WO1997018596A1 - Composite polymer solid electrolyte and nonaqueous electrochemical device - Google Patents

Composite polymer solid electrolyte and nonaqueous electrochemical device Download PDF

Info

Publication number
WO1997018596A1
WO1997018596A1 PCT/JP1996/003363 JP9603363W WO9718596A1 WO 1997018596 A1 WO1997018596 A1 WO 1997018596A1 JP 9603363 W JP9603363 W JP 9603363W WO 9718596 A1 WO9718596 A1 WO 9718596A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
polymer
solid
composite
foam
Prior art date
Application number
PCT/JP1996/003363
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Minakata
Masanori Ikeda
Toshio Imauti
Masakatsu Kuroki
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Priority to AU14322/97A priority Critical patent/AU703077B2/en
Priority to DE69637433T priority patent/DE69637433T2/en
Priority to KR1019980702350A priority patent/KR100288617B1/en
Priority to CA002231384A priority patent/CA2231384C/en
Priority to US09/029,823 priority patent/US6284412B1/en
Priority to EP96938484A priority patent/EP0862232B1/en
Priority to JP51875097A priority patent/JP3961569B2/en
Publication of WO1997018596A1 publication Critical patent/WO1997018596A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/22Immobilising of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a novel solid polymer electrolyte and an electrochemical device using the same. More specifically, the present invention provides a closed-cell polymer foam impregnated with a non-aqueous electrolyte, and a polymer matrix formed of a cell wall defining a plurality of closed cells. The gas is impregnated with the electrolyte to form a continuous solid-phase domain, and a plurality of closed cells are substantially filled with the non-aqueous electrolyte to form the continuous solid-phase domain.
  • the present invention relates to a composite solid polymer electrolyte comprising a plurality of liquid-phase domains dispersed in a fuel cell, and a non-aqueous electrochemical device such as a non-aqueous battery and a battery component such as an electrode using the same.
  • the composite solid polymer electrolyte of the present invention has high ion conductivity, high mechanical strength, and low leakage of the non-aqueous electrolyte, which is advantageous for various non-aqueous electrochemical devices. Can be used.
  • the non-aqueous electrochemical device using the composite solid polymer electrolyte of the present invention exhibits excellent electrochemical performance, has excellent electrolyte retention, and has high reliability and safety. Is extremely high
  • Lithium batteries have been developed and industrialized as batteries.
  • a porous polyolefin separator having through-holes filled with a non-aqueous solvent electrolyte as the ion transport medium between the positive and negative electrodes (
  • c liquid system battery the battery of this embodiment, leakage of the non-aqueous electrolyte solution occurs Ya easier, also weight reduction is difficult.
  • solid batteries made using solid electrolytes have less liquid leakage than batteries that use the above electrolyte as an ion transport medium, thus improving the reliability and safety of the batteries and making them thinner. It is expected that the structure and the formation of a laminate with electrodes, the simplification of the package, and the weight reduction will be realized.
  • this solid electrolyte material an ion conductive ceramic material and a polymer solid electrolyte have been proposed. Of these, the former ion conductive ceramic material has a fragile property, and has a problem that it is difficult to form a laminate with an electrode.
  • solid polymer electrolyte K has inherently good processability and flexibility, and when used in electrochemical devices such as batteries, it is easy to form a laminated structure with electrodes, and it can easily absorb ions. It has favorable properties, such as the ability to change the interface shape of the solid electrolyte following the change in electrode volume due to emission.
  • These solid polymer electrolytes are typically Li and the form in which the electrolyte is a solid solution in a polymer, c also are known as the dry polymer electrolyte, the molecular motion of the Li polymer increased the electrolyte dissociation degree To promote ionization and improve ion conductivity, an electrolyte solvent is added.
  • a gel-type polymer solid electrolyte in which the electrolyte and the electrolyte solvent are contained in the polymer matrix is known. (For example, Japanese Patent Application Laid-Open No. 56-14434356).
  • the polymer matrix is prepared by casting a homogeneous solution of the polymer, the electrolyte and the electrolyte solvent.
  • the polymer is mixed with a plasticizer and cast to form a film. After the plasticizer is once extracted, the electrolyte is dissolved in the solvent.
  • a method of impregnating a polymer matrix with a dissolved electrolytic solution or a method of replacing the plasticizer with an electrolytic solution In the latter method, in order to promote the swelling of the polymer, another plasticizer different from the electrolyte solvent is added to the polymer in advance, and a mixture of the polymer and the plasticizer is formed and then processed. Impregnated with electrolyte by the method.
  • the polymer used for this material is easy to form a homogeneous solution It is a polymer. For this reason, for example, when a vinylidene fluoride polymer is used, the obtained solid electrolyte material melts at a temperature of 85 ° C to 11 ° C, exhibits fluidity, and is used as a battery. There is a risk of short circuit. There was a problem with safety. Therefore, polymerizable vinyl monomers are coexisted with the polymer and the plasticizer to produce a material in which the polymerizable monomers are crosslinked, and the polymer is extracted with the plasticizer and then impregnated with an electrolyte. Electrolytes have also been proposed (US Pat. No. 5,429,891).
  • this method is not only complicated in the process, but also has a problem that the polymerizable butyl monomer is electrochemically unstable and a plasticizer and a polymerizable vinyl monomer cause a side reaction at the time of crosslinking. This was a problem when used as a polymer solid electrolyte for batteries because of its wake-up.
  • a polyolefin-based polymer having through-holes and an ion conductive material such as poly (ethylene oxide) in a porous medium are used.
  • Polymer-introduced composite solid polymer electrolytes Japanese Patent Application Laid-Open No. 63-1024
  • ion conductive polymer latex and ion non-conductive A polymer solid electrolyte coated with a mixture of latex and formed into a film
  • Japanese Patent Laid-Open No. 4-325900 Japanese Patent Laid-Open No. 4-325900
  • An electrolyte Japanese Patent Application Laid-Open No. 2-2766164
  • the sulfonated polystyrene foam has a problem that it is difficult to be impregnated with the non-aqueous electrolyte solvent, and the sulfonated polystyrene has a problem of absorbing water. It cannot be used for non-aqueous batteries because of its properties and dehydration.
  • the problem with all of these solid polymer electrolytes is that the ion conductivity is lower than the ion conductivity of the electrolytic solution. Limited density and low. Has disadvantages such as high battery resistance. For this reason, a solid polymer electrolyte material having high ion conductivity is required.
  • the ion conductivity of a dry polymer solid electrolyte such as a material in which an electrolyte is dissolved in the above-mentioned polychetoxide is low, and when it is operated at room temperature, it is limited to an extremely low current density as a battery. I will be.
  • a gel polymer solid electrolyte containing a plasticizer exhibits higher ionic conductivity than a dry system, but a decrease in mechanical strength due to an increase in plasticizer content to obtain a high ionic conductivity causes This is a problem because it is difficult to control the film thickness.
  • the electrolyte currently used for lithium ion secondary batteries is filled into the pores of a porous polyrefinerator.
  • the ion permeability of polyolefin is extremely low, so that the electrolyte is filled in the pores and the ion is not filled.
  • Conductivity is lower than electrolyte.
  • the present inventors have solved the above-mentioned problems of the prior art, have a high ionic conductivity close to the ionic conductivity of the non-aqueous electrolyte, and have excellent workability, flexibility, and mechanical strength.
  • the closed-cell foam is impregnated with the non-aqueous electrolyte, the polymer matrix composed of the cell walls is unexpectedly impregnated with the electrolyte.
  • the composite polymer structure When the composite polymer structure is used as a solid electrolyte of a non-aqueous electrochemical device, the composite polymer structure has high ion conductivity and little liquid leakage. In addition, it has been found that the mechanical strength of the solid electrolyte can be kept high even when the content of the non-aqueous electrolyte is large. The present invention has been made based on this new finding.
  • one objective of the present invention is to provide a high ion conductivity
  • Another object of the present invention is to provide a composite solid polymer electrolyte having high strength and little liquid leakage.
  • Another object of the present invention is to provide an advantageous method for producing a composite solid polymer electrolyte having the above characteristics.
  • Another object of the present invention is to provide a non-aqueous electrochemical device such as a non-aqueous battery or a component thereof such as an electrode using the composite solid polymer electrolyte having the above characteristics.
  • the continuous solid-phase domain includes a plurality of closed cells defined by a bubble wall constituting a continuous solid-phase domain of the composite polymer solid electrolyte.
  • the plurality of closed cells are each substantially filled with the electrolytic solution to form a plurality of liquid-phase domains of the composite solid polymer electrolyte, and the plurality of liquid-phase domains are formed. Are dispersed in the continuous solid-phase domain.
  • a composite solid polymer electrolyte characterized by this is provided.
  • the composite polymer solid electrolyte contains a plurality of closed cells defined by a bubble wall constituting a continuous solid-phase domain, and the continuous solid-phase domain comprises a nonaqueous solvent solution of an electrolyte.
  • the plurality of closed cells are each substantially filled with the electrolytic solution to form a plurality of liquid-phase domains of the composite polymer solid electrolyte, and the plurality of liquid-phase domains are formed. Are dispersed in the continuous solid-phase domain,
  • the plurality of liquid phase domains are each composed of a main liquid phase domain having a size of 2 ⁇ or more as an average of the major axis and the minor axis of each liquid domain, The amount of the main liquid phase domain is 5 to 95 volumes with respect to the total volume of the composite polymer solid electrolyte. /. And wherein the main liquid phase domain is an effective liquid domain having an average value of 2 to 50 ⁇ m as defined above, and the main liquid phase domain 2.
  • the continuous solid polymer matrix further includes an uncrosslinked polymer segment, and a total of the crosslinked polymer segment and the uncrosslinked polymer segment.
  • a specific force of the weight of the crosslinked polymer segment to the weight which is in the range of 0.2 to 0.8 9.
  • a closed-cell polymer foam containing a plurality of closed cells defined by cell walls constituting a continuous solid polymer matrix of the polymer foam; 2. The method for producing a composite solid electrolyte according to item 1, wherein the cell walls are impregnated with a non-aqueous electrolyte selected from the group consisting of a non-aqueous solvent solution of the electrolyte and a liquid electrolyte.
  • the plurality of closed cells have a size of 1 to 50 ⁇ and a size exceeding 50 fm as an average value of the major axis and minor axis of each closed cell.
  • Each of the first and second fractions has closed cells of the first and second fractions, and the amount of each closed cell of the first and second fractions is respectively relative to the total harvest of the plurality of closed cells.
  • the method described in the above item 15 characterized in that it is 60% by volume or more and less than 40% by volume.
  • the non-aqueous electrolyte further contains a swelling agent, and after the polymer foam is impregnated with the non-aqueous electrolyte containing the swelling agent, at least one part of the swelling agent is removed. 18. The method according to any one of the above items 14 to 17, further comprising a step.
  • the amount of the non-aqueous electrolyte solution used 9. is ion-conductivity of the produced composite solid electrolyte 1. 0 x 1 0- 4 SZ cm above a Li, and the surface area of the composite solid electrolyte electrolyte The method according to any one of items 14 to 18, wherein the amount of the polymer before impregnation is 50 to 200% of the surface area of the foam.
  • the polymer foam has a structure including a crosslinked polymer segment having a crosslinked structure formed by electron beam irradiation, and a structure in which the polymer foam has an elongated shape.
  • the method according to any one of items 14 to 19, wherein the method has at least one selected structure.
  • An electrode comprising a particulate electrode material and a binder, wherein the binder is defined by a cell wall constituting a continuous solid polymer matrix of a polymer foam.
  • An electrode characterized in that it is made of a closed-cell polymer foam containing a plurality of closed cells.
  • Fine-celled closed-cell polymer foam containing a plurality of closed cells defined by the cell wall constituting the continuous solid polymer matrix of the polymer foam 22.
  • the method for producing an electrode according to item 22 above which comprises molding a mixture of a body and a particulate electrode material.
  • a non-aqueous electrochemical device including the electrode described in the above item 23.
  • the composite solid polymer electrolyte of the present invention is composed of a closed-cell polymer foam impregnated with a non-aqueous electrolyte and is constituted by a cell wall that defines a plurality of closed cells.
  • the polymer matrix is impregnated with the electrolyte to form a continuous solid-state domain, and a plurality of closed cells are substantially filled with the non-aqueous electrolyte to form the solid matrix. It has a composite structure consisting of multiple liquid-phase domains dispersed in a continuous solid-phase domain.
  • the plurality of liquid domains have an average value of the major axis and the minor axis of each liquid domain (hereinafter, often referred to simply as “average diameter”) of 2 ⁇ m. ⁇ ⁇ or more main liquid phase domain ma jorli qu id-phas e doma ins ⁇ 2
  • the ⁇ -th domain is present at a volume fraction of 5 to 95% with respect to the composite solid polymer, and is 60% with respect to the ⁇ volume of the main liquid phase domain.
  • the volume ratio of each liquid phase domain is evaluated by observing the cross-sectional structure of the polymer solid electrolyte.
  • a sheet of a polymer solid electrolyte is frozen with liquid nitrogen, and three planes perpendicular to each other [X, X, X coordinates of X, X, and X] are used with a microtom or razor blade.
  • the above X — ⁇ plane, ⁇ — ⁇ plane and X Obtain a sample having first, second, and third cross sections corresponding to one Y plane, respectively.
  • Each of the first, second and third cross sections of the obtained sample was observed with an optical microscope, and the first, second and third cross sections of the sample were converted to a continuous solid-phase domain. Examine the cross section of the dispersed liquid domain and determine the percentage of the total area of the liquid domain cross section that occupies the area of each cross section of the sample. (At this time, of the cross sections of the liquid phase domain in each cross section of the sample, only the liquid phase domain whose average value (average diameter) of the major axis and the minor axis is 2 m or more is measured.
  • the content of the main liquid phase domain with an average diameter of 2 ⁇ m or more is 5 volumes of the total volume of the composite polymer solid electrolyte. /.
  • This liquid domain volume fraction is more preferably the total solid electrolyte 10 volumes of body volume. /.
  • the above is the range of 90% by volume or less.
  • the main liquid phase domain having an average diameter exceeding 50 ⁇ is less than 40% by volume of the total volume of the main liquid phase domain. This is preferred. More preferably, it is less than 30% by volume, more preferably less than 20% by volume.
  • the volume fraction of the main liquid phase domain with an average diameter of more than 50 ⁇ m is 40% by volume or more of the main liquid phase volume, ion flow occurs in a part where a large number of large liquid phase domains exist. Because of the increase, the flow of ions inside the polymer solid electrolyte becomes uneven, and when used as a battery, problems such as partial overcharging or discharging in the charging or discharging process are likely to occur. Further, when the content of the main liquid phase domain of 50 ⁇ m or more becomes 40% by volume or more of the main liquid phase volume, there is a possibility that the strength of the polymer solid electrolyte is reduced and the structure is deformed.
  • a liquid phase domain having an average diameter of less than 2 ⁇ m is regarded as an electrolytic solution impregnated in one polymer phase.
  • the important liquid phase domain in the composite solid polymer electrolyte of the present invention is an independent domain not communicating with the surface.
  • Liquid-phase solid electrolytes containing a liquid domain with a structure that opens to the outside of the material or a liquid phase domain that penetrates the inside can also be used, but an open liquid phase domain and a through liquid phase domain
  • the volume ratio of the total is preferably less than 5% based on the composite solid polymer electrolyte.
  • a liquid domain having a structure penetrating through the inside of the material is preferable to reduce the liquid content as much as possible, because the liquid domain is likely to leak.
  • the following method can be used as a method for determining a polymer solid electrolyte having few through holes.
  • the determination is made based on the amount of water permeation used in a normal filter material permeation evaluation method. Specifically, a solid polymer electrolyte containing an electrolytic solution is immersed in ethanol to extract the electrolytic solution, alcohol substitution is performed, and further immersion in water. In this way, the electrolyte in the liquid domain connected to the surface of the polymer solid electrolyte is converted into a structure in which water is replaced. Next, this test sample is held in a final letter holder, and water is pressed from one surface to evaluate the water permeability. In the present invention, ethanolate Lumpur substituted 4 hours for this test sample, the water permeability was evaluated after water replacement 1 hour, and 1 0 l Z m 2 ⁇ hr ⁇ atm or less der Ru this Is preferred.
  • the non-aqueous electrolyte is contained in the range of 10 to 98% by weight based on the weight of the solid polymer electrolyte. Is preferred. If the electrolyte content is less than 10% by weight, the ion conductivity of the solid electrolyte becomes low, which is not preferable. If the electrolyte content exceeds 98% by weight, the strength of the polymer solid electrolyte is low. I don't like it. More preferably, the electrolyte content is 15% by weight. /. ⁇ 95 weight. /. It is.
  • the solid polymer electrolyte of the present invention is a continuous solid polymer in which the plurality of liquid domains and the electrolyte are impregnated and expanded.
  • polymer phase It consists of a continuous solid-state domain consisting of marmatrix (hereinafter often simply referred to as "polymer phase").
  • the content of the electrolytic solution impregnated and swelled in the polymer of the polymer phase is 10% by weight to 90% by weight of the polymer phase. /. Preferably, it is within the range.
  • the fact that the polymer solution is impregnated in the polymer phase portion of the polymer solid electrolyte of the present invention means that the weight of the liquid phase domain is determined from the weight of the polymer solid electrolyte and the volume of the liquid phase domain. Weight minus
  • Weight of polymer phase and weight of polymer foam before impregnation (or Or the weight of the polymer obtained by extracting and drying the electrolyte from the polymer solid electrolyte. It can also be confirmed by the fact that the melting point and glass transition temperature of the impregnated polymer matrix are lower than before impregnation. This analysis can be evaluated by ordinary differential thermal analysis. The relationship between the content of the electrolyte contained in the polymer phase, the melting point, and the glass transition temperature is not limited because it differs depending on the type of polymer, but the relationship between the content of the electrolyte in each polymer and The correlation between the melting point and the glass transition temperature allows the content of the electrolyte to be determined.
  • the content of the electrolyte in the polymer is less than 10% by weight, the ion conductivity of the solid polymer electrolyte is low, and when the content of the electrolyte exceeds 90% by weight, the polymer is The mer phase is also not preferred because the mechanical strength decreases.
  • Solid polymer electrolyte of the present invention have a high on-conductivity, Ri ion-conductivity 1 X 1 0- 5 SZ cm or der at room temperature, is rather to favored by al 1 X 1 0- 4 SZ cm or more.
  • This ion conductivity can be measured from the real-axis intercept of the complex impedance plot measured by the ordinary ac impedance method with the solid polymer electrolyte sandwiched between metal electrodes. You.
  • This ion conductivity (IC) can be obtained from the impedance value (Z) of the section, the electrode area (A) in contact with the polymer solid electrolyte, and the sample thickness (L) by the following formula.
  • the composite solid polymer electrolyte of the present invention has the following characteristics as compared with the conventional solid polymer electrolyte.
  • the polymer and the electrolyte solvent are simply contained in the polymer, attempts have been made to increase the electrolyte solvent content to improve the ionic conductivity.
  • the problem is that the strength of the steel decreases. For this reason, in this system, the content of the electrolyte solvent was limited in order to secure practical strength.
  • a conventional solid electrolyte formed simply by impregnating an electrolyte with a polymer has a low electrolyte content, and therefore has a low ion conductivity.
  • the composite solid polymer electrolyte of the present invention has sufficient strength and high ion conductivity even when the electrolyte solvent content is large. In addition, it exhibits higher ion conductivity than a system in which a non-ion conductive through-porous material such as polyolefin is filled with an electrolyte.
  • the composite polymer solid electrolyte of the present invention comprises a liquid-phase domain comprising a plurality of closed cells containing an electrolyte and a solid electrolyte matrix comprising a cell wall impregnated with the electrolyte. It is thought to have good ion conductivity because it has a composite structure restructured with copper.
  • the composite solid polymer electrolyte of the present invention is produced by impregnating a closed-cell polymer foam with an electrolytic solution.
  • the volume fraction of closed cells is less than 5 vol 0/0, ion-of the resulting are composite solid polymer electrolyte conductivity is sufficiently high without Ku, preferred and rather is ⁇ Li 2 0% by volume or more, and More preferably, it is at least 40% by volume.
  • the amount of closed cells is larger than 98% by volume, it is difficult to obtain sufficient strength after impregnation with the non-aqueous electrolyte.
  • the upper limit of the closed cell volume fraction is 98% by volume, preferably 97% by volume. / 0 .
  • the amount of the closed cells can be obtained as a difference in the open cell ratio by the air pycnometer method described in ASTM-D28856. That is, the porosity of the foam is determined from the specific gravity of the foam and the specific gravity of the bulk polymer, and the closed cell volume is evaluated by measuring the open cell volume of the foam using an air pycnometer. it can. Further, as the polymer foam used in the production of the composite solid polymer electrolyte of the present invention, in addition to the closed cells, materials having through holes and open holes on the surface can be used.
  • the electrolyte impregnated in the electrolyte easily leaks, and it is preferable that these parts are not contained.
  • the volume of these through holes and open holes is less than 5%.
  • the content of pores excluding these closed cells is not included in the closed cell volume fraction described above.
  • the cross-sectional shape of the closed-cell domain in the composite structure of the present invention may be any shape such as a circle, an ellipse, or the like, and is not particularly limited.
  • the closed cell size of the foam is not limited because the suitable range varies depending on the application to be used. Is the mean diameter; 100 nm nanometers, more preferably from ⁇ to 50 xm.
  • the average diameter is 1! It is preferable that the volume of closed cells of up to 50 ⁇ be 60% by volume or more based on the entire closed cells in the polymer foam. Further, it is preferable that the volume of closed cells having an average diameter of 50 ⁇ or more is less than 40% by volume of the total volume of the closed cells.
  • the lower limit of the expansion ratio (expans ion rat io) of the polymer foam (foam volume Z polymer volume before foaming) is 1.05 times, preferably 1.25 times. Times, and more preferably 1.66 times.
  • the upper limit of the expansion ratio of the foam is 50 times, and preferably 33 times.
  • the electrolyte and the non-aqueous solvent are impregnated in the polymer by impregnating the closed-cell foam with the non-aqueous electrolyte.
  • it is converted into an ion-conductive polymer solid electrolyte composed of a polymer, an electrolyte and a non-aqueous solvent.
  • the electrolyte and the non-aqueous solvent are added and replaced by bringing the solid electrolyte in which the electrolyte and the non-aqueous solvent are previously contained in the polymer foam into contact with the non-aqueous electrolyte.
  • a solid electrolyte can be obtained.
  • This non-aqueous electrolyte needs to not substantially dissolve the polymer, and the type of the non-aqueous solvent can be appropriately selected in combination with the polymer.
  • the electrolyte and the non-aqueous electrolyte solvent are used as the constituents of the mixture as the electrolyte in the present invention, It is also possible to use only a liquid electrolyte.
  • the nonaqueous composite polymer solid electrolyte of the present invention is essentially oxidized to a potential range of 1 to 3 V with respect to a metal lithium electrode by using a material having excellent electrochemical stability. It is preferable to manufacture without reduction.
  • the electrochemical stability is evaluated by the cyclic voltammetry method. Specifically, a battery is constructed by using a polymer solid electrolyte as an electrochemically inactive electrode (in the present invention, a stainless steel electrode) as a working electrode, and lithium metal as a counter electrode and a reference electrode. Then, the potential of the working electrode is scanned, and the current waveform due to redox is observed.
  • This current value is a potential region where the current value is twice or less the current value of the oxidation wave or reduction wave in the electric double layer capacitance at the electrode interface, which is the background (that is, the potential region).
  • the region where there is no current peak due to oxidation or reduction) is defined as an electrochemically stable region.
  • a potential measured using an electrode other than lithium metal as a reference electrode can be converted to a potential based on lithium metal.
  • the composite solid polymer electrolyte of the present invention preferably does not cause electrochemical oxidation-reduction in the range of 1 to 3 V (based on lithium metal), that is, is preferably stable.
  • a material that does not electrochemically reduce and redox within a range of 0.7 V to 4.0 V is used.
  • the lower limit of the potential range of the electrochemical stability is 1 V or more (based on the lithium metal potential)
  • the solid polymer electrolyte is electrochemically reduced
  • the upper limit of the potential range is 3 V (vs. Metallic lithium potential (Criterion)
  • the value is below, it is not preferable because the solid polymer electrolyte is easily oxidized.
  • the solid polymer electrolyte of the present invention is preferably the above-mentioned electrochemically stable material.
  • the polymer material and the electrolyte which are constituents of the solid polymer electrolyte are used.
  • the polymer material of the polymer foam used in the present invention is a material capable of forming a solid solution of an electrolyte, and is a material used for a normal polymer solid electrolyte.
  • J.R. Masokaram, C.A.Bentsent, Polymer Electronics Review, Elsevier Science Publishing, NY (1 The materials described in, for example, pp. 987) and F. M. Grey, Solid Polymer Selector Light, VCH Publishers, NY, published in 1991 can be used.
  • Examples of this are alkylene ether-based polymers such as polyethylene oxide, polypropylene oxide, ethylene oxide-one-sided pyrenoxide copolymers, etc.
  • Two-polyolefins such as polymers, polyalkylene ethers, polyacrylonitrile phenols, polyacrylonitrile-styrene copolymers, etc.
  • Polymers polyvinylidene fluoride, vinylidene fluoride, hexafolenopropylene copolymer, vinyl fluoride vinylene copolymer, vinylidene fluoride copolymer, tetrafluoroethylene (1) vinylidene fluoride copolymer, hexafenoleo-propyl propylene oxide dope copolymer, hexafolopropylene oxydote dolatrafluoroethylene 1-vinylidene fluoride Light copolymers, hexafenoleone propylene-tetrafluoroethylene-vinylidenefluoride copolymers, fluoroethylene-vinylidenefluoride copolymers Any vinylidene fluoride
  • the material has the above-mentioned excellent electrochemical stability, so that the polymer does not contain an ionic group in the polymer and can be transferred.
  • Polymers containing no hydrogen are preferred.
  • vinylidene fluoride polymers such as polyvinylidene fluoride / vinylidene fluoride copolymers have excellent electrochemical stability, and the composite polymer solid of the present invention is excellent.
  • ionic groups in the polymer may increase the hygroscopicity of the polymer, depending on the polymer, and use such a polymer.
  • the water content increases, and the electrochemical stability decreases.
  • the impregnating property of the non-aqueous electrolyte is reduced in some polymers, so that the ionic conductivity of the composite solid polymer electrolyte is reduced. Is lower.
  • the polymer contains mobile hydrogen (protonic hydrogen) such as carboxylic acid group, sulfonate group, hydroxyl group and N—H group, reduction reaction and side reaction accompanying the reduction reaction occur. As a result, the electrochemical stability of the polymer solid electrolyte decreases.
  • mobile hydrogen protonic hydrogen
  • the molecular weight of the polymer used in the present invention varies depending on the type of the polymer, it is preferable that the molecular weight is in the ⁇ range of 1,000 to 1,000,000. In particular, in the case of a vinylidene fluoride polymer, the molecular weight is preferably from 5,000 to 200,000, and more preferably from 10,000 to 100,000. New
  • a foam can be produced by a method in which the foam is formed by gas generated by gasification and decomposition of a foaming agent by heating at normal pressure or reduced pressure.
  • a foaming agent is added at the time of polymer molding and then foaming is performed. Heating temperature for producing this foam, The time and pressure (degree of decompression) vary depending on the type of polymer, the type of blowing agent, the volume fraction of closed cells in the target foam, and the shape and density of the closed cells.
  • the heating method include a method of heating by contacting with a heat roll, a method of heating by convection or radiant heat using a heating furnace such as a resistance heating furnace or an infrared heating furnace, a microwave or high frequency wave.
  • a heating furnace such as a resistance heating furnace or an infrared heating furnace, a microwave or high frequency wave.
  • a method of reheating by irradiation with energy, laser light, or the like can be used.
  • a foam can be produced by allowing a polymer to contain carbon dioxide or the like as a foaming agent in a supercritical state and then releasing the polymer into a normal-pressure atmosphere.
  • a foam is produced by using a vinylidene fluoride polymer for the polymer foam
  • the method described in Japanese Patent Publication No. 5777704 can be used. That is, the polymer obtained by melt-molding the polymer is partially treated by 1) radiant energy irradiation such as electron beam irradiation and / or beam irradiation, 2) radial cross-linking, or 3) alkali treatment. After cross-linking, a foaming agent can be impregnated with a blowing agent such as a halogen compound or a hydrocarbon, and then foamed by a method such as heating to obtain a foam.
  • a blowing agent such as a halogen compound or a hydrocarbon
  • foaming agent examples include fluorocarbon 134a, supercritical carbon dioxide, and toluene.
  • Fluorine 134a, supercritical carbon dioxide gas is impregnated under pressure. Also, after the foam molding, the above-mentioned electron beam irradiation, ⁇ -ray irradiation, radical crosslinking, alkali treatment And other tasks.
  • the polymer When the composite solid polymer electrolyte of the present invention is used for a separator between electrodes of a battery, etc., the polymer has a cross-linked structure, which may cause a short circuit between the electrodes of the battery at a high temperature. It has the effect of suppressing it, which is favorable.
  • the polymer bridge since the polymer bridge is formed by the above-mentioned polymer molecules, it is preferable that the polymer bridge does not contain one unit of a crosslinkable monomer.
  • a crosslinkable monomer is present in a vinylidene polyfluoride resin and polymerized and crosslinked, reduction polymerization at the electrode interface due to the presence of the remaining monomer or electrolysis may occur. Oxidation or electrolytic reduction decomposition occurs, and the products of these reactions cause side reactions, which lead to a decrease in current efficiency, structural destruction at the electrode interface, etc., and a decrease in battery performance. I don't like it. Although it is possible to remove this residual monomer, it is not preferable because the production process of the solid polymer electrolyte is complicated. In addition, depending on the type of the crosslinkable monomer unit in the polymer solid electrolyte containing two crosslinkable monomer units, hydrolysis is also caused by an electrochemical side reaction or a trace amount of water. It does not like to wake up.
  • Examples of the method for mounting the polymer used in the composite solid polymer electrolyte of the present invention include irradiating radiant energy such as electron beam, gamma ray, X-ray, ultraviolet ray, and infrared ray, and including a radical initiator. Using a double bond generated after the alkali treatment (removal of HF), etc. Can be done.
  • electron beam irradiation is preferred because of its excellent mass productivity and easy process control.
  • the crosslinking conditions when using electron beam irradiation if the irradiation amount is not sufficient, the citrus effect will not be sufficient, and if the irradiation amount is too large, the polymer will be decomposed. I don't like spots. It is preferable that the irradiation dose be 5 Mrad to 100 Mrad.
  • the irradiation is performed at an irradiation line density and irradiation time according to the irradiation dose of electron beam irradiation.
  • this crosslinked structure can be confirmed by its solubility in a linear polymer-soluble organic solvent. That is, the polymer having the crosslinked structure formed therein has a component that is insoluble in the soluble organic solvent, and is not completely dissolved, so that the formation of the crosslinked structure can be determined.
  • This linear polymer-soluble solvent is not limited because it differs depending on the type of the polymer.
  • hexafluoro-c-c pyrene-vinylidene-denofluoride copolymer, N-methylpyrrole Redon, Chlorohonolem, Dichloromethan, Dichlorethane, Aceton, Tetrahydrofuran, Dimethyltylonolem Amid, Dimethylsulfoxy Solvents such as dimethyl chloride and dimethyl acetate can be used.
  • the polymer matrix of the composite solid polymer electrolyte of the present invention includes an uncrosslinked polymer segment in addition to the crosslinked polymer segment described above,
  • the crosslinked polymer segment is Undissolved polymer segments that are not dissolved in a soluble solvent can be discriminated by dissolving in the solvent.
  • immersion is carried out using N-methylpyrrolidone as a solvent and kept at 100 ° C for 2 hours.
  • the uncrosslinked component is dissolved, the solid content of the crosslinked polymer is pulled up from the solvent, washed with acetone and methanol, and the polymer weight after drying (crosslinked polymer segment) is calculated.
  • the weight ratio of crosslinked polymer segments can be determined.
  • the weight ratio of this crosslinked polymer segment that is, (weight of crosslinked polymer segment) Z (bridge polymer segment + unbridged polymer segment) (Segment) is preferably from 0.2 to 0.8.
  • the weight ratio is less than 0.2, the effect of the crosslinked polymer segment is reduced.
  • the uncrosslinked polymer that is included in the polymer matrix of the composite polymer solid electrolyte of the present invention together with the polymer segment is used in the battery formation described later. This has the effect of increasing the adhesion between the solid electrolyte and the electrode, thereby increasing the strength of the battery structure and battery performance.
  • the weight ratio of the Kachibana polymer segment is more than 0.8, the effect of the non-Kachibana polymer segment becomes poor, and the battery performance also decreases.
  • the composite polymer solid electrolyte of the present invention is made into a sheet form, for example,
  • the film thickness is not necessarily limited because the range of suitability differs depending on the type of battery used, but it is generally 5 to 5 Thicknesses of about 0 ⁇ m are preferred. If it is less than 5 ⁇ m, the strength will be insufficient, and shorts will occur between the electrodes when the battery is assembled.
  • the example will effective electrical resistance of the entire film is too Li a high at 5 0 ⁇ ⁇ ⁇ above, the energy density of Li per volume of the battery Naru rather small £ Meanwhile, impregnated with a nonaqueous electrolyte solution in a foam Depending on the polymer foam and electrolyte used, the area of the raw sheet may expand or contract significantly compared to before the impregnation, which is a problem in the production process. It can be. In other words, this phenomenon not only makes it difficult to set the feed rate in the process of continuously impregnating the sheet with a non-aqueous electrolyte, but also impairs the impregnation after assembling as a battery.
  • This problem is caused by irradiating or stretching the polymer foam sheet so that the polymer foam sheet has a crosslinked polymer having a cross-linked structure formed by electron irradiation.
  • the polymer foam used for producing the sheet-shaped polymer solid electrolyte of the present invention has a property that the area shrinks due to the impregnation of the electrolytic solution when the expansion ratio is large, This contraction can be suppressed by electron beam irradiation.
  • the expansion ratio is small, it has the property of expanding when impregnated with a non-aqueous electrolyte.
  • the expansion and shrinkage when impregnating with the non-aqueous electrolyte can be adjusted by selecting the expansion ratio, the stretching treatment, and the amount of electron beam irradiation.
  • the method of stretching the polymer foam used here is not particularly limited.
  • the Chemical Society of Japan, Chemical Handbook Applied Chemistry I (Process) p. 643, Maruzen Various publicly known methods, such as single axis, sequential two axis, and simultaneous two axis as described in 1986, can be adopted.
  • a stretched polymer tends to return to its original size when the polymer is softened by impregnation with an electrolyte. If this is used and stretched in the biaxial direction at an appropriate magnification in advance, the increase in surface area due to electrolyte impregnation can be minimized by offsetting the increase in surface area due to swelling. You can stop it.
  • the uniaxially stretched polymer has the property of contracting in the stretching direction and expanding in the direction perpendicular to the stretching direction when the polymer is softened by impregnation with the electrolyte.
  • the length of the polymer changes both vertically and horizontally due to impregnation, but it must be stretched uniaxially in an appropriate direction and magnification in advance. As a result, the change in area can be suppressed.
  • the above-described electron beam irradiation and stretching can be used alone or in combination.
  • the amount of electron beam irradiation and the stretching ratio are determined by the balance with the amount of the electrolyte impregnated into the foam polymer.
  • the sheet-shaped foam polymer obtained by electron beam irradiation and / or stretching has a sufficient conductivity to be used as a solid electrolyte of a battery after the impregnation step with a non-aqueous electrolyte. That is, when the ion conductivity is 1 X 10— a SZ cm or more, the area is 50% to 200% compared to the area before impregnation, preferably 70%. Preferably, it is in the range of 170%, more preferably 90% and 150%. According to the above method, a sheet-shaped solid polymer electrolyte having a small dimensional change before and after the impregnation with the electrolytic solution can be obtained.
  • the non-aqueous electrolyte used in the present invention is usually a solution in which an electrolyte is dissolved in a non-aqueous electrolyte solvent.
  • the electrolyte itself has fluidity and has a liquid property, the electrolyte alone can be used as a non-aqueous electrolyte without an electrolyte solvent.
  • an inorganic salt or an organic salt can be used as the electrolyte contained in the non-aqueous electrolyte used in the present invention.
  • Examples include tetrafluoroboronic acid, perchloric acid, hexafluorophosphoric acid, nitric acid, sulfuric acid, phosphoric acid, hydrofluoric acid, chloric acid, bromic acid, and iodic acid.
  • Alkali metals, alkaline earth metals, transition metals, rare earth metals, ammonium ions and the like can be used alone or in a mixed state as the electrolyte cation of this salt.
  • the cation species depends on the intended use. For example, when the polymer solid electrolyte of the present invention is used as a lithium battery, it is preferable to use a lithium salt as the electrolyte to be added.
  • Cyclic carbonate compounds such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, getyl carbonate, and the like are used as electrolyte solvents for the electrolytic solution to be impregnated into the polyfoam.
  • Chained carbonate compounds such as tilethyl carbonate, ether compounds such as tetrahydrofuran, methyltetrahydrofuran, etc., ⁇ -butanolactone, propiolactone, Ester compounds such as methyl acetate, low molecular weight organic compounds such as acetonitrine and propionitol, and oligomers such as diglyme and trigram Lenoxide and their derivatives can be used.
  • the carboxylic compounds and the ester compounds are preferable for lithium batteries because of their excellent electrochemical stability.
  • aliphatic polyethers such as polyethylene oxide, polypropylene oxide, and polyvinylidene fluoride Fluoride-based polymers such as Ride, vinylidenefluoride hexafluorene propylene copolymer, polyacrylonitrile, aliphatic polyester, aliphatic carbonate, etc.
  • a solution obtained by dissolving this polymer in the above-mentioned electrolyte solvent can also be used as the electrolyte solvent.
  • An advantageous method for obtaining the composite solid polymer electrolyte of the present invention is to impregnate the above-described electrolyte and its solvent into a polymer foam containing closed cells.
  • Other electrolyte solvents can be added.
  • only a liquid electrolyte can be used as an electrolyte without using an electrolyte solvent.
  • the composite polymer solid electrolyte of the present invention is obtained, for example, by immersing a polymer foam in a solution obtained by dissolving an electrolyte in the solvent at an appropriate temperature, and then adding the electrolyte and the electrolyte to the polymer. It can be manufactured by impregnating with a solvent. This method is preferred because it is simple in operation.
  • the composite polymer solid electrolyte having more excellent strength and high-temperature stability can be obtained by the fact that the polymer foam has a bridge polymer segment. be able to.
  • the resin is not necessarily required, but the content of the electrolyte and the electrolyte solvent in the polymer solid electrolyte can be selected in a wide range depending on the resin. In particular, even when the content of the electrolyte and the electrolyte solvent is high, the solid state can be maintained by using the polymer foam having the Kachibana polymer segment. It is preferable because it can be used as a solid electrolyte.
  • the impregnation temperature can of course be changed depending on the combination of the electrolyte and the electrolyte solvent described above and the immersion time. However, at a low temperature of about room temperature, even when the impregnation is performed for a long time, the solid polymer trimmer is used. The resulting solid polymer electrolyte has low conductivity due to insufficient inclusion in the gas, and the polymer foam deforms or dissolves in the electrolyte at high temperatures close to the melting point.
  • the impregnation step is 35 ° C or more and 200 ° C or less, preferably 50 ° C or more and 180 ° C or less, and more preferably 60 ° C or more and 150 ° C or less This is performed in a temperature range where the polymer can swell with the electrolyte.
  • the polymer foam As a method of impregnating a polymer foam with a non-aqueous electrolyte, the polymer foam is immersed in a non-aqueous electrolyte solvent solution of an electrolyte containing a polymer foam swelling agent.
  • a non-aqueous electrolyte solvent solution of an electrolyte containing a polymer foam swelling agent there is a method in which the foam is efficiently impregnated with the mixed solution and diffused.
  • the impregnation can be performed at a relatively low temperature or the impregnation time can be shortened. At this time, impregnation is performed by selecting treatment conditions such as solution composition, temperature, and impregnation time so as not to substantially dissolve the polymer foam.
  • the swelling agent can be removed from the obtained composite solid polymer electrolyte by the following method. That is, the swelling agent is an electrolyte solvent If the compound has a lower boiling point than that of the swelling agent, the swelling agent can be selectively removed by subjecting the composite polymer solid electrolyte to decompression and / or heat treatment, and by a difference in boiling point. Can be done.
  • the removal amount of the swelling agent can be adjusted depending on the processing conditions (degree of decompression, temperature, time).
  • the electrolyte solvent is simultaneously removed from the solid polymer electrolyte.
  • a solid polymer electrolyte having a low electrolyte solvent content can be additionally impregnated with an electrolyte solvent to be used as a solid polymer electrolyte.
  • the polymer foam impregnated with the swelling agent and the non-aqueous solvent solution of the electrolyte is further immersed in the non-aqueous solvent solution of the electrolyte not containing the swelling agent, and at least a part of the swelling agent is electrolyzed. It can be replaced with a non-aqueous solvent solution of high quality.
  • the amount of the swelling agent remaining in the composite solid polymer electrolyte can be adjusted depending on the amount of the solvent to be replaced or the amount of the nonaqueous solvent, temperature and time. In order to further reduce the content of the swelling agent, it is preferable to perform the above-mentioned solvent replacement treatment a plurality of times.
  • the swelling agent is preferably a molecule that does not react electrochemically.
  • the swelling agent can be used as it is as an electrolyte solvent in a solid polymer electrolyte.
  • electrochemically reacting molecules these molecules are removed from the solid polymer electrolyte after impregnation by the above-mentioned method, extraction, distillation or the like before use.
  • the swelling agent content in the composite solid polymer electrolyte of the present invention was 5% by weight of the whole solid polymer electrolyte. /.
  • a vinylidene fluoride-based polymer foam such as polyvinylidene fluoride and vinylidene fluoride-hexafluorob-opened pyrene copolymer.
  • an impregnation method using a non-aqueous solvent solution of an electrolyte containing a swelling agent for a polymer foam will be described.
  • swelling agents for the polymer foam examples include ketone compounds such as acetone and methylethyl ketone; cyclic compounds such as tetrahydrofuran and dioxane; ethyl acetate; A non-aqueous solvent solution of the electrolyte containing the swelling agent is prepared using an ester compound such as butyl acetate, and a polymer foam is immersed in the solution, and the solution is added to the polymer foam. And a method of impregnating the polymer and the foam with a swelling agent of the polymer and the electrolyte and then impregnating the electrolyte and the non-aqueous solvent.
  • the impregnation conditions for impregnating the polymer foam with the polymer swelling agent or the electrolytic solution containing the swelling agent are as follows: the impregnation temperature is from room temperature to 100 ° C .; If the vapor pressure of the electrolyte solvent is relatively high, use a closed container at normal pressure or under pressure. If a cyclic ester such as ethylene carbonate or propylene carbonate is used as the electrolyte solvent, a cyclic ester such as y-butyrolactone has a high boiling point, and thus has a low boiling point swelling.
  • the agent can be removed by the method described above.
  • the composite polymer solid electrolyte of the present invention can be produced, but the method of producing the composite polymer solid electrolyte of the present invention is not limited to this. Ray
  • the composite solid polymer electrolyte of the present invention has high ionic conductivity, excellent flexibility, processability, and mechanical strength, and high electrochemical stability. Therefore, the lithium battery, the lithium secondary battery, and the lithium ion It can be applied to various electrochemical devices such as batteries such as secondary batteries, air batteries, photochemical batteries, electric double-layer canisters, electrochemical sensors, and electrochromic display devices at the outlet.
  • batteries such as secondary batteries, air batteries, photochemical batteries, electric double-layer canisters, electrochemical sensors, and electrochromic display devices at the outlet.
  • Electrochemical devices are formed by arranging at least two or more electrodes via the composite solid polymer electrolyte of the present invention.
  • the battery of the present invention has a structure in which a positive electrode and a negative electrode are provided via the composite solid polymer electrolyte of the present invention.
  • the solid polymer electrolyte preferably contains a lithium salt, and it is preferable to use a lithium salt as the electrolyte.
  • a material capable of inserting and extracting lithium is used as the positive electrode and the negative electrode of the battery.
  • a material having a higher potential than the negative electrode is used as the positive electrode material. Examples of this are L i!- ⁇ C O Oz, L i N i O 2 L i, -X M n 204, L i,-, MO 2 (0 x x 1, where M is C o, represents the mixture of n i, M n, F e ), L i 2 -.
  • Nb 2 O 5 (0 ⁇ x ' ⁇ 1 - 2) which oxide is a, L i ⁇ i T i SL io S 2, L i 3 _, N b S e 3 (0 ⁇ z ⁇ 3) of any metal chalcogenide Genai de, poly pyromellitic one , Polythiophene, polyaniline, polyacene derivative, polyacetylene, polychenylene vinylene, polyylene vinylene, dithiol conductor, disulphide Organic compounds such as derivatives can be mentioned.
  • a material having a lower potential than the above positive electrode is used.
  • metal lithium and Anore Mi Lithium alloys, magnesium.
  • SnM-based oxides M represents Si, Ge, Pb), Si,
  • M'y OI (M' represents W, Sn, Pb, B, etc.) complex oxide, titanium oxide, lithium oxide solid solution of metal oxides such as iron oxide, Li 7 Mn N 4 , L 13 F e N 2, L i 3- , C o, N,
  • Ceramics such as Li 3 Ni N, Li 3 , Cu, N, Li 3 BN 2 , Li 3 A 1 N 2 , and nitride of Li 3 SiN 3 No.
  • the material is not limited to the above, as long as the material has conductivity.
  • the positive electrode and the negative electrode used in the battery of the present invention are formed by molding the above-mentioned materials into a predetermined shape.
  • a continuous body or a binder dispersion of a powder material can be used.
  • a powdery electrode material is mixed with a binder and molded.
  • the binder material include not only the vinylidene fluoride polymer used in the above-mentioned polymer foam material, but also styrene'butadiene-based latex.
  • An unfoamed material such as a polymer such as Teflon-based latex or metal is used.
  • a polymerizable monomer or a bridging agent can be added to the binder, and it can be polymerized and crosslinked after molding.
  • a powder of the composite solid polymer electrolyte of the present invention can be used as a binder. Irradiation energy such as electron beam, ⁇ -ray, ultraviolet ray, and infrared ray can be irradiated for the purpose of improving the binder strength and denaturing.
  • a current collector made of a material having low electric resistance can be provided for the electrode. This current collector is used as a substrate when producing an electrode by the above method.
  • the structure of the positive electrode ⁇ the composite polymer solid electrolyte anode of the present invention, or the structure of the polymer foam having closed cells before impregnation of the positive electrode / non-aqueous electrolyte ⁇ the structure of the negative electrode, and then the non-aqueous The battery can be manufactured by impregnating the electrolyte.
  • the amount of electrolyte used in the electrode depends on the long-term use and storage conditions of the electrolyte used inside the electrode. Non-uniformity and a decrease in the content occur, and accordingly, the ion movement from the electrode is restricted, and the battery performance decreases. In particular, this problem is remarkable in a secondary battery which is used for a long time, and the life of the battery is reduced. Also, not only the performance of these batteries deteriorated, but also the electrolyte could leak out of the batteries due to bleeding from the electrodes, which was a problem.
  • an electrode containing a particulate electrode material and a closed-cell polymer foam as a binder is impregnated and swelled with a non-aqueous electrolytic solution, whereby an electrode having excellent liquid retention properties can be obtained.
  • a method of forming an electrode by molding a mixture of a polymer foam particle or a crushed product of a polymer foam molded article and a particulate electrode material; An electrode is formed by molding a mixture of the resin binder before foaming and then foaming the resin binder, and the electrode is formed by impregnating and swelling the electrode with a non-aqueous electrolyte.
  • the electrode of the present invention is composed of a particulate electrode material and a resin binder, and the resin binder is a closed-cell polymer foam.
  • the electrode of the present invention is superior in electrode retention to an electrode having a conventional structure, has less electrolyte outflow, and is impregnated with the electrolyte to be used as a battery electrode. A battery with excellent performance can be obtained.
  • Electrode binder for this battery electrode The inner closed cell portion is filled with electrolyte, which is different from the through-hole structure used for conventional electrodes. Is not likely to occur. It is also conceivable that the electrolyte also functions as an integrated buffer.
  • the volume of the closed cells in the resin binder, which is a closed-cell polymer foam, in the electrode is determined by the volume of the binder before impregnation with the electrolyte.
  • the volume is preferably 5 to 90% with respect to the volume of-, and this electrode can be used as a battery electrode by impregnating the electrolyte with it. ⁇ Effective when the closed cell volume is less than 5% Is inadequate. If the volume fraction is larger than 90%, the electrode thickness becomes large, so that the energy density per volume of the battery decreases, and the strength after impregnation with the electrolyte decreases, and the electric resistance increases. Tend to.
  • the volume fraction of the closed cells of the binder used in the electrode of the present invention is more preferably 85% or less, particularly preferably 80% or less.
  • the closed cells include both a structure in which the periphery is sealed with a resin and a structure in which the periphery is sealed with a resin or a fine electrode material.
  • a material containing a through-hole can also be used, and the content of the through-hole is not included in the above-mentioned closed-cell yield.
  • the volume of the fine electrode material in the electrode of the present invention is preferably in the range of 20% to 70% of the whole electrode.
  • Closed cell of the closed cell polymer foam used for this electrode The shape of the cross section of the closed cell may be any of a circle, an ellipse, and a square.
  • the size varies depending on the intended use, but the average value of the long and short diameters of the closed cells is usually 0.1 m or more, which is more preferable. More specifically, the range is 1 ⁇ to 50 ⁇ m.
  • the electrolyte and the electrolyte solvent are impregnated in the polymer and converted into an ion conductive material composed of the polymer, the electrolyte, and the solvent.
  • the electrolyte and / or the electrolyte solvent are contained in the resin binder prior to the electrolyte impregnation, and the electrolyte and the solvent can be added or replaced by further impregnating the electrolyte.
  • the second electrolyte solvent must not substantially dissolve the polymer, and various polymer and solvent combinations that meet this requirement can be used.
  • the resin binder material of this electrode is the material described above as the polymer material of the polymer foam used in the composite solid electrolyte of the present invention.
  • this binder for example, after a foaming agent was mixed with a solid polymer molded body, the foaming agent was gasified and decomposed by heating, decompression, etc.
  • a method of forming a foam by gas The method is performed according to the method for producing a polymer foam described above.
  • a polymerizable monomer or a bridging agent is contained during the formation of the foam or after molding, and the polymer is crosslinked or crosslinked, and the polymer is crosslinked by electron beams, gamma rays, or ultraviolet rays. It is possible to increase the strength of the obtained foam.
  • a conductive filler can be contained in the resin binder in order to promote the electron transfer of the electrode active material.
  • the conductive filler include carbon-based fillers such as carbon black, acetylene black, and graphite, metal fillers, and conductive ceramic fillers. Ira can be used.
  • the composite polymer solid electrolyte of the present invention also functions as a separator between the electrodes when the composite polymer solid electrolyte of the electrode Z is used in a state of being stacked in a battery in a laminated structure of the composite polymer solid electrolyte / electrode.
  • the polymer foam used in this case preferably contains a vinylidene fluoride polymer having a crosslinked structure.
  • the battery has a structure in which a positive electrode and a negative electrode are provided via the composite solid polymer electrolyte of the present invention.
  • a unit composed of a sheet-shaped positive electrode / a composite polymer solid electrolyte anode of the present invention may be sequentially laminated to form a sheet-shaped roll-shaped structure.
  • a battery assembly in which the electrodes of the battery unit are connected in parallel or in series.
  • the voltage is varied depending on the number of series connections. It has the feature that it can be added.
  • an ionic conductor other than the composite solid polymer electrolyte can be bonded between the composite solid polymer electrolyte and the electrode for the purpose of, for example, reducing the interface adhesion and interfacial resistance. If necessary, take out the current to the battery electrode and connect it to the external terminal connection member for introduction, or the current-voltage control element, or a protective layer for preventing moisture absorption and structural protection of the battery unit and the battery layer. Can be provided.
  • the composite solid polymer electrolyte of the present invention has high ion conductivity, excellent flexibility, processability, and mechanical strength, and high stability of electrochemical characteristics. It can be applied not only to batteries but also to various electrochemical devices such as photoelectrochemical batteries, electrochemical sensors, and electric double-layer capacitors.
  • electron beam irradiation was performed using Curetron EBC-200-AA2 manufactured by Nissin High Voltage Co., Ltd., Japan, at an accelerating voltage of 200 kV, The test was performed at room temperature with a current of 20 mA.
  • the composite polymer solid electrolyte sheet is frozen in liquid nitrogen and then, using a razor, three planes perpendicular to each other (X, Y, ⁇ ⁇ plane, ⁇ — ⁇ ⁇ plane, and _ ⁇ plane (X — ⁇ plane and ⁇ ⁇ plane are along the thickness direction of the sheet)]), and the first and second planes corresponding to the X- ⁇ plane, the ⁇ - ⁇ plane, and the X- ⁇ plane, respectively. And a sample having a third cross section. The first, second and third cross sections of the obtained sample were observed with a reflection optical microscope [Olympus II-II type metallurgical microscope, manufactured by Olympus Optical Co., Ltd. in Japan].
  • the liquid phase domain dispersed in the continuous solid phase domain were examined to determine the percentage of the total area of the cross-section of the liquid phase domain occupied by the arenas of each cross-section of the sample. Calculate the percentage of the total area of the liquid-phase domains obtained for each of the three cross sections of the sample, and use the average value as the volume ratio (%) of the liquid-phase domains of the polymer solid electrolyte. .
  • Hexafluoropropylene-vinylidene fluoride copolymer was prepared using an extrusion molding machine with an extrusion die temperature of 230 ° C (Hexafluoropropylene content 5% by weight). Made by company) A sheet having a thickness of 150 ⁇ was formed by the heat extrusion molding used. In order to carry out a crosslinking reaction, the obtained sheet was irradiated with an electron beam at an irradiation dose of 1 OM rad, and then vacuum-dried at 60 ° C. to remove generated HF gas.
  • the sheet was further irradiated with an electron beam (irradiation amount: 15 Mrad), and then a mixed solution of HFCl 34a and water (weight ratio: 99 Z 1) was placed in a sealed container with 70%. And impregnated for 24 hours under the condition of 20 kg Z cm 2 (liquid content: 6.5% by weight).
  • the volume fraction of the closed cells relative to the entire foam was 87 volumes, as measured by a Toshiba Beckman Company in Japan. /. Met.
  • the foam is treated with lithium tetrafluoroborate.
  • L 1 BF is converted to ethylene carbonate (EC) Z-pyrene carbonate (PC ⁇ -butyl c-lactone ( ⁇ ⁇ ): mixed solvent (ECZPCZ y-BL weight ratio: 1-1Z) 2) into a non-aqueous electrolyte solution obtained by dissolving with a LiBF concentration of lmo 11, and impregnating and swelling at 100 ° C for 2 hours to produce a composite solid polymer electrolyte.
  • the final film thickness was 350 ⁇ m.
  • the volume fraction of the liquid domain in the composite solid polymer electrolyte was 64.7 volumes. /. Met. Specifically, for each of the first, second and third cross sections, the liquid phase The percentages of the total cross-sectional area of the main were 65%, 65%, and 64%. In each of the first, second and third cross-sections of the sample, it is uniformly dispersed in the continuous solid-phase domain and the average of the major and minor axes of each domain Liquid phase domains with an average particle size of 5 to 15 ⁇ m were observed. In any of the first, second and third cross sections, no liquid phase domain communicating with the original surface of the composite solid polymer electrolyte sheet was observed.
  • the content of the non-aqueous electrolyte in the composite solid polymer electrolyte was 85 wt / ° C, which was determined from the weight change before and after the impregnation in the composite solid polymer electrolyte. Met.
  • the composite polymer solid electrolyte was immersed in ethanol for 4 hours and in water for 1 hour, and punched into a disk having a diameter of 25 mm to obtain an effective area of 3 mm.
  • the cyclic polymer voltammetry method uses a composite polymer solid electrolyte in a scanning potential range of 0 to 5 V (VsL1 / Li + ).
  • VsL1 / Li + a composite polymer solid electrolyte in a scanning potential range of 0 to 5 V.
  • a 1 cm square sample of the composite solid polymer electrolyte obtained as described above was placed on both sides of a ⁇ ⁇ ⁇ thick stainless steel sheet.
  • the ion conductivity was found to be 2.8 X 10 — 3 SZ cm.
  • Lithium tetrafluoroborate LiBF4
  • EC ethylene carbonate
  • Non-aqueous electrolyte solution obtained by dissolving at a BF concentration of 1 m ⁇ 1 and impregnating and swelling at 100 ° C for 3 hours to form a composite A polymer solid electrolyte was prepared. The film thickness after impregnation was 120 ⁇ .
  • the volume fraction of the liquid phase domain in the composite polymer solid electrolyte was 51.7% by volume. Do you get it. Further, in any of the first, second, and third cross sections, no liquid phase domain communicating with the original surface of the composite solid polymer electrolyte was observed.
  • the content of the non-aqueous electrolyte solution in the composite solid polymer electrolyte was found to be 74% by weight, as determined from the weight change before and after the impregnation with the non-aqueous electrolyte solution.
  • the amount of water permeation was measured in the same manner as in Example 1. Not observed.
  • a 1 cm square sample of the polymer sheet obtained as described above is sandwiched between stainless steel sheets to form a laminate, and the stainless steel sheet is used as an electrode. Then, the AC impedance analysis was performed in the same manner as in Example 1, and the ion conductivity was calculated from the real impedance intercept of the complex impedance of the Nyquist plot. . degree 3, which is a 9 X 1 0- 3 S / cm this and the force; I force ivy.
  • the composite polymer solid electrolyte sheet is sandwiched between stainless steel sheets on both sides and pressed on both sides with an aluminum plate having a thermocouple embedded therein, and a hydraulic press equipped with a heater is further provided. Held on board.
  • the laminate was heated from room temperature to 220 ° C with a heater while measuring the AC impedance between the stainless steel electrodes, and the temperature dependence of the impedance was evaluated.
  • the impedance was measured at a measurement frequency of 1 kHz using an LCR meter manufactured by Nikki Electric Co., Ltd. in Japan. As a result, the temperature ranged from room temperature to 220 ° C. The impedance changed suddenly.
  • the solution was uniformly mixed to obtain a slurry [dry weight mixing ratio: needle coke (92%), polymer (8%)].
  • the slurry was coated on a metal copper sheet by a doctor blade method and dried to form a coating film (negative electrode) having a thickness of 125 ⁇ m.
  • Both surfaces of the composite polymer solid electrolyte sheet prepared in Example 2 were sandwiched between the positive electrode and the negative electrode prepared above, with the coating surfaces adhered to the composite polymer solid electrolyte, respectively, and laminated at a temperature of 120 ° C.
  • a laminate was prepared by netting. After taking out the stainless steel sheet from the current collector side of each electrode and connecting the terminals, the polystyrene / aluminum / polyethylene terephthalate laminated sheet (Sheet thickness: 50 ⁇ ) to fabricate a sheet-like battery. He was charged and discharged at a current density of 1 m AZ cm 2 by connecting the Installing output Shi terminal of the battery charging and discharging machine (day home Hokuto Denko Co., Ltd., Ltd.
  • the second and subsequent charge / discharge are discharge Z charge efficiency is 98% or more, and the 10th discharge amount is the negative electrode carbon weight.
  • the polymer phase had a uniform structure, and no liquid domain having a particle size of 1 ⁇ m or more was observed (that is, the volume fraction of the liquid domain in the polymer solid electrolyte was 0%. Met.
  • the 1 cm square polymer solid electrolyte sheet obtained by the above-mentioned coating and acetone evaporation was sandwiched between stainless steel sheets to form a laminated body.
  • AC impedance analysis was performed using the sheet as an electrode in the same manner as in Example 1, and the ion conductivity was calculated from the real impedance intercept of the Nyquist plot. . on conductivity 0 9 xi 0 - 3 SZ is an off this and the side is cm.
  • the both sides of the polymer solid electrolyte sheet are sandwiched by stainless steel sheets, and both sides are pressed by an aluminum plate in which a thermocouple is embedded, and a hydraulic press equipped with a heater is further provided.
  • the laminate was heated from room temperature to 110 ° C by a heater to evaluate the temperature dependence of the impedance.
  • the impedance was measured using an LCR meter manufactured by Hioki Electric Co., Ltd., Japan, at a measurement frequency of 1 kHz. As a result, the impedance was gentle in the temperature range from room temperature to 110 ° C. , But sharply at 110 ° C A decrease in resistance was observed.
  • the exudation of the melt was observed between the electrodes, indicating that the resistance was reduced due to the thinning of the polymer sheet due to the melt deformation.
  • the sheet shape was maintained.
  • the impregnated sheet is pulled up, washed with immersion in acetate, and the weight fraction of the crosslinked component formed by electron beam irradiation is determined from the weight of the dried sheet. As a result, it was 55% by weight.
  • the foam was mixed with lithium tetrafluoroborate (LiBF) and mixed with ethylene carbonate (EC) and propylene (one) (PC) 7 butyllactone (y-BL).
  • LiBF lithium tetrafluoroborate
  • EC ethylene carbonate
  • PC propylene (one)
  • y-BL butyllactone
  • the ratios of the first, second, and third cross-sectional areas were 51%, 48%, and 45%, respectively. From these results, it was found that the liquid phase domain in the composite polymer solid electrolyte was The volume fraction was found to be 48% by volume. No liquid domain communicating with the surface of the composite solid polymer electrolyte was observed in any of the first, second and third cross sections.
  • the content of the nonaqueous electrolyte solution in the composite solid polymer electrolyte was 76% by weight, which was determined from the change in weight of the composite polymer solid electrolyte before and after the impregnation with the nonaqueous electrolyte.
  • the composite polymer solid electrolyte sheet obtained as described above was sandwiched on both sides of a 1 cm square sheet by a stainless sheet to form a laminate.
  • AC impedance analysis was performed in the same manner as in Example 1, and the ion conductivity was calculated from the real impedance intercept of the complex impedance of the Nyquist plot. ion-conductivity 3. and the this was found to be 2 X 1 0- 3 SZ cm.
  • the composite polymer solid electrolyte sheet is sandwiched between stainless steel sheets on both sides and pressed on both sides by an aluminum plate in which a thermocouple is embedded, and a hydraulic press equipped with a heater is further provided. Held on board.
  • the temperature dependence of the impedance was evaluated by heating the laminate from room temperature to 220 ° C with a heater while measuring the AC impedance between the stainless steel electrodes.
  • the impedance was measured using an LCR meter manufactured by Hioki Electric Co., Ltd., Japan at a measurement frequency of 1 kHz. As a result, the impedance was measured in the range of room temperature to 220 ° C. Peedance has changed dramatically.
  • the alumina plate and stainless steel sheet were separated, and no deformation of the composite solid polymer electrolyte was observed. At least in the temperature range of 220 ° C or less, it was found that no melting deformation occurred and the thermal dimensional stability was excellent.
  • Example 3 Using the lithium cobaltate positive electrode coating film prepared in Example 3 and the carbon negative electrode coating film, the positive electrode and the negative electrode were sandwiched between both surfaces of the composite polymer solid electrolyte prepared in Example 4 in the same manner as in Example 3.
  • the laminate was manufactured by laminating at a temperature of 120 ° C. Take out the stainless steel sheet from the current collector side of each electrode and connect the terminals. Then, lamination was carried out with a polyethylene aluminum / polyethylene terephthalate laminated sheet (film thickness 50 m) to produce a sheet-like battery.
  • the foamed sheet prepared in Example 1 was overlaid with the NC negative electrode prepared in Example 3 and the L1CoO: positive electrode, and laminated at a temperature of 120 ° C. To produce a laminate.
  • This laminate has a structure in which the uncoated portion of the current collector is the surface. A needle was pierced into the surface of the current collector (both the positive electrode and the negative electrode) to form 400 holes of 150 ⁇ m in diameter per 1 cm 2 .
  • Example 3 Using this battery, charging and discharging were performed in the same manner as in Example 3 (re-current density per electrode area: ImAZ cm 2 ). The average was 21 OmAhZg. The charge / discharge efficiency after the second time was 98% or more, and the ratio of the 100th cycle discharge amount to the initial discharge amount was 84%. From the above results, it was found that the battery can be repeatedly charged and discharged and operates as a secondary battery.
  • Example 2 In the same manner as in Example 1, a sample for section observation was cut out from the composite solid polymer electrolyte, and the first, second, and third cross-sectional structures were observed.
  • the phase domains were uniformly dispersed and had an average particle size of 2 to 9 ⁇ m.
  • the ratios of the cross-sectional areas of the liquid-phase domains in the first, second, and third cross sections were 38%, 30%, and 35%, respectively.
  • the volume fraction of the liquid domain in the material is 34.3 volumes. /. It turned out that.
  • no liquid domain communicating with the original surface of the composite solid polymer electrolyte was observed in any of the first, second, and third cross sections. Further, the amount of permeation was measured in the same manner as in Example 1, but no permeation was observed.
  • the non-aqueous electrolyte in the composite solid polymer electrolyte was determined from the weight change of the composite solid polymer electrolyte before and after impregnation with the non-aqueous electrolyte.
  • the solution content was 75% by weight.
  • Example 1 Results of obtaining the ion-conductivity in the foam sheet at room temperature after impregnation that by the AC Lee down impedance measured in the same manner as was 3. 4 X 1 0- 3 SZ cm.
  • the impregnated body was heated to 150 ° C, cooled, and subjected to impedance measurement at room temperature.
  • the ion conductivity was 3.5 X 10 — 3 SZ cm.
  • Example 7 Using a foam sheet before impregnation prepared in Example 7, L i C 0 ⁇ 2 electrode sheet prepared in Example 3 (positive electrode), NC electrode sheet - cutting preparative (negative) to each 2 cm square Then, the foam sheet is cut into 2.3 cm squares, the sheet is sandwiched between two electrode sheets, and the laminate is laminated at 120 ° C.
  • the battery was charged and discharged at a current density of 1 mA / cm 2 using a charge / discharge machine (101 SM 6 manufactured by Hokuto Denko K.K.). Charging was performed at a constant potential after the potential reached 4.2 V. The potential between the electrodes after charging was 4.2 V, and charging was confirmed. The discharge stopped when the potential dropped to 2.7 V. The initial charge / discharge efficiency is 78%, and the charge / discharge efficiency after the second time is 99% or less. Above, it was confirmed that the battery can be repeatedly charged and discharged, and that it operates as a secondary battery.
  • a hexafluoropropylene-vinylidene fluoride copolymer resin (hexafluoropropylene content: 5% by weight) was extruded by heating and molding.
  • the sheet was formed into a sheet with a film thickness of 168 ⁇ m.
  • the obtained sheet was irradiated with an electron beam at an irradiation dose of 10 Mrad to partially crosslink, and then vacuum-dried at 60 ° C to remove the generated HF gas. This is referred to as polymer sheet A.
  • Polymer sheet A was impregnated with HFFC134a in the same manner as in Example 1. Immediately after removing the impregnated sheet, the sheet was heated in a heating furnace at 210 ° C for 10 seconds at 180 ° C to obtain a white foam with a film thickness of 401 ⁇ (expansion ratio). 15 times, volume ratio). This is designated as foam sheet ⁇ . The ratio of the closed cell volume of the foam sheet to the total volume of the foam sheet was 92% by volume. The foam sheet was further irradiated with an electron beam of 30 Mrad and dried in vacuum at 60 ° C, and then a 30 mm X 30 mm test piece was placed on a lithium tetrafluorophore. Ethylene carbonate (EC) Z propylene power Monocarbonate (PC)-Petyrolactone (y-BL) mixed solvent
  • the composite polymer solid electrolyte was prepared by impregnation and swelling at 100 ° C for 1 hour.
  • the dimensions after swelling were 37 mm X 3 O mm (area was 123% before impregnation), and the film thickness was 372 ⁇ m.
  • Example 2 In the same manner as in Example 1, a sample for observing the cross section of the composite solid polymer electrolyte was prepared, and the structures of the first, second, and third cross sections were observed. As a result, a spherical liquid phase domain was obtained. And the average particle size was 2 to 25 ⁇ . The ratio of the cross-sectional area of each liquid phase domain to the cross-sectional area of each of the first, second, and third cross-sections was 83%, 78%, and 82%. From this, it was found that the liquid phase domain was contained at a volume fraction of 81% by volume. Further, in any of the first, second and third cross sections, no liquid phase domain communicating with the original surface of the composite solid polymer electrolyte was observed. Further, the amount of permeation was measured in the same manner as in Example 1, but no permeation was observed.
  • the content of the non-aqueous electrolyte solution in the composite solid polymer electrolyte was found to be 90% by weight, which was determined from the change in weight before and after the impregnation with the non-aqueous electrolyte solution.
  • Example 9 A 30 mm ⁇ 30 mm specimen of polymer sheet A was swollen in the same manner as in Example 9.
  • the dimensions after swelling are 58 mm X 40 mm (area increased to 240% before impregnation), and the film thickness is 335 m there were. It can be seen that the surface ridge increase was remarkably large as compared with Example 9.
  • a powder of vinylidene fluoride hexafluoropropylene copolymer (hexafluoropropylene content 5% by weight) was ripened at 230 ° C and molded to a thickness of 150 ⁇ m. Was molded. Electron beam irradiation to the sheet and (dose 1 0 M rad), leaving Ri taken After in the same manner as in Example 1 impregnated with full B down 1 3 4 A (solution content 7 wt. / 0) Then, it was immediately heated at 180 ° C. for 10 seconds in a heating furnace at 210 ° C. to obtain a white foam having a thickness of 280 / m (expansion ratio: 8). This foam contains closed cells with a diameter of 1 to 15 ⁇ , and is a closed-cell foam measured using a 930 air comparison hydrometer (manufactured by Toshiba Beckman, Japan). The ratio to the total volume was 83% by volume.
  • the foam sheet cut into 5 cm squares was mixed with 50 m 2 of acetone and a mixed solvent of ethylene carbonate and propylene carbonate (weight ratio 1: 1); L i BF 4 in a mixed solution of I mol Z l nonaqueous electrolyte solution obtained by dissolving 5 0 m 1, 4 0 ° by immersing 1 day at a temperature and C, the resulting sheet of 1 0 - 3 T pressure orr
  • the mixture was treated at room temperature for 30 minutes to obtain a composite solid polymer electrolyte.
  • the electrolyte had a film thickness of 320 ⁇ and a size of 5 cm square.
  • a cross-sectional view of the composite solid polymer electrolyte was obtained in the same manner as in Example 1.
  • An observation sample was prepared, and the structures of the first, second, and third cross sections were observed in the same manner as in Example 1.
  • particle size 9 ⁇ 1 5 c also was mu m, first, the ratio of the cross-sectional area of the second and third to the cross-sectional area of each cross section of the their respective liquidus de main Lee down is 7 8 %, 75%, and 80%. From the results, it was found that the liquid domain was contained at a volume fraction of 78% by volume.
  • the glass transition temperature was 100 ° C., and the glass transition temperature of the polymer foam before impregnation with the electrolytic solution was one. Since it was known in advance that the temperature was 51 ° C, it was found that the polymer phase was swollen by the electrolyte.
  • a sheet obtained by cutting the foam used in Example 10 into 5 cm squares was mixed with 50 ml of tetrahydrofuran, ethylene carbonate (EC) and propylene carbonate (PC).
  • EC ethylene carbonate
  • PC propylene carbonate
  • the sample was immersed in a mixed solution with 0 ml and kept at 50 ° C for 8 hours to obtain a transparent sheet impregnated with the solution. After holding for a certain period of time, the tetrahydrofuran was evaporated to produce a transparent composite polymer solid electrolyte sheet having a size of 5.5 cm square and a thickness of 3335 ⁇ .
  • a sample of the composite polymer solid electrolyte was prepared in the same manner as in Example 1, and the first, second, and third cross-sectional structures were observed. As a result, a spherical liquid phase domain was obtained. The particles were uniformly dispersed and had an average particle size of 9 to 15 ⁇ . The ratio of the cross-sectional area of each liquid phase domain to the cross-sectional area of each of the first, second, and third cross-sections was 82%, 83%, and 78%. 8 It was found to contain a liquid phase domain at a body fraction of 1% .In addition, the first, second, and third cross-sections showed that the composite polymer solid electrolyte had the same surface as the original surface. No communicating liquid phase domain was observed.
  • the content of the non-aqueous electrolyte solution in the composite solid polymer electrolyte was determined from the weight change before and after the impregnation with the non-aqueous electrolyte solution.
  • the glass transition temperature was 110 ° C., and the glass transition temperature of the polymer foam before impregnation with the electrolyte was measured. Since it was known in advance that the temperature was 51 ° C, it was found that the polymer phase was swollen by the electrolyte.
  • the electrolyte was sandwiched on both sides by a stainless steel sheet, and the AC impedance was measured. It was 7 X 1 0- 3 SZ cm.
  • a sheet obtained by cutting the foam used in Example 10 into a square of 5 cm was mixed with 50 ml of tetrahydrofuran, ethylene carbonate (EC) and propylene carbonate (PC).
  • mixed solvent EC Roh PC weight ratio: 1 Z 1
  • the solution was kept at 50 ° C for 8 hours to obtain a transparent sheet impregnated with the solution. Then, the sheet was kept for 1 hour at room temperature under a pressure of 1 0- 3 T orr removed Te preparative La inhibit mud off run-to produce a transparent composite polymer solid body electrolyte sheet one bets.
  • the sheet is 5 cm square and the film thickness is 25
  • the content of the nonaqueous electrolyte solution in the composite solid polymer electrolyte was found to be 71% by weight, which was determined from the weight change before and after the impregnation with the nonaqueous electrolyte solution.
  • the glass transition temperature As a result of evaluating the glass transition temperature from the differential ripening analysis of the composite solid polymer electrolyte, it was found to be 199 ° C., and the glass transition temperature of the polymer foam before impregnation with the electrolytic solution was 1%. Since it was known in advance that the temperature was 51 ° C, it was found that one phase of the polymer was swollen by the electrolytic solution and was re-emitted.
  • Example 13 The electrolyte was sandwiched between stainless steel sheets on both sides, and AC impedance was measured in the same manner as in Example 1. As a result, the room temperature ion conductivity obtained from the real impedance section of the call plot was measured. was 1. 0 X 1 0- 3 S / cm. Example 13
  • Example 10 In the same manner as in Example 10, a vinylidene fluoride xafluoropropylene copolymer sheet having a thickness of 25 zm was formed.
  • the sheet was irradiated with an electron beam (irradiation amount: 20 Mrad), and then impregnated with chlorofluorocarbon 134A in the same manner as in Example 1 (containing 5 parts by weight of liquid i.). Remove the impregnated sheet and immediately heat it to 180 ° C for 5 seconds in a 180 ° C ripening furnace to obtain a white foam (film expansion ratio: 40 ⁇ m). 4 times).
  • This foam contains closed cells with a diameter of about 10 to 15 "," n.
  • the closed cell content by air comparison hydrometer is 71% by volume with respect to the whole foam volume. there were.
  • the foam sheet was cut into 5 cm square, 5 0 and ⁇ cell tons of m 1, L i BF 4 the ethylene Les linker Bone preparative-profile pin les down force one Bone preparative mixed solvent (weight ratio of 1 : 1) was immersed at 40 ° C for 1 day in a mixed solution with 50 ml of a non-aqueous electrolyte solution obtained by digestion with 1 mo] / 1.
  • the resulting sheet was treated at a pressure of 10 rr for 3 minutes to remove acetone, thereby obtaining a composite solid polymer electrolyte.
  • the electrolyte had a thickness of 41 ⁇ 5 cm square.
  • a sample of the composite solid polymer electrolyte was prepared in the same manner as in Example 1, and the first, second and third cross-sectional structures were observed. As a result, the spherical liquid phase domain was uniform. The average particle size was 10 l3 m.
  • the section of each liquid phase domain with respect to the cross-sectional area of each of the first, second, and third cross-sections The proportions in the area were 61%, 58% and 63%, and it was found from the results that the liquid domain was contained at a volume fraction of 60.7% by volume. Also, in any of the first, second and third cross sections, no liquid phase domain communicating with the original surface of the composite solid polymer electrolyte was observed. Further, the amount of permeation was measured in the same manner as in Example 1, but no permeation was observed.
  • the content of the non-aqueous electrolyte solution in the composite solid polymer electrolyte was found to be 69% by weight, which was determined from the weight change before and after the impregnation with the non-aqueous electrolyte solution. /. Met.
  • the glass transition temperature was evaluated by differential ripening analysis of the composite solid polymer electrolyte. As a result, the temperature was _98 ° C, indicating that the polymer phase was swollen by the electrolyte. all right.
  • the electrolyte was sandwiched on both sides by a stainless steel sheet, and the AC impedance was measured. As a result, the room temperature ion conductivity obtained from the real impedance section of the call plate was measured. The degree is 7 X 10 ⁇ S / cm.
  • LiCoO 2 powder having an average particle size of 1 ⁇ .
  • the powder and the carbon black were mixed with polyvinylidene fluoride (KF1 Chemical Co., Ltd.
  • a slurry was prepared by mixing and dispersing in an NMP solution.
  • the composition of the solid content in slurry was Li C 0 O 2 (85%), force black (8%), and polyvinylidene fluoride (7%).
  • the slurry was applied onto an ethanol oil by a doctor blade method and dried to prepare a sheet having a film thickness of 11 ⁇ .
  • the L i C o 0 2 cut sheet into 2 cm square, the composite polymer solid body electrolyte sheet prepared in Example 2 on the surface of this over 2.
  • the battery was charged and discharged at a current density of 3 mA / cm 2 using a charge / discharge machine (101 SM6, manufactured by Hokuto Denko Co., Ltd., Japan). Charging was performed at 4.2 Y constant potential. The potential between the electrodes after charging was 4.2 V, and recharging was confirmed. Discharging was performed at a constant current and stopped at a voltage of 2.7 V. As a result, the initial charge efficiency was 85%, and the charge and discharge efficiency for the second and subsequent times was 88% or more.Thus, it is possible to repeatedly charge and discharge and operate as a linear battery. all right.
  • Example 3 was applied to a needle cool powder having an average particle size of 10 ⁇ m.
  • a slurry was formed by mixing a 5% by weight NMP solution of the used polyvinylidene fluoride [dry weight mixing ratio: 21 dollars coke (92%) polymer (8 %)].
  • the slurry was applied to a gold-copper sheet by a doctor blade method to form a film (electrode layer) with a dry film thickness of 120 ym.
  • the composite solid electrolyte sheet prepared in Example 12 was cut into 2.3 cm by cutting the film into a 2 cm square and the L 1 Co 2 layer 2 electrode prepared in Example 14. The cut pieces were sandwiched and laminated at 120 ° C to form a laminate.
  • the vinylidene fluoride 'hexafluor-opened propylene copolymer sheet having a film thickness of 150 micron before being subjected to electron beam irradiation and foaming prepared in Example 10 was 5 cm thick. Cut into corners. ⁇ Se tons 5 0 ml and, L i BF 4 the ethylene Les Nkabone preparative (EC) ⁇ Pro Pi Renkabone preparative (PC) mixed solvent (weight ratio 1: 1) was dissolved at a concentration of 1 m 0 1/1 It was immersed in a mixed solution with 50 ml of the non-aqueous electrolyte solution obtained at room temperature for 1 day.
  • EC ethylene Les Nkabone preparative
  • PC Pro Pi Renkabone preparative
  • the sheet was sandwiched on both sides by a stainless steel sheet, and AC impedance measurement was performed. was 0- 6 S / cm.
  • the solution was cast on a stainless steel sheet and kept for 10 minutes under an argon stream to evaporate acetone to form a finolem. Then 3 0 minutes treatment under a pressure of the scan Te down Les scan Sea me location Rere once in a while or 1 0- 3 T orr. The finale had a thickness of about 250 ⁇ m, and was extremely soft and easily deformed, so that an accurate thickness could not be obtained.
  • the thermogravimetric analysis of the film showed that the film contained 63% by weight of a mixed solvent of EC and PC.
  • poly (ethylene oxide) viscosity average molecular weight: 1,000,000, manufactured by Arnold Ritz Co., Ltd., USA
  • HFC-134a chlorofluorocarbon
  • the content of the non-aqueous electrolyte solution in the composite polymer electrolyte was found to be 70% by weight, which was determined from the change in weight before and after the impregnation with the non-aqueous electrolyte solution.
  • Example 2 In the same manner as in Example 1, a sample of the composite polymer solid electrolyte was prepared, and the first, second, and third cross sections were observed. As a result, the spherical liquid phase domain was uniformly dispersed. The average particle size is It was 25 to 40 m. In addition, the ratios of the cross-sectional areas of the liquid phase domains at the first, second, and third cross sections are 33%, 25%, and 35%, respectively. The volume fraction of the liquid-phase domain in the polymer electrolyte was found to be 31% (in addition, the composite polymer solid electrolyte was found in each of the first, second and third cross sections). No liquid phase domain communicating with the original surface was observed.
  • Example 2 the polymer solid electrolyte was sandwiched between a stainless steel sheet and a metal lithium sheet, and the voltage range was 0 to 5 V according to the cyclic voltammetry method. Then, the electrochemical stability due to oxidation and reduction was evaluated. As a result, the reduction current peak of 1.2 V (the current value is 19 times the back ground current) and the reduction current peak of 0.7 V (the current value is the back ground current) And the oxidation current at 4.2 Y high potential (4.2 V was twice the background current). Therefore, it was found that the material was electrochemically stable in the range of 0.7 V to 4.2 V.
  • the sheet was cast on a glass plate to prepare a sheet with a thickness of 120 ⁇ m.
  • After the sheet was irradiated with an electron beam (irradiation amount: 15 Mrad), it was impregnated with chlorofluorocarbon HFC-134a in the same manner as in Example 1 (fluorocarbon impregnation amount 7 wt. %).
  • the sheet was heated in a heating furnace at 150 ° C. for 20 seconds to produce a foam sheet with a film thickness of 180 m.
  • the foam has a closed cell content of 68 volumes by volume. /. Met.
  • the content of the nonaqueous electrolyte solution in the composite polymer electrolyte was found to be 86% by weight, which was determined from the weight change before and after the impregnation with the nonaqueous electrolyte solution.
  • a sample of the composite polymer solid electrolyte was prepared in the same manner as in Example 1, and the first, second, and third cross-sections were observed.
  • the spherical liquid phase domain was uniformly dispersed. Its average particle size was 30 to 45 ⁇ .
  • the proportions of the liquid domain in the first, second, and third cross sections were 63%, 52%, and 65%, respectively.
  • the volume fraction of the liquid domain in the polymer electrolyte is 60 volumes. /. It turned out that it was.
  • any of the first, second and third sections No liquid phase domain communicating with the original surface of the polymer solid electrolyte was observed. Further, the amount of permeation was measured in the same manner as in Example 1, but no permeation was observed.
  • Example 2 In the same manner as in Example 1, the solid polymer electrolyte was sandwiched between a stainless steel sheet and a lithium metal sheet, and oxidized at a potential range of 0 to 5 V by a cyclic voltammetry method. And the electrochemical stability by reduction was evaluated. As a result, the reduction current increased by 0.6 V (the current value was twice the background current) and the oxidation current increased at a potential higher than 4.6 V (the current value of 4.6 ′ was higher than the background current). (Twice the ground current) was observed. Therefore, the material was found to be electrochemically stable in the range of 0.6 V to 4.6 V.
  • the ion conductivity was 1.8 X 10 — 3 S / cm Met.
  • a 1 ⁇ m thick ⁇ thick polystyrene sheet was contacted with sulfuric anhydride gas at room temperature for 3 hours to convert the polystyrene sheet into snorehon.
  • Weight increase after sulfonation treatment to the weight of the Po Li styrene poem one bets before sulfo emissions treatment is 6 4 weight 0 /. (This indicates that the sulfonate group at 0,85 in the styrene unit was introduced).
  • the sulfonated polyester sheet was immersed in propylene carbonate.
  • the weight of the sheet after immersion was almost the same as the sheet before immersion, and the content of the non-aqueous electrolyte solution calculated from the slightly increased weight was 2%. /. Met.
  • the sheet is sandwiched between a stainless steel sheet and a metal lithium sheet, and a potential range of 0 to 0 is obtained by a cyclic poling method.
  • a potential range of 0 to 0 is obtained by a cyclic poling method.
  • the electrochemical stability due to oxidation and reduction was evaluated. As a result, 2 3 ⁇ ', 1.
  • the current value at 2.9 V was twice the background current, and the current value increased at higher potentials). Thus, it was electrochemically stable only in a narrow range of 2.3 V to 2.9 V.
  • Polyurethane (Average molecule prepared by reacting hexaethylene diethylene citrate with ethylene glycol having a molecular weight of 600) Amount 1 1 0 0 1 0 wt 0/0 port re-mer) 0 bets Rue emissions solution 1 0 0 m 1, having a dry thickness of 8 0 mu m and key catcher be sampled on a glass plate 'down — Created Sandwiched the sheets to stearyl emissions less sheets, and coughing immersed in a non-aqueous electrolyte solution obtained by dissolving the pro-pin Renkabone preparative L i BF 4 at a concentration of 1 mo 1 Z l in gala Suseru
  • the potential scan (0 to 5 V) was performed by the cyclic voltammetric method (lithium reference electrode metal) as it was.
  • Example 18 Vinylene Li Denfu b Rai dough to Kisafuruoro pro pin alkylene copolymer powder (Kisafuruoro pro pin alkylene content of 5 wt 0/0 to) was dissolved in NM P to prepare a port re-mer solids 1 5 wt% of the solution .
  • a slurry was formed by mixing the above-mentioned solution of polyvinylidene fluoride with a needle coex powder having an average particle size of 1 ⁇ [dry weight mixing ratio: knee Dollar cokes (85%) Polymers (15%)].
  • the slurry was applied to a metallic copper sheet (film thickness: 15, "m) by a doctor blade method to form a film (electrode layer) with a dry film thickness of 120 m.
  • the volume fraction of the closed cells with respect to the volume of the copolymer component in the film was 30% by volume, and 70% by volume was a solid component.
  • a finolem with a thickness of 105 m was produced (volume fraction of closed cells: 20%), and the film was irradiated with an electron beam at room temperature.
  • Hydroxide Lithium oxide co after equimolar mixture of Baltic, 7 5 0 L 1 of ° C in 5 hours pressurized ripe an average particle diameter of 1 0 m C o O 2 powder was synthesized.
  • the powder and carbon black are mixed and dispersed in a 10% by weight NMP solution of polyvinylidene fluoride (KF100, manufactured by Kureha Chemical Industry Co., Ltd. of Japan) to form a slurry. Produced.
  • the solids weight composition of vinegar La rie is, L i C o ⁇ 2 (80%), carbon black-click (8%), was to jar by the port re-mer (1 2%) .
  • This slurry was applied to a 15-m-thick anore film by the doctor blade method and dried to prepare a 110-m-thick sheet.
  • the volume fraction of closed cells with respect to the volume of the copolymer component in the sheet is 33 volumes. /.
  • the solids volume was 67% by volume.
  • the sheet was heated and pressed to form a sheet having a film thickness of 103 ⁇ m (volume fraction of closed cells: 28%).
  • electron beam irradiation irradiation amount l OM rad
  • Example 20 Liquid content: 10% by weight. Immediately after taking out the impregnated sheet, it is ripened in a 180 ° C heating furnace for 10 seconds at 180 ° C, and the polymer is ripened and foamed. An electrode sheet with a film thickness of 121 ⁇ m was obtained. The expansion ratio of the polymer was about 2 times, and the volume fraction of closed cells with respect to the volume of the polymer foam was 50% by volume.
  • a vinylidene fluoride powder having an average particle diameter of 20 Oim (KF100, manufactured by Kureha Chemical Industry, Japan) was prepared in the same manner as in Example 1. Fluorine 134 A was impregnated (liquid content: 10 wt./.). Immediately after taking out the impregnated powder, it was heated to 180 ° C for 1 minute in a heating furnace at 200 ° C to produce expanded particles. The average particle size of the expanded particles was 300 ⁇ m, and the expansion ratio was 3.4 times (the bubble volume was 70% by volume). The foamed particles were cooled and pulverized with liquid nitrogen and classified to obtain a powder having an average particle size of 30 / Im. The volume fraction of the closed cell volume to the whole foam was 70% by volume or more.
  • a mixture of the obtained foamed particle powder (15% by weight) and graphite powder (85% by weight /.) was die-press-molded and then left in a mold at a temperature of 180 ° C. And a sintered compact was produced. Next, a sheet cut at a film thickness of 15 O ⁇ m was obtained using a cutter. The cut-out sheet was pressed to a metallic copper sheet (film thickness 15 ⁇ ), and an electrode sheet was prepared. ⁇ The volume of the closed cell volume in the sealed sheet is 90 volumes with respect to the whole foam. /. Met.
  • Example 2 1 A mixture of the obtained foamed particle powder (15% by weight) and graphite powder (85% by weight /.) was die-press-molded and then left in a mold at a temperature of 180 ° C. And a sintered compact was produced. Next, a sheet cut at a film thickness of 15 O ⁇ m was obtained using a cutter. The cut-out sheet was pressed to a metallic copper sheet (film thickness 15 ⁇ ), and an electrode
  • Example 22 L i C 0 ⁇ 2 powder and a foaming particles prepared in Example 2 0 (1 2% by weight) used in Example 1 9 (8 0 wt 0/0), carbon black click powder (8%) Were mixed and sintered in the same manner as in Example 20 to produce a molded article. Next, a sheet was cut out at a thickness of 100 using a cutter. The cut-out sheet was thermocompression-bonded to an aluminum sheet (film thickness: 15 m) to form an electrode sheet. The closed cell volume fraction in the sheet is 90 volumes. /. Met.
  • Example 22 The electrode sheet prepared in Example 18 and the electrode sheet prepared in Example 19 were respectively used for ethylene carbonate (EC), propylene carbonate (PC), and ⁇ -butyl lactone (BL).
  • EC ethylene carbonate
  • PC propylene carbonate
  • BL ⁇ -butyl lactone
  • a stainless steel sheet was brought into contact with the positive and negative electrode current collectors of the laminate, connected to a glass cell, and sealed in an argon atmosphere to obtain a battery.
  • the battery was charged and discharged at a current density of 1 mAZ cm 2 using a charge / discharge machine (101 SM 6 manufactured by Hokuto Denko Co., Ltd. of Japan). Charging was performed at a constant potential of 4.2 V, and the potential between the electrodes after charging was 4.2 V. Recharging was confirmed. Discharging was performed at a constant current and stopped at a voltage of 2.7 V. The initial discharge amount is 210 mAh / g, which is the amount of the negative electrode carbon, and the charge / discharge cycle is repeated. Was. From these results, it was found that the battery was capable of being repeatedly charged and discharged, and operated as a secondary battery.
  • the sheets prepared in Examples 20 and 21 were used as a negative electrode and a positive electrode, respectively, as a polyethylene microporous membrane (Hipore U2 film manufactured by Asahi Kasei Kogyo Co., Ltd., Japan). To form a laminate. Then, 1 to 6 were dissolved in the ethylene carbonate (EC) / methyl ethyl carbonate (MEC) mixed solvent (EC / MEC weight ratio: 1/2) in the laminate at a concentration of 1.5 mol 1. The obtained non-aqueous electrolyte solution was impregnated at 70 ° C. for 30 minutes.
  • EC ethylene carbonate
  • MEC methyl ethyl carbonate
  • a stainless steel sheet was brought into contact with the positive and negative electrode current collectors of the impregnated laminate, connected to a glass cell, and sealed in an argon atmosphere to obtain a battery.
  • the battery was charged and discharged at a current density of 1 mA / cm 2 using a charge / discharge machine (101 SM 6 manufactured by Hokuto Denko Co., Ltd., Japan). Charging was performed at a potential of 4.2 V. The potential between the electrodes after charging was 4.2 V, and charging was confirmed. Discharging was performed at a constant current and stopped at a voltage of 2.7 V. The initial discharge amount is 31 OmAh / g per negative electrode carbon, and the charge and discharge cycle is repeated. The discharge amount after 100 cycles is 25 3 mAhZg. there were. As a result, it was possible to repeatedly charge and discharge and operate as a linear battery. Comparative Example 7
  • the electrode sheets before electron irradiation and foaming used in Examples 18 and 19 were used for the negative electrode and the positive electrode, respectively, and a polystyrene microporous membrane (Hipore U2 manufactured by Asahi Kasei Kogyo, Japan) was used. The film was interposed and laminated to obtain a laminate.
  • a polystyrene microporous membrane Hipore U2 manufactured by Asahi Kasei Kogyo, Japan
  • Example 22 The same non-aqueous electrolyte solution as used in Example 22 [Ethylene carbonate (EC) 'Propylene carbonate (PC) ⁇ y-Butyl lactone (BL) mixed solvent ( ECZPC / BL weight ratio: obtained by dissolving L 1 BF at a concentration of 1 mo 1 in 12)].
  • a battery was prepared by impregnating the laminate at 100 ° C. for 2 hours. Performed similarly. That is, a stainless steel sheet was brought into contact with the positive and negative electrode current collectors, connected to a glass cell, and sealed in an argon atmosphere to obtain a battery.
  • the battery was charged / discharged at a current density of 1 mAZcm 2 using a charge / discharge machine (101 SM 6 manufactured by Hokuto Denko Corporation of Japan). Charging was performed at a constant potential of 4.2 V. The potential between the electrodes after charging was 42 V, confirming recharging. The discharge was performed at a constant current and stopped at a voltage of 2.7 V. The initial discharge amount is 19 OmAhZg, which is equivalent to the negative electrode carbon. The charge / discharge cycle is repeated. there were. As a result, it is possible to repeatedly charge and discharge and operate as a linear battery. Comparative Example 8
  • a solution obtained by dissolving the vinylidene polyfluoride powder used in Example 20 in NMP at a concentration of 10% by weight was mixed with the graphite powder at the same weight ratio as in Example 20. Then, a slurry was prepared and applied uniformly to a gold-copper sheet (film thickness 15 m) and dried to prepare a negative electrode sheet.
  • Example 2 after producing a scan la rie mixed Po Li off Tsu of vinyl Li Den NMP solution and force one Bonbura click, the L i C o ⁇ 2 powder, A positive electrode sheet was prepared by coating and drying on an aluminum sheet (film thickness 15 m).
  • Example 23 In the same manner as in Example 23, a polystyrene microporous membrane (Hipore U2 film manufactured by Asahi Kasei Kogyo Co., Ltd., Japan), the positive electrode sheet and the negative electrode sheet obtained above were obtained.
  • EC ethylene carbonate
  • MEC methyl ethyl carbonate
  • a stainless steel sheet was brought into contact with the positive and negative electrode current collectors of the battery, connected to a glass cell, and sealed in an argon atmosphere to obtain a battery.
  • the battery was charged and discharged at a current density of 1 mAZ cm 2 using a charge / discharge machine (101 SM 6 manufactured by Hokuto Denko Co., Ltd. of Japan). Charging was performed at a constant potential of 4.2 V. The potential between the electrodes after charging was 42 V, confirming recharging. The discharge was performed at a constant current and stopped at a voltage of 2.7 V. The initial discharge amount was 244 mAh / g, which was equivalent to the negative electrode carbon. . From these results, it was found that the battery can be repeatedly charged and discharged and operates as a linear battery.
  • a laminated body was formed in the same manner as in Example 23 except that the polyethylene microporous membrane was replaced with the foam prepared in Example 2 before impregnation with the non-aqueous electrolyte solution.
  • the same nonaqueous electrolyte solution used in 3 was impregnated at 70 ° C for 2 hours.
  • a battery was formed in the same manner as in Example 23, and charged and discharged (current density: 1 mA / cm 2 ). As a result, the voltage between the electrodes after charging was 4.2 V. The discharge was performed at a constant current and stopped at a voltage of 2.7 V. The initial discharge amount was 312 mA / g per negative electrode carbon weight. Further, the discharge amount after repeating charge and discharge for 100 cycles was 2688 mA / g. From the above results, it was found that the battery can be repeatedly charged and discharged, and can be operated as a secondary battery.
  • Example 2 a sample for cross-sectional observation was prepared in the same manner as in Example 1, and liquid-phase domain observation was performed on the first, second, and third cross-sections.
  • the surface of the final letter In communication a large number of pores from which the electrolyte solution flowed out were observed.
  • the water permeability of the impregnated filter was measured in the same manner as in Example 1. As a result, the water permeability was 16 000 liters Zm 2 ⁇ hr ⁇ atm. The water permeation of the filter before impregnation with the non-aqueous electrolyte solution was 15 000 liters / m 2 'hr ⁇ atm.
  • the closed cell volume of the finalizer before impregnation was 0% by volume based on the total volume of the finalizer.
  • the filter was a porous film having a through-hole, and that liquid leakage occurred when the filter was impregnated with a non-aqueous electrolyte solution.
  • a hexafluoropropyl propylene-vinylidene copolymer (hexafluoropropylene content of 5 %))
  • a sheet film thickness: 150 ⁇ m
  • the resulting sheet was irradiated with an electron beam (irradiation amount: 5 Mrad), and HF gas produced by vacuum drying at 6 ° C Was removed.
  • the impregnated sheet was introduced into a heating furnace at 17 ° C and held for 1 minute to prepare a foam sheet.
  • the foam sheet had a thickness of 16.5 ⁇ and an expansion ratio of 1.3.
  • the volume of the closed cells was 21.3% by volume.
  • the foam sheet was immersed in water at 90 ° C for 3 hours, and the eluate was removed.
  • the percentage of crosslinked components was determined by washing with acetone and drying. 2 3 weight of weight. /. It was a good thing.
  • the foam sheet was added to the same non-aqueous electrolyte solution (ECZPC / ⁇ -BL weight ratio: 1/1/2 LiBF, 1 mol liter) as used in Example 1. Impregnation was performed at a temperature of ° C for 2 hours to prepare a composite solid polymer electrolyte.
  • the content of the non-aqueous electrolyte solution in the composite solid polymer electrolyte was found to be 36% by weight based on the weight difference before and after the impregnation. /. Met.
  • Example 2 In the same manner as in Example 1, a sample for observing the cross section of the composite solid polymer electrolyte was prepared, and the first, second, and third cross sections were observed.
  • the average particle size was 2 to 4 ⁇ m, and a number of liquid phase domains with an average particle size of 3 m were observed.
  • the ratio of the area of each side is 12%, 10 ° /. And 15%. Based on these results, the volume content of the liquid phase domain was 123 volumes. /. It turned out that.
  • the foam sheet produced in Example 4 and irradiated with a 15 Mrad electron beam was further irradiated with a 15 Mrad electron beam.
  • the sheet was immersed in NMP in the same manner as in Example 4, heated at 90 ° C. for 3 hours, and washed with acetate.
  • the foam sheet having a weight fraction of 75% of the crosslinked component formed by electron beam irradiation determined from the dry weight was the same composite polymer solid electrolyte as used in Example 4. to: - (. ECZPCZ '/ BL weight ratio 1 Z 1 Z 2, L i BF 4 concentration 1 5 Monore Z Li Tsu preparative Honoré), and 2 hours immersed in 1 0 0 ° C, the composite solid polymer electrolyte Was prepared.
  • the composite polymer solid electrolyte content of the obtained composite polymer solid electrolyte was 72% by weight.
  • Example 2 In the same manner as in Example 1, a sample for observing the cross section of the composite solid polymer electrolyte was prepared, and the first, second, and third cross sections were observed. As a result, the average particle size of the liquid phase domain was determined. The diameter was 22 ⁇ m, and the ratios of the cross-sectional areas of the liquid phase domains in the first, second, and third cross sections were 48%, 54%, and 50%, respectively. . this From these results, it was found that the body edge fraction of the liquid phase domain was 51.3% by volume.
  • Ion-conductivity was measured in the same manner as in Example 4 was 2. 9 X 1 0 one 3 SZ cm.
  • the composite polymer solid electrolyte of the present invention has high ion conductivity, high mechanical strength, excellent flexibility and processability, and has little leakage of a non-aqueous electrolyte.
  • the non-aqueous electrochemical device using the composite polymer solid electrolyte of the present invention exhibits excellent electrochemical performance, has excellent electrolyte retention, and has extremely high reliability and safety. .

Abstract

A composite polymer solid electrolyte prepared by impregnating a unicellular polymer foam with an electrolyte. A polymer matrix constituted of cell walls defining closed cells is impregnated with a nonaqueous electrolyte, continuous solid-phase domains are formed and the closed cells are substantially filled with the nonaqueous electrolyte. A nonaqueous electrochemical device, such as a nonaqueous cell, components for a voltaic cell like electrodes, etc., using the solid electolyte are disclosed. The solid electrolyte has a high ionic conductivity and a high mechanical strength. The nonaqueous solution in the closed cells hardly leaks. Therefore, the nonaqueous electrochemical device using the solid electrolyte has an excellent electrochemical performance and an excellent electrolyte holding property, and is extremely high in reliability and safety.

Description

明細書  Specification
複合高分子固体電解質およびそれを用いた非水系電気化学装 技術分野 Composite polymer solid electrolyte and non-aqueous electrochemical device using the same
本発明は、 新規な高分子固体電解質およびそれを用いた電 気化学装置に関する。 更に詳細には、 本発明は、 非水系電解 液を含浸 した独立気泡性ポ リ マー発泡体からな リ 、 複数の独 立気泡を規定する気泡壁で構成されるポ リ マ 一マ ト リ ッ ク ス が電解液によ って含浸され、 連続固相 ド メ イ ンを形成 し、 複 数の独立気泡が非水系電解液によ って実質的に充填されて、 該連続固相 ドメ ィ ン中に分散 した複数の液相 ドメ ィ ンを形成 してな る複合高分子固体電解質、 並びにそれを用いた非水系 電池お よび電極等の電池用部品な どの非水系電気化学装置に 関する。 本発明の複合高分子固体電解質は、 高いイ オ ン伝導 度を持ち且つ機械的強度が高 く 、 更に、 非水系電解液の液漏 れが少な く 、 種々 の非水系電気化学装置に有利に用いる こ と ができ る。 こ のため、 本発明の複合高分子固体電解質を用い た非水系電気化学装置は、 優れた電気化学的性能を示 し、 ま た、 優れた電解液保持性を有し、 信頼性と安全性が極めて高 レヽ  The present invention relates to a novel solid polymer electrolyte and an electrochemical device using the same. More specifically, the present invention provides a closed-cell polymer foam impregnated with a non-aqueous electrolyte, and a polymer matrix formed of a cell wall defining a plurality of closed cells. The gas is impregnated with the electrolyte to form a continuous solid-phase domain, and a plurality of closed cells are substantially filled with the non-aqueous electrolyte to form the continuous solid-phase domain. The present invention relates to a composite solid polymer electrolyte comprising a plurality of liquid-phase domains dispersed in a fuel cell, and a non-aqueous electrochemical device such as a non-aqueous battery and a battery component such as an electrode using the same. The composite solid polymer electrolyte of the present invention has high ion conductivity, high mechanical strength, and low leakage of the non-aqueous electrolyte, which is advantageous for various non-aqueous electrochemical devices. Can be used. For this reason, the non-aqueous electrochemical device using the composite solid polymer electrolyte of the present invention exhibits excellent electrochemical performance, has excellent electrolyte retention, and has high reliability and safety. Is extremely high
従来技術 Conventional technology
最近、 携帯電話、 パ ソ コ ンな どの携帯機器の小型化、 軽量 化のため高工ネルギ一密度電池が要求され、 これに対応する 電池と して リ チウム電池が開発され工業化されている。 この 電池の正極および負極の電極間のイオン輸送媒体と して、 貫 通孔を持つ多孔質ポ リ ォレ フ ィ ンセパ レ一タの空孔部に非水 溶媒系電解液を充填 した形態 (液系電池) が用い られている c しかし、 この形態の電池は、 非水系電解液の液漏れが起きや すく 、 また、 軽量化が困難である。 Recently, high-density energy density batteries have been required to reduce the size and weight of portable devices such as mobile phones and personal computers. Lithium batteries have been developed and industrialized as batteries. In this battery, a porous polyolefin separator having through-holes filled with a non-aqueous solvent electrolyte as the ion transport medium between the positive and negative electrodes ( However c liquid system battery) is used, the battery of this embodiment, leakage of the non-aqueous electrolyte solution occurs Ya easier, also weight reduction is difficult.
一方、 固体電解質を用いて作製 した固体電池は、 上記の電 解液をイ オン輸送媒体と した電池に比べ、 液漏れがないため 電池の信頼性、 安全性が向上する と と もに、 薄型化や電極と の積層体形成、 パッ ケージの簡略化、 軽量化が期待されてい る。 こ の固体電解質材料と して、 イ オン伝導性セラ ミ ッ ク材 料と 高分子固体電解質が提案 されている。 こ の う ち前者のィ オン伝導性 ラ ミ ッ ク材料はも ろい性質を有 し電極と の積層 体形成が難 しい と い う 問題がある。 一方、 高分子固体電解 K は本質的に良好な加工性と 柔軟性を有するため、 電池な どの 電気化学素子に利用 した場合、 電極と の積層構造体形成が容 易でぁ リ 、 イ オン吸蔵放出によ る電極の体積変化に追随した 固体電解質の界面形状の変化が可能であるな ど好ま しい性質 を有する。  On the other hand, solid batteries made using solid electrolytes have less liquid leakage than batteries that use the above electrolyte as an ion transport medium, thus improving the reliability and safety of the batteries and making them thinner. It is expected that the structure and the formation of a laminate with electrodes, the simplification of the package, and the weight reduction will be realized. As this solid electrolyte material, an ion conductive ceramic material and a polymer solid electrolyte have been proposed. Of these, the former ion conductive ceramic material has a fragile property, and has a problem that it is difficult to form a laminate with an electrode. On the other hand, solid polymer electrolyte K has inherently good processability and flexibility, and when used in electrochemical devices such as batteries, it is easy to form a laminated structure with electrodes, and it can easily absorb ions. It has favorable properties, such as the ability to change the interface shape of the solid electrolyte following the change in electrode volume due to emission.
こ の高分子固体電解質の試みと して、 W r 1 g h t によ リ ポ リ エチ レ ンォキシ ドのアルカ リ 金属塩複合体が、 B r i t i s h P o l y m e r J o u r n a l , 7 卷、 3 1 9へ —ジ ( 1 9 7 5 年) に報告され、 以来ポ リ エチ レ ン ダル コ 一 ル、 ポ リ プロ ピレンォキシ ド、 な どのポ リ アルキ レンェ一テ ル系材料、 ポ リ アク リ ロニ ト リ ル、 ポ リ ホスフ ァゼン、 ポ リ フ ッ化ビニ リ デン、 ポ リ シロ キサンな どを用いた固体電解質 材料が活発に研究されている。 As an attempt of this polymer solid electrolyte, an alkali metal salt complex of lipopolyethylene oxide was obtained from British Polymer Journal, Vol. 7, pp. 31 through Wr 1 ght. (1975) and has since been , Polypropylene oxide, and other polyalkylene-based materials, polyacrylonitrile, polyphosphazene, polyvinylidene fluoride, polysiloxane, etc. The solid electrolyte materials used are being actively studied.
これら高分子固体電解質は通常は高分子中に電解質が固溶 した形態を と リ 、 ドライ 系高分子電解質と して知 られている c また、 電解質解離度を増大 させた リ 高分子の分子運動を促進 してイ オン伝導度を向上させるために、 電解質溶媒を添加 し . 高分子マ ト リ ッ ク ス 中に電解質および電解質溶媒が含入 した 形態 と した、 ゲル系高分子固体電解質が知 られている (例え ば 日本国特開昭 5 6 — 1 4 3 3 5 6 号) 。 こ の電解質および 電解質溶媒をポ リ マ一マ ト リ ッ ク スに導入する方法と して、 高分子、 電解質および電解質溶媒の均一溶液を キ ャ ス ト して ポ リ マーマ ト リ ッ ク スを成膜する方法 (例えば米国特許公報These solid polymer electrolytes are typically Li and the form in which the electrolyte is a solid solution in a polymer, c also are known as the dry polymer electrolyte, the molecular motion of the Li polymer increased the electrolyte dissociation degree To promote ionization and improve ion conductivity, an electrolyte solvent is added. A gel-type polymer solid electrolyte in which the electrolyte and the electrolyte solvent are contained in the polymer matrix is known. (For example, Japanese Patent Application Laid-Open No. 56-14434356). As a method of introducing the electrolyte and the electrolyte solvent into the polymer matrix, the polymer matrix is prepared by casting a homogeneous solution of the polymer, the electrolyte and the electrolyte solvent. (For example, US Patent Publication
5 2 9 6 3 1 8 ) が知 られてぉ リ 、 また、 ポ リ マー と 可塑剤 を混合 してキ ャ ス ト して成膜した後に、 可塑剤を一旦抽出 し てから電解質を溶媒に溶解 してなる電解液をポ リ マ一マ ト リ ッ ク スに含浸させる力 も しく は該可塑剤を電解液で置換す る方法等が知られている。 後者の方法においては、 ポ リ マー の膨潤を促進するため、 電解質溶媒と異なる別の可塑剤を予 めポ リ マーに添加 し、 ポ リ マ一と 可塑剤の混合物を成形加工 した後前記の方法で電解液を含浸する。 It is also known that the polymer is mixed with a plasticizer and cast to form a film. After the plasticizer is once extracted, the electrolyte is dissolved in the solvent. There are known a method of impregnating a polymer matrix with a dissolved electrolytic solution or a method of replacing the plasticizer with an electrolytic solution. In the latter method, in order to promote the swelling of the polymer, another plasticizer different from the electrolyte solvent is added to the polymer in advance, and a mixture of the polymer and the plasticizer is formed and then processed. Impregnated with electrolyte by the method.
こ の材料に用いられるポ リ マーは、 均一溶液を形成 し易い ポ リ マ一である。 こ のため、 例えばフ ッ化ビニ リ デン系ポ リ マーを用いる場合、 得られる固体電解質材料は 8 5 °C〜 1 1 o °cの温度で融解 し流動性を示 し、 電池と して短絡を起こす 危険がぁ リ 安全性に問題があった。 そこ で、 ポ リ マー、 可塑 剤 と と もに重合性の ビニルモ ノ マーを共存させ、 これら重合 性モ ノ マーを架橋させた材料を製造し、 可塑剤抽出後電解液 を含浸 させた高分子電解質も提案されている (米国特許第 5 4 2 9 8 9 1 号明細書) 。 しカゝ し、 こ の方法は工程が煩雑で あるだけでな く 、 重合性ビュルモ ノ マーが電気化学的に不安 定である こ と および架橋時に可塑剤、 重合性ビニルモ ノ マー が副反応を起こ しゃすいこ と から電池用高分子固体電解質と して利用する際問題であった。 The polymer used for this material is easy to form a homogeneous solution It is a polymer. For this reason, for example, when a vinylidene fluoride polymer is used, the obtained solid electrolyte material melts at a temperature of 85 ° C to 11 ° C, exhibits fluidity, and is used as a battery. There is a risk of short circuit. There was a problem with safety. Therefore, polymerizable vinyl monomers are coexisted with the polymer and the plasticizer to produce a material in which the polymerizable monomers are crosslinked, and the polymer is extracted with the plasticizer and then impregnated with an electrolyte. Electrolytes have also been proposed (US Pat. No. 5,429,891). However, this method is not only complicated in the process, but also has a problem that the polymerizable butyl monomer is electrochemically unstable and a plasticizer and a polymerizable vinyl monomer cause a side reaction at the time of crosslinking. This was a problem when used as a polymer solid electrolyte for batteries because of its wake-up.
また、 高分子固体電解質の機械的強度向上のため、 貫通孔 を持つポ リ オ レ フ ィ ン系ポ リ マ一多孔質媒体中にポ リ 二チ レ ンォキ シ ドな どのイ オン伝導性高分子を導入 した、 複合化さ れた高分子固体電解質 ( 日本国特開昭 6 3 — 1 0 2 1 0 4 号) や、 イ オン伝導性高分子ラテ ッ ク ス と イ オン非伝導性ラテ ツ ク ス の混合体を塗布成膜した高分子固体電解質 ( 日本国特開 平 4 — 3 2 5 9 9 0 号) 、 セラ ミ ッ ク粒子が高分子中に分散 した構造の高分子固体電解質 ( 日 本国特開平 2 — 2 7 6 1 6 4 号) が提案されている。  In addition, in order to improve the mechanical strength of the solid polymer electrolyte, a polyolefin-based polymer having through-holes and an ion conductive material such as poly (ethylene oxide) in a porous medium are used. Polymer-introduced composite solid polymer electrolytes (Japanese Patent Application Laid-Open No. 63-1024), ion conductive polymer latex and ion non-conductive A polymer solid electrolyte coated with a mixture of latex and formed into a film (Japanese Patent Laid-Open No. 4-325900), a polymer solid having a structure in which ceramic particles are dispersed in a polymer An electrolyte (Japanese Patent Application Laid-Open No. 2-2766164) has been proposed.
—方、 ポ リ ウ レ タ ンフ ォーム多孔体をセパ レ一タ材料に用 いた微小電池が提案されている ( ドイ ツ民主共和国特許 2 4 1 1 5 9 号) が、 具体的に開示されているセパ レ一タ材料は 貫通孔構造を有する ものである。 また、 該材料はウ レタ ン結 合を有し、 電気化学的安定性に問題があった。 また、 ポ リ ス チ レン発泡体をスルフ ォ ン化 した材料を電解質と した一次電 池が提案されている ( 日本国特許公開公報平 2 — 9 4 2 6 1 号) 。 と こ ろが、 スルフ ォ ン化ポ リ ス チ レ ン発泡体は非水系 電解液溶媒に含浸されに く い と い う 問題を有 し、 さ らにスル フォ ン化ポ リ スチ レンは吸水性を有 し脱水が困難であるため 非水系電池に用いる こ と ができ ない。 On the other hand, there has been proposed a microbattery using a porous polyurethane foam as a separator material (Democratic Republic of Germany Patent 24 However, the separator material specifically disclosed therein has a through-hole structure. In addition, this material had a urethane bond, and had a problem in electrochemical stability. In addition, a primary battery using a material obtained by sulfonating a polystyrene foam as an electrolyte has been proposed (Japanese Patent Laid-Open Publication No. 2-92442). However, the sulfonated polystyrene foam has a problem that it is difficult to be impregnated with the non-aqueous electrolyte solvent, and the sulfonated polystyrene has a problem of absorbing water. It cannot be used for non-aqueous batteries because of its properties and dehydration.
これらの高分子固体電解質は、 いずれもイ オ ン伝導度が電 解液のイ オン伝導度に比較 して小さいこ と が問題でぁ リ 、 こ れ らを用いて構成 した電池は充放電電流密度が低 く 限定され . 電池抵抗が高いなどの欠点を有する。 こ のため、 高いイ オン 伝導度を有する高分子固体電解質材料が要求されている。 特 に前記のポ リ ェチェンォキシ ドに電解質が固溶 した材料な ど の ドライ系高分子固体電解質のイ オン伝導度が低く 、 これを 室温で作動 した場合、 電池と して極めて低い電流密度に限ら れて しま う。 また、 可塑剤を含有するゲル系高分子固体電解 質は、 ドライ系よ り 高いイ オン伝導度を示すが、 高いイ オン 伝導度を得るための可塑剤含量增加に伴って機械的強度低下 や膜厚の制御が困難と なる などのため問題である。  The problem with all of these solid polymer electrolytes is that the ion conductivity is lower than the ion conductivity of the electrolytic solution. Limited density and low. Has disadvantages such as high battery resistance. For this reason, a solid polymer electrolyte material having high ion conductivity is required. In particular, the ion conductivity of a dry polymer solid electrolyte such as a material in which an electrolyte is dissolved in the above-mentioned polychetoxide is low, and when it is operated at room temperature, it is limited to an extremely low current density as a battery. I will be. In addition, a gel polymer solid electrolyte containing a plasticizer exhibits higher ionic conductivity than a dry system, but a decrease in mechanical strength due to an increase in plasticizer content to obtain a high ionic conductivity causes This is a problem because it is difficult to control the film thickness.
一方、 現在 リ チウムイ オン二次電池に用いられている電解 液を多孔質ポ リ ォレフ ィ ンセパ レータの空孔部に充填 した形 態 (例えば、 日本国特許公告公報昭 5 9 — 3 7 2 9 2 号) で は、 ポ リ オレフ イ ンのイ オン透過性が極めて低いため電解液 を空孔部に充填した状態ではイ オン伝導度が電解液に比較し て低く なる。 また、 充填 した電解液が容易に流出でき るため 電池構造体を重厚な金属容器でパ ッ ケー ジする必要があった ( 発明の概要 On the other hand, the electrolyte currently used for lithium ion secondary batteries is filled into the pores of a porous polyrefinerator. In the state (for example, Japanese Patent Publication No. 59-37292), the ion permeability of polyolefin is extremely low, so that the electrolyte is filled in the pores and the ion is not filled. Conductivity is lower than electrolyte. The outline of that needed to Pas Tsu cage the order cell structures in heavy metal container can easily outflow filled electrolyte (invention
本発明者らは、 上記の従来技術の困難な問題点がな く 、 非 水系電解液のィ オン伝導度に近い高いィ オン伝導度を有 し、 且つ、 加工性、 柔軟性、 機械的強度に優れた、 高分子固体電 解質材料を開発すべ く 鋭意研究を行なった。 そ の結果、 独立 気泡性ポ リ マ一発泡体を非水系電解液で含浸する と 、 意外に も、 気泡壁で構成するポ リ マ一マ ト リ ッ ク スが電解液によ つ て含浸 され、 連続固相 ド メ イ ンを形成 し、 独立気泡が非水系 電解液によ って実質的に充填されて、 該連続固相 ド メ イ ン中 に分散 した複数の液相 ドメ ィ ンを形成してなる複合重合体構 造体が得られ、 こ の複合重合体構造体を非水系電気化学装置 の固体電解質と して用いる と 、 高いイ オン伝導度を持ち、 液 漏れが少な く 、 且つ、 非水系電解液の含量が大き い場合でも 固体電解質の機械的強度を高く 保つこ と ができ る こ と を知見 した。 本発明は、 こ の新しい知見に基づいてな された も ので ある。  The present inventors have solved the above-mentioned problems of the prior art, have a high ionic conductivity close to the ionic conductivity of the non-aqueous electrolyte, and have excellent workability, flexibility, and mechanical strength. We conducted intensive research to develop a polymer solid electrolyte material with excellent characteristics. As a result, when the closed-cell foam is impregnated with the non-aqueous electrolyte, the polymer matrix composed of the cell walls is unexpectedly impregnated with the electrolyte. To form a continuous solid-phase domain, wherein the closed cells are substantially filled with a non-aqueous electrolyte, and the plurality of liquid-phase domains dispersed in the continuous solid-phase domain When the composite polymer structure is used as a solid electrolyte of a non-aqueous electrochemical device, the composite polymer structure has high ion conductivity and little liquid leakage. In addition, it has been found that the mechanical strength of the solid electrolyte can be kept high even when the content of the non-aqueous electrolyte is large. The present invention has been made based on this new finding.
従って、 本発明の 1 つの 目 的は、 高いイ オン伝導度を持ち 且つ強度が高 く 、 液漏れの少ない複合高分子固体電解質を提 供する こ と にある。 Therefore, one objective of the present invention is to provide a high ion conductivity Another object of the present invention is to provide a composite solid polymer electrolyte having high strength and little liquid leakage.
本発明の他の 1 つの 目 的は、 上記の特徴を持つ複合高分子 固体電解質の有利な製造方法を提供する こ と にある。  Another object of the present invention is to provide an advantageous method for producing a composite solid polymer electrolyte having the above characteristics.
本発明の他の 1 つの 目的は、 上記の特徴を持つ複合高分子 固体電解質を用いた、 非水系電池、 電極な どのその部品等の 非水系電気化学装置を提供する こ と にある。  Another object of the present invention is to provide a non-aqueous electrochemical device such as a non-aqueous battery or a component thereof such as an electrode using the composite solid polymer electrolyte having the above characteristics.
本発明の上記及びその他の諾 目 的、 諸特徴な らびに諾利益 は、 以下の詳細な説明及び請求の範囲の記載から明 らカ にな る。  The above and other objects, features, and benefits of the present invention will become apparent from the following detailed description and the appended claims.
発明の詳細な説明 Detailed description of the invention
本発明の基本的な態様によれば、  According to a basic aspect of the invention,
独立気泡性ポ リ マ ー発泡体に電解液を含浸 させてなる複合 高分子固体電解質であって、  A composite polymer solid electrolyte obtained by impregnating an electrolytic solution into a closed-cell polymer foam,
該複合高分子固体電解質の連続固相 ド メ ィ ンを構成する気 泡壁によ って規定される複数の独立気泡を包含 してお リ 、 該連続固相 ドメ ィ ンは、 電解質の非水系溶媒溶液と液体電 解質と よ リ なる群から選ばれる非水系電解液が含浸 した連続 固体ポ リ マーマ ト リ ッ ク スカゝらな リ 、  The continuous solid-phase domain includes a plurality of closed cells defined by a bubble wall constituting a continuous solid-phase domain of the composite polymer solid electrolyte. Continuous solid polymer matrix impregnated with a non-aqueous electrolyte selected from the group consisting of aqueous solvent solutions and liquid electrolytes.
該複数の独立気泡は、 それぞれ該電解液で実質的に充填さ れていて、 該複合高分子固体電解質の複数の液相 ドメ ィ ンを 形成 してお り 、 該複数の液相 ドメ イ ンは該連続固相 ドメ イ ン に分散 してレ、る 、 こ と を特徴とする複合高分子固体電解質が提供される。 The plurality of closed cells are each substantially filled with the electrolytic solution to form a plurality of liquid-phase domains of the composite solid polymer electrolyte, and the plurality of liquid-phase domains are formed. Are dispersed in the continuous solid-phase domain. A composite solid polymer electrolyte characterized by this is provided.
次に、 本発明の理解を容易にするために、 まず本発明の基 本的特徴及び諸態様を列挙する。  Next, in order to facilitate understanding of the present invention, first, the basic features and various aspects of the present invention will be listed.
1 . 独立気泡性ポ リ マー発泡体に電解液を含浸させてなる複 合高分子固体電解質であって、  1. A composite polymer solid electrolyte obtained by impregnating a closed-cell polymer foam with an electrolyte,
該複合高分子固体電解質の連続固相 ドメ イ ンを構成する気 泡壁によって規定される複数の独立気泡を包含 してお り 、 該連続固相 ドメ イ ンは、 電解質の非水系溶媒溶液と 液体電 解質と よ リ な る群から選ばれる非水系電解液が含浸 した連続 固体ポ リ マーマ ト リ ッ ク スカゝらな リ 、  The composite polymer solid electrolyte contains a plurality of closed cells defined by a bubble wall constituting a continuous solid-phase domain, and the continuous solid-phase domain comprises a nonaqueous solvent solution of an electrolyte. A continuous solid polymer matrix impregnated with a non-aqueous electrolyte selected from the group consisting of liquid electrolytes,
該複数の独立気泡は、 それぞれ該電解液で実質的に充填さ れていて、 該複合高分子固体電解質の複数の液相 ドメ ィ ンを 形成 してお り 、 該複数の液相 ド メ イ ンは該連続固相 ド メ イ ン に分散 している、  The plurality of closed cells are each substantially filled with the electrolytic solution to form a plurality of liquid-phase domains of the composite polymer solid electrolyte, and the plurality of liquid-phase domains are formed. Are dispersed in the continuous solid-phase domain,
こ と を特徴と する複合高分子固体電解質。 A composite polymer solid electrolyte characterized by this.
2 . 該複数の液相 ドメ イ ンは、 各液相 ド メ イ ンの長径と短径 の平均値と してそれぞれ 2 μ πι以上のサイ ズを有する主液相 ドメ イ ンからな り 、 該主液相 ドメ イ ンの量が該複合高分子固 体電解質の全体積に対して 5 〜 9 5容量。/。であって、 且つ、 該主液相 ドメ イ ンは、 上で定義 した平均値と して 2 〜 5 0 μ mのサイ ズを有する有効液相 ドメ イ ンを、 該主液相 ドメ イ ン の総体積に対 して 6 0容量%以上含有する こ と を特徴とする 前項 1 に記載の複合高分子固体電解質。 3 . 1 x 1 0— 5 S Z c m以上のイ オン伝導度を有し、 且つ金 属 リ チウム電極基準で 1 〜 3 Vの電位範囲において、 実質的 に酸化還元されないこ と を特徴とする前項 1 又は 2 に記載の 複合高分子固体電解質。 2. The plurality of liquid phase domains are each composed of a main liquid phase domain having a size of 2 μπι or more as an average of the major axis and the minor axis of each liquid domain, The amount of the main liquid phase domain is 5 to 95 volumes with respect to the total volume of the composite polymer solid electrolyte. /. And wherein the main liquid phase domain is an effective liquid domain having an average value of 2 to 50 μm as defined above, and the main liquid phase domain 2. The composite solid polymer electrolyte according to the above 1, wherein the composite polymer solid content is 60% by volume or more based on the total volume of the solid polymer. 3. 1 x 1 0- 5 SZ cm have more ion-conductivity, and at 1 ~ 3 V potential range metallic Lithium electrode reference, set forth in the preceding paragraph, characterized in that you do not substantially redox 3. The composite solid polymer electrolyte according to 1 or 2.
4 . 該連続固体ポ リ マーマ ト リ ッ ク スが 、 イ オン性基及び移 動性水素を含有 しないこ と を特徴とする前項 1 〜 3 のいずれ かに記載の複合高分子固体電解質。  4. The composite solid polymer electrolyte according to any one of items 1 to 3, wherein the continuous solid polymer matrix does not contain an ionic group and mobile hydrogen.
5 . 該連続固体ポ リ マーマ ト リ ッ ク ス が、 フ ツ イ匕ビニ リ デン 系ポ リ マーか らなる こ と を特徴と する前項 1 〜 4 のいずれか に記載の複合高分子固体電解質。  5. The composite solid polymer electrolyte as described in any one of the above items 1 to 4, wherein the continuous solid polymer matrix comprises a fusidani vinylidene polymer. .
6 . 該複合高分子固体電解質の重量に対 して該非水系電解液 を 1 ◦ 〜 9 8 重量 °.ό含有する こ と を特徴と する前項 1 〜 5 の いずれかに記載の複合高分子固体電解質。  6. The composite polymer solid according to any one of the above items 1 to 5, wherein the nonaqueous electrolyte is contained at 1 ° to 98% by weight with respect to the weight of the composite polymer solid electrolyte. Electrolytes.
7 . 該連続固体ポ リ マーマ ト リ 'ノ ク ス が 、 架撟構造を有する 架橋ポ リ マ一セ グメ ン ト を包含する こ と を特徴 と する前項 1 〜 6 のいずれかに記載の複合高分子固体電解質。  7. The composite according to any one of items 1 to 6, wherein the continuous solid polymer matrix contains a crosslinked polymer segment having a bridge structure. Polymer solid electrolyte.
8 . 該架橋ポ リ マーセ グメ ン ト の架撟構造が、 電子線照射に よ って形成されている こ と を特徴とする前項 7 に記載の複合 高分子固体電解質。  8. The composite solid polymer electrolyte according to the above item 7, wherein the bridge structure of the crosslinked polymer segment is formed by electron beam irradiation.
9 . 該連続固体ポ リ マーマ ト リ ッ ク スが、 更に未架橋ポ リ マ —セグメ ン ト を包含 し、 該架橋ポ リ マーセグメ ン ト及び該未 架撟ポ リ マ一セグメ ン ト の総重量に対する該架橋ポ リ マーセ グメ ン 卜 の重量の比力; 0 . 2 〜 0 . 8 の範囲にある こ と を特 徴とする前項 7又は 8 に記載の複合高分子固体電解質。 9. The continuous solid polymer matrix further includes an uncrosslinked polymer segment, and a total of the crosslinked polymer segment and the uncrosslinked polymer segment. A specific force of the weight of the crosslinked polymer segment to the weight, which is in the range of 0.2 to 0.8 9. The composite polymer solid electrolyte according to the above item 7 or 8, wherein
1 0 . 該非水系電解液が、 電解質の非水系溶媒溶液である こ と を特徴とする前項 1 〜 9 のいずれかに記載の複合高分子固 体電解質。  10. The composite polymer solid electrolyte according to any one of the above items 1 to 9, wherein the non-aqueous electrolyte is a solution of an electrolyte in a non-aqueous solvent.
1 1 . 該電解質が リ チウム塩である こ と を特徴とする前項 1 0 に記載の複合高分子固体電解質。  11. The composite solid polymer electrolyte described in the item 10 above, wherein the electrolyte is a lithium salt.
1 2 . 該非水系溶媒がカーボネー ト化合物及びエ ス テ ル化合 物よ リ なる群の少な く と も 1 つの化合物からなる こ と を特徴 とする前項 1 0 又は 1 1 に記載の複合高分子固体電解質。 1 3 . 5 〜 5 0 0 ," mの厚さ を有する シー ト である こ と を特 徴とする前項 1 〜 1 2 のいずれかに記載の複合高分子固体電 解質。  12. The composite high molecular solid according to the above item 10 or 11, wherein the non-aqueous solvent comprises at least one compound selected from the group consisting of a carbonate compound and an ester compound. Electrolytes. 13. The composite polymer solid electrolyte according to any one of the above items 1 to 12, characterized in that the sheet is a sheet having a thickness of 13.5 to 500,000 m.
1 . ポ リ マ 一発泡体の連続固体ポ リ マーマ ト リ ッ ク ス を構 成する気泡壁によ つて規定される複数の独立気泡を含有する 独立気泡性ポ リ マ一発泡体に、 該気泡壁が該電解質の非水系 溶媒溶液と液体電解質と よ り なる群から選ばれる非水系電解 質を含浸させる こ と を特徴とする前項 1 に記載の複合固体電 解質の製造方法。  1. A closed-cell polymer foam containing a plurality of closed cells defined by cell walls constituting a continuous solid polymer matrix of the polymer foam; 2. The method for producing a composite solid electrolyte according to item 1, wherein the cell walls are impregnated with a non-aqueous electrolyte selected from the group consisting of a non-aqueous solvent solution of the electrolyte and a liquid electrolyte.
1 5 . 該ポ リ マー発泡体の独立気泡の量が、 該ポ リ マー発泡 体の全体積に対して 5 〜 9 8容量%である こ と を特徴とする 前項 1 4 に記載の方法。  15. The method according to the above item 14, wherein the amount of the closed cells of the polymer foam is 5 to 98% by volume based on the total volume of the polymer foam.
1 6 . 該複数の独立気泡が、 各独立気泡の長径と短径の平均 値と して 1 〜 5 0 μ τηのサイ ズ及び 5 0 f mを超すサイ ズを それぞれ有する第 1及び第 2フ ラ ク ショ ンの独立気泡からな り 、 該第 1及び第 2フ ラ ク シ ョ ンのそれぞれの独立気泡の量 がそれぞれ該複数の独立気泡の総体穫に対して 6 0容量%以 上及び 4 0容量%未満である こ と を特徴とする前項 1 5に記 載の方法。 16. The plurality of closed cells have a size of 1 to 50 μτη and a size exceeding 50 fm as an average value of the major axis and minor axis of each closed cell. Each of the first and second fractions has closed cells of the first and second fractions, and the amount of each closed cell of the first and second fractions is respectively relative to the total harvest of the plurality of closed cells. The method described in the above item 15 characterized in that it is 60% by volume or more and less than 40% by volume.
1 7. 該非水系電解液の含浸を 3 5〜 2 0 0 °Cで行う こ と を 特徴とする前項 1 4〜 1 6のいずれかに記載の方法。  17. The method according to any one of items 14 to 16, wherein the impregnation with the nonaqueous electrolyte is performed at 35 to 200 ° C.
1 8. 該非水系電解液が更に膨潤剤を含み、 そ して、 膨潤剤 を含む該非水系電解質をポ リ マー発泡体に含浸 させた後、 該 膨潤剤の少な く と も 1 部を除去する工程を更に包含する こ と を特徴とする前項 1 4〜 1 7のいずれかに記載の方法。  1 8. The non-aqueous electrolyte further contains a swelling agent, and after the polymer foam is impregnated with the non-aqueous electrolyte containing the swelling agent, at least one part of the swelling agent is removed. 18. The method according to any one of the above items 14 to 17, further comprising a step.
1 9. 用いる該非水電解液の量が、 製造 された複合固体電解 質のイ オン伝導度が 1 . 0 x 1 0— 4 S Z c m以上にな リ 、 且つ該複合固体電解質の表面積が電解液を含浸する前のポ リ マ 一発泡体の表面積の 5 0〜 2 0 0 %になる量である こ と を 特徴とする前項 1 4〜 1 8のいずれ力 に記載の方法。 1 The amount of the non-aqueous electrolyte solution used 9. is ion-conductivity of the produced composite solid electrolyte 1. 0 x 1 0- 4 SZ cm above a Li, and the surface area of the composite solid electrolyte electrolyte The method according to any one of items 14 to 18, wherein the amount of the polymer before impregnation is 50 to 200% of the surface area of the foam.
2 0. 該ポ リ マー発泡体が、 電子線照射によって形成された 架橋構造を有する架橋ポ リ マーセ グメ ン ト を包含する構造と 該ポ リ マー発泡体が延伸 された形状である構造と から選ばれ る少な く と も 1つの構造を有する こ と を特徴とする前項 1 4 〜 1 9のいずれ力 にに記載の方法。  20. The polymer foam has a structure including a crosslinked polymer segment having a crosslinked structure formed by electron beam irradiation, and a structure in which the polymer foam has an elongated shape. The method according to any one of items 14 to 19, wherein the method has at least one selected structure.
2 1 . 少な く と も 2つの電極及び前項 1 〜 1 3のいずれかに 記載の複合固体電解質からな リ 、 該少な く と も 2つの電極が 該複合固体電解質を介 して配設されてなる こ と を特徴とする 非水系電気化学装置。 21. At least two electrodes and the composite solid electrolyte described in any one of items 1 to 13 above, wherein the at least two electrodes are A non-aqueous electrochemical device, which is provided via the composite solid electrolyte.
2 2 . 微粒子状電極材料及びバイ ンダ一よ リ なる電極であつ て、 該バイ ンダーが、 ポ リ マー発泡体の連続固体ポ リ マーマ ト リ ッ ク ス を構成する気泡壁によ って規定される複数の独立 気泡を含有する独立気泡性ポ リ マ 一発泡体よ リ なる こ と を特 徴と する電極。  22. An electrode comprising a particulate electrode material and a binder, wherein the binder is defined by a cell wall constituting a continuous solid polymer matrix of a polymer foam. An electrode characterized in that it is made of a closed-cell polymer foam containing a plurality of closed cells.
2 3 . 電解質の非水系溶媒溶液と液状電解質よ り なる群から 選ばれる非水系電解液が含浸 している こ と を特徴と する前項 2 2 に記載の電極。  23. The electrode according to the above item 22, characterized in that the electrode is impregnated with a non-aqueous electrolyte selected from the group consisting of a non-aqueous solvent solution of an electrolyte and a liquid electrolyte.
2 4 . ポ リ マー発泡体の連続固体ポ リ マーマ ト リ ッ ク ス を構 成する気泡壁によ って規定される複数の独立気泡を含有する 微粒子状の独立気泡性ポ リ マ ー発泡体と微粒子状の電極材料 と の混合物を成形する こ と を特徴と する前項 2 2 に記載の電 極の製造方法。  24 4. Fine-celled closed-cell polymer foam containing a plurality of closed cells defined by the cell wall constituting the continuous solid polymer matrix of the polymer foam 22. The method for producing an electrode according to item 22 above, which comprises molding a mixture of a body and a particulate electrode material.
2 5 . 微粒子状の電極材料と ポ リ マー と の混合物を成形 して 成形体を得、 得られた該成形体中のポ リ マーを発泡 させる こ と を特徴とする前項 2 2 に記載の電極の製造方法。  25. The method according to item 22 above, wherein a mixture of the particulate electrode material and the polymer is molded to obtain a molded body, and the polymer in the obtained molded body is foamed. Manufacturing method of electrode.
2 6 . 前項 2 3 に記載の電極を包含 してなる非水系電気化学 装置。  26. A non-aqueous electrochemical device including the electrode described in the above item 23.
2 7 . リ チウム電池である こ と を特徴とする前項 2 1 に記載 の電気化学装置。  27. The electrochemical device according to 21 above, wherein the electrochemical device is a lithium battery.
2 8 . リ チウム電池である こ と を特徴とする前項 2 6 に記載 の電気化学装置。 28. Description of the preceding item 26, which is a lithium battery Electrochemical equipment.
本発明の複合高分子固体電解質は、 上記したよ う に、 非水 系電解液を含浸 した独立気泡性ポ リ マー発泡体からな り 、 複 数の独立気泡を規定する気泡壁で構成されるポ リ マーマ ト リ ッ ク スが電解液によ って含浸され、 連続固相 ドメ イ ンを形成 し、 複数の独立気泡が非水系電解液によ って実質的に充填さ れて、 該連続固相 ド メ イ ン中に分散 した複数の液相 ドメ イ ン を形成 してなる複合構造を有 している。  As described above, the composite solid polymer electrolyte of the present invention is composed of a closed-cell polymer foam impregnated with a non-aqueous electrolyte and is constituted by a cell wall that defines a plurality of closed cells. The polymer matrix is impregnated with the electrolyte to form a continuous solid-state domain, and a plurality of closed cells are substantially filled with the non-aqueous electrolyte to form the solid matrix. It has a composite structure consisting of multiple liquid-phase domains dispersed in a continuous solid-phase domain.
本発明の複合高分子固体電解質においては、 該複数の液相 ドメ イ ンは、 各液相 ドメ イ ンの長径と短径の平均値 (以下、 屡々 単に 「平均径」 と称す) が 2 μ πι以上の主液相 ド メ イ ン ma j o r l i qu i d - phas e doma i ns を ΐ2含 し、 該主?δネ目 ドメ ンは、 該複合固体高分子に対 して体積分率で 5 〜 9 5 %で存 在 し、 且つ該主液相 ド メ イ ンの^容量に対 して 6 0 %容量が 平均径が 2 〜 5 0 μ mの有効液相 ドメ イ ン ( e f f ec t i ve l i qu i d-phas e doma ins) である こ と 子 ま しレヽ。  In the composite solid polymer electrolyte of the present invention, the plurality of liquid domains have an average value of the major axis and the minor axis of each liquid domain (hereinafter, often referred to simply as “average diameter”) of 2 μm.液 ι or more main liquid phase domain ma jorli qu id-phas e doma ins 含 2 The δ-th domain is present at a volume fraction of 5 to 95% with respect to the composite solid polymer, and is 60% with respect to the ^ volume of the main liquid phase domain. Is an effective liquid phase domain with an average diameter of 2 to 50 μm (eff ec ti ve li qu i d-phas e doma ins).
本発明においては、 こ の各液相 ドメ イ ンの体積比は、 高分 子固体電解質の断面構造観察によ って評価する。 具体的には 高分子固体電解質のシー ト を液体窒素によ リ 凍結させた状態 で ミ ク ロ ト一ムや剃刀の刃な どで、 互いに直交する 3 平面 [ Χ 、 Υ 、 Ζ座標の X — Ζ 平面、 Υ — Ζ 平面及び X — Υ平面 ( X — Ζ 平面 と Υ — Ζ 平面は該シー 卜 の厚み方向に沿ってい る) ] に沿って切断 し、 上記 X — Ζ平面、 Υ — Ζ 平面及び X 一 Y平面にそれぞれ対応する第 1 、 第 2 及び第 3 の断面を有 するサンブルを得る。 得られたサンプルの第 1 、 第 2 及び第 3 の断面のそれぞれを光学顕微鏡観察によ リ観測 して、 サン プルの第 1 、 第 2及び第 3 の断面について、 連続固相 ドメ イ ンに分散した液相 ド メ イ ンの断面を調べて、 サンブルの各断 面の面積に占める、 液相 ドメ イ ンの断面の合計面積のパーセ ンテ一ジを求める。 ( こ の際、 サ ンプルの各断面における液 相 ドメ ィ ンの断面の う ち、 それぞれの長径および短径の平均 値 (平均径) が 2 m以上の液相 ドメ イ ンのみを測定する。 ) サ ンプルの該 3 つの断面のそれぞれについて求め られた液相 ドメ イ ンの合計面積のパーセ ンテージの平均を求めて、 こ の 平均値を高分子固体電解質の液相 ドメ イ ンの体積比 (% ) と する。 尚、 該材料表面と連通 した開放液相 ド メ イ ンの体積は 本発明の液相 ドメ ィ ンの体積に加えない。 この観察装置と し て、 金属顕微鏡、 レーザ一顕微鏡な ど光学顕微鏡、 差圧式!: 子顕微鏡、 超音波顕微鏡、 X線 C Tな どを用いる こ と ができ る。 これらの う ち超音波顕微鏡及び X線 C 丁 は試料の断面露 出の工程が不要で直接試料観察が可能である。 In the present invention, the volume ratio of each liquid phase domain is evaluated by observing the cross-sectional structure of the polymer solid electrolyte. Specifically, a sheet of a polymer solid electrolyte is frozen with liquid nitrogen, and three planes perpendicular to each other [X, X, X coordinates of X, X, and X] are used with a microtom or razor blade. — 平面 plane, Υ — Ζ plane and X — Υ plane (X — 平面 plane and Υ — 平面 plane are along the thickness direction of the sheet)], and the above X — Ζ plane, Υ —平面 plane and X Obtain a sample having first, second, and third cross sections corresponding to one Y plane, respectively. Each of the first, second and third cross sections of the obtained sample was observed with an optical microscope, and the first, second and third cross sections of the sample were converted to a continuous solid-phase domain. Examine the cross section of the dispersed liquid domain and determine the percentage of the total area of the liquid domain cross section that occupies the area of each cross section of the sample. (At this time, of the cross sections of the liquid phase domain in each cross section of the sample, only the liquid phase domain whose average value (average diameter) of the major axis and the minor axis is 2 m or more is measured. ) Calculate the average of the percentage of the total area of the liquid phase domains obtained for each of the three cross sections of the sample, and calculate this average value as the volume ratio of the liquid phase domains of the solid polymer electrolyte ( %). Note that the volume of the open liquid phase domain that is in communication with the material surface is not added to the volume of the liquid phase domain of the present invention. Optical microscopes such as metal microscopes and laser microscopes, and differential pressure type are used for this observation device. : Microscope, ultrasonic microscope, X-ray CT, etc. can be used. Of these, the ultrasonic microscope and the X-ray C-cutter do not require the step of exposing the cross section of the sample, and can directly observe the sample.
平均径 2 μ m以上の主液相 ドメ ィ ンの含有量が複合高分子 固体電解質の全体容積の 5 容量。/。未満の場合はイ オン伝導度 が低く な リ 、 またこ の含有量が 9 5容量%を越える場合は高 分子固体電解質の強度が低下するため好ま し く ない。 こ の液 相 ドメ イ ン体積分率は、 さ らに好ま し く は、 固体電解質の全 体容積の 1 0容量。/。以上、 9 0容量%以下の範囲である。 また、 上記したよ う に、 本発明の高分子固体電解質におい て、 平均径 5 0 μ πιを越える主液相 ドメ イ ンは主液相 ドメ イ ンの全容積の 4 0容量%未満である こ と が好ま しい。 更に好 ま し く は 3 0 容量%未満、 さ らに好ま し く は 2 0容量%未満 である。 The content of the main liquid phase domain with an average diameter of 2 μm or more is 5 volumes of the total volume of the composite polymer solid electrolyte. /. When the content is less than 100%, the ion conductivity is low, and when the content is more than 95% by volume, the strength of the high molecular solid electrolyte decreases, which is not preferable. This liquid domain volume fraction is more preferably the total solid electrolyte 10 volumes of body volume. /. The above is the range of 90% by volume or less. Further, as described above, in the polymer solid electrolyte of the present invention, the main liquid phase domain having an average diameter exceeding 50 μπι is less than 40% by volume of the total volume of the main liquid phase domain. This is preferred. More preferably, it is less than 30% by volume, more preferably less than 20% by volume.
平均径 5 0 μ mを越える主液相 ドメ ィ ンの体積分率が主液 相容積の 4 0 容量%以上の場合、 巨大な液相 ドメ イ ンが多数 存在する部分ではィ オンの流れが増大するので高分子固体電 解質内部のイ オンの流れに不均一が生じ、 電池と して用いる 場合、 充電または放電過程で部分的に過充放電が生じるなど の問題が起こ リ やすい。 また、 5 0 μ m以上の主液相 ドメ イ ンの含量が主液相容積の 4 0 容量%以上になる と 、 高分子固 体電解質の強度低下、 構造変形につながる可能性がある。  When the volume fraction of the main liquid phase domain with an average diameter of more than 50 μm is 40% by volume or more of the main liquid phase volume, ion flow occurs in a part where a large number of large liquid phase domains exist. Because of the increase, the flow of ions inside the polymer solid electrolyte becomes uneven, and when used as a battery, problems such as partial overcharging or discharging in the charging or discharging process are likely to occur. Further, when the content of the main liquid phase domain of 50 μm or more becomes 40% by volume or more of the main liquid phase volume, there is a possibility that the strength of the polymer solid electrolyte is reduced and the structure is deformed.
なお、 平均径が 2 μ m未満の液相 ドメ イ ンは本発明ではポ リ マ一相中に含浸含入した電解液とみなす。 In the present invention, a liquid phase domain having an average diameter of less than 2 μm is regarded as an electrolytic solution impregnated in one polymer phase.
本発明の複合高分子固体電解質において重要な液相 ドメ イ ンは表面に連通 していない独立 ドメ イ ンである。 材料外へ開 口 した構造の液相 ドメ イ ンや内部を貫通する液相 ドメ イ ンを 含有する高分子固体電解質も使用でき るが、 開 口液相 ドメ イ ン と貫通液相 ドメ ィ ンの容積比率は、 複合高分子固体電解質 に対 して合計で 5 %未満が好ま しい。 特に材料内部を貫通す る構造の液相 ドメ イ ンは、 液漏れをおこ しゃすいため、 でき るだけ少なレ、こ と が好ま しい。 The important liquid phase domain in the composite solid polymer electrolyte of the present invention is an independent domain not communicating with the surface. Liquid-phase solid electrolytes containing a liquid domain with a structure that opens to the outside of the material or a liquid phase domain that penetrates the inside can also be used, but an open liquid phase domain and a through liquid phase domain The volume ratio of the total is preferably less than 5% based on the composite solid polymer electrolyte. In particular, a liquid domain having a structure penetrating through the inside of the material is preferable to reduce the liquid content as much as possible, because the liquid domain is likely to leak.
この貫通孔の少ない高分子固体電解質の判別方法と して、 次の方法を用いる こ と ができ る。 すなわちシー ト形状の高分 子固体電解質の場合、 通常のフ ィ ルタ 一材料の透過性評価法 で用い られる透水量によ リ 判別する。 具体的には電解液を含 有する高分子固体電解質をユ タ ノ ールに浸漬 して電解液を抽 出、 アル コ ール置換を行い、 さ らに水に浸演する こ と によ つ て高分子固体電解質の表面に連通 した液相 ドメ ィ ンの電解液 を水で置換 した構造に変換する。 ついで、 こ の試験サ ンプル をフ イ ノレターホルダーに保持、 片側表面から水を加圧 して水 の透水量を評価する。 本発明においては、 こ の試験サ ンプル についてエタ ノ ール置換 4 時間、 水置換 1 時間行った後評価 した透水量は、 1 0 リ ッ トル Z m 2 · h r · a t m以下であ る こ と が好ま しい。 The following method can be used as a method for determining a polymer solid electrolyte having few through holes. In other words, in the case of a sheet-shaped polymer solid electrolyte, the determination is made based on the amount of water permeation used in a normal filter material permeation evaluation method. Specifically, a solid polymer electrolyte containing an electrolytic solution is immersed in ethanol to extract the electrolytic solution, alcohol substitution is performed, and further immersion in water. In this way, the electrolyte in the liquid domain connected to the surface of the polymer solid electrolyte is converted into a structure in which water is replaced. Next, this test sample is held in a final letter holder, and water is pressed from one surface to evaluate the water permeability. In the present invention, ethanolate Lumpur substituted 4 hours for this test sample, the water permeability was evaluated after water replacement 1 hour, and 1 0 l Z m 2 · hr · atm or less der Ru this Is preferred.
本発明の複合高分子固体電解質においては、 高分子固体電 解質重量の 1 0 〜 9 8重量%の範囲で非水系電解液を含有す る こ と が好ま しい。 こ の電解液含量が 1 0重量%未満では固 体電解質のイ オン伝導度が低く なるため好ま し く な く 、 電解 液含量が 9 8重量%を超える場合は高分子固体電解質の強度 が低く なるため好ま し く ない。 さ らに好ま しく は、 この電解 液含量は、 1 5重量。/。〜 9 5重量。 /。である。 In the composite solid polymer electrolyte of the present invention, the non-aqueous electrolyte is contained in the range of 10 to 98% by weight based on the weight of the solid polymer electrolyte. Is preferred. If the electrolyte content is less than 10% by weight, the ion conductivity of the solid electrolyte becomes low, which is not preferable. If the electrolyte content exceeds 98% by weight, the strength of the polymer solid electrolyte is low. I don't like it. More preferably, the electrolyte content is 15% by weight. /. ~ 95 weight. /. It is.
本発明の高分子固体電解質に含有される非水系電解液の含 量は、 含浸前のポ リ マー発泡体重量 ( P ) と含浸後の高分子 固体電解質重量 ( E ) 、 または予め電解液が含浸された高分 子固体電解質重量 ( E ) および該高分子固体電解質から電解 液を抽出、 乾燥したポ リ マー重量 ( P ) によ って も求める こ と ができ る。 電解液含量 = 1 0 O x ( E— P ) / E (重量。 /0) 本発明の高分子固体電解質は、 前記の複数の液相 ドメ ィ ン と電解液が含浸膨張 した連続固体ポ リ マーマ ト リ ッ ク スから なる連続固相 ドメ イ ン (以下、 屡々 、 単に 「ポ リ マー相」 と 称す) と から構成されてなる。 このポ リ マー相のポ リ マーに 含浸膨潤 した電解液含量はポリ マー相の 1 0重量%から 9 0 重量。 /。の範囲である こ と が好ま しい。  The content of the non-aqueous electrolyte contained in the polymer solid electrolyte of the present invention may be determined by the weight of the polymer foam before impregnation (P) and the weight of the polymer solid electrolyte after impregnation (E), or the weight of the electrolyte beforehand. It can also be determined from the weight of the impregnated polymer solid electrolyte (E) and the weight of the polymer extracted and dried from the polymer solid electrolyte (P). Electrolyte content = 10 O x (E-P) / E (weight./0) The solid polymer electrolyte of the present invention is a continuous solid polymer in which the plurality of liquid domains and the electrolyte are impregnated and expanded. It consists of a continuous solid-state domain consisting of marmatrix (hereinafter often simply referred to as "polymer phase"). The content of the electrolytic solution impregnated and swelled in the polymer of the polymer phase is 10% by weight to 90% by weight of the polymer phase. /. Preferably, it is within the range.
本発明の高分子固体電解質のポ リ マー相部分に電解液が含 浸される こ と は、 高分子固体電解質の重量から 、 液相 ドメ イ ンの体積から求めた液相 ドメ イ ンの重量を差し引いた重量 The fact that the polymer solution is impregnated in the polymer phase portion of the polymer solid electrolyte of the present invention means that the weight of the liquid phase domain is determined from the weight of the polymer solid electrolyte and the volume of the liquid phase domain. Weight minus
(ポ リ マー相の重量) と含浸前のポ リ マー発泡体の重量 (ま たは高分子固体電解質から電解液を抽出乾燥したポ リ マーの 重量) の比較にょ リ 求める こ とができ る。 また、 含浸された ポ リ マーマ ト リ ッ ク ス の融点およびガラ ス転移温度が含浸前 に比較 して低下する こ と によって確認でき る。 こ の解析は通 常の示差熱分析法によって評価する こ と ができ る。 ポ リ マ一 相に含入された電解液含量と融点、 ガラ ス転移温度の関係は ポ リ マーの種類によ って異なるので限定されないが、 それぞ れのポ リ マーにおける電解液含量と融点、 ガラ ス転移温度の 相関カゝら電解液の含量を求める こ と ができ る。 こ こで、 ポ リ マー中の電解液含量が 1 0重量%未満の場合、 高分子固体電 解質のイ オン伝導度が低く 、 また電解液含量が 9 0重量%を 超える場合はポ リ マー相部分も機械的強度が低下するため好 ま し く ない。 (Weight of polymer phase) and weight of polymer foam before impregnation (or Or the weight of the polymer obtained by extracting and drying the electrolyte from the polymer solid electrolyte. It can also be confirmed by the fact that the melting point and glass transition temperature of the impregnated polymer matrix are lower than before impregnation. This analysis can be evaluated by ordinary differential thermal analysis. The relationship between the content of the electrolyte contained in the polymer phase, the melting point, and the glass transition temperature is not limited because it differs depending on the type of polymer, but the relationship between the content of the electrolyte in each polymer and The correlation between the melting point and the glass transition temperature allows the content of the electrolyte to be determined. Here, when the content of the electrolyte in the polymer is less than 10% by weight, the ion conductivity of the solid polymer electrolyte is low, and when the content of the electrolyte exceeds 90% by weight, the polymer is The mer phase is also not preferred because the mechanical strength decreases.
本発明の高分子固体電解質は高イ オン伝導度を有 し、 室温 におけるイ オン伝導度 1 X 1 0— 5 S Z c m以上であ り 、 さ ら に好ま し く は 1 X 1 0— 4 S Z c m以上である。 このイ オン伝 導度の測定は高分子固体電解質を金属電極に挾み込み、 通常 の交流イ ン ピーダンス法によ り 測定した複素ィ ンピーダンス のプロ ッ トの実数軸切片から求める こ と ができ る。 このィォ ン伝導度 ( I C ) は、 切片のイ ンピーダンス値 ( Z ) , 高分 子固体電解質に接する電極面積 ( A) および試料厚さ ( L ) から以下の式で求め られる。 I C = L / ( Z x A ) 本発明の複合高分子固体電解質は、 従来の高分子固体電解 質と比較して以下の特徴を有する。 単にポ リ マーに電解質お よび電解質溶媒が含入された従来の系では、 電解質溶媒含量 を増加させてイオン伝導度向上を図る こ と が試みられている 力 電解質溶媒含量増加に伴って固体電解質の強度が低下す る こ と が問題である。 このためこの系では実用強度を確保す るため電解質溶媒含量が制限されていた。 また、 単にポ リ マ 一に電解液を含浸させて形成する型の従来の固体電解質では . 電解液含量が低く 、 従ってイ オン伝導度は低かった。 本発明 の複合高分子固体電解質は、 電解質溶媒含量が大き い場合に おいて も充分な強度を有 し、 高いイ オン伝導度を有する。 ま た、 ポ リ オレ フ ィ ン等の非イ オン伝導性貫通多孔質材料に電 解液を充填 した系 と 比較して も高いイ オ ン伝導性を示す。 こ の原因は明 らかでないが次のよ う に考え られる。 即ち、 本発 明の複合高分子固体電解質は、 複数の独立気泡に電解液を含 有 してなる液相 ドメ イ ンと 、 電解液が含浸された気泡壁から なる固体電解質マ ト リ ッ ク ス と よ リ構成された複合構造を有 するので、 良好なイ オン伝導性を示すと 考え られる。 Solid polymer electrolyte of the present invention have a high on-conductivity, Ri ion-conductivity 1 X 1 0- 5 SZ cm or der at room temperature, is rather to favored by al 1 X 1 0- 4 SZ cm or more. This ion conductivity can be measured from the real-axis intercept of the complex impedance plot measured by the ordinary ac impedance method with the solid polymer electrolyte sandwiched between metal electrodes. You. This ion conductivity (IC) can be obtained from the impedance value (Z) of the section, the electrode area (A) in contact with the polymer solid electrolyte, and the sample thickness (L) by the following formula. IC = L / (Z × A) The composite solid polymer electrolyte of the present invention has the following characteristics as compared with the conventional solid polymer electrolyte. In conventional systems in which the polymer and the electrolyte solvent are simply contained in the polymer, attempts have been made to increase the electrolyte solvent content to improve the ionic conductivity. The problem is that the strength of the steel decreases. For this reason, in this system, the content of the electrolyte solvent was limited in order to secure practical strength. A conventional solid electrolyte formed simply by impregnating an electrolyte with a polymer has a low electrolyte content, and therefore has a low ion conductivity. The composite solid polymer electrolyte of the present invention has sufficient strength and high ion conductivity even when the electrolyte solvent content is large. In addition, it exhibits higher ion conductivity than a system in which a non-ion conductive through-porous material such as polyolefin is filled with an electrolyte. Although the cause is not clear, it is considered as follows. That is, the composite polymer solid electrolyte of the present invention comprises a liquid-phase domain comprising a plurality of closed cells containing an electrolyte and a solid electrolyte matrix comprising a cell wall impregnated with the electrolyte. It is thought to have good ion conductivity because it has a composite structure restructured with copper.
本発明の複合高分子固体電解質は、 独立気泡性ポ リ マー発 泡体に電解液を含浸する こ と によって製造される。 その発泡 体全体に対する独立気泡の体積分率に特に制限はないが、 本 発明の効果を実質的に発現させるためには、 5 〜 9 8容量% である。 この独立気泡の体積分率が 5容量0 /0未満では、 得ら れる複合高分子固体電解質のイ オン伝導度が充分に高 く なく , 好ま し く は 2 0容量%以上でぁ リ 、 さ らに好ま しく は 4 0容 量%以上である。 また独立気泡の量が 9 8 容量%よ リ 大では , 非水系電解液含浸後充分な強度が得られに く い。 従って、 こ の独立気泡体積分率の上限は、 9 8 容量%であ リ 、 好ま し く は 9 7 容量。 /0である。 この独立気泡の量は、 A S T M— D 2 8 5 6 に記載のエア ピク ノ メ ータ法によ る連続気泡率の差分 と して求める こ と ができ る。 すなわち、 発泡体比重と バルク ポ リ マーの比重から発泡体の空孔率が求め られ、 エア ピク ノ メ ータ に よ る発泡体の連続気泡体積の測定から独立気泡体積 を評価する こ と ができ る。 また、 本発明の複合高分子固体電 解質の製造に用いる ポ リ マー発泡体と して、 前記の独立気泡 以外に貫通孔ゃ表面に解放孔を持つ材料も使用可能であるが これらの部分に含浸された電解液は液漏れを生 じやすく 、 こ れらの部分は含有されないこ と が好ま しい。 これらの貫通孔 や開放孔の体積は 5 %未満である こ と が好ま しい。 これら独 立気泡を除く 空孔部の含量は前記の独立気泡容積分率に含め ない。 本発明の複合構造における独立気泡 ドメ ィ ンの断面形 状と して、 円形、 楕円形、 等どのよ う な形状であって もよ く 特に制約はない。 その発泡体の独立気泡サイ ズは使用する用 途に応 じて適する範囲が変化するため限定されないが、 通常 は、 平均径カ; 1 0 0 ナノ メ 一タカ ら Ι Ο Ο μ πιであ リ 、 さ ら に好ま し く は、 Ι μ πιから 5 0 x mの範囲である。 The composite solid polymer electrolyte of the present invention is produced by impregnating a closed-cell polymer foam with an electrolytic solution. Although there is no particular limitation on the volume fraction of closed cells with respect to the whole foam, In order to substantially exhibit the effects of the present invention, the content is 5 to 98% by volume. The volume fraction of the closed cells is less than 5 vol 0/0, ion-of the resulting are composite solid polymer electrolyte conductivity is sufficiently high without Ku, preferred and rather is § Li 2 0% by volume or more, and More preferably, it is at least 40% by volume. On the other hand, if the amount of closed cells is larger than 98% by volume, it is difficult to obtain sufficient strength after impregnation with the non-aqueous electrolyte. Therefore, the upper limit of the closed cell volume fraction is 98% by volume, preferably 97% by volume. / 0 . The amount of the closed cells can be obtained as a difference in the open cell ratio by the air pycnometer method described in ASTM-D28856. That is, the porosity of the foam is determined from the specific gravity of the foam and the specific gravity of the bulk polymer, and the closed cell volume is evaluated by measuring the open cell volume of the foam using an air pycnometer. it can. Further, as the polymer foam used in the production of the composite solid polymer electrolyte of the present invention, in addition to the closed cells, materials having through holes and open holes on the surface can be used. The electrolyte impregnated in the electrolyte easily leaks, and it is preferable that these parts are not contained. Preferably, the volume of these through holes and open holes is less than 5%. The content of pores excluding these closed cells is not included in the closed cell volume fraction described above. The cross-sectional shape of the closed-cell domain in the composite structure of the present invention may be any shape such as a circle, an ellipse, or the like, and is not particularly limited. The closed cell size of the foam is not limited because the suitable range varies depending on the application to be used. Is the mean diameter; 100 nm nanometers, more preferably from Ιμπι to 50 xm.
この う ち平均径が 1 !〜 5 0 μ πιの独立気泡の体積が、 ポ リ マ一発泡体中の独立気泡全体稍に対して 6 0 容量%以上 含有される こ と が好ま しい。 また、 5 0 μ πι以上の平均径の 独立気泡体積が独立気泡全体積の 4 0容量%未満である こ と が好ま しい。 また、 ポ リ マー発泡体の発泡倍率 (expans ion rat io) (発泡体体積 Z発泡前のポ リ マー体積) と しての下 限は 1 . 0 5 倍、 好ま し く は 1 . 2 5倍、 さ らに好ま し く は 1 . 6 6 倍である。 また発泡体の発泡倍率の上限は 5 0倍で あ り 、 好ま し く は 3 3倍である。  The average diameter is 1! It is preferable that the volume of closed cells of up to 50 μπι be 60% by volume or more based on the entire closed cells in the polymer foam. Further, it is preferable that the volume of closed cells having an average diameter of 50 μπι or more is less than 40% by volume of the total volume of the closed cells. The lower limit of the expansion ratio (expans ion rat io) of the polymer foam (foam volume Z polymer volume before foaming) is 1.05 times, preferably 1.25 times. Times, and more preferably 1.66 times. The upper limit of the expansion ratio of the foam is 50 times, and preferably 33 times.
本発明の製造方法によ り 、 独立気泡性ポ リ マ一発泡体を非 水系電解液で含浸する こ と に よ って、 電解質およびその非水 系溶媒がポ リ マ一中に含入されて 、 ポ リ マー と 、 電解質及び その非水系溶媒と からなるイ オン伝導性高分子固体電解質に 変換される。 また、 予めポ リ マ一発泡体中に電解質及びその 非水系溶媒を含有させた固体電解質を、 さ らに非水系電解液 と接触させる こ と によって、 電解質、 非水系溶媒を追加、 置 換 して固体電解質を得る こ と ができ る。 この非水系電解液は ポ リ マーを実質的に溶解しないこ とが必要でぁ リ 、 非水系溶 媒の種類はポ リ マ一 と の組み合わせで適宜選択する こ とがで き る。 本発明における電解液と して、 電解質および非水系電 解質溶媒を構成要素 と して この混合物を用いる場合のほかに 液体電解質のみを用いる こ と も可能である。 According to the production method of the present invention, the electrolyte and the non-aqueous solvent are impregnated in the polymer by impregnating the closed-cell foam with the non-aqueous electrolyte. Thus, it is converted into an ion-conductive polymer solid electrolyte composed of a polymer, an electrolyte and a non-aqueous solvent. The electrolyte and the non-aqueous solvent are added and replaced by bringing the solid electrolyte in which the electrolyte and the non-aqueous solvent are previously contained in the polymer foam into contact with the non-aqueous electrolyte. Thus, a solid electrolyte can be obtained. This non-aqueous electrolyte needs to not substantially dissolve the polymer, and the type of the non-aqueous solvent can be appropriately selected in combination with the polymer. In addition to the case where the electrolyte and the non-aqueous electrolyte solvent are used as the constituents of the mixture as the electrolyte in the present invention, It is also possible to use only a liquid electrolyte.
また、 本発明の非水系複合高分子固体電解質は、 電気化学 的安定性に優れた材料を用いる こ と によ って、 金属 リ チウム 電極基準で 1 〜 3 Vの電位範囲に本質的に酸化還元を起こ さ ないよ う に製造する こ と が好ま しい。 こ の電気化学的安定性 はサイ ク リ ッ ク ボルタ ンメ ト リ ー法で評価する。 具体的には、 高分子固体電解質を電気化学的に不活性な電極 (本発明では ス テ ン レ ス電極) を作用極に、 金属 リ チ ウ ムを対極及び参照 極と し て電池を構成 し、 作用極の電位走査を行い、 酸化還元 に よ る電流波形を観測する。 こ の電流値が、 バ ッ ク グ ラ ウ ン ドである電極界面の電気二重層容量におけ る酸化波ま たは還 元波の電流値の 2倍以下の電流値である電位領域 (即ち、 酸 ィ匕または還元によ る電流ピー ク のない領域) が電気化学的に 安定な領域と 規定する。 ま た、 参照極に金属 リ チ ウ ム以外の 電極を用いて測定した電位を金属 リ チウ ム基準の電位に変換 する こ と もでき る。 本発明の複合高分子固体電解質は 1 〜 3 V (金属 リ チ ウム基準) の範囲で電気化学的な酸化還元を起 こ さない、 すなわち安定である こ と が好ま しい。 さ らに好ま し く は 0 . 7 V〜 4 . 0 V (対金属 リ チウム電位基準) の範 囲で電気化学的に酸化還元を起こ さない材料を用いる。 電気 化学的安定性の電位範囲の下限が 1 V (対金属 リ チウ ム電位 基準) 以上の場合、 電気化学的に高分子固体電解質が還元さ れるため、 また電位範囲の上限が 3 V (対金属 リ チ ウ ム電位 基準) 以下である場合は高分子固体電解質が酸化されやすく なるため、 好ま し く ない。 In addition, the nonaqueous composite polymer solid electrolyte of the present invention is essentially oxidized to a potential range of 1 to 3 V with respect to a metal lithium electrode by using a material having excellent electrochemical stability. It is preferable to manufacture without reduction. The electrochemical stability is evaluated by the cyclic voltammetry method. Specifically, a battery is constructed by using a polymer solid electrolyte as an electrochemically inactive electrode (in the present invention, a stainless steel electrode) as a working electrode, and lithium metal as a counter electrode and a reference electrode. Then, the potential of the working electrode is scanned, and the current waveform due to redox is observed. This current value is a potential region where the current value is twice or less the current value of the oxidation wave or reduction wave in the electric double layer capacitance at the electrode interface, which is the background (that is, the potential region). The region where there is no current peak due to oxidation or reduction) is defined as an electrochemically stable region. In addition, a potential measured using an electrode other than lithium metal as a reference electrode can be converted to a potential based on lithium metal. The composite solid polymer electrolyte of the present invention preferably does not cause electrochemical oxidation-reduction in the range of 1 to 3 V (based on lithium metal), that is, is preferably stable. More preferably, a material that does not electrochemically reduce and redox within a range of 0.7 V to 4.0 V (based on the potential of lithium metal) is used. When the lower limit of the potential range of the electrochemical stability is 1 V or more (based on the lithium metal potential), the solid polymer electrolyte is electrochemically reduced, and the upper limit of the potential range is 3 V (vs. Metallic lithium potential (Criterion) When the value is below, it is not preferable because the solid polymer electrolyte is easily oxidized.
このよ う に本発明の高分子固体電解質は上記の電気化学的 に安定な材料である こ と が好ま し く 、 このためには高分子固 体電解質の構成要素であるポ リ マー材料、 電解質、 電解質溶 媒のすべてが電気化学的に安定である こ と が好ま しいが、 こ の一部に電気化学的に不安定な材料を含有して製造された高 分子固体電解質と しては上記の電気化学的に安定な電位範囲 を持つ場合もある。  As described above, the solid polymer electrolyte of the present invention is preferably the above-mentioned electrochemically stable material. For this purpose, the polymer material and the electrolyte which are constituents of the solid polymer electrolyte are used. However, it is preferable that all of the electrolyte solvent is electrochemically stable, but the high molecular solid electrolyte produced by partially containing an electrochemically unstable material is described above. May have an electrochemically stable potential range.
以下本発明を構成する ポ リ マー材料、 電解質、 電解質溶媒 について順次説明する。  Hereinafter, the polymer material, the electrolyte, and the electrolyte solvent constituting the present invention will be sequentially described.
本発明に使用 されるポ リ マー発泡体のポ リ マー材料は、 電 解質を固溶可能な材料であ リ 、 通常の高分子固体電解質に使 用 される材料を用し、る こ と ができ る。 た と えば、 J . R . マ ソ カ ー ラ ム 、 C . A . ビ ンセ ン ト編、 ポ リ マーエ レ ク ト ロ ラ ィ ト レ ビュ ー 、 エルゼ ビアサイ エ ン ス 出版、 N Y発行 ( 1 9 8 7 年) や F . M . グ レー著, ソ リ ッ ドポ リ マーエ レ ク ト 口 ライ ト, V C Hパブロ ッ シャーズ, N Y発行 ( 1 9 9 1 年) 等に記載の材料が利用でき る。 こ の例 と して 、 ポ リ エチ レ ン ォキ シ ド、 ポ リ プロ ピ レ ンォキ シ ド、 エチ レ ンォキ シ ド一プ 口 ピ レ ンォキ シ ド共重合体な どのアルキ レ ンエーテル系ポ リ マ — 、 ポ リ アルキ レ ンチォェ—テル、 ポ リ ア ク リ ロ ニ ト リ ノレ ァ ク リ ロ ニ ト リ ル一ス チ レ ン共重合体な どの二 ト リ ノレ系ポ リ マ一、 ポリ フ ッ化ビニ リ デン、 フ ッ化ビニ リ デン一へキサフ ノレォロ プロ ピ レン共重合体、 パ一フルォロ ビニルェ一テノレ一 ビニ リ デンフ ロ ラィ ド共重合体、 テ ト ラ フルォロエチ レン一 ビニ リ デンフ ロ ラィ ド共重合体、 へキサフノレオ口プロ ピ レン ォキシ ドー ビエ リ デンフ ロ ラィ ド共重合体、 へキサフルォロ プロ ピ レンォキ シ ドーテ ト ラ フルォ ロ エ チ レ ン 一 ビニ リ デン フ ロ ラ イ ド共重合体、 へキサフノレオ口 プ ロ ピ レ ン 一テ ト ラ フ ノレォロエチ レン一 ビニ リ デンフ ロ ラィ ド共重合体、 フ ルォロ エチ レ ン 一 ビニ リ デンフ ロ ラ イ ド共重合体な どの フ ッ 化 ビ二 リ デン系ポ リ マー 、 ポ リ フ ォ ス フ ァ ゼ ン 、 ポ リ ジ メ チ ルシ ロ キサ ン誘導体、 脂肪族ポ リ エ ステル、 脂肪族カーボネー ト 、 ポ リ ( ス ノレ フ ォ ェチノレメ タ ク リ レー ト ) 又はそ の塩、 カ ノレポ キ シブ タ ノ キ シノレエチルメ タ ク リ レ一 ト 又はそ の塩、 ナ フ ィ オン (米国 ' デュポン社製樹脂の商品名) , フ レ ミ オン ( 日 本 · 旭ガラ ス株式会社製樹脂の商品名) な どの市販の樹脂を 用いる こ と ができ る。 これ らポ リ マーの う ち、 前記の電気化 学的安定性に優れた材料である こ と が好ま し く 、 このために ポ リ マ一中にイ オン性基を含有せず、 かつ移動性水素を含有 しないポ リ マーが好ま しい。 特に、 ポ リ フ ッ化ビニ リ デンゃ フ ッ化ビ二 リ デン系共重合体な どのフ ッ化ビニ リ デン系ポリ マ一は電気化学的安定性に優れ、 本発明の複合高分子固体電 解質の製造に用いる独立気泡性ポ リ マー発泡体の材料と して 用いる と 、 高いイ オン伝導度を示すため好ま しい。 ポ リ マー中にイオン性基を含有する こ と によ って、 ポ リ マ —によ ってはポリ マーの吸湿性が增加する場合があ リ 、 この よ う なポ リ マ一を用いた複合高分子固体電解質では水の含量 が增加するため電気化学的安定性が低下する。 また、 ポ リ マ —中にイ オン性基を含有する こ と によって、 ポ リ マ一によつ ては、 非水系電解液の含浸性が低下するので複合高分子固体 電解質のイ オン伝導度が低く なる。 The polymer material of the polymer foam used in the present invention is a material capable of forming a solid solution of an electrolyte, and is a material used for a normal polymer solid electrolyte. Can be done. For example, J.R. Masokaram, C.A.Bentsent, Polymer Electronics Review, Elsevier Science Publishing, NY (1 The materials described in, for example, pp. 987) and F. M. Grey, Solid Polymer Selector Light, VCH Publishers, NY, published in 1991 can be used. You. Examples of this are alkylene ether-based polymers such as polyethylene oxide, polypropylene oxide, ethylene oxide-one-sided pyrenoxide copolymers, etc. Two-polyolefins such as polymers, polyalkylene ethers, polyacrylonitrile phenols, polyacrylonitrile-styrene copolymers, etc. Polymers, polyvinylidene fluoride, vinylidene fluoride, hexafolenopropylene copolymer, vinyl fluoride vinylene copolymer, vinylidene fluoride copolymer, tetrafluoroethylene (1) vinylidene fluoride copolymer, hexafenoleo-propyl propylene oxide dope copolymer, hexafolopropylene oxydote dolatrafluoroethylene 1-vinylidene fluoride Light copolymers, hexafenoleone propylene-tetrafluoroethylene-vinylidenefluoride copolymers, fluoroethylene-vinylidenefluoride copolymers Any vinylidene fluoride polymer, polyphosphazene, polymethylsiloxane derivative, aliphatic polyester Oil, aliphatic carbonate, poly (snorefoetinoremethacrylate) or a salt thereof, canolepoxiv tanoxinoleethylmethacrylate or a salt thereof, nafion ( Commercially available resins such as U.S.A. (product name of resin manufactured by Dupont) and Flemion (product name of resin manufactured by Japan and Asahi Glass Co., Ltd.) can be used. Of these polymers, it is preferable that the material has the above-mentioned excellent electrochemical stability, so that the polymer does not contain an ionic group in the polymer and can be transferred. Polymers containing no hydrogen are preferred. In particular, vinylidene fluoride polymers such as polyvinylidene fluoride / vinylidene fluoride copolymers have excellent electrochemical stability, and the composite polymer solid of the present invention is excellent. It is preferable to use it as a material of a closed-cell polymer foam used in the production of an electrolyte because it exhibits high ion conductivity. The inclusion of ionic groups in the polymer may increase the hygroscopicity of the polymer, depending on the polymer, and use such a polymer. In the composite solid polymer electrolyte that has been used, the water content increases, and the electrochemical stability decreases. In addition, by containing an ionic group in the polymer, the impregnating property of the non-aqueous electrolyte is reduced in some polymers, so that the ionic conductivity of the composite solid polymer electrolyte is reduced. Is lower.
また、 ポ リ マー中にカルボン酸基、 スルホ ン酸基、 水酸基 . N — H基な どの移動性水素 (プロ ト ン性水素) を含有する場 合、 還元反応や還元反応に伴 う 副反応にによ って高分子固体 電解質と して の電気化学的安定性が低下する。  In addition, when the polymer contains mobile hydrogen (protonic hydrogen) such as carboxylic acid group, sulfonate group, hydroxyl group and N—H group, reduction reaction and side reaction accompanying the reduction reaction occur. As a result, the electrochemical stability of the polymer solid electrolyte decreases.
本発明に用いるポ リ マーの分子量は、 ポ リ マーの種類によ つて変るが、 分子量 1 , 0 0 0 〜 1 , 0 0 0 万の κ囲である こ と が好ま しい。 特にフ ッ化ビニ リ デン系ポ リ マーの場合、 分子量 5 , 0 0 0 〜 2 0 0 万である こ と が好ま し く 、 1 万〜 1 0 0 万の範囲である こ と が更に好ま しい。  Although the molecular weight of the polymer used in the present invention varies depending on the type of the polymer, it is preferable that the molecular weight is in the κ range of 1,000 to 1,000,000. In particular, in the case of a vinylidene fluoride polymer, the molecular weight is preferably from 5,000 to 200,000, and more preferably from 10,000 to 100,000. New
上記のポ リ マーからのポ リ マ一発泡体の製法と しては、 各 種の公知の方法が採用可能でぁ リ 、 たと えば、 ポ リ マー成型 体に発泡剤を含浸又は圧入した後、 常圧又は減圧で加熱して 発泡剤のガス化、 分解によ リ発生したガスによ り発泡体を成 型する方法にょ リ発泡体を作製する こ と ができ る。 また、 予 めポ リ マー成型時に発泡剤を含有させた後発泡 させる方法な どで得る こ と もでき る。 こ の発泡体作製におけ る加熱温度、 時間、 圧力(減圧度)は、 ポ リ マーの種類、 発泡剤の種類、 目 的とする発泡体の独立気泡の体積分率、 独立気泡の形状及び 密度に依存 して変るが、 加熱温度は、 該ポ リ マーの融点付近 で発泡剤のガス化によ る発泡変形が可能な範囲である。 この 加熱方法と して、 熱ロ ールに接触させて加熱する方法、 抵抗 加熱炉ゃ赤外線加熱炉な どの加熱炉を用いて熟対流や輻射熱 によ り 加熱する方法、 マイ ク ロ波や高周波エネルギー、 レ一 ザ一光などの照射に よ リ加熱する方法な どを用いる こ と がで き る。 また、 炭酸ガスな どを発泡剤と して超臨界状態でポ リ マーに含有 さ せた後常圧雰囲気に放出す る こ と に よ っ て発泡 体を作製する こ と もでき る。 As a method for producing a polymer foam from the above-mentioned polymer, various known methods can be adopted, for example, after impregnating or press-fitting a foaming agent into a polymer molded body. In addition, a foam can be produced by a method in which the foam is formed by gas generated by gasification and decomposition of a foaming agent by heating at normal pressure or reduced pressure. In addition, it can be obtained by a method in which a foaming agent is added at the time of polymer molding and then foaming is performed. Heating temperature for producing this foam, The time and pressure (degree of decompression) vary depending on the type of polymer, the type of blowing agent, the volume fraction of closed cells in the target foam, and the shape and density of the closed cells. In the vicinity of the melting point of the polymer, it is in a range where foaming deformation due to gasification of the foaming agent is possible. Examples of the heating method include a method of heating by contacting with a heat roll, a method of heating by convection or radiant heat using a heating furnace such as a resistance heating furnace or an infrared heating furnace, a microwave or high frequency wave. A method of reheating by irradiation with energy, laser light, or the like can be used. In addition, a foam can be produced by allowing a polymer to contain carbon dioxide or the like as a foaming agent in a supercritical state and then releasing the polymer into a normal-pressure atmosphere.
例えば、 ポ リ マー発泡体にフ ッ化ビニ リ デン系ポ リ マーを 用いて発泡体を製造する場合、 日 本囯特公平 4 一 5 7 7 0 4 号記載の方法を用いる こ と ができ る。 すなわち、 ポ リ マーを 溶融成型 して得られた成型体を 1 ) 電子線照射、 / 線照射な どの輻射エネルギー照射、 2 ) ラ ジカル架橋、 あ る いは 3 ) アルカ リ 処理な どによって部分架橋させた後ハロ ゲン系化合 物、 炭化水素な どの発泡剤を含浸させ、 ついで加熱な どの方 法で発泡させ発泡体を得る こ と ができ る。 発泡剤の具体的な 例と しては、 フ ロ ン 1 3 4 a 、 超臨界状態の炭酸ガス 、 ト ル ェ ンな どを挙げる こ と ができ る。 フ ロ ン 1 3 4 a 、 超臨界状 態の炭酸ガスは加圧下で含浸させる。 また、 発泡体成型後に も前記の電子線照射、 γ 線照射、 ラ ジカ ル架橋、 アルカ リ 処 理などを行う こ と ができ る。 For example, when a foam is produced by using a vinylidene fluoride polymer for the polymer foam, the method described in Japanese Patent Publication No. 5777704 can be used. You. That is, the polymer obtained by melt-molding the polymer is partially treated by 1) radiant energy irradiation such as electron beam irradiation and / or beam irradiation, 2) radial cross-linking, or 3) alkali treatment. After cross-linking, a foaming agent can be impregnated with a blowing agent such as a halogen compound or a hydrocarbon, and then foamed by a method such as heating to obtain a foam. Specific examples of the foaming agent include fluorocarbon 134a, supercritical carbon dioxide, and toluene. Fluorine 134a, supercritical carbon dioxide gas is impregnated under pressure. Also, after the foam molding, the above-mentioned electron beam irradiation, γ-ray irradiation, radical crosslinking, alkali treatment And other tasks.
また、 本発明の複合高分子固体電解質を電池の電極間セパ レ一タな どに利用する場合は、 ポ リ マーが架橋された構造を 持つこ とが、 高温において電池の電極間の短絡を抑制する効 果を有 し好ま しいもの と なる。 本発明においては、 高分子架 橋が上記ポ リ マー分子間によ る も のでぁ リ 、 架橋性モ ノ マ一 単位を含まないこ と が好ま しい。  When the composite solid polymer electrolyte of the present invention is used for a separator between electrodes of a battery, etc., the polymer has a cross-linked structure, which may cause a short circuit between the electrodes of the battery at a high temperature. It has the effect of suppressing it, which is favorable. In the present invention, since the polymer bridge is formed by the above-mentioned polymer molecules, it is preferable that the polymer bridge does not contain one unit of a crosslinkable monomer.
も し、 架撟性モ ノ マーをポ リ フ ッ化ビニ リ デン樹脂中に共 存 させて重合架橋する と 、 残存するモ ノ マーの存在に ょ リ 電 極界面での還元重合や、 電解酸化又は電解還元分解が起こ リ 又これ らの反応によ る生成物が副反応を生起 し 、 これによ つ て電流効率低下、 電極界面の構造破壊な どを引 き 起こ し電池 性能低下を招 く こ と にな リ 好ま し く ない。 こ の残存モ ノ マー を除去する こ と は可能であるが、 高分子固体電解質製造工程 が煩雑と な リ 好ま し く ない。 また、 二 の架橋性モ ノ マー虽位 を含有する高分子固体電解質において架橋性モ ノ マー単位の 種類に よ っては、 電気化学的副反応や微量の水分によ って も 加水分解を起こすな ど好ま しく ない。  If a crosslinkable monomer is present in a vinylidene polyfluoride resin and polymerized and crosslinked, reduction polymerization at the electrode interface due to the presence of the remaining monomer or electrolysis may occur. Oxidation or electrolytic reduction decomposition occurs, and the products of these reactions cause side reactions, which lead to a decrease in current efficiency, structural destruction at the electrode interface, etc., and a decrease in battery performance. I don't like it. Although it is possible to remove this residual monomer, it is not preferable because the production process of the solid polymer electrolyte is complicated. In addition, depending on the type of the crosslinkable monomer unit in the polymer solid electrolyte containing two crosslinkable monomer units, hydrolysis is also caused by an electrochemical side reaction or a trace amount of water. It does not like to wake up.
本発明の複合高分子固体電解質に用いるポ リ マーの架撟方 法と しては、 例えば、 電子線、 ガンマ線、 X線、 紫外線、 赤 外線な どの輻射エネルギー照射、 ラ ジカル開始剤を含有させ て反応架橋させる方法、 アルカ リ 処理 (脱 H F ) 処理後生成 する二重結合によ リ 反応架橋させる方法、 な どを用いる こ と ができ る。 Examples of the method for mounting the polymer used in the composite solid polymer electrolyte of the present invention include irradiating radiant energy such as electron beam, gamma ray, X-ray, ultraviolet ray, and infrared ray, and including a radical initiator. Using a double bond generated after the alkali treatment (removal of HF), etc. Can be done.
この う ち電子線照射は量産性に優れ、 工程管理が容易であ るため好ま しい。 電子線照射を用いる場合の架橋条件と して、 この照射量が充分でない場合架橘効果が充分でな く 、 照射量 が多すぎる場合ポ リ マーが分解 して しま い、 また生産性の観 点カゝら も好ま し く ない。 こ の照射量は 5 M r a d 〜 1 0 0 M r a d である こ と が好ま しい。 ま たガンマ線照射を用いる場 合は、 電子線照射での照射線量に準 じた照射線密度及び照射 時間で照射を行 う 。  Of these, electron beam irradiation is preferred because of its excellent mass productivity and easy process control. As the crosslinking conditions when using electron beam irradiation, if the irradiation amount is not sufficient, the citrus effect will not be sufficient, and if the irradiation amount is too large, the polymer will be decomposed. I don't like spots. It is preferable that the irradiation dose be 5 Mrad to 100 Mrad. When gamma-ray irradiation is used, the irradiation is performed at an irradiation line density and irradiation time according to the irradiation dose of electron beam irradiation.
こ の架橋構造形成は、 リ 二アポ リ マー可溶性有機溶剤への 溶解性にょ リ 確認する こ と ができ る。 つま り 、 架橋構造が形 成 されたポ リ マーは可溶性有機溶剤に溶解 しない成分を有 し , 完全には溶解 しないこ と から架橋構造形成を判別する こ と が でき る。 この リ ニアポ リ マー可溶性溶剤は、 ポ リ マー種類に よ リ 異なるため限定されないが、 へキサフ ルォ C プ c: ピ レ ン ー ビニ リ デンフ ロ ラィ ド共重合体の場合、 N — メ チル ピロ リ ド ン、 ク ロ ロ ホノレム 、 ジ ク ロ ロ メ タ ン 、 ジ ク ロ ロ ェ タ ン 、 ァ セ ト ン 、 テ ト ラ ヒ ド ロ フ ラ ン 、 ジ メ チルホノレム ア ミ ド 、 ジ メ チルスルホキシ ド、 ジメ チルァセ トア ミ ドな どの溶剤を用い る こ と ができ る。  The formation of this crosslinked structure can be confirmed by its solubility in a linear polymer-soluble organic solvent. That is, the polymer having the crosslinked structure formed therein has a component that is insoluble in the soluble organic solvent, and is not completely dissolved, so that the formation of the crosslinked structure can be determined. This linear polymer-soluble solvent is not limited because it differs depending on the type of the polymer. However, in the case of hexafluoro-c-c: pyrene-vinylidene-denofluoride copolymer, N-methylpyrrole Redon, Chlorohonolem, Dichloromethan, Dichlorethane, Aceton, Tetrahydrofuran, Dimethyltylonolem Amid, Dimethylsulfoxy Solvents such as dimethyl chloride and dimethyl acetate can be used.
本発明の複合高分子固体電解質のポ リ マーマ ト リ ッ ク スに は、 上で述べた架橋ポ リ マーセグメ ン ト と と もに未架橋ポ リ マ ーセ グメ ン ト を含んでぉ リ 、 架橋ポ リ マ 一セ グメ ン ト は該 可溶性溶剤に溶解せず、 未架橘ポ リ マーセ グメ ン ト は該溶剤 に溶解する こ と によ リ 判別する こ と ができ る。 この判別方法 と して、 た と えばフ ッ化ビニ リ デン系ポ リ マーの場合、 溶剤 と して N —メ チルピロ リ ドンを用いて浸漬させ、 1 0 0 °Cに 2 時間保持 して未架橋成分を溶解させ、 架橋ポ リ マーからな る固形分を溶剤から 引き上げ、 アセ ト ン、 メ タ ノ ールで洗浄 乾燥後のポ リ マー重量 (架橋ポ リ マーセ グメ ン ト) か ら架橋 ポ リ マ一セグメ ン ト の重量比を求める こ と ができ る。 本発明 の高分子固体電解質において、 こ の架橋ポ リ マーセ グメ ン ト の重量比、 すなわち (架橋ポ リ マーセグメ ン ト重量) Z (架 橋ポ リ マーセ グメ ン ト +未架撟ポ リ マ一セ グメ ン ト) が 0 . 2 〜 0 . 8 である こ と が好ま しい。 この重量比力; 0 . 2 未満 では、 架橋ポ リ マーセ グメ ン ト の効果が低下する。 本発明の 複合高分子固体電解質のポ リ マーマ ト リ ッ ク ス に架撟ポ リ マ 一セ グメ ン ト と と もに含まれる未架橋ポ リ マー グ メ ン ト は 後で述べる電池形成において固体電解質と電極の密着性を高 める効果を持ち、 これによ つて電池構造体の強度および電池 性能が高め られる。 架橘ポ リ マ一セグメ ン 卜 の重量比が 0 . 8 を上回る場合では未架橘ポ リ マ一セグメ ン ト の効果が乏 し く な リ 、 電池性能も低下する。 The polymer matrix of the composite solid polymer electrolyte of the present invention includes an uncrosslinked polymer segment in addition to the crosslinked polymer segment described above, The crosslinked polymer segment is Undissolved polymer segments that are not dissolved in a soluble solvent can be discriminated by dissolving in the solvent. As a method for this determination, for example, in the case of a vinylidene fluoride polymer, immersion is carried out using N-methylpyrrolidone as a solvent and kept at 100 ° C for 2 hours. The uncrosslinked component is dissolved, the solid content of the crosslinked polymer is pulled up from the solvent, washed with acetone and methanol, and the polymer weight after drying (crosslinked polymer segment) is calculated. The weight ratio of crosslinked polymer segments can be determined. In the polymer solid electrolyte of the present invention, the weight ratio of this crosslinked polymer segment, that is, (weight of crosslinked polymer segment) Z (bridge polymer segment + unbridged polymer segment) (Segment) is preferably from 0.2 to 0.8. When the weight ratio is less than 0.2, the effect of the crosslinked polymer segment is reduced. The uncrosslinked polymer that is included in the polymer matrix of the composite polymer solid electrolyte of the present invention together with the polymer segment is used in the battery formation described later. This has the effect of increasing the adhesion between the solid electrolyte and the electrode, thereby increasing the strength of the battery structure and battery performance. When the weight ratio of the Kachibana polymer segment is more than 0.8, the effect of the non-Kachibana polymer segment becomes poor, and the battery performance also decreases.
本発明の固体電解質の形状と してシー ト形状、 球状、 ファ ィ バー形状な ど種々 の形態が可能である。  Various shapes such as a sheet shape, a spherical shape, and a fiber shape are possible as the shape of the solid electrolyte of the present invention.
本発明の複合高分子固体電解質をシー ト状と して、 例えば 非水系電池のセパレ一ターと して使用する場合、 その膜厚は 使用する電池の種類にょ リ 適性の範囲が異なるので一概には 限定される も のではないが、 一般的には 5 〜 5 0 0 μ m程度 のものが好ま しい。 5 μ m以下では強度が不足 し、 また電池 を組みたてた と き に電極間でショ ー ト しゃすく なる。 また 5 0 Ο μ πι以上では膜全体の実効電気抵抗が高く な リ すぎる う え、 電池と しての体積当た リ のエネルギー密度が小さ く なる £ 一方、 非水系電解液を発泡体に含浸させる工程で、 使用す るポ リ マー発泡体と電解液にも よ るが、 原料シー ト の面積が 含浸前 と 比べて著 し く 膨張または収縮する こ と があ り 作製ェ 程上問題 と なる こ と がある。 すなわち こ の現象はシ一 ト を連 続的に非水系電解液で含浸するプロ セ スにおいて送 リ 速度の 設定が困難になるばかり でな く 、 電池と して組み立てたのち に含浸する と応力が発生 して電解質のひび割れが起こ る 、 電 池と して使用 している間に電解液が蒸発または流出 した場合 固体電解質の収縮によ って短絡がおこ る危険性もある、 など の問題があった。 The composite polymer solid electrolyte of the present invention is made into a sheet form, for example, When used as a separator for non-aqueous batteries, the film thickness is not necessarily limited because the range of suitability differs depending on the type of battery used, but it is generally 5 to 5 Thicknesses of about 0 μm are preferred. If it is less than 5 μm, the strength will be insufficient, and shorts will occur between the electrodes when the battery is assembled. The example will effective electrical resistance of the entire film is too Li a high at 5 0 Ο μ πι above, the energy density of Li per volume of the battery Naru rather small £ Meanwhile, impregnated with a nonaqueous electrolyte solution in a foam Depending on the polymer foam and electrolyte used, the area of the raw sheet may expand or contract significantly compared to before the impregnation, which is a problem in the production process. It can be. In other words, this phenomenon not only makes it difficult to set the feed rate in the process of continuously impregnating the sheet with a non-aqueous electrolyte, but also impairs the impregnation after assembling as a battery. Problems such as cracking of the electrolyte due to the occurrence of electrolytes, and the danger of short-circuiting due to the shrinkage of the solid electrolyte if the electrolyte evaporates or flows out while the battery is used. was there.
この問題は、 ポ リ マ一発泡体シ一 ト を電子線照射または Ζ および延伸する こ と によって、 ポ リ マー発泡体シー ト が、 電 子照射によって形成された架橘構造を有する架橋ポ リ マーセ グメ ン ト を包含する構造と 、 該ポ リ マー発泡体シー ト が延伸 された形状である構造と から選ばれる少な く と も 1 つの構造 を有する よ う にすれば、 電解液を含浸させて も面積の変化が 小さ い高分子固体電解質を作製する こ とができ る。 This problem is caused by irradiating or stretching the polymer foam sheet so that the polymer foam sheet has a crosslinked polymer having a cross-linked structure formed by electron irradiation. The electrolyte impregnated with at least one structure selected from a structure including a mersegment and a structure in which the polymer foam sheet has an elongated shape. Even if the area changes A small polymer solid electrolyte can be produced.
本発明のシ一 ト形状の高分子固体電解質の製造に用いられ るポ リ マー発泡体は、 発泡倍率が大きい場合には電解液の含 浸によ って面積が収縮する性質があるが、 電子線照射によつ て こ の収縮を抑える こ とができ る。 また発泡倍率が小さ い場 合、 非水系電解液含浸によ って膨張する性質を有する。 そ こ で、 発泡倍率、 延伸処理、 電子線照射量を選ぶこ と によ って 非水系電解液を含浸させる際の膨張収縮を調整する こ と がで き る。  The polymer foam used for producing the sheet-shaped polymer solid electrolyte of the present invention has a property that the area shrinks due to the impregnation of the electrolytic solution when the expansion ratio is large, This contraction can be suppressed by electron beam irradiation. When the expansion ratio is small, it has the property of expanding when impregnated with a non-aqueous electrolyte. Thus, the expansion and shrinkage when impregnating with the non-aqueous electrolyte can be adjusted by selecting the expansion ratio, the stretching treatment, and the amount of electron beam irradiation.
こ こ で用いるポ リ マ ー発泡体の延伸方法については特に限 定はされないが、 例えば日 本化学会編、 化学便覧応用化学編 I (プ ロ セ ス編) p . 6 4 3 、 丸善(株)発行、 1 9 8 6 年に 記されている よ う な一軸、 逐次二軸、 同時二軸な ど各種の公 知の方法を採用する こ と ができ る。  The method of stretching the polymer foam used here is not particularly limited. For example, the Chemical Society of Japan, Chemical Handbook Applied Chemistry I (Process) p. 643, Maruzen ( Various publicly known methods, such as single axis, sequential two axis, and simultaneous two axis as described in 1986, can be adopted.
一般に延伸をかけたポ リ マーは、 電解液含浸でポ リ マーが 軟化する際に、 元の大き さ に戻ろ う とする性質がある。 これ を利用 して、 あ らかじめ適当な倍率で二軸方向に引き延ばし ておけば、 膨潤によ る面穫増大と 相殺させる こ と で電解液含 浸によ る面積増大を最小限にと どめる こ と ができ る。 また一 軸延伸 したポ リ マ一は電解液含浸でポ リ マーが軟化する際に 延伸方向には収縮、 延伸方向に対 して垂直な方向には膨張す る性質がある。 ポ リ マ一は含浸によ って縦横と もに長さが変 化するが、 あ らかじめ適当な方向 と倍率で一軸延伸 してお く こ と によって、 面積変化を抑制する こ と ができ る。 Generally, a stretched polymer tends to return to its original size when the polymer is softened by impregnation with an electrolyte. If this is used and stretched in the biaxial direction at an appropriate magnification in advance, the increase in surface area due to electrolyte impregnation can be minimized by offsetting the increase in surface area due to swelling. You can stop it. The uniaxially stretched polymer has the property of contracting in the stretching direction and expanding in the direction perpendicular to the stretching direction when the polymer is softened by impregnation with the electrolyte. The length of the polymer changes both vertically and horizontally due to impregnation, but it must be stretched uniaxially in an appropriate direction and magnification in advance. As a result, the change in area can be suppressed.
以上述べた電子線照射と延伸は単独あるいは組み合わせて 用いる こ とができ 、 電子線照射量、 延伸倍率は発泡体ポ リ マ 一への電解液含浸量と のバラ ンス で決定される。  The above-described electron beam irradiation and stretching can be used alone or in combination. The amount of electron beam irradiation and the stretching ratio are determined by the balance with the amount of the electrolyte impregnated into the foam polymer.
電子線照射および/または延伸をおこ なって得られたシ一 ト形状発泡体ポ リ マーは、 非水系電解液の含浸工程後、 電池 の固体電解質と して用いる に充分な伝導度を有する状態、 す なわちイ オン伝導度 と して 1 X 1 0— a S Z c m以上を有する 場合において、 含浸前の面積と比較 して 5 0 %から 2 0 0 % の 囲、 好ま し く は 7 0 %力 ら 1 7 0 %、 さ ら に好ま し く は 9 0 %カゝら 1 5 0 %に範囲である こ と が望ま しい。 以上の方 法によ り 、 電解液の含浸前後の寸法変化の小さ い、 シー ト形 状の高分子固体電解質が得 られる。 The sheet-shaped foam polymer obtained by electron beam irradiation and / or stretching has a sufficient conductivity to be used as a solid electrolyte of a battery after the impregnation step with a non-aqueous electrolyte. That is, when the ion conductivity is 1 X 10— a SZ cm or more, the area is 50% to 200% compared to the area before impregnation, preferably 70%. Preferably, it is in the range of 170%, more preferably 90% and 150%. According to the above method, a sheet-shaped solid polymer electrolyte having a small dimensional change before and after the impregnation with the electrolytic solution can be obtained.
本発明において使用 される非水系電解液は、 通常電解質を 非水系電解質溶媒に溶解 した溶液である。 ただ し 、 電解質そ のものが流動性を有 し、 液状の性質を有する場合、 電解質溶 媒な しで、 電解質単独で非水系電解液と して使用する こ と が でき る。 次に、 本発明において使用 される非水系電解液に含有され る電解質と しては、 無機塩、 有機塩のいずれも使用可能であ る。 この例と しては、 テ ト ラ フルォロホ ウ酸、 過塩素酸、 へ キサフ ルォロ リ ン酸、 硝酸、 硫酸、 リ ン酸、 フ ッ化水素酸、 塩素酸、 臭素酸、 ヨ ウ素酸な どの無機酸、 ト リ フルォロ メ タ ンスルホ ン酸、 フゾレオ 口 プ ロ ピルス ノレホ ン酸、 ビス ( ト リ フ ルォロ メ タ ン ス ノレホ ニル) イ ミ ド酸、 酢酸、 ト リ フノレオ 口酢 酸、 プロ ピオン酸な どの有機酸の塩が挙げられる。 さ らにこ れらの塩の混合物も電解質と して使用可能である。 こ の塩の 電解質カチオン と してアルカ リ 金属、 アルカ リ 土類金属、 遷 移金属、 希土類金属、 アンモニゥムイ オンな どを単独または 混合状態で用いる こ と ができ る。 このカチオン種は使用する 用途によって異なる。 たと えば、 本発明の高分子固体電解質 を用いて リ チウム電池と して利用する場合は、 添加する電解 質と して リ チウム塩を用いる こ と が好ま しい。 この例 と して は L i C 】 、 L i B r L i S C N L i C I O L i N 03 L i ( C 6H 5)4 B L i ( C 5 H H C = C H 2) 4 B L i ( C 4 H 9— H C = C H 2) 4 B L i ( C 6H S— ( C H 2) 3 — H C = C H2)4 B L i 2 B i o C 1 ! 0 , L i 2 B 12 C l 12 L i 2 B , 2 H , 2 , L i C F a S O 3 , L i C 4 F 9 S 03 L i C 6 F , a S O 3 , L i C 8 F , 7 S O a , L i C F 3 C 02 L i NThe non-aqueous electrolyte used in the present invention is usually a solution in which an electrolyte is dissolved in a non-aqueous electrolyte solvent. However, when the electrolyte itself has fluidity and has a liquid property, the electrolyte alone can be used as a non-aqueous electrolyte without an electrolyte solvent. Next, as the electrolyte contained in the non-aqueous electrolyte used in the present invention, either an inorganic salt or an organic salt can be used. Examples include tetrafluoroboronic acid, perchloric acid, hexafluorophosphoric acid, nitric acid, sulfuric acid, phosphoric acid, hydrofluoric acid, chloric acid, bromic acid, and iodic acid. Which inorganic acids, trifluormethane sulphonic acid, fuzoreo propyl phenolic olefonic acid, bis (trifluoromethane snolefonyl) imidic acid, acetic acid, trifnoreo acetic acid, Salts of organic acids such as pionic acid may be mentioned. Furthermore, mixtures of these salts can be used as electrolytes. Alkali metals, alkaline earth metals, transition metals, rare earth metals, ammonium ions and the like can be used alone or in a mixed state as the electrolyte cation of this salt. The cation species depends on the intended use. For example, when the polymer solid electrolyte of the present invention is used as a lithium battery, it is preferable to use a lithium salt as the electrolyte to be added. Examples of this are L i C], L i B r L i SCNL i CIOL i N 0 3 L i (C 6 H 5 ) 4 BL i (C 5 HHC = CH 2 ) 4 BL i (C 4 H 9 — HC = CH 2 ) 4 BL i (C 6 H S — (CH 2 ) 3 — HC = CH 2 ) 4 BL i 2 B io C 1! 0 , L i 2 B 12 C l 12 L i 2 B , 2 H, 2 , L i CF a SO 3, L i C 4 F 9 S 0 3 L i C 6 F, a SO 3, L i C 8 F, 7 SO a, L i CF 3 C 0 2 L i N
( C F 3 C 02) 2 L i N ( C F 3 S O 2) 2 , L i N ( C H 3 S 02) 2 L i A s F L i B F " L i P F 6 L i O O C ( C F 2) 3 C O O L i L i S O 3 ( C F 2) 3 S O 3 L i 等を挙 げる こ とができ る。 特に、 本発明を リ チウム二次電池の固体 電解質と して利用する場合、 正負極間の電位差が大き く 、 広 い電位領域を使用するため、 電気化学的に安定な リ チウム塩 が好ま しく 、 この例 と して、 C F 3 S 〇 3 L i C . F 9 S O 3 L i な どのフ ッ素スルホン酸 リ チウム塩、 ( C F 3 S 〇 2) 2N L i に代表されるスルホニルイ ミ ド リ チウム塩、 L i B F 4 L i P F 6 L i C 1 04 L i A s F 6等を挙げる こ とがで さ る。 (CF 3 C 0 2 ) 2 L i N (CF 3 SO 2 ) 2, L i N (CH 3 S 0 2 ) 2 L i A s FL i BF "L i PF 6 L i OOC (CF 2 ) 3 COOL i L i SO 3 (CF 2 ) 3 SO 3 L i and the like. In particular, when the present invention is used as a solid electrolyte of a lithium secondary battery, an electrochemically stable lithium salt is preferable because the potential difference between the positive and negative electrodes is large and a wide potential region is used. , as an example, CF 3 S 〇 3 L i C. F 9 SO 3 L i of how full Tsu-containing sulfonic acid lithium salt, Suruhonirui Mi typified by (CF 3 S 〇 2) 2 NL i de lithium salts, Ru is at L i BF 4 L i PF 6 L i C 1 0 4 L i a s F this transgression include 6 or the like.
ポ リ 発泡体に含浸させる電解液の電解質溶媒と して、 エチ レンカーボネー ト 、 プロ ピレンカーボネー ト 、 ブチ レン カーボネー ト な どの環状カーボネー ト化合物、 ジメ チルカ一 ボネ一 ト 、 ジェチルカ一ボネー ト 、 メ チルェチルカ一ボネー ト などの鎖状カーボネー ト化合物、 テ ト ラ ヒ ドロ フ ラ ン、 メ チルテ ト ラ ヒ ドロ フ ラ ン、 な どのエーテル化合物、 γ —ブチ ノレラ ク ト ン、 プロ ピオラ ク ト ン、 酢酸メ チルな どのエ ステル 化合物、 ァセ ト ニ ト リ ノレ 、 プロ ピオ二 ト リ ノレな どの二 ト リ ノレ 化合物などの低分子有機化合物、 ジグライ ムゃテ ト ラ グラィ ムなどのオ リ ゴエチ レンォキシ ドおよびこれらの誘導体を用 レ、る こ とができ る。 これらの う ち力一ボネ一 トイヒ合物、 およ びエステル化合物は電気化学的安定性に優れるため リ チウム 電池に好ま しい。 また、 ポ リ エチ レンォキシ ド、 ポ リ プロ ピ レンォキシ ドな どの脂肪族ポ リ エーテル、 ポ リ ビニデンフ ロ ラ イ ド、 ビニ リ デンフ ロ ラ ィ ドーへキサフルォロ プロ ピ レン 共重合体などのフ ッ素系ポ リ マ一、 ポ リ アク リ ロニ ト リ ル、 脂肪族ポ リ エステル、 脂肪族カーボネー トなどのポ リ マーを 上記の電解質溶媒に溶解した溶液を電解質溶媒と して利用す る こ と もでき る。 本発明の複合高分子固体電解質を得る有利 な方法は、 以上説明 した電解質およびその溶媒を、 独立気泡 を含むポ リ マ一発泡体に含浸させる こ と であるが、 この際こ れに追加 して他の電解質溶媒を添加する こ と ができ る。 また 前記したよ う に、 本発明において、 電解質溶媒を使用せず液 状電解質のみを電解液と して用いる こ と もでき る。 Cyclic carbonate compounds such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, getyl carbonate, and the like are used as electrolyte solvents for the electrolytic solution to be impregnated into the polyfoam. Chained carbonate compounds such as tilethyl carbonate, ether compounds such as tetrahydrofuran, methyltetrahydrofuran, etc., γ-butanolactone, propiolactone, Ester compounds such as methyl acetate, low molecular weight organic compounds such as acetonitrine and propionitol, and oligomers such as diglyme and trigram Lenoxide and their derivatives can be used. Among these compounds, the carboxylic compounds and the ester compounds are preferable for lithium batteries because of their excellent electrochemical stability. In addition, aliphatic polyethers such as polyethylene oxide, polypropylene oxide, and polyvinylidene fluoride Fluoride-based polymers such as Ride, vinylidenefluoride hexafluorene propylene copolymer, polyacrylonitrile, aliphatic polyester, aliphatic carbonate, etc. A solution obtained by dissolving this polymer in the above-mentioned electrolyte solvent can also be used as the electrolyte solvent. An advantageous method for obtaining the composite solid polymer electrolyte of the present invention is to impregnate the above-described electrolyte and its solvent into a polymer foam containing closed cells. Other electrolyte solvents can be added. Further, as described above, in the present invention, only a liquid electrolyte can be used as an electrolyte without using an electrolyte solvent.
本発明の複合高分子固体電解質は、 た と えば、 ポ リ マー発 泡体を、 電解質をその溶媒に溶解 して得た溶液に適当な温度 で浸漬 して、 該ポ リ マーに電解質と電解質溶媒を含浸させる こ と によ リ 製造する こ と ができ る。 この方法は操作的に簡易 であるため好ま しい方法である。  The composite polymer solid electrolyte of the present invention is obtained, for example, by immersing a polymer foam in a solution obtained by dissolving an electrolyte in the solvent at an appropriate temperature, and then adding the electrolyte and the electrolyte to the polymer. It can be manufactured by impregnating with a solvent. This method is preferred because it is simple in operation.
本発明においては、 上記 したよ う に、 ポ リ マー発泡体が架 橋ポ リ マ一セグメ ン ト を有する こ と によ リ 、 強度、 高温安定 性に更に優れた複合高分子固体電解質を得る こ と ができ る。 本発明において榭脂の架橘は必ずしも必要ではないが、 架橘 によって高分子固体電解質中の電解質と電解質溶媒の含量を 広い範囲で選択でき る。 と く に電解質と電解質溶媒の含量が 高い場合においても、 架橘ポ リ マ一セグメ ン ト を有するポ リ マー発泡体を用いる こ と によ リ 固体状を保つこ と ができ高分 子固体電解質と して使用でき るため好ま しい。 In the present invention, as described above, the composite polymer solid electrolyte having more excellent strength and high-temperature stability can be obtained by the fact that the polymer foam has a bridge polymer segment. be able to. In the present invention, the resin is not necessarily required, but the content of the electrolyte and the electrolyte solvent in the polymer solid electrolyte can be selected in a wide range depending on the resin. In particular, even when the content of the electrolyte and the electrolyte solvent is high, the solid state can be maintained by using the polymer foam having the Kachibana polymer segment. It is preferable because it can be used as a solid electrolyte.
含浸温度は、 上記 した電解質および電解質溶媒の組み合わ せや、 浸漬する時間によって変更でき る こ と はもちろんであ るが、 室温程度の低温では長時間の含浸でも固体ポ リ マ一マ 卜 リ ッ ク スへの含入が不十分であるため得られた高分子固体 電解質の伝導度が低く 、 また融点に近い高温ではポ リ マー発 泡体が変形または電解液に溶解 して しま う ため、 含浸工程は 3 5 °C以上 2 0 0 °C以下、 望ま し く は 5 0 °C以上 1 8 0 °C以 下、 さ らに望ま し く は 6 0 °C以上 1 5 0 °C以下でポ リ マーが 電解液で膨潤 し得る温度範囲で行われる。  The impregnation temperature can of course be changed depending on the combination of the electrolyte and the electrolyte solvent described above and the immersion time. However, at a low temperature of about room temperature, even when the impregnation is performed for a long time, the solid polymer trimmer is used. The resulting solid polymer electrolyte has low conductivity due to insufficient inclusion in the gas, and the polymer foam deforms or dissolves in the electrolyte at high temperatures close to the melting point. The impregnation step is 35 ° C or more and 200 ° C or less, preferably 50 ° C or more and 180 ° C or less, and more preferably 60 ° C or more and 150 ° C or less This is performed in a temperature range where the polymer can swell with the electrolyte.
また、 ポ リ マ一発泡体に非水系電解液を含浸する方法と し て、 ポ リ マー発泡体の膨潤剤を含有する電解質の非水系電解 質溶媒溶液にポ リ マー発泡体を浸潰 して該発泡体に効率良 く 混合溶液を含浸、 拡散させる方法がある。 上記の方法を用い る と 、 含浸を比較的低い温度で行った り 、 含浸時間の短縮を 図る こ とができ る。 この際、 ポ リ マー発泡体を実質的に溶解 しないよ う に溶液組成、 温度、 含浸時間な どの処理条件を選 んで含浸を行う。  As a method of impregnating a polymer foam with a non-aqueous electrolyte, the polymer foam is immersed in a non-aqueous electrolyte solvent solution of an electrolyte containing a polymer foam swelling agent. Thus, there is a method in which the foam is efficiently impregnated with the mixed solution and diffused. By using the above method, the impregnation can be performed at a relatively low temperature or the impregnation time can be shortened. At this time, impregnation is performed by selecting treatment conditions such as solution composition, temperature, and impregnation time so as not to substantially dissolve the polymer foam.
更に、 上記のよ う に、 ポ リ マ一発泡体の膨澗剤を含有する 電解質の非水系電解質溶媒溶液を用いて、 ポ リ マー発泡体に 非水系電解液の含浸を行った際には、 例えば以下のよ う な方 法で、 得られた複合高分子固体電解質から膨潤剤の少な く と も 1 部を除去する こ と ができ る。 即ち、 膨潤剤が電解質溶媒 に比較して低沸点の化合物である場合、 複合高分子固体電解 質に滅圧および または加熱処理を施すこ と によ リ 、 沸点の 差によ って選択的に膨潤剤を除去する こ と ができ る。 こ の際 膨潤剤の除去量は処理条件 (減圧度、 温度、 時間) によって 調節する こ とができ る。 また、 膨潤剤の沸点が電解質溶媒の 沸点に近い場合、 電解質溶媒も高分子固体電解質から同時に 除去される。 こ の際、 電解質溶媒含量が低い高分子固体電解 質に電解質溶媒を追加で含浸 して高分子固体電解質と して用 いる こ と ができ る。 また、 膨潤剤 と電解質の非水系溶媒溶液 を含浸 したポ リ マー発泡体を、 更に膨潤剤を含ま ない電解質 の非水系溶媒溶液に浸漬して、 膨潤剤の少な く と も一部を電 解質の非水系溶媒溶液で置換する こ と もでき る。 この方法で は、 置換する電解液または非水系溶媒の溶媒量、 温度、 時間 によ って複合高分子固体電解質に残存する膨潤剤量を調節す る こ と ができ る。 さ らに膨潤剤含量を低減する ためには、 複 数回上記の溶媒置換処理を行 う こ とが好ま しい。 Further, as described above, when a polymer foam is impregnated with a non-aqueous electrolyte using a non-aqueous electrolyte solvent solution of an electrolyte containing a foaming agent for the polymer foam, For example, at least one part of the swelling agent can be removed from the obtained composite solid polymer electrolyte by the following method. That is, the swelling agent is an electrolyte solvent If the compound has a lower boiling point than that of the swelling agent, the swelling agent can be selectively removed by subjecting the composite polymer solid electrolyte to decompression and / or heat treatment, and by a difference in boiling point. Can be done. At this time, the removal amount of the swelling agent can be adjusted depending on the processing conditions (degree of decompression, temperature, time). When the boiling point of the swelling agent is close to the boiling point of the electrolyte solvent, the electrolyte solvent is simultaneously removed from the solid polymer electrolyte. In this case, a solid polymer electrolyte having a low electrolyte solvent content can be additionally impregnated with an electrolyte solvent to be used as a solid polymer electrolyte. In addition, the polymer foam impregnated with the swelling agent and the non-aqueous solvent solution of the electrolyte is further immersed in the non-aqueous solvent solution of the electrolyte not containing the swelling agent, and at least a part of the swelling agent is electrolyzed. It can be replaced with a non-aqueous solvent solution of high quality. In this method, the amount of the swelling agent remaining in the composite solid polymer electrolyte can be adjusted depending on the amount of the solvent to be replaced or the amount of the nonaqueous solvent, temperature and time. In order to further reduce the content of the swelling agent, it is preferable to perform the above-mentioned solvent replacement treatment a plurality of times.
前記の膨潤剤は電気化学的に反応 しない分子である こ とが 好ま し く 、 この場合そのまま電解質溶媒と して高分子固体電 解質に含有させて用いる こ と ができ る。 電気化学的に反応す る分子の場合、 含浸後高分子固体電解質から これらの分子を 上記の方法や抽出、 蒸留な どの方法で除去して用いられる。 本発明の複合高分子固体電解質における膨潤剤含量は高分子 固体電解質全体の 5重量。/。以下である こ と が好ま しい。 上記の方法の具体例と して、 ポ リ フ ッ化ビニ リ デンおよび フ ッ化ビニ リ デン一 へキサフルォロブ口 ピレ ン共重合体など のフ ッ化ビニ リ デン系ポリ マ 一発泡体を使用する場合にポリ マ ー発泡体の膨潤剤を含有する電解質の非水系溶媒溶液を用 いる含浸方法について説明する。 ポ リ マ ー発泡体の膨潤剤と して例 えばァセ ト ン 、 メ チルェチルケ ト ンな どのケ ト ン化合 物、 テ ト ラ ヒ ドロ フ ラ ン、 ジォキサンなどの環状化合物、 酢 酸ェチル、 酢酸ブチルな どのエ ステル化合物な どを用い、 こ の膨潤剤を含有する電解質の非水系溶媒溶液を調製 し、 これ にポ リ マ ー発泡体を浸漬 して こ の溶液をポ リ マー発泡体に含 浸させる方法、 予めポ リ マ 一発泡体の膨潤剤をポ リ マ 一発泡 体に含浸させた後電解質および非水系溶媒を含浸させる方法 のいずれも可能である。 こ のポ リ マーの膨潤剤又は膨潤剤を 含む電解液をポ リ マー発泡体に含浸させる含浸条件と しては 含浸温度が室温以上 1 0 0 °c以下でぁ リ 、 含浸温度で膨潤剤 及び 又は電解質溶媒の蒸気圧が比較的高い場合には密閉 し た容器を用い常圧または加圧下で行う。 電解質溶媒にェチ レ ンカ一ボネ一 ト 、 プロ ピレ ンカーボネ一 ト などの環状カーボ ネー トゃ y—ブチロ ラ ク ト ンな どの環状エステルを用いれば これらが高沸点であるため、 低沸点の膨潤剤を上記した方法 によ リ 除去する こ と ができ る。 以上のよ う に して本発明の複 合高分子固体電解質を製造する こ と ができ るが、 本発明の複 合高分子固体電解質の製造方法はこれに限定される も のでな レゝ The swelling agent is preferably a molecule that does not react electrochemically. In this case, the swelling agent can be used as it is as an electrolyte solvent in a solid polymer electrolyte. In the case of electrochemically reacting molecules, these molecules are removed from the solid polymer electrolyte after impregnation by the above-mentioned method, extraction, distillation or the like before use. The swelling agent content in the composite solid polymer electrolyte of the present invention was 5% by weight of the whole solid polymer electrolyte. /. It is preferred that: As a specific example of the above method, use is made of a vinylidene fluoride-based polymer foam such as polyvinylidene fluoride and vinylidene fluoride-hexafluorob-opened pyrene copolymer. In this case, an impregnation method using a non-aqueous solvent solution of an electrolyte containing a swelling agent for a polymer foam will be described. Examples of swelling agents for the polymer foam include ketone compounds such as acetone and methylethyl ketone; cyclic compounds such as tetrahydrofuran and dioxane; ethyl acetate; A non-aqueous solvent solution of the electrolyte containing the swelling agent is prepared using an ester compound such as butyl acetate, and a polymer foam is immersed in the solution, and the solution is added to the polymer foam. And a method of impregnating the polymer and the foam with a swelling agent of the polymer and the electrolyte and then impregnating the electrolyte and the non-aqueous solvent. The impregnation conditions for impregnating the polymer foam with the polymer swelling agent or the electrolytic solution containing the swelling agent are as follows: the impregnation temperature is from room temperature to 100 ° C .; If the vapor pressure of the electrolyte solvent is relatively high, use a closed container at normal pressure or under pressure. If a cyclic ester such as ethylene carbonate or propylene carbonate is used as the electrolyte solvent, a cyclic ester such as y-butyrolactone has a high boiling point, and thus has a low boiling point swelling. The agent can be removed by the method described above. As described above, the composite polymer solid electrolyte of the present invention can be produced, but the method of producing the composite polymer solid electrolyte of the present invention is not limited to this. Ray
本発明の複合高分子固体電解質は、 イオン伝導度が高く 、 柔軟性、 加工性、 機械的強度に優れ、 電気化学的安定性が高 いため、 リ チウム電池、 リ チウム二次電池、 リ チウムイオン 二次電池、 空気電池、 光化学電池な どの電池、 電気二重層キ ヤ ノ シタ一、 電気化学センサ一、 エ レク ト 口 ク ロ ミ ッ ク表示 素子、 など種々 の電気化学装置に応用可能である。  The composite solid polymer electrolyte of the present invention has high ionic conductivity, excellent flexibility, processability, and mechanical strength, and high electrochemical stability. Therefore, the lithium battery, the lithium secondary battery, and the lithium ion It can be applied to various electrochemical devices such as batteries such as secondary batteries, air batteries, photochemical batteries, electric double-layer canisters, electrochemical sensors, and electrochromic display devices at the outlet.
これら電気化学装置は、 少く と も 2以上の電極が本発明の 複合高分子固体電解質を介 して配設されて形成される。  These electrochemical devices are formed by arranging at least two or more electrodes via the composite solid polymer electrolyte of the present invention.
次に、 本発明の複合高分子固体電解質を用いた電気化学装 置の代表的な例と しての電池について説明する。 本発明の電 池は本発明の複合高分子固体電解質を介 して、 正極および負 極が配設された構造を有する ものである。  Next, a battery as a typical example of an electrochemical device using the composite solid polymer electrolyte of the present invention will be described. The battery of the present invention has a structure in which a positive electrode and a negative electrode are provided via the composite solid polymer electrolyte of the present invention.
たと えば電池が リ チウム電池の場合、 高分子固体電解質中 に リ チ ウム塩が含有される こ と が好ま し く 、 電解質と して リ チウム塩を用いる こ と が好ま しい。 この際、 電池の正極、 お よび負極と して、 リ チ ウムの吸蔵放出が可能な物質を用いる こ の正極物質と して、 負極に対して高い電位を有する材料を 用いる。 こ の例と しては、 L i !-^ C o O z, L i N i O 2 L i , -XM n 204 , L i , -,M O 2 ( 0 く x く 1 、 Mは C o 、 N i 、 M n , F e の混合体を表す。 ) 、 L i 2-yM n 204 ( 0 < y < 2 ) 、 結晶性 L i ,— ,V 2O s、 アモルフ ァ ス状 L i 2-y V 2 O s ( 0 < y < 2 ) 、 L i t. 2 - , · N b 2 O 5 ( 0 < x ' < 1 - 2 ) な どの酸化物、 L i ^i T i S L i o S 2、 L i 3 _ , N b S e 3 ( 0 < z < 3 ) な どの金属カルコ ゲナイ ド、 ポリ ピロ一ル、 ポ リ チォフ ェ ン、 ポ リ ア二 リ ン、 ポ リ アセン誘導体、 ポ リ アセチ レ ン、 ポ リ チェ二 レン ビニ レ ン、 ポ リ ア リ レン ビニ レン、 ジチオール锈導体、 ジスルフ ィ ド誘導体な どの有機化合物を挙げる こ と ができ る。 For example, when the battery is a lithium battery, the solid polymer electrolyte preferably contains a lithium salt, and it is preferable to use a lithium salt as the electrolyte. At this time, a material capable of inserting and extracting lithium is used as the positive electrode and the negative electrode of the battery. A material having a higher potential than the negative electrode is used as the positive electrode material. Examples of this are L i!-^ C O Oz, L i N i O 2 L i, -X M n 204, L i,-, MO 2 (0 x x 1, where M is C o, represents the mixture of n i, M n, F e ), L i 2 -. y M n 2 0 4 (0 <y <2), crystalline L i, -, V 2 O s, Amorufu § L i 2 - y V 2 O s (0 <y <2), L i t . 2-, Nb 2 O 5 (0 < x '<1 - 2) which oxide is a, L i ^ i T i SL io S 2, L i 3 _, N b S e 3 (0 <z <3) of any metal chalcogenide Genai de, poly pyromellitic one , Polythiophene, polyaniline, polyacene derivative, polyacetylene, polychenylene vinylene, polyylene vinylene, dithiol conductor, disulphide Organic compounds such as derivatives can be mentioned.
また負極と して、 上記正極に対 して低い電位を有する材料 を用いる。 この例と して、 金属 リ チウム、 ァノレ ミ . リ チウム 合金、 マ グネシウム . アル ミ · リ チウム合金な どの金属 リ チ ゥム、 A 1 S b 、 M g 2 G e 、 N 1 S 1 2な どの金属間化合物 . グラ フ アイ ト 、 コ 一 ク ス 、 低温焼成高分子などの炭素系材料. S n M系酸化物 (Mは S i , G e , P b を表す) 、 S i , As the negative electrode, a material having a lower potential than the above positive electrode is used. As an example, metal lithium and Anore Mi. Lithium alloys, magnesium. Aluminum-Lithium alloy of any metal Li Ji © beam, A 1 S b, M g 2 G e, N 1 S 1 2 Intermetallic compounds such as graphite, carbon, low-temperature fired polymers, and other carbon-based materials. SnM-based oxides (M represents Si, Ge, Pb), Si,
' y O I ( M ' は W , S n , P b , B な どを表す) の複合酸 化物、 酸化チタ ン、 酸化鉄な どの金属酸化物の リ チウ ム固溶 体、 L i 7M n N 4、 L 1 3 F e N 2 , L i 3-, C o , N、 'y OI (M' represents W, Sn, Pb, B, etc.) complex oxide, titanium oxide, lithium oxide solid solution of metal oxides such as iron oxide, Li 7 Mn N 4 , L 13 F e N 2, L i 3- , C o, N,
L i 3 N i N , L i 3 , C u , N、 L i 3 B N 2、 L i 3 A 1 N 2、 L i 3 S i N 3の窒化物な どのセ ラ ミ ッ ク ス等が挙げら れる。 ただし、 リ チウムイ オンを負極で還元して金属 リ チウ ム と して利用する場合は、 導電性を有する材料であればよい ので、 上記に限定されない。 Ceramics such as Li 3 Ni N, Li 3 , Cu, N, Li 3 BN 2 , Li 3 A 1 N 2 , and nitride of Li 3 SiN 3 No. However, when lithium ion is reduced at the negative electrode and used as metallic lithium, the material is not limited to the above, as long as the material has conductivity.
本発明の電池に用いる正極及び負極は上記の材料を所定の 形状に成型加工する。 電極の形態と して、 連続体または粉末 材料のバイ ンダー分散体のいずれも使用可能である。 前者の 連続体の成型方法と して、 電解、 蒸着、 スパ ッ タ リ ング、 C V D、 溶融加工、 焼結、 粉体圧縮成型などが用いられる。 ま た、 後者の方法は、 粉末状の電極材料をバイ ンダーと と もに 混合して成型する。 こ のバイ ンダー材料と しては、 前記のポ リ マ一発泡体材料に用いられたフ ッ化ビニ リ デン系ポ リ マー のみな らず、 スチ レ ン ' ブタ ジエン系ラテ ッ ク ス、 テフ ロ ン 系ラテ ッ ク スな どのポ リ マーよ リ なる未発泡体材料や、 金属 な どが用いられる。 このバイ ンダ一に重合性モ ノ マ一や架橘 剤を添加する こ と ができ 、 成型後重合、 架橋 させる こ と がで き る。 また本発明の複合高分子固体電解質を粉末状と したも のをバイ ンダーと して利用する こ と ができ る。 バイ ンダーの 強度向上、 変性な どの 目的で電子線、 γ 線、 紫外線、 赤外線 な どの輻射エネルギーを照射する こ と ができ る。 正極または 負極の電子移動を行 う ために、 電極に電気抵抗の低い材料で 集電体を設ける こ と ができ る。 上記の方法で電極を作製する 際にはこの集電体を基板と して用いる。 そ して、 正極 Ζ本発 明の複合高分子固体電解質ノ負極の構造、 または正極/非水 系電解液含浸前の独立気泡を有するポ リ マー発泡体 Ζ負極の 構造で構成した後に非水系電解液を含浸させて電池を作製す る こ と ができ る。 The positive electrode and the negative electrode used in the battery of the present invention are formed by molding the above-mentioned materials into a predetermined shape. As the form of the electrode, either a continuous body or a binder dispersion of a powder material can be used. Former As the molding method of the continuum, electrolysis, vapor deposition, sputtering, CVD, melt processing, sintering, powder compression molding and the like are used. In the latter method, a powdery electrode material is mixed with a binder and molded. Examples of the binder material include not only the vinylidene fluoride polymer used in the above-mentioned polymer foam material, but also styrene'butadiene-based latex. An unfoamed material such as a polymer such as Teflon-based latex or metal is used. A polymerizable monomer or a bridging agent can be added to the binder, and it can be polymerized and crosslinked after molding. In addition, a powder of the composite solid polymer electrolyte of the present invention can be used as a binder. Irradiation energy such as electron beam, γ-ray, ultraviolet ray, and infrared ray can be irradiated for the purpose of improving the binder strength and denaturing. In order to transfer electrons between the positive electrode and the negative electrode, a current collector made of a material having low electric resistance can be provided for the electrode. This current collector is used as a substrate when producing an electrode by the above method. Then, the structure of the positive electrode 複合 the composite polymer solid electrolyte anode of the present invention, or the structure of the polymer foam having closed cells before impregnation of the positive electrode / non-aqueous electrolyte Ζthe structure of the negative electrode, and then the non-aqueous The battery can be manufactured by impregnating the electrolyte.
通常、 電解液、 または電解液を単に含浸したポ リ マーを用 いた従来型の電池では、 電極内部に電解液を保持させて利用 される力 長期使用や保存条件によって電極中の電解液含量 不均一化、 含量低下が起こ り 、 それに伴って電極からのィォ ン移動が制限され、 電池性能が低下する。 特に長期使用を行 う 二次電池においては、 この問題は顕著でぁ リ 、 電池の寿命 は低下する。 また、 これらの電池性能の低下のみならず、 電 極からの滲みだしによ り 電解液が電池外部に流出する恐れが あ り 問題と なっていた。 Normally, in conventional batteries that use an electrolyte or a polymer that is simply impregnated with the electrolyte, the amount of electrolyte used in the electrode depends on the long-term use and storage conditions of the electrolyte used inside the electrode. Non-uniformity and a decrease in the content occur, and accordingly, the ion movement from the electrode is restricted, and the battery performance decreases. In particular, this problem is remarkable in a secondary battery which is used for a long time, and the life of the battery is reduced. Also, not only the performance of these batteries deteriorated, but also the electrolyte could leak out of the batteries due to bleeding from the electrodes, which was a problem.
これらの問題を解決するために、 本発明の他の 1 つの態様 によれば、 微粒子状電極材料および独立気泡性ポ リ マー発泡 体をバイ ンダー と して含有する電極が提供される。 次にこの 電極のポ リ マ ー発泡体に非水系電解液を含浸膨潤させて保液 性に優れた電極を得る こ と ができ る。 具体的には、 た と えば . ポ リ マ ー発泡体粒子またはポ リ マ ー発泡体成型体の粉砕物と 微粒子状電極材料の混合物を成型 して電極を形成する方法や . 微粒子状電極材料と発泡前の樹脂バイ ンダ一の混合物を成型 加工 した後樹脂バイ ンダーを発泡させる方法で電極を作成 し この電極に非水系電解液を含浸膨潤 させて電池用電極とする こ と ができ る。  In order to solve these problems, according to another embodiment of the present invention, there is provided an electrode containing a particulate electrode material and a closed-cell polymer foam as a binder. Next, the polymer foam of this electrode is impregnated and swelled with a non-aqueous electrolytic solution, whereby an electrode having excellent liquid retention properties can be obtained. Specifically, for example, a method of forming an electrode by molding a mixture of a polymer foam particle or a crushed product of a polymer foam molded article and a particulate electrode material; An electrode is formed by molding a mixture of the resin binder before foaming and then foaming the resin binder, and the electrode is formed by impregnating and swelling the electrode with a non-aqueous electrolyte.
本発明の電極は、 微粒子状電極材料および樹脂バイ ンダー から構成され、 この樹脂バイ ンダ一が独立気泡性ポ リ マ ー発 泡体よ り なる。 本発明の電極は、 従来構造の電極に比較して 電解液の保持性に優れ、 電解液流出が少なく 、 この電極に電 解液を含浸させて電池用電極と し、 それを電池に用いる と優 れた性能の電池が得られる。 この電池用電極の電極バイ ンダ —中の独立気泡部には電解液が充填されてお り 、 従来の電極 に用いられた貫通孔構造のものと は異な り 、 電解液は独立気 泡構造で封止されているので、 流出が起こ リ に く い。 また、 電解液のバッファ一体と して も機能 している こ と が考え られ る。 The electrode of the present invention is composed of a particulate electrode material and a resin binder, and the resin binder is a closed-cell polymer foam. The electrode of the present invention is superior in electrode retention to an electrode having a conventional structure, has less electrolyte outflow, and is impregnated with the electrolyte to be used as a battery electrode. A battery with excellent performance can be obtained. Electrode binder for this battery electrode —The inner closed cell portion is filled with electrolyte, which is different from the through-hole structure used for conventional electrodes. Is not likely to occur. It is also conceivable that the electrolyte also functions as an integrated buffer.
この電極における独立気泡性ポ リ マー発泡体である樹脂バ ィ ンダ一中の独立気泡の体積は、 電解液含浸前の該バイ ンダ The volume of the closed cells in the resin binder, which is a closed-cell polymer foam, in the electrode is determined by the volume of the binder before impregnation with the electrolyte.
—の体積に対し 5 〜 9 0 %である こ とが好ま し く 、 こ の電極 に電解液を含浸させて電池の電極と して用いる こ とができ る < 独立気泡体積 5 %未満では効果が不十分である。 また 9 0 % よ リ 大き い体積分率では電極厚が大き く なるため電池と した 場合の体積当 り のエネルギー密度が低下 し、 又、 電解液含浸 後の強度が低下 し、 電気抵抗が増大する傾向にある。 本発明 の電極に用いるバイ ンダ一の独立気泡の体積分率は、 更に好 ま しく は 8 5 %以下でぁ リ 、 特に好ま し く はの 8 0 %以下で ある。 この独立気泡は、 周囲が樹脂で封止 された構造または 周囲が榭脂または微粒状電極材料で封止された構造の両方を 含むものである。 また、 本発明の電極に用いる独立気泡性ポ リ マー発泡体と して、 貫通孔をも含有した材料も使用可能で ぁ リ 、 この貫通孔含量は前記の独立気泡体穫分率に含めない, 一方、 本発明の電極における微粒状電極材料の体稍は電極全 体の 2 0 % 〜 7 0 %の範囲が好ま しい。 The volume is preferably 5 to 90% with respect to the volume of-, and this electrode can be used as a battery electrode by impregnating the electrolyte with it. <Effective when the closed cell volume is less than 5% Is inadequate. If the volume fraction is larger than 90%, the electrode thickness becomes large, so that the energy density per volume of the battery decreases, and the strength after impregnation with the electrolyte decreases, and the electric resistance increases. Tend to. The volume fraction of the closed cells of the binder used in the electrode of the present invention is more preferably 85% or less, particularly preferably 80% or less. The closed cells include both a structure in which the periphery is sealed with a resin and a structure in which the periphery is sealed with a resin or a fine electrode material. In addition, as the closed-cell polymer foam used in the electrode of the present invention, a material containing a through-hole can also be used, and the content of the through-hole is not included in the above-mentioned closed-cell yield. On the other hand, the volume of the fine electrode material in the electrode of the present invention is preferably in the range of 20% to 70% of the whole electrode.
この電極に用いる独立気泡性ポ リ マ ー発泡体の独立気泡の 形状と しては、 その独立気泡断面の形状が、 円形、 楕円形、 角形などいずれでも よい。 そのサイ ズは使用する用途に応じ て変るが、 独立気泡の長径と短径の平均値と してのサイ ズは 通常は 0 . 1 力 >ら 1 0 0 mであ り 、 さ らに好ま し く は、 1 μ πιカゝら 5 0 μ mの範囲である。 Closed cell of the closed cell polymer foam used for this electrode The shape of the cross section of the closed cell may be any of a circle, an ellipse, and a square. The size varies depending on the intended use, but the average value of the long and short diameters of the closed cells is usually 0.1 m or more, which is more preferable. More specifically, the range is 1 μπι to 50 μm.
こ の電極におけるバイ ンダーに、 電解液を含浸する と 、 電 解質および電解質溶媒がポ リ マ一中に含入されてポ リ マー、 電解質、 溶媒からなるイ オン伝導性材料に変換される。 また 電解液含浸に先だって樹脂バイ ン ダー中に電解質及び/又は 電解質溶媒を含有させておき 、 更に電解液を含浸させる こ と に よ っ て電解質、 溶媒を追加、 置換する こ と ができ る。 二 の 電解質溶媒はポ リ マ一を実質的に溶解 しないこ と が必要であ リ 、 こ の要件を満足する種々 のポ リ マーおよび溶媒の組み合 わせを用いる こ と ができ る。 得られた電池用電極を リ チウム 電池、 リ チウムイ オン電池と して使用する場合は、 電解液と して リ チウム塩を溶解 した非水系溶媒溶液が用いられる。 こ の電極の榭脂バイ ンダー材料は、 本発明の複合固体電解質に 使用 されるポ リ マ一発泡体のポ リ マー材料と して上に記載し た材料である。  When the binder in this electrode is impregnated with the electrolyte, the electrolyte and the electrolyte solvent are impregnated in the polymer and converted into an ion conductive material composed of the polymer, the electrolyte, and the solvent. . Further, the electrolyte and / or the electrolyte solvent are contained in the resin binder prior to the electrolyte impregnation, and the electrolyte and the solvent can be added or replaced by further impregnating the electrolyte. The second electrolyte solvent must not substantially dissolve the polymer, and various polymer and solvent combinations that meet this requirement can be used. When the obtained battery electrode is used as a lithium battery or a lithium ion battery, a nonaqueous solvent solution in which a lithium salt is dissolved is used as an electrolytic solution. The resin binder material of this electrode is the material described above as the polymer material of the polymer foam used in the composite solid electrolyte of the present invention.
このバイ ンダーの製造は、 たと えば、 ソ リ ッ ド形態のポ リ マ一成型体に発泡剤を混合 した後、 加熱、 減圧などによ る発 泡剤のガス化、 分解によ リ 発生したガスによ リ 発泡体を形成 する方法、 予めポ リ マー成型時に発泡剤を含有させた後発泡 させる方法など前記のポリ マー発泡体の製造方法に準じて行 な う。 この発泡体形成時または成型後に重合性モ ノ マーや架 橋剤を含有させ、 モ ノ マーの重合や架橘を行った リ 、 電子線 やガンマ線、 紫外線によってポ リ マーの架橘を行う こ と が可 能であ リ得られた発泡体の強度を高める こ とができ る。 In the production of this binder, for example, after a foaming agent was mixed with a solid polymer molded body, the foaming agent was gasified and decomposed by heating, decompression, etc. A method of forming a foam by gas The method is performed according to the method for producing a polymer foam described above. A polymerizable monomer or a bridging agent is contained during the formation of the foam or after molding, and the polymer is crosslinked or crosslinked, and the polymer is crosslinked by electron beams, gamma rays, or ultraviolet rays. It is possible to increase the strength of the obtained foam.
また、 電極のバイ ンダーにおいては、 電極活物質の電子移 動を促進するため、 導電性フィ ラーを樹脂バイ ンダ一に含有 させる こ と ができ る。 この導電フ ィ ラーと して、 カーボンブ ラ ッ ク 、 アセチ レ ンブラ ッ ク 、 グラ フ ア イ ト な どの炭素材料 系フ イ ラ一、 金属系フ イ ラ一、 導電性セラ ミ ッ ク系フ イ ラ一 を用いる こ と ができ る。  In the electrode binder, a conductive filler can be contained in the resin binder in order to promote the electron transfer of the electrode active material. Examples of the conductive filler include carbon-based fillers such as carbon black, acetylene black, and graphite, metal fillers, and conductive ceramic fillers. Ira can be used.
本発明の複合高分子固体電解質は、 電極 Z複合高分子固体 電解質/電極の構造で積層 した形で電池に組込んで用いる際 には、 電極間のセパ レータ と して も機能する。 この場合に使 用 されるポ リ マ一発泡体には架橘構造を有する フ ッ化ビニ リ デン系ポ リ マーが含有されている こ と が好ま しい。  The composite polymer solid electrolyte of the present invention also functions as a separator between the electrodes when the composite polymer solid electrolyte of the electrode Z is used in a state of being stacked in a battery in a laminated structure of the composite polymer solid electrolyte / electrode. The polymer foam used in this case preferably contains a vinylidene fluoride polymer having a crosslinked structure.
電池の形態は、 リ チウム電池の場合、 正極と負極が本発明 の複合高分子固体電解質を介して配設される構造を有する。 例えば、 それぞれシー ト状の正極/本発明の複合高分子固体 電解質ノ負極よ リ なる単位を順次積層 してシ一 ト状ゃロ ール 状構造とする こ と ができ る。 また、 電池単位の電極同士を並 列または直列に接続 した組電池とする こ と も可能である。 一 般に、 固体電解質電池の場合、 直列接続数によ って電圧を增 加させるこ とができ る特徴を有する。 また、 複合高分子固体 電解質と電極間に界面密着性や界面抵抗低滅などの 目 的で複 合高分子固体電解質以外のイオン伝導体を接合する こ と もで き る。 必要があれば電池電極に電流の取リ 出 し、 導入のため の外部端子接続部材、 または電流電圧制御素子や、 あるいは 電池単位 · 穫層体の吸湿防止および構造保護な どのための保 護層を設ける こ と ができ る。 本発明の複合高分子固体電解質は、 イ オン伝導度が高く 、 柔軟性、 加工性、 機械的強度に優れ、 電気化学的特性の安定 性が高いため、 上記の リ チウム電池、 リ チウム二次電池のみ な らず、 光電気化学電池、 電気化学セ ンサー、 電気二重層キ ャパンターなど種々 の電気化学素装置に応用でき る。 In the case of a lithium battery, the battery has a structure in which a positive electrode and a negative electrode are provided via the composite solid polymer electrolyte of the present invention. For example, a unit composed of a sheet-shaped positive electrode / a composite polymer solid electrolyte anode of the present invention may be sequentially laminated to form a sheet-shaped roll-shaped structure. It is also possible to form a battery assembly in which the electrodes of the battery unit are connected in parallel or in series. Generally, in the case of a solid electrolyte battery, the voltage is varied depending on the number of series connections. It has the feature that it can be added. In addition, an ionic conductor other than the composite solid polymer electrolyte can be bonded between the composite solid polymer electrolyte and the electrode for the purpose of, for example, reducing the interface adhesion and interfacial resistance. If necessary, take out the current to the battery electrode and connect it to the external terminal connection member for introduction, or the current-voltage control element, or a protective layer for preventing moisture absorption and structural protection of the battery unit and the battery layer. Can be provided. The composite solid polymer electrolyte of the present invention has high ion conductivity, excellent flexibility, processability, and mechanical strength, and high stability of electrochemical characteristics. It can be applied not only to batteries but also to various electrochemical devices such as photoelectrochemical batteries, electrochemical sensors, and electric double-layer capacitors.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 実施例及び比較例によって、 本発明を さ らに詳細に 説明するが、 本発明はこれ らによって何ら限定される もので はない。  Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
以下の実施例及び比較例において、 電子線の照射は、 日本 国、 日新ハイ ボルテージ (株) 製キュ ア ト ロ ン E B C — 2 0 0 — A A 2 を用い、 加速電圧 2 0 0 k V、 電流 2 0 m Aに て室温で行った。  In the following Examples and Comparative Examples, electron beam irradiation was performed using Curetron EBC-200-AA2 manufactured by Nissin High Voltage Co., Ltd., Japan, at an accelerating voltage of 200 kV, The test was performed at room temperature with a current of 20 mA.
また、 以下の実施例及び比較例において、 複合高分子固体 電解質の液相 ドメ ィ ンの体積分率の測定及び酸化還元安定性 の評価は、 以下の方法で行った。  In the following Examples and Comparative Examples, the measurement of the volume fraction of the liquid phase domain of the composite solid polymer electrolyte and the evaluation of the oxidation-reduction stability were performed by the following methods.
( 1 ) 複合高分子固体電解質の液相 ドメ ィ ンの体積分率の 測定 :  (1) Measurement of volume fraction of liquid phase domain of composite polymer solid electrolyte:
複合高分子固体電解質シー ト を液体窒素に よ リ 凍結 させ、 剃刀で、 互いに直交する 3 平面 〔 X 、 Y 、 Ζ座標の Χ _ Ζ 平 面、 Υ — Ζ平面及び Χ _ Υ平面 ( X — Ζ 平面 と Υ _ Ζ 平面は 該シー ト の厚み方向に沿っている) 〕 に沿って切断し、 上記 X— Ζ 平面、 Υ— Ζ 平面及び X— Υ平面にそれぞれ対応する 第 1 、 第 2及び第 3 の断面を有するサンプルを得た。 得られ たサンプルの第 1 、 第 2及び第 3 の断面を反射光学顕微鏡 [ォ リ ンパス Β Η— 2型金属顕微鏡、 日 本国ォ リ ンパス光学 (株) 製] にて観察 した。 サンプルの第 1 、 第 2 及び第 3 の 断面について、 連続固相 ドメ ィ ンに分散 した液相 ドメ ィ ンの 断面を調べて、 サンプルの各断面の面檳に占める、 液相 ドメ ィ ンの断面の合計面積のパーセンテージを求めた。 サンプル の該 3 つの断面のそれぞれについて求め られた液相 ドメ ィ ン の合計面積のパーセ ンテージを求めて、 この平均値を高分子 固体電解質の液相 ド メ イ ンの体積比 (% ) とする。 The composite polymer solid electrolyte sheet is frozen in liquid nitrogen and then, using a razor, three planes perpendicular to each other (X, Y, Ζ Ζ plane, Υ — 及 び plane, and _ Υ plane (X —は plane and Υ Ζ plane are along the thickness direction of the sheet)]), and the first and second planes corresponding to the X-Ζ plane, the Υ-Ζ plane, and the X-Υ plane, respectively. And a sample having a third cross section. The first, second and third cross sections of the obtained sample were observed with a reflection optical microscope [Olympus II-II type metallurgical microscope, manufactured by Olympus Optical Co., Ltd. in Japan]. For the first, second and third cross sections of the sample, the liquid phase domain dispersed in the continuous solid phase domain The cross-sections were examined to determine the percentage of the total area of the cross-section of the liquid phase domain occupied by the arenas of each cross-section of the sample. Calculate the percentage of the total area of the liquid-phase domains obtained for each of the three cross sections of the sample, and use the average value as the volume ratio (%) of the liquid-phase domains of the polymer solid electrolyte. .
( ii ) 酸化還元安定性の評価  (ii) Evaluation of redox stability
複合高分子固体電解質の片面を ス テ ン レ ス シー 卜 で覆い、 も う 片面を半分ずつ 2 枚の金属 リ チ ウムシー 卜 で覆い、 電気 化学セ ルを得た。 ス テ ン レ スシー ト を作用極、 2 枚の金属 リ チ ウム シ一 ト をそれぞれ対極及び参照極と して、 サイ ク リ ッ ク ボル タ ンメ ト リ ー法にて電位走査を行った。 電位走査は、 走査速度 5 m V Z秒、 走査電位範囲 0〜 5 V ( V s L i / L i " ) の条件で、 H A— 3 0 3 型フ ァ ン ク シ ョ ン ジ エ ネ レー タ及び H B — 1 0 4 型デュ アルポテ ン シ ョ ガル バ ノ ス タ ツ ト One side of the composite polymer solid electrolyte was covered with a stainless steel sheet, and the other side was covered with two metal lithium sheets, each half, to obtain an electrochemical cell. Using the stainless steel sheet as the working electrode and the two metal lithium sheets as the counter and reference electrodes, potential scanning was performed by the cyclic voltammetry method. The potential scanning is performed at a scanning speed of 5 mVZ seconds and a scanning potential range of 0 to 5 V (VsLi / Li "). HA-303 type function generator And HB-104 type dual potentio-galvanostat
(共に 日 本国北斗電工株式会社製) を用いて行った。 電位走 査の結果について、 酸化又は還元によ り 電流ピーク が生じた かど う か調べた。 酸化又は還元に よ る電流ピーク が観察され ない場合、 複合高分子固体電解質が電気化学的に安定である こ と を示 してレヽる。 (Both manufactured by Hokuto Denko Co., Ltd. of Japan). The results of the potential scan were examined to determine whether a current peak was caused by oxidation or reduction. If no current peak due to oxidation or reduction is observed, it indicates that the composite solid polymer electrolyte is electrochemically stable.
実施例 1 Example 1
へキサフルォロ プロ ピ レン一フ ッ化ビ二 リ デン共重合体榭 月旨 (へキサフルォロ プロ ピ レン含量 5 重量% ) を、 押出ダイ 温度 2 3 0 °C の押出成形機 ( 日本国東芝機械株式会社製) を 用いた加熱押し出 し成形によって、 膜厚 1 5 0 μ πιのシー ト に成形 した。 架橋反応を行 う ために、 得られたシー ト に照射 量 1 O M r a dで電子線照射を行った後、 6 0 °Cで真空乾燥 して生成 した H F ガスを除去した。 該シー ト に更に電子線を 照射 (照射量 1 5 M r a d ) し、 次いで密閉容器内で、 フ 口 ン H F C l 3 4 a と水の混合液 (重量比 9 9 Z 1 ) を、 7 0 て、 2 0 k g Z c m 2の条件下で 2 4 時間含浸 させた (含液 量 : 6 . 5重量% ) 後取 り 出 して、 直ちに 2 1 0 °Cの加熱炉Hexafluoropropylene-vinylidene fluoride copolymer was prepared using an extrusion molding machine with an extrusion die temperature of 230 ° C (Hexafluoropropylene content 5% by weight). Made by company) A sheet having a thickness of 150 μππι was formed by the heat extrusion molding used. In order to carry out a crosslinking reaction, the obtained sheet was irradiated with an electron beam at an irradiation dose of 1 OM rad, and then vacuum-dried at 60 ° C. to remove generated HF gas. The sheet was further irradiated with an electron beam (irradiation amount: 15 Mrad), and then a mixed solution of HFCl 34a and water (weight ratio: 99 Z 1) was placed in a sealed container with 70%. And impregnated for 24 hours under the condition of 20 kg Z cm 2 (liquid content: 6.5% by weight).
1 0秒間 1 8 0 °Cに力 D熱 し 膜厚 2 7 0 の 白色発 泡体 (発泡倍率 8倍) を得た。 9 3 0型空気比較式比重計Heating was performed at 180 ° C for 10 seconds to obtain a white foam having a film thickness of 270 (foaming ratio: 8 times). 9 30 type air comparison specific gravity meter
( 日 本国東芝ベッ ク マ ン社製) によ り 測定 した、 独立気泡の 発泡体全体に対する体積分率は 8 7容量。/。であった。 The volume fraction of the closed cells relative to the entire foam was 87 volumes, as measured by a Toshiba Beckman Company in Japan. /. Met.
該発泡体を、 リ チ ウムテ ト ラ フ ルォ ボ レー ト  The foam is treated with lithium tetrafluoroborate.
( L 1 B F ) をエチ レ ンカーボネー ト ( E C ) Zプ c ピ レ ンカーボネー ト ( P C γ —ブチ c ラ ク ト ン ( γ Β し :) 混合溶媒 ( E C Z P C Z y — B L重量比 : 1 ノ 1 Z 2 ) に L i B F 濃度 l m o 1 1 で溶解 して得られる非水系電解 質溶液に入れ、 1 0 0 °Cの温度で 2時間含浸 · 膨潤 させて、 複合高分子固体電解質を作製した。 膨潤後の膜厚は 3 5 0 μ mでめった。  (L 1 BF) is converted to ethylene carbonate (EC) Z-pyrene carbonate (PC γ-butyl c-lactone (γ Β): mixed solvent (ECZPCZ y-BL weight ratio: 1-1Z) 2) into a non-aqueous electrolyte solution obtained by dissolving with a LiBF concentration of lmo 11, and impregnating and swelling at 100 ° C for 2 hours to produce a composite solid polymer electrolyte. The final film thickness was 350 μm.
また、 該複合高分子固体電解質中の液相 ド メ イ ンの体積分 率は、 6 4 . 7容量。/。であった。 具体的には、 第 1 、 第 2及 び第 3 の各断面における、 それぞれの断面積に対する液相 ド メ イ ンの合計断面積の割合は、 6 5 %、 6 5 %、 及び 6 4 % であった。 サ ンプルの第 1 、 第 2及び第 3 の断面のそれぞれ において、 連続固相 ドメ イ ンに均一に分散 してお り 、 且つ各 ド メ イ ンの長径と短径の平均値と しての平均粒径が 5 〜 1 5 μ mである液相 ドメ イ ンが観察された。 尚、 第 1 、 第 2及び 第 3 の断面のいずれにも 、 複合高分子固体電解質シー ト の も と の表面 と連通 した液相 ド メ イ ンは認め られなかった。 The volume fraction of the liquid domain in the composite solid polymer electrolyte was 64.7 volumes. /. Met. Specifically, for each of the first, second and third cross sections, the liquid phase The percentages of the total cross-sectional area of the main were 65%, 65%, and 64%. In each of the first, second and third cross-sections of the sample, it is uniformly dispersed in the continuous solid-phase domain and the average of the major and minor axes of each domain Liquid phase domains with an average particle size of 5 to 15 μm were observed. In any of the first, second and third cross sections, no liquid phase domain communicating with the original surface of the composite solid polymer electrolyte sheet was observed.
該複合高分子固体電解質中の含浸前後の重量変化から求め た、 該複合高分子固体電解質におけ る非水系電解質^液の含 量は 8 5 重量 °/。であった。  The content of the non-aqueous electrolyte in the composite solid polymer electrolyte was 85 wt / ° C, which was determined from the weight change before and after the impregnation in the composite solid polymer electrolyte. Met.
該複合高分子固体電解質をエ タ ノ ールに 4 時間、 水に 1 時 間浸積処理 し 、 直径 2 5 m mの円盤に打ち抜き 、 有効面積 3 The composite polymer solid electrolyte was immersed in ethanol for 4 hours and in water for 1 hour, and punched into a disk having a diameter of 25 mm to obtain an effective area of 3 mm.
5 c m 2の メ ンブ ラ ン フ イ ノレ タ ーホル ダー に組み込んで、 2Assemble into a 5 cm 2 membrane holder
6 °C , 1 a t mの静水圧を力 ナたが、 透水は観 i 'j されなかつ チ- また示差熟分析によってガラ ス転移温度を測定 した結果、 該複合高分子固体電解質のガラ ス転移温度は一 1 0 2 °Cであ つた。 電解液含浸前のポ リ マー発泡体の ガラ ス転移温度は— 5 1 °Cである こ と はあ らかじめ分かっていたので、 複合高分 子固体電解質のポ リ マー相が電解液で膨張されている こ と が わかった。 At 6 ° C, 1 atm hydrostatic pressure was applied, but water permeation was not observed, and the glass transition temperature was measured by a differential ripening analysis. Was 102 ° C. Since the glass transition temperature of the polymer foam before impregnation with the electrolyte was known in advance to be --51 ° C, the polymer phase of the composite polymer solid electrolyte was It turned out that it was inflated.
また、 サイ ク リ ッ ク ボルタ ンメ ト リ ー法で、 走査電位範囲 0 〜 5 V ( V s L 1 / L i + ) にて複合高分子固体電解質 の酸化還元安定性を評価 したと こ ろ、 0 . 5 V未満の電位領 域の還元電流以外、 酸化および還元によ る電流ピーク は観測 されなかった。 従って該複合高分子固体電解質は 0 . 5 V〜 5 Vの範囲で安定である こ と がわかった。 In addition, the cyclic polymer voltammetry method uses a composite polymer solid electrolyte in a scanning potential range of 0 to 5 V (VsL1 / Li + ). When the oxidation-reduction stability was evaluated, no current peak due to oxidation or reduction was observed except for the reduction current in a potential region of less than 0.5 V. Therefore, it was found that the composite polymer solid electrolyte was stable in the range of 0.5 V to 5 V.
上記のよ う に して得られた複合高分子固体電解質の 1 c m 角のサンプルの両面を、 Ι Ο μ πΐ厚さ のステ ン レ ス シー ト A 1 cm square sample of the composite solid polymer electrolyte obtained as described above was placed on both sides of a レ Ο μπΐ thick stainless steel sheet.
(幅 6 m m、 長さ 6 O m m ) で挟み、 積層体を得た。 これら のステ ン レ ス シ一 ト を電極と して交流ィ ン ピ一 ダンス測定(Width 6 mm, length 6 Omm) to obtain a laminate. AC impedance measurement using these stainless steel sheets as electrodes
( 日 本国セイ コー E G & G社、 3 9 8 型イ ンピーダンス測定 装置、 測定周波数 1 0 0 k H z 〜 l H z ) を行レ、ナイ キス ト プロ ッ ト の複素イ ン ピーダンス実部切片からイ オン伝導度を 算出 した結果、 イ オン伝導度 2 . 8 X 1 0 — 3 S Z c mである こ と がわかった。 (Seiko EG & G, Japan, Model 398 impedance measuring device, measuring frequency 100 kHz to lHz), and the real impedance section of the complex impedance of the Nyquist plot As a result, the ion conductivity was found to be 2.8 X 10 — 3 SZ cm.
実施例 2 Example 2
実施例 1 と 同様に して、 押 し出 し成形 した膜厚 5 0 の へキサフルォロブ口 ピレ ン — フ ッ化ビ二 リ デン共重合体樹脂 (へキサフルォロ プ ロ ピ レ ン含量 5 重量% ) シー ト を作製 し た。 得られる シー ト に電子線を照射 (照射量 1 0 M r a d ) し 、 実施例 1 と 同様に してフ ロ ン H F C 1 3 4 a を含浸 (含 液量 5 重量% ) させた。 含浸させたシー ト を取 り 出 した後、 直ちに 2 1 0 °Cの加熱炉にて 5秒間 1 8 0 °Cに加熱 して、 膜 厚 7 2 mの白色発泡体 (発泡倍率 3倍) を得た。 9 3 0 型 空気比較式比重計 ( 日 本国東芝ベ ッ ク マ ン社製) によ リ 測定 した、 独立気泡の発泡体全体に対する体積分率は 6 8容量0 /0 であった。 Extruded and molded into a 50-layer hexafluorolob-opened pyrene-vinylidene fluoride copolymer resin (hexafluoropropylene content 5% by weight) in the same manner as in Example 1. A sheet was made. The resulting sheet was irradiated with an electron beam (irradiation amount: 10 Mrad), and impregnated with fluorocarbon HFC134a (liquid content: 5% by weight) in the same manner as in Example 1. Immediately after taking out the impregnated sheet, it is heated in a heating furnace at 210 ° C for 5 seconds at 180 ° C for a white foam with a film thickness of 72 m (expansion ratio 3 times). I got Measured with a 930 type air comparison specific gravity meter (manufactured by Toshiba Beckman Co., Ltd., Japan) The volume fraction to the total foam closed cell was 6 8 volume 0/0.
該発泡体を、 リ チウムテ ト ラ フルォロ ボ レー ト ( L i B F 4 ) をエチ レ ンカ ーボネー ト ( E C ) Zプ ロ ピ レ ン力一ボネ Lithium tetrafluoroborate (LiBF4) is added to ethylene carbonate (EC) Z propylene force.
— ト ( P C y —ブチルラ ク ト ン ( γ — B L ) 混合溶媒— Solvent (PCy—Butyllactone (γ—BL))
( E C Z P C / Y — B L重量比 2 ) に し 1 B F 濃度 1 m ο 1 で溶解 して得られる非水系電解質溶液に入 れ、 1 0 0 °Cの温度で 3 時間含浸 · 膨潤させて、 複合高分子 固体電解質を作製 した。 含浸後膜厚は 1 2 0 μ πιであった。 (ECZPC / Y-BL weight ratio 2) 1 Non-aqueous electrolyte solution obtained by dissolving at a BF concentration of 1 mο1 and impregnating and swelling at 100 ° C for 3 hours to form a composite A polymer solid electrolyte was prepared. The film thickness after impregnation was 120 μπι.
実施例 1 と 同俵に して、 複合高分子固体電解質から断面観 察用サ ンプルを切 り 出 し、 その第 1 、 第 2及び第 3 の断面を 観察 した結果、 球状の液相 ドメ イ ンが均一に分散 してぉ リ 、 その平均粒径は 3 〜 1 2 μ ιτιであった。 また、 第 1 、 第 2及 び第 3 の断面の液相 ドメ ィ ン の断面積の割合 それぞれ、 In the same bale as in Example 1, samples for section observation were cut out from the composite solid polymer electrolyte, and the first, second, and third sections were observed. As a result, a spherical liquid phase domain was obtained. The particles were uniformly dispersed and had an average particle size of 3 to 12 μιτι. In addition, the ratio of the cross-sectional area of the liquid-phase domain in the first, second, and third cross-sections, respectively,
5 4 %、 4 8 %、 5 3 %であ り 、 これ らの結果から複合高分 子固体電解質中の液相 ド メ イ ンの体積分率が 5 1 . 7容量% である こ と が分かった。 また、 第 1 、 第 2及び第 3 の断面の いずれにも、 複合高分子固体電解質のも と の表面と連通 した 液相 ドメ イ ンは認め られなかった。 From these results, the volume fraction of the liquid phase domain in the composite polymer solid electrolyte was 51.7% by volume. Do you get it. Further, in any of the first, second, and third cross sections, no liquid phase domain communicating with the original surface of the composite solid polymer electrolyte was observed.
非水系電解質溶液含浸前後の重量変化から求めた、 該複合 高分子固体電解質における非水系電解質溶液の含量は 7 4重 量%であった。  The content of the non-aqueous electrolyte solution in the composite solid polymer electrolyte was found to be 74% by weight, as determined from the weight change before and after the impregnation with the non-aqueous electrolyte solution.
また、 実施例 1 と 同様に して透水量を測定したが、 透水は 観測されなかった。 The amount of water permeation was measured in the same manner as in Example 1. Not observed.
また、 実施例 1 と 同様にサイ ク リ ッ ク ボルタ ンメ ト リ 一法 によ り 酸化還元安定性を調べた結果、 0 . 7 〜 5 Vの範囲で 酸化または還元電流ピーク は認め られず、 電気化学的に安定 である こ と がわかった。  Further, as a result of examining the oxidation-reduction stability by the cyclic voltammetry method as in Example 1, no oxidation or reduction current peak was observed in the range of 0.7 to 5 V. It was found to be electrochemically stable.
上記のよ う に して得られたポ リ マ一シー ト の 1 c m角のサ ンプルの両面をステ ン レス シー ト で挟み込み積層体と し、 こ の ステ ン レ ス シ一 ト を電極 と して実施例 1 と 同様に して交流 イ ン ピーダン ス解析を行レ、、 ナイ キ ス ト プロ ッ ト の複素イ ン ピーダンス実部切片からイ オン伝導度を算出 した結果、 ィ ォ ン伝導度 3 . 9 X 1 0— 3 S / c mである こ と 力;わ力 つた。 A 1 cm square sample of the polymer sheet obtained as described above is sandwiched between stainless steel sheets to form a laminate, and the stainless steel sheet is used as an electrode. Then, the AC impedance analysis was performed in the same manner as in Example 1, and the ion conductivity was calculated from the real impedance intercept of the complex impedance of the Nyquist plot. . degree 3, which is a 9 X 1 0- 3 S / cm this and the force; I force ivy.
また、 該複合高分子固体電解質シー 卜 の両面にステ ン レス シー ト で挟み込んだ状態で両面を熱電対を埋め込んだアル ミ ナ板で押さ え、 さ らに加熱機を備えた油圧プ レ ス機内に保持 した。 ステ ン レス シ一 ト電極間の交流イ ン ピーダンス測定を 行いなが ら加熱機で積層体を室温から 2 2 0 °Cまで加熱 して ィ ンピーダンス の温度依存性を評価 した。 ィ ン ピーダンス測 定は、 日本国 日 置電気 (株) 製 L C R メ ータ を用いて、 測定 周波数 1 k H z で行った結果、 室温から 2 2 0 °Cの温度の範 囲で、 イ ン ピーダンスがなだらカ に変化 した。  The composite polymer solid electrolyte sheet is sandwiched between stainless steel sheets on both sides and pressed on both sides with an aluminum plate having a thermocouple embedded therein, and a hydraulic press equipped with a heater is further provided. Held on board. The laminate was heated from room temperature to 220 ° C with a heater while measuring the AC impedance between the stainless steel electrodes, and the temperature dependence of the impedance was evaluated. The impedance was measured at a measurement frequency of 1 kHz using an LCR meter manufactured by Nikki Electric Co., Ltd. in Japan. As a result, the temperature ranged from room temperature to 220 ° C. The impedance changed suddenly.
実験終了後アル ミ ナ板およびステ ン レ ス シー ト を分離した 結果、 複合高分子固体電解質の変形は見 られなかった。 こ の こ と よ リ 、 少な く と も 2 2 0 °C以下の温度範囲では溶融変形 が起こ らず熱寸法安定性に優れる こ とがわかった。 After the experiment, the aluminum plate and stainless steel sheet were separated, and no deformation of the composite solid polymer electrolyte was observed. Melt deformation at least in the temperature range of 220 ° C or less It was found that thermal dimensional stability was excellent without any occurrence of cracks.
実施例 3 Example 3
コバル ト酸 リ チウム ( L i C o O 2 ; 平均粒径 1 0 m ) の粉末、 力一ボンブラ ッ ク 、 及びバイ ンダーと してのポ リ ビ 二 リ デ ンフ ロ ラィ ドを 、 コ バル ト酸 リ チ ウ ム、 カ ーボ ンブラ ッ ク 、 ポ リ ビニ リ デンフ ロ ライ ド (乾燥重量) の合計重量に 対 してそれぞれ 8 5 重量%、 8 重量。 /0、 7 重量。 /。 と なる よ う ポ リ ビニ リ デンフ ロ ラ ィ ドの 5 重量0 /。 N—メ チル ビ G リ ドンCobalt Lithium Cobaltate (LiCoO2; average particle size: 10 m) powder, pressed black, and polyvinylidene fluoride as a binder 85% by weight and 8% by weight, respectively, based on the total weight of lithium tomate, carbon black, and polyvinylidene fluoride (dry weight). / 0, 7 weight. /. And made by cormorants Po Li vinyl Li Denfu Russia 5 weight of La I de 0 /. N—Metil Bi G Li Dong
( M P ) 溶液に分散 し、 得られた混合物を、 ア ミ ニ ウ ム シー ト 上に塗布乾燥 して膜厚 1 1 5 μ ιηの塗膜 (正極) を作 製 した。 (MP) solution, and the resulting mixture was applied on an aluminum sheet and dried to form a coating film (positive electrode) having a film thickness of 115 μιη.
一方、 平均粒径 1 2 μ π の二一 ドルコ一ク ス ( N C ) 粉末 にポ リ ビニ リ デンフ ロ ラ ィ ドの 5 重量0 /。 Ν Μ Ρ溶液を均一混 合 して ス ラ リ ー 〔乾燥重量混合比 ; ニー ドルコ ー ク ス ( 9 2 % ) 、 ポ リ マー ( 8 % ) 〕 を得た。 該ス ラ リ ーを金属銅シー ト上に ドク ターブ レー ド法にょ リ 塗布乾燥 して膜厚 1 2 5 μ mの塗膜 (負極) を形成 した。 On the other hand, the average particle diameter of 1 2 mu [pi of the secondary one Doruko one click scan (NC) 5 weight Po Li vinylene Li Denfu b La I de powder 0 /. The solution was uniformly mixed to obtain a slurry [dry weight mixing ratio: needle coke (92%), polymer (8%)]. The slurry was coated on a metal copper sheet by a doctor blade method and dried to form a coating film (negative electrode) having a thickness of 125 μm.
実施例 2 で作製 した複合高分子固体電解質シー 卜 の両面を 上記で作製 した正極および負極をそれぞれ塗膜表面を複合高 分子固体電解質に密着させて挟み込み、 1 2 0 °Cの温度でラ ミ ネ一 ト して積層体を作製 した。 それぞれの電極の集電体側 からステ ン レ スシー ト 取 リ 出 し端子を接続した後、 ポ リ ェチ レ ン /アル ミ ニ ウ ム /ポ リ エチ レ ンテ レ フ タ レー ト積層 シ— ト (膜厚 5 0 μ π ) でラ ミ ネー ト してシー ト状電池を作製し た。 この電池の取 り 出 し端子を充放電機 ( 日 本国北斗電工株 式会社製 1 0 1 S M型充放電試験機) に接続して電流密度 1 m AZ c m 2で充放電を行った。 充電は 4 . 2 Vの定電位で 行った。 充電後の電極間電圧は 4 . 2 Vであった。 放電は、 電位が 2 . 7 Vまで低下 した時に停止 した。 初回充放電の電 流効率は 8 0 %であ り 、 初回放電量は負極炭素重量あた り 2Both surfaces of the composite polymer solid electrolyte sheet prepared in Example 2 were sandwiched between the positive electrode and the negative electrode prepared above, with the coating surfaces adhered to the composite polymer solid electrolyte, respectively, and laminated at a temperature of 120 ° C. A laminate was prepared by netting. After taking out the stainless steel sheet from the current collector side of each electrode and connecting the terminals, the polystyrene / aluminum / polyethylene terephthalate laminated sheet (Sheet thickness: 50 μπ) to fabricate a sheet-like battery. He was charged and discharged at a current density of 1 m AZ cm 2 by connecting the Installing output Shi terminal of the battery charging and discharging machine (day home Hokuto Denko Co., Ltd., Ltd. 1 0 1 SM KataTakashi discharge tester). Charging was performed at a constant potential of 4.2 V. The voltage between the electrodes after charging was 4.2 V. The discharge stopped when the potential dropped to 2.7 V. The current efficiency of the initial charge / discharge is 80%, and the initial discharge amount is 2
1 2 m A h Z g 、 2 回 目 以降の充放電は放電 Z充電効率 9 8 %以上でぁ リ 、 1 0 回 目 の放電量は負極炭素重量あた リ 1 91 2 mAh Zg, the second and subsequent charge / discharge are discharge Z charge efficiency is 98% or more, and the 10th discharge amount is the negative electrode carbon weight.
5 m A h / g であっ た。 こ の結果、 放電、 再充電によ る繰 リ 返 し充放電が可能でぁ リ 、 該電池が二次電池 と して動作する こ と が分かった。 It was 5 mAh / g. As a result, it was found that the battery can be repeatedly charged and discharged by discharging and recharging, and that the battery operates as a secondary battery.
比較例 1 Comparative Example 1
実施例 1 で用いたへキサフ ルォに プじ ピ レ ン ー フ ッ化 ビ二 リ デン共重合体樹脂 (へキサフ ルォ π プロ ピ レ ン含量 5重量 % ) ペ レ ッ ト 1 0 g と 、 アセ ト ン 4 0 g 、 および リ チ ウムテ ト ラ フノレォロ ボ レ ー ト ( L i B F 4) をエチ レンカーボネ ー ト ( E C ) プ ロ ピ レ ンカーボネー ト ( P C ) / γ —ブチル ラ ク ト ン ( γ — B L ) 混合溶媒 ( E C / P C , 7 — B L重量 比 : 1 / 1 / 2 ) に L i B F 4濃度 I m o l Z l で溶解して 得られる非水系電解質溶液 3 0 g 、 を混合後 6 0 °Cで 6 時間 加熱 して均一溶液を作製した。 該溶液をアル ゴ ン ガ ス雰囲気 下でガラ ス板上に塗布 した後、 ァセ ト ンを蒸発させて高分子 固体電解質シー ト を作製した。 10 g of pellets of the hexafluoropyrene-vinylidene fluoride copolymer resin (hexafluoro π-propylene content 5% by weight) used in Example 1 acetone tons 4 0 g, and Li Ji Umute preparative La Funoreoro volume record over preparative (L i BF 4) the ethyl Renkabone over preparative (EC) profiles Pi Les Nkabone preparative (PC) / gamma - butyl La click tons ( gamma - BL) mixed solvent (EC / PC, 7 - BL weight ratio: 1/1/2) to L i BF 4 concentration I mol Z l nonaqueous electrolyte obtained by dissolving in a solution 3 0 g, the after mixing The solution was heated at 60 ° C for 6 hours to prepare a homogeneous solution. The solution was applied on a glass plate under argon atmosphere, and then acetone was evaporated to remove polymer. A solid electrolyte sheet was prepared.
ガラス板から剥が した高分子固体電解質シー ト を用レ、、 実 施例 1 と 同様に して断面観察用サ ンプルを切 り 出 し、 光学顕 微鏡観察にょ リ 断面を観察 した結果、 ポ リ マー相は均一構造 であ リ 、 粒径 1 μ m以上の液相 ド メ イ ンは観察 されなかった ( 即ち、 該高分子固体電解質中の液相 ドメ ィ ンの体積分率は 0 %であった。 Using the polymer solid electrolyte sheet peeled off from the glass plate, cutting out a cross-section observation sample in the same manner as in Example 1, and observing the cross-section through an optical microscope, The polymer phase had a uniform structure, and no liquid domain having a particle size of 1 μm or more was observed (that is, the volume fraction of the liquid domain in the polymer solid electrolyte was 0%. Met.
上記の塗布、 アセ ト ン蒸発によ って得られた高分子固体電 解質シ一 ト 1 c m角の両面をス テ ン レス シー ト で挟み込み積 層体と し 、 こ の ス テ ン レス シ一 ト を電極と して実施例 1 と 同 様に して交流イ ン ピーダンス解析を行いナイ キ ス ト プロ ッ ト の複素ィ ン ピーダンス実部切片からイ オン伝導度を算出 した 結果、 イ オン伝導度 0 . 9 x i 0 - 3 S Z c mである こ と がわ かった。 The 1 cm square polymer solid electrolyte sheet obtained by the above-mentioned coating and acetone evaporation was sandwiched between stainless steel sheets to form a laminated body. AC impedance analysis was performed using the sheet as an electrode in the same manner as in Example 1, and the ion conductivity was calculated from the real impedance intercept of the Nyquist plot. . on conductivity 0 9 xi 0 - 3 SZ is an off this and the side is cm.
また、 該高分子固体電解質シー ト の両面にス テ ン レ ス シー ト で挟み込んだ状態で両面を熱電対を埋め込んだアル ミ ナ板 で押さ え、 さ らに加熱機を備えた油圧プ レス機内に保持した ス テ ン レスシー ト電極間の交流ィ ンピーダンス測定を行いな が ら、 加熱機で積層体を室温から 1 1 0 °Cまで加熱してイ ン ピーダンス の温度依存性を評価した。 ィ ン ピー ダンス測定は 日本国 日置電気 (株) 製 L C R メ ータ を用いて、 測定周波数 1 k H z で行った結果、 室温から 1 1 0 °Cの温度の範囲で、 ィンピーダンス がなだらかに変化 したが 、 1 1 0 °Cで急激に 抵抗減少が見られた。 これと 同時に電極間から溶融物の しみ だしが認められ、 溶融変形にょ リ ポ リ マーシー トが薄膜化し たこ と に伴 う抵抗減少である こ と がわかった。 In addition, the both sides of the polymer solid electrolyte sheet are sandwiched by stainless steel sheets, and both sides are pressed by an aluminum plate in which a thermocouple is embedded, and a hydraulic press equipped with a heater is further provided. While measuring the AC impedance between the stainless steel sheet electrodes held in the machine, the laminate was heated from room temperature to 110 ° C by a heater to evaluate the temperature dependence of the impedance. The impedance was measured using an LCR meter manufactured by Hioki Electric Co., Ltd., Japan, at a measurement frequency of 1 kHz. As a result, the impedance was gentle in the temperature range from room temperature to 110 ° C. , But sharply at 110 ° C A decrease in resistance was observed. At the same time, the exudation of the melt was observed between the electrodes, indicating that the resistance was reduced due to the thinning of the polymer sheet due to the melt deformation.
実験終了後アル ミ ナ板およびステ ン レス シー ト を分離した 結果、 高分子固体電解質は溶融フ ロー してお リ 熱安定性に乏 しいこ と がわかった。  After the experiment was completed, the aluminum plate and stainless steel sheet were separated. As a result, it was found that the solid polymer electrolyte melted and had poor heat stability.
実施例 4 Example 4
実施例 1 と 同様に して、 押 し出 し成形 した膜厚 5 0 μ πιの へキサ フルォ ロ ブ c ピ レ ン 一 フ ッ 化 ビニ リ デン共重合体樹脂 Extruded and molded into a film having a thickness of 50 μπι in the same manner as in Example 1. Hexafluorolob c pyrene vinylidene fluoride copolymer resin
(へキサフルォロ プ ロ ピ レ ン含量 5 重量% ) シー ト を作製 し た。 得 られる シー ト に電子線を照射 (照射量 1 0 M r a d ) して、 実施例 1 と 同様に してフ ロ ン H F C 1 3 4 a を含浸(Hexafluoropropylene content 5% by weight) A sheet was prepared. The obtained sheet is irradiated with an electron beam (irradiation amount: 10 Mrad), and impregnated with fluorocarbon HFC13a in the same manner as in Example 1.
(含液量 5 重量。 /。) させた。 含浸 させた シー ト を取 り 出 した 後、 直ちに 2 1 0 °Cの加熱炉を用いて 1 8 0 °Cに 5 秒間加熟 して、 膜厚 7 2 μ ιηの白色発泡体 (発泡倍串 3 倍) を得た。 9 3 0 型空気比較式比重計 ( 日 本国東芝ベ ッ ク マ ン社製) に ょ リ 測定した、 独立気泡の発泡体全体に対する体積分率は 6 8 容量%であった。 発泡体シー ト に さ らに電子線照射 (照射 量 1 5 M r a d ) を行った。 該シー ト を N M P に浸せき した 後 9 0 °Cの温度で 3 時間加熱して溶解性を調べた結果、 シー ト形状を保持する こ と がわかった。 ついで含浸シー ト を引き 上げ、 アセ ト ン浸せき洗浄を行い、 乾燥したシー ト の重量か ら、 電子線照射にょ リ 形成された架橋成分の重量分率を求め た結果、 5 5重量%であった。 (Liquid content 5 wt./.) Immediately after taking out the impregnated sheet, it was ripened at 180 ° C for 5 seconds using a heating furnace at 210 ° C for 5 seconds to obtain a 72 μιη white foam (foaming factor). 3 times the skewer). The volume fraction of the closed cells with respect to the entire foam was 68% by volume, as measured by a 930-type air comparison hydrometer (manufactured by Toshiba Beckman Co., Ltd., Japan). The foam sheet was further irradiated with an electron beam (irradiation amount: 15 Mrad). After soaking the sheet in NMP, it was heated at a temperature of 90 ° C. for 3 hours and the solubility was examined. As a result, it was found that the sheet shape was maintained. Next, the impregnated sheet is pulled up, washed with immersion in acetate, and the weight fraction of the crosslinked component formed by electron beam irradiation is determined from the weight of the dried sheet. As a result, it was 55% by weight.
該発泡体を、 リ チウムテ ト ラ フルォロ ボレ一 ト ( L i B F ) をエチ レ ンカーボネー ト ( E C ) /プロ ピ レ ン力一ボネ ー ト ( P C ) 7 プチルラ ク ト ン ( y — B L ) 混合溶媒  The foam was mixed with lithium tetrafluoroborate (LiBF) and mixed with ethylene carbonate (EC) and propylene (one) (PC) 7 butyllactone (y-BL). Solvent
( E Cノ P C / γ — B L重量比 2 ) に L i B F 濃度 1 . 5 m o 1 / 1 で溶解 して得られる非水系電解質溶液 に入れ、 1 0 0 Cの温度で 2時間含浸 · 膨潤させて複合高分 子固体電解質を作製 した。 含浸後膜厚は 1 0 5 mであった, 実施例 1 と 同様に して、 該複合高分子固体電解質から断面 観察用サ ンプルを切 り 出 し、 その第 1 、 第 2及び第 3 の断面 構造を観察 した結果、 球状の液相 ドメ ィ ンが均一に分散 して お り 、 その平均粒径は 2〜 1 0 mであった。 また、 第 1 、 第 2及び第 3 の断面積の割合は、 それぞれ、 5 1 %、 4 8 % 4 5 %であ り 、 こ の結果から複合高分子固体電解質中の液相 ド メ イ ンの体積分率が 4 8容量%である こ と がわかった。 尚 第 1 、 第 2及び第 3 の断面のいずれに も、 複合高分子固体電 解質のも と の表面 と連通 した液相 ドメ イ ンは認められなかつ た  (EC No PC / γ — BL weight ratio 2), dissolve it with a Li BF concentration of 1.5 mo 1/1 and add it to a non-aqueous electrolyte solution. Impregnate and swell at 100 ° C for 2 hours. Thus, a composite polymer solid electrolyte was produced. The film thickness after impregnation was 105 m. In the same manner as in Example 1, samples for section observation were cut out from the composite solid polymer electrolyte, and the first, second, and third samples were cut out. As a result of observing the cross-sectional structure, the spherical liquid phase domain was uniformly dispersed, and the average particle size was 2 to 10 m. The ratios of the first, second, and third cross-sectional areas were 51%, 48%, and 45%, respectively. From these results, it was found that the liquid phase domain in the composite polymer solid electrolyte was The volume fraction was found to be 48% by volume. No liquid domain communicating with the surface of the composite solid polymer electrolyte was observed in any of the first, second and third cross sections.
該複合高分子固体電解質の非水系電解液含浸前後の重量変 化から求めた、 該複合高分子固体電解質における非水電解質 溶液含量は 7 6重量%であった。  The content of the nonaqueous electrolyte solution in the composite solid polymer electrolyte was 76% by weight, which was determined from the change in weight of the composite polymer solid electrolyte before and after the impregnation with the nonaqueous electrolyte.
上記のよ う に して得られた複合高分子固体電解質シ一 ト 1 c m角の両面をス テ ン レス シー ト で挟み込み積層体と し、 こ のステ ン レス シ一 ト を電極と して実施例 1 と 同様に して交流 イ ンピーダンス解析を行いナイ キス トプロ ッ ト の複素イ ンピ —ダンス実部切片からイ オン伝導度を算出 した結果、 イ オン 伝導度 3 . 2 X 1 0— 3 S Z c mである こ と がわかった。 The composite polymer solid electrolyte sheet obtained as described above was sandwiched on both sides of a 1 cm square sheet by a stainless sheet to form a laminate. Using the stainless steel sheet as an electrode, AC impedance analysis was performed in the same manner as in Example 1, and the ion conductivity was calculated from the real impedance intercept of the complex impedance of the Nyquist plot. ion-conductivity 3. and the this was found to be 2 X 1 0- 3 SZ cm.
また、 該複合高分子固体電解質シー ト の両面にステ ン レス シー ト で挟み込んだ状態で両面を熱電対を埋め込んだアル ミ ナ板で押さ え、 さ らに加熱機を備えた油圧プ レ ス機内に保持 した。 ス テ ン レス シ一 ト電極間の交流イ ン ピー ダンス測定を 行いなが ら加熱機で積層体を室温から 2 2 0 °Cまで加熱して ィ ン ピー ダンス の温度依存性を評価 した。 ィ ン ピー ダンス測 定は 日 本国 日 置電気 (株) 製 L C R メ ータ を用いて、 測定周 波数 1 k H z で行った結果、 室温から 2 2 0 Cの温度の範囲 で、 イ ン ピーダンスがなだら力 こ変化 した。  In addition, the composite polymer solid electrolyte sheet is sandwiched between stainless steel sheets on both sides and pressed on both sides by an aluminum plate in which a thermocouple is embedded, and a hydraulic press equipped with a heater is further provided. Held on board. The temperature dependence of the impedance was evaluated by heating the laminate from room temperature to 220 ° C with a heater while measuring the AC impedance between the stainless steel electrodes. The impedance was measured using an LCR meter manufactured by Hioki Electric Co., Ltd., Japan at a measurement frequency of 1 kHz. As a result, the impedance was measured in the range of room temperature to 220 ° C. Peedance has changed dramatically.
実験終了後アル ミ ナ板およびステ ン レ ス シ一 ト を分離 した 結果、 複合高分子固体電解質の変形は見 られなかった。 こ の こ と よ リ 少な く と も 2 2 0 °C以下の温度範囲では溶融変形が 起こ らず熱寸法安定性に優れる こ とがわかった。  After the experiment was completed, the alumina plate and stainless steel sheet were separated, and no deformation of the composite solid polymer electrolyte was observed. At least in the temperature range of 220 ° C or less, it was found that no melting deformation occurred and the thermal dimensional stability was excellent.
実施例 5 Example 5
実施例 3 で作製 したコバル ト酸リ チウム正極塗膜と カーボ ン負極塗膜を用い、 実施例 4 で作製した複合高分子固体電解 質の両面に正極および負極を実施例 3 と 同様に挟み込んで、 1 2 0 °Cの温度でラ ミ ネ一 ト して積層体を作製 した。 それぞ れの電極の集電体側からス テ ン レスシ一 ト取 リ 出 し端子を接 続した後、 ポ リ エチ レン アル ミ ニ ウ ム /ポ リ エチ レンテ レ フ タ レー ト積層シー ト (膜厚 5 0 m) でラ ミ ネー ト してシ 一ト状電池を作製した。 Using the lithium cobaltate positive electrode coating film prepared in Example 3 and the carbon negative electrode coating film, the positive electrode and the negative electrode were sandwiched between both surfaces of the composite polymer solid electrolyte prepared in Example 4 in the same manner as in Example 3. The laminate was manufactured by laminating at a temperature of 120 ° C. Take out the stainless steel sheet from the current collector side of each electrode and connect the terminals. Then, lamination was carried out with a polyethylene aluminum / polyethylene terephthalate laminated sheet (film thickness 50 m) to produce a sheet-like battery.
実施例 3 と 同様に して、 充放電を行った。 初回充放電の電 流効率は 7 9 %であ り 、 初回放電 iは負極炭素重量あた リ 2 1 I m A h Z gであった。 さ らに充放電を繰 リ 返した結果、 2 回目 以降の充放電効率は 9 9 %以上であ リ ニ次電池と して 作用する こ と が分かった。 この結果、 放電、 再充電によ る繰 り 返し充放電が可能であ り 、 二次電池と して動作する こ と が 分かった。  Charging and discharging were performed in the same manner as in Example 3. The current efficiency of the first charge and discharge was 79%, and the first discharge i was 21 ImAhZg per carbon weight of the negative electrode. As a result of repeated charge / discharge, the charge / discharge efficiency for the second and subsequent cycles was found to be 9.9% or more, and it was found to work as a linear battery. As a result, it was found that the battery can be repeatedly charged and discharged by discharging and recharging, and that it operates as a secondary battery.
実施例 6 Example 6
実施例 1 で作製 した発泡体シー ト (電解液含浸前) を実施 例 3 で作製 した N C負極と L 1 C o O :正極を重ね合わせ、 1 2 0 °Cの温度でラ ミ ネー ト して積層体を作製 した。 こ の積 層体は、 集電体の未塗工部分が表面になる構造である。 こ の 集電体表面 (正極、 負極と も) に針を刺 して、 直径 1 5 0 μ mの穴を 1 c m2当た り 4 0 0個形成させた。 The foamed sheet prepared in Example 1 (before impregnation with the electrolyte) was overlaid with the NC negative electrode prepared in Example 3 and the L1CoO: positive electrode, and laminated at a temperature of 120 ° C. To produce a laminate. This laminate has a structure in which the uncoated portion of the current collector is the surface. A needle was pierced into the surface of the current collector (both the positive electrode and the negative electrode) to form 400 holes of 150 μm in diameter per 1 cm 2 .
次いで、 リ チ ウ ムテ ト ラ フルォロ ボ レ一 ト ( L i B F 4) をエチ レンカーボネー ト ( E C ) プロ ピ レンカーボネー ト ( P C ) —プチルラ ク ト ン ( γ — B L ) 混合溶媒 ( E CThen, Li Ji U Mute preparative La Furuoro volume, single-preparative (L i BF 4) the ethylene Renkabone bets (EC) pro pin Renkabone preparative (PC) - Puchirura click tons (gamma - BL) mixed solvent (EC
— B L重量比 : 1 / 1 / 2 ) に L i B F 4濃度 1 . 5 m o 1 1 で溶解 して得られる非水系電解質溶液に、 該積 層体を浸せき し、 浸せき状態で 1 0 0 °Cで 2時間加熱 して、 高分子固体電解質と しての膨潤発泡体シ一 ト を含有する積層 体を得た。 — BL weight ratio: 1/1/2), and immerse the laminate in a non-aqueous electrolyte solution obtained by dissolving LiBF 4 at a concentration of 1.5 mo 11, and then immerse the laminate at 100 ° Heat at C for 2 hours, A laminate containing a swollen foam sheet as a polymer solid electrolyte was obtained.
集電体面に外部取 り 出 し端子であるス テ ン レ ス シ一 ト を接 触させなが ら、 これらをポ リ エチ レン zアル ミ ニ ウム /ポ リ エチレンテ レ フ タ レ一 ト ラ ミ ネ一 ト シ一 ト (膜厚 5 0 μ ηι) でパッ ケージ袋に挿入 し、 ステン レスシ— ト の端部が外部に 露出する よ う に してパッケージ袋の內部を減圧に保ちなが ら 、 加熱真空シーラーを用い、 1 2 0 °Cで封を して電池を作製 し た。  While contacting the stainless steel sheet, which is an external output terminal, to the current collector surface, these are made of polyethylene and aluminum / polyethylene telephthalate. Insert it into a package bag with a mineral sheet (film thickness 50 μηι), and keep the inside of the package bag under reduced pressure so that the end of the stainless sheet is exposed to the outside. Then, using a heated vacuum sealer, the battery was sealed at 120 ° C. to produce a battery.
該電池を用い、 実施例 3 と 同様に して充放電を行った (電 極面積当た リ 電流密度 I m A Z c m 2) 結果、 初回充放電効 率 8 2 %、 放電量は負極炭素重量あた り 2 1 O m A h Z g で あった。 2 回 目 以降の充放電効率は 9 8 %以上でぁ リ 、 1 0 0サイ クル放電量の初回放電量に対する割合は 8 4 %であつ た。 以上の結果から、 繰 り 返 し充放電が可能であ り 、 二次電 池と して作動する こ と がわかった。 Using this battery, charging and discharging were performed in the same manner as in Example 3 (re-current density per electrode area: ImAZ cm 2 ). The average was 21 OmAhZg. The charge / discharge efficiency after the second time was 98% or more, and the ratio of the 100th cycle discharge amount to the initial discharge amount was 84%. From the above results, it was found that the battery can be repeatedly charged and discharged and operates as a secondary battery.
実施例 7 Example 7
実施例 1 と 同様に して、 押 し出 し成形 した膜厚 5 O mの へキサフルォロ プロ ピレンー ビニ リ デンフ ロ ラ イ ド共重合体 (へキサフルォロ プロ ピレン含有量 5重量。/。) シ一 ト を作製 した。 得られたシー ト に電子線を照射 (照射量 1 0 M r a d ) し、 実施例 1 と 同様に してフ ロ ン H F C 1 3 4 a を含浸 ( 5 重量% ) させた。 含浸させたシー ト を取 リ 出 した後、 直ちに 2 1 0 °Cの加熱炉にて 5秒間 1 8 0 °Cに加熱して膜厚 6 8 μ mの白色発泡体を得た。 9 3 0型空気比較式比重計 ( 日本国 東芝ベッ ク マ ン社製) によ リ 測定した、 独立気泡の発泡体全 体の体積に対する体積分率は 7 0容量。/。であった。 Extruded and molded into a film having a thickness of 5 Om in the same manner as in Example 1 and having a film thickness of 5 Om. Was made. The obtained sheet was irradiated with an electron beam (irradiation amount: 10 Mrad), and impregnated with fluorocarbon HFC134a (5% by weight) in the same manner as in Example 1. Immediately after removing the impregnated sheet The mixture was heated at 180 ° C. for 5 seconds in a heating furnace at 210 ° C. to obtain a white foam having a film thickness of 68 μm. The volume fraction of the closed-cell foam relative to the total volume of the foam measured by a 930-type air comparison hydrometer (manufactured by Toshiba Beckman, Japan) is 70 volumes. /. Met.
該発泡体シー ト の両面をステ ン レス シー ト で挟み込み、 ェ チ レ ンカーボネー ト ( E C ) ノプロ ピ レ ンカ ーボネー ト ( P C ) = 1 Z 1 の混合溶媒に L i B F 4を I m o l Z l の濃度 で溶解 して得られる非水系電解質溶液に浸せき した後、 1 0 0 °Cの温度で 3 時間含浸させた。 含浸後の発泡体シ一 卜 の膜 厚は 9 5 μ mであった。 Sandwiching both sides of the foam sheet with stearyl emissions less sheet, the L i BF 4 in E Ji Les Nkabone preparative (EC) Nopuro pin Les Lanka Bone preparative (PC) = 1 mixed solvent of Z 1 I mol Z l After being immersed in a non-aqueous electrolyte solution obtained by dissolving at a concentration of, the sample was impregnated at 100 ° C for 3 hours. The film thickness of the foam sheet after impregnation was 95 μm.
実施例 1 と 同様に して、 該複合高分子固体電解質から断面 観察用のサ ン プルを切 り 出 し、 その第 1 、 第 2 及び第 3 の断 面構造を観察 した結果、 球状の液相 ドメ イ ンが均一に分散 し てお り 、 その平均粒径は 2 〜 9 μ mであっ た。 また、 第 1 、 第 2 及び第 3 の断面の液相 ド メ イ ンの断面積の割合は、 それ ぞれ、 3 8 %、 3 0 %、 3 5 %であ リ 、 複合高分子固体電解 質中の液相 ド メ イ ンの体積分率は 3 4 . 3 容量。 /。である こ と がわかった。 また、 第 1 、 第 2及び第 3 の断面のいずれにも 複合高分子固体電解質のも と の表面と連通する液相 ドメ ィ ン は認め られなかった。 さ らに実施例 1 と 同様に して透水量を 測定 したが、 透水は観測されなかった。  In the same manner as in Example 1, a sample for section observation was cut out from the composite solid polymer electrolyte, and the first, second, and third cross-sectional structures were observed. The phase domains were uniformly dispersed and had an average particle size of 2 to 9 μm. The ratios of the cross-sectional areas of the liquid-phase domains in the first, second, and third cross sections were 38%, 30%, and 35%, respectively. The volume fraction of the liquid domain in the material is 34.3 volumes. /. It turned out that. In addition, no liquid domain communicating with the original surface of the composite solid polymer electrolyte was observed in any of the first, second, and third cross sections. Further, the amount of permeation was measured in the same manner as in Example 1, but no permeation was observed.
該複合高分子固体電解質の非水系電解液含浸前後の重量変 化から求めた、 複合高分子固体電解質における非水系電解質 溶液含量は 7 5重量%であった。 The non-aqueous electrolyte in the composite solid polymer electrolyte was determined from the weight change of the composite solid polymer electrolyte before and after impregnation with the non-aqueous electrolyte. The solution content was 75% by weight.
実施例 1 と 同様に して交流イ ン ピーダンス測定によ る含浸 後の発泡シー トの室温におけるイ オン伝導度を求めた結果、 3 . 4 X 1 0— 3 S Z c mであった。 また、 該含浸体を 1 5 0 °Cに加熱 した後、 冷却 して室温のィ ンピ一ダンス測定を行つ た結果、 イ オン伝導度は 3 . 5 X 1 0 — 3 S Z c mであ り 、 含 浸後の熱履歴によ ってほと ん ど変化 しないこ と がわかった。 Example 1 Results of obtaining the ion-conductivity in the foam sheet at room temperature after impregnation that by the AC Lee down impedance measured in the same manner as was 3. 4 X 1 0- 3 SZ cm. The impregnated body was heated to 150 ° C, cooled, and subjected to impedance measurement at room temperature. As a result, the ion conductivity was 3.5 X 10 — 3 SZ cm. However, it was found that the heat history after the impregnation hardly changed.
実施例 8 Example 8
実施例 7で作製 した含浸前の発泡体シー ト を用い、 実施例 3で作製 した L i C 0 〇 2電極シー ト (正極) 、 N C電極シ — ト (負極) をそれぞれ 2 c m角に切断し、 発泡体シー ト を 2 . 3 c m角に切断して、 2枚の電極シー ト で該シー ト を挟 み、 1 2 0 °Cでラ ミ ネー ト した後、 得られる積層体を、 ェチ レ ンカ ーボネー ト ( E C ) Zプロ ピ レ ンカ ーボネー ト ( P C ) ノ γ— ブチル ラ ク ト ン ( γ — B L ) 重量比 : 1 / 1 2 ) にUsing a foam sheet before impregnation prepared in Example 7, L i C 0 〇 2 electrode sheet prepared in Example 3 (positive electrode), NC electrode sheet - cutting preparative (negative) to each 2 cm square Then, the foam sheet is cut into 2.3 cm squares, the sheet is sandwiched between two electrode sheets, and the laminate is laminated at 120 ° C. Ethylene carbonate (EC) Z Propylene carbonate (PC) gamma-butyl lactone (γ-BL) Weight ratio: 1/12)
L 1 B F 4の 1 m 0 1 で溶解 して得られる非水系電解質 溶液に含浸させた後、 1 0 0 °Cの温度で 3 0分間加熟処理 し て電池を形成 した。 こ の加熱によ り 発泡体シー ト は白色から 透明に変化 し含浸が確認された。 また、 含浸後の発泡体シー ト は両側電極からはみ出 した状態を保持 し面內寸法変化がほ と ん どない こ と がわかっ た。 ついで該!;池の正極、 負極にス テ ン レ ス端子を取 り 付け、 ポ リ エチ レ ン /アル ミ ニ ウ ム Zポ リ エチ レ ンテ レ フ タ レー ト積層シー ト でラ ミ ネー ト ( ラ ミ ネ ー ト温度 1 2 0 °C、 3 0秒) してシー ト状電池を作製した。 After impregnating the non-aqueous electrolyte solution obtained by dissolving in 1 m 0 1 for L 1 BF 4, to form a battery by pressing ripe for 3 0 minutes at 1 0 0 ° C. By this heating, the foam sheet changed from white to transparent, and impregnation was confirmed. In addition, it was found that the impregnated foam sheet kept the state protruding from the electrodes on both sides, and there was almost no change in surface dimensions. Then! ; Attach stainless steel terminals to the positive and negative electrodes of the pond. Laminate the laminate (polyethylene / aluminum Z) with laminated laminates. A sheet-like battery was manufactured at a temperature of 120 ° C for 30 seconds.
該電池を充放電機 (日本国北斗電工 (株) 製 1 0 1 S M 6 ) を用い電極当た リ 電流密度 1 m A / c m2の電流密度で充放 電を行なった。 充電は電位が 4 . 2 Vに達した後定電位で行 つた。 充電後の電極間電位は 4 . 2 Vであ り 充電が確認でき た。 また放電は電位が 2 . 7 Vまで低下 した時に停止 した。 初回充放電効率 7 8 %、 2 回 目 以降の充放電効率は 9 9 %以 上で、 繰 リ 返し充放電が可能でぁ リ 、 二次電池と して作動す る こ と が確認できた。 The battery was charged and discharged at a current density of 1 mA / cm 2 using a charge / discharge machine (101 SM 6 manufactured by Hokuto Denko K.K.). Charging was performed at a constant potential after the potential reached 4.2 V. The potential between the electrodes after charging was 4.2 V, and charging was confirmed. The discharge stopped when the potential dropped to 2.7 V. The initial charge / discharge efficiency is 78%, and the charge / discharge efficiency after the second time is 99% or less. Above, it was confirmed that the battery can be repeatedly charged and discharged, and that it operates as a secondary battery.
実施例 9 Example 9
実施例 1 と 実質的に同様に して、 へキサフルォロ プロ ピ レ ンーフ ッ化ビ二 リ デン共重合体樹脂 (へキサフルォロ プロ ピ レ ン含量 5 重量%) を加熱押し出 し成形によ って膜厚 1 6 8 μ mのシー ト に成形 した。 得られたシー ト に照射量 1 0 M r a d で電子線照射を行い部分架橋 した後、 6 0 °Cで真空乾燥 して生成 した H F ガ ス を除去 した。 これをポ リ マーシ一 ト A とする。  In substantially the same manner as in Example 1, a hexafluoropropylene-vinylidene fluoride copolymer resin (hexafluoropropylene content: 5% by weight) was extruded by heating and molding. The sheet was formed into a sheet with a film thickness of 168 μm. The obtained sheet was irradiated with an electron beam at an irradiation dose of 10 Mrad to partially crosslink, and then vacuum-dried at 60 ° C to remove the generated HF gas. This is referred to as polymer sheet A.
ポ リ マ一 シー ト Aに、 実施例 1 と 同様に して フ ロ ン H F C 1 3 4 a を含浸 させた。 含浸させたシー ト を取 リ 出 した後、 直ちに 2 1 0 °Cの加熱炉にて 1 0 秒間 1 8 0 °Cに加 して、 膜厚 4 0 1 μ πιの白色発泡体 (発泡倍率 1 5 倍、 体積比) を 得た。 これを発泡シー ト Β とする。 発泡シー ト Β の 、 発泡シ ― ト Β の全体積に対する独立気泡体積の割合は、 9 2 容量% であった。 発泡シー ト Β に、 さ らに 3 0 M r a d の電子線照 射をおこなって 6 0 °Cで真空乾燥した後、 3 0 m m X 3 0 m mの試験片を、 リ チウムテ ト ラ フルォロ ボ レ一 ト ( L i B F ) をエチ レ ンカ ーボネー ト ( E C ) Zプロ ピ レ ン力 一ボネ — ト ( P C ) —プチロ ラ ク ト ン ( y — B L ) 混合溶媒 Polymer sheet A was impregnated with HFFC134a in the same manner as in Example 1. Immediately after removing the impregnated sheet, the sheet was heated in a heating furnace at 210 ° C for 10 seconds at 180 ° C to obtain a white foam with a film thickness of 401 μππι (expansion ratio). 15 times, volume ratio). This is designated as foam sheet Β. The ratio of the closed cell volume of the foam sheet to the total volume of the foam sheet was 92% by volume. The foam sheet was further irradiated with an electron beam of 30 Mrad and dried in vacuum at 60 ° C, and then a 30 mm X 30 mm test piece was placed on a lithium tetrafluorophore. Ethylene carbonate (EC) Z propylene power Monocarbonate (PC)-Petyrolactone (y-BL) mixed solvent
( E C / P C / y _ B L重量比 1 / 2 ) に濃度 1 m 0(E C / PC / y _ B L weight ratio 1/2) concentration 1 m 0
】 で溶解 して得られる非水系電解質溶液に浸漬 した後、 1 0 0 °Cの温度で 1 時間含浸 · 膨潤させて、 複合高分子固体 電解質を作成した。 膨潤後の寸法は 3 7 mm X 3 O m m (面 積は含浸前の 1 2 3 % ) 、 膜厚は 3 7 2 μ mであった。 After immersion in a non-aqueous electrolyte solution obtained by dissolving in The composite polymer solid electrolyte was prepared by impregnation and swelling at 100 ° C for 1 hour. The dimensions after swelling were 37 mm X 3 O mm (area was 123% before impregnation), and the film thickness was 372 μm.
実施例 1 と 同様に して、 該複合高分子固体電解質の断面観 察用サンプルを作製 し、 その第 1 、 第 2 及び第 3 の断面の構 造を観察した結果、 球状の液相 ドメ イ ンが均一に分散 してお り 、 その平均粒径は 2 〜 2 5 μ πιであった。 また、 第 1 、 第 2 及び第 3 の各断面の断面積に対する、 それぞれの液相 ドメ イ ンの断面積の割合は、 8 3 %、 7 8 %、 8 2 %であ り 、 こ の結果から 8 1 容量%の体積分率で液相 ドメ ィ ンを含有する こ と がわかった。 また、 第 1 、 第 2 及び第 3 の断面のいずれ にも、 複合高分子固体電解質のも と の表面と連通する液相 ド メ イ ンは認められなかった。 さ らに実施例 1 と 同搽に して透 水量を測定 したが、 透水は観測 されなかった。  In the same manner as in Example 1, a sample for observing the cross section of the composite solid polymer electrolyte was prepared, and the structures of the first, second, and third cross sections were observed. As a result, a spherical liquid phase domain was obtained. And the average particle size was 2 to 25 μπι. The ratio of the cross-sectional area of each liquid phase domain to the cross-sectional area of each of the first, second, and third cross-sections was 83%, 78%, and 82%. From this, it was found that the liquid phase domain was contained at a volume fraction of 81% by volume. Further, in any of the first, second and third cross sections, no liquid phase domain communicating with the original surface of the composite solid polymer electrolyte was observed. Further, the amount of permeation was measured in the same manner as in Example 1, but no permeation was observed.
また、 非水系電解質溶液含浸前後の重量変化から求めた、 該複合高分子固体電解質における非水系電解質溶液含量は 9 0重量%であった。  The content of the non-aqueous electrolyte solution in the composite solid polymer electrolyte was found to be 90% by weight, which was determined from the change in weight before and after the impregnation with the non-aqueous electrolyte solution.
実施例 1 と 同様にイ オン伝導度を求めた結果、 イ オン伝導 度 2 . 4 X 1 0— 3 S / c mであった。 Results obtained in the same manner as in ion-conductivity as in Example 1 was ion-conductivity 2. 4 X 1 0- 3 S / cm.
比較例 2 Comparative Example 2
ポ リ マ一シ一 ト Aの試験片 3 0 m m X 3 0 m mを実施例 9 と 同様に して膨潤させた。 膨潤後の寸法は 5 8 m m X 4 0 m m (面積は含浸前の 2 4 0 %に増大) 、 膜厚は 3 3 5 mで あった。 実施例 9 と 比較して著し く 面稜増大が大きいこ とが わかる。 A 30 mm × 30 mm specimen of polymer sheet A was swollen in the same manner as in Example 9. The dimensions after swelling are 58 mm X 40 mm (area increased to 240% before impregnation), and the film thickness is 335 m there were. It can be seen that the surface ridge increase was remarkably large as compared with Example 9.
実施例 1 0 Example 10
ビニ リ デンフ ロ ラ ィ ドー へキサフルォロ プロ ピ レン共重合 体 (へキサフルォロ プロ ピ レ ン含量 5 重量%) の粉末を 2 3 0 °Cで加熟成型して膜厚 1 5 0 μ mの シー ト を成型した。 該 シー ト に電子線照射 (照射量 1 0 M r a d ) し、 実施例 1 と 同様に してフ ロ ン 1 3 4 Aを含浸 (含液量 7 重量。 /0) させた 後取 り 出 して、 直ちに 2 1 0 °Cの加熱炉にて 1 0秒間 1 8 0 °Cに加熱 し、 膜厚 2 8 0 / mの白色発泡体 (発泡倍率 8 倍) を得た。 こ の発泡体は直径 1 から 1 5 μ ιηの独立気泡 を含有 し、 9 3 0型空気比較式比重計 ( 日本国東芝ベッ ク マ ン社製) によ リ 測定 した、 独立気泡の発泡体全体の体積に対 する割合は 8 3 容量%であった。 A powder of vinylidene fluoride hexafluoropropylene copolymer (hexafluoropropylene content 5% by weight) was ripened at 230 ° C and molded to a thickness of 150 μm. Was molded. Electron beam irradiation to the sheet and (dose 1 0 M rad), leaving Ri taken After in the same manner as in Example 1 impregnated with full B down 1 3 4 A (solution content 7 wt. / 0) Then, it was immediately heated at 180 ° C. for 10 seconds in a heating furnace at 210 ° C. to obtain a white foam having a thickness of 280 / m (expansion ratio: 8). This foam contains closed cells with a diameter of 1 to 15 μιη, and is a closed-cell foam measured using a 930 air comparison hydrometer (manufactured by Toshiba Beckman, Japan). The ratio to the total volume was 83% by volume.
5 c m角に切断 した該発泡体シー ト を、 5 0 m 】 のァセ ト ン と 、 エチ レ ンカーボネー ト ' プ ロ ピ レ ンカ ーボネー ト 混合 溶媒 (重量比 1 : 1 ) に; L i B F 4を l m o l Z l 溶解 して 得られる非水系電解質溶液 5 0 m 1 と の混合溶液に、 4 0 °C の温度で 1 日 浸漬させて、 得られる シー ト を 1 0 — 3 T o r r の圧力下、 室温で 3 0分処理して複合高分子固体電解質を得 た。 該電解質の膜厚は 3 2 0 μ πι、 サイ ズは 5 c m角であつ た。 The foam sheet cut into 5 cm squares was mixed with 50 m 2 of acetone and a mixed solvent of ethylene carbonate and propylene carbonate (weight ratio 1: 1); L i BF 4 in a mixed solution of I mol Z l nonaqueous electrolyte solution obtained by dissolving 5 0 m 1, 4 0 ° by immersing 1 day at a temperature and C, the resulting sheet of 1 0 - 3 T pressure orr The mixture was treated at room temperature for 30 minutes to obtain a composite solid polymer electrolyte. The electrolyte had a film thickness of 320 μπι and a size of 5 cm square.
実施例 1 と 同様に して、 該複合高分子固体電解質の断面観 察用サンプルを作製 し、 その第 1 、 第 2 及び第 3 の断面の構 造を実施例 1 と 同様に観察 した結果、 球状の液相 ドメ イ ンが 均一に分散 してぉ リ 、 その平均粒径は 9 〜 1 5 μ mであった c また、 第 1 、 第 2 及び第 3 の各断面の断面積に対する 、 それ ぞれの液相 ド メ イ ンの断面積の割合は、 7 8 % 、 7 5 % 、 8 0 %であ り 、 こ の結果から 7 8 容量%の体積分率で液相 ドメ イ ンを含有する こ と がわかった。 また、 第 1 、 第 2 及び第 3 の断面のいずれに も、 複合高分子固体電解質のも と の表面と 連通する液相 ドメ ィ ンは認め られなかった。 さ らに実施例 1 と 同様に して透水量を測定 したが、 透水は観測 されなかった c ま た、 非水系電解質溶液含浸前後の重量変化から求めた、 該複合高分子固体電解質における非水系電解質溶液の含量は 8 5 重量%であっ た。 A cross-sectional view of the composite solid polymer electrolyte was obtained in the same manner as in Example 1. An observation sample was prepared, and the structures of the first, second, and third cross sections were observed in the same manner as in Example 1. As a result, the spherical liquid phase domain was uniformly dispersed, and the average was obtained. particle size 9 ~ 1 5 c also was mu m, first, the ratio of the cross-sectional area of the second and third to the cross-sectional area of each cross section of the their respective liquidus de main Lee down is 7 8 %, 75%, and 80%. From the results, it was found that the liquid domain was contained at a volume fraction of 78% by volume. Also, in any of the first, second, and third cross sections, no liquid phase domain communicating with the original surface of the composite solid polymer electrolyte was observed. Was measured water permeability in the same manner as in Example 1 to of al, permeability was c or not observed, was determined from the weight change before and after the non-aqueous electrolyte solution impregnation, the non-aqueous in the composite solid polymer electrolyte The content of the electrolyte solution was 85% by weight.
また、 該複合高分子固体電解質の示差 分析から ガ ラ ス転 移温度を評価 した結果、 一 1 0 0 °cであ り 、 電解液含浸前の ポ リ マー発泡体のガラ ス転移温度は一 5 1 °Cである こ と はあ らかじめ分かっていたので、 ポ リ マ一相が電解液に膨潤され ている こ と がわかった。  Further, as a result of evaluating the glass transition temperature from the differential analysis of the composite solid polymer electrolyte, the glass transition temperature was 100 ° C., and the glass transition temperature of the polymer foam before impregnation with the electrolytic solution was one. Since it was known in advance that the temperature was 51 ° C, it was found that the polymer phase was swollen by the electrolyte.
該電解質をステ ン レ ス シー ト で両面を挟み込み、 交流イ ン ピーダン ス測定を行った結果、 コ ール コ ールプロ ッ ト の実数 イ ン ピーダンス切片から求めた室温イ オン伝導度は 1 . 1 X 1 〇 - 3 S / c mであった。 実施例 1 1 The electrolyte was sandwiched on both sides by a stainless steel sheet, and AC impedance measurement was performed. X 1 〇- 3 S / cm. Example 1 1
実施例 1 0で用いた発泡体を 5 c m角に切断したシー ト を, テ ト ラ ヒ ド ロ フ ラ ン 5 0 m l と 、 エチ レ ンカーボネー ト ( E C ) ' プロ ピ レ ンカ ーボネー ト ( P C ) · γ — ブチノレラ ク ト ン ( B L〉 の混合溶媒 ( E C / P C Z B L重量比 : 1 Z 1 Z 2 ) に L i B F 4を I m o l Z l の濃度で溶解 しで得 られる 非水系電解質溶液 5 0 m 1 と の混合溶液に浸漬 し、 5 0 °Cで 8 時間保持 して溶液が含浸 した透明シ一 ト を得た。 ついで、 該シ一 ト を室温でア ル ゴ ン気流下に 3時間保持 してテ ト ラ ヒ ドロ フ ラ ンを蒸発させて透明な複合高分子固体電解質シー ト を作製 した。 該シー ト は 5 . 5 c m角 、 膜厚 3 3 5 μ ιηであ つた。 A sheet obtained by cutting the foam used in Example 10 into 5 cm squares was mixed with 50 ml of tetrahydrofuran, ethylene carbonate (EC) and propylene carbonate (PC). ) · gamma - Buchinorera click tons (BL> mixed solvent (EC / PCZBL weight ratio: 1 Z 1 Z 2) to L i BF 4 to I mol Z l nonaqueous electrolyte obtained by dissolving a concentration of solution 5 The sample was immersed in a mixed solution with 0 ml and kept at 50 ° C for 8 hours to obtain a transparent sheet impregnated with the solution. After holding for a certain period of time, the tetrahydrofuran was evaporated to produce a transparent composite polymer solid electrolyte sheet having a size of 5.5 cm square and a thickness of 3335 μιη.
実施例 1 と 同様に して、 該複合高分子固体電解質のサ ンプ ノレを作製 し、 その第 1、 第 2及び第 3 の断面の構造を観察 し た結果、 球状の液相 ドメ イ ンが均一に分散 してぉ リ 、 その平 均粒径は 9〜 1 5 μ πιであった。 また、 第 1 、 第 2及び第 3 の各断面の断面積に対する 、 それぞれの液相 ドメ ィ ンの断面 積の割合は、 8 2 %、 8 3 %、 7 8 %であ リ 、 この結果から 8 1 %の体種分率で液相 ドメ イ ンを含有する こ と がわかった また、 第 1 、 第 2及び第 3 の断面のいずれにも 、 複合高分子 固体電解質のも と の表面と連通する液相 ドメ ィ ンは認められ なかった。 さ らに実施例 1 と 同様に して透水量を測定 したが 透水は観測されなかった。 また、 非水系電解質溶液含浸前後の重量変化から求めた、 該複合高分子固体電解質における非水系電解質溶液の含量はA sample of the composite polymer solid electrolyte was prepared in the same manner as in Example 1, and the first, second, and third cross-sectional structures were observed. As a result, a spherical liquid phase domain was obtained. The particles were uniformly dispersed and had an average particle size of 9 to 15 μπι. The ratio of the cross-sectional area of each liquid phase domain to the cross-sectional area of each of the first, second, and third cross-sections was 82%, 83%, and 78%. 8 It was found to contain a liquid phase domain at a body fraction of 1% .In addition, the first, second, and third cross-sections showed that the composite polymer solid electrolyte had the same surface as the original surface. No communicating liquid phase domain was observed. Further, the amount of permeation was measured in the same manner as in Example 1, but no permeation was observed. The content of the non-aqueous electrolyte solution in the composite solid polymer electrolyte was determined from the weight change before and after the impregnation with the non-aqueous electrolyte solution.
8 8重量%であった。 It was 88% by weight.
また、 該複合高分子固体電解質の示差熱分析からガ ラ ス転 移温度を評価 した結果、 一 1 0 2 °Cであ リ 、 電解液含浸前の ポ リ マ ー発泡体のガラ ス転移温度は一 5 1 °Cである こ と はあ らかじめ分かっていたので、 ポ リ マ ー相が電解液に膨潤 され ている こ と がわかった。  Further, as a result of evaluating the glass transition temperature from the differential thermal analysis of the composite solid polymer electrolyte, the glass transition temperature was 110 ° C., and the glass transition temperature of the polymer foam before impregnation with the electrolyte was measured. Since it was known in advance that the temperature was 51 ° C, it was found that the polymer phase was swollen by the electrolyte.
該電解質をステ ン レ ス シ一 ト で両面を挟み込み、 交流イ ン ピ一ダンス測定を行った結果、 コールコールプロ ッ ト の実数 ィ ン ピーダン ス切片から求めた室温イ オン伝導度は 3 . 7 X 1 0— 3 S Z c mであった。 The electrolyte was sandwiched on both sides by a stainless steel sheet, and the AC impedance was measured. It was 7 X 1 0- 3 SZ cm.
実施例 1 2 Example 1 2
実施例 1 0で用いた発泡体を 5 c m角に切断 したシー ト を テ ト ラ ヒ ド ロ フ ラ ン 5 0 m l と 、 エチ レ ンカ ー ボネ一 ト ( E C ) · プロ ピ レンカーボネー ト ( P C ) の混合溶媒 ( E Cノ P C重量比 : 1 Z 1 ) に L i P F 6を l m o 】 / 1 の濃度で 溶解 した非水系電解質溶液 5 0 m 1 と の混合溶液に浸漬し、A sheet obtained by cutting the foam used in Example 10 into a square of 5 cm was mixed with 50 ml of tetrahydrofuran, ethylene carbonate (EC) and propylene carbonate (PC). mixed solvent (EC Roh PC weight ratio): 1 Z 1) was immersed in the L i PF 6 to a mixed solution of nonaqueous electrolyte solution 5 0 m 1 dissolved at a concentration of lmo] / 1,
5 0 °Cで 8時間保持 して溶液が含浸 した透明シー ト を得た。 ついで、 該シー ト を 1 0— 3 T o r r の圧力下に室温で 1 時間 保持 してテ ト ラ ヒ ドロ フ ラ ンを除去 し、 透明な複合高分子固 体電解質シ一 ト を作製 した。 該シ一 卜 は 5 c m角、 膜厚 2 5The solution was kept at 50 ° C for 8 hours to obtain a transparent sheet impregnated with the solution. Then, the sheet was kept for 1 hour at room temperature under a pressure of 1 0- 3 T orr removed Te preparative La inhibit mud off run-to produce a transparent composite polymer solid body electrolyte sheet one bets. The sheet is 5 cm square and the film thickness is 25
5 μ mであっ た。 実施例 1 と 同様に して、 該複合高分子固体電解質のサンブ ルを作製し、 その第 1 、 第 2及び第 3 の断面の構造を観察し た結果、 球状の液相 ドメ イ ンが均一に分散してぉ リ 、 その平 均粒径は 5 〜 : L l mであった。 また、 第 1 、 第 2 及び第 3 の各断面の断面積に対する、 それぞれの液相 ドメ イ ンの断面 積の割合は、 7 3 % 、 7 1 % 、 7 5 %であ り 、 この結果から 7 2 . 7 容量%の体積分率で液相 ドメ イ ンを含有する こ と が わかった。 また、 第 1 、 第 2 及び第 3 の断面のいずれにも、 複合高分子固体電解質の も と の表面と連通する液相 ドメ ィ ン は認め られなかった。 さ らに実施例 1 と 同様に して透水量を 測定 したが、 透水は観測 されなかった。 It was 5 μm. A sample of the composite polymer solid electrolyte was prepared in the same manner as in Example 1, and the first, second and third cross-sectional structures were observed. As a result, the spherical liquid phase domain was uniform. The average particle size was 5 to: L lm. In addition, the ratios of the cross-sectional areas of the respective liquid phase domains to the cross-sectional areas of the first, second, and third cross-sections are 73%, 71%, and 75%, respectively. It was found that the liquid phase domain was contained at a volume fraction of 72.7% by volume. No liquid domain communicating with the original surface of the composite solid polymer electrolyte was found in any of the first, second, and third cross sections. Further, the amount of permeation was measured in the same manner as in Example 1, but no permeation was observed.
また、 非水系電解質溶液含浸前後の重量変化から求めた、 該複合高分子固体電解質におけ る非水系電解質溶液の含量は 7 1 重量%であった。  Further, the content of the nonaqueous electrolyte solution in the composite solid polymer electrolyte was found to be 71% by weight, which was determined from the weight change before and after the impregnation with the nonaqueous electrolyte solution.
また、 該複合高分子固体電解質の示差熟分析から ガラ ス転 移温度を評価 した結果、 一 9 9 °Cであ り 、 電解液含浸前のポ リ マ一発泡体のガラ ス転移温度は一 5 1 °Cである こ と はあ ら かじめ分かっていたので、 ポ リ マ一相が電解液に膨潤 されて レヽる こ と がわかった。  Further, as a result of evaluating the glass transition temperature from the differential ripening analysis of the composite solid polymer electrolyte, it was found to be 199 ° C., and the glass transition temperature of the polymer foam before impregnation with the electrolytic solution was 1%. Since it was known in advance that the temperature was 51 ° C, it was found that one phase of the polymer was swollen by the electrolytic solution and was re-emitted.
該電解質をス テ ン レス シー ト で両面を挟み込み、 実施例 1 と 同様に して交流ィ ンピーダンス測定を行っ た結果、 コール コ ールプロ ッ ト の実数イ ン ピーダンス切片から求めた室温ィ オン伝導度は 1 . 0 X 1 0— 3 S / c mであった。 実施例 1 3 The electrolyte was sandwiched between stainless steel sheets on both sides, and AC impedance was measured in the same manner as in Example 1. As a result, the room temperature ion conductivity obtained from the real impedance section of the call plot was measured. was 1. 0 X 1 0- 3 S / cm. Example 13
実施例 1 0 と 同様に して膜厚 2 5 z mのビニ リ デンフ ロ ラ ィ ド キサフルォロ プロ ピレン共重合体シ一 ト を成形 した。 該シー ト に電子線照射 (照射量 2 0 M r a d ) し、 ついで実 施例 1 と 同様に してフ ロ ン 1 3 4 Aを含浸 (含液 i 5 重量。 /。) させた。 含浸させたシー ト を取 リ 出 して、 直ちに 1 8 0 °Cの 加熟炉を用いて 5 秒間 1 8 0 °Cに加熱して、 膜厚 4 0 μ mの 白色発泡体 (発泡倍率 4 倍) を得た。 こ の発泡体は直径約 1 0 か ら 1 5 , " n の独立気泡を含有 し、 空気比較式比重計によ る独立気泡の含有率は発泡体体積全体に対 して 7 1 容量%で あった。  In the same manner as in Example 10, a vinylidene fluoride xafluoropropylene copolymer sheet having a thickness of 25 zm was formed. The sheet was irradiated with an electron beam (irradiation amount: 20 Mrad), and then impregnated with chlorofluorocarbon 134A in the same manner as in Example 1 (containing 5 parts by weight of liquid i.). Remove the impregnated sheet and immediately heat it to 180 ° C for 5 seconds in a 180 ° C ripening furnace to obtain a white foam (film expansion ratio: 40 μm). 4 times). This foam contains closed cells with a diameter of about 10 to 15 "," n. The closed cell content by air comparison hydrometer is 71% by volume with respect to the whole foam volume. there were.
5 c m角に切断した該発泡体シー ト を、 5 0 m 1 の ァセ ト ン と 、 L i B F 4をエチ レ ンカ ーボネー ト · プ ロ ピ レ ン力一 ボネー ト混合溶媒 (重量比 1 : 1 ) へ 1 m o 】 / 1 で ¾解 し て得られる非水系電解質溶液 5 0 m 1 と の混合溶液に 4 0 °C で 1 日 浸漬 した。 得られる シー ト を 1 丁 0 r r の圧力下 で 3 ◦ 分処理 してァセ ト ンを除去 して複合高分子固体電解質 を得た。 該電解質は膜厚 4 1 μ πι 5 c m角であった。 The foam sheet was cut into 5 cm square, 5 0 and § cell tons of m 1, L i BF 4 the ethylene Les linker Bone preparative-profile pin les down force one Bone preparative mixed solvent (weight ratio of 1 : 1) was immersed at 40 ° C for 1 day in a mixed solution with 50 ml of a non-aqueous electrolyte solution obtained by digestion with 1 mo] / 1. The resulting sheet was treated at a pressure of 10 rr for 3 minutes to remove acetone, thereby obtaining a composite solid polymer electrolyte. The electrolyte had a thickness of 41 μπι 5 cm square.
実施例 1 と 同様に して、 該複合高分子固体電解質のサンプ ルを作製 し、 その第 1 、 第 2及び第 3 の断面の構造を観察 し た結果、 球状の液相 ドメ イ ンが均一に分散してぉ リ 、 その平 均粒径は 1 0 l 3 mであった。 また、 第 1 、 第 2 及び第 3 の各断面の断面積に対する 、 それぞれの液相 ドメ ィ ンの断 面稍の割合は、 6 1 % 、 5 8 %、 6 3 %であ リ 、 この結果か ら 6 0 . 7 容量%の体積分率で液相 ドメ イ ンを含有する こ と がわかった。 また、 第 1 、 第 2及び第 3 の断面のいずれにも、 複合高分子固体電解質のも と の表面と連通する液相 ドメ イ ン は認め られなかった。 さ らに実施例 1 と 同様に して透水量を 測定したが、 透水は観測されなかった。 A sample of the composite solid polymer electrolyte was prepared in the same manner as in Example 1, and the first, second and third cross-sectional structures were observed. As a result, the spherical liquid phase domain was uniform. The average particle size was 10 l3 m. In addition, the section of each liquid phase domain with respect to the cross-sectional area of each of the first, second, and third cross-sections The proportions in the area were 61%, 58% and 63%, and it was found from the results that the liquid domain was contained at a volume fraction of 60.7% by volume. Also, in any of the first, second and third cross sections, no liquid phase domain communicating with the original surface of the composite solid polymer electrolyte was observed. Further, the amount of permeation was measured in the same manner as in Example 1, but no permeation was observed.
また、 非水系電解質溶液含浸前後の重量変化から求めた、 該複合高分子固体電解質における非水系電解質溶液の含量は 6 9 重量。/。であった。  The content of the non-aqueous electrolyte solution in the composite solid polymer electrolyte was found to be 69% by weight, which was determined from the weight change before and after the impregnation with the non-aqueous electrolyte solution. /. Met.
ま た、 該複合高分子固体電解質の示差熟分析から ガ ラ ス転 移温度を評価 した結果、 _ 9 8 °Cであ り 、 ポ リ マ一相が電解 液に膨潤 されている こ と がわかった。  In addition, the glass transition temperature was evaluated by differential ripening analysis of the composite solid polymer electrolyte. As a result, the temperature was _98 ° C, indicating that the polymer phase was swollen by the electrolyte. all right.
該電解質をステ ン レ ス シー ト で両面を挟み込み、 交流イ ン ピー ダ ン ス測定を行った結果、 コ ール コ ールプロ ッ 卜 の実数 イ ン ピー ダ ン ス切片から求めた室温イ オン伝導度は 7 X 1 0 ~ S / c mでめつ 7こ。  The electrolyte was sandwiched on both sides by a stainless steel sheet, and the AC impedance was measured. As a result, the room temperature ion conductivity obtained from the real impedance section of the call plate was measured. The degree is 7 X 10 ~ S / cm.
実施例 1 4 Example 14
等モルの水酸化 リ チウム、 酸化コバル ト を混合 した後、 7 5 0 °Cで 5 時間加熱加熱して平均粒径 1 Ο μ τηの L i C o O 2粉末を合成した。 該粉末と カーボンブラ ッ ク を、 ポ リ ビニ リ デンフ ロ ライ ド ( 日本国呉羽化学工業株式会社製、 K F 1 After mixing equimolar amounts of lithium hydroxide and cobalt oxide, the mixture was heated and heated at 75 ° C. for 5 hours to synthesize LiCoO 2 powder having an average particle size of 1 μμτη. The powder and the carbon black were mixed with polyvinylidene fluoride (KF1 Chemical Co., Ltd.
1 0 0 ) の 5 重量0 /。 N M P溶液に混合分散 してス ラ リ ーを作 製 した。 なお、 ス ラ リ ー中の固形分重量組成は、 L i C 0 O 2 ( 8 5 %) 、 力一ボンブラ ッ ク ( 8 % ) 、 ポ リ ビニ リ デン フルオライ ド ( 7 % ) と なる よ う に した。 このスラ リ ーをァ ノレミ フオイル上に ドク ターブレー ド法で塗布乾燥して膜厚 1 1 Ο μ πιの シー ト を作製 した。 該 L i C o 02シー ト を 2 c m角に切断し、 こ の表面に実施例 2 で作製 した複合高分子固 体電解質シー ト を 2 . 5 c m角で覆いさ らにこ の上に 2 c m 角の金属 リ チウムホ イ ル (膜厚 1 0 0 /u m ) を重ね、 1 2 0 °Cで積層 して正極 ( L 1 C o O 2) Z高分子固体電解質/負 極 (金属 リ チ ウム) の構成で積層体を構成 した。 ついで積層 体の正極、 負極にス テ ン レ ス端子を取 り 付け、 外部に導通可 能な電極端子を有 し、 外気を遮断可能なガラ ス容器 (以下、 屡々 、 単に 「ガラ スセル」 と称す) の端子にそれぞれ接続 し てアルゴン雰囲気中で封入 した。 1 0 0) 5 weight 0 /. A slurry was prepared by mixing and dispersing in an NMP solution. The composition of the solid content in slurry was Li C 0 O 2 (85%), force black (8%), and polyvinylidene fluoride (7%). The slurry was applied onto an ethanol oil by a doctor blade method and dried to prepare a sheet having a film thickness of 11 μμπι. The L i C o 0 2 cut sheet into 2 cm square, the composite polymer solid body electrolyte sheet prepared in Example 2 on the surface of this over 2. 5 cm square by covering of Raniko A 2 cm square metal lithium foil (100 / um film thickness) is layered and laminated at 120 ° C, and the positive electrode (L 1 CO 2 ) Z polymer solid electrolyte / negative electrode (metal The laminated body was composed of (Ti). Then, a stainless steel terminal is attached to the positive and negative electrodes of the laminate, which has electrode terminals that can conduct externally, and a glass container that can shut off the outside air (hereinafter, often referred to simply as a “glass cell”). ) And sealed in an argon atmosphere.
該電池を充放電機 ( 1 0 1 S M 6 型、 日 本国北斗電工株式 会社製) を用い電流密度 3 m A / c m 2の電流密度で充放電 を行なった。 充電は 4 . 2 Y定電位で行った。 充電後の電極 間電位は 4 . 2 Vであ リ 充電が確認できた。 また、 放電は定 電流で行い、 電圧 2 . 7 Vで停止 した。 この結果、 初回充電 効率 8 5 %、 2 回目以降の充放電効率は 8 8 %以上であった これよ り 、 繰 り 返し充放電が可能であ リ ニ次電池と して作動 する こ とがわかった。 The battery was charged and discharged at a current density of 3 mA / cm 2 using a charge / discharge machine (101 SM6, manufactured by Hokuto Denko Co., Ltd., Japan). Charging was performed at 4.2 Y constant potential. The potential between the electrodes after charging was 4.2 V, and recharging was confirmed. Discharging was performed at a constant current and stopped at a voltage of 2.7 V. As a result, the initial charge efficiency was 85%, and the charge and discharge efficiency for the second and subsequent times was 88% or more.Thus, it is possible to repeatedly charge and discharge and operate as a linear battery. all right.
実施例 1 5 Example 15
平均粒径 1 0 μ mのニー ドル コ 一 ク ス粉末に、 実施例 3 で 用いたポ リ ビニ リ デンフ ロ ラィ ドの 5重量% NM P溶液を混 合してス ラ リ ーを形成 した 〔乾燥重量混合比 : 二一 ドルコー ク ス ( 9 2 %) ポ リ マー ( 8 %) 〕 。 該ス ラ リ ーを金厲銅シ — ト に ドク ターブレー ド法で塗布 して乾燥膜厚 1 2 0 y mで フ ィ ルム (電極層) を形成 した。 該フ ィ ルムを 2 c m角に切 断 したもの と 、 実施例 1 4 で作製 した L 1 C o 〇 2電極と で 実施例 1 2 で作製 した複合構造固体電解質シー ト を 2 . 3 c mに切断した ものを挾んで 1 2 0 °Cで積層 し、 積層体を形成 した。 Example 3 was applied to a needle cool powder having an average particle size of 10 μm. A slurry was formed by mixing a 5% by weight NMP solution of the used polyvinylidene fluoride [dry weight mixing ratio: 21 dollars coke (92%) polymer (8 %)]. The slurry was applied to a gold-copper sheet by a doctor blade method to form a film (electrode layer) with a dry film thickness of 120 ym. The composite solid electrolyte sheet prepared in Example 12 was cut into 2.3 cm by cutting the film into a 2 cm square and the L 1 Co 2 layer 2 electrode prepared in Example 14. The cut pieces were sandwiched and laminated at 120 ° C to form a laminate.
ついで、 積層体を電極付き ガラ スセルに封入 して電池を得 た後、 電流密度 3 m AZ c m 2とする以外は実施例 6 と 同様 に充放電機にて充放電を行った。 初回充放電効率 8 1 %、 2 回 目 以降の充放電効率は 9 8 %以上でぁ リ 、 繰 リ 返 し充放電 可能であった。 Then, after obtaining the cell by encapsulating the laminate electrode with glass Suseru, except that the current density 3 m AZ cm 2 was subjected to a charge and discharge under the same charge and discharge device of Example 6. The initial charge / discharge efficiency was 81%, and the charge / discharge efficiency after the second time was 98% or more, and the charge / discharge could be repeated and repeated.
比較例 3 Comparative Example 3
実施例 1 0 で作製 した、 電子線照射及び発泡に力 ける前の 膜厚 1 5 0 ミ ク ロ ンの ビニ リ デンフ ロ ラ ィ ド ' へキサフルォ 口プロ ピレ ン共重合体シー ト を 5 c m角に切断 した。 ァセ ト ン 5 0 m l と 、 L i B F 4をエチ レ ンカーボネー ト ( E C ) · プロ ピ レンカーボネー ト ( P C ) 混合溶媒 (重量比 1 : 1 ) に 1 m 0 1 / 1 の濃度で溶解して得られる非水系電解質溶液 5 0 m 1 と の混合溶液に、 室温で 1 日 浸せき させた。 該シ一 ト を 1 0— 3 T o r r の圧力下、 1 5 °Cで 3 0分処理してァセ ト ンを除去 して高分子固体電解質シー ト を得た。 該シー トは 膜厚 1 6 0 μ πι、 5 . 2 c m角であった。 The vinylidene fluoride 'hexafluor-opened propylene copolymer sheet having a film thickness of 150 micron before being subjected to electron beam irradiation and foaming prepared in Example 10 was 5 cm thick. Cut into corners. § Se tons 5 0 ml and, L i BF 4 the ethylene Les Nkabone preparative (EC) · Pro Pi Renkabone preparative (PC) mixed solvent (weight ratio 1: 1) was dissolved at a concentration of 1 m 0 1/1 It was immersed in a mixed solution with 50 ml of the non-aqueous electrolyte solution obtained at room temperature for 1 day. Under a pressure of 1 0- 3 T orr the該Shiichi bets, § cell treated 3 0 minutes at 1 5 ° C The ton was removed to obtain a polymer solid electrolyte sheet. The sheet had a thickness of 160 μπι and a size of 5.2 cm square.
該シー ト をス テ ン レ スシー トで両面を挟み込み、 交流イ ン ピ一ダンス測定を行った結果、 コールコールプロ ッ トの実数 イ ンピーダンス切片から求めた室温イオン伝導度は 4 . 1 X 1 0— 6 S / c mであった。 The sheet was sandwiched on both sides by a stainless steel sheet, and AC impedance measurement was performed. was 0- 6 S / cm.
比較例 4 Comparative Example 4
ビニ リ デンフ ロ ラ ィ ド ' へキサフルォロ プロ ピ レン共重合 体 (へキサフ ルォ c プ ロ ピ レ ン含量 1 2重量0/。) の粉末 1 . 5 g を、 ア セ ト ン 1 0 m 】 と 、 L i B F 4をエ チ レ ンカーボ ネー ト ( E C ) ' プ ロ ピ レ ン カ ー ボネー ト ( P C ) 混合溶媒 (重量比 1 : 1 ) へ l m o 1 / 1 濃度で溶解 して得られる非 水系電解質溶液 5 g と の混合 ¾液に混合 して、 4 0 °Cで 1 日 保持 して均一溶液を作製 した。 該溶液を ス テ ン レ ス シー ト上 に キ ャ ス ト し て ア ル ゴ ン気流下で 1 0分保持 してァ セ ト ンを 蒸発 させフ イ ノレムを形成 した。 ついでス テ ン レ ス シー 卜 に置 レヽたま ま 1 0— 3 T o r r の圧力下で 3 0分処理した。 該フィ ノレムは膜厚約 2 5 0 μ mであ リ 、 極めて柔らかく 容易に変形 でき るため正確な膜厚は求められなかった。 また、 該フ ィ ル ムの熱重量分析によ り 、 6 3重量%の E C · P C混合溶媒を 含有する こ と がわかった。 1.5 g of a powder of vinylidene fluoride 'hexafluoropropylene copolymer (hexafluoroc propylene content: 12% by weight / 0. ) Was added to an acetate of 10 m When the L i BF 4 et Chi les Nkabo Natick preparative (EC) 'profiles pin les down mosquitoes over Bone preparative (PC) mixed solvent (weight ratio 1: 1) obtained by dissolving the lmo 1/1 concentration A mixture with 5 g of a non-aqueous electrolyte solution was mixed with the aqueous solution, and the mixture was kept at 40 ° C. for 1 day to prepare a homogeneous solution. The solution was cast on a stainless steel sheet and kept for 10 minutes under an argon stream to evaporate acetone to form a finolem. Then 3 0 minutes treatment under a pressure of the scan Te down Les scan Sea me location Rere once in a while or 1 0- 3 T orr. The finale had a thickness of about 250 μm, and was extremely soft and easily deformed, so that an accurate thickness could not be obtained. The thermogravimetric analysis of the film showed that the film contained 63% by weight of a mixed solvent of EC and PC.
キ ャ ス 卜 の基板に用いたス テ ン レ ス シ一 ト をはずさ ないで おき 、 キ ャ ス ト フ イ ノレム の露出面を別のス テ ン レ ス シー トで 押さ え、 交流イ ン ピーダンス測定を試みた結果、 ステ ン レス シー ト 間で短絡が発生したため測定できなかっ た。 Do not remove the stainless steel sheet used for the cast board, and use a different stainless steel sheet to expose the exposed surface of the cast fin. As a result of holding down and measuring the AC impedance, measurement was not possible due to a short circuit between the stainless steel sheets.
実施例 1 6 Example 16
ポ リ エチ レ ンォキシ ド (粘度平均分子量 1 0 0 万、 米国ァ ノレ ド リ ツチ株式会社製) を塩化メ チ レ ンに溶解 した溶液 ( 1 0 重量%) をガラ ス板上にキ ャ ス ト して乾燥膜厚 1 6 0 μ の シー ト を作製 した。 次いで該シー ト に電子線照射 (照射量 1 5 M r a d ) を施 した後、 実施例 1 と 同様に してフ ロ ン ( H F C - 1 3 4 a ) を含浸させた。 次いで含浸させたシ一 ト を取 り 出 した後、 1 0 0 °Cの加熱炉にて 2 0秒間 1 0 0 。C に加熱 し、 膜厚 2 2 0 μ πιの発泡体シー ト を作製 した。 該発 泡体の独立気泡含有量は体積全体の 6 3 容量%であった。  A solution (10% by weight) of poly (ethylene oxide) (viscosity average molecular weight: 1,000,000, manufactured by Arnold Ritz Co., Ltd., USA) dissolved in methylene chloride is cast on a glass plate. Then, a sheet with a dry film thickness of 160 μm was prepared. Next, the sheet was irradiated with an electron beam (irradiation amount: 15 Mrad), and impregnated with chlorofluorocarbon (HFC-134a) in the same manner as in Example 1. Next, after taking out the impregnated sheet, it was placed in a heating furnace at 100 ° C. for 100 seconds for 100 seconds. C. to produce a foam sheet with a film thickness of 220 μππι. The closed cell content of the foam was 63% by volume of the whole volume.
該発泡体に、 非水系電解質溶液 と して L i P F 6のェチ レ ンカ ー ボネー ト ( E C ) /プロ ピ レ ンカ ーボネー ト ( P C ) 溶液 ( E C Z P C重量比 = 1 : 1 、 L i 濃度 l m o 1 Z リ ツ トル) を 6 0 °Cの温度で 3 時間含浸させて、 複合高分子固体 電解質シ一 ト を作製 した。 The foam, E Ji Le Lanka over Bone bets L i PF 6 as a non-aqueous electrolyte solution (EC) / pro Pi Les Lanka Bone preparative (PC) solution (ECZPC weight ratio = 1: 1, L i concentration lmo 1 Z liter) was impregnated at 60 ° C for 3 hours to produce a composite solid polymer electrolyte sheet.
非水系電解質溶液含浸前後の重量変化から求めた、 該複合 高分子電解質における非水系電解質溶液の含有量は 7 0重量 %であった。  The content of the non-aqueous electrolyte solution in the composite polymer electrolyte was found to be 70% by weight, which was determined from the change in weight before and after the impregnation with the non-aqueous electrolyte solution.
実施例 1 と 同様に して、 該複合高分子固体電解質のサンプ ルを作製し、 その第 1 、 第 2及び第 3 の断面を観察 した結果 球状の液相 ドメ イ ンが均一に分散 してお り 、 その平均粒径は 2 5 〜 4 0 mであった。 また、 第 1 、 第 2及び第 3 の各断 面の液相 ドメ イ ンの断面積の割合は、 それぞれ、 3 3 %、 2 5 %、 3 5 %であ り 、 この結果から、 該複合高分子電解質中 の液相 ドメ イ ンの体稹分率は、 3 1 %である こ と がわかった ( また、 第 1 、 第 2 及び第 3 の断面のいずれにも、 複合高分子 固体電解質の も と の表面と連通 した液相 ドメ イ ンは認め られ なかった。 In the same manner as in Example 1, a sample of the composite polymer solid electrolyte was prepared, and the first, second, and third cross sections were observed. As a result, the spherical liquid phase domain was uniformly dispersed. The average particle size is It was 25 to 40 m. In addition, the ratios of the cross-sectional areas of the liquid phase domains at the first, second, and third cross sections are 33%, 25%, and 35%, respectively. The volume fraction of the liquid-phase domain in the polymer electrolyte was found to be 31% (in addition, the composite polymer solid electrolyte was found in each of the first, second and third cross sections). No liquid phase domain communicating with the original surface was observed.
また、 実施例 1 と 同様に して、 該高分子固体電解質をステ ン レ ス シー ト 、 および金属 リ チウムシー ト で挟み込み、 サイ ク リ ッ ク ボルタ ンメ ト リ 法にょ リ 電位範囲 0 〜 5 Vで酸化及 び還元によ る電気化学的安定性を評価した。 その結果、 1 . 2 Vの還元電流ピーク (電流値はバ ッ ク グラ ウ ン ド電流の 1 9倍) およ び 0 . 7 Vの還元電流ピーク (電流値はバ ッ ク グ ラ ウ ン ド電流の 2 倍) 、 および 4 . 2 Y ょ リ 高電位における 酸化電流増大 ( 4 . 2 Vの電流値はバ ッ ク グラ ウ ン ド電流の 2倍) が観測 された。 従って、 該材料は 0 . 7 V 〜 4 . 2 V の範囲で電気化学的に安定である こ と がわかった。  Further, in the same manner as in Example 1, the polymer solid electrolyte was sandwiched between a stainless steel sheet and a metal lithium sheet, and the voltage range was 0 to 5 V according to the cyclic voltammetry method. Then, the electrochemical stability due to oxidation and reduction was evaluated. As a result, the reduction current peak of 1.2 V (the current value is 19 times the back ground current) and the reduction current peak of 0.7 V (the current value is the back ground current) And the oxidation current at 4.2 Y high potential (4.2 V was twice the background current). Therefore, it was found that the material was electrochemically stable in the range of 0.7 V to 4.2 V.
上記の複合高分子固体電解質シ一 卜 の両面にステ ン レスシ 一 ト を挟み込み交流イ ン ピーダンス測定を行った結果、 ィォ ン伝導度は 1 . 8 X 1 0 _ 3 S / c mであった。 The above composite solid polymer electrolyte sheet one both sides sandwiching the stearyl down Resushi one preparative exchange Bok Lee down impedance measurement the result of, I O emissions conductivity was 1. 8 X 1 0 _ 3 S / cm .
実施例 1 7 Example 17
ァ ク リ ロ 二 ト リ ノレ 一 ス チ レン共重合体 (ア ク リ ロ ニ ト リ ル 含量 4 5 モル% ) の 1 0 重量%塩化メ チ レ ン溶液を、 室温で ガラス板上にキャ ス ト して膜厚 1 2 0 μ mのシ一 卜お作製し た。 該シー ト に電子線照射 (照射量 1 5 M r a d ) を施した 後、 実施例 1 と 同様に してフ ロ ン H F C — 1 3 4 a を含浸さ せた (フ ロ ン含浸量 7 重量% ) 。 含浸させたシー ト を取 り 出 した後、 直ちに 1 5 0 °Cの加熱炉にて 2 0秒間加熱して、 膜 厚 1 8 0 mの発泡体シー ト を作製 した。 該発泡体の独立気 泡含有量は体積全体の 6 8 容量。/。であった。 A solution of 10% by weight of methylene chloride in a polyacrylonitrile-styrene copolymer (acrylonitrile content: 45 mol%) was added at room temperature. The sheet was cast on a glass plate to prepare a sheet with a thickness of 120 μm. After the sheet was irradiated with an electron beam (irradiation amount: 15 Mrad), it was impregnated with chlorofluorocarbon HFC-134a in the same manner as in Example 1 (fluorocarbon impregnation amount 7 wt. %). Immediately after taking out the impregnated sheet, the sheet was heated in a heating furnace at 150 ° C. for 20 seconds to produce a foam sheet with a film thickness of 180 m. The foam has a closed cell content of 68 volumes by volume. /. Met.
該発泡体に、 非水系電解質溶液 と して L i P F 6のェチ レ ンカーボネー ト ( E C ) /プロ ピ レ ンカ ーボネー ト ( P C ) 混合溶媒溶液 ( E C Z P C重量比 = 1 : 1 、 L i 濃度 l m o 】 リ ッ トル) を 6 0 °Cの温度で 3 時間含浸させて複合固体 電解質シー ト を作製 した。 The foam, E Ji Les Nkabone bets L i PF 6 as a non-aqueous electrolyte solution (EC) / pro Pi Les Lanka Bone preparative (PC) mixed solvent solution (ECZPC weight ratio = 1: 1, L i concentration lmo) was impregnated at 60 ° C for 3 hours to prepare a composite solid electrolyte sheet.
非水系電解質溶液含浸前後の重量変化から求めた、 該複合 高分子電解質におけ る非水系電解質溶液の含有量は 8 6 重量 %であった。  The content of the nonaqueous electrolyte solution in the composite polymer electrolyte was found to be 86% by weight, which was determined from the weight change before and after the impregnation with the nonaqueous electrolyte solution.
実施例 1 と 同様に して、 該複合高分子固体電解質のサンプ ルを作製し、 その第 1 、 第 2及び第 3 の断面を観察 した結果 球状の液相 ドメ ィ ンが均一に分散 してお り 、 その平均粒径は 3 0 〜 4 5 μ πιであった。 また、 第 1 、 第 2及び第 3 の各断 面の液相 ドメ イ ンの断面稍の割合は、 それぞれ、 6 3 %、 5 2 %、 6 5 %であ り 、 この結果から、 該複合高分子電解質中 の液相 ドメ イ ンの体積分率は、 6 0 容量。 /。である こ と がわか つた。 また、 第 1 、 第 2及び第 3 の断面のいずれにも、 複合 高分子固体電解質のも と の表面と連通 した液相 ドメ イ ンは認 め られなかった。 さ らに実施例 1 と同様に して透水量を測定 したが透水は観測されなかった。 A sample of the composite polymer solid electrolyte was prepared in the same manner as in Example 1, and the first, second, and third cross-sections were observed. As a result, the spherical liquid phase domain was uniformly dispersed. Its average particle size was 30 to 45 μπι. Further, the proportions of the liquid domain in the first, second, and third cross sections were 63%, 52%, and 65%, respectively. The volume fraction of the liquid domain in the polymer electrolyte is 60 volumes. /. It turned out that it was. In addition, any of the first, second and third sections No liquid phase domain communicating with the original surface of the polymer solid electrolyte was observed. Further, the amount of permeation was measured in the same manner as in Example 1, but no permeation was observed.
また、 実施例 1 と 同様に して、 該高分子固体電解質をステ ン レスシー ト 、 および金属 リ チウムシー ト で挟み込み、 サイ ク リ ッ ク ボルタ ンメ ト リ 法にょ リ 電位範囲 0 〜 5 Vで酸化及 び還元によ る電気化学的安定性を評価 した。 その結果、 0 . 6 Vの還元電流増大 (電流値はバッ ク グラ ウ ン ド電流の 2 倍) および 4 . 6 V よ り 高電位における酸化電流増大 ( 4 . 6 ' の電流値はバ ッ ク グラ ウ ン ド電流の 2 倍) が観測 された。 従 つて、 該材料は 0 . 6 V 〜 4 . 6 Vの範囲で電気化学的に安 定である こ と がわかった。  In the same manner as in Example 1, the solid polymer electrolyte was sandwiched between a stainless steel sheet and a lithium metal sheet, and oxidized at a potential range of 0 to 5 V by a cyclic voltammetry method. And the electrochemical stability by reduction was evaluated. As a result, the reduction current increased by 0.6 V (the current value was twice the background current) and the oxidation current increased at a potential higher than 4.6 V (the current value of 4.6 ′ was higher than the background current). (Twice the ground current) was observed. Therefore, the material was found to be electrochemically stable in the range of 0.6 V to 4.6 V.
該複合高分子固体電解質シー ト の両面に ステ ン レ ス シ一 ト を挟み込み交流ィ ン ピ一 ダン ス測定を行った結果、 イ オン伝 導度は 1 . 8 X 1 0 — 3 S / c mであった。 As a result of AC impedance measurement with a stainless steel sheet sandwiched on both sides of the composite polymer solid electrolyte sheet, the ion conductivity was 1.8 X 10 — 3 S / cm Met.
比較例 5 Comparative Example 5
1 〇 Ο μ πι厚のポ リ スチ レンシー 卜 に真空ライ ンを用いて 無水硫酸ガス を室温で 3 時間接触させてポ リ ス チ レ ン シ一 ト のスノレホ ン化を行なった。 スルホ ン化処理前のポ リ スチ レン シ一 トの重量に対するスルホン化処理後の重量増加分は 6 4 重量0 /。であった (このこ と はスチ レ ンユニ ッ ト あた リ 0 · 8 5 のスルホ ン酸基が導入されたこ と を示す) 。 該スルホ ン化 ポ リ スチ レ ン シ一 ト をプロ ピ レ ンカーボネ一 ト に浸せき した 後両面をステ ン レスシ一 トではさみこんで交流ィ ンピーダン ス測定を行った結果、 ィ ンピーダンスが高く 測定困難であつ た (イ オン伝導度は 1 0—8 S / c m以下) 。 さ らに該スルホ ン化ポ リ スチ レンシー ト を、 L i B F 4を l m o l Z リ ッ ト ルの濃度でプロ ピレ ンカーボネ一 ト に溶解して得られる非水 系電解質溶液に浸せき した後、 上記と 同様にイ オ ン伝導度を 評価 した結果、 4 X 1 0— 7 S / c mであった。 Using a vacuum line, a 1 μm thick πιι thick polystyrene sheet was contacted with sulfuric anhydride gas at room temperature for 3 hours to convert the polystyrene sheet into snorehon. Weight increase after sulfonation treatment to the weight of the Po Li styrene poem one bets before sulfo emissions treatment is 6 4 weight 0 /. (This indicates that the sulfonate group at 0,85 in the styrene unit was introduced). The sulfonated polyester sheet was immersed in propylene carbonate. Rear sided The results of AC I Npidan be measured by sandwiching with stearyl down Resushi one preparative, I impedance has been made with high difficult measurement (ion-conductivity below 1 0- 8 S / cm). After immersing the sulfo Nkapo Li steel Renshi DOO, a L i BF 4 to I mol Z l concentration with pro Pile Nkabone one preparative non-aqueous type electrolyte solution obtained by dissolving the of et al., Supra Similarly results of evaluation of the i on-conductivity and was 4 X 1 0- 7 S / cm .
浸積後の該シ一 ト の重量は浸積前のシ一 ト と ほと ん ど変化 してお らず、 わずかに増加 した重量から求めた非水系電解質 溶液含量は 2 重量。/。であった。  The weight of the sheet after immersion was almost the same as the sheet before immersion, and the content of the non-aqueous electrolyte solution calculated from the slightly increased weight was 2%. /. Met.
また、 実施例 1 と 同様に して、 該シー ト をス テ ン レ ス シ— ト 、 および金属 リ チウムシー ト で挟み込み、 サイ ク リ ッ ク ポ ノレタ ンメ ト リ 法によ り 電位範囲 0 〜 5 Vで酸化及び還元によ る電気化学的安定性を評価 した。 その結果、 2 · 3 \' 、 1 . In the same manner as in the first embodiment, the sheet is sandwiched between a stainless steel sheet and a metal lithium sheet, and a potential range of 0 to 0 is obtained by a cyclic poling method. At 5 V, the electrochemical stability due to oxidation and reduction was evaluated. As a result, 2 3 \ ', 1.
5 Vの還元電流ピーク (電流値はバッ ク グラ ン ド電流の 3 { 以上) 、 および 2 . 9 V ょ リ 高電位における酸化電流增大Reduction current peak of 5 V (current value is 3 {or more of background current), and oxidation current increase at 2.9 V high potential
( 2 . 9 Vの電流値はバッ ク グラ ウ ン ド電流の 2倍であ り こ れょ リ 高電位では電流値が増大 した) が観測された。 こ のよ う に、 2 . 3 V〜 2 . 9 Vの狭い範囲でのみ電気化学的に安 定だつた。 (The current value at 2.9 V was twice the background current, and the current value increased at higher potentials). Thus, it was electrochemically stable only in a narrow range of 2.3 V to 2.9 V.
比較例 6  Comparative Example 6
ポ リ ウ レタ ン (分子量 6 0 0 のエチ レング リ コールにへキ サメ チ レンジィ ソシァネ一 ト を反応させて作製 した平均分子 量 1 1 , 0 0 0 のポ リ マー) の 1 0重量0 /0 ト ルエ ン溶液 1 0 0 m 1 を、 ガラス板上にキ ャ ス ト して乾燥膜厚 8 0 μ mの 'ン — ト を作製した。 該シー ト をステ ン レス シー ト に挾み、 ガラ スセル中で L i B F 4を 1 m o 1 Z リ ッ トルの濃度でプロ ピ レンカーボネー ト に溶解して得られる非水系電解質溶液に浸 せき し、 そのままサイ ク リ ッ ク ボルタ ンメ ト リ ー法 (参照電 極金属 リ チウム) によ り 電位走査 ( 0 〜 5 V ) を行った結果 0 〜 2 Vの電位範囲で複数の還元電流ピーク 〔 1 . 8 V (電 流値はバ ッ ク グラ ウ ン ドの 3倍) 、 1 . 5 入' (電流値はノく ッ ク グラ ウ ン ドの 5 倍) 、 1 . 2 V (電流値はバ ッ ク グラ ウ ン ドの 3 倍) 、 0 . 9 V よ り 低電位におけ る還元電流の増大Polyurethane (Average molecule prepared by reacting hexaethylene diethylene citrate with ethylene glycol having a molecular weight of 600) Amount 1 1 0 0 1 0 wt 0/0 port re-mer) 0 bets Rue emissions solution 1 0 0 m 1, having a dry thickness of 8 0 mu m and key catcher be sampled on a glass plate 'down — Created Sandwiched the sheets to stearyl emissions less sheets, and coughing immersed in a non-aqueous electrolyte solution obtained by dissolving the pro-pin Renkabone preparative L i BF 4 at a concentration of 1 mo 1 Z l in gala Suseru The potential scan (0 to 5 V) was performed by the cyclic voltammetric method (lithium reference electrode metal) as it was. As a result, multiple reduction current peaks were obtained in the potential range of 0 to 2 V [ 1.8 V (current value is 3 times of back ground), 1.5 input (current value is 5 times of back ground), 1.2 V (current value Is three times the back ground), and the reduction current at a potential lower than 0.9 V is increased.
( 0 . 9 Vの還元電流値はバ ッ ク グラ ウ ン ドの 2倍) 〕 が観 測 され、 3 〜 5 \ 'の 囲で、 酸化電流の ピーク 力; 3 . 1 Vに(The reduction current value of 0.9 V is twice the value of the back ground)]], and the peak power of the oxidation current is increased to 3.1 V in the range of 3 to 5 \ '.
(電流値力;バ ッ ク グラ ウ ン ドの 2 倍〉 な り 、 且つ 4 . 1 \ ' よ リ 高電位におけ る酸化電流増大 ( 4 . 1 V の酸化電流値がバ ッ ク グラ ウ ン ド 2倍) が観測 された。 こ の こ と よ リ ポ リ ウ レ タ ンは酸化還元を起こ しゃすく 電気化学的に不安定である こ と がわかった (電気化学的に安定な電位窓は 1 . 8 5 V〜 3 I V ) 。 同様の方法で電子線照射 (照射量 1 0 M r a d ) し たポ リ フ ッ化ビニ リ デンシー ト (膜厚 9 0 μ m ) を測定した 結果、 0 . 7 〜 5 Vの範囲で酸化還元電流ピーク は認められ なかった。 (Current value; twice the back ground) and increase the oxidation current at a higher potential than 4.1 \ '(the oxidation current of 4.1 V increases the back ground current). This indicates that lipopolyurethane undergoes oxidation-reduction and is electrochemically unstable (electrochemically stable potential). The window is 1.85 V to 3 IV.) Results of measurement of polyvinylidene fluoride densitite (film thickness 90 μm) irradiated with an electron beam (irradiation amount 10 Mrad) in the same manner No redox current peak was observed in the range of 0.7 to 5 V.
実施例 1 8 ビニ リ デンフ ロ ラィ ドーへキサフルォロ プロ ピ レン共重合 体 (へキサフルォロ プロ ピ レン含量 5重量0 /0) の粉末を NM Pに溶解してポ リ マー固形分 1 5重量%の溶液を調製 した。 平均粒径 1 Ο μ πιのニー ドル コ 一 ク ス粉末に、 前記のポ リ ビ 二 リ デンフ ロ ラィ ドの ΝΜ Ρ溶液を混合 してス ラ リ ーを形成 した 〔乾燥重量混合比 : ニー ドル コ ー ク ス ( 8 5 %) ポ リ マ 一 ( 1 5 %) 〕 。 該ス ラ リ ーを金属銅シー ト (膜厚 1 5 ," m) に ドク ターブ レー ド法で塗布 して乾燥膜厚 1 2 0 mでフ ィ ルム (電極層) を形成 した。 該フ ィ ルム中の、 共重合体成分 の体積に対する独立気泡の体積分率は 3 0容量%であ リ 、 7 0容量。/。が固形分成分であった。 次いで該フ ィ ル ム を加熟プ レ ス し て膜厚 1 0 5 mの フ イ ノレ ムを作製 した (独立気泡の 体積分率 : 2 0 % ) 。 さ ら に該フ ィ ルム を室温で電子線照射Example 18 Vinylene Li Denfu b Rai dough to Kisafuruoro pro pin alkylene copolymer powder (Kisafuruoro pro pin alkylene content of 5 wt 0/0 to) was dissolved in NM P to prepare a port re-mer solids 1 5 wt% of the solution . A slurry was formed by mixing the above-mentioned solution of polyvinylidene fluoride with a needle coex powder having an average particle size of 1 μμπι [dry weight mixing ratio: knee Dollar cokes (85%) Polymers (15%)]. The slurry was applied to a metallic copper sheet (film thickness: 15, "m) by a doctor blade method to form a film (electrode layer) with a dry film thickness of 120 m. The volume fraction of the closed cells with respect to the volume of the copolymer component in the film was 30% by volume, and 70% by volume was a solid component. By pressing, a finolem with a thickness of 105 m was produced (volume fraction of closed cells: 20%), and the film was irradiated with an electron beam at room temperature.
(照射量 1 0 M r a d ) し、 ついで実施例 1 と 同様に してフ に ン 1 3 4 Aを含浸 させた (含液量 1 0 重量。/。) c 次いで含 浸させたフ イ ノレムを取 り 出 した後、 直ちに 1 8 0 °Cの加熟炉 にて 1 0秒間 1 8 0 °Cに加熟してポ リ マーを加熟発泡 させて 膜厚 1 2 0 iu mの電極シー ト を得た。 ポ リ マー発泡倍率は約(Irradiation amount: 10 M rad) and then impregnated with fin A in the same manner as in Example 1 (liquid content: 10 wt./.) C Then, the impregnated finolem Immediately after removal, the sample was ripened in a 180 ° C ripening furnace at 180 ° C for 10 seconds to ripen and foam the polymer, and the electrode sheet with a film thickness of 120 nm was obtained. I got it. Polymer expansion ratio is approx.
2倍でぁ リ 、 ポ リ マ 一発泡体の体積に対する独立気泡の体積 分率は 5 0容量%であった。 At twice, the volume fraction of closed cells with respect to the volume of the foam was 50% by volume.
実施例 1 9 Example 19
水酸化 リ チウム、 酸化コ バル ト を等モル混合 した後、 7 5 0 °Cで 5時間加熟 して平均粒径 1 0 mの L 1 C o O 2粉末 を合成 した。 該粉末と カーボンブラ ッ ク を、 ポ リ ビニ リ デン フ ロ ラィ ド ( 日本国呉羽化学工業株式会社製、 K F 1 1 0 0 ) の 1 0 重量% N M P溶液に混合分散 してスラ リ ーを作製した。 その際、 ス ラ リ ー中の固形分重量組成は、 L i C o 〇 2 ( 8 0 % ) 、 カーボンブラ ッ ク ( 8 % ) 、 ポ リ マー ( 1 2 % ) と なる よ う に した。 こ のス ラ リ ーを膜厚 1 5 mのァノレ ミ フォ ィ ル上に ドク ターブ レー ド法で塗布乾燥 して膜厚 1 1 0 μ m のシー ト を作製 した。 該シー ト 中の、 共重合体成分の体積に 対する独立気泡の体積分率は 3 3 容量。/。、 固形分体積は 6 7 容量%であっ た。 次いで該シ一 ト を加熱ロール プ レ ス し て膜 厚 1 0 3 μ mのシー ト (独立気泡の体積分率 2 8 % ) を作製 した。 さ らに実施例 1 と 同様に して室温で電子線照射 (照射 量 l O M r a d ) させ、 ついでフ c ン 1 3 4 A を含浸 させたHydroxide Lithium oxide co after equimolar mixture of Baltic, 7 5 0 L 1 of ° C in 5 hours pressurized ripe an average particle diameter of 1 0 m C o O 2 powder Was synthesized. The powder and carbon black are mixed and dispersed in a 10% by weight NMP solution of polyvinylidene fluoride (KF100, manufactured by Kureha Chemical Industry Co., Ltd. of Japan) to form a slurry. Produced. At that time, the solids weight composition of vinegar La rie is, L i C o 〇 2 (80%), carbon black-click (8%), was to jar by the port re-mer (1 2%) . This slurry was applied to a 15-m-thick anore film by the doctor blade method and dried to prepare a 110-m-thick sheet. The volume fraction of closed cells with respect to the volume of the copolymer component in the sheet is 33 volumes. /. The solids volume was 67% by volume. Next, the sheet was heated and pressed to form a sheet having a film thickness of 103 μm (volume fraction of closed cells: 28%). Further, electron beam irradiation (irradiation amount l OM rad) was performed at room temperature in the same manner as in Example 1, and then impregnation with fin 134A was performed.
(含液量 1 0 重量% ) 。 含浸 させたシー ト を取 り 出 した後、 直ちに 1 8 0 °Cの加熱炉にて 1 0 秒間 1 8 0 °Cに加熟 してポ リ マ一を加熟発泡させて、 フ ィ ル ム膜厚 1 2 1 μ ΐΏ の電極シ ー ト を得た。 ポ リ マーの発泡倍率は約 2倍であ り 、 ポ リ マー 発泡体の体積に対する独立気泡の体積分率は 5 0 容量%であ つた。 実施例 2 0 (Liquid content: 10% by weight). Immediately after taking out the impregnated sheet, it is ripened in a 180 ° C heating furnace for 10 seconds at 180 ° C, and the polymer is ripened and foamed. An electrode sheet with a film thickness of 121 μm was obtained. The expansion ratio of the polymer was about 2 times, and the volume fraction of closed cells with respect to the volume of the polymer foam was 50% by volume. Example 20
平均粒径 2 0 O i mのポ リ フ ッ化ビニ リ デン粉末 ( 日本国 呉羽化学工業製、 K F 1 1 0 0 ) に、 実施例 1 と 同様に して フ ロ ン 1 3 4 Aを含浸させた (含液量 1 0重量。 /。) 。 含浸さ せた粉末を取 り 出 した後、 直ちに 2 0 0 °Cの加熱炉にて 1 分 間 1 8 0 °Cに加熱 して発泡粒子を作製した。 発泡粒子の平均 粒径は 3 0 0 μ mであ り 、 発泡倍率は 3 . 4倍であった (気 泡体積は 7 0容量% ) 。 該発泡粒子を液体窒素で冷却粉砕、 分級して平均粒径 3 0 /I mの粉末を得た。 独立気泡体積の発 泡体全体に対する体積分率は 7 0容量%以上であった。 A vinylidene fluoride powder having an average particle diameter of 20 Oim (KF100, manufactured by Kureha Chemical Industry, Japan) was prepared in the same manner as in Example 1. Fluorine 134 A was impregnated (liquid content: 10 wt./.). Immediately after taking out the impregnated powder, it was heated to 180 ° C for 1 minute in a heating furnace at 200 ° C to produce expanded particles. The average particle size of the expanded particles was 300 μm, and the expansion ratio was 3.4 times (the bubble volume was 70% by volume). The foamed particles were cooled and pulverized with liquid nitrogen and classified to obtain a powder having an average particle size of 30 / Im. The volume fraction of the closed cell volume to the whole foam was 70% by volume or more.
得られた発泡粒子粉末 ( 1 5重量% ) と グラ フ ア イ ト粉末 ( 8 5 重量。/。) の混合体をダイ プ レ ス成形 した後金型のま ま 1 8 0 °Cの温度で加熟 して、 焼結させた成型体を作製 した。 次いでカ ッ ターを用い膜厚 1 5 O ^ mで切 り 出 したシ一 ト を 得た。 切 リ 出 しシー ト を金属銅シー ト (膜厚 1 5 μ τη ) に熟 圧着 して電極シー ト を作製 した。 垸結シ一 卜 中の独立気泡体 積の、 発泡体全体に対する体積分串は 9 0容量。/。であった。 実施例 2 1  A mixture of the obtained foamed particle powder (15% by weight) and graphite powder (85% by weight /.) Was die-press-molded and then left in a mold at a temperature of 180 ° C. And a sintered compact was produced. Next, a sheet cut at a film thickness of 15 O ^ m was obtained using a cutter. The cut-out sheet was pressed to a metallic copper sheet (film thickness 15 μτη), and an electrode sheet was prepared.体 The volume of the closed cell volume in the sealed sheet is 90 volumes with respect to the whole foam. /. Met. Example 2 1
実施例 2 0 で作製した発泡粒子粉末 ( 1 2重量% ) と実施 例 1 9 で用いた L i C 0 〇 2粉末 ( 8 0重量0 /0 ) 、 カーボン ブラ ッ ク粉末 ( 8重量% ) を混合 し、 実施例 2 0 と 同様に焼 結 して成形体を作製 した。 次いで、 カ ッ ターを用い膜厚 1 0 0 でシ一 ト を切 り 出 した。 切 り 出 しシー ト をアル ミ ニゥ ム シ一 ト (膜厚 1 5 m) に熱圧着 して電極シー ト と した。 該シー ト 中の独立気泡体積分率は、 9 0容量。/。であった。 実施例 2 2 実施例 1 8 で作製 した電極シー トおよび実施例 1 9 で作製 した電極シー ト をそれぞれ、 エチ レンカ ーボネー ト ( E C ) プ ロ ピ レ ンカーボネー ト ( P C ) · γ — ブチル ラ ク ト ン ( B L ) の混合溶媒 ( E C / P C / B L重量比 - 1 Z 1 Z 2 ) に L i B F 4を l m o 1 Z 1 の濃度で溶解して得られる非水系 電解質溶液に浸せき した後、 1 0 0 °Cの温度で 3 0分間加熱 して電解液を電極内部に含浸させた。 実施例 1 8 の電極シー 卜 の含浸体を負極に、 実施例 1 9の電極シー ト含浸体を正極 に用い、 実施例 1 で作製 した複合高分子固体電解質と 共に、 正極/複合高分子固体電解質/負極の順に 3 枚のシー ト を積 層 し て積層体を構成 した。 L i C 0 〇 2 powder and a foaming particles prepared in Example 2 0 (1 2% by weight) used in Example 1 9 (8 0 wt 0/0), carbon black click powder (8%) Were mixed and sintered in the same manner as in Example 20 to produce a molded article. Next, a sheet was cut out at a thickness of 100 using a cutter. The cut-out sheet was thermocompression-bonded to an aluminum sheet (film thickness: 15 m) to form an electrode sheet. The closed cell volume fraction in the sheet is 90 volumes. /. Met. Example 22 The electrode sheet prepared in Example 18 and the electrode sheet prepared in Example 19 were respectively used for ethylene carbonate (EC), propylene carbonate (PC), and γ-butyl lactone (BL). mixed solvent (EC / PC / BL weight ratio) - 1 Z 1 Z 2) after immersion in L i BF 4 a lmo nonaqueous electrolyte solution obtained by dissolving in 1 concentration of Z 1, 1 0 0 ° The electrolyte was impregnated inside the electrode by heating at a temperature of C for 30 minutes. Using the electrode sheet impregnated body of Example 18 as the negative electrode and the electrode sheet impregnated body of Example 19 as the positive electrode, the composite solid polymer electrolyte prepared in Example 1 was used together with the positive electrode / composite polymer solid. A laminate was formed by laminating three sheets in the order of electrolyte / negative electrode.
積層体の正極および負極集電体にス テ ン レ ス シ一 ト を接触 させ、 ガ ラ ス セ ル に接続した後、 ア ル ゴ ン雰囲気中で封入し 電池を得た。  A stainless steel sheet was brought into contact with the positive and negative electrode current collectors of the laminate, connected to a glass cell, and sealed in an argon atmosphere to obtain a battery.
該電池を充放電機 ( 日 本国北斗電工社製 1 0 1 S M 6 ) を 用い電流密度 1 m A Z c m2の電流密度で充放電を行なった。 充電は 4 . 2 V定電位で行い、 充電後の電極間電位は 4 . 2 Vであ リ 充電が確認できた。 また、 放電は定電流で行い、 電 圧 2 . 7 Vで停止 した。 初回放電量は負極炭素当た リ 2 1 0 m A h / gであ リ 充放電サイ ク ルを繰 り 返 し 1 0 0サイ ク ル 後の放電量は l T S ni A h Z gであった。 これ らの結果から 該電池は繰 リ 返し充放電が可能でぁ リ 、 二次電池と して作動 する こ と がわかった。 実施例 2 3 The battery was charged and discharged at a current density of 1 mAZ cm 2 using a charge / discharge machine (101 SM 6 manufactured by Hokuto Denko Co., Ltd. of Japan). Charging was performed at a constant potential of 4.2 V, and the potential between the electrodes after charging was 4.2 V. Recharging was confirmed. Discharging was performed at a constant current and stopped at a voltage of 2.7 V. The initial discharge amount is 210 mAh / g, which is the amount of the negative electrode carbon, and the charge / discharge cycle is repeated. Was. From these results, it was found that the battery was capable of being repeatedly charged and discharged, and operated as a secondary battery. Example 2 3
実施例 2 0 および実施例 2 1 で作製したシー ト をそれぞれ 負極および正極と して 、 ポ リ エチ レン微多孔膜 ( 日本国旭化 成工業 (株) 製、 ハイ ポア U 2 フ ィ ルム) を挟み、 積層体を 構成 した。 ついで、 該積層体に、 1 ? 6を 1 . 5 m o l 1 の濃度でエチ レ ンカーボネー ト ( E C ) /メ チルェチル カーボネー ト (M E C ) 混合溶媒 ( E C / M E C重量比 : 1 / 2 ) に溶解 して得 られる非水系電解質溶液を、 7 0 °Cで 3 0 分含浸 させた。 The sheets prepared in Examples 20 and 21 were used as a negative electrode and a positive electrode, respectively, as a polyethylene microporous membrane (Hipore U2 film manufactured by Asahi Kasei Kogyo Co., Ltd., Japan). To form a laminate. Then, 1 to 6 were dissolved in the ethylene carbonate (EC) / methyl ethyl carbonate (MEC) mixed solvent (EC / MEC weight ratio: 1/2) in the laminate at a concentration of 1.5 mol 1. The obtained non-aqueous electrolyte solution was impregnated at 70 ° C. for 30 minutes.
含浸 させた積層体の正極および負極集電体にス テ ン レ ス シ ー ト を接触させ、 ガラ スセ ルに接続 した後、 ア ル ゴ ン雰囲気 中で封入 し、 電池を得た。  A stainless steel sheet was brought into contact with the positive and negative electrode current collectors of the impregnated laminate, connected to a glass cell, and sealed in an argon atmosphere to obtain a battery.
該電池について、 充放電機 ( 日 本国北斗電工社製 1 0 1 S M 6 ) を用い電流密度 1 m A / c m 2の電流密度で充放電を 行なった。 充電は 4 . 2 Vの電位で行った。 充電後の電極間 電位は 4 . 2 V、 であ り 充電が確認でき た。 また、 放電は定 電流で行い、 電圧 2 . 7 Vで停止 した。 初回放電量は負極炭 素当た り 3 1 O m A h / g であ り 充放電サイ ク ルを繰 リ 返し 1 0 0 サイ ク ル後の放電量は 2 5 3 m A h Z g であった。 こ の結果、 繰 リ 返し充放電が可能であ リ ニ次電池と して作動す る こ と 力;わ力 つた。 比較例 7 The battery was charged and discharged at a current density of 1 mA / cm 2 using a charge / discharge machine (101 SM 6 manufactured by Hokuto Denko Co., Ltd., Japan). Charging was performed at a potential of 4.2 V. The potential between the electrodes after charging was 4.2 V, and charging was confirmed. Discharging was performed at a constant current and stopped at a voltage of 2.7 V. The initial discharge amount is 31 OmAh / g per negative electrode carbon, and the charge and discharge cycle is repeated.The discharge amount after 100 cycles is 25 3 mAhZg. there were. As a result, it was possible to repeatedly charge and discharge and operate as a linear battery. Comparative Example 7
実施例 1 8 、 実施例 1 9 で用いた電子照射及び発泡前の電 極シ一 ト をそれぞれ負極および正極に用い、 ポ リ エチ レ ン微 多孔膜 ( 日本国旭化成工業製、 ハイ ポア U 2 フ ィ ルム) を挟 んで積層 し、 積層体を得た。  The electrode sheets before electron irradiation and foaming used in Examples 18 and 19 were used for the negative electrode and the positive electrode, respectively, and a polystyrene microporous membrane (Hipore U2 manufactured by Asahi Kasei Kogyo, Japan) was used. The film was interposed and laminated to obtain a laminate.
実施例 2 2 で用いたの と 同 じ非水系電解質溶液 〔エチ レ ン カ ーボネー ト ( E C ) ' プ ロ ピ レ ンカ ーボネー ト ( P C ) · y — プチルラ ク ト ン ( B L ) の混合溶媒 ( E C Z P C / B L 重量比 : 1 2 ) に L 1 B F を 1 m o 1 の濃度で 溶解 して得られる〕 に積層体を 1 0 0 °Cで 2 時間含浸させた 電池の作製は実施例 2 2 と 同様に行った。 すなわち正極お よび負極集電体にス テ ン レ ス シ一 ト を接触させ、 ガ ラ スセ ル に接続 した後、 アル ゴ ン雰囲気中で封入 し、 電池を得た。  The same non-aqueous electrolyte solution as used in Example 22 [Ethylene carbonate (EC) 'Propylene carbonate (PC) · y-Butyl lactone (BL) mixed solvent ( ECZPC / BL weight ratio: obtained by dissolving L 1 BF at a concentration of 1 mo 1 in 12)]. A battery was prepared by impregnating the laminate at 100 ° C. for 2 hours. Performed similarly. That is, a stainless steel sheet was brought into contact with the positive and negative electrode current collectors, connected to a glass cell, and sealed in an argon atmosphere to obtain a battery.
該電池を充放電機 ( 日本国北斗電工社製 1 0 1 S M 6 ) を 用い電流密度 1 m AZ c m 2の電流密度で充放電を行なった。 充電は 4 . 2 Vの定電位で行った。 充電後の電極間電位は 4 2 Vであ リ 充電が確認でき た。 また、 放電は定電流で行い、 電圧 2 . 7 Vで停止 した。 初回放電量は負極炭素当た リ 1 9 O m A h Z g であ リ 充放電サイ ク ルを繰 リ 返 し 1 0 0サイ ク ル後の放電量は 1 2 5 m A h / g であった。 こ の結果、 繰 リ し充放電が可能であ リ ニ次電池と して作動する こ と がわ力: つた。 比較例 8 The battery was charged / discharged at a current density of 1 mAZcm 2 using a charge / discharge machine (101 SM 6 manufactured by Hokuto Denko Corporation of Japan). Charging was performed at a constant potential of 4.2 V. The potential between the electrodes after charging was 42 V, confirming recharging. The discharge was performed at a constant current and stopped at a voltage of 2.7 V. The initial discharge amount is 19 OmAhZg, which is equivalent to the negative electrode carbon.The charge / discharge cycle is repeated. there were. As a result, it is possible to repeatedly charge and discharge and operate as a linear battery. Comparative Example 8
実施例 2 0 で用いたポ リ フ ッ化ビニ リ デン粉末を 1 0重量 %の濃度で N M P に溶解した溶液を用い、 実施例 2 0 と 同 じ 重量比でグラ フ アイ ト粉末と 混合してス ラ リ ーを作製し、 金 厲銅シー ト (膜厚 1 5 m ) に均一塗布乾燥して負極シー ト を作製した。  A solution obtained by dissolving the vinylidene polyfluoride powder used in Example 20 in NMP at a concentration of 10% by weight was mixed with the graphite powder at the same weight ratio as in Example 20. Then, a slurry was prepared and applied uniformly to a gold-copper sheet (film thickness 15 m) and dried to prepare a negative electrode sheet.
また、 実施例 2 1 と 同様に して、 ポ リ フ ッ化 ビニ リ デンの N M P溶液と 力一ボンブラ ッ ク 、 L i C o 〇 2粉末を混合 し てス ラ リ ーを作製 した後、 アル ミ ニ ウム シー ト (膜厚 1 5 m ) に塗布乾燥 して正極シー ト を作製 した。 Further, in the same manner as in Example 2 1, after producing a scan la rie mixed Po Li off Tsu of vinyl Li Den NMP solution and force one Bonbura click, the L i C o 〇 2 powder, A positive electrode sheet was prepared by coating and drying on an aluminum sheet (film thickness 15 m).
実施例 2 3 と 同様に して、 ポ リ エチ レ ン微多孔膜 ( 日本国 旭化成工業 (株) 製、 ハイ ポア U 2 フ ィ ルム) 、 及び上記で 得られた正極シー ト と負極シ一 ト を用い積層体を構成 した 得られる積層体を、 し 1 ? 6を 1 . 5 m o の濃度で エ チ レ ンカーボネ ー ト ( E C ) 、 メ チルェ チル カ 一 ボネー ト (M E C ) 混合溶媒 ( E C ZM E C重量比 1 Z 2 ) に溶解 し て得られる非水系電解質溶液に入れ、 7 0 °Cで 3 0 分加熱 し て含浸させた。 In the same manner as in Example 23, a polystyrene microporous membrane (Hipore U2 film manufactured by Asahi Kasei Kogyo Co., Ltd., Japan), the positive electrode sheet and the negative electrode sheet obtained above were obtained. The laminated body obtained by using the Non-aqueous electrolyte obtained by dissolving 6 at a concentration of 1.5 mo in a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) (EC ZM EC weight ratio 1 Z 2) It was placed in the solution and heated at 70 ° C. for 30 minutes for impregnation.
電池の正極および負極集電体にス テ ン レス シ一 ト を接触さ せ、 ガラスセルに接続した後、 アル ゴ ン雰囲気中で封入し、 電池を得た。  A stainless steel sheet was brought into contact with the positive and negative electrode current collectors of the battery, connected to a glass cell, and sealed in an argon atmosphere to obtain a battery.
該電池を充放電機 ( 日 本国北斗電工社製 1 0 1 S M 6 ) を 用い電流密度 1 m A Z c m 2の電流密度で充放電を行なった。 充電は 4 . 2 Vの定電位で行った。 充電後の電極間電位は 4 2 Vであ リ 充電が確認でき た。 また、 放電は定電流で行い、 電圧 2 . 7 Vで停止 した。 初回放電量は負極炭素当た リ 2 4 4 m A h / g であ リ 充放電サイ クルを繰 リ 返し 1 0 0サイ ク ル後の放電量は 1 6 5 m A h Z g であった。 この結果から、 繰 リ 返 し充放電が可能であ リ ニ次電池と して作動する こ とが わかった。 The battery was charged and discharged at a current density of 1 mAZ cm 2 using a charge / discharge machine (101 SM 6 manufactured by Hokuto Denko Co., Ltd. of Japan). Charging was performed at a constant potential of 4.2 V. The potential between the electrodes after charging was 42 V, confirming recharging. The discharge was performed at a constant current and stopped at a voltage of 2.7 V. The initial discharge amount was 244 mAh / g, which was equivalent to the negative electrode carbon. . From these results, it was found that the battery can be repeatedly charged and discharged and operates as a linear battery.
実施例 2 4 Example 2 4
ポ リ エチ レ ン微多孔膜を、 実施例 2 で作製 した、 非水系電 解質溶液含浸前の発泡体に代える以外は実施例 2 3 と 同様に して積層体を形成 し、 実施例 2 3 に用いたの と 同 じ非水系電 解質溶液を 7 0 °Cで 2時間含浸させた。  A laminated body was formed in the same manner as in Example 23 except that the polyethylene microporous membrane was replaced with the foam prepared in Example 2 before impregnation with the non-aqueous electrolyte solution. The same nonaqueous electrolyte solution used in 3 was impregnated at 70 ° C for 2 hours.
実施例 2 3 と 同様に して鼋池を形成 し、 充放電 (電流密度 1 m A / c m 2 ) を行なった結果、 充電後の電極間電圧は 4 . 2 Vであった。 放電は、 定電流で行ない、 電圧 2 . 7 Vで停 止 した。 初回の放電量が負極炭素重量当た リ 3 1 2 m A / g であった。 さ らに充放電を 1 0 0サイ ク ル繰リ 返 した後の放 電量は 2 6 8 m A/ g であった。 以上の結果から、 繰 リ 返し た充放電が可能でぁ リ 、 二次電池と して作動する こ と が分か つた。 A battery was formed in the same manner as in Example 23, and charged and discharged (current density: 1 mA / cm 2 ). As a result, the voltage between the electrodes after charging was 4.2 V. The discharge was performed at a constant current and stopped at a voltage of 2.7 V. The initial discharge amount was 312 mA / g per negative electrode carbon weight. Further, the discharge amount after repeating charge and discharge for 100 cycles was 2688 mA / g. From the above results, it was found that the battery can be repeatedly charged and discharged, and can be operated as a secondary battery.
比較例 9 Comparative Example 9
メ ンブラ ンフ ィ ル タ 一 (米国 ミ リ ポア社製、 商品名 D u i a p o r e H V H P ) に、 L i B F 4を I m o l Zリ ッ ト ノレの瀵度と なる よ う エチ レ ンカーボネー ト ( E C ) Zプロ ピ レ ンカーボネー ト ( P C ) / γ —ブチルラ ク ト ン ( γ — B L ) 混合溶媒 (重量比 E C Z P Cノ γ — B L重量比 = 1 / 1 2 ) に溶解して得られる非水系電解質溶液を含浸させた。 含浸し た該フ ィ ルタ 一のイ オン伝導度を実施例 1 と 同様に して測定 した結果、 0 . 8 x 1 0— 4 S Z c mであった。 また、 実施例 1 と 同様に断面観察用のサ ンプルを作製 し、 第 1 、 第 2及び 第 3の断面における液相 ド メ イ ン観察を行なった結果、 フ ィ ノレターのも と の表面に連通 し、 電解質溶液が流出 した空孔が 多数観察された。 Main assembler Nfu Note1 one (US millimeter pore Co., Ltd., trade name D uiapore HVHP) to, the L i BF 4 I mol Z Li Tsu door Ethylene carbonate (EC) Z propylene carbonate (PC) / γ-butyl lactone (γ—BL) mixed solvent (weight ratio ECZPC no γ—BL weight ratio = 1) / 12) was impregnated with a non-aqueous electrolyte solution obtained by dissolving the solution. Result of ion-conductivity of the impregnated該Fu I filter one was measured in the same manner as in Example 1, was 0. 8 x 1 0- 4 SZ cm. In addition, a sample for cross-sectional observation was prepared in the same manner as in Example 1, and liquid-phase domain observation was performed on the first, second, and third cross-sections. As a result, the surface of the final letter In communication, a large number of pores from which the electrolyte solution flowed out were observed.
また、 実施例 1 と 同様に して、 含浸 したフ ィ ル タ 一の透水 量を測定 した結果、 透水量力; 1 6 , 0 0 0 リ ッ ト ル Z m 2 · h r · a t mであった。 なお、 該フ ィ ル タ ー の非水系電解質 溶液含浸前の透水量は 1 5 , 0 0 0 リ ッ ト ル/ m 2 ' h r · a t mでめ つ 7こ。 The water permeability of the impregnated filter was measured in the same manner as in Example 1. As a result, the water permeability was 16 000 liters Zm 2 · hr · atm. The water permeation of the filter before impregnation with the non-aqueous electrolyte solution was 15 000 liters / m 2 'hr · atm.
また、 含浸前のフ イ ノレ タ ーの 、 フ イ ノレ タ ー全体積に対する 独立気泡体積は 0容量%であった。  In addition, the closed cell volume of the finalizer before impregnation was 0% by volume based on the total volume of the finalizer.
以上の結果から、 該フ ィ ルタ 一は貫通孔を有する多孔膜で ぁ リ 、 非水系電解質溶液を含浸した状態では液漏れが起こ る こ とがわかった。  From the above results, it was found that the filter was a porous film having a through-hole, and that liquid leakage occurred when the filter was impregnated with a non-aqueous electrolyte solution.
実施例 2 5 Example 2 5
実施例 1 と 同様に して、 へキサフルォロ プ ロ ピ レ ン 一 フ ッ ィ匕ビユ リ デン共重合体 (へキサフルォロ プロ ピ レ ン含量 5重 量% ) をシー ト (膜厚 1 5 0 μ m ) に成形し、 得られたシ一 ト に電子線照射 (照射量 5 M r a d ) し、 6 ◦ °Cで真空乾燥 し生成 した H Fガスを除去 した。 該シ一 ト にフ ロ ン H F C— 1 3 4 a と水の混合溶液 (フ ロ ン 水重量比 = 4 9 1 ) を 7 0 °Cの温度で含浸させた (含浸量 9重量% ) 。 該含浸シー ト を 1 7 ◦ °Cの加熱炉に導入 し、 1 分間保持 して発泡体シー ト を作成 した。 発泡体シー ト は膜厚 1 6 5 μ πι、 発泡倍率は 1 . 3倍であった。 独立気泡の体積は 2 1 . 3 容量%であつ た。 該発泡体シー ト を Ν Μ Ρに 9 0 °Cで 3 時間浸せき した後 溶出液を除去 し、 アセ ト ン洗浄、 乾燥によって架橋成分の割 合を求めた結果、 抽出前発泡体シー ト の重量の 2 3 重量。 /。で ある こ と がゎカゝつた。 In the same manner as in Example 1, a hexafluoropropyl propylene-vinylidene copolymer (hexafluoropropylene content of 5 %)) Into a sheet (film thickness: 150 μm), and the resulting sheet was irradiated with an electron beam (irradiation amount: 5 Mrad), and HF gas produced by vacuum drying at 6 ° C Was removed. The sheet was impregnated with a mixed solution of fluorocarbon HFC-134a and water (fluorine water weight ratio = 491) at a temperature of 70 ° C. (impregnation amount 9% by weight). The impregnated sheet was introduced into a heating furnace at 17 ° C and held for 1 minute to prepare a foam sheet. The foam sheet had a thickness of 16.5 μπι and an expansion ratio of 1.3. The volume of the closed cells was 21.3% by volume. The foam sheet was immersed in water at 90 ° C for 3 hours, and the eluate was removed. The percentage of crosslinked components was determined by washing with acetone and drying. 2 3 weight of weight. /. It was a good thing.
該発泡体シー ト を、 実施例 1 で用いたの と 同 じ非水系電解 質溶液 ( E C Z P C / γ — B L重量比 : 1 ノ 1 / 2 L i B F , 1 モル リ ッ トル) に 1 0 0 °Cの温度で 2時間含浸 さ せて、 複合高分子固体電解質を作製した。 含浸前後の重量差 から求めた、 複合高分子固体電解質中の非水系電解質溶液含 有量は 3 6重量。/。であった。  The foam sheet was added to the same non-aqueous electrolyte solution (ECZPC / γ-BL weight ratio: 1/1/2 LiBF, 1 mol liter) as used in Example 1. Impregnation was performed at a temperature of ° C for 2 hours to prepare a composite solid polymer electrolyte. The content of the non-aqueous electrolyte solution in the composite solid polymer electrolyte was found to be 36% by weight based on the weight difference before and after the impregnation. /. Met.
実施例 1 と 同様に して、 該複合高分子固体電解質の断面観 察用サ ンプルを作製し、 その第 1 、 第 2及び第 3の断面を観 察 した結果、 液相 ド メ イ ンの平均粒径は 2〜 4 μ mであ リ 、 平均粒径 3 mの液相 ド メ イ ンが多数観察された。 第 1 、 第 2及び第 3 の断面の平均粒径 2 !〜 4 μ πιの液相 ド メ イ ン の面積の割合はそれぞれの面で 1 2 %、 1 0 °/。 、 1 5 %であ つた。 これらの結果から、 液相 ドメ イ ンの体積含有率は 1 2 3容量。 /。である こ と がわかった。 In the same manner as in Example 1, a sample for observing the cross section of the composite solid polymer electrolyte was prepared, and the first, second, and third cross sections were observed. The average particle size was 2 to 4 μm, and a number of liquid phase domains with an average particle size of 3 m were observed. Average particle size of the first, second and third cross sections 2! Liquid phase domain of ~ 4 μπι The ratio of the area of each side is 12%, 10 ° /. And 15%. Based on these results, the volume content of the liquid phase domain was 123 volumes. /. It turned out that.
また、 該複合高分子電解質のイ オン伝導度を実施例 1 と 同 様に評価 した結果、 2 . 1 X 1 0— 4 S Z c mであった。 Moreover, the results of the composite polymer electrolyte ion-conductivity was evaluated in the same manner as in Example 1, was 2. 1 X 1 0- 4 SZ cm.
実施例 2 6 Example 26
実施例 4 で作製 し、 1 5 M r a d の電子線を照射 した発泡 体シー ト に さ らに 1 5 M r a d の電子線を照射 した。 該シ一 ト を実施例 4 と 同様に して N M Pに浸積 し 、 9 0 °Cで 3 時間 加熱、 アセ ト ン洗浄を行った。 乾燥重量から求めた、 電子線 照射に よ リ 形成された架橋成分の重量分率は 7 5 %であつた 該発泡体シー ト を、 実施例 4 で用いたの と 同 じ複合高分子 固体電解質 ( E C Z P C Z '/ — B L重量比 : 1 Z 1 Z 2 、 L i B F 4濃度 1 . 5モノレ Z リ ッ ト ノレ ) に 、 1 0 0 °Cで 2 時間 浸積 して、 複合高分子固体電解質を作製 した。 得られた複合 高分子固体電解質の複合高分子固体電解質含量は 7 2重量% であった。 The foam sheet produced in Example 4 and irradiated with a 15 Mrad electron beam was further irradiated with a 15 Mrad electron beam. The sheet was immersed in NMP in the same manner as in Example 4, heated at 90 ° C. for 3 hours, and washed with acetate. The foam sheet having a weight fraction of 75% of the crosslinked component formed by electron beam irradiation determined from the dry weight was the same composite polymer solid electrolyte as used in Example 4. to: - (. ECZPCZ '/ BL weight ratio 1 Z 1 Z 2, L i BF 4 concentration 1 5 Monore Z Li Tsu preparative Honoré), and 2 hours immersed in 1 0 0 ° C, the composite solid polymer electrolyte Was prepared. The composite polymer solid electrolyte content of the obtained composite polymer solid electrolyte was 72% by weight.
実施例 1 と 同様に して、 該複合高分子固体電解質の断面観 察用サンプルを作製 し、 その第 1 、 第 2及び第 3 の断面を観 察した結果、 液相 ドメ イ ンの平均粒径は 2 2 μ mであ リ 第 1 、 第 2及び第 3 の断面におけ る液相 ドメ イ ンの断面積の 割合は、 それぞれ、 4 8 %、 5 4 %、 5 0 %であった。 これ らの結果から 、 液相 ドメ イ ンの体稜分率が 5 1 . 3容量%で ある こ と がわかった。 In the same manner as in Example 1, a sample for observing the cross section of the composite solid polymer electrolyte was prepared, and the first, second, and third cross sections were observed. As a result, the average particle size of the liquid phase domain was determined. The diameter was 22 μm, and the ratios of the cross-sectional areas of the liquid phase domains in the first, second, and third cross sections were 48%, 54%, and 50%, respectively. . this From these results, it was found that the body edge fraction of the liquid phase domain was 51.3% by volume.
実施例 4 と 同様に して測定したイ オン伝導度は 2 . 9 X 1 0一3 S Z c mであった。 Ion-conductivity was measured in the same manner as in Example 4 was 2. 9 X 1 0 one 3 SZ cm.
産業上の利用可能性 Industrial applicability
本発明の複合高分子固体電解質は、 高いイ オン伝導度を持 ち且つ機械的強度が高く 、 柔軟性、 加工性にも優れ、 更に、 非水系電解液の液漏れが少ないので、 リ チウム電池、 リ チウ ムニ次電池、 リ チウ ムイ オン二次電池、 空気電池、 光化学電 池な どの電池、 電気二重層キャパシター、 電気化学セ ンサー エ レク ト ロ ク ロ ミ ッ ク表示素子、 な どの種々 の非水系電気化 学装置に有利に用いる こ と ができ る。 本発明の複合高分子固 体電解質を用いた非水系電気化学装置は、 優れた電気化学的 性能を示 し、 また、 優れた電解液保持性を有 し、 信頼性と安 全性が極めて高い。  The composite polymer solid electrolyte of the present invention has high ion conductivity, high mechanical strength, excellent flexibility and processability, and has little leakage of a non-aqueous electrolyte. , Lithium secondary battery, lithium ion secondary battery, air battery, photochemical battery, etc., electric double layer capacitor, electrochemical sensor, electrochromic display element, etc. It can be used advantageously for non-aqueous electrochemical devices. The non-aqueous electrochemical device using the composite polymer solid electrolyte of the present invention exhibits excellent electrochemical performance, has excellent electrolyte retention, and has extremely high reliability and safety. .

Claims

請求の範囲 The scope of the claims
1 . 独立気泡性ポ リ マー発泡体に電解液を含浸させてなる複 合高分子固体電解質であって、  1. A composite polymer solid electrolyte obtained by impregnating a closed-cell polymer foam with an electrolyte,
該複合高分子固体電解質の連続固相 ドメ イ ンを構成する気 泡壁によ って規定される複数の独立気泡を包含 してぉ リ 、 該連続固相 ドメ イ ンは、 電解質の非水系溶媒溶液と 液体電 解質と よ リ なる群から選ばれる非水系電解液が含浸 した連続 固体ポ リ マーマ ト リ ッ ク ス力 らな り 、  The continuous solid-phase domain includes a plurality of closed cells defined by a bubble wall constituting a continuous solid-phase domain of the composite polymer solid electrolyte. A continuous solid polymer matrix force impregnated with a non-aqueous electrolyte selected from the group consisting of a solvent solution and a liquid electrolyte,
該複数の独立気泡は、 それぞれ該電解液で実質的に充填さ れていて、 該複合高分子固体電解質の複数の液相 ドメ ィ ンを 形成 してお り 、 該複数の液相 ドメ イ ンは該連続固相 ド メ イ ン に分散 している、  The plurality of closed cells are substantially filled with the electrolytic solution, respectively, forming a plurality of liquid-phase domains of the composite solid polymer electrolyte, and the plurality of liquid-phase domains are formed. Are dispersed in the continuous solid-phase domain,
こ と を特徴とする複合高分子固体電解質。 A composite solid polymer electrolyte characterized by this.
2 . 該複数の液相 ド メ イ ンは、 各液相 ド メ イ ンの長径と短径 の平均値と してそれぞれ 2 μ πΐ以上のサイ ズを有する主液相 ドメ イ ンか らな り 、 該主液相 ドメ イ ンの量が該複合高分子固 体電解質の全体積に対 して 5 〜 9 5 容量%であって、 且つ、 該主液相 ドメ イ ンは、 上で定義した平均値と して 2 〜 5 0 μ mのサイ ズを有する有効液相 ドメ イ ンを、 該主液相 ド メ イ ン の総体積に対して 6 0容量%以上含有する こ と を特徴とする 請求項 1 に記載の複合高分子固体電解質。 2. The plurality of liquid phase domains are each composed of a main liquid phase domain having a size of 2 μπΐ or more as an average of the major axis and the minor axis of each liquid domain. And the amount of the main liquid phase domain is 5 to 95% by volume based on the total volume of the composite solid polymer electrolyte, and the main liquid phase domain is defined above. It is characterized by containing an effective liquid phase domain having a size of 2 to 50 μm as an average value by 60% by volume or more based on the total volume of the main liquid phase domain. The composite solid polymer electrolyte according to claim 1.
3 . 1 x 1 0— 5 S Z c m以上のイ オン伝導度を有 し、 且つ金 厲 リ チウム電極基準で 1 〜 3 Vの電位範囲において、 実質的 に酸化還元されないこ と を特徴とする請求項 1 又は 2 に記載 の複合高分子固体電解質。 3.1 x 10—Ion conductivity of 5 SZ cm or more and gold 3. The composite solid polymer electrolyte according to claim 1, wherein the composite polymer solid electrolyte is not substantially redox in a potential range of 1 to 3 V with respect to the lithium electrode.
4 . 該連続固体ポ リ マーマ ト リ ッ ク スが、 イ オン性基及び移 動性水素を含有 しないこ と を特徴とする請求項 1 〜 3 のいず れかに記載の複合高分子固体電解質。 4. The composite polymer solid according to any one of claims 1 to 3, wherein the continuous solid polymer matrix does not contain an ionic group and a mobile hydrogen. Electrolytes.
5 . 該連続固体ポ リ マ一マ ト リ ッ ク スが 、 フ ッ 化 ビニ リ デン 系ポ リ マーからなる こ と を特徴と する請求項 1 〜 4 のいずれ かに記載の複合高分子固体電解質。 5. The composite polymer solid according to any one of claims 1 to 4, wherein the continuous solid polymer matrix comprises a vinylidene fluoride polymer. Electrolytes.
6 . 該複合高分子固体電解質の重量に対 して該非水系電解液 を 1 0 〜 9 8 重量%含有する こ と を特徴とする請求項 1 〜 5 のいずれかに記載の複合高分子固体電解質。 6. The composite polymer solid electrolyte according to any one of claims 1 to 5, wherein the nonaqueous electrolyte is contained in an amount of 10 to 98% by weight based on the weight of the composite polymer solid electrolyte. .
7 . 該連続固体ポ リ マーマ ト リ ッ ク ス が 、 架橋構造を有す る 架橋ポ リ マーセグメ ン ト を包含する こ と を特徴とする請求項 1 〜 6 のいずれかに記載の複合高分子固体電解質。 7. The composite polymer according to any one of claims 1 to 6, wherein the continuous solid polymer matrix includes a crosslinked polymer segment having a crosslinked structure. Solid electrolyte.
8 . 該架橘ポ リ マーセグメ ン トの架撟構造が、 電子線照射に よ って形成されている こ と を特徴とする請求項 7 に記載の複 合高分子固体電解質。 8. The composite solid polymer electrolyte according to claim 7, wherein the bridge structure of the bridge polymer segment is formed by electron beam irradiation.
9 . 該連続固体ポ リ マーマ ト リ ッ ク スが、 更に未架橋ポ リ マ 一セグメ ン ト を包含 し、 該架橘ポ リ マ一セグメ ン ト及び該未 架橋ポ リ マーセグメ ン トの総重量に対する該架橘ポ リ マーせ グメ ン ト の重量の比が 0 . 2 〜 0 . 8 の範囲にある こ と を特 徴とする請求項 7 又は 8 に記載の複合高分子固体電解質。 9. The continuous solid polymer matrix further comprises an uncrosslinked polymer segment, and the crosslinked polymer segment and the non-crosslinked polymer segment include 9. The method according to claim 7, wherein the ratio of the weight of the crosslinked polymer segment to the total weight of the crosslinked polymer segment is in the range of 0.2 to 0.8. 10. Composite polymer solid electrolyte.
1 0 . 該非水系電解液が、 電解質の非水系溶媒溶液である こ と を特徴とする請求項 1 〜 9 のいずれかに記載の複合高分子 固体電解質。 10. The composite polymer solid electrolyte according to any one of claims 1 to 9, wherein the non-aqueous electrolyte is a non-aqueous solvent solution of an electrolyte.
1 1 . 該電解質が リ チウム塩である こ と を特徴とする請求項 1 ◦ に記載の複合高分子固体電解質。 11. The composite solid polymer electrolyte according to claim 1, wherein the electrolyte is a lithium salt.
1 2 . 該非水系溶媒がカーボネー ト化合物及びエ ス テ ル化合 物よ り なる群の少な く と も 1 つの化合物カゝらなる こ と を特徴 とする請求項 1 0 又は 1 1 に記載の複合高分子固体電解質。 12. The composite according to claim 10 or 11, wherein the non-aqueous solvent comprises at least one compound selected from the group consisting of a carbonate compound and an ester compound. Polymer solid electrolyte.
1 3 . 5 〜 5 0 0 mの厚さ を有する シー ト である こ と を特 徴 とする請求項 1 〜 1 2 のいずれかに記載の複合高分子固体 電解質。 The composite solid polymer electrolyte according to any one of claims 1 to 12, characterized in that the sheet has a thickness of 13.5 to 500 m.
1 4 . ポ リ マー発泡体の連続固体ポ リ マ一マ ト リ ッ ク スを構 成する気泡壁によって規定される複数の独立気泡を含有する 独立気泡性ポ リ マー発泡体に、 該気泡壁が該電解質の非水系 溶媒溶液と液体電解質と よ リ なる群から選ばれる非水系電解 液を含浸させる こ と を特徴とする請求項 1 に記載の複合固体 電解質の製造方法。 14. A closed-cell polymer foam containing a plurality of closed cells defined by cell walls constituting a continuous solid polymer matrix of the polymer foam; The method for producing a composite solid electrolyte according to claim 1, wherein the wall is impregnated with a non-aqueous electrolyte selected from the group consisting of a non-aqueous solvent solution of the electrolyte and a liquid electrolyte.
1 5 . 該ポ リ マ一発泡体の独立気泡の量が、 該ポ リ マー発泡 体の全体積に対して 5 〜 9 8容量%である こ と を特徴とする 請求項 1 4 に記載の方法。 15. The polymer foam according to claim 14, wherein the amount of closed cells of the polymer foam is 5 to 98% by volume based on the total volume of the polymer foam. Method.
1 6 . 該複数の独立気泡が、 各独立気泡の長径と短径の平均 値と して 1 〜 5 0 μ πιのサイ ズ及び 5 0 μ πιを超すサイ ズを それぞれ有する第 1 及び第 2 フ ラ ク シ ョ ンの独立気泡からな リ 、 該第 1 及び第 2 フ ラ ク シ ョ ンのそれぞれの独立気泡の量 がそれぞれ該複数の独立気泡の総体積に対 して 6 ◦ 容量。 /。以 上及び 4 0 容量%未満である こ と を特徴とする請求項 1 5 に 記載の方法。 16. The first and second closed cells each have a size of 1 to 50 μπι and a size exceeding 50 μπι as an average of the major axis and minor axis of each closed cell. Each of the first and second fractions has a closed cell volume of 6 ° with respect to the total volume of the plurality of closed cells. /. 16. The method according to claim 15, wherein the amount is less than 40% by volume.
1 7 . 該非水系電解液の含浸を 3 5 〜 2 0 0 °Cで行 う こ と を 特徴とする請求項 1 4 〜 1 6 のいずれかに記載の方法。 17. The method according to any one of claims 14 to 16, wherein the impregnation with the non-aqueous electrolyte is carried out at 35 to 200 ° C.
1 8 . 該非水系電解液が更に膨潤剤を含み、 そ して、 膨潤剤 を含む該非水系電解質をポ リ マー発泡体に含浸 させた後、 該 膨潤剤の少な く と も 1 部を除去する工程を更に包含する こ と を特徴とする請求項 1 4 〜 1 7 のいずれかに記載の方法。 18. The non-aqueous electrolyte further contains a swelling agent, and after the polymer foam is impregnated with the non-aqueous electrolyte containing the swelling agent, at least one part of the swelling agent is removed. The method according to any one of claims 14 to 17, further comprising a step.
1 9 . 用いる該非水系電解液の量が、 製造された複合固体電 解質のイ オン伝導度が 1 . 0 x l 0 _4 S Z c m以上にな り 且つ該複合固体電解質の表面積が電解液を含浸する前のポ リ マ一発泡体の表面積の 5 0 〜 2 0 0 %になる量である こ と を 特徴と する請求項 1 4 〜 1 8 のいずれかに記載の方法。 19. The amount of the non-aqueous electrolyte used is such that the ion conductivity of the produced composite solid electrolyte is not less than 1.0 xl 0 _ 4 SZ cm and the surface area of the composite solid electrolyte is The amount should be 50 to 200% of the surface area of the polymer foam before impregnation. The method according to any one of claims 14 to 18 characterized by the above-mentioned.
2 0 . 該ポ リ マー発泡体が、 電子線照射によって形成された 架橘構造を有する架橋ポ リ マーセグメ ン ト を包含する構造と 、 該ポ リ マー発泡体が延伸 された形状である構造と から選ばれ る少な く と も 1 つの構造を有する こ と を特徴とする請求項 1 4 〜 1 9 のいずれ力 こに記載の方法。 20. A structure in which the polymer foam includes a crosslinked polymer segment having a crosslinked structure formed by electron beam irradiation, and a structure in which the polymer foam has a stretched shape. The method according to any one of claims 14 to 19, wherein the method has at least one structure selected from the group consisting of:
2 1 . 少な く と も 2 つの電極及び請求項 1 〜 1 3 のいずれか に記載の複合固体電解質からな リ 、 該少な く と も 2 つの電極 が該複合固体電解質を介して配設 されてなる こ と を特徴とす る非水系電気化学装置。 21. At least two electrodes and the composite solid electrolyte according to any one of claims 1 to 13, wherein the at least two electrodes are arranged via the composite solid electrolyte. A non-aqueous electrochemical device characterized by:
2 2 . 微粒子状電極材料及びバイ ンダ一よ リ なる電極であつ て 、 該バイ ンダーが、 ポ リ マ一発泡体の連続固体ポ リ マーマ ト リ ッ ク ス を構成する気泡壁によ って規定される複数の独立 気泡を含有する独立気泡性ポ リ マ 一発泡体よ り なる こ と を特 徴とする電極。 22. An electrode comprising a particulate electrode material and a binder, wherein the binder is formed by a cell wall constituting a continuous solid polymer matrix of a polymer foam. An electrode characterized in that it is made of a closed-cell polymer foam containing a plurality of specified closed cells.
2 3 . 電解質の非水系溶媒溶液と液状電解質よ リ なる群から 選ばれる非水系電解液が含浸 している こ と を特徴とする請求 項 2 2 に記載の電極。 23. The electrode according to claim 22, characterized in that the electrode is impregnated with a non-aqueous electrolyte selected from the group consisting of a non-aqueous solvent solution of an electrolyte and a liquid electrolyte.
2 4 . ポ リ マ一発泡体の連続固体ポ リ マ一マ ト リ ッ ク スを構 成する気泡壁によ って規定される複数の独立気泡を含有する 微粒子状の独立気泡性ポ リ マ一発泡体と微粒子状の電極材料 と の混合物を成形する こ と を特徴とする請求項 2 2 に記載の 電極の製造方法。 24 4. Containing a plurality of closed cells defined by the cell walls that make up the continuous solid polymer matrix of the polymer foam 23. The method for producing an electrode according to claim 22, wherein a mixture of a particulate closed-cell polymer foam and a particulate electrode material is formed.
2 5 . 微粒子状の電極材料と ポ リ マーと の混合物を成形して 成形体を得、 得られた該成形体中のポ リ マーを発泡させる こ と を特徴とする請求項 2 2 に記載の電極の製造方法。 25. The method according to claim 22, wherein a mixture of the particulate electrode material and the polymer is molded to obtain a molded article, and the polymer in the obtained molded article is foamed. Method for manufacturing electrodes.
2 6 . 請求項 2 3 に記載の電極を包含 してなる非水系電気化 学装置。 26. A non-aqueous electrochemical device comprising the electrode according to claim 23.
2 7 . リ チウム電池である こ と を特徴とする請求項 2 1 に記 載の電気化学装置。 27. The electrochemical device according to claim 21, wherein the electrochemical device is a lithium battery.
2 8 . リ チウム電池である こ と を特徴とする請求項 2 6 に記 載の電気化学装置。 28. The electrochemical device according to claim 26, wherein the electrochemical device is a lithium battery.
PCT/JP1996/003363 1995-11-15 1996-11-15 Composite polymer solid electrolyte and nonaqueous electrochemical device WO1997018596A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU14322/97A AU703077B2 (en) 1995-11-15 1996-11-15 Hybrid polymeric electrolyte and non-aqueous electrochemical device comprising the same
DE69637433T DE69637433T2 (en) 1995-11-15 1996-11-15 HYBRID POLYMER COMPOUND ELECTROLYTE AND NON-ACID ELECTROCHEMICAL CELL
KR1019980702350A KR100288617B1 (en) 1995-11-15 1996-11-15 Hybrid Polymeric Electrolyte and Non-aqueous Electrochemical Device Comprising the Same
CA002231384A CA2231384C (en) 1995-11-15 1996-11-15 Hybrid polymeric electrolyte and non-aqueous electrochemical device comprising the same
US09/029,823 US6284412B1 (en) 1995-11-15 1996-11-15 Hybrid polymeric electrolyte and non-aqueous electrochemical device comprising the same
EP96938484A EP0862232B1 (en) 1995-11-15 1996-11-15 Hybrid polymeric electrolyte and non-aqueous electrochemical device comprising the same
JP51875097A JP3961569B2 (en) 1995-11-15 1996-11-15 Composite polymer solid electrolyte and non-aqueous electrochemical device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/296517 1995-11-15
JP29651795 1995-11-15

Publications (1)

Publication Number Publication Date
WO1997018596A1 true WO1997018596A1 (en) 1997-05-22

Family

ID=17834569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003363 WO1997018596A1 (en) 1995-11-15 1996-11-15 Composite polymer solid electrolyte and nonaqueous electrochemical device

Country Status (12)

Country Link
US (1) US6284412B1 (en)
EP (1) EP0862232B1 (en)
JP (1) JP3961569B2 (en)
KR (1) KR100288617B1 (en)
CN (1) CN1147954C (en)
AT (1) ATE386344T1 (en)
AU (1) AU703077B2 (en)
CA (1) CA2231384C (en)
DE (1) DE69637433T2 (en)
MY (1) MY123761A (en)
TW (1) TW344905B (en)
WO (1) WO1997018596A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130821A (en) * 1997-07-24 1999-05-18 Kureha Chem Ind Co Ltd Vinylidene fluoride-based copolymer for forming gelatinous solid electrolyte, solid electrolyte and battery
JP2002190319A (en) * 2000-12-19 2002-07-05 Furukawa Electric Co Ltd:The Solid state electrolyte and battery using the electrolyte
WO2003003110A1 (en) * 2001-06-27 2003-01-09 Nippon Oil Corporation Electrochromic element
US6824927B1 (en) * 1997-12-26 2004-11-30 Kureha Kagaku Kogyo Kabushiki Kaisha Polymer electrolyte containing a vinylidene fluoride copolymer and a nonaqueous electrolytic solution, and nonaqueous battery containing the polymer electrolyte
JP2006114254A (en) * 2004-10-12 2006-04-27 Sony Corp Battery
WO2010076989A3 (en) * 2008-12-30 2010-08-26 주식회사 엘지화학 Separator with a porous coating layer, and electrochemical device comprising same
JP5099938B1 (en) * 2012-02-23 2012-12-19 株式会社日立製作所 Nonaqueous electrolyte secondary battery separator, method for producing the same, and nonaqueous electrolyte secondary battery
US9142855B2 (en) 2010-06-14 2015-09-22 Lg Chem, Ltd. Electrolyte for electrochemical device, method for preparing the electrolyte and electrochemical device including the electrolyte

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2776211B1 (en) * 1998-03-19 2000-07-13 Scps THICK COMPLEX POROUS STRUCTURES MADE ELECTRICALLY CONDUCTIVE, AND CORRESPONDING CONDUCTIVE ACTIVATION METHOD
JP2000243447A (en) 1999-02-19 2000-09-08 Sony Corp Gel electrolyte and gel electrolyte battery
US6403663B1 (en) * 1999-09-20 2002-06-11 North Carolina State University Method of making foamed materials using surfactants and carbon dioxide
US7771870B2 (en) 2006-03-22 2010-08-10 Sion Power Corporation Electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries
US7247408B2 (en) 1999-11-23 2007-07-24 Sion Power Corporation Lithium anodes for electrochemical cells
US20110165471A9 (en) * 1999-11-23 2011-07-07 Sion Power Corporation Protection of anodes for electrochemical cells
JP2003533862A (en) 2000-05-19 2003-11-11 コリア インスティテュート オブ サイエンス アンド テクノロジー Lithium secondary battery including ultrafine fibrous porous polymer separator film and method of manufacturing the same
JP2002110243A (en) * 2000-09-29 2002-04-12 Pionics Co Ltd Lithium secondary battery
BR0306822B1 (en) * 2002-01-09 2012-09-04 method for removing an electrolyte from a storage and energy conversion device using a supercritical fluid.
US8067107B2 (en) * 2002-01-09 2011-11-29 Eco-Bat Indiana, Llc System and method for processing an end-of-life or reduced performance energy storage and/or conversion device using a supercritical fluid
JP3754374B2 (en) * 2002-01-17 2006-03-08 三洋電機株式会社 Method for producing electrode for lithium secondary battery
US20030190527A1 (en) * 2002-04-03 2003-10-09 James Pugh Batteries comprising alkali-transition metal phosphates and preferred electrolytes
JP4214112B2 (en) * 2002-06-21 2009-01-28 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Electrolyte device electrolytes containing ionic liquids
WO2004100294A1 (en) * 2003-04-17 2004-11-18 Kejha Joseph B High performance and safer electrolytes for lithium-ion electrochemical devices
EP1508927A3 (en) * 2003-07-29 2008-12-24 Arkema France Structure comprising a modified fluoropolymer and electrode composed of said structure
US10629947B2 (en) 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell
US7135122B2 (en) * 2004-03-31 2006-11-14 Freudenberg-Nok General Partnership Polytetrafluoroethylene composites
US7342072B2 (en) 2004-06-30 2008-03-11 Freudenberg-Nok General Partnership Bimodal compounds having an elastomeric moiety
US20060000801A1 (en) * 2004-06-30 2006-01-05 Park Edward H Surface bonding in halogenated polymeric components
US7521508B2 (en) * 2004-06-30 2009-04-21 Freudenberg-Nok General Partnership Electron beam inter-curing of plastic and elastomer blends
US7452577B2 (en) * 2004-06-30 2008-11-18 Freudenberg-Nok General Partnership Electron beam curing of fabricated polymeric structures
US7244329B2 (en) * 2004-06-30 2007-07-17 Freudenberg-Nok General Partnership Electron beam curing in a composite having a flow resistant adhesive layer
US7230038B2 (en) * 2004-06-30 2007-06-12 Freudenberg-Nok General Partnership Branched chain fluoropolymers
US7381765B2 (en) 2004-11-08 2008-06-03 Freudenberg-Nok General Partnership Electrostatically dissipative fluoropolymers
US20060100368A1 (en) * 2004-11-08 2006-05-11 Park Edward H Elastomer gum polymer systems
US20060099368A1 (en) * 2004-11-08 2006-05-11 Park Edward H Fuel hose with a fluoropolymer inner layer
JP5052769B2 (en) * 2005-07-15 2012-10-17 株式会社日立製作所 Ion conductive side chain polymer electrolyte, precursor thereof, and lithium secondary battery
KR100726887B1 (en) * 2005-07-20 2007-06-14 한국과학기술원 Solid Polymer Electrolyte Based on Porous Matrix and Lithium Second Battery Including Solid Polymer Electrolyte
US20070045967A1 (en) * 2005-08-31 2007-03-01 Freudenberg-Nok General Partnership Assemblies sealed with multilayer composite torsion seals having a layer of dispersed fluoroelastomer in thermoplastic
US20070048476A1 (en) * 2005-08-31 2007-03-01 Freudenberg-Nok General Partnership Assemblies sealed with multilayer composite compression seals having a layer of dispersed fluoroelastomer in thermoplastic
US20070044906A1 (en) * 2005-08-31 2007-03-01 Freudenberg-Nok General Partnership Multilayer polymeric composites having a layer of dispersed fluoroelastomer in thermoplastic
US20080212261A1 (en) * 2006-07-05 2008-09-04 Rensselaer Polytechnic Institute Energy storage devices and composite articles associated with the same
EP2102924B1 (en) 2006-12-04 2018-03-28 Sion Power Corporation Separation of electrolytes in lithium batteries
FR2910137B1 (en) * 2006-12-18 2009-03-20 Saint Gobain ELECTRO-CONTROLLABLE DEVICE ELECTROLYTE MATERIAL, MANUFACTURING METHOD THEREOF, ELECTRO-CONTROLLABLE DEVICE COMPRISING SAME, AND METHOD OF MANUFACTURING THE SAME
FR2910138B1 (en) * 2006-12-18 2009-08-21 Saint Gobain ELECTRO-CONTROLLABLE DEVICE ELECTROLYTE MATERIAL, MANUFACTURING METHOD THEREOF, ELECTRO-CONTROLLABLE DEVICE COMPRISING SAME, AND METHOD OF MANUFACTURING THE SAME
US7863365B2 (en) 2006-12-20 2011-01-04 Freudenberg-Nok General Partnership Robust magnetizable elastomeric thermoplastic blends
DE102007050242A1 (en) * 2007-10-20 2009-04-23 Deutsche Exide Gmbh Separator for Gelelektrolytakkumulatoren
PL3242347T3 (en) * 2007-11-30 2019-11-29 Lithium Werks Tech Bv Battery cell design with asymmetrical terminals
CN102017277A (en) * 2008-02-22 2011-04-13 S·E·斯鲁普 Reintroduction of lithium into recycled battery materials
US20100203366A1 (en) * 2008-02-22 2010-08-12 Sloop Steven E Recycling of battery electrode materials
WO2010014637A1 (en) * 2008-07-28 2010-02-04 Sloop Steven E Recycling batteries having basic electrolytes
US9664974B2 (en) 2009-03-31 2017-05-30 View, Inc. Fabrication of low defectivity electrochromic devices
WO2010131321A1 (en) * 2009-05-11 2010-11-18 トヨタ自動車株式会社 Solid‑state battery manufacturing method and solid state battery
US8307994B2 (en) 2009-10-28 2012-11-13 International Business Machines Corporation Surface charge enabled nanoporous semi-permeable membrane for desalination
KR101311494B1 (en) * 2010-06-14 2013-09-25 주식회사 엘지화학 Electrolyte for electrochemical device, the preparation method thereof and electrochemical device comprising the same
US9958750B2 (en) 2010-11-08 2018-05-01 View, Inc. Electrochromic window fabrication methods
JP2014513857A (en) * 2010-12-23 2014-06-05 24エム・テクノロジーズ・インコーポレイテッド Semi-solid filled battery and manufacturing method
US9548492B2 (en) 2011-06-17 2017-01-17 Sion Power Corporation Plating technique for electrode
JP6118805B2 (en) 2011-10-13 2017-04-19 シオン・パワー・コーポレーション Electrode structure and manufacturing method thereof
US10802371B2 (en) 2011-12-12 2020-10-13 View, Inc. Thin-film devices and fabrication
US10295880B2 (en) 2011-12-12 2019-05-21 View, Inc. Narrow pre-deposition laser deletion
ES2657115T3 (en) 2011-12-12 2018-03-01 View, Inc. Thin film devices and manufacturing
US11865632B2 (en) 2011-12-12 2024-01-09 View, Inc. Thin-film devices and fabrication
US20210394489A1 (en) 2011-12-12 2021-12-23 View, Inc. Thin-film devices and fabrication
US9005311B2 (en) 2012-11-02 2015-04-14 Sion Power Corporation Electrode active surface pretreatment
US20170162907A1 (en) * 2013-03-15 2017-06-08 Wildcat Discovery Technologies, Inc. Electrolyte Solutions for High Energy Cathode Materials and Methods for Use
US9236634B2 (en) * 2013-03-15 2016-01-12 Wildcat Discorvery Technologies, Inc. Electrolyte solutions for high cathode materials and methods for use
CN103456985B (en) * 2013-09-13 2016-02-24 宋大余 A kind of manufacture method of inorganic solid electrolyte
JP6770952B2 (en) 2014-09-09 2020-10-21 シオン・パワー・コーポレーション Protective layer in lithium-ion electrochemical cells, and related electrodes and methods
CN107848247B (en) 2015-05-20 2021-06-01 锡安能量公司 Protective layer for electrode
JP7049269B2 (en) 2016-05-20 2022-04-06 シオン・パワー・コーポレーション Protective layer for electrodes and electrochemical battery
US9985316B1 (en) 2017-02-24 2018-05-29 Wildcat Discovery Technologies, Inc Electrolyte additives
KR20210075678A (en) * 2019-12-13 2021-06-23 주식회사 엘지에너지솔루션 Solid-liquid state hybrid electrolyte membrane, manufacturing method thereof and lithium secondary battery incluiding the same
EP4104232A1 (en) 2020-04-23 2022-12-21 Saint-Gobain Ceramics&Plastics, Inc. Ion conductive layer and methods of forming
US11735732B2 (en) 2020-04-23 2023-08-22 Saint-Gobain Ceramics & Plastics, Inc. Ion conductive layer and methods of forming
KR20230091487A (en) 2021-12-16 2023-06-23 숙명여자대학교산학협력단 Electrochemical system using gaseous electrolyte and chemical reaction method using gaseous electrolyte

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340270A (en) * 1986-08-04 1988-02-20 Yuasa Battery Co Ltd Solid electrolyte battery
JPH04204522A (en) * 1990-11-30 1992-07-24 Tonen Corp Electrolytic thin film
JPH05342906A (en) * 1992-06-04 1993-12-24 Mitsubishi Cable Ind Ltd Manufacture of solid electrolyte

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4384047A (en) * 1980-03-28 1983-05-17 Pennwalt Corporation Porous vinylidene fluoride polymer membrane and process for its preparation
JPS63102104A (en) * 1986-10-16 1988-05-07 日立マクセル株式会社 Ion conducting organic film
US5296318A (en) * 1993-03-05 1994-03-22 Bell Communications Research, Inc. Rechargeable lithium intercalation battery with hybrid polymeric electrolyte
US5429891A (en) * 1993-03-05 1995-07-04 Bell Communications Research, Inc. Crosslinked hybrid electrolyte film and methods of making and using the same
JP3741449B2 (en) * 1993-06-01 2006-02-01 光洋精工株式会社 Electric power steering device
US5635039A (en) * 1993-07-13 1997-06-03 Lynntech, Inc. Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same
US5547551A (en) * 1995-03-15 1996-08-20 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
TW342537B (en) 1995-03-03 1998-10-11 Atochem North America Elf Polymeric electrode, electrolyte, article of manufacture and composition
US5928391A (en) * 1995-05-08 1999-07-27 Ultralife Batteries, Inc. Extraction for porosity in polymer cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340270A (en) * 1986-08-04 1988-02-20 Yuasa Battery Co Ltd Solid electrolyte battery
JPH04204522A (en) * 1990-11-30 1992-07-24 Tonen Corp Electrolytic thin film
JPH05342906A (en) * 1992-06-04 1993-12-24 Mitsubishi Cable Ind Ltd Manufacture of solid electrolyte

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130821A (en) * 1997-07-24 1999-05-18 Kureha Chem Ind Co Ltd Vinylidene fluoride-based copolymer for forming gelatinous solid electrolyte, solid electrolyte and battery
US6824927B1 (en) * 1997-12-26 2004-11-30 Kureha Kagaku Kogyo Kabushiki Kaisha Polymer electrolyte containing a vinylidene fluoride copolymer and a nonaqueous electrolytic solution, and nonaqueous battery containing the polymer electrolyte
US7452387B2 (en) 1997-12-26 2008-11-18 Kureha Corporation Process for producing a polymer electrolyte of a vinylidene fluoride copolymer for a nonaqueous battery
US8043386B2 (en) 1997-12-26 2011-10-25 Kureha Corporation Process for producing polymer electrolyte
US8574770B2 (en) 1997-12-26 2013-11-05 Kureha Corporation Vinylidene fluoride copolymer-based polymer electrolyte for nonaqueous battery retaining large proportion of electrolytic solution
JP2002190319A (en) * 2000-12-19 2002-07-05 Furukawa Electric Co Ltd:The Solid state electrolyte and battery using the electrolyte
WO2003003110A1 (en) * 2001-06-27 2003-01-09 Nippon Oil Corporation Electrochromic element
JP2006114254A (en) * 2004-10-12 2006-04-27 Sony Corp Battery
WO2010076989A3 (en) * 2008-12-30 2010-08-26 주식회사 엘지화학 Separator with a porous coating layer, and electrochemical device comprising same
US9142855B2 (en) 2010-06-14 2015-09-22 Lg Chem, Ltd. Electrolyte for electrochemical device, method for preparing the electrolyte and electrochemical device including the electrolyte
US9318771B2 (en) 2010-06-14 2016-04-19 Lg Chem, Ltd. Electrolyte for electrochemical device, method for preparing the electrolyte and electrochemical device including the electrolyte
JP5099938B1 (en) * 2012-02-23 2012-12-19 株式会社日立製作所 Nonaqueous electrolyte secondary battery separator, method for producing the same, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
CA2231384C (en) 2002-06-25
CN1147954C (en) 2004-04-28
CA2231384A1 (en) 1997-05-22
TW344905B (en) 1998-11-11
AU703077B2 (en) 1999-03-11
DE69637433T2 (en) 2009-02-19
EP0862232B1 (en) 2008-02-13
MY123761A (en) 2006-06-30
AU1432297A (en) 1997-06-05
JP3961569B2 (en) 2007-08-22
CN1198844A (en) 1998-11-11
ATE386344T1 (en) 2008-03-15
DE69637433D1 (en) 2008-03-27
EP0862232A1 (en) 1998-09-02
KR19990063878A (en) 1999-07-26
KR100288617B1 (en) 2001-05-02
US6284412B1 (en) 2001-09-04
EP0862232A4 (en) 2004-07-14

Similar Documents

Publication Publication Date Title
WO1997018596A1 (en) Composite polymer solid electrolyte and nonaqueous electrochemical device
US5858264A (en) Composite polymer electrolyte membrane
US5540741A (en) Lithium secondary battery extraction method
JP5174376B2 (en) Non-aqueous lithium ion secondary battery
JP3539570B2 (en) Hybrid electrolyte, method for producing the electrolyte, and method for producing an electrochemical device using the electrolyte
JPH09293518A (en) Thin film electrolyte and battery using this electrolyte
KR100404883B1 (en) Polymer electrolytes for electrochemical device
EP0958624A1 (en) Solid electrolyte composite for electrochemical reaction apparatus
JP2002541633A (en) Porous electrode or partition used for non-aqueous battery and method for producing the same
US6080511A (en) Composite polymer electrolytes for alkali metal electrochemical devices which contain a glass fiber net
US6326105B1 (en) Composite polymer electrolytes for alkali metal electrochemical devices which contain a non-woven glass fiber net
JP4017741B2 (en) Cross-linked polymer composite electrolyte and battery
JP3422627B2 (en) Crosslinked polymer solid electrolyte and battery
JPH1092416A (en) Electrode and manufacture thereof and battery using the electrode
JPH1021963A (en) Battery and manufacture thereof
JPH1186828A (en) Battery separator and its manufacture
JPH10199545A (en) Sheet battery and manufacture of the same
JPH103897A (en) Separator for battery
JP3667005B2 (en) Gel-based electrolyte and method for producing electrochemical element
JPH09306462A (en) Battery separator
JP3734896B2 (en) Solid electrolyte and non-aqueous battery
JP4030142B2 (en) Thin film electrolyte for lithium ion battery
JPH09320617A (en) Manufacture of polymer solid electrolyte
JPH10134793A (en) Porous membrane
JPH10294130A (en) Hybrid electrolyte for non-aqueous battery and non-aqueous battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96197348.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN FI IL JP KR MX PL RU SG US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2231384

Country of ref document: CA

Ref document number: 2231384

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1996938484

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09029823

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019980702350

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1996938484

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980702350

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980702350

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996938484

Country of ref document: EP