WO1992008101A1 - Anordnung zum messen linearer abmessungen auf einer strukturierten oberfläche eines messobjektes - Google Patents

Anordnung zum messen linearer abmessungen auf einer strukturierten oberfläche eines messobjektes Download PDF

Info

Publication number
WO1992008101A1
WO1992008101A1 PCT/EP1991/002087 EP9102087W WO9208101A1 WO 1992008101 A1 WO1992008101 A1 WO 1992008101A1 EP 9102087 W EP9102087 W EP 9102087W WO 9208101 A1 WO9208101 A1 WO 9208101A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
sensors
measurement
sensor
probe tip
Prior art date
Application number
PCT/EP1991/002087
Other languages
English (en)
French (fr)
Inventor
Karlheinz Bartzke
Rolf Thiemer
Lothar Voigt
Ludwig Fritzsch
Joachim Heim
Original Assignee
Jenoptik Carl Zeiss Jena Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jenoptik Carl Zeiss Jena Gmbh filed Critical Jenoptik Carl Zeiss Jena Gmbh
Publication of WO1992008101A1 publication Critical patent/WO1992008101A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/34Measuring arrangements characterised by the use of electric or magnetic techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/28Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures

Definitions

  • the invention relates to an arrangement for measuring linear dimensions on the structured surface of a measuring object, consisting of a measuring head and a measuring object carrier, the measuring head relative to the
  • the invention is particularly useful in two-coordinate measuring devices, in measuring devices for ultra-precision machining technology, in probe cutters, in measuring devices for measuring microelectronic semiconductor structures, in roughness measuring devices, in profile measuring devices and for generating microstructures on r - m. Surfaces applicable.
  • optical arrangements For the measurement of linear dimensions of semiconductor structures, optical arrangements are known which achieve a linear resolution of approximately 0.7 ⁇ m with the aid of optical imaging systems and optoelectronic receivers.
  • measuring arrangements result in measuring errors due to electron-optical imaging errors (Reimer, L .; Pfefferkorn, G .: “Scanning Electron Microscopy", Springer-Verlag Berlin, 1977).
  • STM scanning tunnel microscopy
  • AFM atomic force microscopy
  • a nanometer-fine tip made of tungsten, gold, diamond or the like is used. guided at a distance of a few nanometers over the surface of the test specimen, so that a tunnel current of a few nanoamperes is formed between the tip and the surface either at a voltage of a few millivolts (STM) or interatomic forces become effective (AFM), which are kept constant by a distance controller become.
  • STM scanning tunnel microscopy
  • AFM atomic force microscopy
  • test specimen surface at the STM must be electrically conductive due to the tunnel current.
  • the arrangements are so sensitive that only areas of a few micrometers in size can be scanned and the scanning speeds are very slow. During these scans, the measurement processes on the test specimen produce traces (Proceedings of SPIE, Vol. 897, 1988, pp. 8-15; EP 0 338 083 AI; "Physical Review Letter” 56 (1986) 9, pp. 930-933 ).
  • AFM atomic force microscopy
  • An electrical measuring circuit determines the shift in the resonance frequency of the piezoelectric oscillator, which is caused by touching the test specimen surface with the stylus.
  • a control circuit connected to the measuring circuit and an actuating unit carrying the piezo oscillator are used to determine the profile.
  • a disadvantage of this arrangement is that the cube-shaped geometry of the piezo oscillator shown in the measuring arrangement does not allow harmonic oscillation and that the stylus, which is massive in comparison to the piezo oscillator, dampens the natural resonance of the piezo oscillator.
  • the measuring method used is the resonance frequency difference Measurement sluggish in time and relatively insensitive and therefore less suitable as a highly dynamic and at the same time highly sensitive measuring principle (EP 0 290 647).
  • probe cutters are known which, with a diamond tip as a probe tip, achieve a lateral resolution of 6 nm depending on the probe tip geometry and measuring force.
  • a disadvantage of these conventional stylus cutters is that due to dynamic effects, for example jumping of the stylus, only low measuring speeds are possible, which require long measuring times. The constant contact between the diamond tip and the surface of the test specimen
  • a piezo crystal is integrated in a lever that scans the surface with a tip, the measuring forces of which it is loaded are used for signal acquisition.
  • a touch detector in which the contact to the surface is determined by a piezoelectric rod resonator, on the front side of which a probe tip, preferably made of diamond, is attached.
  • the rod resonator is excited by a generator or oscillator in self-resonance via lateral electrodes.
  • An electronic measuring circuit evaluates the frequency occurring when the probe tip touches the measuring surface. or amplitude changes of the resonator as a contact signal, which can be used in conjunction with an actuator for profile determination.
  • the disadvantage of this arrangement is that the rod resonator produces high measuring forces and has low resonance frequencies, so that the measuring surface can be damaged and only low measuring speeds can be achieved (WO 89/00672 AI).
  • Another known scanning probe device works according to an impulse scanning method, in which a stylus is raised and lowered in a pulsed manner from the surface of the measurement object. The device works quasi statically.
  • Raising the stylus serves to reduce frictional and tangential forces in the bearing points of the measuring mechanism.
  • the pulse speed is low and that the measuring forces are too high (Lehmann, R .: “Guide to Length Measurement Technology", VEB Verlag,technik Berlin, 1960, p. 277).
  • the invention has for its object to further develop a generic measuring arrangement so that it can be used to increase the measuring speed with great accuracy and only small measuring forces.
  • the measuring head is arranged to be movable relative to the surface of the measuring object and a plurality of sensors is arranged in it, each having a probe tip scanning the surface of the measuring object , wherein each sensor contains a transducer for obtaining tactile signals and an actuating and measuring device is provided for positioning the respective probe tip in the direction perpendicular to the surface.
  • the measuring arrangement according to the invention makes it possible to mechanically scan the surface of the measuring object simultaneously with a plurality of probe tips.
  • the large number of sensors used makes it possible to carry out structural measurements at several locations on the surface at the same time, as a result of which the measurement time per test object is reduced in inverse proportion to the number of sensors. Furthermore, the required range of movement of the adjusting elements for the measuring head or the measuring object and the required measuring range of the position measuring systems assigned to the control elements to the size of a measuring range of a sensor.
  • Macroscopic and microscopic bumps on the surface of the test object to be examined are determined by the adjusting devices of the individual
  • Compensated sensors that are provided with a sufficient travel for this vertical shift.
  • the probe tips experience horizontal displacements of only a few nanometers with respect to one another, which are either compensated for or detected by measurement and corrected in a measurement signal evaluation circuit.
  • microactuators are used as actuating elements in the actuating devices, the dimensions of which are very small, e.g. less than 1 mm.
  • the sensors are arranged in a matrix or in a line.
  • Each sensor measures in a measuring field.
  • the measuring fields have to be connected to one another by measurement technology by determining the position of all probe tips in a coordinate system.
  • Test specimens are made, in the first case the measurement accuracy is greater due to the lower edge roughness of the calibration structures and in the second case the connection measurements are a by-product of the measurement results.
  • the orthogonality of the coordinates of the measuring device can be determined quite easily with a sensor matrix. This can be done by two ⁇ nearly crossing structural edges are measured twice, the test specimen being rotated by approximately 90 degrees before the second measurement.
  • a high degree of accuracy in the determination of the orthogonality error is achieved by including many structure edges which intersect at almost perpendicular angles in the measurement result from the sensor matrix. The angle between the two structural edges is not included in the final result.
  • the sensors contain plate-shaped or rod-shaped * resonators with or without shock absorbers, which are each arranged between the probe tip and the actuating device and which have a measuring signal ejection circuit with a control circuit for the actuating device in Connect.
  • Fig. 1 is a basic side view of a measuring arrangement according to the invention.
  • Fig. 2 shows the view in the direction Z from Fig. 1 (view of the sensor plate).
  • FIG. 1 The basic illustration of a measuring arrangement according to the invention from FIG. 1 shows a sensor plate 2 fastened to a measuring head 1, on which vertically movable touch sensors 3 with probe tips 4 are arranged in a matrix, as seen from the view in the direction of arrow Z, which is shown in FIG. 2 is recognizable.
  • the probe tips 4 touch the surface 5 to be measured of a measurement object 6, which is fastened on a coordinate table 7 that is horizontally movable relative to the probe tips 4.
  • the probe tips 4 of the probe sensors 3 are mechanically calibrated to the same height.
  • a measurement transducer 8 for obtaining tactile signals is assigned to each tactile sensor 3. As
  • a transducer 8 can be used, in particular if the T ⁇ stsensoren 3 contain plate or rod-shaped resonators 9.
  • the transducers 8 are connected to a measurement signal evaluation circuit, to which a control circuit for evaluating the individual control devices for the touch sensors 3 is connected.
  • the carrier for the touch sensors 3 consists of a suitable material with a thermal expansion coefficient that has a value equal to or almost equal to zero in order to largely exclude measuring fields due to temperature changes.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

Bei einer Anordnung zum Messen linearer Abmessungen auf einer strukturierten Oberfläche eines Meßobjektes (6), die aus einem Meßkopf (1) und einem Meßobjektträger (7) besteht, ist der Meßkopf (1) relativ zur Oberfläche des Meßobjektes (6) beweglich angeordnet. Im Meßkopf (1) ist eine Vielzahl von Sensoren (3) angeordnet, die je eine die Oberfläche des Meßobjektes (6) abtastende Tastspitze (4) aufweisen. In jedem Sensor (3) ist ein Meßwertwandler (8) zur Gewinnung von Tastsignalen und eine Stell- und Meßeinrichtung für eine Positionierung der jeweiligen Tastspitze (4) in Richtung senkreckt zur Oberfläche (5) des Meßobjektes (6) vorgesehen.

Description

-Bezeichnung der -Erfindung
Anordnung zum Messen linearer Abmessungen auf einer strukturierten Oberfläche eines Meßobjektes
10
Technisches Gebiet
Die Erfindung bezieht sich auf eine Anordnung zum Messen von linearen Abmessungen auf der strukturierten Oberfläche eines Meßobjektes, bestehend aus einem Meßkopf und einem Meßobjektträger, wobei der Meßkopf relativ zur
- m Oberfläche des Meßobjektes beweglich angeordnet ist. Die Erfindung ist insbesondere bei Zweikoordinatenmeßgeräten, bei Meßgeräten für die Ultra-Präzisions-Bearbeitungstechnik, bei Tastschnittgeräten, bei Meßgeräten für die Messung von mikroelektronischen Halbleiterstrukturen, bei Rauheits¬ meßgeräten, bei Profilmeßgeräten und zur Erzeugung von MikroStrukturen auf r- m. Oberflächen anwendbar.
Stand der Technik
Zur Messung linearer Abmessungen von Halbleiterstrukturen sind optische «c Anordnungen bekannt, die mit' Hilfe von optischen Abbildungssystemen und optoelektronischen Empfängern eine lineare Auflösung von ca. 0,7 μm erreichen.
Eine wesentliche Steigerung der lateralen Auflösung unter 0,7 μm ist wegen des Wellencharakters des Lichtes nicht möglich. Infolge von optischen Q Beugungserscheinungen, die für jeden Meßpunkt die wirkliche Lage der
Strukturkanten verfälschen, entstehen Meßfehler, insbesondere bei der Messung von Strukturbreiten unter 1 μm (vgl. Zeitschrift "Feingerätetechnik" 32 (1983),
Nr. 9, S. 402-40.; Zeitschrift "Technisches Messen" 54 (1 987), Nr. 6, S.
243-252; Zeitschrift "Journal für Optik und Feinmechanik" 35 (1 988), S. 5 196-235).
Desweiteren sind elektronenmikroskopische Meßanordnungen bekannt, bei denen die Meßobjekte eine elektrisch leitende Oberflächenschicht aufweisen müssen. Der Meßvorgang erfolgt im Vakuum, so daß die bei Wafern übliche Vakuum¬ aufspannung nicht anwendbar ist, und damit Messungen an Wafern mit diesen Anordnungen nur eingeschränkt durchführbar sind. Wie bei einer optischen
Meßanordnung enstehen auch hier Meßfehler infolge elektronenoptischer Abbildungsfehler (Reimer, L.; Pfefferkorn, G.: "Raster-Elektronenmikroskopie", Springer-Verlag Berlin, 1977). Bei Meßanordnungen, die auf dem Prinzip der Raster-Tunnel-Mikroskopie (STM) oder auf der atomaren Kraft-Mikroskopie (AFM) beruhen, wird eine nanometer- feine Spitze aus Wolfram, Gold, Diamant o.a. im Abstand von wenigen Nanometern über die Prüflingsoberfläche geführt, so daß sich zwischen Spitze und Oberfläche entweder bei einer Spannung von wenigen Millivolt ein Tunnel¬ strom von einigen Nanoamperes ausbildet (STM) oder zwischenatomare Kräfte wirksam werden (AFM), die über einen Abstandsregler konstant gehalten werden.
Diese Lösungen haben den Nachteil, daß die Prüflingsoberfläche beim STM wegen des Tunnelstromes elektrisch leitend sein muß. Die Anordnungen sind so empfindlich, daß nur Flächen von wenigen Mikrometern Größe abgetastet werden können und die Abtastgeschwindigkeiten sehr niedrig sind. Bei diesen Abtastungen entstehen durch die Meßvorgänge auf dem Prüfling Spuren (Proceedings of SPIE, Vol. 897, 1988, S. 8-15; EP 0 338 083 AI; "Physical Review Letter" 56 (1986) 9, S. 930-933). Zur atomaren Kraft-Mikroskopie (AFM) ist eine Anordnung bekannt, bei der auf einem Piezoschwinger eine Tastnadel befestigt ist, deren Spitze hoch¬ frequent schwingend die Oberfläche des Prüflings antastet.
Eine elektrische Meßschaltung ermittelt die Verschiebung der Resonanz¬ frequenz des Piezoschwingers, die durch das Berühren der Prüflingsoberfläche mit der Tastnadel hervorgerufen wird. Eine mit der Meßschaltung in Verbindung stehende Regelschaltung und eine den Piezoschwinger tragende Stelleinheit dienen der Profilermittlung. Nachteilig bei dieser Anordnung ist, daß die in der Meßanordnung gezeigte würfelförmige Geometrie des Piezoschwingers keine harmonische Schwingung ermöglicht und daß die im Vergleich zum Piezoschwinger massereiche Tast- nadel die Eigenresonanz des Piezoschwingers dämpft.
Desweiteren ist das angewendete Meßverfahren der Resonanzfrequenzdifferenz- messung zeitlich träge und relativ unempfindlich und deshalb als hoch¬ dynamisches und zugleich hochempfindliches Meßprinzip weniger geeignet (EP 0 290 647). Zur mechanischen Abtastung von Halbleiterstrukturen und für Rauheits¬ messungen sind Tastschnittgeräte bekannt, die mit einer Diamantspitze als Tastspitze in Abhängigkeit von Tastspitzengeometrie und Meßkraft eine laterale Auflösung von 6 nm erreichen. Nachteilig bei diesen herkömmlichen Tastschnittgeräten ist, daß infolge dynamischer Effekte, z.B. Springen der Tastnadel, nur geringe Meßgeschwindigkeiten möglich sind, die hohe Meßzeiten bedingen. Der ständige Kontakt von Diamantspitze und Prüflingsoberfläche
_5 erfordert Meßkräfte von mindestens 10 N, die Verletzungsspuren auf der
Oberfläche des Meßobjektes erzeugen können. (Sonderdruck aus "Kontrolle" 1 1/12, 1987). Desweiteren sind Tastschnittgeräte bekannt, deren Tastspitze auf einem piezo¬ elektrischen Seignettekristall mit großer Piezowirkung befestigt ist. Der Kristall wirkt als Biegefeder, die beim Bewegen der Tastspitze über die Ober¬ fläche eines Meßobjektes elektrische Spannungen erzeugt, welche zur Meßwert¬ gewinnung weiterverarbeitet werden. Nachteilig bei diesen Lösungen ist, daß nur eine geringe Meßgeschwindigkeit möglich ist und daß die Meßkräfte der
Tastspitze zu groß sind (Perthen, J.: "Prüfen und Messen der Oberflächen¬ gestalt", Carl Hanser -Verlag, München, 1949, S. 1 18- 1 1 9).
Weiterhin bekannt ist eine Anordnung, bei der zur Rauheitsmessung in einem die Oberfläche mit einer Spitze abtastenden Hebel ein Piezokristall integriert ist, dessen ihn belastenden Meßkräfte zur Signalgewinnung verwertet werden.
Nachteilig sind die großen Meßkräfte, die ein Abtasten von MikroStrukturen ohne deren Verletzung erschweren und die nur geringen zulässigen Meßgeschwindigkeiten durch das quasi statische Meßverfahren (DE 8 600 738.6 Ul ). Für die Härtemessung und in Abwandlung zur Oberflächenprofilermittlung ist ein Berührungsdetektor bekannt, bei dem der Kontakt zur Oberfläche durch einen piezoelektrischen Stabresonator ermittelt wird, auf dessen Stirnseite eine Tastspitze, bevorzugt aus Diamant, befestigt ist.
Der Stabresonator wird über seitliche Elektroden von einem Generator oder Oszillator in Eigenresonanz erregt. Eine elektronische Meßschaltung wertet die bei Berührung der Tastspitze mit der Meßoberfläche auftretenden Frequenz- oder Amplitudenänderungen des Resonators als Kontaktsignal aus, das in Verbindung mit einem Steller zur Profilermittlung dienen kann. Nachteil dieser Anordnung ist, daß der Stabresonator hohe Meßkräfte bewirkt und niedrige Resonanzfrequenzen aufweist, so daß die Meßoberfläche verletzt werden kann und nur geringe Meßgeschwindigkeiten erzielbar sind (WO 89/00672 AI ). Ein weiteres bekanntes Tastschnittgerät arbeitet nach einem Impulstast¬ verfahren, bei dem eine Tastnadel impulsförmig von der Oberfläche des Meßobjektes angehoben und wieder abgesenkt wird. Das Gerät arbeitet quasi statisch. Das Anheben der Tastnadel dient der Verminderung von Reibkräften und Tangentialkräften in den Lagerstellen des Meßwerkes. Bei diesem Gerät ist es von Nachteil, daß die Impulsgeschwindigkeit gering ist und daß die Meßkräfte zu hoch liegen (Lehmann, R.: "Leitfaden der Längenmeßtechnik", VEB Verlag, Technik Berlin, 1960, S. 277).
Beschreibung der -Erfindung
Der Erfindung liegt die Aufgabe zugrunde, eine gattungsgemäße Meßanordnung so weiterzuentwickeln, daß mit ihr eine Erhöhung der Meßgeschwindigkeit bei gleichzeitig großer Genauigkeit und nur geringen Meßkräften erreichbar ist.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß bei einer Anordnung der eingangs genannten Art mit einem Meßkopf und einem Meßobjektträger der Meßkopf relativ zur Oberfläche des Meßobjektes beweglich angeordnet und in ihm eine Vielzahl von Sensoren angeordnet ist, die je eine die Oberfläche des Meßobjektes abtastende Tastspitze aufweisen, wobei in jedem Sensor ein Meßwertwandler zur Gewinnung von Tastsignalen enthalten und eine Stell- und Meßeinrichtung für eine Positionierung der jeweiligen Tastspitze in Richtung senkrecht zur Oberfläche vorgesehen ist. Die erfindungsgemäße Meßanordnung ermöglicht es, die Oberfläche des Me߬ objektes gleichzeitig mit mehreren Tastspitzen mechanisch abzutasten. Durch die Vielzahl der dabei eingesetzten Sensoren ist es möglich, an mehreren Orten der Oberfläche gleichzeitig Strukturmessungen durchzuführen, wodurch sich die Meßzeit pro Prüfling umgekehrt proportional zur Sensor- anzahl verringert. Desweiteren verringern sich der erforderliche Bewegungs¬ bereich der Stellelemente für den Meßkopf bzw. das Meßobjekt und der erforderliche Meßbereich der den Stellelementen zugeordneten Wegmeßsysteme auf die Größe eines Meßbereiches eines Sensors.
Makroskopische und mikroskopische Unebenheiten der Oberfläche des zu prüfenden Meßobjektes werden durch die Stelleinrichtungen der einzelnen
Sensoren ausgeglichen, die mit einem ausreichenden Arbeitsweg für diese Vertikalverschiebung versehen sind. Hierbei erfahren die Tastspitzen zueinander Horizontalverlagerungen von nur wenigen Nanometern, die entweder kompensiert oder meßtechnisch erfaßt und in einer Meßsignal- auswerteschaltung korrigiert werden. Besonders hohe Packungsdichten der
Sensoren und damit große Vorteile der Meßanordnung sind dann erzielbar, wenn in den Stelleinrichtungen als Stellelemente Mikroaktuatoren eingesetzt werden, deren Abmessungen sehr gering sind, z.B. unter 1 mm. Hinsichtlich der Meßwertermittlung ist es vorteilhaft, wenn die Sensoren matrix- oder linienförmig angeordnet sind.
Jeder Sensor mißt in einem Meßfeld. Die Meßfelder müssen untereinander me߬ technisch angeschlossen werden, indem in einem Koordinatensystem die Lage aller Tastspitzen bestimmt wird.
Für Sensoren mit matrixförmiger Anordnung ist das dadurch realisierbar, daß auf den Grenzlinien von Quadraten liegende Strukturen von jeweils benach¬ barten Sensoren, die als Kanten- oder Höhendetektoren- wirken, ermittelt und von den Wegmeßsystemen gemessen werden. Die Meßfehler . dieser Über- deckungsmessungen addieren sich von Quadrant zu Quadrant wie bei einem Kettenmaß, aber durch Wiederholungsmessungen an den gleichen Strukturen lassen sich die Meßfehler gemäß den Gesetzen der Fehlerstatistik wieder verringern, so daß bei einer Sensormatrix im Mittel keine größeren Meßfehler auftreten, ähnlich wie bei einem Einsensormeßsystem. Diese Anschlußmessungen der Meßquadranten können entweder mit besonders geeigneten Strukturen, z.B. Beugungsgitterfurchen, oder auch mit normalen
Prüflingen vorgenommen werden, wobei im ersten Fall die Meßgenauigkeit wegen geringerer Kantenrauhigkeit der Eichstrukturen größer ist und im zweiten Fall die Anschlußmessungen als Nebenprodukt der Meßergebnisse mit anfallen. Mit einer Sensormatrix ist die Orthogonalität der Koordinaten des Meßgerätes recht einfach bestimmbar. Dies kann dadurch erfolgen, daß zwei sich αnnährend kreuzende Strukturkanten zweimal gemessen werden, wobei vor der zweiten Messung der Prüfling um annähernd 90 Grad gedreht wird. Eine hohe Genauigkeit der Bestimmung des Orthogonalitätsfehlers wird dadurch erzielt, daß von der Sensormatrix viele sich annährend senkrecht kreuzende Strukturkanten in das Meßergebnis einbezogen werden. Der Winkel zwischen den beiden Strukturkanten geht nicht in das Endergebnis ein. Ein besonders große Meßgeschwindigkeit läßt sich erreichen, wenn in bevorzugter Ausgestaltung der Erfindung die Sensoren platten- oder stab- * förmige Resonatoren mit oder ohne Stoßaufnehmer enthalten, die jeweils zwischen Tastspitze und Stelleinrichtung angeordnet sind und die über eine Meßsignalauswerfeschaltung mit einer Regelschaltung für die Stelleinrichtung in Verbindung stehen.
Kurze Beschreibung der Zeichnungen
Die Erfindung wird nachfolgend anhand der Zeichnung im Prinzip beispiels¬ halber noch näher erläutert. Es zeigen:
Fig. 1 eine prinzipielle Seitenansicht einer erfindungsgemäßen Meßanordnung und
Fig. 2 die Ansicht in Richtung Z aus Fig. 1 (Ansicht der Sensorplatte).
Ausführliche Beschreibung der Zeichnungen
Die Prinzipdarstellung einer erfindungsgemäßen Meßanordnung aus Fig. 1 zeigt eine an einem Meßkopf 1 befestigte Sensorplatte 2, an der vertikal bewegliche Tastsensoren 3 mit Tastspitzen 4 matrixförmig angeordnet sind, wie dies aus der Ansicht in Richtung des Pfeiles Z, die in Fig. 2 dargestellt ist, erkennbar ist. Die Tastspitzen 4 berühren die auszumessende Oberfläche 5 eines Meßobjektes 6, das auf einem relativ zu den Tastspitzen 4 horizontal beweglichen Koordinatentisch 7 befestigt ist. Die Tastspitzen 4 der Tast¬ sensoren 3 sind mechanisch auf gleiche Höhe kalibriert. Jedem Tastsensor 3 ist ein Meßwertwandler 8 zur Gewinnung von Tastsignalen zugeordnet. Als
Meßwertwandler 8 kann ein Stoßaufnehmer verwendet werden, insbesondere wenn die Tαstsensoren 3 platten- oder stabförmige Resonatoren 9 enthalten. Die Meßwertwandler 8 sind mit einer Meßsignalauswertschaltung verbunden, an die eine Regelschaltung zur Auswertung der einzelnen Stelleinrichtungen für die Tastsensoren 3 angeschlossen ist.
Der Träger für die Tastsensoren 3 besteht aus einem geeigneten Material mit einem thermischen Ausdehnkoeffizienten, der einen Wert gleich oder nahezu gleich null aufweist, um Meßfelder aufgrund von Temperaturänderungen möglichst weitgehend auszuschließen. In den Stelleinrichtungen werden als Stellelemente Mikroaktuatoren mit sehr kleinen Abmessungen, z.B. kleiner als 1 mm, eingesetzt, wodurch sich große Packungsdichten der Tastsensoren 3 auf der Sensorplatte erreichen lassen.

Claims

Potentαnsprüche
1. Anordnung zum Messen linearer Abmessungen auf einer strukturierten Ober- fläche eines Meßobjektes (6), bestehend aus einem Meßkopf (1 ) und einem
Meßobjektträger (7), wobei der Meßkopf (1 ) relativ zur Oberfläche (5) des Me߬ objektes (6) beweglich angeordnet ist, dadurch gekennzeichnet, daß im Meßkopf (1 ) eine Vielzahl von Sensoren (3) angeordnet ist, deren jeder eine die Oberfläche (5) des Meßobjektes (6) abtastende Tastspitze (4) aufweist, wobei in jedem Sensor (3) ein Meßwertwandler (8) zur Gewinnung von Tast¬ signalen enthalten und eine Stell- und Meßeinrichtung für eine Positionierung der jeweiligen Tastspitze (4) in Richtung senkrecht zur Oberfläche (5) des Meßobjektes (6) vorgesehen ist.
2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Sensoren (3) matrix- oder linienförmig angeordnet sind.-
3. Anordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Sensoren (3) platten- oder stabförmige Resonatoren mit oder ohne Stoßaufnehmer enthalten, die jeweils zwischen Tastspitze (4) und Stellein¬ richtung angeordnet sind und über eine Meßsignalauswerteschaltung mit einer Regelschaltung für die Stelleinrichtung in Verbindung stehen.
4. Anordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Stelleinrichtungen Mikroaktuatoren aufweisen.
PCT/EP1991/002087 1990-11-05 1991-11-05 Anordnung zum messen linearer abmessungen auf einer strukturierten oberfläche eines messobjektes WO1992008101A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19904035075 DE4035075A1 (de) 1990-11-05 1990-11-05 Anordnung zum messen linearer abmessungen auf einer strukturierten oberflaeche eines messobjektes
DEP4035075.4 1990-11-05

Publications (1)

Publication Number Publication Date
WO1992008101A1 true WO1992008101A1 (de) 1992-05-14

Family

ID=6417636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1991/002087 WO1992008101A1 (de) 1990-11-05 1991-11-05 Anordnung zum messen linearer abmessungen auf einer strukturierten oberfläche eines messobjektes

Country Status (2)

Country Link
DE (1) DE4035075A1 (de)
WO (1) WO1992008101A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1510780A2 (de) * 2003-08-26 2005-03-02 Metso Paper Inc. Vorrichtung und Verfahren zum Messen der Planheit der Oberfläche des Stoffauflaufs einer Papiermaschine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4216458C2 (de) * 1992-05-19 1994-09-15 Wolfgang Brunner Verfahren zur Erfassung der Oberflächenform von Körpern
DE4243807C2 (de) * 1992-12-23 2001-07-05 Truetzschler Gmbh & Co Kg Vorrichtung zur Prüfung der Ebenheit und der Lage eines Deckelstabes für eine Karde
DE19710111A1 (de) * 1997-03-12 1998-09-24 Boehm Feinmechanik Und Elektro Meßfühlerarmatur
AT412915B (de) * 2001-08-31 2005-08-25 Friedrich Dipl Ing Dr Franek Sensor zur bestimmung von oberflächenparametern eines messobjekts
DE10230009B4 (de) * 2002-07-04 2007-03-08 Carl Mahr Holding Gmbh Tastgerät
DE10260915A1 (de) * 2002-12-20 2004-07-15 Prüf- und Forschungsinstitut Pirmasens e.V. Meßsystem zur Vermessung auch komplexer dreidimensionaler Geometrien mittels einer Vielzahl in Messtiefenrichtung beweglicher Messtaster

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1077441B (de) * 1959-04-03 1960-03-10 Sennheiser Electronic Taststift fuer Feintaster oder Oberflaechenpruefgeraet
EP0290647A1 (de) * 1987-05-12 1988-11-17 International Business Machines Corporation Atomares Kräftemikroskop mit oscillierendem Quarz
EP0361932A2 (de) * 1988-09-30 1990-04-04 Canon Kabushiki Kaisha Verfahren und Detektor-Vorrichtung zum Abtasten durch Tunnelstrom
EP0368579A2 (de) * 1988-11-09 1990-05-16 Canon Kabushiki Kaisha Sondeneinheit, Betriebsverfahren und Rastervorrichtung zur Feststellung eines Tunnelstromes mit dieser Sonde
EP0397416A1 (de) * 1989-05-08 1990-11-14 AMERSHAM INTERNATIONAL plc Abbildungsvorrichtung und -verfahren
WO1990015986A1 (en) * 1989-06-20 1990-12-27 The Board Of Trustees Of The Leland Stanford Junior University Microfabricated microscope assembly

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3472063A (en) * 1967-04-17 1969-10-14 Branson Instr Resonant sensing device
JPS51149052A (en) * 1975-04-23 1976-12-21 Rank Organisation Ltd Method of and apparatus for measuring surface
DD213497A1 (de) * 1983-01-18 1984-09-12 Tech Hochschule Messverfahren und einrichtung zur formpruefung, vorzugsweise fuer geradheits- und ebenheitsabweichung
DE3708105A1 (de) * 1987-03-13 1988-09-22 Bosch Gmbh Robert Messtaster

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1077441B (de) * 1959-04-03 1960-03-10 Sennheiser Electronic Taststift fuer Feintaster oder Oberflaechenpruefgeraet
EP0290647A1 (de) * 1987-05-12 1988-11-17 International Business Machines Corporation Atomares Kräftemikroskop mit oscillierendem Quarz
EP0361932A2 (de) * 1988-09-30 1990-04-04 Canon Kabushiki Kaisha Verfahren und Detektor-Vorrichtung zum Abtasten durch Tunnelstrom
EP0368579A2 (de) * 1988-11-09 1990-05-16 Canon Kabushiki Kaisha Sondeneinheit, Betriebsverfahren und Rastervorrichtung zur Feststellung eines Tunnelstromes mit dieser Sonde
EP0397416A1 (de) * 1989-05-08 1990-11-14 AMERSHAM INTERNATIONAL plc Abbildungsvorrichtung und -verfahren
WO1990015986A1 (en) * 1989-06-20 1990-12-27 The Board Of Trustees Of The Leland Stanford Junior University Microfabricated microscope assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1510780A2 (de) * 2003-08-26 2005-03-02 Metso Paper Inc. Vorrichtung und Verfahren zum Messen der Planheit der Oberfläche des Stoffauflaufs einer Papiermaschine
EP1510780A3 (de) * 2003-08-26 2011-08-10 Metso Paper Inc. Vorrichtung und Verfahren zum Messen der Planheit der Oberfläche des Stoffauflaufs einer Papiermaschine

Also Published As

Publication number Publication date
DE4035075A1 (de) 1992-05-07

Similar Documents

Publication Publication Date Title
DE69633067T2 (de) Multidimensionaler kapazitiver sensor
DE4243284C2 (de) Tastelement für Koordinatenmeßsysteme
DE69734413T2 (de) Instrument mit Doppeltisch zum Abtasten eines Probenkörpers
DE112010002189B4 (de) Kontaktfreies dreidimensionales Ultrapräzisions-Tastsystem basierend auf einer sphärischen kapazitiven Platte
JPH0348102A (ja) 微少変位検出装置、この微少変位検出装置を有する圧電アクチュエーター及びこの圧電アクチュエータを有する走査型プローブ顕微鏡
DE10307561B4 (de) Meßanordnung zur kombinierten Abtastung und Untersuchung von mikrotechnischen, elektrische Kontakte aufweisenden Bauelementen
DE69931778T2 (de) Mehrpunktesonde
EP1019669B1 (de) Vorrichtung zur erfassung der position von zwei körpern
WO1992008101A1 (de) Anordnung zum messen linearer abmessungen auf einer strukturierten oberfläche eines messobjektes
EP2679962B1 (de) Positionsmesseinrichtung
DE10043731C2 (de) Meßsonde, deren Verwendung und Herstellung und Meßsystem zum Erfassen von elektrischen Signalen in einer integrierten Halbleiterschaltung
DE112007001684T5 (de) Rastersondenmikroskop und Verfahren zum Messen der Relativposition zwischen Sonden
DE69433974T2 (de) Elektro-optisches instrument
DE19755534B4 (de) Verfahren und Vorrichtung zur Messung der Verteilung von Magnetfeldern
CH711792A2 (de) Verfahren zur Vermessung eines topographischen Profils und/oder eines topographischen Bildes einer Oberfläche einer Probe.
EP2378240B1 (de) Vorrichtung zur Vermessung von Objekten
WO1992008102A1 (de) Anordnung zum messen linearer abmessungen auf einer strukturierten oberfläche eines messobjektes
EP0148285B1 (de) Verfahren und Einrichtung zur Messung von Oberflächenprofilen
DE60037604T2 (de) Verfahren und vorrichtung für die submikrometerabbildung und -sondierung auf sondenstationen
EP0407835B1 (de) Rasterkraftmikroskop
DE102020103500A1 (de) Verfahren und Vorrichtung zur Messung der Rauheit und der Welligkeit einer Oberfläche eines Werkstücks
DE102017202455B4 (de) MEMS- oder NEMS-basierter Sensor und Verfahren zum Betrieb eines solchen
WO1992008946A2 (de) Anordnung zum messen linearer abmessungen auf einer strukturierten oberfläche eines messobjektes
EP3467519B1 (de) Nanoprober und verfahren zum einrichten eines nanoprobers
WO2012095430A1 (de) Verfahren und anordnung zum kalibrieren von messwertgebenden sensoren eines taktilen koordinatenmessgerätes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE