WO1993010043A1 - Fine spherical composite particle, production thereof, and polyester composition containing the same - Google Patents

Fine spherical composite particle, production thereof, and polyester composition containing the same Download PDF

Info

Publication number
WO1993010043A1
WO1993010043A1 PCT/JP1992/001494 JP9201494W WO9310043A1 WO 1993010043 A1 WO1993010043 A1 WO 1993010043A1 JP 9201494 W JP9201494 W JP 9201494W WO 9310043 A1 WO9310043 A1 WO 9310043A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
spherical fine
suspension
alcohol
metal
Prior art date
Application number
PCT/JP1992/001494
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuo Takeda
Yasuhiro Sakai
Shigehumi Kuramoto
Saburo Nakahara
Tadahiro Yoneda
Hideki Oishi
Original Assignee
Nippon Shokubai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co., Ltd. filed Critical Nippon Shokubai Co., Ltd.
Publication of WO1993010043A1 publication Critical patent/WO1993010043A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/309Combinations of treatments provided for in groups C09C1/3009 - C09C1/3081
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/146After-treatment of sols
    • C01B33/149Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds

Definitions

  • the present invention uses amorphous silica as a main constituent material and has excellent affinity and dispersibility for various resins, rubbers, and the like.
  • the present invention relates to a composite spherical fine particle which is not easily aggregated by itself, a method for producing the same, and a polyester composition having improved slipperiness and abrasion resistance by blending an appropriate amount of the composite spherical fine particle.
  • BACKGROUND ART It is well known that inorganic fine particles and organic fine particles are blended as a modifier / filler with various resins and rubbers, and the resin and rubber compositions thus obtained can be used as films and sheets. It is widely used as a fiber, etc.
  • the present applicant has proposed a group consisting of silica fine particles and a polyester resin.
  • a method for forming uniform irregularities on the film surface when the film is formed by using spheres of fine particles with a sharp particle size distribution was proposed earlier (Japanese Patent Application Laid-Open No. 62-207356). No. Gazette etc.).
  • void-like defects are easily formed between the fine particles and the resin, and there is a problem that the fine particles fall off to generate scratches and shavings on the film surface.
  • the applicant of the present invention has proposed a silica-glycol composite fine particle having a spheroidized and sharp particle size distribution.
  • the method of modifying the compound by incorporating it into the material has also been previously proposed (JP-A-63-183934, JP-A-63-182204, etc.).
  • JP-A-63-183934, JP-A-63-182204, etc. JP-A-63-183934, JP-A-63-182204, etc.
  • these surface-treated silica fine particles have poor monodispersibility in the polyester resin and cause partial aggregation, or the adhesion between the surface-treated material and the silica fine particles is poor, and void formation may occur.
  • the intended purpose of suppression is not always effective.
  • a resin composition containing fine particles is exposed to a high temperature condition of, for example, 200 ° C. or more for kneading in a manufacturing process until it is processed into various molded articles, and is further extruded, stretched, etc. Strong stress is applied in the process. Therefore, even under such severe conditions, the proper structure and composition of the fine particles are stable, and the fine particles do not aggregate, and the affinity and adhesion between the fine particles and the resin are maintained well. It is considered that the original characteristics of the fine particles such as the average particle size, particle size distribution, shape, and refractive index of the fine particles are reflected in the function of the final molded product. Under the circumstance in which simply specifying the properties and composition of the raw material microparticles before forming the composition does not necessarily reflect the expected effects in the composition, the causal relationship between them is clarified, and effective improvement measures are taken. It is strongly desired to establish.
  • the present invention has been made in view of the above-mentioned circumstances, and has as its object the advantage that it is hard to aggregate itself and has excellent affinity for various resins and rubbers (hereinafter referred to as “resin”). In addition to exhibiting dispersibility, it has excellent stability that does not change even when subjected to strong stress under high temperature conditions, so that it can maximize the reforming effect such as void suppression
  • An object of the present invention is to provide a spherical fine particle and a method for producing the same.
  • composition of the particles is at least amorphous silica, oxides and Z or hydroxides of metals whose electronegativity of ions is less than 15.6.
  • the (water) oxide is localized on the surface of the fine particles, and the ratio of the (water) oxide of the metal in the fine particles is 0.01 to 20% by weight in terms of metal, and the ratio of the alcohol is The gist exists where it is 1-30% by weight.
  • metals constituting (hydr) oxides are, for the reasons described later, particularly those having an electronegativity of ions in the range of 8.0 or more and less than 15.6, especially Al, T i, Zr, Zn, Fe and Ce are preferred, and A1 is particularly preferred.
  • the (hydr) oxide of the metal may be either crystallographically amorphous or crystalline, but is preferably crystalline such as boehmite for the reasons described below. .
  • the composite spherical fine particles are not particularly limited in terms of particle diameter, particle size distribution, and the like, but those having a uniform particle size distribution are preferred for the reasons described below. % Or less is preferred. Further, the average particle diameter is preferably in the range of 0.05 to 10 jm, particularly preferably in the range of 0.1 to 5 Aim.
  • a suspension of spherical fine particles made of amorphous silica is mixed with a sol of a (hydr) oxide of a metal having an ionegativity of less than 15.6, Is a method of heating in the range of 100 to 250 ° C in the presence of two or more alcohols,
  • a (water) oxide sol of a metal and one or more alcohols (Y) which are the same or different from the above alcohols (X) in the range of 10 o to 250 ° cay
  • Siri-force-alcohol composite spherical fine particles in which one or two or more types of alcohols are bonded to spherical fine particles made of amorphous silica, the alcohol mainly containing at least one alcohol among the above-mentioned alcohols Mixing a suspension dispersed and contained in a neutral solvent with a metal (hydr) oxide sol having an electronegativity of ion of less than 15.6,
  • the composition obtained by blending the composite spherical fine particles with 0.0005 to 10% by weight in the polyester composition has a regrettable effect of the fine particles without causing defects such as voids. It gives a good polyester-based sheet, film, fiber, etc. with good slipperiness and abrasion resistance.
  • BEST MODE FOR CARRYING OUT THE INVENTION In the composite spherical fine particles of the present invention, as described above, a metal (hydr) oxide having an electronegativity of ions lower than 15.6 is localized on the surface of the spherical fine particles. Together with the alcohol.
  • the affinity of the fine particles with various resins and the like is increased, and the adhesive force with the resin and the like is increased. Has the effect of improving uniformity in resin and the like.
  • Alcohol in the fine particle manufacturing process To provide composite spherical fine particles that suppress aggregation and have sufficiently enhanced adhesion between metal (water) oxide and amorphous silica, and have no mechanical cohesion per se and excellent mechanical stability.
  • the fine particles themselves are not agglomerated, and can be easily and uniformly dispersed in a resin or the like as a powder or a dispersion. It is presumed to be due to the alcohol present on the surface including the inner surface of the pores, but it has been found that fine particles are prevented from adhering to each other to cause secondary aggregation, and in the case of a dispersion, the dispersion stability is high. In addition to the above, two effects are exhibited, such as further improving dispersibility in resin and the like.
  • the composite spherical fine particles have the characteristic of being a three-component composite as described above, the structural characteristic that metal (hydroxide) is localized on the surface, and the structural characteristic of being spherical.
  • metal (aqueous) oxides and alcohols each exert their respective effects, and only when the above characteristics and the effects of these components are combined, The effect such as dispersibility is maximized.
  • the metal (hydr) oxide localized on the surface of the spherical fine particles is strongly adhered to the surface of the particles, and is exposed to a considerable high temperature or subjected to a strong external force in a kneading process with a resin or the like. Even if it does, it does not easily fall off the surface of the fine particles, and its excellent modifying effect can be reflected as effectively as possible in the quality of the final product.
  • Amorphous silica which is one component of the composite spherical fine particles according to the present invention, is mainly composed of a three-dimensional network in which a silicon atom is mainly bonded to an oxygen atom (_Si-0-). It is a silicon-containing oxygen compound that is crystallographically amorphous and constitutes a network. Note that a metal element other than silicon as a main component may be partially incorporated in the amorphous network. At that time, if the ratio to silicon atoms is in the range of 0.2 or less in atomic ratio, it is included in the amorphous silicon force according to the present invention.
  • a metal having an electronegativity of less than 15.6 preferably 8.0 or more and less than 15.6 'is selected because of its high affinity for resins such as polyester.
  • resins such as polyester.
  • Metal (hydr) oxides with an electronegativity of 15.6 or more have insufficient affinity with the above resins.
  • the electronegativity (X i) of the metal ion in the present invention is defined by the following equation.
  • Specific examples of the metal having an electronegativity of an ion of less than 15.6 include alkaline metals such as Na and K, alkaline earth metals such as Mg and Ca, Ti, Zr, and Zn. And transition metals such as Al and rare earth metals such as Ce and La. However, from the viewpoint that they do not adversely affect the stability of the composite spherical fine particles and the matrix resin, they are particularly 8.0. As described above, a metal having an electronegativity of less than 15.6 is preferred.
  • (hydr) oxides of Al, Ti, Zr, Zn, Fe, and Ce have the effect of remarkably improving the dispersibility of the obtained composite spherical fine particles and the affinity with the resin.
  • A1 and its (hydr) oxide are the most preferred in terms of cost, action, availability, and the like.
  • the metal (hydr) oxide may be either crystallographically amorphous or crystalline.
  • the amorphous silica and the metal (hydr) oxide in the composite spherical fine particles according to the present invention may be used.
  • a crystalline material such as boehmite is particularly preferable in that it has excellent adhesion to the substrate.
  • the content of the (hydr) oxide of the above metal must be in the range of 0.01 to 20% by weight in terms of metal in terms of the ratio occupied in the composite spherical fine particles, and the content is insufficient.
  • the content is too large, the effect of modification by the composite is not sufficiently exerted.
  • the content is too large, aggregation tends to occur in the composite process.
  • a more preferable content is 0 in terms of metal.
  • the range is from 0.05 to 10% by weight.
  • Fine particles in which the metal (water) oxide is localized on the surface of the fine particles means that the concentration distribution of the metal (water) oxide is continuous from the center of the fine particles toward the surface. It means that the fine particles are gradually or discontinuously high on the surface.
  • the content of metal in the surface layer having a ratio of the thickness to the particle diameter of 0.2 or less measured from the outermost surface of the fine particles is determined by the number of metal atoms with respect to the total amount of metal contained in the fine particles.
  • Fine particles having a particle size of 50 to 100% in terms of are preferable because they have excellent sphericity and can be easily obtained as fine particles having a sharp particle size distribution.
  • the existence state of such a metal (water) oxide can be confirmed by, for example, ESCA.
  • the metal atom in the metal (water) oxide and / or the silicon atom in the amorphous silica, and the carbon atom adjacent to the hydroxyl group in the alcohol are It is thought to be due to a covalent or ionic bond firmly bonded via an oxygen atom, or a hydrogen bond between a hydroxyl group in metal (water) oxide and Z or a silanol group in amorphous silica and a hydroxyl group in alcohol.
  • Can be Whether or not alcohol is bound can be determined by whether or not alcohol evaporates when the modified fine particles are heated to near the boiling point of the alcohol. However, since it does not evaporate, it can be clearly distinguished from a mere mixed state.
  • the amount of alcohol bound to the fine particles should be in the range of 1 to 30% by weight based on the ratio in the composite spherical fine particles. If the amount is insufficient, it is difficult to obtain fine particles having excellent dispersibility. On the other hand, if the amount is too large, the mechanical strength of the obtained fine particles becomes insufficient, so that the reforming agent easily falls off when subjected to heat or external force, and it becomes impossible to prevent void defects and the like.
  • Alcohols include methanol, ethanol, isopropyl alcohol, n-butanol, stearyl alcohol, melicyl alcohol Aliphatic saturated monohydric alcohols such as coal, aliphatic unsaturated monohydric alcohols such as aryl alcohol, clotyl alcohol, and propargyl alcohol; cycloaliphatic monohydric alcohols such as cyclopentanol and cyclohexanol; benzyl alcohol; Monohydric alcohols such as cinnamyl alcohol, aromatic monohydric alcohols such as methyl phenylcarbinol, and heterocyclic monohydric alcohols such as furfuryl alcohol; ethylene glycol, propylene glycol, trimethylene glycol,
  • 1,4-monobutanediol 1,5—pentanediol, 1,6—hexanediol, 1,8-octanediol, 1,10—decanediol, aliphatic glycols such as pinacol, hydrobenzoy Aliphatic alcohols having an aromatic ring such as benzene, benzopinacol, phthalyl alcohol, cyclopentane-1,2-diol, cyclohexane
  • monohydric alcohols, glycols and trihydric alcohols having 1 to 10 carbon atoms are easily bonded to metal (hydroxide) and Z or amorphous silica as constituents of the fine particles. It is preferable because the amount of binding (content) can be easily adjusted.
  • the composite spherical fine particles of the present invention have a specific amount of metal (hydroxide) localized on the surface of the amorphous silicon force and an alcohol in a bonded state as essential components as described above.
  • metal hydrooxide
  • From the raw materials used in the production of the fine particles for example, acid radicals such as acetates and nitrates, ammonia, organic amines, halogens such as chlorine, etc. n D d, and organic compounds such as alkyl groups. It may contain a small amount of base, adsorbed moisture, etc. However, if the amount is too large, the above-mentioned characteristics of the present invention are inhibited or diluted, so that the content should be suppressed to 20% by weight or less.
  • the term "spherical" means that the difference between the major axis and the minor axis of the fine particles is small, and the composite spherical microparticles according to the present invention have a major axis / minor axis ratio of 1.0 'to 1.2. Particularly, those having a shape close to a true sphere are particularly preferable.
  • the composite spherical fine particles are not particularly limited in particle diameter, particle size distribution, and the like, but are appropriately selected and used according to the intended use of the fine particles so as to maximize the effect of use.
  • the composite spherical fine particles have a uniform particle size distribution, and more specifically, those having a particle diameter variation coefficient defined by the following [ ⁇ ] formula of 10% or less. Particularly preferred.
  • Average particle size (d) ⁇ Di / n
  • the composite spherical fine particles have better affinity for the resin than conventional fine particles, and the excellent affinity for the composite This is reflected in the improved properties of processed products, such as paints, fibers, and films, which contain spherical fine particles.
  • the effect of improving the affinity is particularly high, and the characteristics of the processed product as described above can be more effectively enhanced because the average particle size is 0.05 to 10 izm, especially 0.
  • a suspension (I) of spherical fine particles made of amorphous silica is converted into a sol of a metal (hydr) oxide having one or more electronegativities of ions of less than 15.6 and one or more alcohols. Heating to 100-250 ° C in the presence of.
  • an oxide and / or hydroxide sol of a metal less than 6 and one or more alcohols (Y) which are the same as or different from the alcohols (X) 100 Heating method to ⁇ 250 ° C.
  • Silica-alcohol composite spherical fine particles in which one or two or more types of alcohols are bonded to spherical fine particles made of amorphous silica are used as the main components of at least one of the above alcohols.
  • a hydrolysable metal compound having an electronegativity of less than 15.6 was added to a suspension (IV) containing spherical fine particles of amorphous silica, water and, if necessary, a hydrolysis catalyst. Later, the resulting suspension is heated in the range of 100-250 in the presence of one or more alcohols,-
  • a suspension of silica-alcohol composite spherical fine particles (II), in which one or two or more alcohols (X) are bonded to spherical fine particles made of amorphous silica, is hydrolyzable, After coexistence of a metal compound with a negative degree of less than 15 16, water and, if necessary, a hydrolysis catalyst, the resulting suspension is mixed with one or more of the above alcohols (X). a method of heating in the range of 1 0 0 ⁇ 250 e C under the coexistence of an alcohol (Y).
  • the suspensions (1), (II), (III) and (IV) used in the production methods (Pr-I) to (Pr-V) are amorphous silica spherical fine particles [suspension (1), (IV) silica-alcohol-composite spherical microparticles obtained by bonding at least one type of alcohol to amorphous silica or amorphous silica [suspension (11), (III)] dispersed in a solvent Means a suspension.
  • the method for producing the suspensions (I), (11), (HI), (IV) and the spherical fine particles dispersed and contained therein is not particularly limited, but in any case, the particle size distribution is excellent in sphericity. In that it is easy to obtain sharp spherical fine particles of T JP9 1
  • a method is preferred in which the compound is produced through the step (A) of hydrolyzing and / or condensing an organic silicon compound capable of hydrolysis and / or condensation in an organic solvent in the presence of water.
  • silicon alkoxides are used as the organosilicon compound, and the above-mentioned organic solvents are used, because spherical fine particles having a controlled particle size and particle size distribution are easily obtained. Alcohol is preferable, and fine particles having excellent sphericity are easily obtained, so that it is preferable to coexist with ammonia, organic amine or the like as a catalyst. —
  • step (A) the hydrolysis and condensation conditions, such as the type and concentration of the organosilicon compound, solvent, and catalyst used, the concentration of water, the temperature, and the method of adding the organosilicon compound, are controlled.
  • a suspension of spherical fine particles having a controlled particle size, particle size distribution, sphericity, etc. can be obtained.
  • the suspension (I) can be subjected to post-treatment such as heat concentration or solvent replacement. ), (II), (III), and (IV).
  • suspensions (1), (II), (II), (II), (II), (III) are controlled by controlling the hydrolysis / condensation conditions, the presence / absence of the post-treatment, and the control of the treatment method.
  • ⁇ ) and (IV) can be prepared respectively.
  • a sol is one in which a metal (aqueous) oxide is in the form of fine particles or a condensate in which a metal is bonded via oxygen, and is suspended, emulsified, or dissolved in a solvent containing water and / or alcohol.
  • a metal (aqueous) oxide is in the form of fine particles or a condensate in which a metal is bonded via oxygen, and is suspended, emulsified, or dissolved in a solvent containing water and / or alcohol.
  • an acid such as acetic acid, nitric acid, and hydrochloric acid derived from raw materials, emulsifiers, stabilizers, etc.
  • metal (aqueous) oxides used in the process of producing the sol or solvent components other than water and Z or alcohol.
  • These acid radicals, anionic surfactants, cationic surfactants, nonionic surfactants, (aqueous) oxides such as alkali metals and alkaline earth metals, and various kinds of electroly
  • the metal (water) oxide in the sol is, for example, a metal (water) of a metal having an electronegativity of less than 15-0.6, such as a silica sol which has been positively charged by coating with alumina.
  • a metal (aqueous) particles coated with oxides, or a metal with an ionegativity of 15.6 or more and a metal with an electronegativity of less than 15.6 The composite metal (water) oxide as a component is also included. Further, a small amount of a (hydr) oxide of a metal different from the metal may be mixed in the sol.
  • the alcohol sol is not limited to the amorphous (silicone) force and the metal (hydr) oxide having an electronegativity of less than 15.6 in the composite fine particles.
  • any of the alcohols exemplified above can be used. These alcohols can be used alone, or two or more of them can be used in combination.
  • an appropriate amount of water can be mixed and used, or a small amount of a solvent other than alcohol can be added. It doesn't matter.
  • the amount of the sol added to the suspensions (I), (II), and (III) varies depending on the type of the sol, the particle size of the spherical fine particles in each suspension, and the like. Although it is not possible to determine the ratio uniformly, for the reasons described above, the ratio of the metal equivalent in the finally obtained composite spherical fine particles is 0.01 to 0.1%. It is set so as to be in the range of 20% by weight, more preferably in the range of 0.05 to 10% by weight.
  • the suspension (I) encompasses all suspensions in which amorphous silica spherical fine particles are dispersed and contained in an arbitrary solvent.
  • the amorphous silica spherical fine particles as used herein means spherical fine particles composed of the above-mentioned amorphous silica, and the concentration of the fine particles in the suspension (I) is 1 to 50% by weight. Is preferable. When the concentration is less than 1% by weight, the productivity of the composite spherical fine particles is low, and when the concentration exceeds 50% by weight, it is difficult to obtain composite spherical fine particles having good composition uniformity and dispersibility. Become.
  • the components other than the amorphous silica spherical fine particles constituting the suspension (I) are not particularly limited, but it is necessary to allow alcohol to coexist during the subsequent heat treatment in a temperature range of 100 to 250 ° C. Therefore, it is preferable that one or two or more alcohols are previously contained in the suspension (I). Further, the alcohols are complex spherical fine particles having a uniform amount of -alcohol. It is preferable that the solvent is at least one component because it is easily obtained. Of course, other solvents such as water may coexist.
  • the content of the alcohol in the suspension (I) is the total amount of alcohol, and the weight ratio to the amorphous silica spherical fine particles in the suspension (I) is in the range of 0.01 to 50 times. preferable. If the content is less than 0.01, the binding of alcohol in the composite spherical fine particles may be non-uniform, and if the content exceeds 50, the productivity of the composite spherical fine particles deteriorates.
  • the suspension (I) described above and an amorphous material dispersed and contained in the suspension (I) The method for producing the silica spherical fine particles is not particularly limited, but a production method through the step (A) is preferable. For example, it is possible to obtain a suspension (la) containing alcohol of spherical fine particles obtained by hydrolysis / condensation reaction of silicon alkoxide in hydrous alcohol in the presence of the above-mentioned catalyst and containing alcohol as a main component.
  • the method for producing the suspension (I) from the suspension (la) is not particularly limited, and the suspension (la) may be used as it is as the suspension (I). Concentrated by removing some or all of the solvent component in the suspension (la) or part or all of the catalyst component under pressure or reduced pressure, or in the suspension (la) The suspension (I) can be obtained by subjecting the solvent component to solvent replacement with the same or different alcohol as the alcohol in the suspension (la).
  • a suspension (I) in which the amorphous silica spherical fine particles contain alcohol at least as a main component can be obtained.
  • amorphous silica fine spherical particles obtained by a wet method such as a de-alkali method of water glass or a dry method are dispersed in a solvent such as alcohol. And the like.
  • the suspension (I) obtained as described above is mixed with the above-mentioned metal (hydroxide) oxide sol and one or more alcohols in the range of 100 to 250, More preferably, 150 to 250.
  • the desired composite spherical fine particles can be obtained.
  • the method of coexisting the metal (hydroxide) sol and one or more alcohols during the heat treatment is not particularly limited. Preferred In general, prior to or during the heat treatment, a method is used in which a metal (aqueous) oxide sol and, if necessary, one or more alcohols are added to the suspension (I). Is done.
  • the above-mentioned alcohol is added as necessary when the suspension (I) already contains alcohol, and is always added when the suspension (I) does not contain alcohol.
  • the alcohol to be added may be the same as or different from the contained alcohol.
  • One or more metal (water) oxide sols are added to the suspension (I), but the method of addition is not particularly limited.
  • a general method for example, a method in which the whole amount of the sol is added to the suspension (I) at once or in several portions on the surface of the solution or in the solution while stirring the suspension (I), or A method of continuously adding at a high speed is employed.
  • two or more sols are added, they may be added as a mixture thereof or separately.
  • the order of addition of the metal (aqueous) oxide sol and the alcohol to the suspension (I) is not particularly limited, and they may be added simultaneously, for example.
  • the metal (water) oxide added as a sol is firmly bonded to the surface, and the coexisting alcohol is composed of amorphous silica and / or metal (water).
  • the composite spherical fine particles of the present invention bound to the oxide can be obtained as a suspension (I-L) (alcohol dispersion) or powder containing alcohol.
  • the suspension (IL) is prepared by preparing the suspension (I) in the presence of a metal (aqueous) oxide sol and one or more alcohols, 2 5 0. After heat treatment in the range of C, more preferably in the range of 150 ° C. to 250 ° C., or while heat treatment, at least one of the coexisting alcohols is finally left as a solvent, and It is obtained by removing the solvent component of At this time, a method such as solvent replacement is adopted as necessary.
  • the powder of the composite spherical fine particles can also be obtained by finally removing the solvent component completely in the method involving the above-mentioned suspension (IL).
  • IL suspension
  • Spherical microparticles with excellent secondary dispersibility and excellent secondary dispersibility can be obtained by using the vacuum flash evaporation method, in which heat treatment in the above temperature range and removal of solvent components can be performed simultaneously after adding two or more alcohols. This is particularly preferable.
  • This method uses a suspension (II) of spherical particles of an alcohol-alcohol complex in which one or more alcohols (X) are bonded to amorphous silica. 100 to 2 in the presence of a metal (hydr) oxide sol less than 15.6 and one or more alcohols (Y) which are the same or different from the alcohols (X) described above.
  • This is a method of heating to 50 ° C., wherein at least one of alcohols (X) and (Y) contains the above-mentioned amorphous silica and Z or the above metal (water).
  • the composite spherical fine particles bonded to the oxide are obtained.
  • the components and composition of the suspension (II) used are the same as those of the suspension (I) described above in the production method (Pr-I) except that alcohol is bonded to the amorphous silica spherical fine particles. is there. Also, alcohol here (X) and (Y) mean the same as the alcohol described as a component of the composite spherical fine particles.
  • the silica-alcohol composite spherical fine particles dispersed and contained in the suspension ( ⁇ ) and the suspension (II) described above are not particularly limited in the production method, but are the same as those in the suspension (I).
  • the method, that is, the production method through the above-mentioned step ( ⁇ ) is preferably adopted.
  • a suspension (la) containing amorphous alcohol spherical fine particles as a solvent as a main component can be obtained as described above.
  • a suspension (II) is obtained by heating the suspension (la) at a temperature of less than 100 ° C. or at a temperature of 100 ° C. or more in the presence of alcohol (X). be able to.
  • the silica-alcohol complex spherical in which the alcohol (X) is bonded to the amorphous silica is controlled by controlling the type of raw materials used and the reaction conditions such as the reaction temperature.
  • a suspension (Ila) of fine particles is obtained, and this can be used as it is as the suspension (II).
  • the suspension (IIa) can also be obtained by post-treatment such as heating and concentrating the suspension (Ila).
  • the alcohol (Y) may be present, for example, as a solvent component in the suspension (II), and the suspension (II) is added to the suspension (II) in the same manner as described in the production method (Pr-I). It may be added before or during the heat treatment in the range of 250 ° C.
  • the production method from the suspension (II) to the production of the composite spherical fine particles can be the same method as described in the production method (Pr-I), and can be carried out in the same manner as in the production method (Pr-I). Powder or alcohol dispersion of composite spherical fine particles Obtainable.
  • suspension ( ⁇ ) is converted to metal (water) oxide sol and alcohol
  • the type of alcohol introduced into the composite microparticles in a bound state by heat treatment with ( ⁇ ) is added to the alcohol (X) previously bound to the suspension ( ⁇ ) and added before the heating reaction, or It varies depending on the type and amount of the alcohol (II) already present as a solvent component in the suspension (II) or the heating reaction conditions. For example, in the case where the alcohol (X) bound to the fine particles in the suspension (II) remains as it is and remains as the bound alcohol of the composite spherical fine particles, (2) in the suspension ( ⁇ ) If all of the alcohol (X) bound to the microparticles in step (b) is replaced with alcohol ( ⁇ ) by transesterification etc. in the heating reaction step, (3) the alcohol bound to the microparticles in the suspension ( ⁇ )
  • the silica-alcohol composite fine particles in which alcohol is previously bonded to the surface of the amorphous silica spherical fine particles are dispersed in an alcoholic solvent containing at least one of the above alcohols as a main component.
  • Suspension ( ⁇ ) is used.
  • This suspension (III) The concentration of the silicic acid-alcohol composite spherical fine particles in the aqueous solution is preferably in the range of 1 to 50% by weight based on the total amount of the suspension. If the concentration is insufficient, the productivity of the composite spherical fine particles is poor.
  • the concentration of the alcohol which is the main component of the solvent in the suspension (III) is preferably in the range of 80 to 100% by weight based on the total solvent in the suspension, and the concentration is preferably 80% by weight. If the ratio is less than 1, the dispersibility of the spherical composite fine particles may be poor.
  • the amount of alcohol bound in the silica-alcohol composite spherical fine particles is preferably in the range of 1 to 30% by weight in terms of the ratio in the finally obtained composite spherical fine particles.
  • the particle size is insufficient, the dispersibility of the fine particles in the suspension ( ⁇ ) is deteriorated, and the sphericity, particle size distribution and dispersibility of the finally obtained composite spherical fine particles are deteriorated. If the amount is too large, the mechanical strength of the composite spherical fine particles becomes insufficient.
  • the method for producing the suspension (III) is not particularly limited.
  • one of the solvents in the suspension (la) or (Ila) obtained in the same manner as in the above method (Pr-I) or (Pr-II) By substituting a part or all of the solvent with an alcohol by heating, an alcohol suspension of spherical fine particles in which the alcohol is bonded to the amorphous silicon is obtained.
  • the heat treatment temperature is not particularly limited, but alcohol is more efficient.
  • the range of 100 to 250 is preferred from the viewpoint that easily bonded silica-alcohol composite spherical fine particles are easily obtained.
  • metal compound A A metal compound having an electronegativity of less than 15.6 (hereinafter referred to as metal compound A) will be described.
  • hydrolyzable metal compound refers to a compound that forms a (hydr) oxide of a metal through hydrolysis and Z or condensation reaction, and is a non-hydrolyzable compound directly bonded to the metal.
  • inorganic salts such as metal sulfates, hydrochlorides, and nitrates; metal alkoxides, metal acetates, metal oxalates and other metal acylate compounds; metal acetyl acetonates, and metals.
  • 0-diketone, glycol, hydroxycarb of metals such as glycolate examples include chelate compounds such as acid, keto ester, keto alcohol, amino alcohol, and quinoline.
  • the amount of the metal compound (A) added to the suspensions (IV) and (III) is the same as in the case of the metal (hydroxide) oxide sol and the type of the metal compound (A) and the amount of each metal compound (A). Since it depends on the particle diameter of the spherical fine particles in the suspension, it cannot be determined uniformly, but for the reasons described above, the ratio of the metal equivalent in the composite spherical fine particles finally obtained is 0. It is set so as to be in the range of 0.1 to 20% by weight, more preferably in the range of 0.05 to 10% by weight.
  • the form of addition of the metal compound (A) to the suspensions (IV) and (II) is not particularly limited, but the metal compound (A) such as an aqueous solution or an alcohol solution of the metal compound (A) can be uniformly dissolved, and It is preferable to add in a state of being dissolved in a solvent having high compatibility with the solvent of the suspension (IV) or the suspension ( ⁇ ).
  • the method of adding the metal compound is not particularly limited, and the above-described method of adding the sol is appropriately employed.
  • the metal (hydr) oxides constituting the composite spherical fine particles are hydrolyzed and / or degraded from the metal compound (A) at least in the presence of water. Alternatively, it is formed through a condensation reaction.
  • the amount of water required at that time is appropriately selected, but the amount of water is usually more than the stoichiometric amount of the hydrolysis and condensation reaction of the metal compound (A) with respect to the metal compound (A). It is preferred that
  • the hydrolysis catalyst is optionally present in a suspension to promote the hydrolysis of the metal compound (A) in the presence of water.
  • the hydrolysis catalyst include ammonia, primary amine, secondary amine, and Organic amines such as quaternary ammonium and quaternary ammonium; alkaline metal compounds such as sodium hydroxide; alkaline earth metal compounds such as calcium hydroxide; base catalysts such as hydrochloric acid; acids such as hydrochloric acid and nitric acid A catalyst and the like are exemplified, and are appropriately selected depending on the kind of the metal compound (A) and the like.
  • a low-boiling compound having high volatility is preferable, and ammonia is particularly preferable.
  • those which generate these catalyst components by heating or the like, for example, urea which generates ammonia by reaction with water upon heating, etc. are also included in the hydrolysis catalyst.
  • a suspension (IV) containing, as essential components, spherical fine particles composed of amorphous silicon and water and, if necessary, a hydrolysis catalyst, is used. After adding the compound (A), the obtained suspension is subjected to coexistence of one or more alcohols described above.
  • the metal (hydroxide) converted from the metal compound (A) by hydrolysis and / or condensation reaction is converted.
  • Spherical composite fine particles are obtained in which the alcohol localized on the surface and coexisting is bonded to amorphous silica and Z or metal (hydroxide).
  • the suspension (IV) the suspension in the above-mentioned production method (Pr-I) is used.
  • the suspension (IV) can be preferably used. After adding the above-mentioned metal compound (A) to the suspension (IV), the suspension is added in the presence of one or more alcohols in the range of 100 to 250 ° C, preferably 150 to 250 ° C. When heated in the range of 50 ° C, the desired composite spherical fine particles can be obtained.
  • the method of mixing the four components of the metal compound (A), water and the hydrolysis catalyst in the suspension (IV) described above is not particularly limited.
  • the metal compound (A) is added to the suspension (IV) containing at least water, but the water and the hydrolysis catalyst are added in advance in the suspension (IV) in an appropriate amount. If present, it is not necessary to add it, but it can be added at the same time as the addition of the metal compound (A) or at any time after the addition and before the heat treatment.
  • the alcohol coexisting during the heat treatment may be previously contained in the suspension (IV) described above, or may be added to the suspension (IV) at any stage until the heat treatment is completed. Good.
  • the metal (hydroxide) generated by hydrolysis of the metal compound (A) is firmly bonded to the surface, and the coexisting alcohol is present.
  • the composite spherical fine particles of the present invention bound to amorphous silica and / or metal (hydroxide) can be obtained as an alcohol dispersion or powder.
  • one or more alcohols (X) are converted to amorphous A suspension ( ⁇ ) of silica-alcohol composite spherical fine particles bonded to porous silica is used, and the metal compound (A), water and, if necessary, a hydrolysis catalyst are allowed to coexist in the suspension ( ⁇ ). After that, the obtained suspension is heated to a temperature of 100 to 250 ° C. in the coexistence of one or more alcohols (Y) which are the same as or different from the alcohol (X).
  • the metal (water) oxide converted from the metal compound (A) by hydrolysis and Z or a condensation reaction is localized on the surface, and the alcohols (X) and (Y ), Spherical particles of a complex in which at least one alcohol is bonded to the above-mentioned amorphous silica and Z or metal (hydroxide) are obtained.
  • the suspension ( ⁇ ) used in this method the suspension ( ⁇ ) used in the above-mentioned production method ( ⁇ - ⁇ ) can be used, and its preferred production method and embodiment are as described above.
  • the method for coexisting the metal compound (A), water and the hydrolysis catalyst in the above-mentioned suspension (II) is not particularly limited.
  • the metal compound (A) is added to the suspension ( ⁇ ), but water and a hydrolysis catalyst are used if the respective components are previously present in the suspension ( ⁇ ) in an appropriate amount. It is not necessary to add the metal compound (A) before, simultaneously with, or simultaneously with the addition of the metal compound (A) if there are any missing components in the suspension ( ⁇ ) or if these components are not contained at all. Later addition It can be added and replenished at any time before the heat treatment.
  • the alcohol (Y) coexisting during the heat treatment may be contained in advance in the above-mentioned suspension ( ⁇ ), as in the case of the above-mentioned production method (Pr-II), or the suspension ( Ii) may be added at any stage until the heat treatment is completed.
  • the metal (hydroxide) generated by hydrolysis of the metal compound (A) is firmly bonded to the surface, and the coexisting alcohol is amorphous.
  • the composite spherical fine particles of the present invention bound to silica and / or metal (hydroxide) can be obtained as an alcohol dispersion or powder.
  • the type of alcohol introduced in a bound state into the finally obtained composite spherical fine particles depends on the type and amount of alcohol (X) and (() or the heating conditions as in the case of the production method ( ⁇ - ⁇ ).
  • X type and amount of alcohol
  • ⁇ - ⁇ the heating conditions as in the case of the production method
  • the electronegativity of ion is less than 15.6 in the spherical fine particles made of amorphous silica, which is the object of the present invention.
  • Spherical composite fine particles having a composite composition in which a metal (hydr) oxide is localized and bound to alcohol are obtained as a powder or a dispersion.
  • the ester composition contains 0.05 to 5% by weight of composite spherical fine particles satisfying the above-mentioned requirements with respect to polyester.
  • This composition includes films, sheets and fibers. It is effectively used as a raw material for various molded objects.
  • the composite spherical fine particles blended as a constituent material of the polyester composition preferably have a sharp particle size distribution.
  • the coefficient of variation of the particle diameter defined by the above formula [II] is 1 It is preferably 0% or less.
  • the coefficient of variation of the particle diameter exceeds 10%, when the fine particles are blended with the polyester resin, not only the monodispersibility of the fine particles in the resin is deteriorated, but also the surface unevenness when the film is formed. It is difficult to obtain a uniform film.
  • the composite spherical fine particles preferably have an average particle diameter in the range of 0.05 to ⁇ circle around (2) ⁇ , particularly in the range of 0.1 to 5 tm.
  • the reason is that, when the average particle diameter is within this range, the effect of improving the affinity of the composite spherical fine particles to the polyester resin is remarkable as the effect of improving the characteristics of the molded product such as a film. It is because it is expressed in.
  • the average particle diameter becomes extremely fine particles of less than 0.05 ⁇ the dispersibility of the fine particles in the polyester resin tends to be rather deteriorated, and moreover, appropriate surface projections are formed on the obtained film.
  • the effect of improving the slipperiness of the film may not be sufficiently exerted.
  • the polyester composition may be dispersed in a polyester resin or the resulting polyester composition may be formed into a film or the like.
  • a problem such as cracking of fine particles or peeling of the surface layer may occur, or when the film is formed into a sheet, the surface flatness may not be satisfied.
  • the localization of the metal (water) oxide on the surface of the fine particles is a main cause of increasing the affinity of the fine particles with the polyester resin.
  • the content of the metal in the surface layer having a ratio of the thickness measured from the outermost surface of the fine particles to the particle diameter of 0.2 or less is reduced to the fine particles. It is particularly preferable that the content of the fine particles is 50 to 100% in terms of the number of metal atoms based on the total amount of the contained metal (water) oxides.
  • the affinity with the polyester resin is further improved as well as the height.
  • the metal (hydroxide) constituting the composite spherical fine particles may be a metal (hydroxide) of a metal having an ionegativity of less than 15.6 as defined by the above formula [I].
  • Negative metals are preferred.
  • (hydr) oxides of A 1, Ti, Zr, Zn, Fe, and Ce are particularly preferable in that they greatly enhance dispersibility in polyester resins and affinity with polyester resins.
  • a 1 is the most practical metal because its (aqueous) oxide raw material can be obtained easily and very inexpensively, and is also the most preferable metal because it exhibits particularly excellent effects in the above-mentioned aspects. You.
  • the composite spherical fine particles are applied to the polyester composition of the present invention.
  • Silica and metal (water) oxide It is desirable that the metal (hydroxide) be crystalline, such as boehmite, because of its excellent adhesion and excellent mechanical strength of the polyester composition.
  • the preferable ratio of the metal (hydr) oxide in the composite spherical fine particles is in the range of 0.01 to 20% by weight in terms of metal. If the content is insufficient, the polyester of the fine particles may be used. If the affinity for the resin is insufficient, and if the content is too large, the dispersibility of the fine particles in the polyester resin tends to deteriorate. Further, considering the affinity of the polyester resin of the fine particles and the ease of controlling the surface projection shape of the obtained polyester film, the uniformity of the surface irregularities, and the like, the more preferable content of the metal (hydroxide) is The range is 0.05 to 0.5% in terms of metal;
  • the preferred amount of the alcohol bound to the composite spherical fine particles is in the range of 1 to 30% by weight in terms of alcohol, when the content is insufficient.
  • the amount is too large, the mechanical strength of the fine particles becomes insufficient, and when the fine particles are dispersed in a polyester resin, or when the obtained polyester composition is processed into a film or the like, the fine particles are difficult to disperse. This can cause problems such as cracking.
  • the type of alcohol to be bonded is not particularly limited, and all of the above-mentioned alcohols can be applied. Among them, monohydric alcohols, glycols and trihydric alcohols having 1 to 10 carbon atoms are particularly preferred for the fine particles of the polyester resin. It is particularly preferable for enhancing dispersibility.
  • the polyester composition of the present invention contains 0.005 to 10% by weight of the composite spherical fine particles satisfying the above requirements as an essential component.
  • small amounts of other components such as antistatic agents, ultraviolet absorbers, antioxidants, heat stabilizers, light stabilizers, pigments, dyes, etc. are added to this polyester composition. can do.
  • polyester composition of the present invention As described above, a composite in which a specific metal (hydroxide) is localized on the surface of fine particles and a specific amount of alcohol is bonded.
  • the characteristic feature is that spherical fine particles are used.
  • any conventionally known polyester may be used as the polyester component and any conventionally known production method may be used.
  • the composition of the present invention can be obtained.
  • the method of adding the composite spherical fine particles to the polyester may be a method of adding it to the polyester as a powder or dispersing it in advance in glycol, which is a raw material of polyester such as ethylene glycol, propylene glycol, and 1,3-butadiol.
  • glycol which is a raw material of polyester such as ethylene glycol, propylene glycol, and 1,3-butadiol.
  • a method of adding a so-called glycol dispersion to the polyester may be employed.
  • These powders and glycol dispersions can be easily obtained according to any one of the above-described methods (Pr-I) to (Pr-V) for producing composite spherical fine particles.
  • the composite spheres and fine particles are added to the reaction system.
  • the timing of addition is not particularly limited, but is preferably at the beginning of the polycondensation reaction, for example, until the intrinsic viscosity becomes about 0.3 after the start of the reaction, and the addition method and the addition timing are not particularly limited.
  • the polyester composition in which the fine particles are dispersed very well Things are easy to obtain.
  • the content of the composite spherical fine particles in the polyester should be in the range of 0.05 to 10% by weight, preferably 0 to 1 to 3% by weight, based on the entire polyester composition. If the content is insufficient, the effect of improving the slipperiness / abrasion resistance is not sufficiently exhibited, while if too large, the surface flatness when formed into a film, a sheet, or the like may deteriorate.
  • fine particles other than the composite spherical fine particles for example, externally added particles and Z or polyester which have a shape such as a sphere, a lump, or a plate, and are insoluble in the polyester, Internal particles precipitated during synthesis may be included.
  • two or more kinds of composite spherical fine particles having different average particle diameters, chemical compositions and the like can be contained.
  • the polyester constituting the polyester composition of the present invention includes all polyester resins obtained by polycondensing a dicarboxylic acid component and a glycol component.
  • the dicarboxylic acid include terephthalic acid and naphthalenedicarboxylic acid.
  • Aromatic dicarboxylic acids such as acids are preferred.
  • Glycol components include ethylene glycol, trimethylene glycol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8 —Octanediol
  • aliphatic glycols such as 1,10-decanediol are preferred.
  • polyesters containing alkylene terephthalate and / or alkylene naphthalate as a main component are preferable, and those containing ethylene terephthalate and / or ethylene naphthalate as a main component are particularly preferable.
  • These polyesters are known per se and can be produced by a known method.
  • the thus obtained polyester composition is a composition in which the composite spherical fine particles are uniformly dispersed in a polyester in a monodispersed state. Even when subjected to considerable heat or external force, the composite spherical fine particles in the composition are obtained. Does not agglomerate or degrade in the composition. Therefore, by forming this into an arbitrary shape such as a film, sheet, or fiber by a known method, a molded article having characteristics (slipperiness, abrasion resistance, etc.) not seen in conventional examples can be obtained. Obtainable.
  • the polyester composition when a polyester film is to be obtained using the polyester composition, the polyester composition is heated to about 280 to 300 ° C., melt-extruded into a sheet, and then cooled and solidified. By doing so, an amorphous unstretched film can be obtained, and if necessary, for example, in the longitudinal and transverse directions, sequentially in the longitudinal, transverse, and longitudinal directions, or simultaneously in the longitudinal and transverse directions.
  • a biaxial stretching method or the like By adopting a biaxial stretching method or the like, a uniaxial or biaxially oriented film can be obtained.
  • the obtained stretched film is a film in which the generation of voids and the like is extremely suppressed as compared with the conventional film.
  • the surface composition analysis using an X-ray microphone analyzer and ESCA, etc., and the bulk composition analysis using fluorescent X-ray analysis and atomic absorption analysis were performed.
  • the sample was a powder
  • the sample was used as a measurement sample.
  • the sample was a suspension including a glycol dispersion, fine particles in the suspension were separated by centrifugation. after, and dried in vacuo at 9 0 e C, to obtain a powder specimen of the particles to completely remove volatile components, it was subjected to the measurement.
  • the fine particles are powder, about 5 g is precisely weighed using a sample from which physically adsorbed water and free residual volatile components have been removed by vacuum drying in advance at 90, and N NaOH aqueous solution of N Add to 25 Oml and stir at room temperature for 10 hours. As a result, all the hydrolyzable groups in the fine particles are hydrolyzed and extracted into the aqueous solution. Therefore, the amount of alcohol in the clarified liquid obtained by separating the fine particles from the suspension is determined by gas chromatography, and It was the amount of bound alcohol per 1 g of the body sample.
  • the fine particles are a suspension, a part of the suspension is heated to 90 and dried under vacuum until volatile components such as free glycol can be completely removed to obtain a dry powder. This dried powder was used as a sample for the same determination.
  • the powder is dispersed in pure water using an ultrasonic homogenizer to form a 5% by weight suspension, and this is used as a sample to prepare an electrophoretic zeta potential measurement device (Shimadzu). It was measured according to the manufacturing method of 122 type.
  • the suspension was diluted with pure water to obtain a suspension of 5% by weight, and the measurement was similarly performed.
  • composition ratio: 39: 39: 2: 10 2 g of styrene-methyl methacrylate-methacrylic acid-hydroxylmethacrylate methacrylate copolymer (composition ratio: 39: 39: 2: 10) is mixed with methylethylketone-toluene mixed solvent (mixing ratio; weight ratio 1: 1)
  • mixing ratio; weight ratio 1: 1 2 g of fine particle powder is added and mixed, and stirred to form a suspension. After stirring at 20 ° C. for 20 hours, the dispersion state of the fine particles in the suspension was observed with an optical microscope, and evaluated according to the following evaluation criteria.
  • the adsorption amount of the polyester resin was measured according to the following method. That is, 10 g of the fine particle powder was dissolved in a mixed solvent of methyl ethyl ketone-toluene (mixing ratio: 1: 1 by weight) with a polyester resin [Vylon 1-2, manufactured by Toyobo Co., Ltd.]. Add to 200 g of the solution, mix and stir. After stirring at 20 ° C for 100 hours, the fine particles and the solution were separated by centrifugation, and the amount of resin dissolved in the solution was quantified by removing the solvent in the solution. Based on this, the amount of resin adsorbed on the fine particles was determined.
  • Hydrolysis / condensation of tetramethyl silicate is carried out in a hydrated solvent using ammonia as a catalyst to obtain an average particle diameter of 0.1%.
  • silica fine particles were obtained. ⁇ Nigokarada further 1 0 0 e C less than the heating temperature concentrated suspension of fine particles by distilling off part of the solvent and ammonia as methanol (particle concentration 2 0 wt%) 5 0 0 Parts by weight were obtained.
  • the silica spherical fine particles in the suspension were fine particles in which methanol was bonded to amorphous silica. Do not stir the concentrated suspension.
  • Example 2 Instead of adding ceria sol in Example 1, 50 parts by weight of ethylene glycol, 11.3 parts by weight of alumina sol (Al 2 O 3 content: 10% by weight, main component of solvent: water) were sequentially added and mixed. Except for the above, a particulate (P-2) powder was obtained in the same manner as in Example 1.
  • Example 4 titania sol instead of alumina sol (T i 0 2 content: 1 0% by weight). 3 3 parts by weight, except that benzyl alcohol was added 5 wt% in place of the ethylene glycol is In the same manner as in Example 2, composite fine particle (P-4) powder was obtained.
  • Fine particles (Q-1) powder was obtained in the same manner as in Example 2 except that alumina sol was not added.
  • the fine particles obtained in Comparative Example 1 were heated in air at 40 CTC for 4 hours to obtain amorphous silica fine particles having no alcohol bonded thereto.
  • 100 parts by weight of the obtained amorphous silicon fine particles were mixed and dispersed in 400 parts by weight of ethylene glycol.
  • Alumina sol and the resulting dispersion in with stirring grounds rt (A 1 2 0 a content: 1 0% by weight, the solvent ingredient: water) was continued for 1 1 3 parts by weight was added and mixed for 4 hours with stirring. Thereafter, the mixture was heated to a temperature of 120 ° C., maintained at 120 ° C. for 2 hours, and then vacuum-dried at ⁇ 60 to obtain a composite spherical fine particle (P-5) powder.
  • the fine particles obtained in Comparative Example 1 were subjected to a heat treatment at 400 in air for 4 hours to obtain amorphous silica particles having no alcohol bonded thereto.
  • 100 parts by weight of the obtained amorphous silicon fine particles were mixed and dispersed in 300 parts by weight of ethylene glycol. Stirring the resulting dispersion while alumina sol at room temperature. (A 1 2 0 3 content: 1 0% by weight, solvent principal components:. Water) 1 1 3 parts by weight adding and mixing continued for 4 hours with stirring After heating, the temperature was maintained at 60 at 2 hours, followed by vacuum drying at 60 to obtain fine particles (Q-3) powder.
  • Water glass No. 3 (S i 0 2 content 2 9 wt%, S i 0 2 / N a 2 0 molar ratio 3.2) was Dilute with S i 0 2 concentration of 4 wt% and comprising as deionized water Using sodium silicate as a raw material, a spherical silicic acid with an average particle diameter of 60 nm is produced according to a production method including a process of producing a colloid aqueous solution of activated silicic acid by denitrification using a known cation exchange resin and an aging process. particles was obtained an aqueous suspension which is dispersed contained in water (S i 0 2 concentration of 1 0% by weight).
  • Fine particles (Q-4) were obtained in the same manner as in Example 7, except that ethylene glycol was not used.
  • the composite fine particles obtained in each Example were In addition, the fine particles have a surface composition different from that of the fine particles obtained in the comparative example, and therefore, the fine particles have improved dispersibility in a resin solution and improved affinity with resins such as polyester. Was confirmed.
  • the evaluation results are shown in Tables 1 and 2 together with the physical properties of each fine particle. Physical properties of fine particles
  • Example 1 ⁇ 1 ceria 10 methanolic 4.0 + 0. U4 ⁇ 150
  • Example 5 P-5 Alumina 0.53 Ethylene 3.0 + 0.6 ⁇ 5 120
  • Example 6 P-6 Alumina 0.1 Methanol 4.0 + 0.3 ⁇ 5 150
  • Example 7 Alumina 0.50 Ethyleng 6.0 + 0.3 ⁇ 3 150
  • a suspension of spherical silica fine particles having an average particle diameter of 1.5 ⁇ obtained in the same manner as in Example 1 was further heated at a temperature of 90 ° C or less, and a solvent such as methanol and a part of ammonia were distilled off. As a result, 500 parts by weight of a concentrated suspension of the particles (particle concentration: 20% by weight) was obtained.
  • the fine particles (P-8) contained in the dispersion had an alumina content of 0.44% by weight in terms of A1, and were confirmed to be spherical fine particles having 16% by weight of ethylene glycol bonded thereto. Was done.
  • Tables 3 and 4 show the physical properties of the fine particles (P-8).
  • a suspension of amorphous silica spherical fine particles having an average particle diameter of 0.2 m obtained in the same manner as in Example 1 was further heated at 90 ° C. at the following temperature to partially distill a solvent such as methanol and ammonia. By removing, 500 parts by weight of a concentrated suspension of the particles (particle concentration: 20% by weight) was obtained.
  • Example 8 In the same manner as in Example 6 except that no alumina sol was added in Example 8, ethylene glycol in which silica-ethylene glycol composite spherical fine particles (Q-5) were dispersed and contained at a ratio of 20% by weight was used. A call dispersion was obtained. Tables 3 and 4 show the physical properties of the fine particles (Q-5) contained in the dispersion.
  • Ethylene glycol containing spherical silica-ethylene glycol composite spherical fine particles obtained in exactly the same manner as in Comparative Example 5 in a proportion of 20% by weight.
  • 500 parts by weight of an alumina sol (amorphous, A 1 . 2 0 3 content: 1 0% by weight, the solvent ingredient: after addition of water) 9 4 parts by weight, by continuing stirring for 5 hours, composite spherical particles (P - 1 0 "is being contained dispersed
  • An ethylene glycol dispersion was obtained, and the physical properties of the fine particles (P-10) contained in the dispersion are shown in Tables 3 and 4. Obtained in Examples 8 to 10 and Comparative Example 5, respectively.
  • Example 8 P-8 Alumina 0.44 Ethylene 14 + 0.5 180
  • Polyester films containing the fine particles obtained in Examples 1 to 4, 6, 7 and Comparative Examples 1, 2, and 4 were prepared according to the following Examples and Comparative Examples. For, the dispersion state in the polyester resin and the adhesion between the polyester and the fine particles were evaluated based on the following criteria.
  • Example 2 In a state where 100 parts by weight of a commercially available polyethylene terephthalate pellet was melted at 280 ° C., 1 part by weight of the fine particles ′ ( ⁇ -1) powder obtained in Example 1 was added. After kneading, the mixture was rejected, and the obtained polyester composition was heated and stretched to obtain a film having a thickness of 0.05 mm.
  • Example 11 a film having a thickness of 0.05 mm was obtained in the same manner as in Example 11 except that 1 part by weight of each fine particle was added as shown in Table 5 instead of the fine particles (P-1).
  • the dispersion state of the fine particles and the adhesiveness between the polyester resin and the fine particles were examined by the following methods.
  • the dispersion state of the fine particles in the film was observed with an optical microscope, and evaluated according to the following criteria.
  • Adhesion between polyester and child The interface between the fine particles in the film and the polyester resin was observed with a scanning electron microscope, and measured according to the following criteria depending on the degree of void.
  • the evaluation results are shown in Table 5.
  • the dispersion state of the fine particles in the films obtained in Examples 11 to 16 was good, and the adhesion between the polyester and the fine particles was good.
  • the films obtained in Nos. 1 to 8 either the dispersion state of the fine particles or the adhesion was inferior.
  • Example 11 P—1 1 ⁇ ⁇ Example 12 P-2 1 ⁇ ⁇ Example 13 P-3 1 ⁇ ⁇ ⁇ Example 14 P—4 1 ⁇ ⁇ Comparative Example 6 Q-11 ⁇ X Comparative Example 7 Q—2 1 X ⁇ Example 15 P-6 1 ⁇ ⁇ Example 16 P— 71 1 ⁇ ⁇ Comparative Example 8 -4 1 XX INDUSTRIAL APPLICABILITY
  • the composite spherical fine particles of the present invention are hard to agglomerate, are excellent in sphericity, dispersibility, affinity with resin, stability, etc., and are multi-component composites having a specific surface composition. Spherical microparticles, which are extremely useful as modifiers incorporated in various resins, rubbers and the like.
  • the production method of the present invention it is possible to efficiently produce composite spherical fine particles having such characteristics, and according to this production method, the particle diameter and the particle size can be obtained without impairing the sphericity of the fine particles. Since the distribution and the surface composition can be arbitrarily controlled, it is useful as a method for producing composite spherical fine particles applicable to a wide range of fields.
  • the polyester composition of the present invention mainly comprises composite spherical fine particles having the above-described excellent properties
  • the composite spherical fine particles dispersed and contained therein are compared with the conventional polyester composition. Since it has high affinity with polyester resin and excellent dispersibility, it has extremely excellent mechanical properties and optical properties. For example, when the composition is formed into a film, the formation of voids is suppressed and a film having a high dispersibility of the fine particles is obtained, and the film suppresses generation of scratches based on the formation of voids, In addition, the problem of particle detachment during stress loading, which has been pointed out in the conventional film in the film winding process, and the generation of white powder resulting therefrom are eliminated.
  • the biaxially oriented polyester film has uniform and finely controlled uneven surface characteristics, excellent slipperiness and resistance to slippage. It has abrasion properties and extremely low durability with extremely low generation of scratches and white powder.
  • This biaxially oriented polyester film can be used for various wide-ranging applications because of these properties. For example, when used as a base film for magnetic recording such as for video, audio, and entertainment, it exhibits excellent electromagnetic conversion characteristics, running properties, wear resistance, and long-term durability. Also, when used for capacitor applications, a low coefficient of friction, excellent winding properties, low crushing load, high transparency, etc. can be obtained. Furthermore, it can be widely applied to other fields such as electric insulation, packaging and vapor deposition films.

Abstract

A fine spherical composite particle comprising a fine spherical amorphous silica particle and, localized on its surface, an oxide and/or hydroxide of a metal whose ion has a low electronegativity, and containing a specified amount of an alcohol bonded to its surface; a process for producing the particle; and a polyester composition comprising a polyester resin and 0.005-10 wt.% of the particles. The particle hardly aggregates per se, is excellent in dispersibility in various resins and rubbers, and has excellent properties as a filler or modifier. A polyester composition useful for making a film excellent in slipperiness and wear resistance can be obtained by compounding an appropriate amount of the particles with a polyester resin.

Description

明 細 書  Specification
複合体球状微粒子及びその製法並びに該微粒子を 含有するポリエステル組成物 技術分野 本発明は、 非晶質シリカを主たる構成材とし、 様々の樹脂やゴム 等に対して優れた親和性及び分散性を有すると共に、 それ自身凝集 し難い複合体球状微粒子及びその製造方法、 並びに該複合体球状微 粒子を適量配合することにより滑り性ゃ耐摩耗性等を改善したポリ エステル組成物に関するものである。 背景技術 様々の樹脂やゴム等に無機質微粒子や有機質微粒子を改質剤ゃ充 填剤として配合することはよく知られており、 かく して得られる樹 脂やゴム組成物はフ ィ ルム、 シート、 繊維等として広く実用化され ている。 ところが最近、 最終製品の用途 · 目的が多様化し且つ機能 の高度化及び多機能化が進んでくるにつれて、 素材組成物の一成分 である微粒子の特性も重要な要素として注目される様になり、 従来 の微粒子ではこう した要求に対応しきれなくなっている。 そこで微 粒子の形状、 粒度分布、 平均粒径、 内部構造、 成分組成等を対象と して様々の改質研究が展開されている。  TECHNICAL FIELD The present invention uses amorphous silica as a main constituent material and has excellent affinity and dispersibility for various resins, rubbers, and the like. In addition, the present invention relates to a composite spherical fine particle which is not easily aggregated by itself, a method for producing the same, and a polyester composition having improved slipperiness and abrasion resistance by blending an appropriate amount of the composite spherical fine particle. BACKGROUND ART It is well known that inorganic fine particles and organic fine particles are blended as a modifier / filler with various resins and rubbers, and the resin and rubber compositions thus obtained can be used as films and sheets. It is widely used as a fiber, etc. However, recently, as the use and purpose of the final product has been diversified and the functions have become more sophisticated and multi-functional, the characteristics of the fine particles, which are one component of the material composition, have also attracted attention as an important factor. Conventional fine particles cannot meet these requirements. Therefore, various reforming researches are being conducted on the shape, particle size distribution, average particle size, internal structure, and composition of fine particles.
例えば本出願人は、 シリカ微粒子とポリエステル樹脂よりなる組 成物について、 シリ力微粒子を球状化し且つ粒度分布のシャープな ものを使用することによって、 フィルム化した時のフィルム表面に 均一な凹凸を形成させる方法を先に提案した (特開昭 62-207356 号 公報等) 。 しかし、 この方法では、 微粒子と樹脂との間にボイ ド状 の欠陥が形成され易く、 微粒子の脱落によってフィルム表面にスク ラッチゃ削れ粉が発生するという難点がある。 For example, the present applicant has proposed a group consisting of silica fine particles and a polyester resin. A method for forming uniform irregularities on the film surface when the film is formed by using spheres of fine particles with a sharp particle size distribution was proposed earlier (Japanese Patent Application Laid-Open No. 62-207356). No. Gazette etc.). However, in this method, void-like defects are easily formed between the fine particles and the resin, and there is a problem that the fine particles fall off to generate scratches and shavings on the film surface.
さらに本出願人は、 球状化され粒度分布のシャープなシリカーグ リコール複合微粒子ゃ該複合微粒子の表面に、 シラン系、 チタネー 卜系、 あるい-はアルミネー卜系のカツプリング処理を施した微粒子 をポリエステルフィルム中に含有させて改質す ¾方法についても先 に提案した (特開昭 63-183934 , 特開昭 63- 182204 号公報等) 。 し かしこれらの複合微粒子でも、 平均粒子径が比較的大きいものにな るとボイ ド防止効果が十分に発揮されない。  Further, the applicant of the present invention has proposed a silica-glycol composite fine particle having a spheroidized and sharp particle size distribution. The method of modifying the compound by incorporating it into the material has also been previously proposed (JP-A-63-183934, JP-A-63-182204, etc.). However, even with these composite fine particles, if the average particle size is relatively large, the effect of preventing voids is not sufficiently exhibited.
他方、 シリカ微粒子とポリエステル樹脂との親和性を高める目的 で、 シリ力微粒子に種々の表面処理を施す方法が提案されている。 例えばチタンの酸化物及び/または水酸化物 [以下、 (水) 酸化物 と略記することがある] で表面処理されたシリカ微粒子を使用する 方法 (特開昭 63-243126 号公報) やアルミナで表面処理されたシリ 力微粒子を使用する方法 (特開平 3-70768 号, 特開平 3-179052号公 報) である。 しかし、 これらの表面処理されたシリカ微粒子は、 ボ リエステル樹脂中での単分散性が悪く部分的に凝集を起こしたり、 表面処理物とシリカ微粒子との密着性が悪いためか、 ボイ ド生成を 抑制するという所期の目的は必ずしも有効に発揮されない。  On the other hand, in order to increase the affinity between the silica fine particles and the polyester resin, there have been proposed methods of performing various surface treatments on the silica fine particles. For example, a method of using silica fine particles surface-treated with an oxide and / or hydroxide of titanium (hereinafter sometimes abbreviated as (hydr) oxide) (Japanese Patent Application Laid-Open No. 63-243126) or alumina This method uses surface-treated fine particles of silica (Japanese Patent Application Laid-Open Nos. 3-70768 and 3-179052). However, these surface-treated silica fine particles have poor monodispersibility in the polyester resin and cause partial aggregation, or the adhesion between the surface-treated material and the silica fine particles is poor, and void formation may occur. The intended purpose of suppression is not always effective.
また、 シリカ表面がアルミナで被覆された正帯電シリカゾルの製 法が知られている (米国特許第 3, 0 0 7 , 8 7 8号等) 。 しか し、 従来公知の製法よつて得られる正帯電シリカゾル中のコロイダ ル粒子は樹脂との親和性が不十分であり、 しかも樹脂中に均一に分 散させることが困難である。 Also, a method for producing a positively charged silica sol in which the silica surface is coated with alumina is known (US Pat. No. 3,007,878, etc.). Only However, colloidal particles in a positively charged silica sol obtained by a conventionally known production method have insufficient affinity with a resin, and it is difficult to uniformly disperse the colloidal particles in the resin.
一般に、 微粒子の配合された樹脂組成物は、 種々の成形体に加工 されるまでの製造過程で混練等のため例えば 2 0 0 °C以上といった 高温条件下に曝らされ、 しかも押出し、 延伸等の工程で強い応力が かけられる。 従ってこのような過酷な条件を経た場合でも微粒子の 適切な構造や組成が安定しており、 しかも微粒子の凝集が起こら ず、 微粒子と樹脂との親和性や密着性が良好に保持されてこそ、 微 粒子の平均粒子径、 粒度分布、 形状、 屈折率等の本来の微粒子の特 性が最終成形体の機能に反映されるものと考えられる。 組成物とす る前の原料微粒子の性状や組成を特定するだけでは、 必ずしも期待 通りの効果が組成物に反映されない実情の下では、 それらの因果関 係を明確にし、 その有効な改善策を確立することが強く望まれる。  Generally, a resin composition containing fine particles is exposed to a high temperature condition of, for example, 200 ° C. or more for kneading in a manufacturing process until it is processed into various molded articles, and is further extruded, stretched, etc. Strong stress is applied in the process. Therefore, even under such severe conditions, the proper structure and composition of the fine particles are stable, and the fine particles do not aggregate, and the affinity and adhesion between the fine particles and the resin are maintained well. It is considered that the original characteristics of the fine particles such as the average particle size, particle size distribution, shape, and refractive index of the fine particles are reflected in the function of the final molded product. Under the circumstance in which simply specifying the properties and composition of the raw material microparticles before forming the composition does not necessarily reflect the expected effects in the composition, the causal relationship between them is clarified, and effective improvement measures are taken. It is strongly desired to establish.
本発明は上記の様な事情に着目してなされたものであって、 その 目的は、 それ自身凝集し難く且つ種々の樹脂やゴム等 (以下、 樹脂 等という) に対して優れた親和性及び分散性を示すと共に、 高温条 件下で強い応力を受けた場合でも変質するこ とのない優れた安定 性を備え、 ボイ ド抑制をはじめとする改質効果を最大限有効に発揮 し得る様な球状微粒子及びその製法を提供しよう とするものであ る。 発明の開示 上記課題を解決するこ とのできた本発明に係る複合体球状微粒 子の構成は、 少なく とも、 非晶質シリカ、 イオンの電気陰性度が 1 5. 6未満である金属の酸化物及び Zまたは水酸化物 [以下The present invention has been made in view of the above-mentioned circumstances, and has as its object the advantage that it is hard to aggregate itself and has excellent affinity for various resins and rubbers (hereinafter referred to as “resin”). In addition to exhibiting dispersibility, it has excellent stability that does not change even when subjected to strong stress under high temperature conditions, so that it can maximize the reforming effect such as void suppression An object of the present invention is to provide a spherical fine particle and a method for producing the same. DISCLOSURE OF THE INVENTION Composite spherical fine particles according to the present invention which can solve the above problems The composition of the particles is at least amorphous silica, oxides and Z or hydroxides of metals whose electronegativity of ions is less than 15.6.
(水) 酸化物と表現する] 、 及び上記シリカ及び Zまたは上記金属 の (水) 酸化物に結合した 1種または 2種以上のアルコールを含む 組成の複合体球状微粒子であって、 該微粒子において、 上記金属の(Expressed as (aqueous) oxide), and composite spherical fine particles having a composition containing one or two or more alcohols bonded to (silica) oxide of the above silica and Z or the above metal. The above metal
(水) 酸化物は該微粒子の表面に局在化されると共に、 該微粒子中 に占める上記金属の (水) 酸化物の比率が金属換算で 0. 0 1〜 20重量%、 アルコールの比率が 1〜30重量%であるところに要 旨が存在する。 ' 上記において (水) 酸化物を構成する金属としては、 後述する理 由から、 特にイオンの電気陰性度が 8. 0以上、 1 5. 6未満の範 囲内である金属、 中でも A l, T i, Z r, Z n , F e , C eが好 ましく、 特に A 1が好ましい。 The (water) oxide is localized on the surface of the fine particles, and the ratio of the (water) oxide of the metal in the fine particles is 0.01 to 20% by weight in terms of metal, and the ratio of the alcohol is The gist exists where it is 1-30% by weight. '' In the above, metals constituting (hydr) oxides are, for the reasons described later, particularly those having an electronegativity of ions in the range of 8.0 or more and less than 15.6, especially Al, T i, Zr, Zn, Fe and Ce are preferred, and A1 is particularly preferred.
また、 金属の (水) 酸化物は、 結晶学的に非晶質、 結晶質のいず れであっても良いが、 後述する理由から、 例えばべ一マイ トの如く 結晶質のものが好ましい。  The (hydr) oxide of the metal may be either crystallographically amorphous or crystalline, but is preferably crystalline such as boehmite for the reasons described below. .
また、 複合体球状微粒子は、 粒子径、 粒度分布等において特に制 限されないが、 後述する理由から、 粒度分布が揃っているものが好 ましく、 具体的には粒子径の変動係数が 1 0%以下のものが好まし い。 また、 平均粒子径は 0. 05〜1 0 j mの範囲、 特に 0. 1〜 5 Aimの範囲のものが好ましい。  The composite spherical fine particles are not particularly limited in terms of particle diameter, particle size distribution, and the like, but those having a uniform particle size distribution are preferred for the reasons described below. % Or less is preferred. Further, the average particle diameter is preferably in the range of 0.05 to 10 jm, particularly preferably in the range of 0.1 to 5 Aim.
上記の様な複合体球状微粒子は、  The composite spherical fine particles as described above are
(Pr-I)  (Pr-I)
非晶質シリカからなる球状微粒子の懸濁体を、 イオンの電気陰性 度が 1 5. 6未満である金属の (水) 酸化物のゾル、 及び 1種また は 2種以上のアルコールの存在下に、 1 0 0〜 2 5 0 °Cの範囲に加 熱する方法、 A suspension of spherical fine particles made of amorphous silica is mixed with a sol of a (hydr) oxide of a metal having an ionegativity of less than 15.6, Is a method of heating in the range of 100 to 250 ° C in the presence of two or more alcohols,
(Pr-II)  (Pr-II)
非晶質シリ力からなる球状微粒子に、 1種または 2種以上のアル コール (X) が結合したシリカ -アルコール複合球状微粒子の懸濁 体を、 イオンの電気陰性度が 1 5. 6未満である金属の (水) 酸化 物のゾル、 及び上記アルコール (X) と同一もしく は異なる 1種ま たは 2種以上のアルコール (Y) の存在下に、 1 0 o〜2 50 °cay 範囲に加熱して、 前記非晶質シリ カ及び/も し く は前記金¾の A suspension of silica-alcohol composite spherical fine particles in which one or two or more types of alcohol (X) are bonded to spherical fine particles composed of amorphous silicide, with an electronegativity of less than 15.6 In the presence of a (water) oxide sol of a metal and one or more alcohols (Y) which are the same or different from the above alcohols (X), in the range of 10 o to 250 ° cay The amorphous silica and / or the metal
(水) 酸化物に結合したアルコール (X) 、 ( Y) の総量が複合体 球状微粒子中に占める比率で Ί〜3 0重量%の範囲とする方法、 (Pr-III) (Water) A method in which the total amount of the alcohols (X) and (Y) bound to the oxide is in the range of Ί to 30% by weight in the composite spherical fine particles, (Pr-III)
非晶質シリカよりなる球状微粒子に、 1種または 2種以上のアル コールが結合してなるシリ力 -アルコール複合球状微粒子が、 前記 アルコールのうち少なく とも 1種のアルコールを主成分とするアル コール性溶媒中に分散含有されてなる懸濁体と、 ィォンの電気陰性 度が 1 5. 6未満である金属の (水) 酸化物のゾルを混合する方 法、  Siri-force-alcohol composite spherical fine particles in which one or two or more types of alcohols are bonded to spherical fine particles made of amorphous silica, the alcohol mainly containing at least one alcohol among the above-mentioned alcohols Mixing a suspension dispersed and contained in a neutral solvent with a metal (hydr) oxide sol having an electronegativity of ion of less than 15.6,
(Pr-IV)  (Pr-IV)
非晶質シリカよりなる球状微粒子、 水及び必要により加水分解触 媒を含む懸濁体に、 加水分解可能でイオンの電気陰性度が 1 5. 6 未満である金属の化合物を添加した後、 得られる懸濁体を 1種また は 2種以上のアルコールの共存下で 1 0 0〜 2 5 0 °Cの範囲に加熱 する方法、  After adding a hydrolysable metal compound having an electronegativity of less than 15.6 to a suspension containing spherical fine particles made of amorphous silica, water and, if necessary, a hydrolysis catalyst, Heating the suspension to 100 to 250 ° C in the presence of one or more alcohols,
(Pr-V) 非晶質シリカよりなる球状微粒子に、 1種または 2種以上のアル コール (X ) が結合してなるシリカ一アルコール複合球状微粒子の 懸濁体に、 加水分解可能でありイオンの電気陰性度が 1 5 . 6未満 である金属の化合物、 水及び必要により加水分解触媒を共存させた 後、 得られる懸濁体を上記アルコール (X ) と同一もしくは異なる 1種または 2種以上のアルコール (Y ) の共存下で 1 0 0〜2 5 0 での範囲に加熱する方法、 (Pr-V) Suspensions of silica-alcohol composite spherical fine particles, which consist of spherical fine particles of amorphous silica and one or more alcohols (X), are hydrolysable and have an electronegativity of ions. After coexistence of a metal compound of less than 15.6, water and, if necessary, a hydrolysis catalyst, the resulting suspension is treated with one or more alcohols (Y) which are the same or different from the alcohols (X). Heating in the range of 100 to 250 in the co-presence of
によって容易に製造するこ.とができる。  Can be easily manufactured.
そしてこの複合体球状微粒子を、 ポリエステル組成物中に占める 比率で 0. 005 〜10重量%配合して得られる組成物は、 ボイ ド発生等 の欠陥を生じることなく該微粒子による改質効果が遺憾なく発揮さ れ、 滑り性ゃ耐摩耗性等の良好なポリエステル系シート、 フィル ム、 繊維等を与える。 発明を実施するための最良の形態 本発明の複合体球状微粒子は、 前述の如く球状微粒子の表面に、 イオンの電気陰性度が 1 5 . 6よりも低い金属の (水) 酸化物が局 在すると共に、 アルコールが結合してなるものである。 ここで、 該 微粒子表面 (外表面) に金属の (水) 酸化物が局在化するという微 粒子構造に基づき、 該微粒子における種々の樹脂等との親和性が高 まり樹脂等との密着力が向上すると共に、 樹脂等への均一分散性が 高まるという作用効果を有する。  The composition obtained by blending the composite spherical fine particles with 0.0005 to 10% by weight in the polyester composition has a regrettable effect of the fine particles without causing defects such as voids. It gives a good polyester-based sheet, film, fiber, etc. with good slipperiness and abrasion resistance. BEST MODE FOR CARRYING OUT THE INVENTION In the composite spherical fine particles of the present invention, as described above, a metal (hydr) oxide having an electronegativity of ions lower than 15.6 is localized on the surface of the spherical fine particles. Together with the alcohol. Here, based on the fine particle structure in which the metal (hydroxide) is localized on the surface (outer surface) of the fine particles, the affinity of the fine particles with various resins and the like is increased, and the adhesive force with the resin and the like is increased. Has the effect of improving uniformity in resin and the like.
—方、 該微粒子にアルコールが結合していることに基づき、 —On the other hand, based on the binding of alcohol to the fine particles,
(1) 微粒子製造過程でのアルコールの介在により微粒子同士の凝 集を抑え、 金属 (水) 酸化物と非晶質シリカとの付着力が十分に高 められた、 それ自体凝集がなく機械的安定性に優れる複合体球状微 粒子を与える、 (1) Alcohol in the fine particle manufacturing process To provide composite spherical fine particles that suppress aggregation and have sufficiently enhanced adhesion between metal (water) oxide and amorphous silica, and have no mechanical cohesion per se and excellent mechanical stability.
(2) 上記 (1 )に記載の如く、 該微粒子はそれ自体凝集のないもの であり、 粉体あるいは分散体として樹脂等に容易に均一分散し得る ものであって、 アルコールの存在、 特に開口した細孔内表面を含め た表面に存在するアルコールによるものと推察されるが、 微粒子が 相互に付着して 2次凝集を起こすことを抑え、 分散体の場合には分 散安定性を高—めるだけでなく樹脂等への分散性を一層高める、 といった 2つの作用効果が発揮される。  (2) As described in the above (1), the fine particles themselves are not agglomerated, and can be easily and uniformly dispersed in a resin or the like as a powder or a dispersion. It is presumed to be due to the alcohol present on the surface including the inner surface of the pores, but it has been found that fine particles are prevented from adhering to each other to cause secondary aggregation, and in the case of a dispersion, the dispersion stability is high. In addition to the above, two effects are exhibited, such as further improving dispersibility in resin and the like.
また、 上記(1 ) については、 該微粒子を製造する過程で、 該微粒 子を構成する非晶質シリカ、 金属 (水) 酸化物、 アルコールの 3成 分が複合化されていく際、 アルコールが遊離の状態で、 あるいは非 曰  In the above (1), when the three components of amorphous silica, metal (aqueous) oxide, and alcohol constituting the fine particles are complexed in the process of producing the fine particles, the alcohol is removed. Free or non-
曰曰質シリカ、 金属 (水) 酸化物またはこれらの原料に結合した状態 で複合化過程に介在することによ り、 金属 (水) 酸化物及び/また はその原料と、 非晶質シリ力及び Zまたはアルコールの結合した非 晶質シリ力の表面との選択的な反応が速やか且つ効率よく進行し、 このために微粒子同士の凝集が抑制されると共に、 微粒子における 金属 (水) 酸化物と非晶質シリカとの付着力が高まるのであると推 察している。 By intervening in the compounding process in the state of bonded silica, metal (water) oxide or these raw materials, the metal (water) oxide and / or its raw material and amorphous silicon And the selective reaction with the surface of the amorphous silicon to which Z or the alcohol is bonded proceeds quickly and efficiently, thereby suppressing the aggregation of the fine particles and the metal (hydroxide) in the fine particles. It is speculated that the adhesion to amorphous silica is increased.
上記した如く、 複合体球状微粒子においては、 上述した様に 3成 分複合体であるという特徴、 金属 (水) 酸化物が表面に局在化する という構造的特徴および球状であるという形状的特徴に加えて、 金 属 (水) 酸化物及びアルコールは各々がそれぞれ作用効果を発揮 し、 上記特徴及びこれらの成分の効果が相まって初めて、 親和性、 分散性といった作用効果が最大限に発揮される。 しかも球状微粒 子表面に局在する金属の (水) 酸化物は、 同粒子表面に強く密着保 持されており、 樹脂等との混練工程等で相当の高温に曝され或は強 い外力を受けた場合でも、 微粒子表面から容易に脱落することがな く、 それらの優れた改質効果を最終製品の品質として最大限有効に 反映させることができる。 As described above, the composite spherical fine particles have the characteristic of being a three-component composite as described above, the structural characteristic that metal (hydroxide) is localized on the surface, and the structural characteristic of being spherical. In addition, metal (aqueous) oxides and alcohols each exert their respective effects, and only when the above characteristics and the effects of these components are combined, The effect such as dispersibility is maximized. In addition, the metal (hydr) oxide localized on the surface of the spherical fine particles is strongly adhered to the surface of the particles, and is exposed to a considerable high temperature or subjected to a strong external force in a kneading process with a resin or the like. Even if it does, it does not easily fall off the surface of the fine particles, and its excellent modifying effect can be reflected as effectively as possible in the quality of the final product.
本発明に係る複合体球状微粒子の一成分である非晶質シリカ と は、 その主な構成要素が、 珪素原子が主に酸素原子との結合 (_Si - 0-) を介して 3次元のネッ トワークを構成した、 結晶学的に非晶質 であるシリ コンの含酸素化合物を意味する。 尚主成分である珪素以 外の金属元素が前記非晶質ネッ トワーク中に部分的に組み込まれて いるものでもよい。 その際珪素原子に対する割合が原子比で 0.2 以 下の範囲であれば本発明でいう非晶質シリ力に包含される。  Amorphous silica, which is one component of the composite spherical fine particles according to the present invention, is mainly composed of a three-dimensional network in which a silicon atom is mainly bonded to an oxygen atom (_Si-0-). It is a silicon-containing oxygen compound that is crystallographically amorphous and constitutes a network. Note that a metal element other than silicon as a main component may be partially incorporated in the amorphous network. At that time, if the ratio to silicon atoms is in the range of 0.2 or less in atomic ratio, it is included in the amorphous silicon force according to the present invention.
また (水) 酸化物を構成する金属としては、 ポリエステルを始め とする樹脂との親和性が高いという理由からィォンの電気陰性度が 15.6未満 (好ましくは 8.0 以上 15.6未満) 'の金属が選択される。 ィ オンの電気陰性度が 15.6以上の金属の (水) 酸化物では上記樹脂と の親和性が不十分である。  As the metal constituting the (hydr) oxide, a metal having an electronegativity of less than 15.6 (preferably 8.0 or more and less than 15.6) 'is selected because of its high affinity for resins such as polyester. You. Metal (hydr) oxides with an electronegativity of 15.6 or more have insufficient affinity with the above resins.
但し、 本発明でいう金属イオンの電気陰性度 (X i ) とは下記 式によって定義される。  However, the electronegativity (X i) of the metal ion in the present invention is defined by the following equation.
X i = ( 1 + 2 Z ) X o… [I]  X i = (1 + 2 Z) X o… [I]
(ただし、 X oは A l l r e d— R o c h owの尺度による金 属の電気陰性度、 Zは電荷をそれぞれ表す。 )  (However, Xo represents the electronegativity of the metal on the scale of Al lread—Rochow, and Z represents the charge.)
例えば S iは X o = l . 74であり、 Z = 4であるから、 X iは 5. 66である。 イオンの電気陰性度が 15.6未満である金属の具体例と しては、 N a , K等のアルカ リ金属、 M g , C a等のアルカ リ土類金属、 T i, Z r, Z n , A l等の遷移金属、 C e, L a等の希土類金属 などが挙げられるが、 複合体球状微粒子の安定性やマ 卜 リ ックス樹 脂に悪影響を及ぼさないという点から、 特に 8. 0以上、 1 5. 6 未満の範囲のィォンの電気陰性度を有する金属が好ましい。 For example, S i is X o = l.74 and Z = 4, so X i is 5.66. Specific examples of the metal having an electronegativity of an ion of less than 15.6 include alkaline metals such as Na and K, alkaline earth metals such as Mg and Ca, Ti, Zr, and Zn. And transition metals such as Al and rare earth metals such as Ce and La. However, from the viewpoint that they do not adversely affect the stability of the composite spherical fine particles and the matrix resin, they are particularly 8.0. As described above, a metal having an electronegativity of less than 15.6 is preferred.
中でも、 A l , T i , Z r , Z n, F e , C eの (水) 酸化物 は、 得られる複合体球状微粒子の分散性及び樹脂との親和力等を著 しく改善する作用があるので特に好ましく、 と りわけ A 1及びその (水) 酸化物は、 コス ト、 作用、 入手容易性等において最も好まし いものといえる。  Above all, (hydr) oxides of Al, Ti, Zr, Zn, Fe, and Ce have the effect of remarkably improving the dispersibility of the obtained composite spherical fine particles and the affinity with the resin. In particular, A1 and its (hydr) oxide are the most preferred in terms of cost, action, availability, and the like.
また金属の (水) 酸化物は、 結晶学的に非晶質、 結晶質のいずれ であってもかまわないが、 本発明に係る複合体球状微粒子における 非晶質シリカと金属 (水) 酸化物との付着力が優れる点で、 例えば ベーマイ 卜の如く結晶質のものが特に好ましい。  The metal (hydr) oxide may be either crystallographically amorphous or crystalline. However, the amorphous silica and the metal (hydr) oxide in the composite spherical fine particles according to the present invention may be used. For example, a crystalline material such as boehmite is particularly preferable in that it has excellent adhesion to the substrate.
上記金属の (水) 酸化物の含有量は、 複合体球状微粒子中に占め る比率で金属に換算して 0. 0 1〜20重量%の範囲と しなければ ならず、 該含有量が不足する場合は複合化による改質効果が十分に 発揮されず、 一方該含有量が多過ぎると複合化工程で凝集を起こし 易くなる。 尚得られる複合体球状微粒子の改質化効果に加えて、 そ の形状、 粒子径、 粒度分布等の制御し易さ等を総合的に考えてより 好ましい含有量は、 金属に換算して 0. 05〜 1 0重量%の範囲で ある。  The content of the (hydr) oxide of the above metal must be in the range of 0.01 to 20% by weight in terms of metal in terms of the ratio occupied in the composite spherical fine particles, and the content is insufficient. When the content is too large, the effect of modification by the composite is not sufficiently exerted. On the other hand, if the content is too large, aggregation tends to occur in the composite process. In addition to the effect of modifying the obtained composite spherical fine particles, and considering the ease of controlling the shape, particle diameter, particle size distribution, and the like, a more preferable content is 0 in terms of metal. The range is from 0.05 to 10% by weight.
金属の (水) 酸化物が微粒子表面に局在する微粒子とは、 該微粒 子の中心から表面に向かって金属の (水).酸化物の濃度分布が連続 的にまたは不連続的に表面にいくほど高くなっている微粒子である ことを意味する。 中でも、 該微粒子の最外表面から測った厚みの粒 子径に対する比が 0 . 2以下の表面層に於ける金属の含有量が、 該 微粒子に含まれる金属の総量に対して、 金属原子数に換算して 5 0 〜 1 0 0 %である微粒子は、 真球性に優れ、 粒度分布のシャープな 微粒子として得られ易い点で好ましい。 こう した金属 (水) 酸化物 の存在状態は、 例えば E S C Aによって確認できる。 Fine particles in which the metal (water) oxide is localized on the surface of the fine particles means that the concentration distribution of the metal (water) oxide is continuous from the center of the fine particles toward the surface. It means that the fine particles are gradually or discontinuously high on the surface. In particular, the content of metal in the surface layer having a ratio of the thickness to the particle diameter of 0.2 or less measured from the outermost surface of the fine particles is determined by the number of metal atoms with respect to the total amount of metal contained in the fine particles. Fine particles having a particle size of 50 to 100% in terms of are preferable because they have excellent sphericity and can be easily obtained as fine particles having a sharp particle size distribution. The existence state of such a metal (water) oxide can be confirmed by, for example, ESCA.
次にアルコール成分について説明する。 複合体球状微粒子におけ るアルコールの結合形態は明らかでないが: 金属 (水) 酸化物中の 金属原子及び/または非晶質シリカ中の珪素原子と、 アルコール中 の水酸基に隣接する炭素原子が、 酸素原子を介して強固に結合した 共有結合あるいはイオン結合、 金属 (水) 酸化物中の水酸基及び Z または非晶質シリカ中のシラノール基とアルコール中の水酸基との 間の水素結合によるものと考えられる。 アルコールが結合している か否かは、 改質された微粒子を当該アルコールの沸点付近にまで加 熱した時、 アルコールが蒸発するかどうかによって確認すること力 でき、 結合状態のアルコールはその沸点付近でも蒸発しないので、 これにより単なる混合状態のものと明確に区別できる。  Next, the alcohol component will be described. Although the bonding form of the alcohol in the composite spherical fine particles is not clear: the metal atom in the metal (water) oxide and / or the silicon atom in the amorphous silica, and the carbon atom adjacent to the hydroxyl group in the alcohol are It is thought to be due to a covalent or ionic bond firmly bonded via an oxygen atom, or a hydrogen bond between a hydroxyl group in metal (water) oxide and Z or a silanol group in amorphous silica and a hydroxyl group in alcohol. Can be Whether or not alcohol is bound can be determined by whether or not alcohol evaporates when the modified fine particles are heated to near the boiling point of the alcohol. However, since it does not evaporate, it can be clearly distinguished from a mere mixed state.
微粒子に結合しているアルコール量は、 複合体球状微粒子中に占 める比率で 1〜3 0重量%の範囲とすべきであり、 不足する場合は 分散性に優れた微粒子が得られ難く、 一方多過ぎる場合は得られる 微粒子の機械的強度が不十分となって、 熱や外力を受けたときに改 質剤の脱落が起こり易くなりボイ ド欠陥等を阻止できなくなる。  The amount of alcohol bound to the fine particles should be in the range of 1 to 30% by weight based on the ratio in the composite spherical fine particles. If the amount is insufficient, it is difficult to obtain fine particles having excellent dispersibility. On the other hand, if the amount is too large, the mechanical strength of the obtained fine particles becomes insufficient, so that the reforming agent easily falls off when subjected to heat or external force, and it becomes impossible to prevent void defects and the like.
アルコールとしては、 メタノール、 エタノール、 イソプロピルァ ルコール、 n—ブタノール、 ステアリルアルコール、 メ リシルアル コール等の脂肪族飽和一価アルコール、 ァリルアルコール、 クロチ ルアルコール、 プロパルギルアルコール等の脂肪族不飽和一価アル コール、 シクロペンタノール、 シクロへキサノール等の脂環式一価 アルコール、 ベンジルアルコール、 シンナミルアルコール、 メチル .フェニルカルビノール等の芳香族一価アルコール、 フルフリルアル コール等の複素環式一価アルコール等の一価アルコール ; エチレン グリ コール、 プロピレングリ コ一ル、 卜 リ メチレングリ コール、Alcohols include methanol, ethanol, isopropyl alcohol, n-butanol, stearyl alcohol, melicyl alcohol Aliphatic saturated monohydric alcohols such as coal, aliphatic unsaturated monohydric alcohols such as aryl alcohol, clotyl alcohol, and propargyl alcohol; cycloaliphatic monohydric alcohols such as cyclopentanol and cyclohexanol; benzyl alcohol; Monohydric alcohols such as cinnamyl alcohol, aromatic monohydric alcohols such as methyl phenylcarbinol, and heterocyclic monohydric alcohols such as furfuryl alcohol; ethylene glycol, propylene glycol, trimethylene glycol,
1, 4 一ブタンジオール、 1, 5 —ペンタンジオール、 1 , 6 —へ キサンジ—オール、 1, 8—オクタンジオール、 1, 1 0 —デカンジ オール、 ピナコール等の脂肪族グリ コール、 ヒ ドロべンゾイ ン、 ベ ンズピナコール、 フタリルアルコール等の芳香環を有する脂肪族グ リ コール、 シクロペンタン一 1 , 2 —ジオール、 シクロへキサン一1,4-monobutanediol, 1,5—pentanediol, 1,6—hexanediol, 1,8-octanediol, 1,10—decanediol, aliphatic glycols such as pinacol, hydrobenzoy Aliphatic alcohols having an aromatic ring such as benzene, benzopinacol, phthalyl alcohol, cyclopentane-1,2-diol, cyclohexane
1 , 2 —ジオール、 シクロへキサン一 1 , 4 —ジ才一ル等の脂環式 グリ コール、 ポリエチレングリ コール、 ポリプロ ピレングリ コール 等のポリオキシアルキレングリ コール等のグリ コール ; ヒ ドロキノ ン、 レゾルシン、 2 , 2 —ビス ( 4 ー ヒ ドロキシフエニル) プロノ'く ン等の芳香族ジオール ; グリセリ ン等の三価アルコール等が例示さ れる。 1,2-diols, cyclohexanes 1,4, -dicyclohexanes and other alicyclic glycols, polyethylene glycols, polypropylene glycols and other polyoxyalkylene glycols, etc .; hydroquinone, resorcinol Examples thereof include aromatic diols such as 1,2,2-bis (4-hydroxyphenyl) prono 'quinone; and trihydric alcohols such as glycerin.
上記アルコールの中でも、 炭素数が 1〜1 0の 1価アルコール、 グリ コール及び 3価アルコールは、 該微粒子の構成要素である金属 (水) 酸化物及び Zまたは非晶質シリカと結合し易く、 結合量 (含 有量) の調整が容易であるので好ましい。  Among the above alcohols, monohydric alcohols, glycols and trihydric alcohols having 1 to 10 carbon atoms are easily bonded to metal (hydroxide) and Z or amorphous silica as constituents of the fine particles. It is preferable because the amount of binding (content) can be easily adjusted.
本発明の複合体球状微粒子は、 上記の様に非晶質シリ力の表面に 局在する特定量の金属 (水) 酸化物及び結合状態のアルコールを必 須の構成要素とするものであるが、 場合によっては更に他の成分と して該微粒子の製造に当たって使用された原料に由来する、 例えば 酢酸根, 硝酸根等の酸根, アンモニア, 有機アミン類, 塩素等のハ ロゲン等 n D dの他、 アルキル基を始めとする有機基, 吸着水分等を少量 含むものであってもかまわない。 しかしその配合量が多過ぎると、 本発明の前記特徴が阻害され或は希釈されるので、 2 0重量%以下 に抑えるべきである。 The composite spherical fine particles of the present invention have a specific amount of metal (hydroxide) localized on the surface of the amorphous silicon force and an alcohol in a bonded state as essential components as described above. , And sometimes with other ingredients From the raw materials used in the production of the fine particles, for example, acid radicals such as acetates and nitrates, ammonia, organic amines, halogens such as chlorine, etc. n D d, and organic compounds such as alkyl groups. It may contain a small amount of base, adsorbed moisture, etc. However, if the amount is too large, the above-mentioned characteristics of the present invention are inhibited or diluted, so that the content should be suppressed to 20% by weight or less.
尚本発明において球状とは、 微粒子の長径と短径の差が小さいこ とを意味するものであり、 丰発明に係る複合体球状微粒子は長径ノ 短径比が 1 . ' 0〜 1 . 2である真球形に近いものが特に好ましい。 また、 複合体球状微粒子は、 粒子径、 粒度分布等において特に制限 されないが、 該微粒子の用途に応じてその使用効果が最大限有効に 発揮できる様な粒子径のものを適宜選択して使用されるという観点 から、 この複合体球状微粒子は、 その粒度分布が揃っているものが 好ましく、 具体的には下記 [ Π ] 式で定義される粒子径の変動係数 が 1 0 %以下であるものが特に好ましい。 平均粒子径 ( d) =∑Di /n  In the present invention, the term "spherical" means that the difference between the major axis and the minor axis of the fine particles is small, and the composite spherical microparticles according to the present invention have a major axis / minor axis ratio of 1.0 'to 1.2. Particularly, those having a shape close to a true sphere are particularly preferable. The composite spherical fine particles are not particularly limited in particle diameter, particle size distribution, and the like, but are appropriately selected and used according to the intended use of the fine particles so as to maximize the effect of use. In view of this, it is preferable that the composite spherical fine particles have a uniform particle size distribution, and more specifically, those having a particle diameter variation coefficient defined by the following [Π] formula of 10% or less. Particularly preferred. Average particle size (d) = ∑Di / n
[ {∑ (d - D i )2} / (n - 1 ) ] 1/2 [{∑ (d-D i) 2 } / (n-1)] 1/2
麵纖 (%) = - 1 0 0 [II]  麵 Fiber (%) =-1 0 0 [II]
d  d
個々の粒子の粒子径  Particle size of individual particles
数平均粒子径  Number average particle size
粒:  Grain:
また、 粒子径によらず、 該複合体球状微粒子は従来の微粒子に比 ベて樹脂との親和性が良好であり、 その優れた親和性が、 該複合体 球状微粒子を配合してなる例えば塗料、 繊維、 フィ ルム等の加工製 品の改善された特性として反映されるものである。 しかし、 その親 和性改善効果が特に高く、 上記の様な加工製品の特性を一層効果的 に高めることができるのは、 平均粒子径が 0. 0 5〜 1 0 iz m、 特 に 0. 1〜5 / mの複合体球状微粒子である。 In addition, regardless of the particle diameter, the composite spherical fine particles have better affinity for the resin than conventional fine particles, and the excellent affinity for the composite This is reflected in the improved properties of processed products, such as paints, fibers, and films, which contain spherical fine particles. However, the effect of improving the affinity is particularly high, and the characteristics of the processed product as described above can be more effectively enhanced because the average particle size is 0.05 to 10 izm, especially 0. Composite spherical fine particles of 1 to 5 / m.
次に上記複合体球状微粒子の製法について説明する。 本発明によ れば、 下記(Pr-I)〜(Pr-V)のいずれかの方法を採用するこ とによつ て、 前述の様な特性を備えた複合体球状微粒子を容易に得ることが できる。  Next, a method for producing the composite spherical fine particles will be described. According to the present invention, by adopting any of the following methods (Pr-I) to (Pr-V), composite spherical fine particles having the above-mentioned characteristics can be easily obtained. be able to.
(Pr-I)  (Pr-I)
非晶質シリカよりなる球状微粒子の懸濁体(I) を、 イオンの電気 陰性度が 1 5. 6未満である金属の (水) 酸化物のゾル及び 1種ま たは 2種以上のアルコールの存在下で 1 0 0〜 2 5 0 °Cに加熱する 方法。  A suspension (I) of spherical fine particles made of amorphous silica is converted into a sol of a metal (hydr) oxide having one or more electronegativities of ions of less than 15.6 and one or more alcohols. Heating to 100-250 ° C in the presence of.
(Pr-II)  (Pr-II)
非晶質シリ力からなる球状微粒子に、 1種または 2種以上のアル コール (X ) が結合したシリカ -アルコール複合球状微粒子の懸濁 体(II)を、 イオンの電気陰性度が 1 5. 6未満である金属の酸化物 及びノもしく は水酸化物のゾル、 及び上記アルコール (X ) と同一 もしく は異なる 1種または 2種以上のアルコール ( Y ) の存在下 に、 1 0 0〜 2 5 0 °Cの範囲に加熱する方法。  A suspension of silica-alcohol composite spherical fine particles (II), in which one or more types of alcohol (X) are bonded to spherical fine particles composed of amorphous silicon, has an electronegativity of ion of 15. In the presence of an oxide and / or hydroxide sol of a metal less than 6 and one or more alcohols (Y) which are the same as or different from the alcohols (X), 100 Heating method to ~ 250 ° C.
(Pr-III)  (Pr-III)
非晶質シリカよりなる球状微粒子に、 1種または 2種以上のアル コールが結合してなるシリカ -アルコール複合球状微粒子が、 上記 アルコールのうち少なく とも 1種のアルコールを主成分とするアル コール性溶媒中に分散含有されてなる懸濁体 (ΠΙ)と、 イオンの電 気陰性度が 1 5. 6未満である金属の (水) 酸化物のゾルを混合す る方法。 Silica-alcohol composite spherical fine particles in which one or two or more types of alcohols are bonded to spherical fine particles made of amorphous silica are used as the main components of at least one of the above alcohols. A method in which a suspension (ΠΙ) dispersed and contained in a coal solvent is mixed with a sol of a metal (hydroxide) having an electronegativity of less than 15.6.
(Pr-IV)  (Pr-IV)
非晶質シリカよりなる球状微粒子、 水及び必要により加水分解触 媒を含む懸濁体 (IV) に、 加水分解可能でイオンの電気陰性度が 1 5. 6未満である金属の化合物を添加した後に、 得られる懸濁体を 1種または 2種以上のアルコールの共存下で 1 00〜250での範 囲に加熱する方法、 ― '  A hydrolysable metal compound having an electronegativity of less than 15.6 was added to a suspension (IV) containing spherical fine particles of amorphous silica, water and, if necessary, a hydrolysis catalyst. Later, the resulting suspension is heated in the range of 100-250 in the presence of one or more alcohols,-
(Pr-V)  (Pr-V)
非晶質シリカよりなる球状微粒子に、 1種または 2種以上のアル コール (X) が結合してなるシリカ一アルコール複合球状微粒子の 懸濁体(II)に、 加水分解可能でありイオンの電気陰性度が 1 5 · 6 未満である金属の化合物、 水及び必要により加水分解触媒を共存さ せた後、 得られる懸濁体を上記アルコール (X) と同一もしくは異 なる 1種または 2種以上のアルコール (Y) の共存下で 1 0 0〜 250eCの範囲に加熱する方法。 A suspension of silica-alcohol composite spherical fine particles (II), in which one or two or more alcohols (X) are bonded to spherical fine particles made of amorphous silica, is hydrolyzable, After coexistence of a metal compound with a negative degree of less than 15 16, water and, if necessary, a hydrolysis catalyst, the resulting suspension is mixed with one or more of the above alcohols (X). a method of heating in the range of 1 0 0~ 250 e C under the coexistence of an alcohol (Y).
製法(Pr-I)〜(Pr-V)で使用される懸濁体(1), (II), (III), (IV) は、 非晶質シリカ球状微粒子 [懸濁体(1), (IV) 〗 、 あるいは非晶 質シリカに前記した少なく とも 1種のアルコールが結合してなるシ リカーアルコール複合球状微粒子 [懸濁体(11),(III)] 力 溶媒中 に分散されてなる懸濁体を意味する。  The suspensions (1), (II), (III) and (IV) used in the production methods (Pr-I) to (Pr-V) are amorphous silica spherical fine particles [suspension (1), (IV) silica-alcohol-composite spherical microparticles obtained by bonding at least one type of alcohol to amorphous silica or amorphous silica [suspension (11), (III)] dispersed in a solvent Means a suspension.
懸濁体(I), (11), (HI), (IV) 及びこれらに分散含有されてなる球 状微粒子の製法は特に限定されないが、 いずれの場合も、 真球性に 優れた粒度分布のシャープな球状微粒子が得られ易いという点で、 T JP9 1 The method for producing the suspensions (I), (11), (HI), (IV) and the spherical fine particles dispersed and contained therein is not particularly limited, but in any case, the particle size distribution is excellent in sphericity. In that it is easy to obtain sharp spherical fine particles of T JP9 1
15 加水分解及び/または縮合可能な有機珪素化合物を有機溶媒中で水 の共存下に加水分解及び/または縮合させる工程 (A ) を経て製造 する方法が好ましい。  15 A method is preferred in which the compound is produced through the step (A) of hydrolyzing and / or condensing an organic silicon compound capable of hydrolysis and / or condensation in an organic solvent in the presence of water.
上記工程 (A ) においては、 粒子径、 粒度分布の制御された球状 微粒子が得られ易いという理由から、 有機珪素化合物としては、 シ リ コンアルコキシド類が、 また有機溶媒と しては、 前記したアル コールがそれぞれ好ましく、 また真球性に優れる微粒子が得られ易 いという理由から、 アンモニア、 有機アミン等を触媒として共存さ せることが好ましい。 —  In the above step (A), silicon alkoxides are used as the organosilicon compound, and the above-mentioned organic solvents are used, because spherical fine particles having a controlled particle size and particle size distribution are easily obtained. Alcohol is preferable, and fine particles having excellent sphericity are easily obtained, so that it is preferable to coexist with ammonia, organic amine or the like as a catalyst. —
また、 工程 (A ) において、 使用する有機珪素化合物、 溶媒、 触 媒等の種類及び濃度、 水の濃度、 温度、 有機珪素化合物の添加方法 等、 加水分解 · 縮合条件等を制御するこ とによ り、 粒子径、 粒度分 布、 真球性等の制御された球状微粒子の懸濁体が得られ、 必要に応 じて加熱濃縮あるいは溶媒置換等の後処理を経て、 懸濁体( I ), (II) , (III) , (IV) を得ることができる。  In step (A), the hydrolysis and condensation conditions, such as the type and concentration of the organosilicon compound, solvent, and catalyst used, the concentration of water, the temperature, and the method of adding the organosilicon compound, are controlled. Thus, a suspension of spherical fine particles having a controlled particle size, particle size distribution, sphericity, etc. can be obtained. If necessary, the suspension (I) can be subjected to post-treatment such as heat concentration or solvent replacement. ), (II), (III), and (IV).
従って、 上記工程 (A ) を経る製法によって、 上記加水分解 · 縮 合条件の制御及び上記後処理の有無及び該処理方法の制御によつ て、 懸濁体(1),(II) , (ΙΠ),(IV ) をそれぞれ調製するこ とができ る。  Therefore, the suspensions (1), (II), (II), (II), (II), (III) are controlled by controlling the hydrolysis / condensation conditions, the presence / absence of the post-treatment, and the control of the treatment method. ΙΠ) and (IV) can be prepared respectively.
まず、 製法(ΡΓ- Ι)〜(ΡΓ_ΙΠ)について詳細に説明するが、 各製法 (Pr-I) , (Pr-II) , (Pr-III) において使用される、 イオンの電気陰性 度が 1 5 . 6未満の金属の (水) 酸化物のゾルについて説明する。  First, the production methods (ΡΓ-Ι) to (ΡΓ_ΙΠ) are described in detail. The electronegativity of the ion used in each of the production methods (Pr-I), (Pr-II), and (Pr-III) is 1 The sol of (hydr) oxides of metals less than 5.6 will be described.
ゾルとは、 金属 (水) 酸化物が微粒子状、 あるいは金属が酸素を 介して結合した縮合物の形態で水及び/またはアルコールを含む溶 媒中に懸濁、 乳化あるいは溶解しているものをいう。 該ゾル中に は、 水及び Zまたはアルコール以外の溶媒成分あるいは該ゾルを製 造する過程で使用された金属 (水) 酸化物の原料、 乳化剤、 安定化 剤等に由来する酢酸、 硝酸、 塩酸等の酸及びこれらの酸根、 ァニォ ン性界面活性剤、 カチオン性界面活性剤、 ノニオン性界面活性剤、 アルカリ金属、 アルカリ土類金属等の (水) 酸化物や各種電解質等 が少量共存していてもよい。 A sol is one in which a metal (aqueous) oxide is in the form of fine particles or a condensate in which a metal is bonded via oxygen, and is suspended, emulsified, or dissolved in a solvent containing water and / or alcohol. Say. In the sol Is an acid such as acetic acid, nitric acid, and hydrochloric acid derived from raw materials, emulsifiers, stabilizers, etc. of metal (aqueous) oxides used in the process of producing the sol or solvent components other than water and Z or alcohol. These acid radicals, anionic surfactants, cationic surfactants, nonionic surfactants, (aqueous) oxides such as alkali metals and alkaline earth metals, and various kinds of electrolytes may coexist.
また、 該ゾル中の金属 (水) 酸化物としては、 例えばアルミナで 被覆することにより陽電化されたシリ力ゾル等の如く 、 イオンの 電気陰性度が 1 5 -. 6未満の金属の (水) 酸化物で他の金属 (水) 酸化物を被覆してなる微粒子、 あるいはイオンの電気陰性度が 1 5 . 6以上の金属とイオンの電気陰性度が 1 5 . 6未満の金属と を金属成分とする複合金属 (水) 酸化物等も含まれる。 さらに該ゾ ル中に、 当該金属とは異なる種類の金属の (水) 酸化物が少量混合 されていてもよい。  The metal (water) oxide in the sol is, for example, a metal (water) of a metal having an electronegativity of less than 15-0.6, such as a silica sol which has been positively charged by coating with alumina. ) Other metal (aqueous) particles coated with oxides, or a metal with an ionegativity of 15.6 or more and a metal with an electronegativity of less than 15.6 The composite metal (water) oxide as a component is also included. Further, a small amount of a (hydr) oxide of a metal different from the metal may be mixed in the sol.
尚アルコールゾルとする場合のアルコールの種類は特に制限がな く、 複合体微粒子中の非晶質シリ力及びノまたはイオンの電気陰性 度が 1 5 . 6未満の金属の (水) 酸化物に結合されるアルコールと しては、 先に例示したものがいずれも使用できる。 これらのアル コールは単独で使用し得ることはもとより、 2種以上を併用するこ とも可能であり、 更には適量の水を混合して使用したり、 アルコー ル以外の溶剤を少量添加したものであってもかまわない。  There is no particular limitation on the type of alcohol used in the alcohol sol. The alcohol sol is not limited to the amorphous (silicone) force and the metal (hydr) oxide having an electronegativity of less than 15.6 in the composite fine particles. As the alcohol to be bound, any of the alcohols exemplified above can be used. These alcohols can be used alone, or two or more of them can be used in combination.Moreover, an appropriate amount of water can be mixed and used, or a small amount of a solvent other than alcohol can be added. It doesn't matter.
該ゾルの懸濁体(I) , (II) , (III)への添加量は、 ゾルの種類やそれ ぞれの懸濁体中の球状微粒子の粒子径等によつて変わつてくるので —律に決めることはできないが、 前記した理由により、 最終的に得 られる複合体球状微粒子中に占める金属換算の比率が 0 . 0 1〜 2 0重量%の範囲、 より好ましくは 0. 0 5〜 1 0重量%の範囲と なる様に設定される。 The amount of the sol added to the suspensions (I), (II), and (III) varies depending on the type of the sol, the particle size of the spherical fine particles in each suspension, and the like. Although it is not possible to determine the ratio uniformly, for the reasons described above, the ratio of the metal equivalent in the finally obtained composite spherical fine particles is 0.01 to 0.1%. It is set so as to be in the range of 20% by weight, more preferably in the range of 0.05 to 10% by weight.
[製法(Pr-I)]  [Production method (Pr-I)]
懸濁体(I) とは、 非晶質シリカ球状微粒子が任意の溶媒中に分散 含有されてなる懸濁体をすベて包含する。  The suspension (I) encompasses all suspensions in which amorphous silica spherical fine particles are dispersed and contained in an arbitrary solvent.
ここでいう非晶質シリカ球状微粒子とは、 前記した非晶質シリカ で構成される球状微粒子を意味し、 該微粒子の懸濁体(I) 中におけ る濃度は、 1〜 5 0重量%の範囲が好ましい。 該濃度が 1重量%未 満の場合は複合体球状微粒子の生産性が低く、 該濃度が 5 0重量% を越えると組成の均一性、 分散性等の良好な複合体球状微粒子が得 られ難く なる。  The amorphous silica spherical fine particles as used herein means spherical fine particles composed of the above-mentioned amorphous silica, and the concentration of the fine particles in the suspension (I) is 1 to 50% by weight. Is preferable. When the concentration is less than 1% by weight, the productivity of the composite spherical fine particles is low, and when the concentration exceeds 50% by weight, it is difficult to obtain composite spherical fine particles having good composition uniformity and dispersibility. Become.
懸濁体(I) を構成する非晶質シリカ球状微粒子以外の成分は特に 限定されないが、 後工程である 1 0 0〜 2 5 0 °Cの温度範囲での加 熱処理時にアルコールを共存させる必要があるので、 アルコールの 1種または 2種以上が予め懸濁体(I) 中に含有されたものであるこ とが好ましく、 更に該アルコールは、-アルコールの結合量において 均一な複合体球状微粒子が得られ易いという理由から溶媒の少なく とも 1成分であることが好ましい。 もちろん水等の他の溶媒が共存 していても構わない。 ただし、 懸濁体(I) 中における該アルコール の含有量はアルコール総量で、 懸濁体(I) 中の非晶質シリカ球状微 粒子に対する重量比で 0. 0 1〜5 0倍の範囲が好ましい。 該含有 量が 0. 0 1未満では、 複合体球状微粒子中におけるアルコールの 結合が不均一になることがあり、 該含有量が 5 0を越えると複合体 球状微粒子の生産性が悪くなる。  The components other than the amorphous silica spherical fine particles constituting the suspension (I) are not particularly limited, but it is necessary to allow alcohol to coexist during the subsequent heat treatment in a temperature range of 100 to 250 ° C. Therefore, it is preferable that one or two or more alcohols are previously contained in the suspension (I). Further, the alcohols are complex spherical fine particles having a uniform amount of -alcohol. It is preferable that the solvent is at least one component because it is easily obtained. Of course, other solvents such as water may coexist. However, the content of the alcohol in the suspension (I) is the total amount of alcohol, and the weight ratio to the amorphous silica spherical fine particles in the suspension (I) is in the range of 0.01 to 50 times. preferable. If the content is less than 0.01, the binding of alcohol in the composite spherical fine particles may be non-uniform, and if the content exceeds 50, the productivity of the composite spherical fine particles deteriorates.
上述した懸濁体(I) 及び懸濁体(I) に分散含有されてなる非晶質 シリカ球状微粒子の製法は特に限定されないが、 前記工程 (A ) を 経る製法が好ましい。 例えばシリコンアルコキシドの前記した触媒 存在下での含水アルコール中における加水分解 ·縮合反応により得 られる球状微粒子のアルコールを溶媒主成分とする懸濁体(la)を得 ることができる。 The suspension (I) described above and an amorphous material dispersed and contained in the suspension (I) The method for producing the silica spherical fine particles is not particularly limited, but a production method through the step (A) is preferable. For example, it is possible to obtain a suspension (la) containing alcohol of spherical fine particles obtained by hydrolysis / condensation reaction of silicon alkoxide in hydrous alcohol in the presence of the above-mentioned catalyst and containing alcohol as a main component.
該懸濁体(la)から懸濁体(I) を製造する方法は特に限定されず、 懸濁体(la)をそのまま懸濁体(I) として使用してもよいが、 例え ば、 常圧または減圧下で懸濁体(la)中の溶媒成分の一部または、 触 媒成分の一部または全部を留去する等の方法で濃縮したもの、 ある いは 懸濁体(la)中の溶媒成分を懸濁体(la)中のアルコールと同一 または異なるアルコールで溶媒置換したものを懸濁体(I) とするこ ともできる。  The method for producing the suspension (I) from the suspension (la) is not particularly limited, and the suspension (la) may be used as it is as the suspension (I). Concentrated by removing some or all of the solvent component in the suspension (la) or part or all of the catalyst component under pressure or reduced pressure, or in the suspension (la) The suspension (I) can be obtained by subjecting the solvent component to solvent replacement with the same or different alcohol as the alcohol in the suspension (la).
上述した好ましい製法に従えば、 非晶質シリカ球状微粒子がアル コールを少なく とも溶媒主成分とする懸濁体(I) が得られる。  According to the preferred production method described above, a suspension (I) in which the amorphous silica spherical fine particles contain alcohol at least as a main component can be obtained.
懸濁体(I) を得る別法としては、 例えば水ガラスの脱アルカリ法 等の湿式法、 あるいは乾式法などによって得られた非晶質シリ力球 状微粒子を、 アルコール等の溶媒中に分散させる等の方法が挙げら れる。  As another method for obtaining the suspension (I), for example, amorphous silica fine spherical particles obtained by a wet method such as a de-alkali method of water glass or a dry method are dispersed in a solvent such as alcohol. And the like.
上述のようにして得られた懸濁体(I) を、 前記した金属 (水) 酸化物のゾル及び 1種または 2種以上のアルコール共存下で、 1 0 0〜2 5 0での範囲、 より好ましくは 1 5 0〜 2 5 0。Cの範囲 で加熱処理することにより、 目的とする複合体球状微粒子が得られ る。  The suspension (I) obtained as described above is mixed with the above-mentioned metal (hydroxide) oxide sol and one or more alcohols in the range of 100 to 250, More preferably, 150 to 250. By performing the heat treatment in the range of C, the desired composite spherical fine particles can be obtained.
上記加熱処理する際に金属 (水) 酸化物のゾル及び 1種または 2 種以上のアルコールを共存させる方法は特に限定されない。 好まし い方法として、 通常加熱処理に先立ちまたは加熱処理中に、 懸濁体 ( I ) に金属 (水) 酸化物のゾル及び必要に応じて 1種または 2種以 上のアルコールを添加する方法が採用される。 The method of coexisting the metal (hydroxide) sol and one or more alcohols during the heat treatment is not particularly limited. Preferred In general, prior to or during the heat treatment, a method is used in which a metal (aqueous) oxide sol and, if necessary, one or more alcohols are added to the suspension (I). Is done.
上記アルコールの添加は、 懸濁体(I ) 中に既にアルコールが含有 されている場合は必要に応じて、 アルコールが含有されていない場 合は必ず行われる。 懸濁体(I ) 中に既にアルコールが含有されてい る場合に添加されるアルコールは、 含有されているアルコールと同 —であっても異なっていてもよい。  The above-mentioned alcohol is added as necessary when the suspension (I) already contains alcohol, and is always added when the suspension (I) does not contain alcohol. When alcohol is already contained in the suspension (I), the alcohol to be added may be the same as or different from the contained alcohol.
金属 (水) 酸化物のゾルは 1種または 2種以上が懸濁体(I ) に添 加されるが、 添加方法は特に限定されない。 一般的な方法と して は、 例えば、 懸濁体(I ) を撹拌しながらその液面上あるいは液中に 該ゾルの全量を一気に、 もしくは数回に分けて添加する方法、 ある いは適当な速度で連続的に添加する方法が採用される。 また 2種以 上のゾルを添加する場合は、 それらの混合物として、 あるいは別々 に添加すればよい。  One or more metal (water) oxide sols are added to the suspension (I), but the method of addition is not particularly limited. As a general method, for example, a method in which the whole amount of the sol is added to the suspension (I) at once or in several portions on the surface of the solution or in the solution while stirring the suspension (I), or A method of continuously adding at a high speed is employed. When two or more sols are added, they may be added as a mixture thereof or separately.
また、 懸濁体(I ) への、 金属 (水) 酸化物のゾル及びアルコール の添加順序は特に限定されず、 例えば同時に添加してもよい。  The order of addition of the metal (aqueous) oxide sol and the alcohol to the suspension (I) is not particularly limited, and they may be added simultaneously, for example.
上述の、 加熱処理までの一連の好ましい製法に従えば、 ゾルとし て添加した金属 (水) 酸化物が表面に強固に結合し、 且つ共存させ たアルコールが非晶質シリカ及び または金属 (水) 酸化物に結合 した、 本発明の目的とする複合体球状微粒子を、 アルコールを含む 懸濁体(I -L) (アルコール分散体) あるいは粉体として得ることが できる。  According to the above-described series of preferable manufacturing processes up to the heat treatment, the metal (water) oxide added as a sol is firmly bonded to the surface, and the coexisting alcohol is composed of amorphous silica and / or metal (water). The composite spherical fine particles of the present invention bound to the oxide can be obtained as a suspension (I-L) (alcohol dispersion) or powder containing alcohol.
例えば懸濁体(I-L) は、 懸濁体(I ) を、 前記した金属 (水) 酸化 物のゾル及び 1種または 2種以上のアルコール共存下で、 1 0 0〜 2 5 0。Cの範囲、 より好ましくは 1 5 0〜2 5 0 °Cの範囲で加熱処 理した後、 あるいは加熱処理しながら、 共存するアルコールの内の 少なく とも 1種を最終的に溶媒として残し、 他の溶媒成分を除去す ることにより得られる。 この際、 溶媒置換等の方法が必要に応じて 採用される。 For example, the suspension (IL) is prepared by preparing the suspension (I) in the presence of a metal (aqueous) oxide sol and one or more alcohols, 2 5 0. After heat treatment in the range of C, more preferably in the range of 150 ° C. to 250 ° C., or while heat treatment, at least one of the coexisting alcohols is finally left as a solvent, and It is obtained by removing the solvent component of At this time, a method such as solvent replacement is adopted as necessary.
複合体球状微粒子の粉体は、 上記懸濁体(I-L) を経る方法におい て最終的に溶媒成分を完全に除去することによつても得られるが、 懸濁体(I) に、 金属 (水) 酸化物のゾル及び必要に応じて 1種また The powder of the composite spherical fine particles can also be obtained by finally removing the solvent component completely in the method involving the above-mentioned suspension (IL). Water) oxide sol and one or more
" は 2種以上のアルコールを添加した後、 上記温度範囲での加熱処理 と溶媒成分の除去を同時に行える真空瞬間蒸発法を採用すれば、 2 次凝集がなく分散性の極めて優れる複合体球状微粒子の粉体が得ら れ、 特に好ましい。 "Spherical microparticles with excellent secondary dispersibility and excellent secondary dispersibility can be obtained by using the vacuum flash evaporation method, in which heat treatment in the above temperature range and removal of solvent components can be performed simultaneously after adding two or more alcohols. This is particularly preferable.
[製法(Pr-II) ]  [Production method (Pr-II)]
この方法では、 1種または 2種以上のアルコール (X ) が非晶質 シリカに結合したシリ力一アルコール複合体球状微粒子の懸濁体 (II)を使用し、 これをイオンの電気陰性度が 1 5 . 6未満である金 属の (水) 酸化物のゾル、 及び上記アルコール (X ) と同一もし く は異なる 1種または 2種以上のアルコール ( Y ) の存在下で 1 0 0〜2 5 0 °Cの範囲に加熱する方法であり、 該方法により、 ァ ルコール (X ) 及び ( Y ) の内の少なく とも 1種のアルコールが上 記非晶質シリカ及び Zまたは上記金属 (水) 酸化物に結合した複合 体球状微粒子が得られる。  This method uses a suspension (II) of spherical particles of an alcohol-alcohol complex in which one or more alcohols (X) are bonded to amorphous silica. 100 to 2 in the presence of a metal (hydr) oxide sol less than 15.6 and one or more alcohols (Y) which are the same or different from the alcohols (X) described above. This is a method of heating to 50 ° C., wherein at least one of alcohols (X) and (Y) contains the above-mentioned amorphous silica and Z or the above metal (water). The composite spherical fine particles bonded to the oxide are obtained.
使用する懸濁体(II)の構成要素及び組成等は、 非晶質シリカ球状 微粒子にアルコールが結合していること以外は製法(Pr-I)において 前記した懸濁体(I) と同様である。 また、 ここでいうアルコール (X) 及び (Y) は、 複合体球状微粒子の構成要素として説明した アルコールと同様のものを意味する。 The components and composition of the suspension (II) used are the same as those of the suspension (I) described above in the production method (Pr-I) except that alcohol is bonded to the amorphous silica spherical fine particles. is there. Also, alcohol here (X) and (Y) mean the same as the alcohol described as a component of the composite spherical fine particles.
上述した懸濁体(Π)及び懸濁体(II)に分散含有されてなるシリ 力一アルコール複合体球状微粒子は、 その製法において特に限定さ れないが、 懸濁体(I) と同様の方法、 即ち前記工程 (Α) を経る製 法が好ましく採用される。  The silica-alcohol composite spherical fine particles dispersed and contained in the suspension (体) and the suspension (II) described above are not particularly limited in the production method, but are the same as those in the suspension (I). The method, that is, the production method through the above-mentioned step (Α) is preferably adopted.
例えばシリ コンアルコキシドの含水アルコール中における加水分 解 · 縮合反応によ り、 前記したように非晶質シリ 力球状微粒子の アルコールを溶媒主成分とする懸濁体(la)を得るこ とができるが、 該懸濁体(la)をアルコール (X ) の存在下で 1 0 0 °C未満あるいは 1 0 0 °C以上の温度で加熱処理する等の方法により懸濁体(II)を得 るこ とができる。  For example, by the hydrolysis / condensation reaction of a silicon alkoxide in a hydrous alcohol, a suspension (la) containing amorphous alcohol spherical fine particles as a solvent as a main component can be obtained as described above. However, a suspension (II) is obtained by heating the suspension (la) at a temperature of less than 100 ° C. or at a temperature of 100 ° C. or more in the presence of alcohol (X). be able to.
あるいは、 上記加水分解 ·縮合反応において、 使用する原料の種 類、 反応温度等の反応条件を制御するこ とによ り、 非晶質シリカに アルコール (X ) が結合したシリカ一アルコール複合体球状微粒子 の懸濁体(Ila) を得、 これをそのまま懸濁体(II)と して使用するこ ともできる。 また懸濁体(Ila) を加熱濃縮する等の後処理すること により懸濁体(II)を得ることもできる。  Alternatively, in the above hydrolysis-condensation reaction, the silica-alcohol complex spherical in which the alcohol (X) is bonded to the amorphous silica is controlled by controlling the type of raw materials used and the reaction conditions such as the reaction temperature. A suspension (Ila) of fine particles is obtained, and this can be used as it is as the suspension (II). The suspension (IIa) can also be obtained by post-treatment such as heating and concentrating the suspension (Ila).
アルコール (Y) は懸濁体(II)中に例えば溶媒成分として存在し ていてもよく、 製法(Pr-I)で述べた場合と同様に、 懸濁体(II)を、 1 0 0〜2 5 0 °Cの範囲で加熱処理するに先立ちまたは加熱処理中 に添加してもよい。  The alcohol (Y) may be present, for example, as a solvent component in the suspension (II), and the suspension (II) is added to the suspension (II) in the same manner as described in the production method (Pr-I). It may be added before or during the heat treatment in the range of 250 ° C.
懸濁体(II)から、 複合体球状微粒子を製造するまでの製法は、 製 法(Pr-I)で述べたと同様の方法を採用することができ、 製法(Pr-I) と同様にして複合体球状微粒子の粉体あるいはアルコール分散体を 得ることができる。 The production method from the suspension (II) to the production of the composite spherical fine particles can be the same method as described in the production method (Pr-I), and can be carried out in the same manner as in the production method (Pr-I). Powder or alcohol dispersion of composite spherical fine particles Obtainable.
ところで懸濁体(Π)を金属 (水) 酸化物ゾル及びアルコール By the way, the suspension (Π) is converted to metal (water) oxide sol and alcohol
(Υ) と共に加熱処理することによって複合体微粒子中に結合状態 で導入されるアルコールの種類は、 懸濁体(Π)に予め結合されたァ ルコール (X) および加熱反応前に添加され、 あるいは懸濁体(II) 中に既に溶媒成分として存在するアルコール (Υ) の種類及び量あ るいは加熱反応条件等によって種々変わってくる。 その態様として は、 たとえば①懸濁体(II)中の微粒子に結合したアルコール (X) がそのまま残って複合体球状微粒子の結合アルコールどして存在す る場合、 ②懸濁体(Π)中の微粒子に結合したアルコール (X ) のす ベてが、 加熱反応工程でエステル交換等によりアルコール (Υ) と 置換される場合、 ③懸濁体(Π)中の微粒子に結合したアルコールThe type of alcohol introduced into the composite microparticles in a bound state by heat treatment with (Υ) is added to the alcohol (X) previously bound to the suspension (Π) and added before the heating reaction, or It varies depending on the type and amount of the alcohol (II) already present as a solvent component in the suspension (II) or the heating reaction conditions. For example, in the case where the alcohol (X) bound to the fine particles in the suspension (II) remains as it is and remains as the bound alcohol of the composite spherical fine particles, (2) in the suspension (Π) If all of the alcohol (X) bound to the microparticles in step (b) is replaced with alcohol (Υ) by transesterification etc. in the heating reaction step, (3) the alcohol bound to the microparticles in the suspension (Π)
(X) をそのまま残したままで、 加熱反応工程で残余の結合サイ ト 部にアルコール (Υ) が結合する場合、 ④懸濁体(II)中の微粒子 に結合したアルコール (X ) の一部が加熱反応工程でアルコールIf alcohol (Υ) binds to the remaining binding site in the heating reaction step while (X) is left as it is, (4) part of the alcohol (X) bound to the fine particles in the suspension (II) Alcohol in the heating reaction process
( Υ) に置換され、 且つ残余の結合サイ ト部にもアルコール (Υ) が更に結合する場合等が挙げられる。 従って最終的に得られる複合 体球状微粒子としては、 アルコール (X) およびノまたはアルコー ル (Υ) が様々の比率で結合したものを得ることができ、 それらは すべて本発明の技術的範囲に包含される。 (Υ), and the alcohol (Υ) is further bonded to the remaining bonding site. Therefore, as the composite spherical fine particles finally obtained, those in which alcohol (X) and alcohol or alcohol (Υ) are bonded in various ratios can be obtained, and all of them are included in the technical scope of the present invention. Is done.
[製法(ΡΓ-ΠΙ)]  [Production method (ΡΓ-ΠΙ)]
この方法では、 非晶質シリカ球状微粒子の表面に予めアルコール が結合されたシリ力一アルコール複合微粒子が、 上記アルコールの うち少なく とも 1種のアルコールを主成分とするアルコール性溶媒 中に分散されてなる懸濁体(ΠΙ) が使用される。 この懸濁体(III) 中におけるシリ力 -アルコール複合球状微粒子の濃度は、 該懸濁体 全量中に占める比率で 1〜 5 0重量%の範囲が好ましい。 該濃度が 不足する場合は複合体球状微粒子の生産性が悪く、 逆に濃度が高く なり過ぎると該懸濁体(ΠΙ) の粘度が高くなり、 金属 (水) 酸化物 ゾルの添加工程におけるゾルの拡散性が悪くなる傾向があり、 均一 な組成の複合体球状微粒子が得られにく くなる。 According to this method, the silica-alcohol composite fine particles in which alcohol is previously bonded to the surface of the amorphous silica spherical fine particles are dispersed in an alcoholic solvent containing at least one of the above alcohols as a main component. Suspension (体) is used. This suspension (III) The concentration of the silicic acid-alcohol composite spherical fine particles in the aqueous solution is preferably in the range of 1 to 50% by weight based on the total amount of the suspension. If the concentration is insufficient, the productivity of the composite spherical fine particles is poor. Conversely, if the concentration is too high, the viscosity of the suspension (ΠΙ) increases, and the sol in the metal (water) oxide sol addition step is increased. This tends to result in poor diffusibility of the composite, making it difficult to obtain composite spherical fine particles having a uniform composition.
また懸濁体(III) 中における溶媒主成分であるアルコールの濃度 は、 懸濁体中の全溶媒に対し 8 0〜 1 0 0重量%の範囲が好ま し く、 該濃度が 8 0重量%未満 はシリ力複合球状微粒子の分散性が 悪く なることがある。  The concentration of the alcohol which is the main component of the solvent in the suspension (III) is preferably in the range of 80 to 100% by weight based on the total solvent in the suspension, and the concentration is preferably 80% by weight. If the ratio is less than 1, the dispersibility of the spherical composite fine particles may be poor.
該シリカ一アルコール複合球状微粒子中におけるアルコールの結 合量は、 最終的に得られる複合体球状微粒子中に占める比率に換算 して 1〜 3 0重量%の範囲であることが好ましく、 この結合量が不 足する場合は該微粒子の懸濁体(ΠΙ) 中における分散性が悪く なつ て、 最終的に得られる複合体球状微粒子の真球性、 粒度分布および 分散性が悪化し、 また結合量が多過ぎると複合体球状微粒子の機械 的強度が不十分になる。  The amount of alcohol bound in the silica-alcohol composite spherical fine particles is preferably in the range of 1 to 30% by weight in terms of the ratio in the finally obtained composite spherical fine particles. When the particle size is insufficient, the dispersibility of the fine particles in the suspension (ΠΙ) is deteriorated, and the sphericity, particle size distribution and dispersibility of the finally obtained composite spherical fine particles are deteriorated. If the amount is too large, the mechanical strength of the composite spherical fine particles becomes insufficient.
懸濁体(III) の製法は特に限定されないが、 例えば、 前記製法 (Pr-I)または (Pr-II) と同様にして得られる懸濁体(la)または (Ila) 中の溶媒の一部または全部をアルコールで加熱溶媒置換する ことによ り、 非晶質シリ力に該アルコールが結合した球状微粒子の アルコール懸濁体が得られる。 上記方法においては、 加熱溶媒置換 した後、 さらに同温度であるいはさらに昇温して加熱処理すること によりアルコールの結合量を制御することも可能である。  The method for producing the suspension (III) is not particularly limited. For example, one of the solvents in the suspension (la) or (Ila) obtained in the same manner as in the above method (Pr-I) or (Pr-II) By substituting a part or all of the solvent with an alcohol by heating, an alcohol suspension of spherical fine particles in which the alcohol is bonded to the amorphous silicon is obtained. In the above method, it is also possible to control the amount of alcohol bound by performing heat treatment at the same temperature or after further raising the temperature after the replacement with the heating solvent.
この際加熱処理温度は特に限定されないが、 アルコールが効率よ く結合したシリカーアルコール複合体球状微粒子が得られやすいと いう点から、 1 0 0〜2 5 0での範囲が好ましい。 懸濁体(III) を 製造する別法としては、 水ガラスの脱アル力リ法等により得られた 非晶質シリカ球状微粒子をアルコール中に混合分散させ、 加熱処理 する方法等が例示される。 At this time, the heat treatment temperature is not particularly limited, but alcohol is more efficient. The range of 100 to 250 is preferred from the viewpoint that easily bonded silica-alcohol composite spherical fine particles are easily obtained. As another method for producing the suspension (III), there is exemplified a method of mixing and dispersing amorphous silica spherical fine particles obtained by a water glass removal method in alcohol and heating the mixture. .
上述した方法により得られた懸濁体(ΠΙ) に、 前記した金属の The suspension (ΠΙ) obtained by the above-described method is
(水) 酸化物のゾル (水性ゾルおよび Zまたはアルコールゾル) を 添加して混合することによ.り、 最終的に複合体球状微粒子の懸濁体(Water) By adding and mixing oxide sol (aqueous sol and Z or alcohol sol), the suspension of composite spherical fine particles is finally obtained.
(III-L) が得られる。 - ここでいう金属 (水) 酸化物のゾルを構成する溶媒としては、 前 記したのと同様の溶媒を使用することができる。 (III-L) is obtained. -As the solvent constituting the metal (aqueous) oxide sol here, the same solvent as described above can be used.
尚懸濁体(III-L) を製造する工程で、 懸濁体(III) に金属 (水) 酸化物のゾルを添加した後、 さらに加熱処理や濃縮等の操作を付加 することも適宜採用される。  In the process of producing the suspension (III-L), it is also appropriate to add a sol of a metal (aqueous) oxide to the suspension (III), and further add an operation such as heat treatment or concentration, as appropriate. Is done.
次に、 製法(Pr-IV) および(Pr-V)について詳細に説明するが、 そ れに先立ち、 製法(Pr-Π) および(Pr-V)において使用される加水分 解可能な、 イオンの電気陰性度が 1 5 . 6未満である金属の化合物 (以下、 金属化合物 Aという) について説明する。  Next, the production methods (Pr-IV) and (Pr-V) will be described in detail. Prior to that, the hydrolyzable ions used in the production methods (Pr-II) and (Pr-V) will be described. A metal compound having an electronegativity of less than 15.6 (hereinafter referred to as metal compound A) will be described.
ここでいう加水分解可能な金属化合物とは、 加水分解および Zま たは縮合反応を経て最終的に金属の (水) 酸化物を形成するもので あって、 金属に直接結合した非加水分解性の基を有しない化合物と 定義され、 好ましいものとしては金属の硫酸塩、 塩酸塩、 硝酸塩等 の無機塩;金属アルコキシド、 金属アセテート、 金属ォキサレート 等の金属ァシレート化合物;金属ァセチルァセトナート、 金属グリ コラート等の金属の 0—ジケ卜ン、 グリコール、 ヒ ドロキシカルボ ン酸、 ケトエステル、 ケトアルコール、 ァミノ アルコール、 キノ リ ン等のキレー卜化合物等が例示される。 The term “hydrolyzable metal compound” as used herein refers to a compound that forms a (hydr) oxide of a metal through hydrolysis and Z or condensation reaction, and is a non-hydrolyzable compound directly bonded to the metal. And inorganic salts such as metal sulfates, hydrochlorides, and nitrates; metal alkoxides, metal acetates, metal oxalates and other metal acylate compounds; metal acetyl acetonates, and metals. 0-diketone, glycol, hydroxycarb of metals such as glycolate Examples include chelate compounds such as acid, keto ester, keto alcohol, amino alcohol, and quinoline.
また、 上記金属化合物 (A) の懸濁体 (IV) 、 ( Π ) への添加量 は、 前記金属 (水) 酸化物のゾルの場合と同様、 金属化合物 (A) の種類や夫々の懸濁体中の球状微粒子の粒子径等によって変わって く るので一律にきめるこ とはできないが、 前記した理由によ り、 最終的に得られる複合体球状微粒子中に占める金属換算の比率が 0. 0 1〜2 0重量%の範囲、 より好ましくは 0. 05〜 1 0重量 %の範囲となる様に設定される。  The amount of the metal compound (A) added to the suspensions (IV) and (III) is the same as in the case of the metal (hydroxide) oxide sol and the type of the metal compound (A) and the amount of each metal compound (A). Since it depends on the particle diameter of the spherical fine particles in the suspension, it cannot be determined uniformly, but for the reasons described above, the ratio of the metal equivalent in the composite spherical fine particles finally obtained is 0. It is set so as to be in the range of 0.1 to 20% by weight, more preferably in the range of 0.05 to 10% by weight.
金属化合物 (A) の懸濁体 (IV) 、 ( Π ) への添加形態は特に限 定されないが、 金属化合物 (A) の水溶液、 アルコール溶液など金 属化合物 (A) 均一に溶解せしめ、 しかも懸濁体 (IV) あるいは 懸濁体 ( Π ) の溶媒と相溶性の高い溶媒に溶解させた溶液の状態で 添加することが好ましい。  The form of addition of the metal compound (A) to the suspensions (IV) and (II) is not particularly limited, but the metal compound (A) such as an aqueous solution or an alcohol solution of the metal compound (A) can be uniformly dissolved, and It is preferable to add in a state of being dissolved in a solvent having high compatibility with the solvent of the suspension (IV) or the suspension (体).
また、 金属化合物の添加方法も特に限定されず、 前記したゾルの 添加方法等が適宜採用される。  In addition, the method of adding the metal compound is not particularly limited, and the above-described method of adding the sol is appropriately employed.
製法 [Pr-IV], [Pr- V]においては、 複合体球状微粒子を構成する金 属の (水) 酸化物は、 少なく とも水の存在下で金属化合物 (A) よ り加水分解および/または縮合反応を経て形成される。 その際の必 要な水の量は適宜選択されるが、 通常、 水の量は金属化合物 (A) に対して、 金属化合物 (A) の加水分解 ·縮合反応の化学量論的量 以上存在せしめることが好ましい。  In the production methods [Pr-IV] and [Pr-V], the metal (hydr) oxides constituting the composite spherical fine particles are hydrolyzed and / or degraded from the metal compound (A) at least in the presence of water. Alternatively, it is formed through a condensation reaction. The amount of water required at that time is appropriately selected, but the amount of water is usually more than the stoichiometric amount of the hydrolysis and condensation reaction of the metal compound (A) with respect to the metal compound (A). It is preferred that
また、 加水分解触媒は、 水の存在下で金属化合物 (A) の加水分 解を促進するために、 必要に応じて懸濁体中に存在させる。 加水分 解触媒としては、 例えばアンモニア、 1級ァミ ン、 2級ァミ ン、 3 級ァミンおよび 4級アンモニゥム等の有機アミン類、 水酸化ナ卜 リ ゥム等のアル力リ金属化合物、 水酸化カルシウム等のアル力リ土類 金属化合物等の塩基触媒、 塩酸、 硝酸等の酸触媒等が例示され、 金 属化合物 (A ) の種類等によって適宜選択される。 しかし、 触媒が 加熱処理過程で最終的に留去され複合体球状微粒子中に残存し難い という観点から、 揮発性の高い低沸点化合物が好ましく、 特にアン モユアが好ましい。 また、 加熱等によってこれらの触媒成分を発生 するもの、 例えば加熱により水との反応によってアンモニアを生成 する尿素等もここでいう加水分解触媒に含まれる。 The hydrolysis catalyst is optionally present in a suspension to promote the hydrolysis of the metal compound (A) in the presence of water. Examples of the hydrolysis catalyst include ammonia, primary amine, secondary amine, and Organic amines such as quaternary ammonium and quaternary ammonium; alkaline metal compounds such as sodium hydroxide; alkaline earth metal compounds such as calcium hydroxide; base catalysts such as hydrochloric acid; acids such as hydrochloric acid and nitric acid A catalyst and the like are exemplified, and are appropriately selected depending on the kind of the metal compound (A) and the like. However, from the viewpoint that the catalyst is finally distilled off during the heat treatment process and hardly remains in the composite spherical fine particles, a low-boiling compound having high volatility is preferable, and ammonia is particularly preferable. In addition, those which generate these catalyst components by heating or the like, for example, urea which generates ammonia by reaction with water upon heating, etc. are also included in the hydrolysis catalyst.
[製法(Pr-IV) ]  [Production method (Pr-IV)]
この方法では、 非晶質シリ力よりなる球状微粒子および水を必 須成分とし、 必要により加水分解触媒を含む懸濁体 (IV ) が使用さ れ、 該懸濁体 (IV ) に、 前記金属化合物 (A ) を添加した後、 得 られた懸濁体を前記 1種または 2種以上のアルコールの共存下で In this method, a suspension (IV) containing, as essential components, spherical fine particles composed of amorphous silicon and water and, if necessary, a hydrolysis catalyst, is used. After adding the compound (A), the obtained suspension is subjected to coexistence of one or more alcohols described above.
1 0 0〜2 5 0 °Cの範囲に加熱する方法であり、 この方法により、 金属化合物—(A ) から加水分解およひ 7または縮合反応によって転 化された金属 (水) 酸化物が表面に局在化され、 しかも共存させた アルコールが非晶質シリカおよび Zまたは金属 (水) 酸化物に結合 した複合体球状微粒子が得られる。 This is a method of heating to a temperature in the range of 100 to 250 ° C. By this method, the metal (hydroxide) converted from the metal compound (A) by hydrolysis and / or condensation reaction is converted. Spherical composite fine particles are obtained in which the alcohol localized on the surface and coexisting is bonded to amorphous silica and Z or metal (hydroxide).
懸濁体 (IV ) と しては、 前記した製法(Pr-I)における懸濁体 As the suspension (IV), the suspension in the above-mentioned production method (Pr-I) is used.
( I ) のうち、 水を含むものをそのまま、 あるいは水を後添加した ものを使用でき 中でも、 前記した懸濁体 ( l a ) または懸濁体Among (I), those containing water as they are or those to which water is added later can be used. Among them, the above-mentioned suspension (la) or suspension
( I a ) を濃縮したもの等、 工程 (A ) を経る方法によって調製 され、 且つ水および前記した加水分解触媒を含むものが、 懸濁体A suspension prepared by the method passing through step (A), such as a concentrate of (Ia) and containing water and the above-mentioned hydrolysis catalyst, is a suspension.
( IV ) とし好ましく使用できる。 懸濁体 (IV) に、 前記した金属化合物 (A) を添加した後、 1種 または 2種以上のアルコールの共存下で 1 00〜 2 50 °Cの範囲、 好ま ύくは 1 50〜 2 50 °Cの範囲で加熱すると、 目的とする複合 体球状微粒子が得られる。 上記した懸濁体 (IV) 中で、 混合される 金属化合物 (A) 、 水および加水分解触媒の 4成分の混合方法等は 特に限定されない。 (IV) and can be preferably used. After adding the above-mentioned metal compound (A) to the suspension (IV), the suspension is added in the presence of one or more alcohols in the range of 100 to 250 ° C, preferably 150 to 250 ° C. When heated in the range of 50 ° C, the desired composite spherical fine particles can be obtained. The method of mixing the four components of the metal compound (A), water and the hydrolysis catalyst in the suspension (IV) described above is not particularly limited.
前記した様に金属化合物 (A) は、 少なく とも水を含む懸濁体 (IV) に添加されるが、 水や加水分解触媒等は、 予め懸濁体 (IV) 中に夫々の成分が適量存在していれば、 必ずしも追加する必要はな いが、 金属化合物 (A) の添加と同時もしく は添加後加熱処理する までの任意の時期に追加して補充することができる。  As described above, the metal compound (A) is added to the suspension (IV) containing at least water, but the water and the hydrolysis catalyst are added in advance in the suspension (IV) in an appropriate amount. If present, it is not necessary to add it, but it can be added at the same time as the addition of the metal compound (A) or at any time after the addition and before the heat treatment.
また、 加熱処理時に共存させるアルコールは、 上記した懸濁体 (IV) 中に予め含有されていてもよく、 あるいは懸濁体 (IV) に加 熱処理が終わるまでの任意の段階で添加してもよい。  The alcohol coexisting during the heat treatment may be previously contained in the suspension (IV) described above, or may be added to the suspension (IV) at any stage until the heat treatment is completed. Good.
上記した、 加熱処理までの一連の好ましい製法に従えば、 金属化 合物 (A) が加水分解されて生成した金属 (水) 酸化物が表面に強 固に結合し、 且つ共存させたアルコールが非晶質シリカおよびノま たは金属 (水) 酸化物に結合した、 本発明の目的とする複合体球状 微粒子を、 アルコール分散体あるいは粉体と して得るこ とができ る。  According to the above-described series of preferable production processes up to the heat treatment, the metal (hydroxide) generated by hydrolysis of the metal compound (A) is firmly bonded to the surface, and the coexisting alcohol is present. The composite spherical fine particles of the present invention bound to amorphous silica and / or metal (hydroxide) can be obtained as an alcohol dispersion or powder.
ここで複合体球状微粒子をアルコール分散体あるいは粉体として 得る方法としては、 夫々、 製法(Pr-I)で述べたのと同様の方法を適 用できる。  Here, as a method for obtaining the composite spherical fine particles as an alcohol dispersion or a powder, the same method as described in the production method (Pr-I) can be applied, respectively.
[製法(Pr-V)]  [Production method (Pr-V)]
この方法では、 1種または 2種以上のアルコール (X ) が非晶 質シリカに結合したシリカーアルコール複合球状微粒子の懸濁 体 ( Π ) を使用し、 該懸濁体 ( Π ) 中に、 前記した金属化合物 (A) 、 水および必要により加水分解触媒を共存させた後、 得られ た懸濁体を、 上記アルコール (X) と同一もしくは異なる 1種また は 2種以上のアルコール ( Y) の共存下で 1 0 0〜2 5 0 °Cの範囲 に加熱する方法であり、 この方法により、 金属化合物 (A) より加 水分解および Zまたは縮合反応によって転化された金属の (水) 酸 化物が表面に局在化された、 しかもアルコール (X) および (Y) の少なく とも 1種のアルコールが上記非晶質シリカおよび Zまたは 金属 (水) 酸化物に結合した複合体球状微粒子が得られる。 この 方法で用いられる懸濁体 (Π ) としては、 前記した製法(ΡΓ-Π) で 用いた懸濁体 ( Π ) を使用でき、 その好ましい製法および態様は前 記した通りである。 In this method, one or more alcohols (X) are converted to amorphous A suspension (Π) of silica-alcohol composite spherical fine particles bonded to porous silica is used, and the metal compound (A), water and, if necessary, a hydrolysis catalyst are allowed to coexist in the suspension (Π). After that, the obtained suspension is heated to a temperature of 100 to 250 ° C. in the coexistence of one or more alcohols (Y) which are the same as or different from the alcohol (X). According to this method, the metal (water) oxide converted from the metal compound (A) by hydrolysis and Z or a condensation reaction is localized on the surface, and the alcohols (X) and (Y ), Spherical particles of a complex in which at least one alcohol is bonded to the above-mentioned amorphous silica and Z or metal (hydroxide) are obtained. As the suspension (Π) used in this method, the suspension (Π) used in the above-mentioned production method (ΡΓ-Π) can be used, and its preferred production method and embodiment are as described above.
ここで懸濁体 (H ) 中で、 前記した金属化合物 (Α) 、 冰および 必要により加水分解触媒を共存させた後、 1種または 2種以上のァ ルコール ( Υ) の共存下で 1 0 0〜2 5 0 °Cの範囲、 好ましく は 1 5 0〜2 5 0 ECの範囲で加熱すると、 目的とする複合体球状微粒 子が得られる。 Here, in the suspension (H), after the above-mentioned metal compound (冰), ice and, if necessary, a hydrolysis catalyst are allowed to coexist, 10 or more alcohols (Υ) are co-existed. By heating in the range of 0 to 250 ° C., preferably in the range of 150 to 250 EC , the desired composite spherical fine particles can be obtained.
上記した懸濁体 (Π ) に共存させる金属化合物 (A) 、 水および 加水分解触媒の 3成分を共存させる方法は特に限定されない。  The method for coexisting the metal compound (A), water and the hydrolysis catalyst in the above-mentioned suspension (II) is not particularly limited.
前記した様に金属化合物 (A) は懸濁体 (Π ) に添加されるが、 水や加水分解触媒等は、 予め懸濁体 (Π ) 中に夫々の成分が適量存 在していれば、 必ずしも添加する必要はなく、 また懸濁体 ( Π ) 中 に不足する成分があれば、 あるいはこれらの成分が一切含まれてい なければ、 金属化合物 (A) の添加前、 添加と同時、 添加後等の加 熱処理するまでの任意の時期に添加して補充することができる。 また、 加熱処理時に共存させるアルコール (Y) は、 前記した製 法(Pr-II) の場合と同様、 上記した懸濁体 ( Π) 中に予め含有され ていてもよく、 あるいは懸濁体 ( Π) に加熱処理が終わるまでの任 意の段階で添加してもよい。 As described above, the metal compound (A) is added to the suspension (Π), but water and a hydrolysis catalyst are used if the respective components are previously present in the suspension (Π) in an appropriate amount. It is not necessary to add the metal compound (A) before, simultaneously with, or simultaneously with the addition of the metal compound (A) if there are any missing components in the suspension (Π) or if these components are not contained at all. Later addition It can be added and replenished at any time before the heat treatment. The alcohol (Y) coexisting during the heat treatment may be contained in advance in the above-mentioned suspension (Π), as in the case of the above-mentioned production method (Pr-II), or the suspension ( Ii) may be added at any stage until the heat treatment is completed.
上記した加熱処理までの一連の好ましい製法に従えば、 金属化合 物 (A) が加水分解されて生成した金属 (水) 酸化物が表面に強固 に結合し、 且つ共存させたアルコールが非晶質シリカおよび/また は金属 (水) 酸化物に結合した、 本発明の目的とする複合体球状微 粒子を、 アルコール分散体あるいは粉体として得ることができる。 また、 最終的に得られる複合体球状微粒子に結合状態で導入され るアルコールの種類は、 製法(ΡΓ-Π) の場合と同様に、 アルコール ( X ) および ( Υ ) の種類および量あるいは加熱条件等によって 種々変わり、 その態様としては前記したものと同様である。  According to the above-described series of preferable manufacturing processes up to the heat treatment, the metal (hydroxide) generated by hydrolysis of the metal compound (A) is firmly bonded to the surface, and the coexisting alcohol is amorphous. The composite spherical fine particles of the present invention bound to silica and / or metal (hydroxide) can be obtained as an alcohol dispersion or powder. In addition, the type of alcohol introduced in a bound state into the finally obtained composite spherical fine particles depends on the type and amount of alcohol (X) and (() or the heating conditions as in the case of the production method (ΡΓ-Π). Various changes are made depending on the above, and the modes are the same as those described above.
従ってこの方法においては、 製法(ΡΓ-Π) の場合と同様、 複合体 球状微粒子としてアルコール (X ) および またアルコール (Υ ) が種々の比較で縮合したものを得ることができ、 それらは全て本発 明の技術的範囲に含まれる。  Therefore, in this method, as in the case of the production method (ΡΓ-Π), it is possible to obtain, as various types of composite spherical particles, alcohol (X) and alcohol (Υ) condensed by various comparisons, all of which are obtained by the present method. Included in the technical scope of the invention.
上述した製法(Pr-I)〜(Pr-V)のいずれかの製法により、 本発明の 目的とする、 非晶質シリカからなる球状微粒子にィォンの電気陰性 度が 1 5. 6未満である金属の (水) 酸化物が局在し、 且つアル コールが結合した複合組成よりなる球状の複合体球状微粒子が、 粉 体または分散体として得られる。  According to any one of the above-described production methods (Pr-I) to (Pr-V), the electronegativity of ion is less than 15.6 in the spherical fine particles made of amorphous silica, which is the object of the present invention. Spherical composite fine particles having a composite composition in which a metal (hydr) oxide is localized and bound to alcohol are obtained as a powder or a dispersion.
次に本発明に係るポリエステル組成物について詳述する。 このポ リエステル組成物は、 ポリエステルに対し前述した規定要件を満た す複合体球状微粒子を 0 . 0 0 5〜5重量%含有させたものであ り、 この組成物はフィルム、 シート、 繊維をはじめとする様々の成 形体の原料素材として有効に利用される。 Next, the polyester composition according to the present invention will be described in detail. This port The ester composition contains 0.05 to 5% by weight of composite spherical fine particles satisfying the above-mentioned requirements with respect to polyester. This composition includes films, sheets and fibers. It is effectively used as a raw material for various molded objects.
該ポリエステル組成物の構成素材として配合される複合体球状微 粒子は、 粒度分布のシャープであるものが好ましく、 具体的には、 前記した式 [ II] で定義される粒子径の変動係数が 1 0 %以下であ るものが好ましい。 粒子径の変動係数が 1 0 %を越えるものでは、 該微粒子をポリエステル樹脂に配合したときに、 該樹脂中における 該微粒子の単分散性が悪ぐなるばかりでなく、 フィルム化したとき に表面凹凸の均一なフィルムが得られにく くなる。  The composite spherical fine particles blended as a constituent material of the polyester composition preferably have a sharp particle size distribution. Specifically, the coefficient of variation of the particle diameter defined by the above formula [II] is 1 It is preferably 0% or less. When the coefficient of variation of the particle diameter exceeds 10%, when the fine particles are blended with the polyester resin, not only the monodispersibility of the fine particles in the resin is deteriorated, but also the surface unevenness when the film is formed. It is difficult to obtain a uniform film.
また該複合体球状微粒子の粒子怪は、 平均粒子径が 0 . 0 5〜 Ι Ο ΠΙの範囲、 特に 0 . 1〜5 t mの範囲にあるものが好まし い。 その理由は、 平均粒子径がこの範囲にあるものでは、 複合体球 状微粒子のポリエステル樹脂に対する親和性改善効果が、 フィルム 等の成形体どしたときの成形体の特性面での改善効果として顕著に 発現されるからである。 しかも、 平均粒子径が 0 . 0 5 μ πι未満の 極微細粒になると、 該微粒子のポリエステル樹脂への分散性がか えって悪くなる傾向があり、 しかも得られるフィルムに適度の表面 突起を形成させ難くなってフィルムの滑り性改良効果が十分に発揮 されなくなることがあり、 一方、 平均粒子径が大きく なり過ぎる と、 ポリエステル樹脂に分散させる際、 あるいは得られるポリエス テル組成物をフィルム状等に加工する際に、 微粒子が割れたり表面 層剥離を生じるといった問題が生じたり、 あるいはフィルムゃシー トとした時に、 表面平坦性を満足し得なくなることがある。 この複合体球状微粒子においては、 金属 (水) 酸化物が該微粒子 表面に局在していることが該微粒子のポリエステル樹脂との親和性 を高める主な原因となっているが、 こうした金属 (水) 酸化物の作 用をよ り効果的に発揮させるうえでは、 該微粒子の最外表面から 測った厚みの粒子径に対する比が 0 . 2以下の表面層における金属 の含有量が、 該微粒子に含まれる金属 (水) 酸化物の総量に対し て、 金属原子数に換算して 5 0〜 1 0 0 %であるものが特に好まし く、 それによりポリエステル樹脂中における該微粒子の分散性は一 段と高められると共に、 ポリエステル樹脂との親和力が更に改善さ れる。 The composite spherical fine particles preferably have an average particle diameter in the range of 0.05 to {circle around (2)}, particularly in the range of 0.1 to 5 tm. The reason is that, when the average particle diameter is within this range, the effect of improving the affinity of the composite spherical fine particles to the polyester resin is remarkable as the effect of improving the characteristics of the molded product such as a film. It is because it is expressed in. In addition, when the average particle diameter becomes extremely fine particles of less than 0.05 μππ, the dispersibility of the fine particles in the polyester resin tends to be rather deteriorated, and moreover, appropriate surface projections are formed on the obtained film. In some cases, the effect of improving the slipperiness of the film may not be sufficiently exerted.On the other hand, if the average particle size is too large, the polyester composition may be dispersed in a polyester resin or the resulting polyester composition may be formed into a film or the like. At the time of processing, a problem such as cracking of fine particles or peeling of the surface layer may occur, or when the film is formed into a sheet, the surface flatness may not be satisfied. In the composite spherical fine particles, the localization of the metal (water) oxide on the surface of the fine particles is a main cause of increasing the affinity of the fine particles with the polyester resin. In order to exert the effect of the oxide more effectively, the content of the metal in the surface layer having a ratio of the thickness measured from the outermost surface of the fine particles to the particle diameter of 0.2 or less is reduced to the fine particles. It is particularly preferable that the content of the fine particles is 50 to 100% in terms of the number of metal atoms based on the total amount of the contained metal (water) oxides. The affinity with the polyester resin is further improved as well as the height.
該複合体球状微粒子を構成する金属 (水) 酸化物としては、 前記 した [ I ] 式で定義される、 イオンの電気陰性度が 1 5 . 6未満で ある金属の (水) 酸化物であれば特に限定されないが、 様々な環境 下においても、 マ ト リ ックスであるポリエステル樹脂を変質させな い様にするには、 金属イオンとして 8 . 0以上、 1 5 . 6未満の範 囲の電気陰性度を有する金属が好ま しい。 中でも、 A 1 , T i , Z r , Z n , F e , C eの (水) 酸化物は、 ポリエステル樹脂への 分散性およびボリエステル樹脂との親和性を著しく高めるうえで特 に好ましく、 中でも A 1 はその (水) 酸化物原料を容易且つ非常に 安価に入手.することができるので最も実用的であり、 しかも上記作 用面でも特に優れた効果を発揮するので、 最も好ましい金属といえ る。  The metal (hydroxide) constituting the composite spherical fine particles may be a metal (hydroxide) of a metal having an ionegativity of less than 15.6 as defined by the above formula [I]. Although it is not particularly limited, in order to prevent the polyester resin, which is a matrix, from being deteriorated even in various environments, it is necessary to use a metal ion having an electric power in a range of 8.0 or more and less than 15.6. Negative metals are preferred. Among them, (hydr) oxides of A 1, Ti, Zr, Zn, Fe, and Ce are particularly preferable in that they greatly enhance dispersibility in polyester resins and affinity with polyester resins. A 1 is the most practical metal because its (aqueous) oxide raw material can be obtained easily and very inexpensively, and is also the most preferable metal because it exhibits particularly excellent effects in the above-mentioned aspects. You.
また、 金属の (水) 酸化物が結晶学的に非晶質、 結晶質のいずれ の場合でも、 複合体球状微粒子は本発明のポリエステル組成物に適 用されるが、 該微粒子における非晶質シリカと金属 (水) 酸化物と の付着力が優れ、 ボリエステル組成物の機械的強度が優れるという 理由から、 金属 (水) 酸化物はべ一マイ 卜の様に結晶質のものであ ることが望ましい。 In both cases where the metal (hydr) oxide is crystallographically amorphous or crystalline, the composite spherical fine particles are applied to the polyester composition of the present invention. Silica and metal (water) oxide It is desirable that the metal (hydroxide) be crystalline, such as boehmite, because of its excellent adhesion and excellent mechanical strength of the polyester composition.
複合体球状微粒子中に占める金属 (水) 酸化物の好ましい比率 は、 金属に換算して 0 . 0 1〜2 0重量%の範囲であり、 該含有量 が不足するものでは、 該微粒子のポリエステル樹脂に対する親和性 が不十分であり、 一方該含有量が多くなり過ぎると、 該微粒子のポ リエステル樹脂中での分散性が悪くなり易い。 さらに該微粒子のポ リエステル樹脂どの親和性および得られるポリエステルフィルムの 表面突起形状、 表面凹凸の均一性等の制御し易さ等を総合的に考 えてより好ましい金属 (水) 酸化物の含有量は、 金属に換算して 0 . 0 5〜; L 0重量%の範囲が最適である。  The preferable ratio of the metal (hydr) oxide in the composite spherical fine particles is in the range of 0.01 to 20% by weight in terms of metal. If the content is insufficient, the polyester of the fine particles may be used. If the affinity for the resin is insufficient, and if the content is too large, the dispersibility of the fine particles in the polyester resin tends to deteriorate. Further, considering the affinity of the polyester resin of the fine particles and the ease of controlling the surface projection shape of the obtained polyester film, the uniformity of the surface irregularities, and the like, the more preferable content of the metal (hydroxide) is The range is 0.05 to 0.5% in terms of metal;
複合体球状微粒子に結合しているアルコールの好ましい量は、 ァ ルコールに換算して該微粒子中に占める比率で 1〜3 0重量%の範 囲であり、 含有量が不足する場合は該微粒子のボリエステル樹脂に 対する分散性が悪くなり、 一方多過ぎると該微粒子の機械的強度が 不十分となり、 ポリエステル樹脂に分散させる際、 あるいは得られ たボリエステル組成物をフィルム状等に加工する工程で該微粒子が 割れるといった問題を生じる場合がある。  The preferred amount of the alcohol bound to the composite spherical fine particles is in the range of 1 to 30% by weight in terms of alcohol, when the content is insufficient. On the other hand, when the amount is too large, the mechanical strength of the fine particles becomes insufficient, and when the fine particles are dispersed in a polyester resin, or when the obtained polyester composition is processed into a film or the like, the fine particles are difficult to disperse. This can cause problems such as cracking.
結合されるアルコールの種類は特に限定されず、 前記したアル コールが全て適用できるが、 中でも炭素数が 1〜 1 0の 1価アル コール、 グリコールおよび 3価アルコールは、 該微粒子のボリエス テル樹脂に対する分散性を高める上で特に好ましい。  The type of alcohol to be bonded is not particularly limited, and all of the above-mentioned alcohols can be applied. Among them, monohydric alcohols, glycols and trihydric alcohols having 1 to 10 carbon atoms are particularly preferred for the fine particles of the polyester resin. It is particularly preferable for enhancing dispersibility.
上記の様に本発明のポリエステル組成物は、 前述の要件を満たす 複合体球状微粒子を必須成分として 0 . 0 0 5〜1 0重量%含有す るものであるが、 このポリエステル組成物にはさらに他の成分とし て必要に応じて帯電防止剤, 紫外線吸収剤, 酸化防止剤, 熱安定 斉 IJ, 光安定剤, 顔料, 染料等を少量添加することができる。 As described above, the polyester composition of the present invention contains 0.005 to 10% by weight of the composite spherical fine particles satisfying the above requirements as an essential component. However, if necessary, small amounts of other components such as antistatic agents, ultraviolet absorbers, antioxidants, heat stabilizers, light stabilizers, pigments, dyes, etc. are added to this polyester composition. can do.
次にボリエステル組成物の製造方法について説明するが、 本発明 のポリエステル組成物においては、 前述の如く微粒子表面に特定の 金属 (水) 酸化物が局在し且つ特定量のアルコールが結合した複合 体球状微粒子を使用するところに特徴を有するものであるから、 使 用するポリエステルの種類や配合法等については一切制限がなく、 従来公知のポリエステルをポリエステル成分と し、 従来公知の製造 方法に従えば、 本発明の組成物を得ることができる。  Next, a method for producing a polyester composition will be described. In the polyester composition of the present invention, as described above, a composite in which a specific metal (hydroxide) is localized on the surface of fine particles and a specific amount of alcohol is bonded. The characteristic feature is that spherical fine particles are used.Therefore, there is no restriction on the type and blending method of the polyester to be used, and any conventionally known polyester may be used as the polyester component and any conventionally known production method may be used. The composition of the present invention can be obtained.
尚ポリエステルへの複合体球状微粒子の添加法は、 粉体としてポ リエステルに配合する方法、 あるいはエチレングリ コール、 プロピ レングリ コール、 1 , 3 —ブタジオール等のポリエステルの原料で あるグリ コール中に予め分散せしめたいわゆるグリ コール分散体と してポリエステルに添加する方法等を採用すればよい。 これら粉体 およびグリ コール分散体は、 前記した複合体球状微粒子の製法 (Pr- I )〜(Pr-V)のいずれかの製法に従って容易に得られる。  The method of adding the composite spherical fine particles to the polyester may be a method of adding it to the polyester as a powder or dispersing it in advance in glycol, which is a raw material of polyester such as ethylene glycol, propylene glycol, and 1,3-butadiol. A method of adding a so-called glycol dispersion to the polyester may be employed. These powders and glycol dispersions can be easily obtained according to any one of the above-described methods (Pr-I) to (Pr-V) for producing composite spherical fine particles.
また、 複合体球状微粒子をポリエステル中に分散含有させる時期 と しては、  Also, when the composite spherical fine particles are dispersed and contained in the polyester,
①ポリエステルを形成するための重縮合反応の任意の時点 および または  (1) At any point in the polycondensation reaction to form the polyester and or
②複合体球状微粒子の非存在下に重縮合反応して得たポリエステ ルを再度溶融させた時点  ② When the polyester obtained by the polycondensation reaction in the absence of the composite spherical fine particles is melted again
等が例示され、 特に制限されない。 And the like, and are not particularly limited.
上記①の方法を採用する場合、 複合体球 ·状微粒子を反応系中へ添 加する時期は特に制限されないが、 重縮合反応の初期、 例えば反応 開始後固有粘度が約 0 . 3になるまでの間が好ましく、 添加方法、 添加時期についても特に限定されない。 しかしポリエステルの原料 であるグリ コールの 1種または 2種以上の混合溶媒に該微粒子を分 散させた懸濁体の状態で添加する方法を採用すると、 微粒子の分散 状態が非常に良好なポリエステル組成物が得られ易い。 When the above method (1) is adopted, the composite spheres and fine particles are added to the reaction system. The timing of addition is not particularly limited, but is preferably at the beginning of the polycondensation reaction, for example, until the intrinsic viscosity becomes about 0.3 after the start of the reaction, and the addition method and the addition timing are not particularly limited. However, if a method is used in which the fine particles are dispersed in a suspension in which one or more of the glycols, which are the raw materials for the polyester, are dispersed, the polyester composition in which the fine particles are dispersed very well Things are easy to obtain.
ポリエステルへの複合体球状微粒子の含有量は、 ポリエステル 組成物全体に占める比率で 0 · 0 0 5〜 1 0重量%、 好ましく は 0 ひ 1〜3重量%の範囲とすべきであり、 添加量が不足する場合 は滑り性ゃ耐削れ性の向上効果が十分に発揮されず、 一方多過ぎる とフィルムやシート等に成形したときの表面平坦性が悪くなる場合 がある。  The content of the composite spherical fine particles in the polyester should be in the range of 0.05 to 10% by weight, preferably 0 to 1 to 3% by weight, based on the entire polyester composition. If the content is insufficient, the effect of improving the slipperiness / abrasion resistance is not sufficiently exhibited, while if too large, the surface flatness when formed into a film, a sheet, or the like may deteriorate.
なお、 本発明の効果を損なわない程度であれば、 複合体球状微粒 子以外の微粒子、 例えば球状、 塊状、 板状等の形状を有し、 且つポ リエステルに不溶な外部添加粒子および Zまたはポリエステル合成 時に析出させた内部粒子を含有させても差し支えない。 -さらに平均 粒子径、 化学組成等の異なる 2種以上の複合体球状微粒子を含有さ せることもできる。  In addition, as long as the effects of the present invention are not impaired, fine particles other than the composite spherical fine particles, for example, externally added particles and Z or polyester which have a shape such as a sphere, a lump, or a plate, and are insoluble in the polyester, Internal particles precipitated during synthesis may be included. -Further, two or more kinds of composite spherical fine particles having different average particle diameters, chemical compositions and the like can be contained.
本発明のポリエステル組成物を構成するポリエステルとは、 ジカ ルボン酸成分とグリコール成分とを重縮合させてなるボリエステル 樹脂をすベて包含するものであり、 ジカルボン酸としては、 例えば テレフタル酸、 ナフタレンジカルボン酸等の芳香族ジカルボン酸が 好ましく、 またグリコール成分としては、 エチレングリ コール、 ト リメチレングリ コール、 1 , 3—ブタンジオール、 1 , 5—ペン夕 ンジオール、 1 , 6—へキサンジオール、 1 , 8—オクタンジォー ル、 1, 1 0—デカンジオール等の脂肪族グリ コールが好ましいも のと して例示される。 なかでも、 アルキレンテレフ夕 レートおよ び またはアルキレンナフタレ一トを主な構成成分とするポリエス テルが好ましく、 さらにエチレンテレフタレートおよび/またはェ チレンナフタレートを主な構成成分とするものが特に好ましい。 こ れらのポリエステルはそれ自体公知であり、 公知の方法で製造する ことができる。 The polyester constituting the polyester composition of the present invention includes all polyester resins obtained by polycondensing a dicarboxylic acid component and a glycol component. Examples of the dicarboxylic acid include terephthalic acid and naphthalenedicarboxylic acid. Aromatic dicarboxylic acids such as acids are preferred. Glycol components include ethylene glycol, trimethylene glycol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8 —Octanediol And aliphatic glycols such as 1,10-decanediol are preferred. Among them, polyesters containing alkylene terephthalate and / or alkylene naphthalate as a main component are preferable, and those containing ethylene terephthalate and / or ethylene naphthalate as a main component are particularly preferable. These polyesters are known per se and can be produced by a known method.
• かく して得られるポリエステル組成物は、 ポリエステル中に複合 体球状微粒子が単分散状態で均一に分散したものであり、 相当の熱 や外力を受けた場合でも該組成物中の複合体球状微粒子が組成物中 で凝集したり、 あるいは変質する様なこともない。 従ってこれを公 知の方法でフィルム、 シート、 繊維をはじめとする任意の形状に成 形するこ とにより、 従来例にみられない特性 (滑り性ゃ耐摩耗性 等) を備えた成形体を得ることができる。  • The thus obtained polyester composition is a composition in which the composite spherical fine particles are uniformly dispersed in a polyester in a monodispersed state. Even when subjected to considerable heat or external force, the composite spherical fine particles in the composition are obtained. Does not agglomerate or degrade in the composition. Therefore, by forming this into an arbitrary shape such as a film, sheet, or fiber by a known method, a molded article having characteristics (slipperiness, abrasion resistance, etc.) not seen in conventional examples can be obtained. Obtainable.
例えば、 このポリエステル組成物を用いてポリエステルフィルム を得よう とする場合は、 該ポリエステル組成物を 2 8 0〜3 0 0 °C 程度に加熱してシ一ト状に溶融押出した後、 冷却固化することによ り非晶質の未延伸フィルムとすることができ、 さらに必要に応じて 例えば縦方向および横方向、 あるいは縦、 横、 縦の方向に逐次、 ま たは縦方向および横方向同時に二軸延伸する方法等を採用すること により、 一軸もしく は二軸配向フィルムとすることができる。 得ら れる延伸フイルムは、 従来フィルムに比べてボイ ドの生成などが極 度に抑えられたフィルムである。 実施例 以下、 実施例によって本発明をさらに詳細に説明するが、 本発明 はこれらの実施例に限定されるものではない。 尚各微粒子の粒子形 状、 平均粒子径、 粒子径の変動係数、 結晶性、 組成、 ゼータ電位、 樹脂溶液に対する分散性、 ポリエステル樹脂吸着量等の物性または 物性値は以下の方法により分析、 評価した。 また、 グリコール分散 体の場合における微粒子濃度の測定法も以下に示した。 For example, when a polyester film is to be obtained using the polyester composition, the polyester composition is heated to about 280 to 300 ° C., melt-extruded into a sheet, and then cooled and solidified. By doing so, an amorphous unstretched film can be obtained, and if necessary, for example, in the longitudinal and transverse directions, sequentially in the longitudinal, transverse, and longitudinal directions, or simultaneously in the longitudinal and transverse directions. By adopting a biaxial stretching method or the like, a uniaxial or biaxially oriented film can be obtained. The obtained stretched film is a film in which the generation of voids and the like is extremely suppressed as compared with the conventional film. Example Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. The physical properties or physical properties such as the particle shape, average particle diameter, variation coefficient of particle diameter, crystallinity, composition, zeta potential, dispersibility in resin solution, and polyester resin adsorption amount of each fine particle are analyzed and evaluated by the following methods. did. The method for measuring the concentration of fine particles in the case of the glycol dispersion is also shown below.
(粒子形状)  (Particle shape)
1万倍の走査型電子顕微鏡により判定した。  It was judged by a scanning electron microscope of 10,000 times.
(平均粒子径および粒子径の変動係数) · - (Average particle diameter and coefficient of variation of particle diameter) ·-
1万倍の走査型電子顕微鏡像の任意の粒子 1 0 0個の粒子径を 実測して、 前記 [II]式より求めた。 The particle diameter of 100 arbitrary particles in a scanning electron microscope image of 10,000 times was actually measured, and the particle diameter was obtained from the above formula [II].
(結晶性)  (crystalline)
X線回折測定により評価した。  It was evaluated by X-ray diffraction measurement.
(微粒子中のシリ力以外の金属の含有量)  (Content of metal other than silicide force in fine particles)
X線マイク口アナライザーおよび E S C A等による表面組成分 析、 蛍光 X線分析および原子吸光分析等によるバルク組成分析等 を総合して求めた。 尚試料が粉体である場合は、 それを測定試料 とし、 試料がグリ コール分散体を始めとする懸濁体である場合 は、 該懸濁体中の微粒子を遠心分離操作によつて分離した後、 9 0 eCで真空乾燥し、 揮発成分を完全に除去して微粒子の粉体試 料を得、 上記測定に供した。 The surface composition analysis using an X-ray microphone analyzer and ESCA, etc., and the bulk composition analysis using fluorescent X-ray analysis and atomic absorption analysis were performed. When the sample was a powder, the sample was used as a measurement sample. When the sample was a suspension including a glycol dispersion, fine particles in the suspension were separated by centrifugation. after, and dried in vacuo at 9 0 e C, to obtain a powder specimen of the particles to completely remove volatile components, it was subjected to the measurement.
(アルコール含有量)  (Alcohol content)
微粒子が粉体の場合は、 予め 9 0でで真空乾燥することにより 物理的に吸着した水分および遊離の残存揮発成分を除去したも のを試料として約 5 gを精秤し、 0 . 0 5 Nの N a O H水溶液 2 5 Omlに添加し室温で 1 0時間攪拌する。 これによ り微粒子中 の加水分解性基は全て加水分解されて水溶液中に抽出されるの で、 該懸濁体から微粒子を分離した清澄液中のアルコール量をガ スクロマ トグラフにより定量し、 粉体試料 1 gに対する結合アル コール量とした。 また微粒子が懸濁体である場合は、 懸濁体の一 部を 90でに加熱して遊離のグリ コール等の揮発成分を完全に除 去し得るまで真空乾燥することにより乾燥粉末を得、 この乾燥粉 末を試料として同様に求めた。 If the fine particles are powder, about 5 g is precisely weighed using a sample from which physically adsorbed water and free residual volatile components have been removed by vacuum drying in advance at 90, and N NaOH aqueous solution of N Add to 25 Oml and stir at room temperature for 10 hours. As a result, all the hydrolyzable groups in the fine particles are hydrolyzed and extracted into the aqueous solution. Therefore, the amount of alcohol in the clarified liquid obtained by separating the fine particles from the suspension is determined by gas chromatography, and It was the amount of bound alcohol per 1 g of the body sample. When the fine particles are a suspension, a part of the suspension is heated to 90 and dried under vacuum until volatile components such as free glycol can be completely removed to obtain a dry powder. This dried powder was used as a sample for the same determination.
(ゼ一-夕電位)  (Zi-Evening potential)
微粒子が粉体である場合には、 粉体を超音波ホモジナイザーを 用いて純水中に分散させて 5重量%の懸濁体とし、 これを試料と して電気泳動式ゼータ電位測定装置 (島津製作所製 1 2 0 2形) により測定した。 また微粒子が懸濁体である場合は、 該懸濁体を 純水で希釈して 5重量%の懸濁体とし、 同様に測定した。  When the fine particles are powder, the powder is dispersed in pure water using an ultrasonic homogenizer to form a 5% by weight suspension, and this is used as a sample to prepare an electrophoretic zeta potential measurement device (Shimadzu). It was measured according to the manufacturing method of 122 type. When the fine particles were a suspension, the suspension was diluted with pure water to obtain a suspension of 5% by weight, and the measurement was similarly performed.
(樹脂溶液に対する分散性)  (Dispersibility in resin solution)
スチレン—メ夕ク リル酸メチルーメタク リル酸ー ヒ ドロキシェ チルメタク リ レート共重合体 (組成比 ; 39 : 39 : 2 : 1 0 ) 2 gをメチルェチルケ トン一トルエン混合溶媒 (混合比 ; 重量比 1 : 1 ) に溶解させた溶液 1 00 gに、 微粒子粉体 2 gを添加混 合し、 攪拌して懸濁体とする。 20°Cで 20時間攪拌した後、 懸 濁体中の微粒子の分散状態を光学顕微鏡により観察し、 以下の評 価基準に従って評価した。  2 g of styrene-methyl methacrylate-methacrylic acid-hydroxylmethacrylate methacrylate copolymer (composition ratio: 39: 39: 2: 10) is mixed with methylethylketone-toluene mixed solvent (mixing ratio; weight ratio 1: 1) To 100 g of the solution dissolved in 2), 2 g of fine particle powder is added and mixed, and stirred to form a suspension. After stirring at 20 ° C. for 20 hours, the dispersion state of the fine particles in the suspension was observed with an optical microscope, and evaluated according to the following evaluation criteria.
〇 : 殆どの微粒子が分散している。  〇: Most of the fine particles are dispersed.
△ : 若干の凝集物がみられる。  Δ: Some aggregates are observed.
X : 殆どの微粒子が凝集している。 (ボリエステルの吸着量) X: Most of the fine particles are aggregated. (Polyester adsorption amount)
ポリエステル樹脂に対する親和性の尺度として、 ボリエステル 樹脂の吸着量を以下の方法に従って測定した。 即ち、 微粒子粉体 1 0 gを、 ポリエステル樹脂 [東洋紡績 (株) 製、 バイロン一 2ひ 0 ] をメチルェチルケトン— トルエン混合溶媒 (混合比 ;重 量比 1 : 1 ) に溶解させた溶液 2 0 0 gに添加混合して攪拌す る。 2 0 °Cで 1 0 0時間攪拌した後、 微粒子と溶液とを遠心分離 により分離し、 溶液中に溶解している樹脂量を、 溶液中の溶媒を 除去することにより定量し、 この結果に基づいて微粒子に対する 樹脂吸着量を求めた。  As a measure of the affinity for the polyester resin, the adsorption amount of the polyester resin was measured according to the following method. That is, 10 g of the fine particle powder was dissolved in a mixed solvent of methyl ethyl ketone-toluene (mixing ratio: 1: 1 by weight) with a polyester resin [Vylon 1-2, manufactured by Toyobo Co., Ltd.]. Add to 200 g of the solution, mix and stir. After stirring at 20 ° C for 100 hours, the fine particles and the solution were separated by centrifugation, and the amount of resin dissolved in the solution was quantified by removing the solvent in the solution. Based on this, the amount of resin adsorbed on the fine particles was determined.
(懸濁体中の微粒子濃度)  (Concentration of fine particles in suspension)
懸濁体の一部を 9 0でに加熱して、 溶媒等の揮発成分を完全に 除去し得るまで真空乾燥することにより乾燥粉末を得、 この乾燥 粉末の懸濁体に対する重量分率を求め、 この値をグリ コール分散 体中の微粒子濃度とした。 複合体球状微粒子の粉体およびグリコール分散体の製造例  A portion of the suspension was heated to 90 and vacuum-dried until volatile components such as solvents could be completely removed to obtain a dry powder, and the weight fraction of the dry powder relative to the suspension was determined. This value was defined as the concentration of fine particles in the glycol dispersion. Production Examples of Composite Spherical Fine Particle Powder and Glycol Dispersion
実施例 1  Example 1
含水メ夕ノール中でァンモニァを触媒としてテ 卜ラメチルシリ ケー卜の加水分解 ·縮合を行うことにより、 平均粒子径 0 .  Hydrolysis / condensation of tetramethyl silicate is carried out in a hydrated solvent using ammonia as a catalyst to obtain an average particle diameter of 0.1%.
のシリカ球状微粒子の懸濁体を得た。 該懸濁体をさらに 1 0 0 eC未 満の温度で加熱しメタノール等の溶媒およびアンモニアを一部留去 することにより該微粒子の濃縮懸濁体 (微粒子濃度 2 0重量%) 5 0 0重量部を得た。 懸濁体中のシリカ球状微粒子はメタノールが 非晶質シリカに結合した微粒子であった。 該濃縮懸濁体を攪拌しな がら室温にてセリアゾル ( C e 0 2 含有量 : 1 ◦重量%、 溶媒主成 分 : 水) を 1 4 7重量部添加混合し 4時間攪拌を続けた後、 1 5 0 °Cに加熱された真空瞬間蒸発装置を用いて複合体球状微粒子 ( P - 1 ) 粉体を得た。 微粒子 ( P— 1 ) は、 セリァ含有量が、 表層部に C e換算で 1 0重量%局在し、 メタノールが 4重量%結合した球状 微粒子であることが確認された。 Of silica fine particles were obtained.該懸Nigokarada further 1 0 0 e C less than the heating temperature concentrated suspension of fine particles by distilling off part of the solvent and ammonia as methanol (particle concentration 2 0 wt%) 5 0 0 Parts by weight were obtained. The silica spherical fine particles in the suspension were fine particles in which methanol was bonded to amorphous silica. Do not stir the concentrated suspension. Unwilling room temperature ceria sol (C e 0 2 content: 1 ◦ wt%, solvent principal components: water) Stirring was continued for 1 4 7 parts by weight adding and mixing 4 hours, heated to 1 5 0 ° C Using a vacuum flash evaporator, composite spherical fine particles (P-1) were obtained. It was confirmed that the fine particles (P-1) were spherical fine particles in which the seria content was localized in the surface layer by 10% by weight in terms of Ce, and 4% by weight of methanol was bonded.
実施例 2  Example 2
実施例 1 においてセリアゾルを添加する代わりに、 ェチレングリ コール 5 0重量部、 アルミナゾル ( A l 2 0 3 含有量 : 1 0重量 %、 溶媒主成分 : 水) 1 1 . 3重量部を順次添加混合した以外は、 実施例 1 と同様にして、 微粒子 ( P— 2 ) 粉体を得た。 Instead of adding ceria sol in Example 1, 50 parts by weight of ethylene glycol, 11.3 parts by weight of alumina sol (Al 2 O 3 content: 10% by weight, main component of solvent: water) were sequentially added and mixed. Except for the above, a particulate (P-2) powder was obtained in the same manner as in Example 1.
実施例 3  Example 3
実施例 2 においてアルミナゾルの代わり に、 ジルコニァゾル ( Z r 0 2 含有量 : 1 0重量%) を 2 7重量部添加した以外は、 実 施例 2 と同様にして複合体球状微粒子 ( P— 3 ) 粉体を得た。 Instead of alumina sol in Example 2, Jirukoniazoru (Z r 0 2 content: 1 0% by weight) except that the added 2 7 parts by weight, in the same manner as the actual施例2 complex spherical fine particles (P- 3) A powder was obtained.
実施例 4- 実施例 2において、 アルミナゾルの代わりにチタニアゾル ( T i 0 2 含有量 : 1 0重量%) を 3 . 3重量部、 エチレングリ コールの 代わりにベンジルアルコールを 5重量%添加した以外は、 実施例 2 と同様にして複合体微粒子 ( P - 4 ) 粉体を得た。 In Example 4 Example 2, titania sol instead of alumina sol (T i 0 2 content: 1 0% by weight). 3 3 parts by weight, except that benzyl alcohol was added 5 wt% in place of the ethylene glycol is In the same manner as in Example 2, composite fine particle (P-4) powder was obtained.
比較例 1  Comparative Example 1
実施例 2において、 アルミナゾルを添加しなかった以外は実施例 2 と同様にして微粒子 ( Q— 1 ) 粉体を得た。  Fine particles (Q-1) powder was obtained in the same manner as in Example 2 except that alumina sol was not added.
比較例 2  Comparative Example 2
実施例 2で得た微粒子 ( P - 2 ) を、 空気中 4 0 0でで加熱処理 することにより、 微粒子 (Q— 2 ) 粉体を得た。 Heat treatment of the fine particles (P-2) obtained in Example 2 in air at 400 As a result, a fine particle (Q-2) powder was obtained.
実施例 5  Example 5
比較例 1で得られた微粒子を空気中 4 0 CTCで 4時間加熱処理す ることにより、 アルコールの結合していない非晶質シリカ微粒子を 得た。 得られた非晶質シリ力微粒子 1 0 0重量部をエチレングリ コール 4 0 0重量部に混合分散させた。 得られた分散体を攪拌しな がら室温にてアルミナゾル (A 1 2 0 a 含有量: 1 0重量%、 溶媒 主成分:水) 1 1 . 3重量部を添加混合し 4時間攪拌を続けた後、 加熱昇温し 1 2 0 °Cで 2時間保持した後 6 0で-で真空乾燥すること により、 複合体球状微粒子 (P - 5 ) 粉体を得た。 The fine particles obtained in Comparative Example 1 were heated in air at 40 CTC for 4 hours to obtain amorphous silica fine particles having no alcohol bonded thereto. 100 parts by weight of the obtained amorphous silicon fine particles were mixed and dispersed in 400 parts by weight of ethylene glycol. Alumina sol and the resulting dispersion in with stirring grounds rt (A 1 2 0 a content: 1 0% by weight, the solvent ingredient: water) was continued for 1 1 3 parts by weight was added and mixed for 4 hours with stirring. Thereafter, the mixture was heated to a temperature of 120 ° C., maintained at 120 ° C. for 2 hours, and then vacuum-dried at −60 to obtain a composite spherical fine particle (P-5) powder.
比較例 3  Comparative Example 3
比較例 1で得られた微粒子を空気中 4 0 0でで 4時間加熱処理す ることにより、 アルコールの結合していない非晶質シリカ粒子を得 た。 得られた非晶質シリ力微粒子 1 0 0重量部をエチレングリ コ一 ル 3 0 0重量部に混合分散させた。 得られた分散体を攪拌しながら 室温にてアルミナゾル (A 1 2 0 3 含有量: 1 0重量%、 溶媒.主成 分:水) 1 1 . 3重量部を添加混合し 4時間攪拌を続けた後、 加熱 昇温し 6 0でで 2時間保持した後、 6 0でで真空乾燥することによ り微粒子 (Q - 3 ) 粉体を得た。 The fine particles obtained in Comparative Example 1 were subjected to a heat treatment at 400 in air for 4 hours to obtain amorphous silica particles having no alcohol bonded thereto. 100 parts by weight of the obtained amorphous silicon fine particles were mixed and dispersed in 300 parts by weight of ethylene glycol. Stirring the resulting dispersion while alumina sol at room temperature. (A 1 2 0 3 content: 1 0% by weight, solvent principal components:. Water) 1 1 3 parts by weight adding and mixing continued for 4 hours with stirring After heating, the temperature was maintained at 60 at 2 hours, followed by vacuum drying at 60 to obtain fine particles (Q-3) powder.
実施例 6  Example 6
実施例 1 と同様にして平均粒子径 0 . 5 / mのシリカ球状微粒子 の懸濁体 (微粒子濃度 1 0重量%) 5 0 0重量部を得た後、 液温を 4 0 °Cに保ち硫酸アルミニウム · 1 4水塩 1重量部を溶解した水 溶液 5 0重量部を 2時間かけて滴下した。 その後 2時間攪拌を続け た後、 1 5 CTCに加熱された真空瞬間蒸発装置を用いて複合体球状 微粒子 ( P - 6 ) を得た。 After obtaining 500 parts by weight of a suspension of silica spherical fine particles having an average particle diameter of 0.5 / m (fine particle concentration: 10% by weight) in the same manner as in Example 1, the liquid temperature was maintained at 40 ° C. 50 parts by weight of an aqueous solution of 1 part by weight of aluminum sulfate • 14 hydrate was added dropwise over 2 hours. After stirring for 2 hours, use a vacuum flash evaporator heated to 15 CTC to form the composite sphere. Fine particles (P-6) were obtained.
実施例 7  Example 7
水ガラス 3号 ( S i 0 2 含有率 2 9重量%, S i 0 2 / N a 2 0 モル比 3 . 2 ) を S i 0 2 濃度 4重量%となる様に脱イオン水で希 釈した珪酸ナト リ ウムを原料として、 公知のカチオン交換樹脂を用 いた脱ナト リ ゥムによる活性珪酸のコロイ ド水溶液製造工程および 熟成工程等を経る製法に従って、 平均粒子径 6 0 n mの球状シリ力 微粒子が水中に分散含有されてなる水性懸濁体 ( S i 0 2 濃度 1 0 重量%) を得た。 Water glass No. 3 (S i 0 2 content 2 9 wt%, S i 0 2 / N a 2 0 molar ratio 3.2) was Dilute with S i 0 2 concentration of 4 wt% and comprising as deionized water Using sodium silicate as a raw material, a spherical silicic acid with an average particle diameter of 60 nm is produced according to a production method including a process of producing a colloid aqueous solution of activated silicic acid by denitrification using a known cation exchange resin and an aging process. particles was obtained an aqueous suspension which is dispersed contained in water (S i 0 2 concentration of 1 0% by weight).
この水性懸濁体 5 0 0重量部を攪拌しながら、 該懸濁体にェチレ ングリ コール 5 0重量部、 アルミナゾル (非晶質、 A 1 2 0 3 含有 量 1 0重量%、 溶媒主成分 : 水) 5 . 7重量部を順次添加混合し、 2時間攪拌を続けた後、 1 5 0 °Cに加熱された真空瞬間蒸発装置を 用いて複合体球状微粒子 ( P - 7 ) 粉体を得た。 While stirring the aqueous suspension 5 0 0 parts by weight, Echire Nguri call 5 0 parts by weight該懸Nigokarada, alumina sol (amorphous, A 1 2 0 3 content of 1 0% by weight, the solvent ingredient: 5.7 parts by weight of water) were sequentially added and mixed, and the mixture was stirred for 2 hours. Then, using a vacuum flash evaporator heated to 150 ° C., a composite spherical fine particle (P-7) powder was obtained. Was.
比較例 4  Comparative Example 4
実施例 7において、 エチレングリ コールを用いなかつた以外は実 施例 7 と同様にして微粒子 ( Q - 4 ) 粉体を得た。  Fine particles (Q-4) were obtained in the same manner as in Example 7, except that ethylene glycol was not used.
実施例 1〜7および比較例 1〜4でそれぞれ得られた各微粒子の 水中におけるゼータ電位、 樹脂溶液に対する分散性およびポリエス テル吸着量を評価した結果、 各実施例で得られた複合体微粒子は、 微粒子の表面組成が、 比較例で得られた微粒子と異なる組成となつ ていること、 さらにそのために樹脂溶液に対する分散性およびボリ エステルを始めとする樹脂との親和性が改良された微粒子であるこ とが確認された。 これらの評価結果を、 各微粒子の物性と共に第 1 表および第 2表に示す。 微粒子の物性 As a result of evaluating the zeta potential in water, the dispersibility in a resin solution, and the amount of polyester adsorbed in each of the fine particles obtained in Examples 1 to 7 and Comparative Examples 1 to 4, the composite fine particles obtained in each Example were In addition, the fine particles have a surface composition different from that of the fine particles obtained in the comparative example, and therefore, the fine particles have improved dispersibility in a resin solution and improved affinity with resins such as polyester. Was confirmed. The evaluation results are shown in Tables 1 and 2 together with the physical properties of each fine particle. Physical properties of fine particles
微粒子  Fine particles
粒子 平均粒子径 粒子径の変動 シリカの 开ノレ状/ 1 V I m m )ノ 係数 (%,1 Jノ) 結晶性 実施例 1 P— 1 拔状 0.5 9 3 晶ョ日 暂 実施例 2 P— 2 it 0 5 7 •?r晶曰曰 ^ 寒旆例 3 p— 3 7 兆 '晶曰曰 暫貝 室旆例 4 P— 4 Μ八 リ •? t曰¾曰 晳Particle average particle diameter Variation in particle diameter Silica 状 状 / 1 VI mm) Coefficient (%, 1 J)) Crystalline Example 1 P— 1 Pull-out 0.5 9 3 Crystalline 暂 Example 2 P— 2 it 0 5 7 •? r says ^ 旆 旆 3 3 p— 3 7 trillion 'Akira says 貝 貝 P P 4 P— 4 Μ リ •? t says 晳
J-Lt¾ Iノリ ¾jチ 晶 暂 J-Lt I I
ク F 曰 S 翻 12 Q— 2 拔状 0.5 7 プ 。 a。a 実施例 5 P— 5 球状 0.5 6 非晶質 比較例 3 α-3 球状 0.5 6 非晶質 実施例 6 P— - 6 球状 0.5 7 非晶質 実施例 7 P-7 球状 0.06 15 非晶質 比較例 4 α-4 球状 0.06 15 曰曰質 第 Ku F says S Q12 Q-2. a. a Example 5 P-5 spherical 0.56 amorphous Comparative Example 3 α-3 spherical 0.56 amorphous Example 6 P—-6 spherical 0.57 amorphous Example 7 P-7 spherical 0.06 15 amorphous Comparative Example 4 α-4 spherical 0.06 15 No.
微 粒 子 の 物 性  Physical properties of fine particles
微粒子 ゾル添加後の  Fine particles after sol addition
金属の (水) 酸化物 結合したアルコール 加熱処理温度  Metallic (water) oxide Bound alcohol Heat treatment temperature
(主成 ゼータ 樹脂溶液 ボリエス t¾  (Main component Zeta resin solution Bollies t¾
S 位 に対する テ レ Jの¾  Telegram J S against S position
含有量 I V ; 7T ΗΧ Ί &  Content IV; 7T ΗΧ Ί &
種 類- 金厲換算) 名 称
Figure imgf000045_0001
(nig/g)
Type-gold equivalent) Name
Figure imgf000045_0001
(nig / g)
重量%)  (% By weight)
実施例 1 Ρ 1 セリア 10 メタノーノレ 4.0 + 0. U4 Δ 150 Example 1 Ρ 1 ceria 10 methanolic 4.0 + 0. U4 Δ 150
Ρ ゥ アルミナ 0.53 エ チ レ ン 11 + 0.6 〇 5 en  Ρ ゥ Alumina 0.53 Ethylene 11 + 0.6 〇 5 en
(無定形) グリ コ—— レ  (Amorphous) Glyco
メ夕ノール 4, 0  Meynoor 4,0
実施例 3 P - 3 ジルコニァ 1.8 エ チ レ ン 11 - U. ο り b 150 Example 3 P-3 Zirconia 1.8 Ethylene 11-U.
水和物 グリ コール  Hydrate glycol
メタノール 4.0  Methanol 4.0
実施例 4 P - 4 チタニア 0.20 ベ ン ジ レ 1.0 - 0.2 Δ 4 150 Example 4 P-4 Titania 0.20 Benzile 1.0-0.2 Δ4 150
アルコ一ル  Alcohol
J一 )\, n 0 比較例 1 Q - 1 - 0 エ チ レ ン 11 - 0.5 X 0 150  J-1) \, n 0 Comparative Example 1 Q-1-0 Ethylene 11-0.5 X 0 150
グリ コール  Glycol
メタノール 4.0  Methanol 4.0
比較例 2 Q - 2 アルミナ 0.66 0 + 0.6 X 3 400 Comparative Example 2 Q-2 Alumina 0.66 0 + 0.6 X 3 400
(無定形)  (Amorphous)
実施例 5 P - 5 アルミナ 0.53 エ チ レ ン 3.0 + 0.6 〇 5 120 Example 5 P-5 Alumina 0.53 Ethylene 3.0 + 0.6 〇 5 120
(無定形) グリ コール  (Amorphous) Glycol
比較例 3 Q - 3 アルミナ 0.53 エ チ レ ン < 1 + 0.6 X 4 60 Comparative Example 3 Q-3 Alumina 0.53 Ethylene <1 + 0.6 X 4 60
(無定形) グリ コール  (Amorphous) Glycol
実施例 6 P - 6 アルミナ 0.1 メタノール 4.0 + 0.3 〇 5 150 Example 6 P-6 Alumina 0.1 Methanol 4.0 + 0.3 〇 5 150
(無定形)  (Amorphous)
実施例 7 P - 7 アルミナ 0.50 エチレング 6.0 + 0.3 Δ 3 150 Example 7 P-7 Alumina 0.50 Ethyleng 6.0 + 0.3 Δ3 150
(無定形) リ コ一ル  (Amorphous) Recall
比較例 4 Q - 4 アルミナ 0.50 0 + 0.2 X 0.5 150 Comparative Example 4 Q-4 Alumina 0.50 0 + 0.2 X 0.5 150
(無定形) (Amorphous)
実施例 8 Example 8
実施例 1 と同様にして得た平均粒子径 1 . 5 μ πιのシリカ球状微 粒子の懸濁体をさらに 9 0 °C以下の温度で加熱し、 メタノール等の 溶媒およびアンモニアを一部留去することにより、 該微粒子の濃縮 懸濁体 (微粒子濃度: 2 0重量%) 5 0 0重量部を得た。 該濃縮懸 濁体を攪拌しながら、 該濃縮懸濁体にエチレングリコール 5 0 0重 量部、 アルミナゾル (ベーマイ 卜、 A 1 2 0 3 含有量 : 1 0重量 %、 溶媒主成分 :水) 9 . 4重量部を順次添加した後、 得られたス ラ-リ一を還流冷却器を備えたステンレス製釜内で攪拌しながら昇温 し、 1 8 0 °Cで 2時間保持した後冷却することにより、 複合体球状 微粒子 (P— 8 ) が 2 0重量%の割合で分散含有されたエチレング リ コール分散体を得た。 該分散体中に含有される微粒子 (P - 8 ) は、 アルミナ含有量が A 1換算で 0 . 4 4重量%であり、 エチレン グリ コールが 1 6重量%結合した球状微粒子であることが確認され た。 微粒子 (P— 8 ) の物性を第 3 , 4表に示す。 A suspension of spherical silica fine particles having an average particle diameter of 1.5 μππ obtained in the same manner as in Example 1 was further heated at a temperature of 90 ° C or less, and a solvent such as methanol and a part of ammonia were distilled off. As a result, 500 parts by weight of a concentrated suspension of the particles (particle concentration: 20% by weight) was obtained. While stirring the concentrated Chijimikaka Nigokarada, the concentrated suspension in ethylene glycol 5 0 0 by weight part of alumina sol (Bemai Bok, A 1 2 0 3 content: 1 0% by weight, the solvent ingredient: water) 9 After the addition of 4 parts by weight, the slurry was heated in a stainless steel kettle equipped with a reflux condenser with stirring, kept at 180 ° C for 2 hours, and cooled. As a result, an ethylene glycol dispersion in which the composite spherical fine particles (P-8) were dispersed and contained at a ratio of 20% by weight was obtained. The fine particles (P-8) contained in the dispersion had an alumina content of 0.44% by weight in terms of A1, and were confirmed to be spherical fine particles having 16% by weight of ethylene glycol bonded thereto. Was done. Tables 3 and 4 show the physical properties of the fine particles (P-8).
実施例 9  Example 9
実施例 1 と同様にして得た平均粒子径 0 . 2 mの非晶質シリカ 球状微粒子の懸濁体をさらに 9 0で以下の温度で加熱し、 メタノー ル等の溶媒およびアンモニアを一部留去することにより、 該微粒子 の濃縮懸濁体 (微粒子濃度: 2 0重量%) 5 0 0重量部を得た。 該 濃縮懸濁体を攪拌しながら、 該濃縮懸濁体にエチレングリ コール 5 0 0重量部、 アルミナゾル (ベーマイ ト、 A 1 2 0 3 含有量 : 1 0重量%、 溶媒主成分:水) 3 8重量部を順次添加した後、 得ら れたスラリ一を還流冷却器を備えたステンレス製釜内で攪拌しなが ら昇温し、 1 2 CTCで 2時間保持した後冷却することにより、 複合 体球状微粒子 ( P - 9 ) が 2 0重量%の割合で分散含有されたェチ レングリ コール分散体を得た。 該分散体中に含有される微粒子 ( P 一 9 ) の物性を第 3 , 4表に示す。 A suspension of amorphous silica spherical fine particles having an average particle diameter of 0.2 m obtained in the same manner as in Example 1 was further heated at 90 ° C. at the following temperature to partially distill a solvent such as methanol and ammonia. By removing, 500 parts by weight of a concentrated suspension of the particles (particle concentration: 20% by weight) was obtained. While stirring the concentrated suspension, the concentrated suspension of ethylene glycol 5 0 0 parts by weight of alumina sol (Bemai DOO, A 1 2 0 3 content: 1 0% by weight, the solvent ingredient: water) 3 After the addition of 8 parts by weight, the obtained slurry was heated while stirring in a stainless steel kettle equipped with a reflux condenser, kept at 12 CTC for 2 hours, and then cooled. composite An ethylene glycol dispersion in which spherical microparticles (P-9) were dispersed and contained at a ratio of 20% by weight was obtained. Tables 3 and 4 show the physical properties of the fine particles (P-19) contained in the dispersion.
比較例 5  Comparative Example 5
実施例 8において、 アルミナゾルを添加しなかった以外は、 実施 例 6 と同様にして、 シリ カ —エチレングリ コール複合球状微粒子 ( Q - 5 ) が 2 0重量%の割合で分散含有されたエチレングリ コ一 ル分散体を得た。 該分散体中に含有される微粒子 ( Q— 5 ) の物性 を第 3, 4表に示す。  In the same manner as in Example 6 except that no alumina sol was added in Example 8, ethylene glycol in which silica-ethylene glycol composite spherical fine particles (Q-5) were dispersed and contained at a ratio of 20% by weight was used. A call dispersion was obtained. Tables 3 and 4 show the physical properties of the fine particles (Q-5) contained in the dispersion.
実施例 1 0  Example 10
比較例 5 と全く 同様にして得られたシリカ一エチレングリ コール 複合球状微粒子が 2 0重量%の割合で分散含有されたェチレングリ. コール分散体 5 0 0重量部に、 アルミナゾル (無定形、 A 1 2 0 3 含有量 : 1 0重量%、 溶媒主成分 : 水) 9 . 4重量部を添加した 後、 5時間攪拌を続けることにより、 複合球状微粒子 ( P — 1 0》 が分散含有されてなるエチレングリ コール分散体を得た。 該分散体 中に含有される微粒子 ( P— 1 0 ) の物性を第 3 , 4表に示す。 実施例 8〜 1 0および比較例 5で夫々得られた微粒子のゼ一タ電 位を測定した結果、 比較例 5で得られた微粒子は負の電位を示すの に対し、 実施例 8〜 1 0で得られた複合体球状微粒子は、 いずれも 正の電位を示し、 従ってこれらの微粒子は添加したアルミナが微粒 子表面に局在化されてなる微粒子であることが確認された。 第 3 表 微粒子の物性 Ethylene glycol containing spherical silica-ethylene glycol composite spherical fine particles obtained in exactly the same manner as in Comparative Example 5 in a proportion of 20% by weight. 500 parts by weight of an alumina sol (amorphous, A 1 . 2 0 3 content: 1 0% by weight, the solvent ingredient: after addition of water) 9 4 parts by weight, by continuing stirring for 5 hours, composite spherical particles (P - 1 0 "is being contained dispersed An ethylene glycol dispersion was obtained, and the physical properties of the fine particles (P-10) contained in the dispersion are shown in Tables 3 and 4. Obtained in Examples 8 to 10 and Comparative Example 5, respectively. As a result of measuring the zeta potential of the fine particles, the fine particles obtained in Comparative Example 5 showed a negative potential, whereas the composite spherical fine particles obtained in Examples 8 to 10 all showed a positive potential. Potential of the particles, and thus the added alumina was localized on the surface of the fine particles. It is a fine particles of Te has been confirmed. Table 3 Physical properties of fine particles
微粒子  Fine particles
ま ; ¾ : ¾?雷 fi  Ma; ¾: ¾? Thunder fi
卞 十 J¾i"J"""tt ノノ Uソノ - ( "DJ 形状 係数 (%) 結晶性 実施例 8 P— 8 球状 1.5 5 非晶質 実施例 9 P— 9 球状 0.2 8 非晶質 実施例 10 P- 10 球状 1.5 5 非晶質 比較例 5 Q - 5 球状 1.5 5 非晶質 Byon ten J¾i "J""" tt nono U sono-("DJ shape factor (%) crystalline Example 8 P-8 spherical 1.5 5 amorphous Example 9 P-9 spherical 0.28 amorphous Example 10 P-10 spherical 1.55 amorphous Comparative Example 5 Q-5 spherical 1.55 amorphous
4 微粒子の物性 4 Physical properties of fine particles
ゾル添加後の 金属の (水) 酸化物 結合したアルコール 加熱処理温度 微粒子 注成分) ゼータ (最高温度) 電 位  Metal (water) oxide after sol addition Alcohol bound Heating temperature Particles Ingredients) Zeta (maximum temperature) Potential
含有量 士 Α暮  Content
ホロ口里 (V) (。c) 種 類 (金属換算) 名 称  Hologuchi (V) (.c) Type (metal conversion)
(重量%)  (% By weight)
実施例 8 P-8 アルミナ 0.44 エチ レ ン 14 + 0.5 180 Example 8 P-8 Alumina 0.44 Ethylene 14 + 0.5 180
(ベ一マイ卜) グリコール 実施例 9 P-9 アルミナ 2.0 エチ レ ン 2.9 + 0.5 120  Glycol Example 9 P-9 Alumina 2.0 Ethylene 2.9 + 0.5 120
(ベーマイ卜) グリコール 実施例 10 P— 10 アルミナ 0.30 エチ レ ン 15 + 0.4  (Boehmite) Glycol Example 10 P—10 Alumina 0.30 Ethylene 15 + 0.4
(無定形) グリコール 比較例 5 α- 5 0 エチ レ ン 15 - 0.4 180  (Amorphous) Glycol Comparative Example 5 α- 50 Ethylene 15-0.4 180
グリコール Glycol
ボリエステル組成物の製造例 Production Example of Polyester Composition
前記実施例 1〜4, 6 , 7および比較例 1 , 2 , 4でそれぞれ得 た微粒子を含有させたボリエステルフィルムを、 以下の実施例およ び比較例に従って作成し、 得られた各フィルムについて、 ポリエス テル樹脂中における分散状態およびポリエステルと微粒子の密着性 を以下の基準に基づいて評価した。  Polyester films containing the fine particles obtained in Examples 1 to 4, 6, 7 and Comparative Examples 1, 2, and 4 were prepared according to the following Examples and Comparative Examples. For, the dispersion state in the polyester resin and the adhesion between the polyester and the fine particles were evaluated based on the following criteria.
実施例 1 1  Example 1 1
市販のポリエチレンテレフタレ一卜のペレツ ト 1 0 0重量部を 2 8 0 °Cで溶融 ϋた状態で、 実施例 1で得られた微粒子 '( Ρ— 1 ) 粉体 1重量部を添加し、 混練した後 却し、 得られたボリエステル 組成物を加熱成形し延伸することにより、 厚み 0 . 0 5 mmのフィル ムを得た。  In a state where 100 parts by weight of a commercially available polyethylene terephthalate pellet was melted at 280 ° C., 1 part by weight of the fine particles ′ (Ρ-1) powder obtained in Example 1 was added. After kneading, the mixture was rejected, and the obtained polyester composition was heated and stretched to obtain a film having a thickness of 0.05 mm.
実施例 1 2〜 1 6および比較例 6 ~ 8  Examples 12 to 16 and Comparative Examples 6 to 8
実施例 1 1 において、 微粒子 (P— 1 ) の代わりに、 表 5に示す 如く各微粒子を夫々 1重量部添加した以外はそれぞれ実施例 1 1 と 同様にして厚み 0 . 0 5 mmのフィルムを得、 夫々について下記の方 法で微粒子の分散状態およびボリエステル樹脂と微粒子との密着性 を調べた。  In Example 11, a film having a thickness of 0.05 mm was obtained in the same manner as in Example 11 except that 1 part by weight of each fine particle was added as shown in Table 5 instead of the fine particles (P-1). The dispersion state of the fine particles and the adhesiveness between the polyester resin and the fine particles were examined by the following methods.
ポリエステル樹脂中における分散状態  Dispersion state in polyester resin
フィルム中における微粒子の分散状態を光学顕微鏡により観察 し、 以下の基準に従って評価した。  The dispersion state of the fine particles in the film was observed with an optical microscope, and evaluated according to the following criteria.
〇 :殆どの微粒子が分散している。  〇: Most of the fine particles are dispersed.
Δ : 若干の凝集物がみられる。  Δ: Some aggregates are observed.
X :殆どの微粒子が凝集している。  X: Most of the fine particles are aggregated.
ポリエステルと «子との密着性 フィ ルム中の微粒子とポリエステル樹脂との界面を、 走査型電 子顕微鏡により観察し、 ボイ ドの程度により、 以下の基準に従つ て測定した。 Adhesion between polyester and child The interface between the fine particles in the film and the polyester resin was observed with a scanning electron microscope, and measured according to the following criteria depending on the degree of void.
〇 : ボイ ドが殆ど認められない。  〇: There is almost no void.
△ : ボイ ドが若干生成している。  Δ: Some voids were generated.
X : ボイ ドが顕著に生成している。  X: Voids are remarkably generated.
評価結果は第 5表に示す通りであり、 実施例 1 1 〜 1 6で得た フィ ルムにおける微粒子の分散状態は良好であり、 ポリエステルと 微粒子の密着性も良好であつたが、 比較例 6〜 8で得たフィルムで は、 微粒子の分散状態および密着性のいずれかが劣悪である。 The evaluation results are shown in Table 5. The dispersion state of the fine particles in the films obtained in Examples 11 to 16 was good, and the adhesion between the polyester and the fine particles was good. In the films obtained in Nos. 1 to 8, either the dispersion state of the fine particles or the adhesion was inferior.
5 表 5 Table
添加した微粒子 フィルム評価結果 植
Figure imgf000052_0001
Evaluation results of added fine particle film
Figure imgf000052_0001
mmm) 実施例 11 P— 1 1 Δ 〇 実施例 12 P-2 1 〇 〇 実施例 13 P-3 1 〇 〇 実施例 14 P— 4 1 Δ 〇 比較例 6 Q - 1 1 Δ X 比較例 7 Q— 2 1 X Δ 実施例 15 P-6 1 〇 〇 実施例 16 P— 7 1 Δ Δ 比較例 8 -4 1 X X 産業上の利用可能性 本発明の複合体球状微粒子は、 凝集し難く且つ真球性、 分散性、 樹脂との親和性、 安定性等に優れ、 しかも特定の表面組成からなる 多成分系の複合体球状微粒子であり、 様々の樹脂やゴム等に配合さ れる改質剤と して極めて有用である。 しかも本発明の製法によれ ば、 この様な特性を備えた複合体球状微粒子を効率よく製造するこ とができ、 しかもこの製法によれば、 微粒子の真球性を損なわずに 粒子径、 粒度分布および表面組成を任意に制御できるという点で、 広範な分野に適用可能な複合体球状微粒子の製法と して有用であ る。 mmm) Example 11 P—1 1 Δ 〇 Example 12 P-2 1 〇 〇 Example 13 P-3 1 〇 実 施 Example 14 P—4 1 Δ 比較 Comparative Example 6 Q-11 ΔX Comparative Example 7 Q—2 1 X Δ Example 15 P-6 1 〇 〇 Example 16 P— 71 1 Δ Δ Comparative Example 8 -4 1 XX INDUSTRIAL APPLICABILITY The composite spherical fine particles of the present invention are hard to agglomerate, are excellent in sphericity, dispersibility, affinity with resin, stability, etc., and are multi-component composites having a specific surface composition. Spherical microparticles, which are extremely useful as modifiers incorporated in various resins, rubbers and the like. Moreover, according to the production method of the present invention, it is possible to efficiently produce composite spherical fine particles having such characteristics, and according to this production method, the particle diameter and the particle size can be obtained without impairing the sphericity of the fine particles. Since the distribution and the surface composition can be arbitrarily controlled, it is useful as a method for producing composite spherical fine particles applicable to a wide range of fields.
また本発明のポリエステル組成物は、 上記の如き優れた特性を備 えた複合体球状微粒子を主な微粒子成分としているため、 従来のポ リエステル組成物に比べて、 分散含有されている複合体球状微粒子 のボリエステル樹脂との親和性が高く、 しかも分散性が優れている 為に、 力学的特性、 光学的特性等に極めて優れるものである。 例え ば、 該組成物をフィルムとしたときには、 ボイ ドの生成が抑制され るとともに該微粒子の分散性の高いフィルムが得られ、 該フィルム は、 ボイ ドの生成に基づくスクラッチの生成が抑制され、 且つフィ ルムの巻取り工程等で従来フィルムに指摘されていた応力負荷時の 粒子脱落の問題およびこれに起因する白粉の生成等も解消される。 しかもこれらの特徴は、 特に延伸処理された二軸配向ポリエステル フィルムとしたときに著しく発揮される。 即ち本発明のポリエステ ル組成物を用いた製品の中でも二軸配向ポリエステルフィルムは、 均一に且つ微細に制御された凹凸表面特性、 優れた滑り性および耐 削れ性を有し、 スクラッチ、 白粉等の発生が極度に抑えられ耐久性 が極めて優れるという特徵を有する。 この二軸配向ポリエステル フィルムは、 これらの特性を有するが故に各種の広範な用途に使用 することができる。 例えばビデオ用、 オーディオ用、 コンビユー 夕一用等の磁気記録用ベースフィルムとして用いると、 優れた電磁 変換特性、 走行性、 耐摩耗性および長期にわたる耐久性を発揮す る。 またコンデンサー用途に用いると低い摩擦係数、 優れた巻回 性、 低いつぶれ荷重、 高い透明性等が得られる。 さらに電気絶縁用 途、 包装用途および蒸着用フイルム等の他の分野へも広く適用する ことができる。 Further, since the polyester composition of the present invention mainly comprises composite spherical fine particles having the above-described excellent properties, the composite spherical fine particles dispersed and contained therein are compared with the conventional polyester composition. Since it has high affinity with polyester resin and excellent dispersibility, it has extremely excellent mechanical properties and optical properties. For example, when the composition is formed into a film, the formation of voids is suppressed and a film having a high dispersibility of the fine particles is obtained, and the film suppresses generation of scratches based on the formation of voids, In addition, the problem of particle detachment during stress loading, which has been pointed out in the conventional film in the film winding process, and the generation of white powder resulting therefrom are eliminated. In addition, these characteristics are remarkably exhibited particularly when a stretched biaxially oriented polyester film is formed. That is, among the products using the polyester composition of the present invention, the biaxially oriented polyester film has uniform and finely controlled uneven surface characteristics, excellent slipperiness and resistance to slippage. It has abrasion properties and extremely low durability with extremely low generation of scratches and white powder. This biaxially oriented polyester film can be used for various wide-ranging applications because of these properties. For example, when used as a base film for magnetic recording such as for video, audio, and entertainment, it exhibits excellent electromagnetic conversion characteristics, running properties, wear resistance, and long-term durability. Also, when used for capacitor applications, a low coefficient of friction, excellent winding properties, low crushing load, high transparency, etc. can be obtained. Furthermore, it can be widely applied to other fields such as electric insulation, packaging and vapor deposition films.

Claims

請 求 の 範 囲 The scope of the claims
1. 非晶質シリカ、 イオンの電気陰性度が 1 5. 6未満である金 属の酸化物および Zもしくは水酸化物、 および上記シリ力及び Zま たは上記金属の酸化物およびノもしくは水酸化物に結合した 1種ま たは 2種以上のアルコールを含む組成の複合体球状微粒子であつ て、 該微粒子において、 上記金属の酸化物および もしくは水酸化 物は、 該微粒子の表面に局在化されると共に、 該微粒子中に占める 上記金属の酸化物および Zもしく は水酸化物の比率が金属換算で 0. 0 1〜20重量%、 アルコールの比率が 1〜 30重量%である ことを特徴とする複合体球状微粒子。 1. Amorphous silica, oxides and Z or hydroxides of metals whose electronegativity of ions is less than 15.6, and oxides of the above-mentioned silicidity and Z or the above-mentioned metals and oxides or water Composite spherical fine particles having a composition containing one or more alcohols bonded to an oxide, wherein the metal oxide and / or hydroxide is localized on the surface of the fine particles. And the ratio of the metal oxide and Z or hydroxide in the fine particles is 0.01 to 20% by weight and the ratio of alcohol is 1 to 30% by weight in terms of metal. A composite spherical fine particle characterized by the following.
2. 複合体球状微粒子の粒子径の変動係数が 1 0 %以下である請 求の範囲第 1項に記載の複合体球状微粒子。  2. The composite spherical fine particles according to claim 1, wherein the coefficient of variation of the particle diameter of the composite spherical fine particles is 10% or less.
3. 複合体球状微粒子の平均粒子径が 0. 1〜5 μ π である請求 の範囲第 1または 2項に記載の複合体球状微粒子。  3. The composite spherical fine particles according to claim 1 or 2, wherein the composite spherical fine particles have an average particle diameter of 0.1 to 5 µπ.
4. 金属が、 イオンの電気陰性度が 8. 0以上、 1 5. 6未満の 金属である請求の範囲 1〜3項のいずれかに記載の複合体球状微粒 子。  4. The composite spherical microparticle according to any one of claims 1 to 3, wherein the metal is a metal having an ion electronegativity of 8.0 or more and less than 15.6.
5. 金属が、 A l , T i, Z r, Z n , F eおよび C eよりなる 群から選択される少なく とも 1種の金属である請求の範囲第 1〜4 項のいずれかに記載の複合体球状微粒子。  5. The method according to any one of claims 1 to 4, wherein the metal is at least one metal selected from the group consisting of Al, Ti, Zr, Zn, Fe and Ce. Composite spherical fine particles.
6. 金属の酸化物およびノまたは水酸化物が、 結晶性の金属の酸 化物および または水酸化物である請求の範囲第 1〜5項のいずれ かに記載の複合体球状微粒子。 6. The composite spherical fine particles according to any one of claims 1 to 5, wherein the metal oxide and / or hydroxide is a crystalline metal oxide and / or hydroxide.
7 . 非晶質シリカからなる球状微粒子の懸濁体を、 イオンの電気 陰性度が 1 5 . 6未満である金属の酸化物および/もしくは水酸化 物のゾル、 および 1種または 2種以上のアルコールの存在下に、7. A suspension of the spherical fine particles made of amorphous silica is mixed with a metal oxide and / or hydroxide sol having an electronegativity of ions of less than 15.6, and one or more kinds of sols. In the presence of alcohol,
1 0 0〜2 5 0。Cの範囲に加熱して請求の範囲第 1〜6項のいずれ かに記載された複合体球状微粒子を得ることを特徴とする複合体球 状微粒子の製法。 100 to 250. 7. A method for producing composite spherical fine particles, characterized by obtaining the composite spherical fine particles according to any one of claims 1 to 6 by heating to the range of C.
8 . 非晶質シリカよりなる球状微粒子に、 1種または 2種以上の アルコールが結合してなるシリ力 -アルコール複合球状微粒子が、 前記アルコールのうち少なく とも 1種のアルコールを主成分とする アルコール性溶媒中に分散含有されてなる懸濁体と、 ィォンの電気 陰性度が 1 5 . 6未満である金属の酸化物および もしくは水酸化 物のゾルを混合し、 請求の範囲第 1〜6項のいずれかに記載された 複合体球状微粒子を得ることを特徴とする複合体球状微粒子の製 法。  8. Sili-force-alcohol composite spherical fine particles in which one or two or more alcohols are bonded to spherical fine particles made of amorphous silica, the alcohol mainly containing at least one of the alcohols described above. And a sol of a metal oxide and / or hydroxide having an electronegativity of less than 15.6 mixed with a suspension dispersed and contained in a neutral solvent. A method for producing composite spherical fine particles, characterized by obtaining the composite spherical fine particles described in any one of the above.
9 . 非晶質シリカからなる球状微粒子に、 1種または 2種以上の アルコール (X ) が結合したシ '/カーアルコール複合球状微粒子の 懸濁体を、 イオンの電気陰性度が 1 5 . 6未満である金属の酸化物 および/もしくは水酸化物のゾル、 および上記アルコール (X ) と 同一もしくは異なる 1種または 2種以上のアルコール (Y ) の存在 下に、 1 0 0〜2 5 0 eCの範囲に加熱して、 前記非晶質シリカおよ び Zもしくは前記金属の酸化物および Zまたは水酸化物に結合した アルコール (X ) 、 ( Y ) の総量が複合体球状微粒子中に占める比 率で 1〜3 0重量%の範囲である請求の範囲第 1〜 6項のいずれか に記載された複合体球状微粒子を得ることを特徴とする複合体球状 微粒子の製法。 9. A suspension of spherical silica / glycohol composite particles, in which one or more alcohols (X) are bonded to spherical fine particles of amorphous silica, has an electronegativity of 15.6. 100 to 250 e in the presence of a sol of a metal oxide and / or hydroxide that is less than and one or more alcohols (Y) that are the same or different from the alcohols (X). Heating to the range of C, the total amount of alcohols (X) and (Y) bonded to the amorphous silica and Z or the oxide and Z or hydroxide of the metal occupies the composite spherical fine particles. A method for producing composite spherical fine particles, comprising obtaining the composite spherical fine particles according to any one of claims 1 to 6 in a ratio of 1 to 30% by weight.
1 0 . 非晶質シリカよ りなる球状微粒子、 水および必要によりカロ 水分解触媒を含む懸濁体に、 加水分解可能でありィォンの電気陰性 度が 1 5 . 6未満である金属の化合物を添加した後、 得られた 懸濁体を、 1種または 2種以上のアルコールの存在下で 1 0 0〜 2 5 0での範囲に加熱し、 請求の範囲第 1〜 6項のいずれかに記載 された複合体球状微粒子を得ることを特徴とする複合体球状微粒子 の製法。 10. A suspension containing a spherical fine particle of amorphous silica, water and optionally a catalyst for decomposing caro water is charged with a metal compound that is hydrolyzable and has an electronegativity of ion of less than 15.6. After the addition, the obtained suspension is heated in the range of 100 to 250 in the presence of one or more alcohols, wherein the suspension is in any one of claims 1 to 6. A method for producing composite spherical fine particles, which comprises obtaining the described composite spherical fine particles.
1 1 . 非晶質シリカよりなる球状微粒子に、 1種または 2種以上 のアルコール ( X ) が結合してなるシリ カ一アルコール複合球状 微粒子の懸濁体に、 加水分解可能であり ィォンの電気陰性度が 1 5 . 6未満である金属の化合物、 水および必要により加水分解触 媒を共存させた後に、 得られた懸濁体を、 上記アルコール (X ) と 同一もしくは異なる 1種または 2種以上のアルコール ( Y ) の共存 下で 1 0 0〜 2 5 0 °Cの範囲に加熱し、 前記非晶質シリ力および Z もしく は前記金属の酸化物およびノまたは水酸化物に結合したアル コール (X ) , ( Y ) の総量が複合体球状微粒子中に占める比率で 1〜 3 0重量%の範囲である、 請求の範囲第 1〜 6項のいずれかに 記載された複合体球状微粒子を得ることを特徴とする複合体球状微 粒子の製法。  1 1. Spherical particles made of amorphous silica and one or more alcohols (X) bonded to a suspension of silica-alcohol composite spherical particles, which are hydrolyzable and ionizable. After coexistence of a metal compound having a degree of negativity of less than 15.6, water and, if necessary, a hydrolysis catalyst, the resulting suspension is mixed with one or two kinds of alcohols (X) which are the same or different from the above alcohols (X). In the presence of the above alcohol (Y), the mixture was heated to a temperature in the range of 100 to 250 ° C. and bound to the amorphous silicon and Z or the metal oxide and / or hydroxide. The composite sphere according to any one of claims 1 to 6, wherein the total amount of the alcohols (X) and (Y) is in the range of 1 to 30% by weight in the composite spherical fine particles. A method for producing composite spherical fine particles, characterized by obtaining fine particles.
1 2 . 請求の範囲第 1〜6項のいずれかに記載された複合体球状 微粒子を、 ポリエステル組成物中に占める比率で 0 . 0 0 5〜 1 0 重量%配合したものであることを特徴とするポリエステル組成物。  12. The composite spherical fine particles according to any one of claims 1 to 6 are blended in a proportion of 0.05 to 10% by weight in a polyester composition. Polyester composition.
1 3 . 請求の範囲第 7〜 1 1項のいずれかに記載された方法によ つて得られた複合体球状微粒子を、 ポリエステル組成物中に占める 比率で 0 . 0 0 5 ~ 1 0重量%配合したものであることを特徴とす /10043 13. 0.05 to 10% by weight of the composite spherical fine particles obtained by the method according to any one of claims 7 to 11 as a percentage of the polyester composition. It is characterized by being blended / 10043
56 るボリエステル組成物,  56 polyester composition,
PCT/JP1992/001494 1991-11-16 1992-11-16 Fine spherical composite particle, production thereof, and polyester composition containing the same WO1993010043A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3/328182 1991-11-16
JP32818291 1991-11-16

Publications (1)

Publication Number Publication Date
WO1993010043A1 true WO1993010043A1 (en) 1993-05-27

Family

ID=18207391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/001494 WO1993010043A1 (en) 1991-11-16 1992-11-16 Fine spherical composite particle, production thereof, and polyester composition containing the same

Country Status (1)

Country Link
WO (1) WO1993010043A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162438A (en) * 2011-02-09 2012-08-30 Tokuyama Corp Spherical silica-titania composite oxide particle, and method for producing the same
JP2015063451A (en) * 2013-08-28 2015-04-09 日揮触媒化成株式会社 Metal oxide particle, and production method and application of the same
JP2019178303A (en) * 2018-03-30 2019-10-17 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and electronic component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158811A (en) * 1984-08-15 1986-03-26 イー・アイ・デユポン・ド・ネモアース・アンド・コンパニー Chromatography filler stabilized with metal oxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158811A (en) * 1984-08-15 1986-03-26 イー・アイ・デユポン・ド・ネモアース・アンド・コンパニー Chromatography filler stabilized with metal oxide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162438A (en) * 2011-02-09 2012-08-30 Tokuyama Corp Spherical silica-titania composite oxide particle, and method for producing the same
JP2015063451A (en) * 2013-08-28 2015-04-09 日揮触媒化成株式会社 Metal oxide particle, and production method and application of the same
JP2019178303A (en) * 2018-03-30 2019-10-17 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and electronic component
JP7032977B2 (en) 2018-03-30 2022-03-09 太陽インキ製造株式会社 Curable resin compositions, dry films, cured products, and electronic components

Similar Documents

Publication Publication Date Title
JP3398829B2 (en) Method for producing zinc oxide-based fine particles
KR910008721B1 (en) Monodispersed glycol sospension of fine inorganic oxide particles having excellent dispersion stability and method of improving the slipperiness of polyester film using the monodispersed suspension
JP4225402B2 (en) Zinc oxide fine particles and their uses
EP2651651B1 (en) Transfer article having multi-sized particles and methods
EP0768277A1 (en) Fine zinc oxide particles, process for producing the same, and use thereof
JP2821357B2 (en) Manufacturing method of zinc oxide fine particles
JP3530085B2 (en) Metal oxide-based particles, production method and use thereof
WO2007097284A1 (en) Uniformly dispersed photocatalyst coating liquid, method for producing same, and photocatalytically active composite material obtained by using same
JPWO2012141150A1 (en) Functional articles, articles for transport equipment, articles for construction, and compositions for coating
JP2008248235A (en) Polyester composition and method for producing the same
JPH0578585B2 (en)
JPH0860022A (en) Composite zinc oxide/polymer microparticle, production and use thereof
US5304324A (en) Monodispersed glycol suspension of fine inorganic oxide particles having excellent dispersion stability
JPH0778134B2 (en) Polyester film
WO2020179412A1 (en) Lamination film
WO1993010043A1 (en) Fine spherical composite particle, production thereof, and polyester composition containing the same
Torki et al. Dynamic mechanical properties of nanocomposites with poly (vinyl butyral) matrix
JP3286304B2 (en) Polyester resin composition for film production
TWI248949B (en) Plastics stabilized with zinc oxide-containing, abrasion-resistant multilayers
KR101209851B1 (en) One-liquid type organic-inorganic emulsion resin composition and preparation method of the same
JP3111492B2 (en) Polyester film
JP3588419B2 (en) Zinc oxide-based particles, production method and use thereof
JP6028420B2 (en) Hollow particles and method for producing the same
WO2009050946A1 (en) Process for production of surface-coated hexaboride particle precursor, surface-coated hexaboride particle precursor, surface-coated hexaboride particles, dispersion of the particles, and structures and articles made by using the particles
WO2024001464A1 (en) Hollow silica sol, method for preparing same, and coating composition and product thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

122 Ep: pct application non-entry in european phase