WO1992008946A2 - Anordnung zum messen linearer abmessungen auf einer strukturierten oberfläche eines messobjektes - Google Patents

Anordnung zum messen linearer abmessungen auf einer strukturierten oberfläche eines messobjektes Download PDF

Info

Publication number
WO1992008946A2
WO1992008946A2 PCT/EP1991/002088 EP9102088W WO9208946A2 WO 1992008946 A2 WO1992008946 A2 WO 1992008946A2 EP 9102088 W EP9102088 W EP 9102088W WO 9208946 A2 WO9208946 A2 WO 9208946A2
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
resonator
circuit
measurement
tip
Prior art date
Application number
PCT/EP1991/002088
Other languages
English (en)
French (fr)
Other versions
WO1992008946A3 (de
Inventor
Karlheinz Bartzke
Rolf Thiemer
Erhard Mende
Manfred Ziesemann
Ludwig Fritzsch
Eberhard Seydel
Joachim Heim
Manfred Weihnacht
Burkhard Hoffmann
Original Assignee
Jenoptik Carl Zeiss Jena Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jenoptik Carl Zeiss Jena Gmbh filed Critical Jenoptik Carl Zeiss Jena Gmbh
Publication of WO1992008946A2 publication Critical patent/WO1992008946A2/de
Publication of WO1992008946A3 publication Critical patent/WO1992008946A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/08Probe characteristics
    • G01Q70/14Particular materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/28Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/34Measuring arrangements characterised by the use of electric or magnetic techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/32AC mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/38Probes, their manufacture, or their related instrumentation, e.g. holders

Definitions

  • the invention relates to an arrangement for measuring linear dimensions on a structured surface - a measuring object, in which a tip probing the surface is attached to a resonator movable parallel to the surface by means of guides, to which displacement measuring systems are coupled for position determination and which is connected to an evaluation circuit for detecting changes in resonance and a connected control circuit which is connected to actuating elements which act on the resonator perpendicular to the surface.
  • the invention is Q especially in two-coordinate measuring devices, in measuring devices for the
  • Ultra-precision machining technology for probe cutters, for measuring devices for measuring microelectronic semiconductor structures, for roughness measuring devices, for profile measuring devices and for producing microstructures on surfaces. 5
  • optical arrangements For the measurement of linear dimensions of semiconductor structures, optical arrangements are known which achieve a linear resolution of approximately 0.7 ⁇ m with the aid of optical imaging systems and Q optoelectronic receivers.
  • the measuring process takes place in a vacuum, so that the vacuum clamping which is customary for wafers cannot be used, and measurements on wafers with these arrangements can therefore only be carried out to a limited extent.
  • measurement errors occur here as a result of electron-optical ones
  • Nanometer over the surface of the test piece, so that between the tip and the surface either a tunnel current of a few nanoamperes is formed at a voltage of a few millivolts (STM) or interatomic forces become effective (AFM), which are kept constant by a distance controller.
  • STM millivolts
  • AFM interatomic forces
  • test specimen surface at the STM must be electrically conductive due to the tunnel current.
  • An electrical measuring circuit determines the shift in the resonance frequency of the piezoelectric oscillator, which is caused by touching the test specimen surface with the stylus.
  • a control circuit connected to the measuring circuit and an actuating unit carrying the piezo oscillator are used to determine the profile.
  • a disadvantage of this arrangement is that the one shown in the measuring arrangement cube-shaped geometry of the piezo oscillator does not allow harmonic oscillation and that the probe needle, which is massive in comparison to the piezo oscillator, dampens the natural resonance of the piezo oscillator. Furthermore, the measuring method used for the resonance frequency difference measurement is slow in time and relatively insensitive and is therefore less suitable as a highly dynamic and at the same time highly sensitive measuring principle (EP 0 290 647).
  • probe cutters which have a diamond tip as
  • Probe tip depending on probe tip geometry and measuring force achieve a lateral resolution of 6 nm.
  • a disadvantage of these conventional stylus devices is that due to dynamic effects, e.g. Jumping the stylus, only low measuring speeds are possible, which require long measuring times.
  • the constant contact of the diamond tip and the surface of the test specimen requires measuring forces of at least 10 N, which can create traces of injury on the surface of the test object (special print from "Control" 1 1/12, 1 87).
  • stylus cutters are known, the stylus tip of which is attached to a piezoelectric s pizzate crystal with a large piezo effect.
  • Crystal acts as a spiral spring, which generates electrical voltages when the probe tip is moved over the surface of a measuring object, which voltages are further processed to obtain measured values.
  • a disadvantage of these solutions is that only a low measuring speed is possible and that the measuring forces of the probe tip are too great (Perthen, J .: “Checking and measuring the surface shape", Carl Hanser Verlag, Kunststoff, 1949, p.118 -1 1 9).
  • a piezo crystal is integrated in a lever which scans the surface with a tip, the measuring forces of which it is loaded are used for signal acquisition. Disadvantages are the large measuring forces, which make it difficult to scan microstructures without damaging them, and the only low permissible measuring speeds due to the quasi-static measuring method (DE 8 600 738.6 Ul).
  • a touch detector is known in which the contact to the surface is determined by a piezoelectric rod resonator on the end face thereof a tip, preferably made of diamond, is attached.
  • the rod resonator is excited by a generator or oscillator in self-resonance via lateral electrodes.
  • An electronic measuring circuit evaluates the frequency or amplitude changes of the resonator which occur when the probe tip touches the measuring surface as a contact signal which, in conjunction with an actuator, can be used to determine the profile.
  • the disadvantage of this arrangement is that the rod resonator produces high measuring forces and has low resonance frequencies, so that the measuring surface can be damaged and only low measuring speeds can be achieved (WO 89/00672 AI).
  • Tasfites conspiracy works according to an impulse scanning method, in which a stylus is raised in a pulse from the surface of the measurement object and lowered again.
  • the device works almost statically. Raising the stylus serves to reduce frictional and tangential forces in the bearing points of the measuring mechanism. With this device it is disadvantageous that the pulse speed is low and that the measuring forces are too high (Lehmann, R .: “Guide to Length Measurement Technology", VEB Verlag,technik Berlin, 1960, p. 277).
  • the object of the invention is to further develop a generic measuring arrangement in such a way that the measuring accuracy is improved, the measuring speed is increased and the measuring forces to be applied are reduced.
  • phase measuring circuit is provided as the evaluation circuit, which phase difference of the alternating voltage between at least one first electrode arranged on the resonator and an electrical reference point and the alternating voltage between at least one other on the resonator arranged electrode and the electrical reference point determined.
  • the measuring arrangement according to the invention makes it possible to scan the surface of the test object (measurement object) with high frequency with the aid of a piezoelectric resonator.
  • a micro-probe tip is used as the probing tip Diamond is used, which is wear-resistant, because of its small mass not noticeably influences the resonance behavior of the resonator and is designed with a total size of less than 20 ⁇ m. Furthermore, it is advantageous as a resonator piezo oscillator with high
  • Vibration quality made of lithium niobate as a thickness transducer, made of quartz with an AT cut as a thickness transducer or made of quartz as a rod or tuning fork transducer.
  • Evaluation circuit etc. a device for detecting changes in phase on one and the same resonator, but different electrodes mounted on it.
  • the measurement signal of the evaluation circuit forms the input signal of a controller.
  • the output signal of the controller acts on a piezoelectric, magneto-elastic or micromechanical control element which carries the resonator and brings it into contact with the surface of the test specimen in such a way that the contact shocks
  • the control element should have a displacement measuring system in order to be able to obtain measurement values free of hysteresis.
  • FIG. 1 shows a basic illustration of an exemplary embodiment of a measuring arrangement according to the invention with a resonator in the form of a LiNbO, thickness transducer and
  • Fig. 2 is a schematic representation of another embodiment of a measuring arrangement according to the invention with a resonator in the form of a quartz Dickerscherschwingers. From detailed description of the drawings
  • the measuring arrangement shown in principle in FIG. 1 has a frame 1, to each of which a coarse plate 2 and fine divider 3 connected in series is mounted.
  • a resonator in the form of a LiNbO ⁇ thickness transducer 4 is fastened to the fine adjuster 3, on which a probe tip 5 is arranged, which touches the surface 6 of a measurement object 7.
  • the thickness transducer 4 provided with electrodes is connected to an oscillator circuit 8 and a circuit 9 for detecting changes in the phase.
  • the circuit 9 is connected to a control circuit 10, the outputs of which are to the coarse controller 2 and the
  • the fine adjuster 3 is coupled via a spacer ring 11 to a resonator in the form of a quartz thickness shear transducer 12 with an AT cut, to which (as in FIG. 1) a probe tip 3 is attached is.
  • Coarse adjuster 2 and fine adjuster 3 cause one
  • the adjustment path can be detected with a position measuring system.
  • the resonator 4 with the probe tip 5 can be guided in the direction 14 over the surface 6.
  • the oscillator circuit 8 sets the thickness oscillator 4 or the thickness shear oscillator 12 in a high-frequency oscillation in
  • Input signals for the control circuit 10 which acts on the coarse adjuster 2 and fine adjuster 3 such that the probe tip 5 exerts only small measuring forces on the surface 6.
  • Measurement methods that react to changes in the resonance frequency or amplitude require an uninfluenced reference oscillator for a comparison measurement.
  • the electronic evaluation methods for this, e.g. Frequency measurement, react sluggish in time.
  • the phase reacts very sensitively and quickly to changes in the resonance conditions.
  • Measuring methods do not necessarily require a reference transducer, but can be carried out on one and the same piezo oscillator because phase changes occur in the piezo oscillator itself.
  • the large coupling factor and the oscillation of the probe tip 5 perpendicular to the surface 6 have an advantageous effect.
  • the thickness transducer 4 can be coupled to the fine adjuster 3 with a kit layer in such a way that a high reflection of the piezo vibrations occurs on the end face of the fine adjuster 3 and its vibration is only slightly damped by the coupling.
  • the Dickenscherschwinger 12 used in FIG. 12 is used in FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Bei einer Anordnung zum Messen linearer Abmessungen auf einer strukturierten Oberfläche (6) eines Meßobjektes (7) ist eine die Oberfläche (6) antastende Spitze (5) auf einem Resonator (4) befestigt, der parallel zur Oberfläche (6) geführt wird und dessen Positionsbestimmung durch übliche Wegmeßsysteme erfolgt. Der Resonator (4) ist ferner mit einer Auswerteschaltung zur Erfassung von Resonanzänderungen und mit einer anschließenden Regelschaltung (10) verbunden, die an senkrecht zur Oberfläche (6) auf den Resonator (4) wirkenden Stellelementen (2, 3) angeschlossen ist. Als Auswerteschaltung ist eine Phasenmeßschaltung (9) vorgesehen, deren Eingänge mit Elektroden verbunden sind, die am Resonator (4) befestigt sind.

Description

Bezeichnung der Erfindung
Anordnung zum Messen linearer Abmessungen auf einer strukturierten Oberfläche eines Meßobjektes
10
Technisches Gebiet
Die Erfindung bezieht sich auf eine Anordnung zum Messen von linearen Abmessungen auf einer strukturierten Oberfläche - eines Meßobjektes, bei der eine die Oberfläche antastende Spitze auf einem mittels Führungen parallel j e zur Oberfläche beweglichen Resonator befestigt ist, an den zur Positions¬ bestimmung Wegmeßsysteme angekoppelt sind und der mit einer Auswerte¬ schaltung zur Erfassung von Resonanzänderungen und einer angeschlossenen Regelschaltung verbunden ist, die an senkrecht zur Oberfläche auf den Resonator wirkenden Stellelementen angeschlossen ist. Die Erfindung ist Q insbesondere bei Zweikoordinatenmeßgeräten, bei Meßgeräten für die
Ultra-Präzisions-Bearbeitungstechnik, bei Tastschnittgeräten, bei Meßgeräten für die Messung von mikroelektronischen Halbleiterstrukturen, bei Rauheits¬ meßgeräten, bei Profilmeßgeräten und zur Erzeugung von MikroStrukturen auf Oberflächen anwendbar. 5
Stand der Technik
Zur Messung linearer Abmessungen von Halbleiterstrukturen sind optische Anordnungen bekannt, die mit Hilfe von optischen Abbildungssystemen und Q optoelektronischen Empfängern eine lineare Auflösung von ca. 0,7 μm erreichen.
Eine wesentliche Steigerung der lateralen Auflösung unter 0,7 μm ist wegen des Wellencharakters des Lichtes nicht möglich. Infolge von optischen Beugungserscheinungen, die für jeden Meßpunkt die wirkliche Lage der 5 Strukturkanten verfälschen, entstehen Meßfehler, insbesondere bei der Messung von Strukturbreiten unter 1 μm (vgl. Zeitschrift "Feingerätetechnik" 32 (1 983), Nr. 9, S. 402-406; Zeitschrift "Technisches Messen" 54 (1987), Nr. 6, S. 243-252; Zeitschrift "Journal für Optik und Feinmechanik" 35 (1988), S. . 196-235). Desweiteren sind elektronenmikroskopische Meßanordnungen bekannt, bei denen die Meßobjekte eine elektrisch leitende Oberflächenschichf aufweisen müssen. Der Meßvorgang erfolgt im Vakuum, so daß die bei Wafern übliche Vakuum¬ aufspannung nicht anwendbar ist und damit Messungen an Wafern mit diesen Anordnungen nur eingeschränkt durchführbar sind. Wie bei einer optischen Meßanordnung enstehen auch hier Meßfehler infolge elektronenoptischer
Abbildungsfehler (Reimer, L.; Pfefferkorn, G.: "Raster-Elektronenmikroskopie", Springer-Verlag Berlin, 1977).
Bei Meßanordnungen, die auf dem Prinzip der Raster-Tunnel-Mikroskopie (STM) oder auf der atomaren Kraft-Mikroskopie (AFM) beruhen, wird eine nanometer- feine Spitze aus Wolfram, Gold, Diamant o.a. im Abstand von wenigen
Nanometern über die Prüflingsoberfläche geführt, so daß sich zwischen Spitze und Oberfläche entweder bei einer Spannung von wenigen Millivolt ein Tunnel¬ strom von einigen Nanoamperes ausbildet (STM) oder zwischenatomare Kräfte wirksam werden (AFM), die über einen Abstandsregler konstant gehalten werden.
Diese Lösungen haben den Nachteil, daß die Prüflingsoberfläche beim STM wegen des Tunnelstromes elektrisch leitend sein muß.
Die Anordnungen sind so empfindlich, daß nur Flächen von wenigen Mikrometern Größe abgetastet werden können und die Abtastgeschwindigkeiten sehr niedrig sind. Bei diesen Abtastungen entstehen durch die Meßvorgänge auf dem Prüfling Spuren (Proceedings of SPIE, Vol. 897, 1988, S. 8-15; EP 0 338 083 AI; "Physical Review Letter" 56 (1986) 9, S. 930-933). Zur atomaren Kraft-Mikroskopie (AFM) ist eine Anordnung bekannt, bei der auf einem Pϊezoschwinger eine Tastnadel befestigt ist, deren Spitze hoch- frequent schwingend die Oberfläche des Prüflings antastet.
Eine elektrische Meßschaltung ermittelt die Verschiebung der Resonanz¬ frequenz des Piezoschwingers, die durch das Berühren der Prüflingsoberfläche mit der Tastnadel hervorgerufen wird. Eine mit der Meßschaltung in Verbindung stehende Regelschaltung und eine den Piezoschwinger tragende Stelleinheit dienen der Profilermittlung.
Nachteilig bei dieser Anordnung ist, daß die in der Meßanordnung gezeigte würfelförmige Geometrie des Piezoschwingers keine harmonische Schwingung ermöglicht und daß die im Vergleich zum Piezoschwinger massereiche Tast¬ nadel die Eigenresonanz des Piezoschwingers dämpft. Desweiteren ist das angewendete Meßverfahren der Resonanzfrequenzdifferenz¬ messung zeitlich träge und relativ unempfindlich und deshalb als hoch¬ dynamisches und zugleich hochempfindliches Meßprinzip weniger geeignet (EP 0 290 647).
Zur mechanischen Abtastung von Halbleiterstrukturen und für Rauheits- messungen sind Tastschnittgeräte bekannt, die mit einer Diamantspitze als
Tastspitze in Abhängigkeit von Tastspitzengeometrie und Meßkraft eine laterale Auflösung von 6 nm erreichen. Nachteilig bei diesen herkömmlichen Tastschnittgeräten ist, daß infolge dynamischer Effekte, z.B. Springen der Tastnadel, nur geringe Meßgeschwindigkeiten möglich sind, die hohe Meßzeiten bedingen. Der ständige Kontakt von Diamantspitze und Prüflingsoberfläche erfordert Meßkräfte von mindestens 10 N, die Verletzungsspuren auf der Oberfläche des Meßobjektes erzeugen können (Sonderdruck aus "Kontrolle" 1 1/12, 1 87). Desweiteren sind Tastschnittgeräte bekannt, deren Tastspitze auf einem piezo- elektrischen Seignettekristall mit großer Piezowirkung befestigt ist. Der
Kristall wirkt als Biegefeder, die beim Bewegen der Tastspitze über die Ober¬ fläche eines Meßobjektes elektrische Spannungen erzeugt, welche zur Meßwert¬ gewinnung weiterverarbeitet werden. Nachteilig bei diesen Lösungen ist, daß nur eine geringe Meßgeschwindigkeit möglich ist und daß die Meßkräfte der Tastspitze zu groß sind (Perthen, J.: "Prüfen und Messen der Oberflächen¬ gestalt", Carl Hanser Verlag, München, 1949, S. 1 18-1 1 9).
Weiterhin bekannt ist eine Anordnung, bei der zur Rauheitsmessung in einem die Oberfläche mit einer Spitze abtastenden Hebel ein Piezokristall integriert ist, dessen ihn belastende Meßkräfte zur Signalgewinnung verwertet werden. Nachteilig sind die großen Meßkräfte, die ein Abtasten von MikroStrukturen ohne deren Verletzung erschweren und die nur geringen zulässigen Meßgeschwindigkeiten durch das quasi statische Meßverfahren (DE 8 600 738.6 Ul ). Für die Härtemessung und in Abwandlung zur Oberflächenprofilermittlung ist ein Berührungsdetektor bekannt, bei dem der Kontakt zur Oberfläche durch einen piezoelektrischen Stabresonator ermittelt wird, auf dessen Stirnseite eine Tαstspitze, bevorzugt aus Diamant, befestigt ist.
Der Stabresonator wird über seitliche Elektroden von einem Generator oder Oszillator in Eigenresonanz erregt. Eine elektronische Meßschaltung wertet die bei Berührung der Tastspitze mit der Meßoberfläche auftretenden Frequenz¬ oder Amplitudenänderungen des Resonators als Kontaktsignal aus, das in Verbindung mit einem Steller zur Profilermittlung dienen kann. Nachteil dieser Anordnung ist, daß der Stabresonator hohe Meßkräfte bewirkt und niedrige Resonanzfrequenzen aufweist, so daß die Meßoberfläche verletzt werden kann und nur geringe Meßgeschwindigkeiten erzielbar sind (WO 89/00672 AI).
Ein weiteres bekanntes Tasfschnittgerät arbeitet nach einem Impulstast¬ verfahren, bei dem eine Tastnadel impulsförmig von der Oberfläche des Meßobjektes angehoben und wieder abgesenkt wird. Das Gerat arbeitet quasi statisch. Das Anheben der Tastnadel dient der Verminderung von Reibkräften und Tangentialkräften in den Lagerstellen des Meßwerkes. Bei diesem Gerät ist es von Nachteil, daß die Impulsgeschwindigkeit gering ist und daß die Meßkräfte zu hoch liegen (Lehmann, R.: "Leitfaden der Längenmeßtechnik", VEB Verlag, Technik Berlin, 1960, S. 277).
Beschreibung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, eine gattungsgemäße Meßanordnung so weiterzuentwickeln, daß die Meßgenauigkeit verbessert, die Meßgeschwindig¬ keit erhöht und die aufzuwendenden Meßkräfte verringert werden.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß bei einer Anordnung der gattungsgemäßen Art als Auswerteschaltung eine Phasenmeßschaltung vorgesehen ist, welche die Phasendifferenz der Wechselspannung zwischen mindestens einer ersten auf dem Resonator angeordneten Elektrode sowie einem elektrischen Bezugspunkt und der Wechselspannung zwischen mindestens einer weiteren, auf dem Resonator angeordneten Elektrode sowie dem elektrischen Bezugspunkt ermittelt.
Die erfindungsgemäße Meßanordnung ermöglicht es, die Oberfläche des Prüflings (Meßobjekt) mit Hilfe eines piezoelektrischen Resonators hoch- frequent abtasten zu können.
Es ist vorteilhaft, wenn dabei als antastende Spitze eine Mikrotastspitze aus Diamant verwendet wird, die verschleißfest ist, wgen ihrer kleinen Masse nicht merklich das Resonanzverhalten des Resonators beeinflußt und mit einer Gesamtgröße unter 20 μm ausgeführt ist. Desweiteren ist es vorteilhaft, als Resonator Piezoschwinger mit hoher
Schwinggüte aus Lithiumniobat als Dickenschwinger, aus Quarz mit AT-Schnitt als Dickenscherschwinger oder aus Quarz als Stab- oder Stimmgabelschwinger einzusetzen. Infolge der Berührung der schwingenden Tastspitze mit der Oberfläche des Meßobjektes treten am Piezoschwinger Resonanzverstimmungen auf, wozu die
Auswerteschaltung u.a. eine Einrichtung zur Erfassung von Änderungen der Phase an ein und demselben Resonator, aber verschieden auf ihm angebrachten Elektroden, enthält. Das Meßsignal der Auswerteschaltung bildet das Eingangssignal eines Reglers. Das Ausgangssignal des Regelers wirkt auf ein piezoelektrisches, magneto¬ elastisches oder mikromechanisches Stellelement, das den Resonator trägt und ihn so in Kontakt mit der Prüflingsoberfläche bringt, daß die Berührungsstöße
-8 der Tastspitze stets ein konstantes, sehr geringes Maß von etwa 10" N aufweisen. Das Stellelement sollte wegen seiner Hysterese ein Wegmeßsystem aufweisen, um hysteresefreie Meßwerte erhalten zu können.
Kurze Beschreibung der Zeichnungen Die Erfindung wird nachfolgend anhand der Zeichnung beispielshalber noch näher erläutert. Es zeigen:
Fig. 1 eine prinzipielle Darstellung eines Ausführungsbeispiels einer erfindungs¬ gemäßen Meßanordnung mit einem Resonator in Form eines LiNbO-, - Dicken- schwingers und
Fig. 2 eine prinzipielle Darstellung eines anderen Ausführungsbeispiels einer erfindungsgemäßen Meßanordnung mit einem Resonator in Form eines Quarz-Dickenscherschwingers. Aus ührliche Beschreibung der Zeichnungen
Die in Fig. 1 prinzipiell dargestellte Meßanordnung weist ein Gestell 1 auf, an das je ein in Reihe geschalteter Grobsteller 2 und Feinsteiler 3 montiert ist. Am Feinsteller 3 ist ein Resonator in Form eines LiNbO^-Dickenschwingers 4 befestigt, auf dem eine Tastspitze 5 angeordnet ist, welche die Oberfläche 6 eines Meßobjektes 7 berührt. Der mit Elektroden versehene Dickenschwinger 4 steht mit einer Oszillatorschaltung 8 und einer Schaltung 9 zur Erfassung von Änderungen der Phase in Verbindung. Die Schaltung 9 ist mit einer Regel- Schaltung 10 verbunden, deren Ausgänge jeweils an den Grobsteller 2 und den
Feinsteller 2 angeschlossen sind.
Bei der in Fig. 2 im Prinzip dargestellten Meßanordnung ist der Feinsteller 3 über einen Distanzring 1 1 mit einem Resonator in Form eines Quarz-Dicken- scherschwingers 12 mit AT-Schnitt gekoppelt, an dem (wie in Fig. 1) eine Tastspitze 3 befestigt ist. Grobsteller 2 und Feinsteller 3 bewirken eine
Verstellung des Resonators 4 in Richtung 13 senkrecht zur Oberfläche 6 des Meßobjektes 7. Der Verstellweg kann mit eine Wegmeßsystem erfaßt werden. Der Resonator 4 mit der Tastspitze 5 kann in Richtung 14 über die Oberfläche 6 geführt werden. Die Oszillatorschaltung 8 versetzt den Dickenschwinger 4 oder den Dickenscherschwinger 12 in eine Hochfrequenzschwingung im
MHz-Bereich. Berührungen der schwingenden Tastspϊtze 5 mit der Oberfläche 6 rufen am Dickenscherschwinger 12 Resonanzverstimmungen hervor, die als Änderung der Phase durch die Schaltung 9 erfaßt werden. Ebenso können durch die Schaltung 9 Resonanzfrequenzänderugen oder Amplitudenänderungen erfaßt werden. Die von der Schaltung 9 erfaßten Resonanzänderungen bilden die
Eingangssignale für die Regelschaltung 10, die so auf den Grobsteller 2 und Feinsteller 3 wirkt, daß die Tastspitze 5 nur geringe Meßkräfte auf die Oberfläche 6 ausübt. Infolge der hohen Kreisgüten von 10 bis 10 , die Piezo¬ schwinger in Resonanz aufweisen, werden Änderungen der Schwingbedingungen mit großer Empfindlichkeit registriert.
Meßverfahren, die auf Änderungen der Resonanzfrequenz oder -amplitude reagieren, erfordern für eine Vergleichsmessung einen unbeeinflußten Referenz¬ schwinger. Die elektronischen Auswerteverfahren hierfür, wie z.B. Frequenz¬ messung, reagieren zeitlich träge. Sehr empfindlich und schnell reagiert bei Piezoschwingern die Phase auf Änderungen der Resonanzbedingungen. Solche
Meßverfahren erfordern nicht unbedingt einen Referenzschwinger, sondern können an ein und demselben Piezoschwinger vorgenommen werden, weil im Piezoschwinger selbst Phasenänderungen auftreten.
Bei dem in Fig. 1 dargestellten Dickenschwinger 4 wirken der große Kopplungs- faktor sowie das Schwingen der Tastspitze 5 senkrecht zur Oberfläche 6 vorteilhaft. Der Dickenschwinger 4 kann am Feinsteller 3 so mit einer Kittschicht angekoppelt sein, daß eine hohe Reflexion der Piezoschwingungen an der Stirnfläche des Feinstellers 3 auftritt und seine Schwingung nur wenig durch die Ankopplung gedämpft wird. Bei dem in Fig. 2 eingesetzten Dickenscherschwinger 12 schwingt die
Tastspitze 5 parallel zur Oberfläche 6. Der AT-Schnitt des Quarzes bietet den Vorteil einer guten Temperaturkompensation der Resonanzfrequenz. Durch die Ankopplung des Dickenscherschwingers 1 2 über den peripheren Distanzring 1 1 besteht zwischen dem zentralen Teil des Dickenscherschwingers 12 und der Stirnfläche des Stellers ein Spalt, der dazu dient, eine möglichst ungedämpfte
Dickenscherschwingung des Quarzes zu ermöglichen.

Claims

Patentanspruch
Anordnung zum Messen linearer Abmessungen auf einer strukturierten Ober- fläche (6) eines Meßobjektes (7), bei der eine die Oberfläche (6) amtastende
Spitze (5) auf einem Resonator (4) befestigt ist, der mittels Führungen parallel zur Oberfläche (6) beweglich ist, an den zur Positionsbestimmung Wegme߬ systeme angekoppelt sind und der mit einer Äuswerteschaltung 'zur Erfassung von Resonanzänderungen und einer angeschlossenen Regelschaltung (10) verbunden ist, die an senkrecht zur Oberfläche (6) auf den Resonator wirkende
Stellelemente (2, 3) angeschlossen ist, dadurch gekennzeichnet, daß als Auswerteschaltung eine Phasenmeßschaltung (9) vorgesehen ist, deren Eingänge mit Elektroden verbunden sind, die am Resonator (4) befestigt sind.
PCT/EP1991/002088 1990-11-05 1991-11-05 Anordnung zum messen linearer abmessungen auf einer strukturierten oberfläche eines messobjektes WO1992008946A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4035076.2 1990-11-05
DE4035076A DE4035076A1 (de) 1990-11-05 1990-11-05 Anordnung zum messen linearer abmessungen auf einer strukturierten oberflaeche eines messobjektes

Publications (2)

Publication Number Publication Date
WO1992008946A2 true WO1992008946A2 (de) 1992-05-29
WO1992008946A3 WO1992008946A3 (de) 1992-07-23

Family

ID=6417637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1991/002088 WO1992008946A2 (de) 1990-11-05 1991-11-05 Anordnung zum messen linearer abmessungen auf einer strukturierten oberfläche eines messobjektes

Country Status (3)

Country Link
EP (1) EP0509078A1 (de)
DE (1) DE4035076A1 (de)
WO (1) WO1992008946A2 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10345993B4 (de) * 2003-10-02 2008-07-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Messen und zum Feinstellen eines Werkzeuges in einem Werkzeughalter und Verfahren zum Messen einer Bearbeitungskraft

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH667835A5 (en) * 1985-10-14 1988-11-15 Elektroniktechnologie Get Tactile sensor scanning workpiece surface - uses sensor pin in mechanical oscillation system with driver coil for intermittent contact with scanned surface
EP0290647A1 (de) * 1987-05-12 1988-11-17 International Business Machines Corporation Atomares Kräftemikroskop mit oscillierendem Quarz
WO1989000672A1 (en) * 1987-07-20 1989-01-26 Krautkrämer Gmbh & Co. Process for detecting a nearly pinpoint, essentially force-free contact of small area between a probe and a solid object, and contact detector
EP0338083A1 (de) * 1987-10-09 1989-10-25 Hitachi, Ltd. Rastertunnelmikroskop mit einer Vorrichtung zum Berichtigen von Oberflächendaten

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US33387A (en) * 1861-10-01 Improvement in printing-presses
GB1318701A (en) * 1970-01-30 1973-05-31 Rank Organisation Ltd Methods of waveform analysis and apparatus therefor
DE3532654A1 (de) * 1985-09-13 1987-03-26 Thyssen Industrie Oberflaechenpruefeinrichtung mit konturnachform-fuehrungssystem

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH667835A5 (en) * 1985-10-14 1988-11-15 Elektroniktechnologie Get Tactile sensor scanning workpiece surface - uses sensor pin in mechanical oscillation system with driver coil for intermittent contact with scanned surface
EP0290647A1 (de) * 1987-05-12 1988-11-17 International Business Machines Corporation Atomares Kräftemikroskop mit oscillierendem Quarz
WO1989000672A1 (en) * 1987-07-20 1989-01-26 Krautkrämer Gmbh & Co. Process for detecting a nearly pinpoint, essentially force-free contact of small area between a probe and a solid object, and contact detector
EP0338083A1 (de) * 1987-10-09 1989-10-25 Hitachi, Ltd. Rastertunnelmikroskop mit einer Vorrichtung zum Berichtigen von Oberflächendaten

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
APPLIED PHYSICS LETTERS. Band 55, Nr. 22, 27. November 1989, (New York, US) P.C.D. Hobbs et al.: "Magnetic force microscopy with 25nm resolution", Seiten 2357-2359, siehe Seite 2357, linke Spalte, Abschnitt 2 - Seite 2358, rechte Spalte, Abschnitt 1; Figur 1 *
IBM TECHNICAL DISCLOSURE BULLETIN, Band 32, Nr. 88, 1. Januar 1990 (New York, US) "Combined scanning tunneling and capacitance microscope", Seiten 266-267 *
INTERNATIONAL JOURNAL OF ELECTRONICS, Band 68, Nr. 1, 1. Januar 1990 (London, GB) M. Ahmad: "Measurement of power system frequency deviation using a microprocessor", Seiten 161-164, siehe Abschnitt 2; Figur 1 *

Also Published As

Publication number Publication date
EP0509078A1 (de) 1992-10-21
DE4035076A1 (de) 1992-05-07
WO1992008946A3 (de) 1992-07-23

Similar Documents

Publication Publication Date Title
DE69010552T2 (de) Atomkraftmikroskop.
EP0711406B1 (de) Akustisches mikroskop
EP0627068B1 (de) Tastelement fur koordinatenmesssysteme
DE3750406T2 (de) Atomarer Kräftesensor mit interferometrischer Messung der Eigenschaften eines Datenträgers.
EP1482297A4 (de) Rastersondenmikroskop sowie verfahren zur messung der oberflächenstruktur von präparaten
DE69828758T2 (de) Verfahren zur Herstellung eines Magnetkraftbildes und Rastersondenmikroskop
DE10307561B4 (de) Meßanordnung zur kombinierten Abtastung und Untersuchung von mikrotechnischen, elektrische Kontakte aufweisenden Bauelementen
DE3820518C1 (de)
DE69434641T2 (de) Elektrooptisches Messinstrument
EP0764261B1 (de) Anordnung zur erfassung der topographie einer oberfläche
WO1992008101A1 (de) Anordnung zum messen linearer abmessungen auf einer strukturierten oberfläche eines messobjektes
WO1992008946A2 (de) Anordnung zum messen linearer abmessungen auf einer strukturierten oberfläche eines messobjektes
WO1992008102A1 (de) Anordnung zum messen linearer abmessungen auf einer strukturierten oberfläche eines messobjektes
EP2218075B1 (de) Vorrichtung und verfahren für ein raster-kraft mikroskop zur untersuchung und modifikation von oberflächeneigenschaften
EP0407835B1 (de) Rasterkraftmikroskop
DE102017202455B4 (de) MEMS- oder NEMS-basierter Sensor und Verfahren zum Betrieb eines solchen
WO2007019913A1 (de) Vorrichtung zur schwingungsanregung eines einseitig in einem rasterkraftmikroskop befestigten federbalkens
EP2051069A2 (de) Paramagnetischer Gassensensor sowie Verfahren zum Betrieb desselben
DE102006013588A1 (de) Zweidimensinale Profilierung von Dotierungsprofilen einer Materialprobe mittels Rastersondenmikroskopie
DE19822286B4 (de) Akustik-Mikroskop
DE3417826C2 (de)
DE3820518C2 (de)
DE964644C (de) Laengenmessfuehler
WO1996012935A1 (de) Dehnungsmesser zur messung der dehnung einkristallinen halbleitermaterials
WO2010105584A1 (de) Rasterkraftmikroskop

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991919134

Country of ref document: EP

AK Designated states

Kind code of ref document: A3

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWP Wipo information: published in national office

Ref document number: 1991919134

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1991919134

Country of ref document: EP