JPH05342906A - Manufacture of solid electrolyte - Google Patents

Manufacture of solid electrolyte

Info

Publication number
JPH05342906A
JPH05342906A JP17024192A JP17024192A JPH05342906A JP H05342906 A JPH05342906 A JP H05342906A JP 17024192 A JP17024192 A JP 17024192A JP 17024192 A JP17024192 A JP 17024192A JP H05342906 A JPH05342906 A JP H05342906A
Authority
JP
Japan
Prior art keywords
electrolyte
solid electrolyte
swelling
base material
polar polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17024192A
Other languages
Japanese (ja)
Inventor
Kozo Sasaki
孝蔵 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP17024192A priority Critical patent/JPH05342906A/en
Publication of JPH05342906A publication Critical patent/JPH05342906A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To provide a method for manufacturing a solid electrolyte including a large quantity of an electrolyte and excellent in ion conductivity. CONSTITUTION:An electrolytic solution including an electrolyte and a polar high polymer is impregnated in a dry carrying base material for keeping an expanded state by a swelling agent. Consequently, it is possible to provide a battery of a high output, which is excellent in taking characteristic of the electrolyte into the carrying base material and can include each large quantity of electrolyte and polar high polymer inside thereof with preferable dispersing property.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、担持基材中への電解質
等の取込み性に優れてイオン伝導度に優れ、薄型電池等
の形成に好適な固体電解質の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a solid electrolyte which is excellent in the ability to incorporate an electrolyte or the like into a supporting substrate and has an excellent ionic conductivity and which is suitable for forming a thin battery or the like.

【0002】[0002]

【従来の技術】従来、リチウム塩をアルコール等のリチ
ウム塩溶媒に溶解させ、これにポリエチレンオキシドを
加えた電解液をポリシロキサンに含浸させる固体電解質
の製造方法が知られていた。しかしながら、得られる固
体電解質が電解質の含有率に乏しくてイオン伝導度に劣
る問題点があつた。
2. Description of the Related Art Heretofore, there has been known a method for producing a solid electrolyte in which a lithium salt is dissolved in a lithium salt solvent such as alcohol and a polysiloxane is impregnated with an electrolytic solution containing polyethylene oxide. However, the obtained solid electrolyte has a problem that the content of the electrolyte is poor and the ionic conductivity is poor.

【0003】[0003]

【発明が解決しようとする課題】本発明は、電解質の含
有率が高くてイオン伝導度に優れる固体電解質が得られ
る製造方法の開発を課題とする。
An object of the present invention is to develop a manufacturing method capable of obtaining a solid electrolyte having a high electrolyte content and an excellent ionic conductivity.

【0004】[0004]

【課題を解決するための手段】本発明は、膨潤剤による
膨張状態を維持する乾燥状態の担持基材に、電解質と極
性高分子を含有する電解液を含浸させることを特徴とす
る固体電解質の製造方法を提供するものである。
The present invention provides a solid electrolyte characterized by impregnating a supporting substrate in a dry state, which maintains an expanded state with a swelling agent, with an electrolytic solution containing an electrolyte and a polar polymer. A manufacturing method is provided.

【0005】[0005]

【作用】膨潤剤による膨張状態を維持する乾燥状態の担
持基材を用いることにより、電解質と極性高分子からな
る固体電解質を担持基材の内部にまで分散性よく多量に
含浸させることができ、イオン伝導がスムースな固体電
解質が得られる。その多量含浸効果は、膨潤剤による膨
張処理を経ない担持基材を用いた場合に比べてイオン伝
導度に基づき4桁向上するなど特段のものである。
[Function] By using a supporting substrate in a dry state that maintains an expanded state with a swelling agent, a solid electrolyte composed of an electrolyte and a polar polymer can be impregnated into the supporting substrate in a large amount with good dispersibility. A solid electrolyte with smooth ionic conduction can be obtained. The large amount of impregnating effect is particularly remarkable, for example, it is improved by four digits based on the ionic conductivity as compared with the case of using a supporting base material that has not undergone expansion treatment with a swelling agent.

【0006】[0006]

【実施例】本発明は、膨潤剤による膨張状態を維持する
乾燥状態の担持基材に、電解質と極性高分子を含有する
電解液を含浸させて固体電解質を得るものである。
EXAMPLE The present invention is to obtain a solid electrolyte by impregnating a supporting substrate in a dry state, which maintains an expanded state with a swelling agent, with an electrolytic solution containing an electrolyte and a polar polymer.

【0007】膨張状態を維持する乾燥状態の担持基材の
形成は、例えば担持基材を膨潤剤で膨潤させた後、臨界
点乾燥方式等の、被乾燥処理体に生じる表面張力が可及
的に小さくなる乾燥方式などで処理することにより行う
ことができる。臨界点乾燥は例えば、液化炭酸ガス等の
常温気体性物質を用いて膨潤状態の担持基材(被乾燥処
理体)における膨潤剤を乾燥室にて液化炭酸ガス等と置
換した後、液化炭酸ガス等の気・液臨界条件の維持下に
乾燥室のガスを徐々に排気する方式などにより行うこと
ができる。臨界点乾燥方式によれば、膨潤剤による膨張
状態を高度に維持した状態の、通例スポンジ状の乾燥担
持基材が得られる。
[0007] The formation of a dry supporting substrate which maintains an expanded state is carried out by, for example, swelling the supporting substrate with a swelling agent and then applying a surface tension generated on the object to be dried, such as a critical point drying method. It can be carried out by treating with a drying method which becomes extremely small. Critical point drying is performed by, for example, liquefying carbon dioxide gas after replacing the swelling agent in the swelling supporting base material (object to be dried) with liquefied carbon dioxide gas in a drying chamber using a normal temperature gaseous substance such as liquefied carbon dioxide gas The gas in the drying chamber may be gradually exhausted while maintaining the gas-liquid critical conditions such as the above. According to the critical point drying method, a sponge-like dry supporting base material in a state where the expanded state by the swelling agent is highly maintained can be obtained.

【0008】担持基材としては、これが電解質と極性高
分子からなる固体電解質を保持するためのものであるこ
とより、ポリマー等の適宜な物質からなるものを用いう
る。一般には例えば、ポリジメチルシロキサン、ポリメ
チルビニルシロキサン、ポリメチルフェニルビニルシロ
キサンの如きシリコーンゴムないしケイ素樹脂、特に架
橋型のシリコーンゴムないしケイ素樹脂などが用いられ
る。担持基材は、フィルム状やシート状などの任意な形
態で用いることができる。
As the supporting base material, since it is for holding a solid electrolyte composed of an electrolyte and a polar polymer, a base material made of an appropriate substance such as a polymer can be used. Generally, for example, silicone rubber or silicon resin such as polydimethyl siloxane, polymethyl vinyl siloxane, polymethyl phenyl vinyl siloxane, especially cross-linking type silicone rubber or silicon resin is used. The supporting substrate can be used in any form such as a film or sheet.

【0009】膨潤剤としては、担持基材の種類に応じそ
れを膨潤させうる適宜なものを用いうる。好ましい膨潤
剤は、担持基材を膨潤度(容積変化)に基づき10〜2
50%、就中50〜240%、特に100〜210%膨
潤せしめうるものである。従って、前記の架橋型のシリ
コーンゴムないしケイ素樹脂の場合には、例えばトルエ
ン、ベンゼン、イソオクタン、酢酸エチル、四塩化炭
素、塩化メチレン、それらの混合物などが好ましく用い
うる。
As the swelling agent, an appropriate swelling agent can be used depending on the kind of the supporting substrate. A preferred swelling agent is 10 to 2 based on the swelling degree (volume change) of the supporting substrate.
It is capable of swelling 50%, especially 50-240%, especially 100-210%. Therefore, in the case of the above-mentioned cross-linking type silicone rubber or silicon resin, for example, toluene, benzene, isooctane, ethyl acetate, carbon tetrachloride, methylene chloride, or a mixture thereof can be preferably used.

【0010】膨張状態とした担持基材への電解液の含浸
は、例えば電解液中に担持基材を浸漬する方式や担持基
材に電解液を塗布する方式など、適宜な方式で行ってよ
い。含浸させる電解液は、電解質と極性高分子を含有す
る溶液である。
The electrolyte solution may be impregnated into the expanded support material by an appropriate method such as a method of immersing the support material in the electrolyte solution or a method of applying the electrolyte solution to the support material. . The electrolyte solution to be impregnated is a solution containing an electrolyte and a polar polymer.

【0011】かかる電解液は、例えばメタノール、エタ
ノール、プロパノール、ブタノールの如きアルコール類
やアセトニトリルなどの電解質を溶解しうる溶媒を用い
て形成することができる。なお電解液の形成には、電解
質と共に極性高分子も溶解させる必要があるが、使用の
電解質用の溶媒で極性高分子を溶解できない場合には、
かかる溶媒に相溶性で極性高分子を溶解させる適宜な有
機溶媒を用いてよい。
Such an electrolytic solution can be formed using a solvent capable of dissolving an electrolyte such as alcohols such as methanol, ethanol, propanol and butanol and acetonitrile. Incidentally, in order to form the electrolytic solution, it is necessary to dissolve the polar polymer together with the electrolyte, but when the polar polymer cannot be dissolved in the solvent for the electrolyte used,
An appropriate organic solvent that is compatible with such a solvent and that dissolves the polar polymer may be used.

【0012】電解液における電解質としては、適宜なも
のを用いてよい。一般には例えばLiイオン、Naイオ
ン、Kイオン等の陽イオンと、Iイオン、CF3SO3
オン、BF4イオン、ClO4イオン、AlCl4イオン、P
6イオン、AsF6イオン等の陰イオンとの組合せから
なるアルカリ金属塩などが用いられる。含浸性や高起電
力電池の形成性等の点より好ましく用いうるものは、例
えばLiClO4、LiAsF6、LiPF6、LiBF4、Li
B(C654、LiCl、LiBrの如きリチウム塩であ
る。
An appropriate electrolyte may be used as the electrolyte in the electrolytic solution. Generally, for example, cations such as Li ion, Na ion, K ion, etc., and I ion, CF 3 SO 3 ion, BF 4 ion, ClO 4 ion, AlCl 4 ion, P
For example, an alkali metal salt formed of a combination with an anion such as F 6 ion or AsF 6 ion is used. What can be preferably used from the viewpoint of impregnation property and high electromotive force forming property is, for example, LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , Li.
Lithium salts such as B (C 6 H 5 ) 4 , LiCl and LiBr.

【0013】極性高分子としては、電解質を解離させて
キャリアイオンを生成させたり、擬溶媒和を形成させた
りしてキャリアイオンの移動を円滑化しうるものが用い
られる。好ましく用いうる極性高分子としては、例えば
ポリエチレンオキシド、ポリプロピレンオキシド、エチ
レンオキシド・プロピレンオキシド共重合体、ポリエピ
クロロヒドリン、ポリアリレート、ポリスルホン、ポリ
エーテルイミド、ポリエーテルスルホン、ポリエーテル
エーテルケトン、ポリオキシベンゾイン、ポリフェニレ
ンスルフィドの如きエーテル系ポリマーなどがあげられ
る。
As the polar polymer, those capable of facilitating the movement of carrier ions by dissociating the electrolyte to generate carrier ions or forming pseudosolvation are used. Examples of polar polymers which can be preferably used include, for example, polyethylene oxide, polypropylene oxide, ethylene oxide / propylene oxide copolymer, polyepichlorohydrin, polyarylate, polysulfone, polyetherimide, polyethersulfone, polyetheretherketone, polyoxy. Examples include ether polymers such as benzoin and polyphenylene sulfide.

【0014】電解液の調製は、電解質と極性高分子を溶
媒を介し適宜に混合して溶液とすることにより行うこと
ができる。その際、電解質や極性高分子を充分に乾燥さ
せることが好ましい。電解液における電解質ないし極性
高分子の濃度は、適宜に決定してよく、その濃度でイオ
ン伝導度を制御することができる。一般には、電解質の
濃度が20重量%以下、就中0.01〜10重量%の電
解液とされる。極性高分子の使用量は、電解質10重量
部あたり5〜1000重量部が一般的である。なお電解
液には、固体電解質に公知の適宜な添加剤を配合するこ
とができる。
The electrolytic solution can be prepared by appropriately mixing the electrolyte and the polar polymer via a solvent to form a solution. At that time, it is preferable to sufficiently dry the electrolyte and the polar polymer. The concentration of the electrolyte or the polar polymer in the electrolytic solution may be appropriately determined, and the ionic conductivity can be controlled by the concentration. Generally, the electrolyte solution has an electrolyte concentration of 20% by weight or less, especially 0.01 to 10% by weight. The amount of the polar polymer used is generally 5 to 1000 parts by weight per 10 parts by weight of the electrolyte. The electrolyte solution may be mixed with a known appropriate additive to the solid electrolyte.

【0015】固体電解質は、含浸処理した担持基材を乾
燥させて溶媒を除去することにより得ることができる。
得られた固体電解質は、電池などの種々の製品の形成に
用いることができる。
The solid electrolyte can be obtained by drying the impregnated supporting base material to remove the solvent.
The obtained solid electrolyte can be used for forming various products such as batteries.

【0016】実施例1 液化炭酸ガスの注入・急激排出による断熱変化で冷却し
た乾燥室に、ポリジメチルシロキサンからなる厚さ30
0μmの架橋フィルムをトルエン中に室温で8時間浸漬
させて膨潤度(容積変化)が160%となったものを表
面のトルエンを軽く拭き取って配置したのち、液化炭酸
ガスを入れ替えて(40kg/cm2)架橋フィルム中のト
ルエンと約1.5時間かけて置換させた。ついで、乾燥
室を加熱して40℃に自動制御しつつ室内圧を85〜1
00kg/cm2に保持してガス状態を維持する臨界パラメ
ータに調節し、流量1〜1.5リットル/分の条件で徐
々にガスを排出させて臨界点乾燥処理し、膨潤による拡
大状態(膨潤剤による膨張状態)を高度に維持したスポ
ンジ状の乾燥架橋フィルム(膨潤度約160%)を得
た。
Example 1 In a drying chamber cooled by adiabatic change by injecting and rapidly discharging liquefied carbon dioxide, a thickness of 30 made of polydimethylsiloxane was placed.
The 0 μm cross-linked film was immersed in toluene at room temperature for 8 hours, and the swelling degree (volume change) of 160% was wiped off the toluene on the surface and placed. 2 ) The toluene in the crosslinked film was replaced for about 1.5 hours. Then, while heating the drying chamber and automatically controlling the temperature to 40 ° C, the room pressure is adjusted to 85 to 1
Adjusted to a critical parameter that maintains a gas state by holding it at 00 kg / cm 2 , gradually discharge the gas at a flow rate of 1 to 1.5 liters / minute, and perform a critical point drying treatment to expand the swelling state (swelling). A sponge-like dry crosslinked film (swelling degree of about 160%) in which the swelling state by the agent was maintained highly was obtained.

【0017】次に、過塩素酸リチウム2重量部とポリエ
チレンオキシド10重量部をブタノール100重量部に
溶解させた電解液(50℃)に、前記のスポンジ状乾燥
架橋フィルムを8時間浸漬したのち取出し、1/103
真空雰囲気下に80℃で乾燥させて固体電解質を得た。
Next, the sponge-like dry crosslinked film was immersed in an electrolytic solution (50 ° C.) obtained by dissolving 2 parts by weight of lithium perchlorate and 10 parts by weight of polyethylene oxide in 100 parts by weight of butanol, and then taken out. , 1/10 3
The solid electrolyte was obtained by drying at 80 ° C. in a vacuum atmosphere.

【0018】比較例1 膨潤・臨界点乾燥処理を経ない架橋フィルムを用いたほ
かは実施例1に準じて固体電解質を得た。なお架橋フィ
ルムのブタノール(50℃)8時間浸漬による膨潤度は
5%であった。
Comparative Example 1 A solid electrolyte was obtained in the same manner as in Example 1 except that a crosslinked film that did not undergo swelling / critical point drying treatment was used. The degree of swelling of the crosslinked film after immersion in butanol (50 ° C.) for 8 hours was 5%.

【0019】比較例2 臨界点乾燥方式に代えて、真空乾燥方式により乾燥処理
した架橋フィルムを用いたほかは実施例1に準じて固体
電解質を得た。なお乾燥後の架橋フィルムは見掛け上、
トルエンによる膨潤状態が元に戻った状態であった。
Comparative Example 2 A solid electrolyte was obtained in the same manner as in Example 1 except that a crosslinked film dried by a vacuum drying method was used instead of the critical point drying method. The cross-linked film after drying is apparently
It was in a state where the swelling state due to toluene was returned to the original state.

【0020】評価試験 実施例、比較例で得た固体電解質について交流インピー
ダンスアナライザーにより室温におけるイオン伝導度を
測定した。その結果を表1に示す。
Evaluation Test The ionic conductivity of the solid electrolytes obtained in Examples and Comparative Examples was measured at room temperature with an AC impedance analyzer. The results are shown in Table 1.

【表1】 [Table 1]

【0021】[0021]

【発明の効果】本発明によれば、膨潤剤による膨張状態
を維持させた担持基材に電解液を含浸させるようにした
ので、担持基材中への電解質等の取込み性に優れて、電
解質と極性高分子を内部にまで分散性よく多量に含有保
持してイオン伝導度に特段に優れる固体電解質を得るこ
とができ、高出力の電池等を形成することができる。
EFFECTS OF THE INVENTION According to the present invention, the supporting base material maintained in the expanded state by the swelling agent is impregnated with the electrolytic solution. It is possible to obtain a solid electrolyte having a particularly excellent ionic conductivity by containing and holding a large amount of a polar polymer even in the interior with good dispersibility, and thus it is possible to form a high output battery or the like.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 膨潤剤による膨張状態を維持する乾燥状
態の担持基材に、電解質と極性高分子を含有する電解液
を含浸させることを特徴とする固体電解質の製造方法。
1. A method for producing a solid electrolyte, which comprises impregnating an electrolyte solution containing an electrolyte and a polar polymer into a supporting substrate in a dry state which maintains an expanded state with a swelling agent.
JP17024192A 1992-06-04 1992-06-04 Manufacture of solid electrolyte Pending JPH05342906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17024192A JPH05342906A (en) 1992-06-04 1992-06-04 Manufacture of solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17024192A JPH05342906A (en) 1992-06-04 1992-06-04 Manufacture of solid electrolyte

Publications (1)

Publication Number Publication Date
JPH05342906A true JPH05342906A (en) 1993-12-24

Family

ID=15901290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17024192A Pending JPH05342906A (en) 1992-06-04 1992-06-04 Manufacture of solid electrolyte

Country Status (1)

Country Link
JP (1) JPH05342906A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997018596A1 (en) * 1995-11-15 1997-05-22 Asahi Kasei Kogyo Kabushiki Kaisha Composite polymer solid electrolyte and nonaqueous electrochemical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997018596A1 (en) * 1995-11-15 1997-05-22 Asahi Kasei Kogyo Kabushiki Kaisha Composite polymer solid electrolyte and nonaqueous electrochemical device
AU703077B2 (en) * 1995-11-15 1999-03-11 Asahi Kasei Emd Corporation Hybrid polymeric electrolyte and non-aqueous electrochemical device comprising the same
US6284412B1 (en) 1995-11-15 2001-09-04 Asahi Kasei Kogyo Kabushiki Kaisha Hybrid polymeric electrolyte and non-aqueous electrochemical device comprising the same

Similar Documents

Publication Publication Date Title
US4849311A (en) Immobilized electrolyte membrane
US5607485A (en) Method of making polymeric electrolytic cell separator membrane
US4394304A (en) Electrically conducting polymer blends
Watanabe et al. Ionic conductivity of hybrid films composed of polyacrylonitrile, ethylene carbonate, and LiClO4
AU703077B2 (en) Hybrid polymeric electrolyte and non-aqueous electrochemical device comprising the same
US5540741A (en) Lithium secondary battery extraction method
US5589295A (en) Thin film polymeric gel electrolytes
Wang et al. Blends of polypyrrole and poly (vinyl alcohol)
Liu et al. Synthesis, characterization and electrochemical transport properties of the poly (ethyleneglycol)–grafted poly (vinylidenefluoride) nanoporous membranes
JPH11300180A (en) Porous resin membrane
Prabakaran et al. Enhancement of the electrochemical properties with the effect of alkali metal systems on PEO/PVdF-HFP complex polymer electrolytes
KR100273506B1 (en) Polymer gel and manufacturing method for secondary battery
Abraham et al. Polyphosphazene‐Poly (Olefin Oxide) Mixed Polymer Electrolytes: II. Characterization of
Brumlik et al. Plasma polymerization of sulfonated fluorochlorocarbon ionomer films
JPH05342906A (en) Manufacture of solid electrolyte
CN108987732B (en) SiO composite cathode material of lithium ion battery and preparation method thereof
KR100353867B1 (en) Polymer Electrolyte for Rechargeable Lithium Batteries
WO2004009684A1 (en) Porous polymeric membrane comprising vinylidene fluoride
JPH05343077A (en) Manufacture of solid electrolyte
JPH09320617A (en) Manufacture of polymer solid electrolyte
CN116936921A (en) Li 3 InCl 6 Solid electrolyte membrane, method for producing the same, and solid battery
JPH09282938A (en) Conductive porous material and manufacture thereof
JP3581774B2 (en) Aprotic electrolyte thin film and method for producing the same
JPH1186628A (en) Polymer solid electrolyte
JPS59173974A (en) Manufacture of positive pole for nonaqueous electrolyte battery