メツキを 施した面を、ロールラミネータを用いて貼り合わせた。ラミネート条件は、ロール温度 2 5°C、圧力 0. lMPa、ラインスピード lmZminとした。次いで、めっき転写用版に貼り 合わせた粘着フィルムを剥離したところ、上記めつき用導電性基材の凸部の上面に 析出した銅が粘着フィルムに転写されていた。これにより、ライン幅 11〜18 /ζ πι、ライ ンピッチ 300 μ m、導体厚さ 5 μ mの格子状金属パターン力もなる導体層パターン付 き基材が得られた。転写後のめっき用導電性基材の表面を観察した結果、絶縁膜が 剥離して 、る箇所はな力つた。  The surface of the pressure-sensitive adhesive layer of the transfer pressure-sensitive adhesive film and the surface subjected to copper plating of the conductive substrate for adhesion were bonded together using a roll laminator. Lamination conditions were a roll temperature of 25 ° C, a pressure of 0.1 MPa, and a line speed of lmZmin. Subsequently, when the adhesive film bonded to the plating transfer plate was peeled off, the copper deposited on the upper surface of the convex portion of the adhesive conductive substrate was transferred to the adhesive film. As a result, a substrate with a conductor layer pattern having a line width of 11 to 18 / ζ πι, a line pitch of 300 μm, and a conductor thickness of 5 μm and having a grid-like metal pattern force was obtained. As a result of observing the surface of the electroconductive substrate for plating after the transfer, the insulating film was peeled off, and the part where the insulation film was peeled was strong.
[0279] (保護膜の形成) [0279] (Formation of protective film)
上記で得られた導体層ノターン付き基材の導体層パターンが存在する面に、 UV 硬化型榭脂ヒタロイド 7983AA3 (日立化成工業 (株)製)をコーティングし、ポリカー ボネートフィルム(マクロホール DE、バイエル株式会社製、 75 μ m)でラミネートして 導体層パターンを UV硬化型榭脂中に埋没させた後、紫外線ランプを用いて UZc m2の紫外線を照射して UV硬化型榭脂を硬化させて、保護膜を有する導体層パター ン付き基材を得た。 On the surface where the conductor layer pattern of the substrate with the conductor layer pattern obtained above exists, UV Coated curable resin hyaloid 7983AA3 (manufactured by Hitachi Chemical Co., Ltd.) and laminated with polycarbonate film (macro hole DE, Bayer Co., Ltd., 75 μm). Conductor layer pattern in UV curable resin Then, the substrate was coated with a conductor layer pattern having a protective film by irradiating UV light of UZc m 2 with an ultraviolet lamp to cure the UV curable resin.
[0280] (繰り返し使用) [0280] (Repeated use)
次いで、上記のめっき用導電性基材を用いて、銅めつき一転写の工程を上記と同 様にして 250回繰り返した結果、銅めつきの転写性に変化が無ぐ絶縁膜の剥離箇 所も観測されな力つた。また、得られた導体層パターン付き基材 (保護膜付き)の可 視光透過率は 80%以上であった。  Next, using the above conductive substrate for plating, the process of one transfer of copper plating was repeated 250 times in the same manner as described above, and as a result, the insulating film was peeled off with no change in the transfer performance of copper plating. Was also not observed. Further, the visible light transmittance of the obtained base material with a conductor layer pattern (with a protective film) was 80% or more.
実施例 32  Example 32
[0281] [実施例 e2] [0281] [Example e2]
(上面を有する凸部のノターン及びそれによつて描かれる幾何学図形状の凹部を 有する導電性基材の作製)  (Manufacture of conductive substrate having notched convex part with upper surface and concave part of geometric figure drawn by it)
10cm角のステンレス(SUS304、仕上げ 3Z4H、厚さ 100 m、 日新製鋼(株)製 )に 400メッシュのポリエステル製スクリーン版にライン幅が 40 μ m、ラインピッチが 22 5 m、バイアス角度力 5° で、格子状のパターンを形成した版を用い、アルカリ除 去型エッチングレジストインク(226Black、 Nazdar Company製)を塗布した後、ス キージで余分なレジストインクを 50mmZminの速度でかき取った。また、もう一方の 面には、上記レジストインクを全体に塗布した。乾燥炉を用いて 120°Cで 5分乾燥さ せ、 SUS板の一方の面上にライン幅 40 μ m、ラインピッチ 225 μ m、バイアス角度 4 5° のレジストマスクを形成し、他方の面全体にレジスト膜を形成した。さらに、 40°C に加温した塩化第二鉄水溶液 (45° Be '、鶴見曹達株式会社製)を用いて、 SUS板 をエッチングした。エッチングは、 SUS板に形成される凸部の上面の幅 (ライン幅)が 30 mになるまで行い、上面を有する凸部のパターン及びそれによつて描かれる幾 何学図形状の凹部を有する導電性基材上にレジストマスクが残っているめつき用導 電性基材(中間体)を作製した。レジストマスクの上カゝら顕微鏡で観察したところ、ライ ンの幅は 29〜32 μ mであった。 [0282] (絶縁膜を有する導電性基材の作製) 10 cm square stainless steel (SUS304, finish 3Z4H, thickness 100 m, manufactured by Nisshin Steel Co., Ltd.), 400 mesh polyester screen plate, line width 40 μm, line pitch 2225 m, bias angle force 5 Then, using a plate on which a lattice pattern was formed, an alkali-removable etching resist ink (226Black, manufactured by Nazdar Company) was applied, and then excess resist ink was scraped off at a speed of 50 mmZmin. On the other side, the resist ink was applied to the entire surface. Dry it at 120 ° C for 5 minutes using a drying furnace, and form a resist mask with a line width of 40 μm, a line pitch of 225 μm, and a bias angle of 45 ° on one side of the SUS plate. A resist film was formed on the entire surface. Further, the SUS plate was etched using a ferric chloride aqueous solution (45 ° Be ′, manufactured by Tsurumi Soda Co., Ltd.) heated to 40 ° C. Etching is performed until the width (line width) of the upper surface of the convex portion formed on the SUS plate reaches 30 m, and the conductive substrate having the convex portion pattern having the upper surface and the geometrical figure-shaped concave portion drawn thereby. A conductive base material for adhesion (intermediate) in which the resist mask remained on the material was produced. The width of the line was 29 to 32 μm as observed with a microscope over the resist mask. [0282] (Production of conductive substrate having insulating film)
次いで、上記の導電性基材を陽極にして、陰極をチタン板として、ァ-オン型電着 塗料 (AMG— 5EZ5W、(株)シミズ製)中で、 10V60秒の条件で、上記めつき用導 電性基材(中間体)に電着塗装した。水洗後 100°C10分間乾燥した後、 2%水酸ィ匕 ナトリウム水溶液でレジストマスクを剥離し、次いで、 180°C30分の条件で窒素気流 下電着塗膜を焼付けた。炉内の酸素濃度は 0. 5%であった。電着塗料の塗布厚は 、 3. l /z mであった。このようにして得られた凹部が絶縁膜で覆われためっき用導電 性基材は、その断面が図 11— eに示すように凹部に選択的に絶縁膜が形成されたも のであった。  Next, with the above conductive base material as the anode, the cathode as the titanium plate, and in the metal-on electrodeposition paint (AMG-5EZ5W, manufactured by Shimizu Co., Ltd.) for 10V 60 seconds, Electroconductive coating (intermediate) was electrodeposited. After washing with water and drying at 100 ° C for 10 minutes, the resist mask was peeled off with a 2% aqueous sodium hydroxide solution, and then the electrodeposition coating film was baked under a nitrogen stream at 180 ° C for 30 minutes. The oxygen concentration in the furnace was 0.5%. The coating thickness of the electrodeposition paint was 3. l / z m. The conductive substrate for plating in which the recesses thus obtained were covered with an insulating film was such that the insulating film was selectively formed in the recesses as shown in FIG. 11-e.
[0283] (銅めつき)  [0283] (with copper)
さらに、上記で得られためっき用導電性基材の凹凸のパターンが形成されていない 面 (裏面)に粘着フィルム (ヒタレックス K— 3940B、日立化成工業 (株)製)を貼り付け た。この粘着フィルムを貼り付けためっき用導電性基材を陰極として、また、含燐銅を 陽極として電解銅めつき用の電解浴 (硫酸銅(5水塩) 250gZL、硫酸 70gZL、キュ 一ブライト AR (荏原ユージライト株式会社製、添加剤) 4mlZLの水溶液、 25°C)中 に浸し、両極に電圧をかけて電流密度を2 OAZdm2として、めっき用導電性基材の 凸部の上面に析出した金属の厚さが 3 μ mになるまでめつきした。 Further, an adhesive film (Hitalex K-3940B, manufactured by Hitachi Chemical Co., Ltd.) was attached to the surface (back surface) where the uneven pattern of the conductive substrate for plating obtained above was not formed. Electrolytic bath for electrolytic copper plating (copper sulfate (pentahydrate) 250gZL, sulfuric acid 70gZL, Cubright AR) using the conductive substrate for plating with this adhesive film as the cathode and phosphorous copper as the anode (Supplied by EBARA Eugeneite Co., Ltd., 4mlZL in water, 25 ° C), voltage is applied to both electrodes, the current density is 2 OAZdm 2 , and deposits on the top of the convex part of the conductive substrate for plating Until the thickness of the finished metal reached 3 μm.
[0284] (転写)  [0284] (Transcription)
次いで、実施例 elで得たのと同一の転写用粘着フィルムをその粘着層力 上記め つき用導電性基材の銅めつきを施した面に接するように、ロールラミネータを用いて 貼り合わせた。ラミネート条件は、ロール温度 25°C、圧力 0. lMPa、ラインスピード 1 mZminとした。次いで、めっき用導電性基材力 粘着フィルムを剥離すると、上記め つき用導電性基材の凸部の上面に析出した銅が粘着層表面に転写された。このよう にして、ライン幅 34〜38 μ m、ラインピッチ 225 μ m、導体厚 3 μ mの格子状金属パ ターンが接着フィルム上に転写され、導体層パターン付き基材を得た。  Next, the same adhesive film for transfer as obtained in Example el was bonded using a roll laminator so that the adhesive layer strength was in contact with the copper-plated surface of the conductive substrate for bonding. . Lamination conditions were a roll temperature of 25 ° C, a pressure of 0.1 MPa, and a line speed of 1 mZmin. Next, when the adhesive substrate film for plating was peeled off, the copper deposited on the upper surface of the convex portion of the conductive substrate for plating was transferred to the surface of the adhesive layer. In this way, a grid-like metal pattern having a line width of 34 to 38 μm, a line pitch of 225 μm, and a conductor thickness of 3 μm was transferred onto the adhesive film to obtain a substrate with a conductor layer pattern.
[0285] (保護膜の形成) [0285] (Formation of protective film)
上記で得られた導体層パターン付き基材の導体層パターンが存在する面に、実施 例 elと同様にして UV硬化型榭脂ヒタロイド 7983AA3 (日立化成工業 (株)製)をコ 一ティングした後、 PETフィルム (A— 4100、東洋紡績 (株)製、 75 m)の易接着処 理を施して ヽな 、面を、 UV硬化型榭脂とでラミネートして導体層パターンを UV硬化 型榭脂中に埋没させた。さらに、紫外線ランプを用いて UZcm2の紫外線を照射して UV硬化型榭脂を硬化させた後、 PETフィルム (A— 4100、東洋紡績 (株)製、 75 m)を剥離して、保護膜を有する導体層パターン付き基材を得た。 On the surface where the conductor layer pattern of the base material with the conductor layer pattern obtained above is present, UV curable resin hyaloid 7983AA3 (manufactured by Hitachi Chemical Co., Ltd.) is copied in the same manner as in Example el. After coating, PET film (A-4100, manufactured by Toyobo Co., Ltd., 75 m) was subjected to easy adhesion treatment, and the surface was laminated with UV curable resin to form a conductor layer pattern. It was embedded in UV-cured cocoon. Furthermore, after UV curing type resin was cured by irradiating UZcm 2 ultraviolet rays using an ultraviolet lamp, the PET film (A-4100, manufactured by Toyobo Co., Ltd., 75 m) was peeled off to form a protective film. A base material with a conductor layer pattern was obtained.
[0286] (繰り返し使用) [0286] (Repeated use)
上記のめっき転写用導電性基材を用いて、銅めつき一転写の工程を上記と同様に して 250回繰り返した結果、銅めつきの転写性に変化が無ぐ絶縁膜の剥離箇所も 観測されな力つた。また、得られた導体層パターン付き基材 (保護膜付き)の可視光 透過率は 80%以上であった。  Using the above conductive substrate for plating transfer, the process of one transfer with copper was repeated 250 times in the same manner as above, and as a result, the peeled part of the insulating film with no change in the transfer property of copper plating was observed. The power was not. Further, the visible light transmittance of the obtained base material with a conductor layer pattern (with a protective film) was 80% or more.
実施例 33  Example 33
[0287] [実施例 e3] [0287] [Example e3]
直径 150mm、幅 200mmのステンレス製ロールの表面に、レジストフイルム(フォテ ック H— Y920、 20 /z m厚、 日立化成工業株式会社製)を巻き付けて、室温でハンド ロールを用い圧力をかけて貼り合わせた。次いで、光透過部のライン幅が 35 m、ラ インピッチが 275 μ m、バイアス角が 45° で、格子状に形成されたネガフィルムを、レ ジストフイルムの上力も巻き付け、平行露光機の下で手で回しながら露光した。さらに 1%炭酸ナトリウム水溶液で現像することによってステンレス製ロールの表面にライン 幅 60 μ m、ラインピッチ 275 μ mのレジストマスクを形成した。曲面上にネガフィルム を巻き付けている部分に平行露光機で露光したためネガフィルムのライン幅よりもレ ジストマスクのライン幅は太くなつた。さらに、 40°Cに加熱した塩ィ匕第二鉄溶液を用い て、ステンレス製のロールをエッチングし、ステンレス製ロールの表面に格子模様状 のパターン(ライン幅、すなわち、凸部上面の幅20〜27 111、ピッチ 275 m、凸部 の高さ 30 m)を形成した。この段階で凸部上面上にレジストマスクはまだ残存して いる。  A resist film (Phototech H—Y920, 20 / zm thickness, manufactured by Hitachi Chemical Co., Ltd.) is wrapped around a stainless steel roll with a diameter of 150 mm and a width of 200 mm, and is applied with pressure using a hand roll at room temperature. Combined. Next, a negative film formed in a lattice shape with a line width of 35 m, a line pitch of 275 μm, and a bias angle of 45 ° was also wrapped around the resist film's upper force, under a parallel exposure machine. It was exposed while turning by hand. Further, a resist mask having a line width of 60 μm and a line pitch of 275 μm was formed on the surface of the stainless steel roll by developing with a 1% sodium carbonate aqueous solution. Because the part of the negative film wrapped around the curved surface was exposed with a parallel exposure machine, the resist mask line width was thicker than the negative film line width. Furthermore, the stainless steel roll was etched using a salted ferric iron solution heated to 40 ° C., and a lattice pattern (line width, ie, the width of the upper surface of the convex portion 20) was formed on the surface of the stainless steel roll. ˜27 111, pitch 275 m, convex height 30 m). At this stage, the resist mask still remains on the upper surface of the convex portion.
次いで、上記のステンレス製のロールを陰極にして、陽極をステンレス(SUS304) 板として、カチオン型電着塗料 (Insuleed3020、 日本ペイント (株)製)中で、 15V10 秒の条件で、格子模様状にエッチングされたステンレス製のロールに電着塗装した。 水洗後 100°C10分間乾燥した後、 2%水酸ィ匕ナトリウム水溶液でレジストマスクを剥 離した。 230°C40分の条件でアルゴン雰囲気下で焼付けした。その時の酸素濃度は 2%であった。電着塗料の塗布厚は、 2. であった。 Next, the above-mentioned stainless steel roll is used as the cathode, the anode as the stainless steel (SUS304) plate, and in a cationic electrodeposition paint (Insuleed3020, manufactured by Nippon Paint Co., Ltd.) in a grid pattern at 15V10 seconds. Electrodeposition coating was performed on an etched stainless steel roll. After washing with water and drying at 100 ° C for 10 minutes, the resist mask was peeled off with a 2% aqueous sodium hydroxide solution. Baking was performed under an argon atmosphere at 230 ° C. for 40 minutes. The oxygen concentration at that time was 2%. The coating thickness of the electrodeposition paint was 2.
図 24に示すような装置構成で回転体 103に電気銅めつきした。陽極 102には白金 でコーティングしたチタン製の不溶性電極を用いた。陰極には上記ステンレス製の口 ールをドラム電極とした。電解銅めつき用の電解浴 100には、硫酸銅(5水塩) 70gZ L、硫酸 180gZL、カバラシド HL (アトテックジャパン株式会社製、添加剤) 20mlZ Lの水溶液で 25°Cの電解液 101が収容され配管 104を通じてポンプ 105により、陽 極 102と回転体 103の間に送られ、満たされている。回転体 103の約半分がこの電 解液に浸漬している。電流密度を 7AZdm2となるように、両極に電圧をかけて上記 導電性基材の領域 Aの凸部の上面に析出する金属の厚みが 2 m厚になるまでめ つきした。このとき。上記のステンレスロールを lmZ分の速度で回転させるようにした 実施例 elで作製した粘着フィルムをー且ロール状で巻き取り、ロール状の粘着フィ ルムとした。このロール状の粘着フィルムから粘着フィルム 107を巻き出し、その粘着 剤層の面を上記回転体 (ステンレスロール)の凸部の上面に析出した金属 (銅) 106 に圧着ロール 108により実施例 elと同様のラミネート条件で、連続的に貼り合わせる とともに剥離することにより、金属 106を粘着フィルムの粘着剤層に転写して、導体層 ノ ターン付き基材 109を連続的に作製した。導体層パターン付き基材 109はロール 状に巻き取られた(図示せず)。また、このとき、粘着フィルムの導体層パターンが転 写された面に離型 PET(S— 32、帝人デュポン株式会社製)をラミネートしながら巻き 取ることにより、卷取り時のブロッキングを防止した。導体層パターンは、ライン幅 22 〜31 m、ラインピッチ 275 μ m、導体厚 2 μ mであった。銅めつきが転写された粘 着フィルムを 50m巻き取った後も、ステンレスロール上への銅めつきとその転写性に 変化が無ぐ絶縁膜の剥離箇所も観測されな力つた。 Electroplated copper was attached to the rotating body 103 with the apparatus configuration shown in FIG. As the anode 102, an insoluble electrode made of titanium coated with platinum was used. The stainless steel tool was used as the drum electrode for the cathode. In electrolytic bath 100 for electrolytic copper plating, copper sulfate (pentahydrate) 70gZ L, sulfuric acid 180gZL, Kabaraside HL (manufactured by Atotech Japan Co., Ltd.) 20mlZ L of aqueous solution 25 ° C electrolyte 101 It is accommodated and sent between the anode 102 and the rotating body 103 by the pump 105 through the pipe 104 and filled. About half of the rotating body 103 is immersed in this electrolytic solution. A voltage was applied to both electrodes so that the current density was 7 AZdm 2, and plating was performed until the thickness of the metal deposited on the upper surface of the convex portion in the region A of the conductive substrate became 2 m. At this time. The above-mentioned stainless steel roll was rotated at a speed of lmZ. The pressure-sensitive adhesive film produced in Example el was rolled up in a roll shape to obtain a roll-shaped pressure-sensitive adhesive film. The pressure-sensitive adhesive film 107 is unwound from the roll-shaped pressure-sensitive adhesive film, and the surface of the pressure-sensitive adhesive layer is applied to the metal (copper) 106 deposited on the upper surface of the convex portion of the rotating body (stainless steel roll) by the pressure-bonding roll 108 and the el. By continuously laminating and peeling under the same lamination conditions, the metal 106 was transferred to the pressure-sensitive adhesive layer of the pressure-sensitive adhesive film, and the substrate 109 with a conductor layer pattern was continuously produced. The substrate 109 with the conductor layer pattern was wound up in a roll (not shown). Also, at this time, blocking during scraping was prevented by winding while releasing release PET (S-32, manufactured by Teijin DuPont Co., Ltd.) on the surface of the adhesive film on which the conductor layer pattern was transferred. The conductor layer pattern had a line width of 22 to 31 m, a line pitch of 275 μm, and a conductor thickness of 2 μm. Even after 50 m of the adhesive film to which the copper plating had been transferred, the copper plating on the stainless steel roll and the insulating film peeling site where there was no change in the transferability were observed.
得られた導体層パターン付き基材の一部を切り取り、導体層パターンが形成されて いる面に、 UV硬化型榭脂(ァロニックス UV— 3701、東亞合成株式会社製)をアプリ ケータ (ヨシミツ精機株式会社製、 YBA型)を用いて 15 m厚でコーティングし、 PE Tフィルム(マイラー D、帝人デュポンフィルム株式会社製、 75 m)をハンドロールを 用 、て気泡が入らな 、ように静かにラミネートした後、紫外線ランプを用 、て lj/cm2 の紫外線を照射して、保護膜を形成した。 A portion of the obtained base material with a conductor layer pattern is cut off, and a UV curable resin (Alonics UV-3701, manufactured by Toagosei Co., Ltd.) is applied to the surface on which the conductor layer pattern is formed (Yoshimi Seiki Co., Ltd.). Coated with 15m thickness using PEBA (made by company), PE T film (Mylar D, manufactured by Teijin DuPont Film Co., Ltd., 75 m) is laminated gently using a hand roll so that air bubbles do not enter, and then irradiated with ultraviolet rays of lj / cm 2 using an ultraviolet lamp. Thus, a protective film was formed.
得られた導体層パターン付き基材 (保護膜付き)の可視光透過率は 80%以上であ つた o  The resulting substrate with a conductor layer pattern (with a protective film) has a visible light transmittance of 80% or more.
実施例 34 Example 34
[実施例 e4]  [Example e4]
(上面を有する凸部のノターン及びそれによつて描かれる幾何学図形状の凹部を 有する導電性基材の作製)  (Manufacture of conductive substrate having notched convex part with upper surface and concave part of geometric figure drawn by it)
ロール状に巻いた SUS304箔(日新製鋼 (株)製、仕上げ 3Z4H、幅 200mm、厚 さ 100 /z m)と、 PETフィルム(A— 4100、東洋紡製)にバイロン UR— 1350 (接着剤 、東洋紡 (株)製)を乾燥塗布厚が 20 μ mとなるように塗布して作製したロール状の接 着フィルムをロールラミネータで貼りあわせて、ロール状の PETフィルム付き SUS箔( 未加工)を作製した。ラミネート条件は、ロール温度 120°C、プレヒート 120°C30秒、 圧力 3MPa、ラインスピード 0. 5mZminとした。  Rolled SUS304 foil (Nisshin Steel Co., Ltd., finished 3Z4H, width 200mm, thickness 100 / zm), PET film (A-4100, manufactured by Toyobo), Byron UR-1350 (adhesive, Toyobo) Roll-type adhesive film made by applying (Co., Ltd.) to a dry coating thickness of 20 μm is pasted together using a roll laminator to produce a rolled SUS foil with PET film (unprocessed) did. Lamination conditions were a roll temperature of 120 ° C, a preheat of 120 ° C for 30 seconds, a pressure of 3 MPa, and a line speed of 0.5 mZmin.
次 、で、上記で作製したロール状の PETフィルム付き SUS箔(未加工)及びロール 状のレジストフイルム (フォテック H— Y920、 20 μ m厚、 日立化成工業株式会社製) をそれぞれ巻きだして、 SUS304箔が露出している方の面にレジストフイルムをロー ルラミネータで連続的に貼り合わせ、ロール状に巻き取った。貼り合わせの条件は、 ロール温度 105°C、圧力 0. 5MPa、ラインスピード lmZminで行った。  Next, roll the SUS foil with roll PET film (unprocessed) and the roll resist film (Photech H-Y920, 20 μm thickness, manufactured by Hitachi Chemical Co., Ltd.) A resist film was continuously pasted with a roll laminator on the surface where the SUS304 foil was exposed, and wound into a roll. The bonding conditions were a roll temperature of 105 ° C, a pressure of 0.5 MPa, and a line speed of lmZmin.
次いで、光透過部のライン幅が 40 μ m、ラインピッチが 400 μ m、バイアス角度が 4 5° で、格子状に形成したネガフィルムを、レジストフイルムを貼り合わせたステンレス を一部卷出し、その上に静置した。紫外線照射装置を用いてネガフィルムの上から 紫外線を 120mjZcm2照射した。露光した部分を卷取り、露光していないレジストフ イルムを貼り合わせた部分を巻きだして上と同様の条件でネガフィルムを静置して紫 外線を照射した。 Next, a part of the negative film formed in a lattice shape with a line width of 40 μm, a line pitch of 400 μm, a bias angle of 45 °, and a resist film-laminated stainless steel is crushed, It was left on it. Using an ultraviolet irradiation device, 120 mjZcm 2 of ultraviolet rays were irradiated from above the negative film. The exposed part was scraped, the part where the unexposed resist film was bonded was unwound, and the negative film was allowed to stand under the same conditions as above and irradiated with ultraviolet rays.
この工程を 10回繰り返して SUS304箔上に 10パターンを露光した。これを 1%炭 酸ナトリウムを使用して現像機を通して現像することで SUS箔の上にライン幅 40 μ m 、ラインピッチが 400 μ mのレジストマスクが一定間隔で配置された PETフィルム付き SUS304箔を形成した。次いで、この PETフィルム付き SUS箔をエッチングラインに 通し、 SUS箔に格子模様状のパターン (ライン幅、すなわち、凸部上面の幅 9〜14 μ m、ピッチ 400 μ m、凸部の高さ 20 μ m)を一定間隔に配置した導電性基材を作 製した。 This process was repeated 10 times to expose 10 patterns on SUS304 foil. This is developed through a developing machine using 1% sodium carbonate, and the line width is 40 μm on the SUS foil. Then, a SUS304 foil with a PET film in which resist masks having a line pitch of 400 μm were arranged at regular intervals was formed. Next, this SUS foil with PET film is passed through an etching line, and a lattice-like pattern (line width, that is, the width of the upper surface of the convex portion is 9 to 14 μm, the pitch is 400 μm, the height of the convex portion is 20 A conductive base material with μm) arranged at regular intervals was produced.
[0290] (絶縁膜を有する導電性基材の作製)  [0290] (Preparation of conductive substrate having insulating film)
次いで、エッチングした PETフィルム付き SUS箔をパターン毎に切断した後、個々 の PETフィルム付き SUS箔毎に、それを陰極にして、陽極をステンレス(SUS304) 板として、カチオン型電着塗料 (AMG— 5EZ5W、(株)シミズ製)中で、 20V60秒 の条件で、格子模様状にエッチングされたステンレス板に電着塗装した。水洗後 100 °C15分間乾燥した後、 2%水酸ィ匕ナトリウムでレジストマスクを剥離し、電着塗膜を 2 00°Cで 30分の条件で窒素雰囲気下で焼付けし、凹部が絶縁層で覆われた PETフ イルム付きめつき用導電性基材を得た。その時の酸素濃度は 0. 5%であった。電着 塗料の塗布厚は、 であった。同様の作業で凹部が絶縁層で覆われた PETフィ ルム付きめつき用導電性基材を合計で 10枚製造した。  Next, the etched SUS foil with PET film was cut into patterns, and each SUS foil with PET film was made into a cathode, and the anode was made into a stainless steel (SUS304) plate. 5EZ5W (manufactured by Shimizu Co., Ltd.), electrodeposition was applied to a stainless steel plate etched in a lattice pattern under the condition of 20V 60 seconds. After washing with water and drying at 100 ° C for 15 minutes, the resist mask is peeled off with 2% sodium hydroxide, and the electrodeposition coating film is baked at 200 ° C for 30 minutes in a nitrogen atmosphere. A conductive base material for plating with a PET film covered with a coating was obtained. The oxygen concentration at that time was 0.5%. The coating thickness of the electrodeposition paint was: In the same manner, a total of 10 conductive substrates for stencil attachment with PET film in which the recesses were covered with an insulating layer were manufactured.
[0291] (フープ状導電性基材の作製) [0291] (Production of hoop-like conductive substrate)
次 、で、幅 200mm、長さ 10mの粘着フィルム(SGA、 日立化成工業 (株)製)の粘 着剤面に、上記で作製した 10枚の凹部が絶縁層で覆われた PETフィルム付きめつ き用導電性基材の PETフィルム面を、隙間無く貼り合わせて、長さ 10mの凹部が絶 縁層で覆われた PETフィルム付きめつき用導電性基材 (以下、長尺のめっき用導電 性基材という)を得た。次いで、図 25に示すような装置に、上記長尺のめっき用導電 性基材を通紙し、フープ状導電性基材を得た。つなぎ目は、市販のガムテープを用 いて繋ぎ目の裏側から貼り合わせ、表側は銅テープ (CHO— FOIL、 50mm幅、太 陽金網株式会社製)で貼り合わせた。  Next, on the adhesive surface of an adhesive film (SGA, manufactured by Hitachi Chemical Co., Ltd.) with a width of 200 mm and a length of 10 m, the PET film with the 10 recesses prepared above covered with an insulating layer is attached. The PET film surface of the conductive substrate for bonding is bonded without gaps, and the 10m long recess is covered with an insulating layer. A conductive substrate). Next, the long conductive substrate for plating was passed through an apparatus as shown in FIG. 25 to obtain a hoop-like conductive substrate. The joint was bonded from the back side of the joint using a commercially available gum tape, and the front side was bonded with a copper tape (CHO-FOIL, 50 mm width, manufactured by Taiyo Wire Mesh Co., Ltd.).
[0292] (導体層パターン付き基材の作製) [0292] (Preparation of substrate with conductor layer pattern)
上記で得られたフープ状導電性基材を用い、図 25に示す装置を用い、実施例 d7 に準じて、導体層パターン付き基材を作製した。  Using the hoop-like conductive substrate obtained above, a substrate with a conductor layer pattern was produced according to Example d7 using the apparatus shown in FIG.
得られた導体層パターン付き基材の導体層パターンは、ライン幅 11〜16 m、ライ ンピッチ 400 m、厚さ 1 mであった。 The obtained conductor layer pattern of the substrate with the conductor layer pattern has a line width of 11 to 16 m and a line width of 11 to 16 m. The pitch was 400 m and the thickness was 1 m.
上記導体層ノターンのラインを顕微鏡で観察した結果、全面で、ラインの割れは無 かった。なお、導体層パターン付き基材 138をロール状に巻き取る際には、導体層パ ターンの面に離型 PET (S— 32、帝人デュポン株式会社製)が接触するようにラミネ ートした。上記導体層パターン付き基材を 50m巻き取った後も、導電性基材上に析 出した銅めつきの転写性に変化が無ぐ導電性基材の凹部に形成された絶縁膜の剥 離箇所も観測されなカゝつた。  As a result of observing the line of the conductor layer no-turn with a microscope, there was no crack on the entire surface. When the substrate 138 with the conductor layer pattern was wound up in a roll shape, lamination was performed so that the release PET (S-32, manufactured by Teijin DuPont) was in contact with the surface of the conductor layer pattern. Even after the substrate with the conductor layer pattern is wound up to 50 meters, the insulating film formed in the recess of the conductive substrate has no change in the transferability of the copper plating deposited on the conductive substrate. It was not observed.
[0293] 次 ヽで、離型 PETを剥離しながら、得られた導体層パターン付き基材の導体層パ ターンが形成されている面に、 UV硬化型榭脂(ァロニックス UV— 3701、東亞合成 株式会社製)を 15 m厚でコーティングし、 PETフィルム(マイラー D、帝人デュポン フィルム株式会社製、 75 m)でラミネートした後、紫外線ランプを用いて UZcm2の 紫外線を照射して、 、わゆるロール'トウ ·ロール (roll— to—roll)で連続的に保護膜 を形成して、保護槽を有する導体層パターン付き基材を得た。 [0293] In the next step, while peeling the release PET, the surface of the obtained substrate with the conductor layer pattern on which the conductor layer pattern was formed was applied to the UV curable resin (Aronix UV-3701, Toagosei Co., Ltd.). Co., Ltd.) is coated with a thickness of 15 m, laminated with PET film (Mylar D, Teijin DuPont Films Co., Ltd., 75 m), and then irradiated with UZcm 2 ultraviolet rays using an ultraviolet lamp. A protective film was continuously formed by roll-to-roll to obtain a substrate with a conductor layer pattern having a protective tank.
この保護槽を有する導体層パターン付き基材 (保護膜付き)の可視光透過率は 80 %以上であった。  The substrate with a conductor layer pattern (with a protective film) having this protective tank had a visible light transmittance of 80% or more.
実施例 35  Example 35
[0294] [実施例 e5] [0294] [Example e5]
(上面を有する凸部のノターン及びそれによつて描かれる幾何学図形状の凹部を 有する導電性基材の作製)  (Manufacture of conductive substrate having notched convex part with upper surface and concave part of geometric figure drawn by it)
レジストフイルム(フォテック H— Y920、 20 μ mm厚、 日立化成工業株式会社製)を 10cm角のステンレス(SUS304、仕上げ 3Z4H、厚さ 100 m、 日新製鋼 (株)製) 板に貼り合わせた。貼り合わせの条件は、ロール温度 105°C、圧力 0. 5MPa、ライン スピード lmZminで行った。次いで、光透過部のライン幅が 40 m、ラインピッチが 300 μ m、バイアス角度力 5° で、格子状に形成したネガフィルムを、レジストフィル ムを貼り合わせたステンレス板の上に静置した。紫外線照射装置を用いて、 600mm Hg以下の真空下において、ネガフィルムの上から、紫外線を 120miZcm2照射した 。さらに。 1%炭酸ナトリウム水溶液で現像することで、 SUS板の上にライン幅 40 m 、ラインピッチ 300 μ m、バイアス角度 45° のレジストマスクを形成した。さらに、 40°C に加温した塩化第二鉄水溶液 (45° Be '、鶴見曹達株式会社製)を用いて、 SUS板 をエッチングした。エッチングは、 SUS板のライン幅が 7 mになるまで行った。次い で、 5%水酸ィ匕ナトリウム水溶液を用いて、 SUS版の上に形成されたレジストマスクを 剥離して、格子模様上のパターン (ライン幅、すなわち、凸部上面の幅 5〜8 /ζ πι、ピ ツチ 300 m、凸部の高さ 15 m)を形成し、上面を有する凸部のパターン及びそれ によって描かれる幾何学図形状の凹部を有する導電性基材を作製した。 A resist film (Photech H—Y920, 20 μm thickness, manufactured by Hitachi Chemical Co., Ltd.) was bonded to a 10 cm square stainless steel (SUS304, finished 3Z4H, thickness 100 m, manufactured by Nisshin Steel Co., Ltd.) plate. The bonding conditions were a roll temperature of 105 ° C, a pressure of 0.5 MPa, and a line speed of lmZmin. Next, a negative film formed in a lattice pattern with a line width of 40 m, a line pitch of 300 μm, and a bias angle force of 5 ° was allowed to stand on a stainless steel plate bonded with a resist film. . Using an ultraviolet irradiation device, ultraviolet rays were irradiated at 120 miZcm 2 from above the negative film under a vacuum of 600 mm Hg or less. further. By developing with a 1% aqueous sodium carbonate solution, a resist mask having a line width of 40 m, a line pitch of 300 μm, and a bias angle of 45 ° was formed on the SUS plate. 40 ° C The SUS plate was etched using an aqueous ferric chloride solution (45 ° Be ', manufactured by Tsurumi Soda Co., Ltd.). Etching was performed until the line width of the SUS plate reached 7 m. Next, using a 5% aqueous solution of sodium hydroxide and sodium hydroxide, the resist mask formed on the SUS plate is peeled off, and the pattern on the lattice pattern (line width, that is, the width of the upper surface of the convex portion is 5 to 8). / ζ πι, pitch 300 m, convex height 15 m) was formed, and a conductive substrate having a convex pattern having an upper surface and a concave portion having a geometric shape drawn thereby was produced.
(絶縁膜を有する導電性基材の作製)  (Preparation of conductive substrate with insulating film)
次いで、上記の導電性基材陰極にして、陽極をステンレス(SUS304)板として、力 チオン系電着塗料 (Insuleed3020、日本ペイント (株)製)中で、 15V10秒の条件で 、上記導電性基材に電着塗装した。水洗後 110°C10分間乾燥した後、 230°C40分 の条件で窒素気流下で焼付けした。炉内の酸素濃度は 0. 1%であった。  Next, using the above conductive base cathode, the anode as a stainless steel (SUS304) plate, and in the force thio-based electrodeposition paint (Insuleed 3020, manufactured by Nippon Paint Co., Ltd.), the above conductive group The material was electrodeposited. After washing with water and drying at 110 ° C for 10 minutes, it was baked under a nitrogen stream at 230 ° C for 40 minutes. The oxygen concentration in the furnace was 0.1%.
電着塗料の塗布厚は、 2. 6 mであった。さらに電着塗装した導電性基材を、研磨 粉(TypeO. 1R、 Baikalox社製)と研磨布(マイクロクロス、 BUEHLER社製)を用い て凸部の上面を研磨し、 SUS面を露出させ、絶縁膜を有する導電性基材を作製した 。このめつき用導電性基材の凹部における電着塗膜の厚さは 2. 6 mであった。た だし、凸部上面の端部における電着塗膜の厚さは 0. 2 m (上面の平面方向に測る )であった。研磨後のライン幅、すなわち、凸部上面の幅は 5〜15 mであった。この めっき用導電性基材は、凹部は絶縁膜で覆われたものであった。 The coating thickness of the electrodeposition paint was 2.6 m. Furthermore, the electrodeposited conductive base material is polished with an abrasive powder (TypeO. 1R, manufactured by Baikalox) and a polishing cloth (Microcloth, manufactured by BUEHLER) to expose the SUS surface, A conductive substrate having an insulating film was produced. The thickness of the electrodeposition coating film in the concave portion of the electroconductive substrate for adhesion was 2.6 m. However, the thickness of the electrodeposition coating film at the edge of the upper surface of the convex portion was 0.2 m (measured in the plane direction of the upper surface). The line width after polishing, that is, the width of the upper surface of the convex portion was 5 to 15 m. In this conductive base material for plating, the concave portion was covered with an insulating film.
(銅めつき)  (Copper metal)
さらに、絶縁膜を有するめっき転写用版を陰極として、電解銅めつき用の電解浴( 硫酸銅(5水塩) 250gZL、硫酸 50gZL、キューブライト # 1A (荏原ユージライト株 式会社製、添加剤) 4ml/Lの水溶液、 25°C)中に浸し、含燐銅を陽極として同電解 浴中に浸した。両極に電圧をかけて電流密度を 7AZdm2として、凸部上面に析出し た金属の厚さが 5 μ mになるまでめつきした。 Furthermore, an electroplating bath for electrolytic copper plating (copper sulfate (pentahydrate) 250gZL, sulfuric acid 50gZL, Cubelite # 1A (supplied by Ebara Eugleite Co., Ltd., additive) ) It was immersed in a 4 ml / L aqueous solution (25 ° C), and immersed in the same electrolytic bath using phosphorous copper as an anode. As 7AZdm 2 current density by applying a voltage to both electrodes, the thickness of the metal deposited on the protrusion upper surface was plated to a 5 mu m.
(転写)  (Transcription)
実施例 elで作製したのと同様の粘着フィルムの粘着剤面と、上記めつき用導電性 基材の銅めつきを施した面を、ロールラミネータを用いて貼り合わせた。ラミネート条 件は、ロール温度 25°C、圧力 0. lMPa、ラインスピード lmZminとした。次いで、め つき転写用版に貼り合わせた粘着フィルムを剥離したところ、上記めつき転写用版の 凸部の上面に析出した銅が粘着剤表面に転写された。このようにしてライン幅(凸部 上面の幅) 11〜30 μ m、ラインピッチ 300 μ m、導体厚 5 μ mの金属パターンが粘着 フィルム上に転写された。本発明によって作製しためっき転写用版と比較して、研磨 により作製しためっき転写用版はライン幅のばらつきがあり、一部ラインのガタつきが みられた。それによつて得られた導体層パターンもライン幅のばらつきがみられた力 得られた導体層パターン付き基材の可視光透過率は 80%以上であった。 The pressure-sensitive adhesive surface of the same pressure-sensitive adhesive film as prepared in Example el and the surface of the conductive substrate for plating that had been subjected to copper plating were bonded using a roll laminator. Lamination conditions were a roll temperature of 25 ° C, a pressure of 0.1 lMPa, and a line speed of lmZmin. Then When the pressure-sensitive adhesive film adhered to the sticky transfer plate was peeled off, the copper deposited on the upper surface of the convex portion of the sticky transfer plate was transferred to the pressure-sensitive adhesive surface. In this way, a metal pattern having a line width (width of the upper surface of the protrusion) of 11 to 30 μm, a line pitch of 300 μm, and a conductor thickness of 5 μm was transferred onto the adhesive film. Compared with the plating transfer plate prepared according to the present invention, the plating transfer plate prepared by polishing had a variation in line width, and some lines were wobbled. As a result, the conductor layer pattern thus obtained also had a line width variation. The obtained substrate with the conductor layer pattern had a visible light transmittance of 80% or more.
(繰り返し使用)  (Repeated use)
上記のめっき一転写の工程を 250回繰り返した結果、銅めつきの転写性に変化が なぐ絶縁膜の剥離箇所も観測されなカゝつた。  As a result of repeating the above-mentioned plating and one transfer process 250 times, no peeling of the insulating film where the transferability of copper plating changes was observed.
[比較例 e3]  [Comparative Example e3]
(凹部が絶縁材料で完全に埋まった例)  (Example where the recess is completely filled with insulating material)
実施例 elと同様にして上面を有する凸部のパターン及びそれによつて描かれる幾 何学図形状の凹部を有する導電性基材上にレジストマスクが残っているめつき用導 電性基材(中間体)を作製した。得られた導電性基材のライン幅、すなわち、凸部上 面の幅は 14〜19 m、ラインピッチは 350 μ m、凸部の高さは 20 μ mであった。 次いで、上記の導電性基材を陰極にして、陽極をステンレス(SUS 304)板として、 カチオン型電着塗料 (Insuleed3020、 日本ペイント (株)製)中で、 120V10秒の条 件で導電性基材に電着塗装した。水洗後 110°Cで 10分間乾燥した後、 2%水酸ィ匕 ナトリウム水溶液でレジストマスクを剥離した。次いで、 230°C40分条件で窒素気流 下で焼付けした。電着塗料の厚みは 20 μ mであった。レジストマスクの幅が 40 μ m であったため計算上は電着塗料がレジストマスクの幅を超えて電着されたことになる 力 焼付の際に樹脂が流動して平坦ィ匕したため、榭脂は凸部パターンの上面より上 にはほとんどはみ出していなかった。このめつき用導電性基材は、凹部は絶縁膜で 覆われたものであった。得られためっき転写用版は図 10に示すように、凸部パターン の凹部が絶縁層で完全に埋まった形状をして 、た。  Conductive base material for adhesion (intermediate body) in which a resist mask remains on a conductive base material having a pattern of convex portions having an upper surface and a geometrical figure-shaped concave portion drawn thereby in the same manner as in Example el ) Was produced. The obtained conductive substrate had a line width of 14 to 19 m, a line pitch of 350 μm, and a height of the convex part of 20 μm. Next, using the above conductive substrate as a cathode, the anode as a stainless steel (SUS 304) plate, in a cationic electrodeposition paint (Insuleed 3020, Nippon Paint Co., Ltd.) The material was electrodeposited. After washing with water and drying at 110 ° C. for 10 minutes, the resist mask was peeled off with a 2% aqueous sodium hydroxide solution. Next, it was baked under a nitrogen stream at 230 ° C for 40 minutes. The thickness of the electrodeposition paint was 20 μm. Since the resist mask width was 40 μm, the electrodeposition paint was electrodeposited beyond the width of the resist mask in the calculation. The resin flowed and flattened during baking. Almost no protrusion was found above the upper surface of the convex pattern. In this conductive base material for plating, the concave portion was covered with an insulating film. As shown in FIG. 10, the obtained plate for plating transfer had a shape in which the concave portions of the convex pattern were completely filled with the insulating layer.
次 、で上記めつき転写用版を陰極として電解銅めつき用の電解浴 (硫酸銅(5水塩 ) 250gZL、硫酸 50gZL、キューブライト AR (荏原ユージライト株式会社製、添加剤 ) 4mlZLの水溶液、 30°C)中に浸し、含燐銅を陽極として同電解浴中に浸した。 両極に電圧をかけて電流密度を 25AZdm2として、凸部上面に析出した金属の厚さ が 5 μ mになるまでめつきした。 Next, an electrolytic bath for electrolytic copper plating using the above plate for plate transfer as a cathode (copper sulfate (pentahydrate) 250gZL, 50gZL sulfuric acid, Cubelite AR (manufactured by Ebara Eugene Corporation, additive) ) It was immersed in an aqueous solution of 4 ml ZL, 30 ° C), and immersed in the same electrolytic bath with phosphorous copper as an anode. Voltage was applied to both poles to obtain a current density of 25AZdm 2 until the thickness of the metal deposited on the upper surface of the protrusion reached 5 μm.
さら〖こ、実施例 elで得られた粘着フィルム上に銅めつきを転写した。銅めつき一転 写の工程を 11回繰り返すと、絶縁膜の一部が剥離しており、 12回目のめっきを行うと 、絶縁膜が剥離した箇所に銅が析出した。粘着フィルムに銅めつきを転写した結果、 絶縁膜が剥離した箇所の銅めつきが転写しな力つた。  Sarakuko, copper plating was transferred onto the adhesive film obtained in Example el. When the copper plating transfer process was repeated 11 times, a part of the insulating film was peeled off, and when the 12th plating was performed, copper was deposited at the place where the insulating film was peeled off. As a result of transferring the copper plating to the adhesive film, the copper plating at the part where the insulating film was peeled off was not transferred.
[0296] 以上の実施例又は比較例で得られた導体層パターンのライン厚み、ライン幅、導電 性基材からの剥離性、ノターンの異常の有無、パターンを有するめっき転写用から 銅めつきの剥離を繰り返した後のめっき転写用版の耐久性を評価した結果を図 31に 示す。 [0296] Line thickness, line width, peelability from conductive substrate, presence or absence of abnormalities in pattern of conductor layer pattern obtained in the above examples or comparative examples, peeling from copper plating for plating transfer with pattern Figure 31 shows the results of evaluating the durability of the plating transfer plate after the above steps were repeated.
なお、ライン幅、ピッチは顕微鏡写真を元に実測した。ライン厚みは得られた導体 層パターンを一部切り取って樹脂で注型し、断面を顕微鏡観察することにより実測し た。導電性基材カゝらの剥離性は粘着フィルムに転写した銅のパターンを拡大鏡で観 察し、転写不良のない場合を良好、転写不良が発生した場合を不良とした。ただし、 比較例 e2及び e3に関しては、電着塗料の剥離が発生する前までの転写不良の有無 を記載した。パターン異常の有無は拡大鏡を用いて肉眼にて確認した。めっき転写 用版の耐久性はめつき及び剥離を繰り返した後のめっき転写用版を直接拡大鏡で 観察して確認した。  The line width and pitch were measured based on micrographs. The line thickness was measured by cutting a portion of the obtained conductor layer pattern, casting it with resin, and observing the cross section under a microscope. For the peelability of the conductive substrate cover, the copper pattern transferred to the adhesive film was observed with a magnifying glass, and the case where there was no transfer failure was judged good and the case where a transfer failure occurred was judged as bad. However, for Comparative Examples e2 and e3, the presence / absence of transfer failure before peeling of the electrodeposition paint was described. The presence or absence of pattern abnormality was confirmed with the naked eye using a magnifier. The durability of the plating transfer plate was confirmed by directly observing the plating transfer plate after repeated fitting and peeling with a magnifier.
実施例 36  Example 36
[0297] [実施例 fl] [0297] [Example fl]
以下、実施例 36 (以下「実施例 fl」ともいう。実施例 42まで同様。)を説明する。 (上面を有する凸部のノターン及びそれによつて描かれる幾何学図形状の凹部を 有する導電性基材の作製)  Hereinafter, Example 36 (hereinafter, also referred to as “Example fl”. The same applies to Example 42) will be described. (Manufacture of conductive substrate having notched convex part with upper surface and concave part of geometric figure drawn by it)
レジストフイルム(フォテック H— Y920、 日立化成工業株式会社製)を 10cm角のス テンレス(SUS304、仕上げ 3Z4H、厚さ 100 m、 日新製鋼 (株)製)板に貼り合わ せた。貝占り合わせの条件は、ロール温度 105°C、圧力 0. 5MPa、ラインスピード lm Zminで行った。次いで、光透過部のライン幅が 30 μ m、ラインピッチが 300 μ m、 バイアス角度力 S45° で、格子状に形成したネガフィルムを、レジストフイルムを貼り合 わせたステンレス板の上に静置した。紫外線照射装置を用いて、 600mmHg以下の 真空下において、ネガフィルムの上から、紫外線を 120mjZcm2照射した。さらに。 1 %炭酸ナトリウム水溶液で現像することで、 SUS板の上にライン幅 30 m、ラインピッ チ 300 μ m、バイアス角度 45° のレジストマスクを形成した。さらに、 40°Cに加温した 塩化第二鉄水溶液 (45° Be '、鶴見曹達株式会社製)を用いて、 SUS板をエツチン グした。エッチングは、 SUS板のライン幅が 20 /z mになるまで行った。次いで、 5%水 酸ィ匕ナトリウム溶液を用いて、 SUS板の上に形成されたレジストフイルムを剥離して、 格子模様状のパターン (ライン幅、すなわち、凸部上面の幅 20 m、ラインピッチす なわち、凸部上面の間隔 300 m、凸部の高さ 15 m、凸部の断面形状は曲面(図 3— dと同様)を形成し、上面を有する凸部のパターン及びそれによつて描かれる幾 何学図形状の凹部を有する導電性基材を作製した。 A resist film (Photech H-Y920, manufactured by Hitachi Chemical Co., Ltd.) was bonded to a 10 cm square stainless steel (SUS304, finished 3Z4H, thickness 100 m, manufactured by Nisshin Steel Co., Ltd.). The shelling conditions were as follows: roll temperature 105 ° C, pressure 0.5 MPa, line speed lm Zmin. Next, the line width of the light transmission part is 30 μm, the line pitch is 300 μm, A negative film formed in a lattice shape with a bias angle force of S45 ° was allowed to stand on a stainless steel plate to which a resist film was bonded. Using an ultraviolet irradiation device, ultraviolet rays were irradiated at 120 mjZcm 2 from above the negative film under a vacuum of 600 mmHg or less. further. By developing with a 1% aqueous sodium carbonate solution, a resist mask with a line width of 30 m, a line pitch of 300 μm, and a bias angle of 45 ° was formed on the SUS plate. Furthermore, the SUS plate was etched using a ferric chloride aqueous solution (45 ° Be ', manufactured by Tsurumi Soda Co., Ltd.) heated to 40 ° C. Etching was performed until the line width of the SUS plate reached 20 / zm. Next, using a 5% sodium hydroxide solution, the resist film formed on the SUS plate is peeled off to form a lattice-like pattern (line width, that is, the width of the upper surface of the convex portion 20 m, line pitch). In other words, the distance between the top surfaces of the protrusions is 300 m, the height of the protrusions is 15 m, and the cross-sectional shape of the protrusions is a curved surface (similar to Fig. 3-d). A conductive base material having a concave portion having a geometric diagram shape to be drawn was produced.
[0298] (絶縁膜を有する導電性基材の作製) [0298] (Preparation of conductive substrate having insulating film)
次いで、上記の導電性基材を陰極にして、陽極をチタン板として、カチオン型電着 塗料 (Insuleed3020、日本ペイント (株)製)中で、 15V10秒、の条件で、格子模様 状にエッチングされたステンレス板に電着塗装した。水洗後 100°C10分間乾燥した 後、 190°C25分の条件で焼付けした。電着塗料の塗布厚は、 2. であった。 さらに、電着塗装したステンレス板を、研磨粉 (アルミナ液 B0. 05 ^ m,リファインテ ック(株)製)と研磨布(CONSUMABLES ビューラー社(BUEHLER)製)を用い て凸部の上面部分を研磨し、 SUS面を露出させ、絶縁膜を有する導電性基材を作 製した。この導電性基材の凸部上面端部における電着塗膜の厚さは 2. 5 111、凹部 における電着塗膜の厚さは 2. であった。この導電性基材は、凸部上面以外は 絶縁膜で覆われたものであった。  Next, the above conductive base material is used as a cathode, and the anode is used as a titanium plate. In a cationic electrodeposition paint (Insuleed 3020, manufactured by Nippon Paint Co., Ltd.), it is etched into a lattice pattern under the condition of 15 V for 10 seconds. A stainless steel plate was electrodeposited. After washing with water and drying at 100 ° C for 10 minutes, baking was performed at 190 ° C for 25 minutes. The coating thickness of the electrodeposition paint was 2. In addition, the electrodeposited stainless steel plate is polished with polishing powder (alumina solution B0. 05 ^ m, manufactured by Refinetech Co., Ltd.) and polishing cloth (CONSUMABLES manufactured by BUEHLER). Was polished to expose the SUS surface, and a conductive substrate having an insulating film was produced. The thickness of the electrodeposition coating film on the upper surface edge of the convex portion of this conductive substrate was 2.5 111, and the thickness of the electrodeposition coating film on the concave portion was 2. This conductive substrate was covered with an insulating film except for the upper surface of the convex portion.
[0299] (銅めつき) [0299] (with copper)
次いで、絶縁膜を有する導電性基材を陰極として電解銅めつきを行った。電解銅め つき浴 (硫酸銅(5水塩) 80gZL、硫酸 180gZL、キューブライト VF1 (荏原ユージラ イト株式会社製、添加剤) 20mlZLの水溶液、 25°C)中に、格子模様状にエッチング されたステンレス板を浸し、含燐銅を陽極として同電解銅めつき浴中に浸した。両極 に電圧をかけて、電流密度を 25AZdm2として、導電性基材の凸部の上面に析出し た金属の厚さが 5 μ mになるまでめつきした。 Next, electrolytic copper plating was performed using a conductive substrate having an insulating film as a cathode. Electrolytic copper plating bath (copper sulfate (pentahydrate) 80gZL, sulfuric acid 180gZL, Cubelite VF1 (supplied by Sakakibara Eulite Co., Ltd., additive) 20mlZL aqueous solution, 25 ° C) etched into a lattice pattern The stainless steel plate was immersed, and immersed in the electrolytic copper plating bath using phosphorous copper as an anode. Both poles A voltage was applied to the substrate, and the current density was set to 25 AZdm 2 until the thickness of the metal deposited on the upper surface of the convex portion of the conductive substrate reached 5 μm.
[0300] (黒化処理ー防鲭処理)  [0300] (Blackening treatment-Anti-bacterial treatment)
上記で得られた導電性基材上の導体層パターンをアルカリ脱脂、水洗、酸洗、水 洗の順で処理した後に硫酸ニッケル 75gZL、硫酸ニッケルアンモ-ゥム 45gZL、 硫酸亜鉛 38gZL、チォシアン酸ナトリウム 15gZLを含有するめつき液を使い、 50 。C、 2. 5AZdm2の条件で黒化処理層の厚さが 0. 6 mになるように黒色ニッケルめ つきを行った。めっき後純水で水洗し、水溶性防鲭剤エバフィン G800 (荏原ユージ ライト (株)製) 20mLZL水溶液に 40°Cで 30秒間浸漬し、次いで、 50°Cで乾燥させ た。黒色処理層の色むら、粉落ちは発生しな力つた。 The conductive layer pattern on the conductive substrate obtained above was treated in the order of alkaline degreasing, water washing, pickling and water washing, then nickel sulfate 75gZL, nickel sulfate 45gZL, zinc sulfate 38gZL, sodium thiocyanate Use a dip solution containing 15 g ZL 50. C, 2. The thickness of the blackening treatment layer under the conditions of 5AZdm 2 makes a black nickel Me with so as to 0. 6 m. After plating, the plate was washed with pure water, immersed in a 20 mL ZL aqueous solution of water-soluble antifungal agent Evafin G800 (manufactured by Ebara Eugleite Co., Ltd.) at 40 ° C for 30 seconds, and then dried at 50 ° C. Unevenness of color of the black treatment layer and powder falling off did not occur.
[0301] (粘着フィルムの作製)  [0301] (Preparation of adhesive film)
厚さ 100 mのポリエチレンテレフタレート(PET)フィルム(A— 4100、東洋紡績株 式会社製)の表面にプライマー (HP— 1、 日立化成工業株式会社製)を厚さ 1 m) に、粘着層としてアクリルポリマ (HTR— 280、ナガセケムテックス株式会社製)を厚さ 10 μ mに順次塗布して粘着フィルムを作製した。  A primer (HP-1; manufactured by Hitachi Chemical Co., Ltd.) 1 m thick on the surface of a 100 m thick polyethylene terephthalate (PET) film (A-4100, manufactured by Toyobo Co., Ltd.) as an adhesive layer Acrylic polymer (HTR-280, manufactured by Nagase ChemteX Corporation) was sequentially applied to a thickness of 10 μm to prepare an adhesive film.
[0302] (転写)  [0302] (Transcription)
この粘着フィルムの粘着剤面と、上記導電性基材の銅めつきを施した面を、ロール ラミネータを用いて貼り合わせた。ラミネート条件は、ロール温度 25°C、圧力 0. IMP a、ラインスピード lmZminとした。次いで、導電性基材に貼り合わせた粘着フィルム を剥離したところ、上記導電性基材の凸部の上面に析出した銅が粘着フィルムに転 写されていた。これ〖こより、ライン幅 28 μ m、ラインピッチ 300 μ m、導体厚さ 5 μ mの 金属パターンからなる導体層パターン付き基材が得られた。転写後の導電性基材を 観察した結果、絶縁膜が剥離している箇所はな力つた。  The pressure-sensitive adhesive surface of the pressure-sensitive adhesive film and the copper-plated surface of the conductive substrate were bonded together using a roll laminator. Lamination conditions were a roll temperature of 25 ° C, a pressure of 0. IMP a, and a line speed of lmZmin. Subsequently, when the adhesive film bonded to the conductive substrate was peeled off, copper deposited on the upper surface of the convex portion of the conductive substrate was transferred to the adhesive film. From this, a substrate with a conductor layer pattern consisting of a metal pattern having a line width of 28 μm, a line pitch of 300 μm, and a conductor thickness of 5 μm was obtained. As a result of observing the conductive substrate after the transfer, the portion where the insulating film was peeled off was strong.
[0303] (保護膜の形成) [0303] (Formation of protective film)
上記で得られた導体層パターンが黒化処理された導体層パターン付き基材の導体 層パターンが存在する面に、 UV硬化型榭脂ヒタロイド 7983AA3 (日立化成工業( 株)製)をコーティングし、ポリカーボネートフィルム(マクロホール DE、バイエル株式 会社製、 75 μ m)でラミネートして導体層パターンを UV硬化型榭脂中に埋没させた 後、紫外線ランプを用いて UZcm2の紫外線を照射して UV硬化型榭脂を硬化させ て、保護膜を有する導体層パターン付き基材を得た。 On the surface where the conductor layer pattern of the base material with the conductor layer pattern obtained by blackening the conductor layer pattern obtained above is coated with UV curable resin hyaloid 7983AA3 (manufactured by Hitachi Chemical Co., Ltd.) Laminated with polycarbonate film (Macro Hall DE, Bayer Co., Ltd., 75 μm) and the conductor layer pattern was buried in UV curable resin. Thereafter, the UV curable resin was cured by irradiating UZcm 2 ultraviolet rays using an ultraviolet lamp to obtain a substrate with a conductor layer pattern having a protective film.
実施例 37  Example 37
[0304] [実施例 f2]  [0304] [Example f2]
(上面を有する凸部のノターン及びそれによつて描かれる幾何学図形状の凹部を 有する導電性基材の作製)  (Manufacture of conductive substrate having notched convex part with upper surface and concave part of geometric figure drawn by it)
SUS板に形成される凸部のライン幅が 7 μ mになるまでエッチングしたこと以外は、 実施例 flと同様にして、 SUS板上に格子模様状のパターン (ライン幅 7 m、ピッチ 300 m、凸部の高さ 30 m、凸部の断面形状は曲面(図 3— dと同様))を形成して 、上面を有する凸部のノターン及びそれによつて描かれる幾何学図形状の凹部を有 する導電性基材を得た。  A grid pattern (line width 7 m, pitch 300 m) was formed on the SUS plate in the same manner as in Example fl except that etching was performed until the line width of the convex portion formed on the SUS plate was 7 μm. The height of the convex part is 30 m, and the cross-sectional shape of the convex part is a curved surface (similar to Fig. 3-d)), and the convex part of the convex part having the upper surface and the concave part of the geometric figure drawn by it are formed. A conductive base material was obtained.
[0305] (絶縁膜を有する導電性基材の作製)  [0305] (Production of conductive substrate having insulating film)
次いで、上記の導電性基材を陽極にして、陰極をチタン板として、ァ-オン型電着 塗料 (AMG— 5EZ5W、(株)シミズ製)中で、 10V60秒の条件で、上記導電性基 材に電着塗装した。水洗後 100°C 10分間乾燥した後、 180°C30分の条件で焼付け した。電着塗料の塗布厚は、 2. 6 mであった。さらに電着塗装した導電性基材を、 研磨粉(TypeO. 1R、 Baikalox社製)と研磨布(CONSUMABLES, BUEHLER 社製)を用いて凸部の上面部分を研磨し、 SUS面を露出させ、絶縁膜を有する導電 性基材を作製した。この導電性基材の凸部上面端部における電着塗膜の厚さは 0. 2 μ τη,凹部にける電着塗膜の厚さは 2. であった。この導電性基材は、凸部上 面以外は絶縁膜で覆われたものであったこの導電性基材は、凸部上面以外は絶縁 膜で覆われたものであった。  Next, the above conductive base material is used under the condition of 10 V 60 seconds in an on-type electrodeposition paint (AMG-5EZ5W, manufactured by Shimizu Co., Ltd.) using the above conductive base material as the anode and the cathode as the titanium plate. The material was electrodeposited. After washing with water and drying at 100 ° C for 10 minutes, baking was performed at 180 ° C for 30 minutes. The coating thickness of the electrodeposition paint was 2.6 m. Furthermore, the electrodeposited conductive base material is polished with polishing powder (TypeO. 1R, manufactured by Baikalox) and polishing cloth (CONSUMABLES, manufactured by BUEHLER) to expose the SUS surface, A conductive substrate having an insulating film was produced. The thickness of the electrodeposition coating film on the upper surface edge of the convex portion of this conductive substrate was 0.2 μτη, and the thickness of the electrodeposition coating film on the concave portion was 2. This conductive base material was covered with an insulating film except for the upper surface of the convex portion. This conductive base material was covered with an insulating film except for the upper surface of the convex portion.
[0306] (銅めつき)  [0306] (with copper)
さらに、絶縁膜を有する導電性基材を陰極として電解銅めつき用の電解浴 (硫酸銅 (5水塩) 150gZL、硫酸 150gZL、カバラシド HL (アトテックジャパン株式会社製、 添加剤) 50ml/Lの水溶液、 30°C)中に浸し、含燐銅を陽極として電解銅めつき浴 中に浸した。両極に電圧をかけて電流密度を lOAZdm2として、凸部の上面に析出 した金属の厚さが 3 μ mになるまでめつきした。 [0307] (黒化処理ー防鲭処理) Electrolytic bath for electrolytic copper plating with a conductive base material having an insulating film as a cathode (copper sulfate (pentahydrate) 150gZL, sulfuric acid 150gZL, Kavalaside HL (manufactured by Atotech Japan Co., Ltd., additive) 50ml / L The sample was immersed in an aqueous solution (30 ° C), and immersed in an electrolytic copper plating bath using phosphorous copper as an anode. Voltage was applied to both poles, the current density was lOAZdm 2 , and the metal deposited on the top surface of the protrusions was stuck to 3 μm. [0307] (Blackening treatment-Anti-bacterial treatment)
上記で得られた導電性基材上の導体層パターンをアルカリ脱脂、水洗、酸洗、水 洗の順で処理した後に硫酸ニッケル 62gZL、硫酸ニッケルアンモ-ゥム 40gZL、 硫酸亜鉛 23gZL、チォシアン酸ナトリウム 20gZLを含有するめつき液を使い、 50 。C、 2. 5AZdm2の条件で黒化処理層の厚さが 0. 6 mになるように黒色ニッケルめ つきを行った。めっき後純水で水洗し、水溶性防鲭剤エバフィン G800 (荏原ユージ ライト (株)製) 20mLZL水溶液に 40°Cで 30秒間浸漬し、次いで、 50°Cで乾燥させ た。黒色処理層の色むら、粉落ちは発生しな力つた。 The conductive layer pattern on the conductive substrate obtained above was treated in the order of alkaline degreasing, water washing, pickling and water washing, then nickel sulfate 62gZL, nickel sulfate ammonium 40gZL, zinc sulfate 23gZL, sodium thiocyanate Use a dip solution containing 20 g ZL 50. C, 2. The thickness of the blackening treatment layer under the conditions of 5AZdm 2 makes a black nickel Me with so as to 0. 6 m. After plating, the plate was washed with pure water, immersed in a 20 mL ZL aqueous solution of water-soluble antifungal agent Evafin G800 (manufactured by Ebara Eugleite Co., Ltd.) at 40 ° C for 30 seconds, and then dried at 50 ° C. Unevenness of color of the black treatment layer and powder falling off did not occur.
[0308] (接着フィルムの作製) [0308] (Preparation of adhesive film)
次いで、厚さ 125 mの PETフィルム (A— 4100、東洋紡績株式会社製)に下記 榭脂組成物 flを乾燥塗布厚が 5 μ mとなるように塗布して、接着フィルムを作製した。 榭脂組成物 flの組成  Subsequently, the following resin composition fl was apply | coated to 125-micrometer-thick PET film (A-4100, Toyobo Co., Ltd. product) so that dry application | coating thickness might be set to 5 micrometers, and the adhesive film was produced. The composition of flax composition fl
ノ ィロン UR— 1350 (東洋紡績株式会社製、ポリエステル榭脂) 100重量部 コロネート L (日本ポリウレタン株式会社製、イソシァネートイ匕合物) 3重量部  Nylon UR— 1350 (made by Toyobo Co., Ltd., polyester resin) 100 parts by weight Coronate L (made by Nippon Polyurethane Co., Ltd., isocyanate compound) 3 parts by weight
[0309] (転写) [0309] (Transcription)
次いで、上記で得た接着フィルムの接着剤面と、上記導電性基材の銅めつき及び 黒化処理を施した面を、ロールラミネータを用いて貼り合わせた。ラミネート条件は、 ロール温度 100°C、圧力 0. lMPa、ラインスピード 0. 3mZminとした。接着剤のガ ラス転移点 (Tg)を超える温度でラミネートされたため、接着剤表面にタック性が発現 した。次いで、導電性基材から接着フィルムを剥離すると、上記導電性基材の凸部の 上面に析出した銅が接着剤表面に転写された。このようにして、ライン幅 11 m、ラ インピッチ 300 m、導体厚 3 mで、さらに黒化処理が施された金属パターンが接 着フィルム上に転写され、本発明の導体層パターン付き基材を得た。  Next, the adhesive surface of the adhesive film obtained above and the surface of the conductive substrate that had been subjected to copper plating and blackening treatment were bonded together using a roll laminator. Lamination conditions were a roll temperature of 100 ° C, a pressure of 0.1 lMPa, and a line speed of 0.3 mZmin. Since lamination was performed at a temperature exceeding the glass transition point (Tg) of the adhesive, tackiness was exhibited on the adhesive surface. Next, when the adhesive film was peeled off from the conductive substrate, copper deposited on the upper surface of the convex portion of the conductive substrate was transferred to the adhesive surface. In this way, a metal pattern having a line width of 11 m, a line pitch of 300 m, and a conductor thickness of 3 m and further blackened was transferred onto the adhesive film, and the substrate with a conductor layer pattern of the present invention was thus obtained. Obtained.
[0310] (保護膜の形成) [0310] (Formation of protective film)
上記で得られた導体層パターン付き基材の導体層パターンが存在する面に、実施 例 flと同様にして UV硬化型榭脂ヒタロイド 7983AA3 (日立化成工業 (株)製)をコ 一ティングした後、 PETフィルム (A— 4100、東洋紡績 (株)製、 75 m)の易接着処 理を施して ヽな 、面を、 UV硬化型榭脂とでラミネートして導体層パターンを UV硬化 型榭脂中に埋没させた。さらに、紫外線ランプを用いて UZcm2の紫外線を照射して UV硬化型榭脂を硬化させた後、 PETフィルム (A— 4100、東洋紡績 (株)製、 75 m)を剥離して、保護膜を有する導体層パターン付き基材を得た。 After coating the surface of the substrate with the conductor layer pattern obtained above on which the conductor layer pattern is present, UV curing type resin hyaloid 7983AA3 (manufactured by Hitachi Chemical Co., Ltd.) was applied in the same manner as in Example fl. , PET film (A-4100, manufactured by Toyobo Co., Ltd., 75 m) is subjected to easy adhesion treatment, and the surface is laminated with UV curable resin to UV cure the conductor layer pattern. It was buried in the mold. Furthermore, after UV-curable resin is cured by irradiating UZcm 2 ultraviolet rays using an ultraviolet lamp, the PET film (A-4100, manufactured by Toyobo Co., Ltd., 75 m) is peeled off to form a protective film. The base material with a conductor layer pattern which has this was obtained.
実施例 38  Example 38
[0311] [実施例 f3] [0311] [Example f3]
(上面を有する凸部のノターン及びそれによつて描かれる幾何学図形状の凹部を 有する導電性基材の作製)  (Manufacture of conductive substrate having notched convex part with upper surface and concave part of geometric figure drawn by it)
ステンレス(SUS304 仕上げ H 竹内金属箔粉 (株)製、厚さ 100 m)を用いて、 凸部のライン幅が 15 mとなるまでエッチングした以外は、実施例 flと同様の条件で 行い、格子模様状のパターン (ライン幅 15 /z m ラインピッチ 300 /z m 凸部の高さ 2 O ^ m) ,凸部の断面形状は曲面(図 3— dと同様))を形成して、上面を有する凸部の パターン及びそれによつて描かれる幾何学図形状の凹部を有する導電性基材を得 た。  Except for etching using stainless steel (SUS304 finish H, Takeuchi Metal Foil Powder Co., Ltd., thickness 100 m) until the line width of the protrusions reaches 15 m, the same conditions as in Example fl were applied. Patterned pattern (line width 15 / zm line pitch 300 / zm convex height 2 O ^ m), convex sectional shape is curved (similar to Fig. 3-d) and has top surface A conductive substrate having a pattern of convex portions and a concave portion having a geometric diagram shape drawn thereby was obtained.
[0312] (絶縁膜を有する導電性基材の作製)  [0312] (Preparation of conductive substrate with insulating film)
次いで、上記の導電性基材を陽極にして、陰極をチタン板として、カチオン型電着 塗料 (UC— 2000、(株)シミズ製)中で、 30V60秒の条件で、格子模様状にエッチ ングされたステンレス板に電着塗装した。水洗後 100°C10分間乾燥した後、 3jZcm 2の照射条件で硬化した。電着塗料の塗布厚は、 3. 9 mであった。さらに電着塗装 したステンレス板を、 #4000の研磨紙で研磨し、この導電性基材の凸部の上面の端 部における電着塗膜の厚さは 0. 5 m、凹部にける電着塗膜の厚さは 3. 9 mであ つた o  Next, using the above conductive substrate as the anode, the cathode as the titanium plate, and etching into a lattice pattern in a cationic electrodeposition paint (UC-2000, manufactured by Shimizu Corporation) under the conditions of 30 V 60 seconds. The coated stainless steel plate was electrodeposited. After washing with water and drying at 100 ° C. for 10 minutes, it was cured under irradiation conditions of 3jZcm 2. The coating thickness of the electrodeposition paint was 3.9 m. Furthermore, the electrodeposited stainless steel plate was polished with # 4000 abrasive paper, and the thickness of the electrodeposition coating on the top of the convex part of this conductive substrate was 0.5 m. The film thickness was 3.9 m o
この導電性基材は、凸部上面以外は絶縁膜で覆われたものであった。  This conductive substrate was covered with an insulating film except for the upper surface of the convex portion.
[0313] (銅めつき)  [0313] (with copper)
次いで、絶縁膜を有する導電性基材を陰極として電解銅めつき用の電解浴 (硫酸 銅(5水塩) 180gZL、硫酸 100gZL、カバラシド HL (アトテックジャパン株式会社製 、添加剤) 70mlZLの水溶液、 30°C)中に浸し、含燐銅を陽極として同電解浴中に 浸した。両極に電圧をかけて、電流密度を 30AZdm2として、凸部の上面に析出した 金属の厚さが 1 μ mになるまでめつきした。 [0314] (黒化処理ー防鲭処理) Next, an electrolytic bath for electrolytic copper plating using a conductive substrate having an insulating film as a cathode (copper sulfate (pentahydrate) 180 gZL, sulfuric acid 100 gZL, Kavalaside HL (manufactured by Atotech Japan Co., Ltd., additive) 70 ml ZL aqueous solution, 30 ° C.) and immersed in the same electrolytic bath using phosphorous copper as an anode. Voltage was applied to both electrodes, the current density was set to 30 AZdm 2 , and the metal deposited on the top surface of the protrusion was stuck to 1 μm. [0314] (Blackening treatment-Anti-bacterial treatment)
上記で得られた導電性基材上の導体層パターンをアルカリ脱脂、水洗、酸洗、水 洗の順で処理した後に硫酸ニッケル 100gZL、硫酸ニッケルアンモ-ゥム 30gZL、 硫酸亜鉛 15g/L、チォシアン酸ナトリウム 10g/Lを含有するめつき液を使い、 50 。C、 2. 5AZdm2の条件で黒化処理層の厚さが 0. 6 mになるように黒色ニッケルめ つきを行った。めっき後純水で水洗し、水溶性防鲭剤エバフィン G800 (荏原ユージ ライト (株)製) 20mLZL水溶液に 40°Cで 30秒間浸漬し、次いで、 50°Cで乾燥させ た。黒色処理層の色むら、粉落ちは発生しな力つた。 The conductive layer pattern on the conductive substrate obtained above was treated in the order of alkaline degreasing, water washing, pickling and water washing, and then nickel sulfate 100gZL, nickel sulfate ammonium 30gZL, zinc sulfate 15g / L, thiocyan Use a moisturizing solution containing 10 g / L of sodium acid 50. C, 2. The thickness of the blackening treatment layer under the conditions of 5AZdm 2 makes a black nickel Me with so as to 0. 6 m. After plating, the plate was washed with pure water, immersed in a 20 mL ZL aqueous solution of water-soluble antifungal agent Evafin G800 (manufactured by Ebara Eugleite Co., Ltd.) at 40 ° C for 30 seconds, and then dried at 50 ° C. Unevenness of color of the black treatment layer and powder falling off did not occur.
[0315] (粘着フィルムの作製) [0315] (Preparation of adhesive film)
次いで、厚さ 100 /z mの PETフィルム (A— 4100、東洋紡績株式会社製)の易接 着面に下記の榭脂組成物 2を乾燥塗布厚が 15 mとなるように塗布して粘着フィル ムを作製した。  Next, the following resin composition 2 was applied to the easy attachment surface of a 100 / zm thick PET film (A-4100, manufactured by Toyobo Co., Ltd.) so that the dry coating thickness was 15 m. Was made.
榭脂組成物 f2の組成  Composition of sallow composition f2
AS—406 (—方社油脂工業株式会社製、アクリルポリマ) 100重量部 テトラド X (三菱ガス化学株式会社製、硬化剤) 2重量部 AS-406 (Afro Oil & Fat Co., Ltd., acrylic polymer) 100 parts by weight Tetrad X (Mitsubishi Gas Chemical Co., Ltd., curing agent) 2 parts by weight
[0316] (転写) [0316] (Transcription)
上記で得られた粘着フィルムの粘着剤面と、上記導電性基材に銅めつき及び黒ィ匕 処理した面を、ロールラミネータを用いて貼り合わせた。ラミネート条件は、ロール温 度 25°C、圧力 0. lMPa、ラインスピード lmZminとした。次いで、導電性基材から 粘着フィルムを剥離したところ、上記導電性基材の凸部の上面に析出した銅 (黒化処 理されたもの)が粘着フィルムの接着剤表面に転写されていた。このようにして、ライ ン幅 17 m、ラインピッチ 300 m、導体厚 1 μ mで、さらに黒化処理が施された金 属パターンが接着フィルム上に選択的に転写され、本発明の導体層パターン付き基 材を製造した。  The pressure-sensitive adhesive surface of the pressure-sensitive adhesive film obtained above was bonded to the conductive base material using a copper laminator and a blackened surface using a roll laminator. Lamination conditions were a roll temperature of 25 ° C, a pressure of 0.1 MPa, and a line speed of lmZmin. Next, when the pressure-sensitive adhesive film was peeled off from the conductive substrate, copper (blackened) deposited on the upper surface of the convex portion of the conductive substrate was transferred to the adhesive surface of the pressure-sensitive adhesive film. In this way, a metal pattern having a line width of 17 m, a line pitch of 300 m, and a conductor thickness of 1 μm and further blackened is selectively transferred onto the adhesive film, and the conductor layer of the present invention is thus transferred. A substrate with a pattern was manufactured.
[0317] (電磁波遮蔽体の作製) [0317] (Production of electromagnetic wave shield)
上記で得られた導体層パターン付き基材の粘着剤面 (導体層パターンを有する面) を厚さ 2mmのガラスに当ててラミネートして貼り合わせた。ラミネート条件は、温度 25 °C、圧力 0. 5MPa、ラインスピード 0. 5mZminとした。ロールラミネートによって、厚 さ 1 mの導体層パターンは粘着剤に埋設され、透明性の高い電磁波遮蔽体が得ら れた。 The pressure-sensitive adhesive surface (surface having a conductor layer pattern) of the substrate with a conductor layer pattern obtained above was laminated on and bonded to glass having a thickness of 2 mm. Lamination conditions were a temperature of 25 ° C, a pressure of 0.5 MPa, and a line speed of 0.5 mZmin. Thick by roll lamination The 1 m conductor layer pattern was embedded in the adhesive, and a highly transparent electromagnetic wave shield was obtained.
実施例 39  Example 39
[0318] [実施例 f4] [0318] [Example f4]
前記実施例 f 2の (接着フィルムの作製)において、榭脂組成物 1の乾燥塗布厚を 1 0 mとしたこと以外は、実施例 f2と同様に行い、導体層パターン付き基材を製造し た。  In Example f2 (Preparation of adhesive film), except that the dry coating thickness of the resin composition 1 was 10 m, a substrate with a conductor layer pattern was produced in the same manner as in Example f2. It was.
[0319] (黒化処理一電磁波遮蔽体の作製)  [0319] (Blackening treatment-Production of electromagnetic shielding material)
さらに、この導体層パターン付き基材の導体層を、実施例 f2における黒化処理と同 様の条件で黒化処理して表面が黒化処理された導体層パターンを有する導体層パ ターン付き基材を製造した。黒色処理層の色むら、粉落ちは発生しなカゝつた。上記で 得られた表面が黒化処理された導体層パターンを有する導体層パターン付き基材を 用いて、実施例 f 3の (電磁波遮蔽体の作製)と同様にして電磁波遮蔽部材を得た。 実施例 40  Furthermore, the conductive layer of the base material with the conductive layer pattern is subjected to blackening treatment under the same conditions as the blackening treatment in Example f2 and the surface is blackened on the surface. The material was manufactured. Color unevenness of the black treatment layer and powder omission did not occur. An electromagnetic wave shielding member was obtained in the same manner as in Example f 3 (Preparation of electromagnetic wave shielding body), using the substrate with a conductive layer pattern having a conductive layer pattern whose surface was blackened. Example 40
[0320] [実施例 f5] [0320] [Example f5]
前記実施例 flの (黒化処理一防鲭)において、導体層パターン付き基材を、 80°C に加温した下記の黒ィ匕処理液に 3分間浸漬して、導体層表面を酸化して黒化処理さ れた導体層パターンを有する基材を製造したこと以外は同様の導体層パターン付き 基材を作製した。  In the example fl (blackening treatment Ichigo), the surface of the conductor layer was oxidized by immersing the substrate with the conductor layer pattern in the following blackening treatment solution heated to 80 ° C for 3 minutes. The same base material with a conductor layer pattern was produced except that a base material having a conductor layer pattern that had been blackened was manufactured.
(黒化処理液の組成)  (Composition of blackening solution)
亜塩素酸ナトリウム 30gZL、水酸ィ匕ナトリウム 10gZL、及び三リン酸ナトリウム 5g ZLが溶解された水溶液。  An aqueous solution in which 30 g ZL of sodium chlorite, 10 g ZL of sodium hydroxide and 5 g ZL of sodium triphosphate are dissolved.
上記で得られた表面が黒ィ匕処理された導体層パターンを有する基材を用いて、実 施例 flと同様にして保護膜を有する導体層パターン付き基材を得た。その結果、導 体層パターン付近に黒色粉末の粉落ちが発生し、その結果として電磁波遮蔽板とし ての投下光強度が図 33に示すように L*にして約 10%損なわれ、かつ導体層外観 に色むらが発生した。し力しながら、電磁波シールド性をアドバンテスト法で評価した 結果、 48dBであり、電磁波シールド性の低下はな力つた。 実施例 41 Using the base material having the conductor layer pattern with the black surface treated as obtained above, a base material with a conductor layer pattern having a protective film was obtained in the same manner as in Example fl. As a result, black powder powder is generated in the vicinity of the conductor layer pattern. As a result, the dropped light intensity as an electromagnetic wave shielding plate is reduced to about 10% as L * as shown in FIG. Color irregularities appear on the appearance. As a result, the electromagnetic wave shielding performance was evaluated by the Advantest method. As a result, it was 48 dB, and the electromagnetic wave shielding performance was not significantly reduced. Example 41
[0321] [実施例 f6] [0321] [Example f6]
前記実施例 1の (黒化処理一防鲭)において、導体層パターン付き基材を、 80°Cに 加温したメルテックス株式会社ェボノール Cスペシャル水溶液に 3分間浸漬して、導 体層表面を酸化して黒化処理された導体層パターンを有する基材を製造した以外は 同様の導体層パターン付き基材を作製した。表面が黒化処理された導体層パターン を有する基材を用いて、実施例 flと同様にして保護膜を有する導体層パターン付き 基材を得た。その結果、導体層パターン付近に黒色粉末の粉落ちが発生し、その結 果として電磁波遮蔽板としての投下光強度が図 33に示すようにし *にして約 10%損 なわれ、かつ導体層外観に色むらが発生した。しかしながら、電磁波シールド性をァ ドバンテスト法で評価した結果、 47dBであり、電磁波シールド性の低下はな力つた。 実施例 42  In Example 1 (blackening treatment Ichigo), the substrate with the conductor layer pattern was immersed in Meltex Co., Ltd. Ebonol C special aqueous solution heated to 80 ° C for 3 minutes, so that the surface of the conductor layer was A similar base material with a conductor layer pattern was produced except that a base material having a conductor layer pattern oxidized and blackened was manufactured. Using a base material having a conductor layer pattern whose surface was blackened, a base material with a conductor layer pattern having a protective film was obtained in the same manner as in Example fl. As a result, black powder powder is generated in the vicinity of the conductor layer pattern. As a result, the dropped light intensity as an electromagnetic wave shielding plate is impaired by about 10% as shown in FIG. Color unevenness occurred. However, as a result of evaluating the electromagnetic wave shielding property by the advanced van test method, it was 47 dB, and the electromagnetic wave shielding property was not significantly lowered. Example 42
[0322] [実施例 f7] [0322] [Example f7]
前記実施例 flの (黒化処理一防鲭)において、導体層パターン付き基材を、常温 で株式会社アイソレートイ匕学研究所コパーブラック No. 65水溶液に 1分間浸漬して 、導体層表面を酸化して黒化処理された導体層パターンを有する基材を製造した以 外は同様の導体層パターン付き基材を作製した。表面が黒化処理された導体層バタ ーンを有する基材を用いて、実施例 flと同様にして保護膜を有する導体層パターン 付き基材を得た。  In the above example fl (blackening treatment Ichigo), the surface of the conductor layer was oxidized by immersing the substrate with the conductor layer pattern in an aqueous solution of Copper Black No. 65, Isolate Institute of Science Ltd. at room temperature for 1 minute. The same base material with a conductor layer pattern was produced except that a base material having a conductor layer pattern that had been blackened was manufactured. Using a base material having a conductor layer pattern whose surface was blackened, a base material with a conductor layer pattern having a protective film was obtained in the same manner as in Example fl.
その結果、実施例 f6と同様に導体層パターン付近に黒色粉末の粉落ちが発生し、 その結果として電磁波遮蔽板としての透過光強度が図 33に示すように L*にして約 1 0%低下し、かつ導体層外観に色むらが発生した。しかしながら、電磁波シールド性 をアドバンテスト法で評価した結果、 46dBであり、電磁波シールド性の低下はなかつ た。  As a result, as in Example f6, black powder powdered off in the vicinity of the conductor layer pattern, and as a result, the transmitted light intensity as an electromagnetic wave shielding plate was reduced by about 10% to L * as shown in FIG. In addition, uneven color occurred in the appearance of the conductor layer. However, as a result of evaluating the electromagnetic wave shielding property by the Advantest method, it was 46 dB, and the electromagnetic wave shielding property was not deteriorated.
[0323] 以上の実施例で得られた導体層パターンの開口率、可視光透過率、パターン異常 の有無、視認性、電磁波遮蔽性(300MHz)、色むら、粉落ち、及び反射光、透過光 強度、色度の結果を図 32及び図 33に示す。  [0323] The aperture ratio, visible light transmittance, presence / absence of pattern abnormality, visibility, electromagnetic wave shielding (300MHz), color unevenness, powder fall-off, reflected light, and transmitted light of the conductor layer pattern obtained in the above examples The results of intensity and chromaticity are shown in Figs. 32 and 33.
[0324] 上記において、色むらは導体層パターン付き基材の黒色処理面の色むらを目視で 確認した。粉落ちは実施例の黒ィ匕処理及び防鲭処理を行った後に次の試験を行つ た。導体層パターン付き基材の黒色処理面を上にして平らな台の上に置き、水でぬ らした濾紙 (アドバンテスト東洋 (株)製、定性濾紙 No. 2)を乗せ、その上に 100gの 重りを置き、濾紙を 10cm移動させた後、濾紙への黒色粉末の付着の有無を観察し た。反射光、透過光の色度は導体層パターン付き基材の黒色処理面を測定側にし てミノルタ株式会社製分光測色計 CM— 508dにより測定した。測定には D 光源を [0324] In the above, the color unevenness of the black-treated surface of the substrate with the conductor layer pattern is visually observed. confirmed. The following test was conducted after the black dust treatment and the antifouling treatment of Examples were performed. Place the substrate with the conductor layer pattern on a flat surface with the black treated surface facing up, and place water-dried filter paper (Qualitative filter paper No. 2 manufactured by Advantest Toyo Co., Ltd.) on top of 100 g of it. After placing a weight and moving the filter paper 10 cm, the presence or absence of black powder adhering to the filter paper was observed. The chromaticity of reflected light and transmitted light was measured with a spectrocolorimeter CM-508d manufactured by Minolta Co., Ltd. with the black-treated surface of the substrate with a conductor layer pattern as the measurement side. D light source for measurement
65 用い、 10° 視野で行った。  65, using a 10 ° field of view.
[0325] 以上実施例で説明したが、本発明の実施形態 1は、上面を有する凸部のパターン 及びそれによつて描かれる幾何学図形状の凹部を有する導電性基材上にめっきに より金属層を形成する工程及び上記導電性基材の凸部の上面に形成された金属層 を別の基材に転写する工程を含むことを特徴とする導体層パターン付き基材の製造 方法である。 [0325] As described above in the examples, Embodiment 1 of the present invention is a method in which a metal is formed by plating on a conductive substrate having a pattern of convex portions having an upper surface and a concave portion having a geometric diagram shape drawn thereby. It is a manufacturing method of the base material with a conductor layer pattern characterized by including the process of forming a layer, and the process of transferring the metal layer formed in the upper surface of the convex part of the said conductive base material to another base material.
[0326] 本発明の実施形態 2は、上面を有する凸部の側面の傾斜角が 30° 以上である導 電性基材を使用する実施形態 1の導体層パターン付き基材の製造方法である。  [0326] Embodiment 2 of the present invention is a method for producing a base material with a conductor layer pattern according to Embodiment 1 in which a conductive base material having an inclination angle of a side surface of a convex portion having an upper surface of 30 ° or more is used. .
[0327] 本発明の実施形態 3は、導電性基材が、凹部の面積比率が全体の 50%以上 97% 以下である領域 A、並びに、その外側に配され、凹部の面積比率が全体の 0%又は 97%未満である領域 Bを有し、領域 Aにおける凹部の面積比率が領域 Bにおける凹 部の面積比率よりも大きいものである実施形態 1又は 2の導体層パターン付き基材の 製造方法である。  [0327] In Embodiment 3 of the present invention, the conductive substrate is arranged on the outside of the region A in which the area ratio of the recesses is 50% or more and 97% or less of the entire recess, and the area ratio of the recesses is the entire area ratio. Production of a substrate with a conductor layer pattern according to Embodiment 1 or 2, which has region B that is 0% or less than 97%, and the area ratio of the recesses in region A is larger than the area ratio of the recesses in region B Is the method.
[0328] 本発明の実施形態 4は、領域 Bにおける凹部の面積比率が全体の 40%以上 97% 未満である実施形態 3の導体層パターン付き基材の製造方法である。  [0328] Embodiment 4 of the present invention is a method for manufacturing a substrate with a conductor layer pattern of Embodiment 3 in which the area ratio of the recesses in region B is 40% or more and less than 97% of the whole.
[0329] 本発明の実施形態 5は、領域 Aの凸部の上面と領域 Bの凸部の上面が、少なくとも 1力所で連続している実施形態 3又は 4の導電層パターン付き基材の製造方法であ る。  [0329] In Embodiment 5 of the present invention, the upper surface of the convex portion of region A and the upper surface of the convex portion of region B are continuous at least at one force point. It is a manufacturing method.
[0330] 本発明の実施形態 6は、上記導電性基材の凸部の上面に析出させた金属を別の 基材に転写する工程において、導電性基材上に析出した金属のうち、導電性基材の 凸部の上面に形成された金属層のみを選択的に別の基材に転写する実施形態 1〜 5のいずれか 1つの導体層パターン付き基材の製造方法である。 [0331] 本発明の実施形態 7は、凸部の表面粗さが十点平均粗さ Rzで 2以下である導電性 基材を使用する実施形態 1〜6のいずれか 1つの導体層パターン付き基材の製造方 法である。 [0330] In Embodiment 6 of the present invention, in the step of transferring the metal deposited on the upper surface of the convex portion of the conductive base material to another base material, the conductive material out of the metal precipitated on the conductive base material. It is a manufacturing method of the base material with any one conductor layer pattern of Embodiment 1-5 which selectively transcribe | transfers only the metal layer formed in the upper surface of the convex part of a conductive base material to another base material. [0331] In the seventh embodiment of the present invention, the surface roughness of the convex portion has a ten-point average roughness Rz of 2 or less. The conductive base material according to any one of the embodiments 1 to 6 is used. This is a method for manufacturing a substrate.
[0332] 本発明の実施形態 8は、凹部の表面粗さが十点平均粗さ Rzで 3以上である導電性 基材を使用する実施形態 6又は 7の導体層パターン付き基材の製造方法である。  [0332] Embodiment 8 of the present invention is a method for producing a substrate with a conductor layer pattern according to Embodiment 6 or 7, wherein a conductive substrate having a concave surface roughness of 3 or more in terms of 10-point average roughness Rz is used. It is.
[0333] 本発明の実施形態 9は、導電性基材が、少なくとも上記凸部の上面端部付近では 薄膜になるように凹部を絶縁層で被覆したものである実施形態 1〜8のいずれか 1つ の導体層パターン付き基材の製造方法である。 [0333] Embodiment 9 of the present invention is any one of Embodiments 1 to 8, wherein the conductive base material is such that a recess is covered with an insulating layer so as to be a thin film at least in the vicinity of the upper surface end of the protrusion. This is a method for producing a substrate with a conductor layer pattern.
[0334] 本発明の実施形態 10は、絶縁層の厚さが、凸部の高さの 1Z2以下である実施形 態 9の導体層パターン付き基材の製造方法である。 [0334] Embodiment 10 of the present invention is a method for manufacturing a substrate with a conductor layer pattern of Embodiment 9, wherein the thickness of the insulating layer is 1Z2 or less of the height of the convex portion.
[0335] 本発明の実施形態 11は、導電性基材が、その凹部を薄膜絶縁層で被覆されてい るものである実施形態 9又は 10の導体層パターン付き基材の製造方法である。 [0335] Embodiment 11 of the present invention is the method for producing a substrate with a conductor layer pattern according to Embodiment 9 or 10, wherein the conductive substrate has a recess coated with a thin film insulating layer.
[0336] 本発明の実施形態 12は、導電性基材の凸部の上面の端部での薄膜絶縁層の厚さ が lO /z m以下である実施形態 11の導体層パターン付き基材の製造方法である。 [0336] Embodiment 12 of the present invention is the production of a substrate with a conductor layer pattern according to Embodiment 11, wherein the thickness of the thin film insulating layer at the end of the upper surface of the convex portion of the conductive substrate is lO / zm or less. Is the method.
[0337] 本発明の実施形態 13は、導電性基材の凹部を被覆する薄膜絶縁層が電着塗装 により形成されたものである実施形態 11又は 12の導体層パターン付き基材の製造 方法である。 [0337] Embodiment 13 of the present invention is a method for producing a substrate with a conductor layer pattern according to Embodiment 11 or 12, wherein the thin film insulating layer covering the recesses of the conductive substrate is formed by electrodeposition coating. is there.
[0338] 本発明の実施形態 14は、さらに、形成された金属層の転写前又は転写後に析出し た金属の表面を黒化処理する工程を含むことを特徴とする実施形態 1〜13のいずれ 力 1つの導体層パターン付き基材の製造方法である。  [0338] Embodiment 14 of the present invention further includes a step of blackening the surface of the metal deposited before or after transfer of the formed metal layer. Force A method for producing a substrate with a conductor layer pattern.
[0339] 本発明の実施形態 15は、実施形態 1〜13のいずれか 1つの製造方法を行った後[0339] The fifteenth embodiment of the present invention is performed after the manufacturing method of any one of the first to thirteenth embodiments is performed.
、基材に転写された金属パターンを黒化処理する工程を含むことを特徴とする実施 形態 14の導体層パターン付き基材の製造方法である。 The method for producing a base material with a conductor layer pattern according to Embodiment 14, which includes a step of blackening the metal pattern transferred to the base material.
[0340] 本発明の実施形態 16は、黒化処理を VIII族元素を含む黒色合金金属を形成され た金属層の表面に析出させて行う実施形態 14又は 15の導体層パターン付き基材の 製造方法である。 [0340] Embodiment 16 of the present invention is the production of a substrate with a conductor layer pattern according to Embodiment 14 or 15, wherein the blackening treatment is performed by depositing a black alloy metal containing a Group VIII element on the surface of the formed metal layer. Is the method.
[0341] 本発明の実施形態 17は、黒ィ匕処理が黒色ニッケルめつきであって、硫酸ニッケル を 60〜: LOOgZL、硫酸ニッケルアンモ-ゥムを 30〜50gZL、硫酸亜鉛を 20〜40g ZL、チォシアン化ナトリウムを 10〜20gZLを含むめっき液を使った実施形態 16の 導体層パターン付き基材の製造方法である。 [0341] Embodiment 17 of the present invention is such that the black wrinkle treatment is black nickel plating, nickel sulfate 60 to: LOOgZL, nickel sulfate ammonium 30 to 50g ZL, zinc sulfate 20 to 40g 17 is a process for producing a substrate with a conductor layer pattern according to Embodiment 16, using a plating solution containing ZL and sodium thiocyanide in an amount of 10 to 20 g ZL.
[0342] 本発明の実施形態 18は、黒化処理した層の厚みが 0. 5 μ m〜3 μ mである実施形 態 14〜17のいずれか 1つの導体層パターン付き基材の製造方法である。  [0342] Embodiment 18 of the present invention is a method for producing a substrate with a conductor layer pattern according to any one of Embodiments 14 to 17, wherein the thickness of the blackened layer is 0.5 μm to 3 μm It is.
[0343] 本発明の実施形態 19は、黒ィ匕処理した層が導電性基材の上に析出した金属と密 着が良ぐ導電層パターン以外の部分に粉落ちが無い実施形態 14〜18のいずれか[0343] Embodiment 19 of the present invention is Embodiments 14 to 18 in which the blackened layer has no powder fallout in portions other than the conductive layer pattern that adheres well to the metal deposited on the conductive substrate. One of
1つの導体層パターン付き基材の製造方法である。 It is a manufacturing method of one base material with a conductor layer pattern.
[0344] 本発明の実施形態 20は、前記黒化処理後、防鲭処理工程を有する実施形態 14[0344] Embodiment 20 of the present invention is Embodiment 14 having an antifouling treatment step after the blackening treatment.
〜19のいずれか 1つの導体層パターン付き基材の製造方法である。 A method for producing a substrate with a conductor layer pattern of any one of -19.
[0345] 本発明の実施形態 21は、別の基材が接着性を有する実施形態 1〜20のいずれか[0345] Embodiment 21 of the present invention is any one of Embodiments 1 to 20, in which another substrate has adhesiveness.
1つの導体層パターン付き基材の製造方法である。 It is a manufacturing method of one base material with a conductor layer pattern.
[0346] 本発明の実施形態 22は、別の基材が表面に接着剤層又は粘着剤層を有する実施 形態 21の導体層パターン付き基材の製造方法である。 [0346] Embodiment 22 of the present invention is the method for producing a substrate with a conductor layer pattern of Embodiment 21, wherein another substrate has an adhesive layer or a pressure-sensitive adhesive layer on the surface.
[0347] 本発明の実施形態 23は、別の基材が、 900nm〜: L lOOnmの近赤外領域におけ る平均透過率が 15%以下のものである実施形態 1〜22のいずれか 1つの導体層パ ターン付き基材の製造方法である。 [0347] In Embodiment 23 of the present invention, any one of Embodiments 1 to 22, wherein the other substrate has an average transmittance of 900% or less in the near infrared region of LlOOnm of 15% or less 1 This is a method for producing a substrate with two conductor layer patterns.
[0348] 本発明の実施形態 24は、上記導電性基材の凸部のパターンの高さが: L m〜10[0348] In the embodiment 24 of the present invention, the height of the convex pattern of the conductive substrate is: L m to 10
0 m、幅が 1 μ m〜40 μ m、凸部の上面間の間隔が 100 μ m〜1000 μ mである実 施形態 1〜23のいずれか 1つの導体層パターン付き基材の製造方法である。 Embodiment 1 in which 0 m, width is 1 μm to 40 μm, and the distance between the upper surfaces of the convex portions is 100 μm to 1000 μm. Manufacturing method of substrate with one conductor layer pattern It is.
[0349] 本発明の実施形態 25は、上記導電性基材上にめっきにより金属層を形成するェ 程において、導電性基材の凸部の上面において金属の厚さが 0. 1〜20 /ζ πιになる ように金属を析出させる実施形態 1〜24のいずれ力 1つの導体層パターン付き基材 の製造方法である。 [0349] In the embodiment 25 of the present invention, in the step of forming a metal layer by plating on the conductive substrate, the metal thickness on the upper surface of the convex portion of the conductive substrate is 0.1-20 / A method for producing a substrate with a single conductor layer pattern according to any one of Embodiments 1 to 24, in which metal is deposited so as to be ζ πι.
[0350] 本発明の実施形態 26は、めっきに用いる金属力 20°Cにおける体積抵抗率で 20 μ Ω /cm以下の金属を少なくとも 1種類以上含むものである実施形態 1〜25のいず れカ 1つの導体層パターン付き基材の製造方法である。  [0350] Embodiment 26 of the present invention includes at least one metal having a volume resistivity of 20 μΩ / cm or less at a metal force of 20 ° C used for plating. It is a manufacturing method of a base material with two conductor layer patterns.
[0351] 本発明の実施形態 27は、導電性基材が回転体 (ロール)である実施形態 1〜26の いずれか 1つの導体層パターン付き基材の製造方法である。 [0352] 本発明の実施形態 28は、導電性基材がフープ状である実施形態 1〜26のいずれ 力 1つの導体層パターン付き基材の製造方法である。 [0351] Embodiment 27 of the present invention is a method for producing a substrate with a conductor layer pattern according to any one of Embodiments 1 to 26, wherein the conductive substrate is a rotating body (roll). [0352] Embodiment 28 of the present invention is a method for producing a substrate with a conductive layer pattern of any one of Embodiments 1 to 26, wherein the conductive substrate is in a hoop shape.
[0353] 本発明の実施形態 29は、上記凸部に形成された金属層を基材に転写する工程の 前に、導電性基材の凸部の上面に形成された金属層を黒ィ匕処理する工程を含む実 施形態 1〜28のいずれか 1つの導体層パターン付きプラスチック基材の製造方法で ある。 [0353] In the embodiment 29 of the present invention, the metal layer formed on the upper surface of the convex portion of the conductive substrate is blackened before the step of transferring the metal layer formed on the convex portion to the substrate. It is a manufacturing method of the plastic substrate with any one of Embodiments 1-28 including the process to process.
[0354] 本発明の実施形態 30は、実施形態 1〜29のいずれか 1つの製造方法を行った後 [0354] Embodiment 30 of the present invention is performed after the manufacturing method of any one of Embodiments 1 to 29 is performed.
、導電性基材に残存する金属をエッチング除去する工程を含むことを特徴とする導 体層パターン付き基材の製造方法である。 A method for producing a substrate with a conductor layer pattern, comprising a step of etching away a metal remaining on a conductive substrate.
[0355] 本発明の実施形態 31は、実施形態 1〜29のいずれか 1つの製造方法を行った後 、導電性基材に残存する金属を粘着性フィルムを用いて除去する工程を含むことを 特徴とする導体層パターン付き基材の製造方法である。  [0355] Embodiment 31 of the present invention includes a step of removing the metal remaining on the conductive substrate using an adhesive film after performing any one of the production methods of Embodiments 1 to 29. It is a manufacturing method of the base material with a conductor layer pattern characterized.
[0356] 本発明の実施形態 32は、実施形態 1〜31のいずれか 1つの導体層パターン付き 基材の製造方法により製造された導体層パターン付き基材である。  [0356] Embodiment 32 of the present invention is a substrate with a conductor layer pattern produced by the method for producing a substrate with a conductor layer pattern of any one of Embodiments 1 to 31.
[0357] 本発明の実施形態 1は、実施形態 32の導体層パターン付き基材の導体層パター ンを有する面を透明基板に貼りあわせてなる透光性電磁波遮蔽部材である。  [0357] Embodiment 1 of the present invention is a translucent electromagnetic wave shielding member obtained by bonding a surface having a conductor layer pattern of a substrate with a conductor layer pattern of Embodiment 32 to a transparent substrate.
[0358] 本発明の実施形態 34は、実施形態 32の導体層パターン付き基材の導体層パター ンを榭脂で被覆してなる透光性電磁波遮蔽部材である。  [0358] Embodiment 34 of the present invention is a translucent electromagnetic wave shielding member obtained by coating the conductor layer pattern of the substrate with a conductor layer pattern of Embodiment 32 with a resin.
[0359] 本発明の実施形態 35は、上面を有する凸部のパターン及びそれによつて描かれる 幾何学図形状の凹部を有し、凹部の面積比率が全体の 50%以上 97%以下である 領域 A、並びに、その外側に配され、上面を有する凸部のパターン及びそれによつて 描かれる幾何学図形状の凹部を有し、凹部の面積比率が全体の 40%以上 97%未 満である領域 Bを有し、領域 Aにおける凹部の面積比率が領域 Bにおける凹部の面 積比率よりも大きぐし力も、上記の二つの領域における凹部が少なくとも上記凸部の 上面の端付近では薄膜になるように絶縁層で被覆されてなるめっき用導電性基材で ある。  Embodiment 35 of the present invention has a pattern of convex portions having an upper surface and a concave portion having a geometric diagram shape drawn thereby, and the area ratio of the concave portions is 50% or more and 97% or less of the entire region A and a region having a convex pattern having an upper surface and a concave portion of the geometric drawing drawn by the pattern, and the area ratio of the concave portion is 40% or more and less than 97% of the whole. B, and the area ratio of the recesses in the region A is larger than the area ratio of the recesses in the region B, so that the recesses in the two regions become a thin film at least near the top edge of the protrusions. It is a conductive substrate for plating formed by coating with an insulating layer.
[0360] 本発明の実施形態 36は、前記凹部の面積比率が、任意の lcm2毎の数値である実 施形態 35のめつき用導電性基材である。 [0361] 本発明の実施形態 37は、前記凹部が薄膜絶縁層で被覆されてなる実施形態 35の めっき用導電性基材である。 [0360] Embodiments of the present invention 36, the area ratio of the concave portion is a plated conductive substrate of the implementation form 35 which is a numeric value of any lcm per 2. [0361] Embodiment 37 of the present invention is the conductive substrate for plating according to Embodiment 35, wherein the concave portion is covered with a thin film insulating layer.
[0362] 本発明の実施形態 38は、領域 A及び領域 Bにおいて凸部のパターンが網目模様 からなり、また、凹部の深さが 1 μ m〜100 μ mであり、領域 Aにおいて上面の幅(ライ ン幅)が 1 m〜40 μ m、凸部上面の中心間隔(ライン間隔)力 100 μ m〜1000 μ mであり、領域 Bにおける凸部の上面の幅(ライン幅)が 1 μ m〜500 μ m、上面の中 心間隔(ライン間隔)が 3 μ m〜5000 μ mであり、し力も、領域 Bにおいて、凸部の上 面の中心間隔 (ライン間隔)が、凸部の上面の幅 (ライン幅)の 3倍以上 10倍以下であ る幾何学図形を有する実施形態 35のめつき用導電性基材である。  [0362] In embodiment 38 of the present invention, the pattern of the convex portions in the regions A and B is a mesh pattern, the depth of the concave portions is 1 μm to 100 μm, and the width of the upper surface in the region A is (Line width) is 1 m to 40 μm, center spacing (line spacing) force of the top surface of the convex part is 100 μm to 1000 μm, and the top surface width (line width) of the convex part in region B is 1 μm m to 500 μm, the center distance between the top surfaces (line spacing) is 3 μm to 5000 μm, and the force in the area B is the center spacing (line spacing) between the top surfaces of the projections. 36. The conductive base material for plating according to Embodiment 35, which has a geometric figure that is not less than 3 times and not more than 10 times the width (line width) of the upper surface.
[0363] 本発明の実施形態 39は、領域 Bに形成される幾何学図形が下記(1)乃至(7)のう ち少なくとも 1つの模様を含む実施形態 35のめつき用導電性基材である。  [0363] Embodiment 39 of the present invention is the conductive substrate for plating according to Embodiment 35, wherein the geometrical figure formed in the region B includes at least one pattern of the following (1) to (7): is there.
(1)メッシュ状幾何学的模様  (1) Mesh-like geometric pattern
(2)所定間隔で規則的に配列された方形状幾何学的模様  (2) Square geometric pattern regularly arranged at predetermined intervals
(3)所定間隔で規則的に配列された平行四辺形模様  (3) Parallelogram pattern regularly arranged at predetermined intervals
(4)円模様又は楕円模様  (4) Circular or oval pattern
(5)三角形模様  (5) Triangle pattern
(6)五角形以上の多角形模様  (6) Polygon pattern more than pentagon
(7)星形模様  (7) Star pattern
[0364] 本発明の実施形態 40は、領域 Aの凸部の上面と領域 Bの凸部の上面が、少なくと も 1力所で連続している実施形態 35のめつき用導電性基材である。  [0364] In the embodiment 40 of the present invention, the upper surface of the convex portion in the region A and the upper surface of the convex portion in the region B are continuous at least at one power point. It is.
[0365] 本発明の実施形態 41は、導電性基材をフォトリソグラフ法でエッチングすることによ り凸部のパターン及びそれによつて描かれる幾何学図形状の凹部が形成されている 実施形態 35のめつき用導電性基材である。  [0365] In Embodiment 41 of the present invention, a conductive substrate is etched by a photolithographic method to form a pattern of convex portions and a concave portion having a geometric diagram shape drawn thereby. Embodiment 35 It is a conductive base material for plating.
[0366] 本発明の実施形態 42は、実施形態 35のめつき用導電性基材上に、めっきにより金 属層を形成した後、上記めつき用導電性基材の凸部の上面に形成された金属層を 別の基材に転写して得られる導電層パターン付き基材である。  [0366] In Embodiment 42 of the present invention, a metal layer is formed on the conductive substrate for plating according to Embodiment 35 by plating, and then formed on the upper surface of the convex portion of the conductive substrate for plating. It is a base material with a conductive layer pattern obtained by transferring the made metal layer to another base material.
[0367] 本発明の実施形態 43は、めっきにより、上記めつき用導電性基材に形成される金 属層が、 20°Cにおける体積抵抗率で 20 Q Zcm以下の金属である実施形態 42の 導電層パターン付き基材である。 [0367] In the embodiment 43 of the present invention, the metal layer formed on the electroconductive substrate for plating by plating is a metal having a volume resistivity of 20 Q Zcm or less at 20 ° C. 42 of It is a base material with a conductive layer pattern.
[0368] 本発明の実施形態 44は、転写された金属の表面又は裏面の少なくとも 1面に黒ィ匕 処理が施されている実施形態 42の導電層パターン付き基材である。 [0368] Embodiment 44 of the present invention is the substrate with a conductive layer pattern of Embodiment 42, in which at least one surface of the transferred metal is subjected to blackening treatment.
[0369] 本発明の実施形態 45は、導電性基材の表面に光硬化性榭脂又は熱硬化性榭脂 の硬化榭脂により幾何学図形状のパターンを形成する工程、導電性基材をエツチン グすることにより上面を有する凸部のパターン及びそれによつて描かれる幾何学図形 状の凹部を形成する工程、少なくとも上記凸部の上面の端付近では薄膜になるよう に凹部に絶縁層を形成する工程、上記光硬化性榭脂又は熱硬化性榭脂の硬化榭 脂を剥離する工程を含むことを特徴とするめつき用導電性基材の製造法である。 [0369] Embodiment 45 of the present invention comprises a step of forming a geometric figure pattern on the surface of a conductive substrate by curing a photocurable resin or a thermosetting resin. A step of forming a convex pattern having an upper surface by etching and a concave portion having a geometrical shape drawn by the pattern, and forming an insulating layer in the concave portion so as to be a thin film at least near the upper surface end of the convex portion. A method for producing an electroconductive substrate for adhesion, comprising a step of removing the cured resin of the photocurable resin or the thermosetting resin.
[0370] 本発明の実施形態 46は、光硬化性榭脂ある!/、は熱硬化性榭脂がエッチングレジ ストである実施形態 45のめつき用導電性基材の製造法である。 [0370] Embodiment 46 of the present invention is a method for producing an electroconductive substrate for plating according to Embodiment 45, wherein the photocurable resin is! /, And the thermosetting resin is an etching resist.
[0371] 本発明の実施形態 47は、導電性基材をエッチングするに際し、オーバーエツチン グする実施形態 45のめつき用導電性基材の製造法である。 [0371] Embodiment 47 of the present invention is a method for producing a conductive substrate for plating according to Embodiment 45, in which overetching is performed when the conductive substrate is etched.
[0372] 本発明の実施形態 48は、凹部に絶縁層を施した後の凸部の高さが、その前の凸 部の高さの 1Z2以上である実施形態 45のめつき用導電性基材の製造法である。 [0372] In Embodiment 48 of the present invention, the height of the convex portion after applying the insulating layer to the concave portion is 1Z2 or more of the height of the convex portion before that. This is a manufacturing method of the material.
[0373] 本発明の実施形態 49は、導電性基材の凸部の上面の端部での絶縁層の厚さが 1[0373] In Embodiment 49 of the present invention, the thickness of the insulating layer at the end of the upper surface of the convex portion of the conductive substrate is 1
0 μ m以下である実施形態 47のめつき用導電性基材の製造法である。 48. The method for producing a conductive base material for plating according to embodiment 47, which is 0 μm or less.
[0374] 本発明の実施形態 50は、絶縁層が薄膜絶縁層である実施形態 45のめつき用導電 性基材の製造法である。 [0374] Embodiment 50 of the present invention is a method for producing a conductive base material for plating according to Embodiment 45, in which the insulating layer is a thin film insulating layer.
[0375] 本発明の実施形態 51は、導電性基材に絶縁層を形成する工程において、絶縁層 を電着塗装により形成する実施形態 45のめつき用導電性基材の製造法である。 [0375] Embodiment 51 of the present invention is the method for producing an electroconductive substrate for adhesion according to Embodiment 45, in which the insulating layer is formed by electrodeposition coating in the step of forming the insulating layer on the conductive substrate.
[0376] 本発明の実施形態 52は、上記導電性基材の凸部の高さが 1 πι〜100 /ζ m、凸 部上面の幅が 1 μ m〜40 μ m、凸部の上面の間隔が 100 μ m〜1000 μ mである実 施形態 45のめつき用導電性基材の製造法である。 [0376] In Embodiment 52 of the present invention, the height of the convex portion of the conductive substrate is 1 πι to 100 / ζ m, the width of the upper surface of the convex portion is 1 μm to 40 μm, and the upper surface of the convex portion is This is a method for producing an electroconductive substrate for plating according to Embodiment 45, in which the interval is 100 μm to 1000 μm.
[0377] 本発明の実施形態 53は、導電性基材が回転体 (ロール)又は回転体 (ロール)に卷 き付けられるものである実施形態 45のめつき用導電性基材の製造法である。 [0377] Embodiment 53 of the present invention relates to the method for producing a conductive substrate for adhesion according to Embodiment 45, wherein the conductive substrate is attached to a rotating body (roll) or a rotating body (roll). is there.
[0378] 本発明の実施形態 54は、導電性基材がフープ状である実施形態 45のめつき用導 電性基材の製造法である。 [0379] 本発明の実施形態 55は、光硬化性榭脂あるいは熱硬化性榭脂により幾何学図形 状のパターンを形成する工程が、フォトリソグラフ法又は印刷法によって行われる実 施形態 45のめつき用導電性基材の製造法である。 [0378] Embodiment 54 of the present invention is a method for producing a conductive substrate for plating according to Embodiment 45, in which the conductive substrate has a hoop shape. [0379] Embodiment 55 of the present invention is the embodiment 45 in which the step of forming the geometric figure pattern by photo-curing resin or thermosetting resin is carried out by a photolithographic method or a printing method. It is a manufacturing method of the conductive base material for attachment.
[0380] 本発明の実施形態 56は、絶縁層を導電性基材に定着させる際に不活性ガス雰囲 気下で行う実施形態 45のめつき用導電性基材の製造法である。 [0380] Embodiment 56 of the present invention is a method for producing an electroconductive substrate for adhesion according to embodiment 45, which is performed in an inert gas atmosphere when the insulating layer is fixed to the electroconductive substrate.
[0381] 本発明の実施形態 57は、不活性ガスが窒素である実施形態 56のめつき用導電性 基材の製造法である。 [0381] Embodiment 57 of the present invention is a method for producing a conductive substrate for plating according to Embodiment 56, wherein the inert gas is nitrogen.
[0382] 本発明の実施形態 58は、実施形態 35の導電性基材の凸部の上面に、めっきによ り金属層を形成する工程及び上記導電性基材の凸部の上面に形成された金属層を 別の基材に転写する工程を含むことを特徴とする導体層パターン付き基材の製造方 法である。  [0382] Embodiment 58 of the present invention is formed on the upper surface of the convex portion of the conductive base material of Embodiment 35 and on the upper surface of the convex portion of the conductive base material by a step of forming a metal layer by plating. A method for producing a substrate with a conductor layer pattern, comprising the step of transferring the metal layer to another substrate.
[0383] 本発明の実施形態 59は、実施形態 42の導体層パターン付き基材を含む透光性電 磁波遮蔽部材である。  [0383] Embodiment 59 of the present invention is a translucent electromagnetic wave shielding member including the substrate with a conductor layer pattern of Embodiment 42.
[0384] 本発明の実施形態 60は、導体層パターン付き基材の導体層パターンを有する面 を透明基板に貼りあわせてなる実施形態 59の透光性電磁波遮蔽部材である。  [0384] Embodiment 60 of the present invention is the light-transmitting electromagnetic wave shielding member of Embodiment 59, in which a surface having a conductor layer pattern of a substrate with a conductor layer pattern is bonded to a transparent substrate.
[0385] 本発明の実施形態 61は、導体層パターン付き基材の導体層パターンを有する面 を榭脂で被覆してなる実施形態 59の透光性電磁波遮蔽部材である。  [0385] Embodiment 61 of the present invention is the light-transmitting electromagnetic wave shielding member of Embodiment 59, in which the surface having a conductor layer pattern of a substrate with a conductor layer pattern is coated with a resin.

Claims

請求の範囲 The scope of the claims
[1] 上面を有する凸部のノターン及びそれによつて描かれる幾何学図形状の凹部を有 する導電性基材上にめっきにより金属層を形成する工程及び上記導電性基材の凸 部の上面に形成した金属層を別の基材に転写する工程を含むことを特徴とする導体 層パターン付き基材の製造方法。  [1] A step of forming a metal layer by plating on a conductive substrate having a convex portion having an upper surface and a concave portion having a geometrical shape drawn thereby, and the upper surface of the convex portion of the conductive substrate The manufacturing method of the base material with a conductor layer pattern characterized by including the process of transferring the metal layer formed in to another base material.
[2] 上面を有する凸部の側面の傾斜角が 30° 以上である導電性基材を使用する請求 項 1記載の導体層パターン付き基材の製造方法。  [2] The method for producing a base material with a conductor layer pattern according to [1], wherein a conductive base material having an inclination angle of a side surface of the convex portion having an upper surface of 30 ° or more is used.
[3] 導電性基材が、凹部の面積比率が全体の 50%以上 97%以下である領域 A、並び に、その外側に配され、凹部の面積比率が全体の 0%又は 97%未満である領域 Bを 有し、領域 Aにおける凹部の面積比率が領域 Bにおける凹部の面積比率よりも大き いものである請求項 1又は 2記載の導体層パターン付き基材の製造方法。  [3] The conductive base material is arranged on the outside of the region A in which the area ratio of the recesses is 50% or more and 97% or less of the whole, and the area ratio of the recesses is 0% or less than 97% of the whole. The method for producing a substrate with a conductor layer pattern according to claim 1 or 2, wherein the substrate has a certain region B, and the area ratio of the recesses in the region A is larger than the area ratio of the recesses in the region B.
[4] 領域 Bにおける凹部の面積比率が全体の 40%以上 97%未満である請求項 3記載 の導体層パターン付き基材の製造方法。  4. The method for producing a substrate with a conductor layer pattern according to claim 3, wherein the area ratio of the recesses in the region B is 40% or more and less than 97% of the whole.
[5] 領域 Aの凸部の上面と領域 Bの凸部の上面が、少なくとも 1力所で連続している請 求項 3に記載の導電層パターン付き基材の製造方法。  [5] The method for producing a base material with a conductive layer pattern according to claim 3, wherein the upper surface of the convex portion in the region A and the upper surface of the convex portion in the region B are continuous at at least one force point.
[6] 上記導電性基材の凸部の上面に形成した金属層を別の基材に転写する工程にお いて、導電性基材上に形成した金属層のうち、導電性基材の凸部の上面に形成した 金属層のみを選択的に別の基材に転写する請求項 1に記載の導体層パターン付き 基材の製造方法。 [6] In the step of transferring the metal layer formed on the upper surface of the convex portion of the conductive base material to another base material, among the metal layers formed on the conductive base material, the convex shape of the conductive base material is used. 2. The method for producing a substrate with a conductor layer pattern according to claim 1, wherein only the metal layer formed on the upper surface of the portion is selectively transferred to another substrate.
[7] 凸部の表面粗さが十点平均粗さ Rzで 2以下である導電性基材を使用する請求項 1 に記載の導体層パターン付き基材の製造方法。  [7] The method for producing a substrate with a conductor layer pattern according to [1], wherein a conductive substrate in which the surface roughness of the convex portion is 2 or less in terms of 10-point average roughness Rz is used.
[8] 凹部の表面粗さが十点平均粗さ Rzで 3以上である導電性基材を使用する請求項 6 又は 7に記載の導体層パターン付き基材の製造方法。 [8] The method for producing a substrate with a conductor layer pattern according to [6] or [7], wherein a conductive substrate having a concave portion surface roughness of 3 or more in terms of 10-point average roughness Rz is used.
[9] 導電性基材が、少なくとも上記凸部の上面端部付近では薄膜になるように凹部を 絶縁層で被覆したものである請求項 1に記載の導体層パターン付き基材の製造方法 [9] The method for producing a base material with a conductor layer pattern according to claim 1, wherein the conductive base material has a concave portion coated with an insulating layer so as to be a thin film at least near the upper surface end of the convex portion.
[10] 絶縁層の厚さが、凸部の高さの 1Z2以下である請求項 9に記載の導体層パターン 付き基材の製造方法。 10. The method for producing a substrate with a conductor layer pattern according to claim 9, wherein the thickness of the insulating layer is 1Z2 or less of the height of the convex portion.
[11] 導電性基材が、その凹部を薄膜絶縁層で被覆されているものである請求項 9又は 1[11] The conductive substrate is one in which the concave portion is covered with a thin film insulating layer.
0に記載の導体層パターン付き基材の製造方法。 A method for producing a substrate with a conductor layer pattern according to 0.
[12] 導電性基材の凸部の上面の端部での薄膜絶縁層の厚さが 10 m以下である請求 項 11に記載の導体層パターン付き基材の製造方法。 12. The method for producing a substrate with a conductor layer pattern according to claim 11, wherein the thickness of the thin-film insulating layer at the upper end of the convex portion of the conductive substrate is 10 m or less.
[13] 導電性基材の凹部を被覆する薄膜絶縁層が電着塗装により形成されたものである 請求項 11に記載の導体層パターン付き基材の製造方法。 13. The method for producing a base material with a conductor layer pattern according to claim 11, wherein the thin film insulating layer covering the concave portion of the conductive base material is formed by electrodeposition coating.
[14] さらに、形成した金属層の転写前又は転写後に形成した金属層の表面を黒ィ匕処理 する工程を含むことを特徴とする請求項 1に記載の導体層パターン付き基材の製造 方法。 14. The method for producing a substrate with a conductor layer pattern according to claim 1, further comprising a step of blackening the surface of the metal layer formed before or after transfer of the formed metal layer. .
[15] 請求項 1に記載の製造方法を行った後、基材に転写された金属パターンを黒化処 理する工程を含むことを特徴とする請求項 14記載の導体層パターン付き基材の製 造方法。  [15] The substrate having a conductor layer pattern according to claim 14, further comprising a step of blackening the metal pattern transferred to the substrate after performing the production method according to claim 1. Production method.
[16] 黒ィ匕処理を VIII族元素を含む黒色合金金属を形成した金属層の表面に析出させ て行う請求項 14又は 15に記載の導体層パターン付き基材の製造方法。  16. The method for producing a base material with a conductor layer pattern according to claim 14 or 15, wherein the black soot treatment is performed by precipitating on the surface of the metal layer on which the black alloy metal containing a Group VIII element is formed.
[17] 黒化処理が黒色ニッケルめつきであって、硫酸ニッケルを 60〜: LOOgZL、硫酸- ッケルアンモ-ゥムを 30〜50g/L、硫酸亜鉛を 20〜40gZL、チォシアン化ナトリウ ムを 10〜20gZLを含むめっき液を使った請求項 16に記載の導体層パターン付き 基材の製造方法。  [17] Blacking treatment is black nickel plating, nickel sulfate 60 ~: LOOgZL, sulfuric acid-Neckel ammonium 30 ~ 50g / L, zinc sulfate 20 ~ 40gZL, sodium thiocyanate 10 ~ The method for producing a substrate with a conductor layer pattern according to claim 16, wherein a plating solution containing 20gZL is used.
[18] 黒化処理した層の厚みが 0. 5 μ m〜3 μ mである請求項 14に記載の導体層パタ ーン付き基材の製造方法。  18. The method for producing a substrate with a conductor layer pattern according to claim 14, wherein the thickness of the blackened layer is 0.5 μm to 3 μm.
[19] 黒ィ匕処理した層が導電性基材の上に形成した金属層と密着が良ぐ導電層パター ン以外の部分に粉落ちが無い請求項 14に記載の導体層パターン付き基材の製造 方法。 [19] The base material with a conductor layer pattern according to [14], wherein the black-glazed layer does not fall off in portions other than the conductive layer pattern in which the metal layer formed on the conductive base material has good adhesion Manufacturing method.
[20] 前記黒化処理後、防鲭処理工程を有する請求項 14に記載の導体層パターン付き 基材の製造方法。  [20] The method for producing a substrate with a conductor layer pattern according to [14], further comprising a fender-proofing step after the blackening treatment.
[21] 別の基材が接着性を有する請求項 1に記載の導体層パターン付き基材の製造方 法。  21. The method for producing a substrate with a conductor layer pattern according to claim 1, wherein the other substrate has adhesiveness.
[22] 別の基材が表面に接着剤層又は粘着剤層を有する請求項 21に記載の導体層パ ターン付き基材の製造方法。 [22] The conductor layer pad according to [21], wherein another substrate has an adhesive layer or an adhesive layer on the surface thereof. A manufacturing method of a substrate with a turn.
[23] 別の基材が、 900nm〜: L lOOnmの近赤外領域における平均透過率が 15%以下 のものである請求項 1に記載の導体層パターン付き基材の製造方法。 [23] The method for producing a substrate with a conductor layer pattern according to [1], wherein the other substrate has an average transmittance in the near infrared region of 900 nm to LlOOnm of 15% or less.
[24] 上記導電性基材の凸部のパターンの高さが 1 μ m〜100 μ m、幅が 1 μ m〜40 μ m、凸部の上面間の間隔が 100 μ m〜1000 μ mである請求項 1に記載の導体層パ ターン付き基材の製造方法。 [24] The height of the convex pattern of the conductive substrate is 1 μm to 100 μm, the width is 1 μm to 40 μm, and the distance between the top surfaces of the convex is 100 μm to 1000 μm. The method for producing a substrate with a conductor layer pattern according to claim 1, wherein
[25] 上記導電性基材上にめっきにより金属を析出させる工程において、導電性基材の 凸部の上面において金属の厚さが 0. 1〜20 mになるように金属を析出させる請求 項 1に記載の導体層パターン付き基材の製造方法。 [25] In the step of depositing metal on the conductive substrate by plating, the metal is deposited so that the thickness of the metal is 0.1 to 20 m on the upper surface of the convex portion of the conductive substrate. 2. A method for producing a substrate with a conductor layer pattern according to 1.
[26] めっきに用いる金属力 20°Cにおける体積抵抗率で 20 Q Zcm以下の金属を少 なくとも 1種類以上含むものである請求項 1に記載の導体層パターン付き基材の製造 方法。 [26] The method for producing a substrate with a conductor layer pattern according to [1], wherein the metal force used for plating contains at least one metal having a volume resistivity of 20 Q Zcm or less at 20 ° C.
[27] 導電性基材が回転体 (ロール)である請求項 1に記載の導体層パターン付き基材の 製造方法。  27. The method for producing a substrate with a conductor layer pattern according to claim 1, wherein the conductive substrate is a rotating body (roll).
[28] 導電性基材がフープ状である請求項 1に記載の導体層パターン付き基材の製造方 法。  28. The method for producing a substrate with a conductor layer pattern according to claim 1, wherein the conductive substrate is in a hoop shape.
[29] 上記凸部に形成した金属層を基材に転写する工程の前に、導電性基材の凸部の 上面に形成した金属層を黒化処理する工程を含む請求項 1に記載の導体層パター ン付きプラスチック基材の製造方法。  [29] The method according to claim 1, further comprising a step of blackening the metal layer formed on the upper surface of the convex portion of the conductive substrate before the step of transferring the metal layer formed on the convex portion to the base material. A method for producing a plastic substrate with a conductor layer pattern.
[30] 請求項 1に記載の製造方法を行った後、導電性基材に残存する金属をエッチング 除去する工程を含むことを特徴とする導体層パターン付き基材の製造方法。 [30] A method for producing a substrate with a conductor layer pattern, comprising the step of etching away the metal remaining on the conductive substrate after performing the production method according to claim 1.
[31] 請求項 1に記載の製造方法を行った後、導電性基材に残存する金属を粘着性フィ ルムを用いて除去する工程を含むことを特徴とする導体層パターン付き基材の製造 方法。 [31] A process for producing a substrate with a conductor layer pattern, comprising the step of removing the metal remaining on the conductive substrate using an adhesive film after performing the production method according to claim 1. Method.
[32] 請求項 1に記載の導体層パターン付き基材の製造方法により製造された導体層パ ターン付き基材。  [32] A substrate with a conductor layer pattern produced by the method for producing a substrate with a conductor layer pattern according to claim 1.
[33] 請求項 32に記載の導体層ノターン付き基材の導体層パターンを有する面を透明 基板に貼りあわせてなる透光性電磁波遮蔽部材。 [33] A translucent electromagnetic wave shielding member obtained by bonding a surface having a conductor layer pattern of the substrate with a conductor layer pattern according to claim 32 to a transparent substrate.
[34] 請求項 32に記載の導体層パターン付き基材の導体層パターンを榭脂で被覆して なる透光性電磁波遮蔽部材。 34. A translucent electromagnetic wave shielding member obtained by coating the conductor layer pattern of the substrate with a conductor layer pattern according to claim 32 with a resin.
[35] 上面を有する凸部のノターン及びそれによつて描かれる幾何学図形状の凹部を有 し、凹部の面積比率が全体の 50%以上 97%以下である領域 A、並びに、その外側 に配され、上面を有する凸部のパターン及びそれによつて描かれる幾何学図形状の 凹部を有し、凹部の面積比率が全体の 40%以上 97%未満である領域 Bを有し、領 域 Aにおける凹部の面積比率が領域 Bにおける凹部の面積比率よりも大きぐし力も 、上記の二つの領域における凹部が少なくとも上記凸部の上面の端付近では薄膜に なるように絶縁層で被覆されてなるめっき用導電性基材。  [35] Area A where the convex part has a top surface and has a concave part of the geometrical shape drawn by it, and the area ratio of the concave part is not less than 50% and not more than 97% of the whole, and is arranged outside the area A. A region B having a pattern of convex portions having an upper surface and a concave portion of the geometrical shape drawn by the pattern, and the area ratio of the concave portions being 40% or more and less than 97% of the whole. A plating force in which the area ratio of the recesses is larger than the area ratio of the recesses in the region B, and the recesses in the two regions are covered with an insulating layer so that it is a thin film at least near the end of the upper surface of the protrusions. Conductive substrate.
[36] 前記凹部の面積比率が、任意の lcm2毎の数値である請求項 35に記載のめっき用 導電性基材。 [36] The conductive base material for plating according to [35], wherein the area ratio of the recesses is a numerical value for each arbitrary lcm 2 .
[37] 前記凹部が薄膜絶縁層で被覆されてなる請求項 35に記載のめっき用導電性基材  [37] The conductive substrate for plating according to claim 35, wherein the concave portion is coated with a thin film insulating layer.
[38] 領域 A及び領域 Bにおいて凸部のパターンが網目模様力もなり、また、凹部の深さ カ^ m〜100 μ mであり、領域 Aにおいて上面の幅(ライン幅)が 1 m〜40 μ m、 凸部上面の中心間隔(ライン間隔)が 100 μ m〜1000 μ mであり、領域 Bにおける凸 部の上面の幅(ライン幅)が 1 μ m〜500 μ m、上面の中心間隔(ライン間隔)が 3 μ m 〜5000 /ζ πιであり、し力も、領域 Βにおいて、凸部の上面の中心間隔(ライン間隔) 1S 凸部の上面の幅 (ライン幅)の 3倍以上 10倍以下である幾何学図形を有する請 求項 35に記載のめっき用導電性基材。 [38] The convex pattern in area A and area B also has a netting power, and the depth of the concave is ^ m to 100 μm. In area A, the upper surface width (line width) is 1 m to 40 m. μm, the center spacing (line spacing) of the top surface of the convex part is 100 μm to 1000 μm, and the top surface width (line width) of the convex part in region B is 1 μm to 500 μm, and the center distance of the top surface (Line interval) is 3 μm to 5000 / ζ πι, and the force is also the center interval (line interval) of the top surface of the convex part in region Β 1S More than 3 times the width (line width) of the top surface of the convex part 10 36. The electroconductive substrate for plating according to claim 35, which has a geometric figure that is not more than twice.
[39] 領域 Βに形成される幾何学図形が下記(1)乃至(7)のうち少なくとも 1つの模様を含 む請求項 35に記載のめっき用導電性基材。  [39] The conductive substrate for plating according to claim 35, wherein the geometric figure formed in the region Β includes at least one pattern of the following (1) to (7).
(1)メッシュ状幾何学的模様  (1) Mesh-like geometric pattern
(2)所定間隔で規則的に配列された方形状幾何学的模様  (2) Square geometric pattern regularly arranged at predetermined intervals
(3)所定間隔で規則的に配列された平行四辺形模様  (3) Parallelogram pattern regularly arranged at predetermined intervals
(4)円模様又は楕円模様  (4) Circular or oval pattern
(5)三角形模様  (5) Triangle pattern
(6)五角形以上の多角形模様 (7)星形模様 (6) Polygon pattern more than pentagon (7) Star pattern
[40] 領域 Aの凸部の上面と領域 Bの凸部の上面が、少なくとも 1力所で連続している請 求項 35に記載のめっき用導電性基材。  [40] The conductive substrate for plating according to claim 35, wherein the upper surface of the convex portion in region A and the upper surface of the convex portion in region B are continuous at at least one force point.
[41] 導電性基材をフォトリソグラフ法でエッチングすることにより凸部のパターン及びそ れによって描かれる幾何学図形状の凹部が形成されている請求項 35に記載のめつ き用導電性基材。 [41] The conductive substrate for eye contact according to claim 35, wherein the conductive substrate is etched by a photolithography method to form a pattern of the convex portion and a concave portion having a geometrical figure shape drawn thereby. Wood.
[42] 請求項 35に記載のめっき用導電性基材上に、めっきにより金属層を形成した後、 上記めつき用導電性基材の凸部の上面に形成した金属層を別の基材に転写して得 られる導電層パターン付き基材。  [42] After the metal layer is formed by plating on the conductive substrate for plating according to claim 35, the metal layer formed on the upper surface of the convex portion of the conductive substrate for plating is another substrate. A substrate with a conductive layer pattern obtained by transferring to a substrate.
[43] めっきにより、上記めつき用導電性基材に析出する金属が、 20°Cにおける体積抵 抗率で 20 μ Ω Zcm以下の金属である請求項 42に記載の導電層パターン付き基材  [43] The substrate with a conductive layer pattern according to claim 42, wherein the metal deposited on the plating conductive substrate by plating is a metal having a volume resistivity at 20 ° C of 20 μΩ Zcm or less.
[44] 転写された金属の表面又は裏面の少なくとも 1面に黒ィ匕処理が施されている請求 項 42に記載の導電層パターン付き基材。 [44] The substrate with a conductive layer pattern according to [42], wherein at least one of the front surface and the back surface of the transferred metal is blackened.
[45] 導電性基材の表面に光硬化性榭脂又は熱硬化性榭脂の硬化榭脂により幾何学図 形状のパターンを形成する工程、導電性基材をエッチングすることにより上面を有す る凸部のノターン及びそれによつて描かれる幾何学図形状の凹部を形成する工程、 少なくとも上記凸部の上面の端付近では薄膜になるように凹部に絶縁層を形成する 工程、上記光硬化性榭脂又は熱硬化性榭脂の硬化榭脂を剥離する工程を含むこと を特徴とするめつき用導電性基材の製造法。 [45] A step of forming a geometric pattern shape pattern on the surface of a conductive substrate by curing a photocurable or thermosetting resin, and having an upper surface by etching the conductive substrate. A step of forming a concave portion of the convex portion and a concave portion having a geometric diagram shape drawn thereby, a step of forming an insulating layer in the concave portion so as to become a thin film at least near the upper end of the convex portion, the photocuring property The manufacturing method of the electroconductive base material for adhesion characterized by including the process of peeling the hardening resin of a resin or a thermosetting resin.
[46] 光硬化性榭脂あるいは熱硬化性榭脂がエッチングレジストである請求項 45に記載 のめつき用導電性基材の製造法。 [46] The process for producing an electroconductive substrate for plating according to [45], wherein the photocurable resin or thermosetting resin is an etching resist.
[47] 導電性基材をエッチングするに際し、オーバーエッチングする請求項 45に記載の めっき用導電性基材の製造法。 [47] The method for producing a conductive substrate for plating according to claim 45, wherein overetching is performed when the conductive substrate is etched.
[48] 凹部に絶縁層を施した後の凸部の高さが、その前の凸部の高さの 1Z2以上である 請求項 45に記載のめっき用導電性基材の製造法。 48. The method for producing a conductive base material for plating according to claim 45, wherein the height of the convex portion after applying the insulating layer to the concave portion is 1Z2 or more of the height of the convex portion before that.
[49] 導電性基材の凸部の上面の端部での絶縁層の厚さが 10 μ m以下である請求項 4[49] The thickness of the insulating layer at the edge of the upper surface of the convex portion of the conductive substrate is 10 μm or less.
7に記載のめっき用導電性基材の製造法。 8. A method for producing a conductive substrate for plating according to 7.
[50] 絶縁層が薄膜絶縁層である請求項 45に記載のめっき用導電性基材の製造法。 50. The method for producing a conductive substrate for plating according to claim 45, wherein the insulating layer is a thin film insulating layer.
[51] 導電性基材に絶縁層を形成する工程において、絶縁層を電着塗装により形成する 請求項 45に記載のめっき用導電性基材の製造法。 51. The method for producing a conductive substrate for plating according to claim 45, wherein in the step of forming the insulating layer on the conductive substrate, the insulating layer is formed by electrodeposition coating.
[52] 上記導電性基材の凸部の高さが 1 μ m〜100 μ m、凸部上面の幅が 1 μ m〜40 μ m、凸部の上面の間隔が 100 μ m〜1000 μ mである請求項 45に記載のめっき用導 電性基材の製造法。 [52] The height of the convex portion of the conductive substrate is 1 μm to 100 μm, the width of the upper surface of the convex portion is 1 μm to 40 μm, and the distance between the upper surfaces of the convex portions is 100 μm to 1000 μm. The method for producing a conductive substrate for plating according to claim 45, wherein m is m.
[53] 導電性基材が回転体 (ロール)又は回転体 (ロール)に巻き付けられるものである請 求項 45に記載のめっき用導電性基材の製造法。  [53] The method for producing a conductive substrate for plating according to claim 45, wherein the conductive substrate is wound around a rotating body (roll) or a rotating body (roll).
[54] 導電性基材がフープ状である請求項 45に記載のめっき用導電性基材の製造法。 54. The method for producing a conductive substrate for plating according to claim 45, wherein the conductive substrate is in a hoop shape.
[55] 光硬化性榭脂あるいは熱硬化性榭脂により幾何学図形状のパターンを形成するェ 程力 フォトリソグラフ法又は印刷法によって行われる請求項 45に記載のめっき用導 電性基材の製造法。 [55] A process force for forming a geometrical figure pattern by photo-curing resin or thermosetting resin. The conductive substrate for plating according to claim 45, which is performed by a photolithographic method or a printing method. Manufacturing method.
[56] 絶縁層を導電性基材に定着させる際に不活性ガス雰囲気下で行う請求項 45に記 載のめっき用導電性基材の製造法。  [56] The method for producing a conductive substrate for plating according to claim 45, wherein the insulating layer is fixed to the conductive substrate in an inert gas atmosphere.
[57] 不活性ガスが窒素である請求項 56に記載のめっき用導電性基材の製造法。 57. The method for producing a conductive substrate for plating according to claim 56, wherein the inert gas is nitrogen.
PCT/JP2005/023483 2004-12-24 2005-12-21 Method for manufacturing base material provided with conductor layer pattern, base material provided with conductor layer pattern and electromagnetic wave blocking member using such base material WO2006068175A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006549027A JPWO2006068175A1 (en) 2004-12-24 2005-12-21 Manufacturing method of base material with conductor layer pattern, base material with conductor layer pattern, and electromagnetic wave shielding member using the same

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2004-373287 2004-12-24
JP2004373287 2004-12-24
JP2005131620 2005-04-28
JP2005-131620 2005-04-28
JP2005-153860 2005-05-26
JP2005153860 2005-05-26
JP2005279805 2005-09-27
JP2005-279805 2005-09-27
JP2005284084 2005-09-29
JP2005-284084 2005-09-29
JP2005290053 2005-10-03
JP2005-290053 2005-10-03

Publications (1)

Publication Number Publication Date
WO2006068175A1 true WO2006068175A1 (en) 2006-06-29

Family

ID=36601773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023483 WO2006068175A1 (en) 2004-12-24 2005-12-21 Method for manufacturing base material provided with conductor layer pattern, base material provided with conductor layer pattern and electromagnetic wave blocking member using such base material

Country Status (3)

Country Link
JP (1) JPWO2006068175A1 (en)
TW (1) TW200641918A (en)
WO (1) WO2006068175A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167523A (en) * 2007-12-18 2009-07-30 Hitachi Chem Co Ltd Conductive substrate for plating, method for manufacturing the same, conductive layer pattern using the same, and method for manufacturing substrate with conductive layer pattern, substrate with conductive layer pattern, and translucent electromagnetic wave shielding member
JP2009176761A (en) * 2006-12-27 2009-08-06 Hitachi Chem Co Ltd Conductive base substrate for plating, manufacturing method thereof, method for manufacturing base substrate with conductor layer pattern using the method, base substrate with conductor layer pattern, and translucent member of shielding electromagnetic wave
JP2010007127A (en) * 2008-06-26 2010-01-14 Hitachi Chem Co Ltd Electroconductive base material for plating, method for manufacturing the same, and method for manufacturing conductor layer pattern using the base material or base material with the conductor layer pattern
JP2010007095A (en) * 2008-06-24 2010-01-14 Hitachi Chem Co Ltd Plating method
JP2010182640A (en) * 2009-02-09 2010-08-19 Toda Kogyo Corp Transparent conductive substrate, transparent conductive substrate for dye-sensitized solar cell, and manufacturing method for transparent conductive substrate
JP2012140793A (en) * 2010-12-28 2012-07-26 Aquaintech Corp Lid body for underground structure
CN103313516A (en) * 2012-03-16 2013-09-18 张有谅 Conductive pattern film base material and manufacturing method thereof
US8673428B2 (en) 2006-12-27 2014-03-18 Hitachi Chemical Company, Ltd. Engraved plate and substrate with conductor layer pattern using the same
JP2015045220A (en) * 2014-10-01 2015-03-12 アクアインテック株式会社 Cover body for underground structure
CN107006137A (en) * 2014-09-03 2017-08-01 大陆配件公司 RF for mobile device is shielded
JP2019052354A (en) * 2017-09-15 2019-04-04 トヨタ自動車株式会社 Method for manufacturing intake manifold
JP2020009705A (en) * 2018-07-12 2020-01-16 三菱製紙株式会社 Method for producing conductive material
JP2020015191A (en) * 2018-07-24 2020-01-30 三菱製紙株式会社 Method of manufacturing metal-like pattern transferred article
CN113809509A (en) * 2020-06-11 2021-12-17 华为技术有限公司 Antenna forming method, cover plate assembly and terminal equipment
WO2022158357A1 (en) * 2021-01-21 2022-07-28 富士フイルム株式会社 Master mold, and method for producing metal molded article
CZ309502B6 (en) * 2021-08-19 2023-03-01 Výzkumný A Zkušební Ústav Plzeň S.R.O. A method of manufacturing a component with a surface coating

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102202895B1 (en) * 2012-07-24 2021-01-14 미쯔비시 케미컬 주식회사 Conductor, conductive composition, and laminate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1126980A (en) * 1997-07-04 1999-01-29 Dainippon Printing Co Ltd Electromagnetic wave shield plate and its manufacture
JP2974665B1 (en) * 1998-08-28 1999-11-10 日本写真印刷株式会社 Transparent electromagnetic wave shielding material and method of manufacturing the same
JP2000315888A (en) * 1999-04-30 2000-11-14 Hitachi Chem Co Ltd Manufacture of electromagnetic wave shielding film, the electromagnetic wave shielding film, and electromagnetic wave shield and display using the film
JP2004186416A (en) * 2002-12-03 2004-07-02 Nitto Denko Corp Base sheet for metal layer transferring, and metal layer transfer sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1126980A (en) * 1997-07-04 1999-01-29 Dainippon Printing Co Ltd Electromagnetic wave shield plate and its manufacture
JP2974665B1 (en) * 1998-08-28 1999-11-10 日本写真印刷株式会社 Transparent electromagnetic wave shielding material and method of manufacturing the same
JP2000315888A (en) * 1999-04-30 2000-11-14 Hitachi Chem Co Ltd Manufacture of electromagnetic wave shielding film, the electromagnetic wave shielding film, and electromagnetic wave shield and display using the film
JP2004186416A (en) * 2002-12-03 2004-07-02 Nitto Denko Corp Base sheet for metal layer transferring, and metal layer transfer sheet

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176761A (en) * 2006-12-27 2009-08-06 Hitachi Chem Co Ltd Conductive base substrate for plating, manufacturing method thereof, method for manufacturing base substrate with conductor layer pattern using the method, base substrate with conductor layer pattern, and translucent member of shielding electromagnetic wave
JP2013239722A (en) * 2006-12-27 2013-11-28 Hitachi Chemical Co Ltd Conductive base material for plating, method for producing the same, method for producing base material with conductor layer pattern using the method, base material with conductor layer pattern, and translucent electromagnetic wave shielding member
US8673428B2 (en) 2006-12-27 2014-03-18 Hitachi Chemical Company, Ltd. Engraved plate and substrate with conductor layer pattern using the same
JP2009167523A (en) * 2007-12-18 2009-07-30 Hitachi Chem Co Ltd Conductive substrate for plating, method for manufacturing the same, conductive layer pattern using the same, and method for manufacturing substrate with conductive layer pattern, substrate with conductive layer pattern, and translucent electromagnetic wave shielding member
JP2010007095A (en) * 2008-06-24 2010-01-14 Hitachi Chem Co Ltd Plating method
JP2010007127A (en) * 2008-06-26 2010-01-14 Hitachi Chem Co Ltd Electroconductive base material for plating, method for manufacturing the same, and method for manufacturing conductor layer pattern using the base material or base material with the conductor layer pattern
JP2010182640A (en) * 2009-02-09 2010-08-19 Toda Kogyo Corp Transparent conductive substrate, transparent conductive substrate for dye-sensitized solar cell, and manufacturing method for transparent conductive substrate
JP2012140793A (en) * 2010-12-28 2012-07-26 Aquaintech Corp Lid body for underground structure
CN103313516A (en) * 2012-03-16 2013-09-18 张有谅 Conductive pattern film base material and manufacturing method thereof
CN107006137A (en) * 2014-09-03 2017-08-01 大陆配件公司 RF for mobile device is shielded
KR20170093103A (en) * 2014-09-03 2017-08-14 콘티넨탈 액세서리 코퍼레이션 Rf shielding for mobile devices
JP2017531325A (en) * 2014-09-03 2017-10-19 コンチネンタル・アクセサリー・コーポレーション RF shielding for mobile devices
KR102248202B1 (en) * 2014-09-03 2021-05-04 콘티넨탈 액세서리 코퍼레이션 Rf shielding for mobile devices
JP2015045220A (en) * 2014-10-01 2015-03-12 アクアインテック株式会社 Cover body for underground structure
JP2019052354A (en) * 2017-09-15 2019-04-04 トヨタ自動車株式会社 Method for manufacturing intake manifold
JP2020009705A (en) * 2018-07-12 2020-01-16 三菱製紙株式会社 Method for producing conductive material
JP2020015191A (en) * 2018-07-24 2020-01-30 三菱製紙株式会社 Method of manufacturing metal-like pattern transferred article
JP7144229B2 (en) 2018-07-24 2022-09-29 三菱製紙株式会社 METHOD FOR MANUFACTURING METALLIC PATTERN TRANSFER
CN113809509A (en) * 2020-06-11 2021-12-17 华为技术有限公司 Antenna forming method, cover plate assembly and terminal equipment
CN113809509B (en) * 2020-06-11 2023-07-18 华为技术有限公司 Antenna forming method, cover plate assembly and terminal equipment
WO2022158357A1 (en) * 2021-01-21 2022-07-28 富士フイルム株式会社 Master mold, and method for producing metal molded article
CZ309502B6 (en) * 2021-08-19 2023-03-01 Výzkumný A Zkušební Ústav Plzeň S.R.O. A method of manufacturing a component with a surface coating

Also Published As

Publication number Publication date
JPWO2006068175A1 (en) 2008-06-12
TW200641918A (en) 2006-12-01

Similar Documents

Publication Publication Date Title
WO2006068175A1 (en) Method for manufacturing base material provided with conductor layer pattern, base material provided with conductor layer pattern and electromagnetic wave blocking member using such base material
TWI466779B (en) Gravure and use of its substrate with a conductive layer pattern
TWI253321B (en) Thin plate for blocking electromagnetic wave
JP4346607B2 (en) Electromagnetic wave shielding sheet, display front plate and method for producing electromagnetic wave shielding sheet
JP4043778B2 (en) Electromagnetic wave shielding sheet
TWI253322B (en) Electromagnetic wave-shielding sheet
TWI254610B (en) Electromagnetic shielding film and method for manufacturing same
KR20080017011A (en) Method for producing electromagnetic wave shielding sheet, electromagnetic wave shielding sheet produced by such method, and filter and display employing same
JP4339789B2 (en) Electromagnetic wave shielding sheet and manufacturing method thereof
JP5354283B2 (en) Electrode substrate for solar cell
JP5370752B2 (en) SUBSTRATE WITH CONDUCTIVE LAYER PATTERN, ITS MANUFACTURING METHOD, AND ELECTROMAGNETIC SHIELDING MEMBER USING THE SAME
TW200529245A (en) Electromagnetic shielding material and method for producing the same
JP2006032686A (en) Manufacturing method of conductor layer pattern and electromagnetic wave shielding body
JP5626419B2 (en) Conductive substrate for plating, manufacturing method thereof, manufacturing method of substrate with conductor layer pattern using the same, substrate with conductor layer pattern, translucent electromagnetic wave shielding member
JP4423547B2 (en) Conductor layer pattern and method of manufacturing electromagnetic wave shield
JP5333822B2 (en) Conductive substrate for plating, conductor layer pattern using the same or method for producing substrate with conductor layer pattern, substrate with conductor layer pattern, and electromagnetic wave shielding member
JP2009021412A (en) Method of manufacturing surface blackened copper metal, method of manufacturing base material with conductor layer pattern, base material with conductor pattern, and electromagnetic wave shielding member using the base material
JP4798439B2 (en) Manufacturing method of base material with conductor layer pattern, base material with conductor layer pattern, and electromagnetic wave shielding member using the same
JP5418816B2 (en) Method for producing metal pattern and substrate with conductor layer pattern, substrate with conductor layer pattern, and electromagnetic wave shielding member using the same
JP2008001936A (en) Electrically conductive base material for plating, method for producing the same, method for producing conductor layer patter-fitted base material, conductor layer pattern-fitted base material and electromagnetic wave shielding member using the same
JP2008001952A (en) Electrically conductive base material for plating, method for producing the same, method for producing conductor layer pattern-fitted base material, conductor layer pattern-fitted base material and electromagnetic wave shielding member using the same
JP2009158678A (en) Conductor layer pattern, base with the conductor layer pattern, light transparent electromagnetic wave shielding member and manufacturing methods thereof, and conductive base for plating used for the manufacturing methods and manufacturing method thereof
JP2009152285A (en) Method for manufacturing metal pattern and base material having conductive layer pattern, and base material having conductive layer pattern and electromagnetic wave shielding member using the same
JP2010007127A (en) Electroconductive base material for plating, method for manufacturing the same, and method for manufacturing conductor layer pattern using the base material or base material with the conductor layer pattern
JP2009158679A (en) Conductive substrate for plating, manufacturing method thereof, method of manufacturing conductive pattern or substrate with conductive pattern using the same, substrate with conductive layer pattern, and light transparent electromagnetic wave shielding member

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006549027

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05820140

Country of ref document: EP

Kind code of ref document: A1