US5405896A - Adhesive silicone rubber compositions - Google Patents

Adhesive silicone rubber compositions Download PDF

Info

Publication number
US5405896A
US5405896A US08/163,556 US16355693A US5405896A US 5405896 A US5405896 A US 5405896A US 16355693 A US16355693 A US 16355693A US 5405896 A US5405896 A US 5405896A
Authority
US
United States
Prior art keywords
group
silicone rubber
rubber composition
adhesive silicone
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/163,556
Inventor
Hironao Fujiki
Shigeki Shudo
Akira Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Assigned to SHIN-ETSU CHEMICAL CO., LTD. reassignment SHIN-ETSU CHEMICAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUJIKI, HIRONAO, MATSUDA, AKIRA, SHUDO, SHIGEKI
Application granted granted Critical
Publication of US5405896A publication Critical patent/US5405896A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0896Compounds with a Si-H linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/21Cyclic compounds having at least one ring containing silicon, but no carbon in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/70Siloxanes defined by use of the MDTQ nomenclature

Definitions

  • This invention relates to adhesive silicone rubber compositions which adhere well to organic resins, and more particularly, to silicone rubber compositions which adhere well to organic resins, but not to metals.
  • a number of methods have been proposed for providing a bond between addition curing type silicone rubber and organic resins. It is known, for example, to form a bond by applying a primer to a surface of molded resin, applying an uncured silicone rubber material thereto and curing the silicone rubber to the resin or by curing self-adhesive silicone rubber compositions directly to molded resin.
  • a number of proposals have been made on their adhesive agent.
  • JP-B Japanese Patent Publication
  • JP-B 45292/1988 discloses integration by physically fitting silicone rubber within a molded organic resin.
  • JP-A Japanese Patent Application Kokai
  • JP-A Japanese Patent Application Kokai
  • a compound having an aliphatic unsaturated group and a hydrolyzable group attached to a silicon atom is grafted to an olefin resin and silicone rubber is bonded and integrated with the grafted olefin resin.
  • thermoplastic resin can be bonded and integrated to a silicone rubber composition when a compound having an unsaturated group and a hydrogen atom directly attached to a silicon atom is added to the resin (U.S. Ser. No. 07/965,303, now U.S. Pat. No. 5,366,806 and EP 0540259 A1).
  • silicone rubber is coated and cured on resin preforms.
  • general-purpose resins for example, ABS, PPO, PPS, polycarbonate, acryl, PE, PP and Teflon
  • self-adhesive silicone rubber compositions of the addition curing type cannot provide a sufficient bond to allow utilization as one-piece articles.
  • organohydrogenpolysiloxane When organohydrogenpolysiloxane is added to olefin resin, the properties of the resin itself can be altered thereby, preventing the resin from exerting its own properties. The physical engagement method leaves a possibility that the two segments will be disengaged by physical forces.
  • a primer is required, when the olefin resin is to be joined to an addition curing type silicone rubber.
  • an object of the present invention is to provide a novel and improved silicone rubber composition which can form a satisfactory bond to organic resins, especially thermoplastic resins under curing conditions within a short time and which itself, after curing, can be released from a metallic silicone rubber molding jig, typically a metallic mold, in a practically acceptable manner.
  • the adhesive silicone rubber composition of addition reaction curing type according to the present invention includes at least one member selected from compounds of the following general formulae (I), (II) and (III).
  • Each of A and B is a silane or siloxane group, each group having at least one hydrogen atom directly attached to a silicon atom and an optional substituent which is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 8 carbon atoms attached to a silicon atom, A being monovalent and B being divalent,
  • each of C and D is a group having contained therein at least one member selected from the group consisting of a substituted or unsubstituted arylene group, ##STR2## and an optional substituent which is selected from alkyl or alkylene groups, C being monovalent and D being divalent,
  • E is a monovalent group as defined for C, with the proviso that the total number of atoms in E other than hydrogen and halogen atoms is at least 8,
  • letter x is 0 or a positive number.
  • FIGS. 1A and 1B are side and plan views of an adhesion test piece.
  • the present invention pertains to an adhesive silicone rubber composition of addition reaction curing type which includes at least one member selected from compounds of formulae (I), (II) and (III) as an adhesive agent.
  • the adhesive agent forms the essential part of the present invention.
  • the minimum requirement for this component is that the compound contains at least one hydrogen atom directly attached to a silicon atom in a molecule and improves affinity to an organic resin to which the silicone rubber is to be joined. From the standpoint of joining silicone rubber to organic resin, it is preferred that the compound contains more than one hydrogen atom directly attached to a silicon atom in a molecule.
  • the adhesive agent be compatible with the organic resin to which silicone rubber is to be joined (to be referred to as adhered resin). From the standpoint of reactivity with the organic resin, the bond is significantly affected by a contact angle.
  • the constituents contained in the adhesive agent depend on the adhered resin. Many adherend organic resins are generally composed of carbon, oxygen, nitrogen and sulfur atoms.
  • the adhesive agent according to the invention should have a group as represented by C, D and E, in addition to a silane or siloxane group as represented by A and B.
  • the adhesive agent is preferably in molten state under actual joining conditions and in that state, the compound should have a contact angle of up to 70° on the adhered organic resin (to which silicone rubber is to be joined) in order to effectively attain the objects of the invention.
  • Measurement of the contact angle is generally at room temperature (25° C.), most preferably at the temperature during curing of the silicone rubber. If the adhesive agent component is solid or waxy at room temperature, it becomes necessary to measure the contact angle in molten state.
  • thermoplastic resin Another important factor for adhesion is interaction with the thermoplastic resin. It is presumed that the fact that the adhesive agent includes a certain portion (a group as represented by C, D and E) having a molecular moiety compatible with the adhered resin, that is a thermoplastic resin will allow the adhesive agent to approach the thermoplastic resin close enough to generate a cohesive force therewith. This is the reason why the adhesive agent as defined herein is not included in the organohydrogenpolysiloxane which is conventionally used in addition reaction curing type silicone rubber compositions as a curing agent.
  • the organohydrogenpolysiloxane conventionally used as the curing agent is a compound having low surface tension, as is well known in the art, so that its contact angle with the resin surface is less than 70°, but it fails to exert adhesiveness as contemplated herein.
  • a group providing affinity to the organic resin is necessary in addition to the siloxane agent.
  • the hydrosilyl group plays the role of a functional group exerting a cohesive force to the resin
  • the groups of C, D and E other than the siloxane group plays the role of permitting the adhesive agent to approach toward the resin within a zone where a cohesive force to the resin is possible.
  • the relevant portion should preferably have an analogous structure to the particular organic resin to which the silicone rubber is to be joined.
  • the contact angle is one factor indicative of the analogous structure.
  • the adhesive agent contains a nitrogen atom
  • its molecule will be increased in polarity due to the nitrogen atom.
  • adhesive agent is not acceptable as the adhesive agent according to the invention because it is not only very effective in providing adhesion to resins, but also promotes adhesion to metals. Also simply for the purpose of providing adhesion to resins, many conventional well-known adhesive agent will be effective.
  • Such typical adhesive agents are compounds having both a hydrogen atom directly attached to a silicon atom and at least one member of an alkoxysilyl, glycidyl and acid anhydride group in a molecule. These compounds are effective for adhesion to certain types of thermoplastic resins.
  • the adhesive agent used in the present invention should preferably be selected from the compounds which are free of adhesive functional groups as exemplified above, for example, trialkoxysilyl, glycidyl and acid anhydride groups. It is to be noted that compounds having such a functional group can be used without problem insofar as the functional group is fully suppressed in reactivity by the steric restraint or electronic action of a substituent group or neighbor group.
  • the adhesive agent should be selected from the compounds of formulae (I), (II) and (III) having a group of A or B having at least one, preferably at least two SiH groups and a group of C, D or E in a molecule.
  • Each of the linkages represented by C, D and E should preferably contain therein at least one group selected from the following formulae (1) to (10). ##STR3##
  • Each of R 1 to R 9 which may be identical or different, is a monovalent group selected from the group consisting of a hydrogen atom, halogen atom, hydroxyl group, substituted or unsubstituted monovalent hydrocarbon group having 1 to 8 carbon atoms, and alkoxy group having 1 to 6 carbon atoms;
  • X is a divalent group selected from the group consisting of ##STR4## wherein each of R 10 and R 11 , which may be identical or different, is a monovalent group selected from the group consisting of a hydrogen atom, halogen atom, and substituted or unsubstituted monovalent hydrocarbon group having 1 to 8 carbon atoms, or R 10 and R 11 taken together form a carbocyclic or heterocyclic ring, and letter a is an integer of at least 2.
  • the amount of the adhesive agent blended in a silicone rubber composition is properly determined without undue experimentation, although about 0.01 to 50 parts by weight, more preferably about 0.1 to 5 parts by weight per 100 parts by weight of an alkenyl group-bearing organopolysiloxane, which will be later described as component (a), is preferred. Less than 0.01 part of the adhesive agent is too small to provide adherence to the adhered organic resin, whereas more than 50 parts of the adhesive agent would deteriorate the physical properties of silicone rubber and rather promote adhesion to metals.
  • the adhesive silicone rubber composition of the invention is an addition reaction curing type silicone rubber composition containing the adhesive agent as an essential component.
  • the composition may contain conventional components which are commonly used in conventional silicone rubber compositions.
  • the adhesive silicone rubber composition of the invention generally includes (a) an alkenyl group-containing organopolysiloxane, (b) an organohydrogenpolysiloxane, and (c) an addition reaction catalyst.
  • Component (a) is an organopolysiloxane containing an alkenyl group which may be selected from well-known organopolysiloxanes conventionally used as a major component of addition reaction curing type silicone rubber compositions, typically having a viscosity of about 100 to 100,000 centipoise at room temperature.
  • Preferred organopolysiloxanes are represented by the general formula: R a SiO.sub.(4-a)/2 wherein R is a substituted or unsubstituted monovalent hydrocarbon group, preferably having 1 to 8 carbon atoms.
  • R is a substituted or unsubstituted monovalent hydrocarbon group, preferably having 1 to 8 carbon atoms.
  • the hydrocarbon group represented by R include alkyl groups such as methyl, ethyl and propyl; alkenyl groups such as vinyl, propenyl and butenyl; aryl groups such as phenyl and xylyl; and halo- or cyano-substituted hydrocarbon groups such as 3,3,3-trifluoropropyl.
  • the monovalent hydrocarbon groups may be identical or different as long as an alkenyl group is contained in the organopolysiloxane molecule.
  • the content of alkenyl group is preferably 0.01 to 10 mol %, especially 0.1 to 1 mol % of the entire R groups.
  • Letter a is a number of 1.9 to 2.4.
  • the organopolysiloxane may be a linear one or a branched one further containing a RSiO 3/2 unit or SiO 4/2 unit.
  • the substituent on the silicon atom is basically any of the above-mentioned groups. It is desirable to introduce a vinyl group among the alkenyl groups and a methyl or phenyl group among other substituent groups.
  • organopolysiloxane Illustrative, non-limiting examples of the organopolysiloxane are given below. ##STR7##
  • the organopolysiloxanes may be prepared by per se known methods. For example, they are obtained by effecting equilibration reaction between an organocyclopolysiloxane and a hexaorganodisiloxane in the presence of an alkali or acid catalyst.
  • Component (b) is an organohydrogenpolysiloxane which is used as a curing agent in conventional addition reaction curing type silicone rubber compositions.
  • the organohydrogenpolysiloxane (b) serves as a cross-linking agent by reacting with component (a). It is not particularly limited in molecular structure and may be any of conventionally used organohydrogenpolysiloxanes of linear, cyclic and branched structures. However, it should have at least two hydrogen atoms each directly attached to a silicon atom in a molecule. The substituent or substituents attached to a silicon atom other than hydrogen are the same as the substitutents described for organopolysiloxane (a).
  • Component (b) is preferably added in an amount to provide 0.4 to 5 equivalents, especially 0.8 to 2 equivalents per alkenyl group in component (a). Less than 0.4 equivalents of component (b) on this basis would result in cured silicone rubber having too low crosslinking density and hence, less heat resistance. More than 5 equivalents of component (b) would give rise to a bubbling problem due to a dehydrogenation reaction, which would also adversely affect heat resistance.
  • the organohydrogenpolysiloxanes may be prepared by per se known methods.
  • the most commonly used method is by equilibrating octamethylcyclotetrasiloxane and/or tetramethylcyclotetrasiloxane and a compound containing a hexamethyldisiloxane or 1,1-dihydro-2,2,3,3-tetramethyldisiloxane unit, which will become a terminal group in the presence of a catalyst such as sulfuric acid, trifluoromethanesulfonic acid, and methanesulfonic acid, at a temperature between -10° C. and +40° C.
  • a catalyst such as sulfuric acid, trifluoromethanesulfonic acid, and methanesulfonic acid
  • Component (c) is an addition reaction catalyst which is generally selected from platinum, platinum compounds, rhodium and rhodium compounds. Since the catalyst is used for promoting curing addition reaction or hydrosilation between components (a) and (b), it may be a conventional known one. Exemplary are platinum black, chloroplatinic acid, alcohol modified chloroplatinic acid, complexes of chloroplatinic acid with olefins, aldehydes, vinylsiloxanes or acetylene alcohols, and rhodium complexes.
  • the amount of the catalyst added is suitably determined in accordance with a desired curing rate although it is generally in the range of 0.1 to 1000 ppm, preferably 1 to 200 ppm of platinum or rhodium based on the total of the entire components.
  • the silicone rubber composition further includes finely divided silica having a specific surface area of at least 50 m 2 /g in an amount of 0 to 100 parts, preferably 5 to 50 parts, more preferably 10 to 40 parts by weight per 100 parts by weight of the total of components (a) and (b).
  • hydrophilic silica are Aerosil 130, 200 and 300 (commercially available from Nippon Aerosil K.K. and Degussa), Cabosil MS-5 and MS-7 (Cabot Corp.), Rheorosil QS-102 and 103 (Tokuyama Soda K.K.), and Nipsil LP (Nippon Silica K.K.).
  • hydrophobic silica examples include Aerosil R-812, R-812S, R-972 and R-974 (Degussa), Rheorosil MT-10 (Tokuyama Soda K.K.), and Nipsil SS series (Nippon Silica K.K.).
  • the curing time of the silicone rubber composition must be controlled in order that it be effective in practice.
  • a suitable control agent is used. It may be selected from vinyl-containing organopolysiloxanes such as vinylcyclotetrasiloxane, triallylisocyanurate, alkyl maleates, acetylene alcohols and silane or siloxane modified derivatives thereof, hydroperoxides, tetramethylethylenediamine, benzotriazole and mixtures thereof. Also useful are platinum group compounds combined with organic resins and silicone resins.
  • suitable additives may be blended in the silicone rubber composition.
  • Such additives include non-reinforcing fillers such as ground quartz, diatomaceous earth, calcium carbonate, coloring agents including inorganic pigments such as Cobalt Blue and organic dyes, agents for improving heat resistance and flame retardance such as cerium oxide, zinc carbonate, manganese carbonate, iron oxide, titanium oxide, and carbon black.
  • the composition of the invention is advantageously used to join with organic resins, especially thermoplastic resins to form one-piece articles.
  • thermoplastic resin to which the composition can be joined include polypropylene, polyethylene, ABS resins, nylon, polycarbonate, polyphenylene oxide, polybutylene terephthalate, polyphenylene sulfide, polyethylene terephthalate, acrylic resins, polyacetal resins, and other engineering plastics such as polyarylates, polysulfones, polyether sulfones, polyether imides, polyether ether ketones, polyimides, and liquid crystal polymers.
  • the adhesive agent according to the present invention permits the silicone rubber composition to exert selective adhesion to organic resins to which conventional silicone rubber compositions were regarded impossible to join firmly, while suppressing adhesion to metals, typically metallic molds.
  • the thermoplastic resin to which the silicone rubber composition is to be joined may take various shapes in common solid state, although resin materials loaded with glass fiber reinforcements, silica reinforcements and other inorganic reinforcements are advantageous to form a more reliable adhesion.
  • the glass fibers may be those commonly used in resin reinforcement.
  • the silica reinforcements include crystalline and amorphous silica powders.
  • Other inorganic reinforcements include metal fibers such as brass fibers, nickel fibers, stainless steel fibers, and aluminum fibers as well as mica, talc, clay, kaolin, aluminum hydroxide, silicon carbide whiskers, calcium sulfate, and calcium carbonate.
  • thermoplastic resin For improving adhesion to a thermoplastic resin, it is also effective to introduce into or add to the thermoplastic resin a component having an unsaturated group. In introducing into or adding to the adhered thermoplastic resin a component having an unsaturated group, it is necessary that the unsaturated group be present at the time of adhesion.
  • Examples of the adhered thermoplastic resin which is modified by introducing or adding a compound having an unsaturated group include polycarbonate resins terminally modified with an aliphatic unsaturated group such as a vinyl, allyl or methacryl group; polyethylene and polypropylene modified with an aliphatic unsaturated group at a side chain as disclosed in JP-A 269110/1990; acrylic resins modified with an allyl ester group or vinyl dimethyl silyl group at a side chain; and polyamide resins having an aliphatic unsaturated group substituted on a nitrogen atom.
  • polycarbonate resins terminally modified with an aliphatic unsaturated group such as a vinyl, allyl or methacryl group
  • polyethylene and polypropylene modified with an aliphatic unsaturated group at a side chain as disclosed in JP-A 269110/1990
  • acrylic resins modified with an allyl ester group or vinyl dimethyl silyl group at a side chain and polyamide resins having an aliphatic
  • dispersions in various resins of unsaturated group-containing compounds such as triallyl isocyanurate, triallyl trimellitate, unsaturated group-containing polybutadiene oligomers, oligomers of unsaturated group-containing compounds, and unsaturated group-containing silicone resins or polymers.
  • adhesive silicone rubber compositions which provide improved adhesion to organic resins, but minimum adhesion to metals so that they may be used in producing composite articles of integrated silicone rubber and organic resins using molds.
  • a kneader was charged with 100 parts of a dimethylsiloxane polymer blocked with a dimethylvinylsilyl group at either end and having a viscosity of 10,000 centipoise at 25° C., 40 parts of fumed silica having a specific surface area of 300 cm 2 /g, 8 parts of hexamethyldisilazane, and 1 part of water.
  • the contents were agitated and mixed at room temperature for one hour, heated to 150° C., and mixed for a further 2 hours at the temperature. Thereafter, the mixture was cooled down to room temperature.
  • Composition (S) was pressed into a sheet at 120° C. for 10 minutes. Upon measurement of mechanical properties, the sheet had a hardness of 40 on JIS A scale, an elongation of 500%, a tensile strength of 100 kgf/cm 2 , and a tear strength of 35 kgf/cm.
  • silicone rubber composition (S) To 100 parts of silicone rubber composition (S) was added 0.5 or 1 part of a compound of formula (ii) or (iii) shown below as the adhesive agent. There were obtained four silicone rubber compositions within the scope of the invention. ##STR9##
  • a polyether ether ketone resin (PEEK) was admitted into a thermoplastic resin injection molding machine where the resin was plasticized at 360° C. and injected into a plurality of sheet-shaped mold cavities whereby a plurality of sheets of 25 mm wide, 100 mm long, and 2 mm thick were molded.
  • the injection molding conditions included an injection time of 15 seconds, a cooling time of 10 seconds, an injection pressure of 1,200 kg/cm 2 , a clamping pressure of 35 ton, and a cavity temperature of 140° C.
  • a polyether sulfone resin was similarly admitted into the injection molding machine. A plurality of sheets of the same dimensions were molded.
  • the molding conditions included a plasticizing temperature of 340° C., an injection time of 10 seconds, a cooling time of 30 seconds, an injection pressure of 1,250 kg/cm 2 , a clamping pressure of 35 ton, and a cavity temperature of 140° C.
  • a polyether imide resin (PEI) was similarly admitted into the injection molding machine.
  • a plurality of sheets of the same dimensions were molded.
  • the molding conditions included a plasticizing temperature of 360° C., an injection time of 15 seconds, a cooling time of 30 seconds, an injection pressure of 1,000 kg/cm 2 , a clamping pressure of 35 ton, and a cavity temperature of 90° C.
  • a terminally allyl-modified polycarbonate resin (PC) was admitted into a thermoplastic resin injection molding machine where the resin was plasticized at 290° C. and injected into a plurality of sheet-shaped mold cavities whereby a plurality of sheets of 25 mm wide, 100 mm long, and 2 mm thick were molded.
  • the injection molding conditions included an injection time of 6 seconds, a cooling time of 30 seconds, an injection pressure of 1,000 kg/cm 2 , a clamping pressure of 35 ton, and a cavity temperature of 100° C.
  • a polybutyrene terephthalate resin (PBT) loaded with 30% by weight of glass fibers was admitted into a thermoplastic resin injection molding machine where the resin was plasticized at 240° C. and injected into a plurality of sheet-shaped mold cavities whereby a plurality of sheets of 25 mm wide, 100 mm long, and 2 mm thick were molded.
  • the injection molding conditions included an injection time of 15 seconds, a cooling time of 10 seconds, an injection pressure of 75 kg/cm 2 , a clamping pressure of 35 ton, and a cavity temperature of 60° C.
  • a polycarbonate resin (PC) loaded with 10% by weight of glass fibers was similarly admitted into the injection molding machine.
  • a plurality of sheets of the same dimensions were molded.
  • the molding conditions included a plasticizing temperature of 290° C., an injection time of 10 seconds, a cooling time of 30 seconds, an injection pressure of 1,000 kg/cm 2 , a clamping pressure of 35 ton, and a cavity temperature of 100° C.
  • ABS acrylonitrile-butadiene-styrene resin
  • silica treated with vinyl-containing silazane was added to 100 parts of unreinforced polycarbonate resin.
  • Each silica-loaded resin was kneaded in a kneader/extruder at 270° C. for 10 minutes and extruded thereby into strands which were pelletized by means of a rotary cuter.
  • the silica-loaded polycarbonate resin was admitted into a thermoplastic resin injection molding machine where the resin was plasticized at 290° C. and injected into a plurality of sheet-shaped mold cavities whereby a plurality of sheets of 25 mm wide, 100 mm long, and 2 mm thick were molded.
  • the injection molding conditions included an injection time of 6 seconds, a cooling time of 30 seconds, an injection pressure of 1,000 kg/cm 2 , a clamping pressure of 35 ton, and a cavity temperature of 100° C.
  • a nylon-66 resin was admitted into a thermoplastic resin injection molding machine where the resin was plasticized at 280° C. and injected into a plurality of sheet-shaped mold cavities whereby a plurality of sheets of 25 mm wide, 100 mm long, and 2 mm thick were molded.
  • the injection molding conditions included an injection time of 6 seconds, a cooling time of 20 seconds, an injection pressure of 800 kg/cm 2 , a clamping pressure of 35 ton, and a cavity temperature of 80° C.
  • silicone rubber composition (S) in Examples 1-4 was added 0.5 or 1 part of a compound of formula (v), (vi) or (vii) shown below as the adhesive agent. There were obtained six silicone rubber compositions within the scope of the invention. ##STR11##
  • a nylon-66 resin loaded with 30% by weight of glass fibers was admitted into a thermoplastic resin injection molding machine where the resin was plasticized at 270° C. and injected into a plurality of sheet-shaped mold cavities whereby a plurality of sheets of 25 mm wide, 100 mm long, and 2 mm thick were molded.
  • the injection molding conditions included an injection time of 15 seconds, a cooling time of seconds, an injection pressure of 800 kg/cm 2 , a clamping pressure of 35 ton, and a cavity temperature of 80° C.
  • PET polyethylene terephthalate resin
  • a polyphenylene oxide resin (PPO) loaded with 20% by weight of glass fibers was admitted into the injection molding machine.
  • a plurality of sheets of the same dimensions were molded.
  • the molding conditions included a plasticizing temperature of 270° C., an injection time of 10 seconds, a cooling time of 30 seconds, an injection pressure of 1,000 kg/cm 2 , a clamping pressure of 35 ton, and a cavity temperature of 100° C.
  • the compound (viii) had a contact angle of 75.0°, 72.5° and 78.0° on the polyether ether ketone, polyether sulfone, and polyether imide resin sheets, respectively.
  • a polypropylene resin modified with 1.5 mol % of a diene compound as described in JP-A 269110/1990 was admitted into a thermoplastic resin injection molding machine where the resin was plasticized at 200° C. and injected into a plurality of sheet-shaped mold cavities whereby a plurality of sheets of 25 mm wide, 100 mm long, and 2 mm thick were molded.
  • the injection molding conditions included an injection time of 6 seconds, a cooling time of 30 seconds, an injection pressure of 1,000 kg/cm 2 , a clamping pressure of 35 ton, and a cavity temperature of 60° C.

Abstract

An adhesive silicone rubber composition of addition reaction curing type comprising (a) an organopolysiloxane containing an alkenyl group; (b) an organohydrogenpolysiloxane having at least one hydrogen atom directly attached to a silicon atom in a molecule; (c) an addition reaction catalyst; and (d) an adhesive agent selected from compounds of the following formulae (I), (II) and (III):
A-(D-B).sub.x -D-A                                         (I)
C-(B-D).sub.x -B-C                                         (II)
A-E                                                        (III)
wherein each of A and B is a silane or siloxane group, each group having at least one hydrogen atom directly attached to a silicon atom and an optional substituent which is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 8 carbon atoms attached to the same or different silicon atom, A being monovalent and B being divalent,
each of C and D is a group having contained therein at least one member selected from the group consisting of a substituted or unsubstituted aryl group, a substituted or unsubstituted arylene group, ##STR1## and an optional substituent which is selected from alkyl or alkylene groups, C being monovalent and D being divalent,
E is a monovalent group as defined for C, with the proviso that the total number of atoms in E other than hydrogen and halogen atoms is at least 8, and
letter x is 0 or a positive number,
said adhesive silicone rubber composition giving a cured product that does not adhere to metal.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to adhesive silicone rubber compositions which adhere well to organic resins, and more particularly, to silicone rubber compositions which adhere well to organic resins, but not to metals.
2. Prior Art
A number of methods have been proposed for providing a bond between addition curing type silicone rubber and organic resins. It is known, for example, to form a bond by applying a primer to a surface of molded resin, applying an uncured silicone rubber material thereto and curing the silicone rubber to the resin or by curing self-adhesive silicone rubber compositions directly to molded resin. For the self-adhesive silicone rubber compositions, a number of proposals have been made on their adhesive agent.
As another approach, it is known from Japanese Patent Publication (JP-B) No. 34311/1990 to add an organohydrogenpolysiloxane containing at least 30 mol % of hydrogen atoms directly attached to silicon atoms to an organic resin so that the resin is bondable with addition curing type silicone rubber. JP-B 45292/1988 discloses integration by physically fitting silicone rubber within a molded organic resin. In Japanese Patent Application Kokai (JP-A) No. 183843/1988, a compound having an aliphatic unsaturated group and a hydrolyzable group attached to a silicon atom is grafted to an olefin resin and silicone rubber is bonded and integrated with the grafted olefin resin. Furthermore, as we previously proposed, a thermoplastic resin can be bonded and integrated to a silicone rubber composition when a compound having an unsaturated group and a hydrogen atom directly attached to a silicon atom is added to the resin (U.S. Ser. No. 07/965,303, now U.S. Pat. No. 5,366,806 and EP 0540259 A1).
However, several problems arise with these prior art methods for integrating silicone rubber and organic resin into a one-piece article. The primer method is cumbersome in that a molded resin shape must be taken out of the mold before the primer can be applied thereto. The method of applying and curing a self-adhesive silicone rubber composition to molded resin has the serious problem that if the resin and silicone rubber are molded into a one-piece member using a mold, the silicone rubber itself adheres to the mold.
Little problem occurs when silicone rubber is coated and cured on resin preforms. However, for several of many general-purpose resins, for example, ABS, PPO, PPS, polycarbonate, acryl, PE, PP and Teflon, self-adhesive silicone rubber compositions of the addition curing type cannot provide a sufficient bond to allow utilization as one-piece articles.
When organohydrogenpolysiloxane is added to olefin resin, the properties of the resin itself can be altered thereby, preventing the resin from exerting its own properties. The physical engagement method leaves a possibility that the two segments will be disengaged by physical forces. When an olefin resin having grafted thereto a compound having an aliphatic unsaturated group and a hydrolyzable group attached to a silicon atom, a primer is required, when the olefin resin is to be joined to an addition curing type silicone rubber.
To take advantage of the weatherability, heat resistance, cleanliness and rubbery elasticity of silicone rubber, the demand that organic resin and silicone rubber be integrally molded into a one-piece article under curing conditions within a short time is increasing. There is a desire to have a silicone rubber composition capable of forming an effective bond to organic resins.
SUMMARY OF THE INVENTION
Therefore, an object of the present invention is to provide a novel and improved silicone rubber composition which can form a satisfactory bond to organic resins, especially thermoplastic resins under curing conditions within a short time and which itself, after curing, can be released from a metallic silicone rubber molding jig, typically a metallic mold, in a practically acceptable manner.
We have found that when a compound of formula (I), (II) or (III) defined below is blended in an adhesive silicone rubber composition of addition reaction curing type as an adhesive agent, the resulting silicone rubber composition can form a practically acceptable bond to organic resins, especially thermoplastic resins, but not to metals.
The adhesive silicone rubber composition of addition reaction curing type according to the present invention includes at least one member selected from compounds of the following general formulae (I), (II) and (III).
A-(D-B).sub.x -D-A                                         (I)
C-(B-D).sub.x -B-C                                         (II)
A-E                                                        (III)
Each of A and B is a silane or siloxane group, each group having at least one hydrogen atom directly attached to a silicon atom and an optional substituent which is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 8 carbon atoms attached to a silicon atom, A being monovalent and B being divalent,
each of C and D is a group having contained therein at least one member selected from the group consisting of a substituted or unsubstituted arylene group, ##STR2## and an optional substituent which is selected from alkyl or alkylene groups, C being monovalent and D being divalent,
E is a monovalent group as defined for C, with the proviso that the total number of atoms in E other than hydrogen and halogen atoms is at least 8,
letter x is 0 or a positive number.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1A and 1B are side and plan views of an adhesion test piece.
DETAILED DESCRIPTION OF THE INVENTION
The present invention pertains to an adhesive silicone rubber composition of addition reaction curing type which includes at least one member selected from compounds of formulae (I), (II) and (III) as an adhesive agent.
The adhesive agent forms the essential part of the present invention. The minimum requirement for this component is that the compound contains at least one hydrogen atom directly attached to a silicon atom in a molecule and improves affinity to an organic resin to which the silicone rubber is to be joined. From the standpoint of joining silicone rubber to organic resin, it is preferred that the compound contains more than one hydrogen atom directly attached to a silicon atom in a molecule.
This, however, is not enough to establish a good adhesion to organic resins and it is additionally required that the adhesive agent be compatible with the organic resin to which silicone rubber is to be joined (to be referred to as adhered resin). From the standpoint of reactivity with the organic resin, the bond is significantly affected by a contact angle. The constituents contained in the adhesive agent depend on the adhered resin. Many adherend organic resins are generally composed of carbon, oxygen, nitrogen and sulfur atoms. To enhance affinity to such organic resins, the adhesive agent according to the invention should have a group as represented by C, D and E, in addition to a silane or siloxane group as represented by A and B.
More particularly, the adhesive agent is preferably in molten state under actual joining conditions and in that state, the compound should have a contact angle of up to 70° on the adhered organic resin (to which silicone rubber is to be joined) in order to effectively attain the objects of the invention. Measurement of the contact angle is generally at room temperature (25° C.), most preferably at the temperature during curing of the silicone rubber. If the adhesive agent component is solid or waxy at room temperature, it becomes necessary to measure the contact angle in molten state.
In order that those skilled in the art will more readily understand the concept of the adhesive agent according to the present invention, the concept intended herein is described below by way of illustration and not by way of limitation. We have found that (1) an effective factor contributing to adhesion to thermoplastic resins, that is, a major factor for the cohesive force developed between cured silicone rubber and thermoplastic resin is a hydrosilyl group (.tbd.SiH). Although it is not certainly determined whether the hydrosilyl group undergoes hydrosilylation with the resin or undergoes hydrolysis to form a silanol (.tbd.SiOH) which acts as a secondary cohesive force for the bond, the hydrosilyl group (.tbd.SiH) greatly contributes to the bond. (2) Another important factor for adhesion is interaction with the thermoplastic resin. It is presumed that the fact that the adhesive agent includes a certain portion (a group as represented by C, D and E) having a molecular moiety compatible with the adhered resin, that is a thermoplastic resin will allow the adhesive agent to approach the thermoplastic resin close enough to generate a cohesive force therewith. This is the reason why the adhesive agent as defined herein is not included in the organohydrogenpolysiloxane which is conventionally used in addition reaction curing type silicone rubber compositions as a curing agent. More particularly, the organohydrogenpolysiloxane conventionally used as the curing agent is a compound having low surface tension, as is well known in the art, so that its contact angle with the resin surface is less than 70°, but it fails to exert adhesiveness as contemplated herein. This suggests that a group providing affinity to the organic resin is necessary in addition to the siloxane agent. More particularly, it is our understanding that in the structure of the adhesive according to the invention, the hydrosilyl group plays the role of a functional group exerting a cohesive force to the resin, and the groups of C, D and E other than the siloxane group plays the role of permitting the adhesive agent to approach toward the resin within a zone where a cohesive force to the resin is possible. To this end, the relevant portion should preferably have an analogous structure to the particular organic resin to which the silicone rubber is to be joined. The contact angle is one factor indicative of the analogous structure.
Where the adhesive agent contains a nitrogen atom, its molecule will be increased in polarity due to the nitrogen atom. In practice, such adhesive agent is not acceptable as the adhesive agent according to the invention because it is not only very effective in providing adhesion to resins, but also promotes adhesion to metals. Also simply for the purpose of providing adhesion to resins, many conventional well-known adhesive agent will be effective. Such typical adhesive agents are compounds having both a hydrogen atom directly attached to a silicon atom and at least one member of an alkoxysilyl, glycidyl and acid anhydride group in a molecule. These compounds are effective for adhesion to certain types of thermoplastic resins. It has been found that by introducing an unsaturated group into an adhered organic resin for modification or simple addition in mixed state, the bond between the (modified) resin and the silicone rubber (containing the tackifier component) is enhanced in a reliable manner. However, these adhesive agents have the drawback in that they also provide sufficient adhesion to metals as opposed to the subject matter of the present invention.
Therefore, in order to avoid adhesion to metallic molds, the adhesive agent used in the present invention should preferably be selected from the compounds which are free of adhesive functional groups as exemplified above, for example, trialkoxysilyl, glycidyl and acid anhydride groups. It is to be noted that compounds having such a functional group can be used without problem insofar as the functional group is fully suppressed in reactivity by the steric restraint or electronic action of a substituent group or neighbor group.
As understood from the above discussion, the adhesive agent should be selected from the compounds of formulae (I), (II) and (III) having a group of A or B having at least one, preferably at least two SiH groups and a group of C, D or E in a molecule.
Each of the linkages represented by C, D and E should preferably contain therein at least one group selected from the following formulae (1) to (10). ##STR3##
Each of R1 to R9, which may be identical or different, is a monovalent group selected from the group consisting of a hydrogen atom, halogen atom, hydroxyl group, substituted or unsubstituted monovalent hydrocarbon group having 1 to 8 carbon atoms, and alkoxy group having 1 to 6 carbon atoms;
X is a divalent group selected from the group consisting of ##STR4## wherein each of R10 and R11, which may be identical or different, is a monovalent group selected from the group consisting of a hydrogen atom, halogen atom, and substituted or unsubstituted monovalent hydrocarbon group having 1 to 8 carbon atoms, or R10 and R11 taken together form a carbocyclic or heterocyclic ring, and letter a is an integer of at least 2.
Examples of the monovalent hydrocarbon group represented by R1 to R11 are the same as will be later described for R. Examples of the carbocyclic and heterocyclic rings formed by R10 and R11 taken together are given below. ##STR5##
Exemplary compounds included in the tackifier component are given below. ##STR6##
The amount of the adhesive agent blended in a silicone rubber composition is properly determined without undue experimentation, although about 0.01 to 50 parts by weight, more preferably about 0.1 to 5 parts by weight per 100 parts by weight of an alkenyl group-bearing organopolysiloxane, which will be later described as component (a), is preferred. Less than 0.01 part of the adhesive agent is too small to provide adherence to the adhered organic resin, whereas more than 50 parts of the adhesive agent would deteriorate the physical properties of silicone rubber and rather promote adhesion to metals.
The adhesive silicone rubber composition of the invention is an addition reaction curing type silicone rubber composition containing the adhesive agent as an essential component. In addition to the adhesive agent, the composition may contain conventional components which are commonly used in conventional silicone rubber compositions.
In addition to the adhesive agent, the adhesive silicone rubber composition of the invention generally includes (a) an alkenyl group-containing organopolysiloxane, (b) an organohydrogenpolysiloxane, and (c) an addition reaction catalyst.
Component (a) is an organopolysiloxane containing an alkenyl group which may be selected from well-known organopolysiloxanes conventionally used as a major component of addition reaction curing type silicone rubber compositions, typically having a viscosity of about 100 to 100,000 centipoise at room temperature.
Preferred organopolysiloxanes are represented by the general formula: Ra SiO.sub.(4-a)/2 wherein R is a substituted or unsubstituted monovalent hydrocarbon group, preferably having 1 to 8 carbon atoms. Examples of the hydrocarbon group represented by R include alkyl groups such as methyl, ethyl and propyl; alkenyl groups such as vinyl, propenyl and butenyl; aryl groups such as phenyl and xylyl; and halo- or cyano-substituted hydrocarbon groups such as 3,3,3-trifluoropropyl. The monovalent hydrocarbon groups may be identical or different as long as an alkenyl group is contained in the organopolysiloxane molecule. The content of alkenyl group is preferably 0.01 to 10 mol %, especially 0.1 to 1 mol % of the entire R groups. Letter a is a number of 1.9 to 2.4. The organopolysiloxane may be a linear one or a branched one further containing a RSiO3/2 unit or SiO4/2 unit. The substituent on the silicon atom is basically any of the above-mentioned groups. It is desirable to introduce a vinyl group among the alkenyl groups and a methyl or phenyl group among other substituent groups.
Illustrative, non-limiting examples of the organopolysiloxane are given below. ##STR7##
In these formulae, R is as defined above (excluding an aliphatic unsaturated group), and letters m and n are positive numbers meeting m+n=100 to 5000 and m/(m+n)=0.001 to 0.1.
The organopolysiloxanes may be prepared by per se known methods. For example, they are obtained by effecting equilibration reaction between an organocyclopolysiloxane and a hexaorganodisiloxane in the presence of an alkali or acid catalyst.
Component (b) is an organohydrogenpolysiloxane which is used as a curing agent in conventional addition reaction curing type silicone rubber compositions. The organohydrogenpolysiloxane (b) serves as a cross-linking agent by reacting with component (a). It is not particularly limited in molecular structure and may be any of conventionally used organohydrogenpolysiloxanes of linear, cyclic and branched structures. However, it should have at least two hydrogen atoms each directly attached to a silicon atom in a molecule. The substituent or substituents attached to a silicon atom other than hydrogen are the same as the substitutents described for organopolysiloxane (a).
Component (b) is preferably added in an amount to provide 0.4 to 5 equivalents, especially 0.8 to 2 equivalents per alkenyl group in component (a). Less than 0.4 equivalents of component (b) on this basis would result in cured silicone rubber having too low crosslinking density and hence, less heat resistance. More than 5 equivalents of component (b) would give rise to a bubbling problem due to a dehydrogenation reaction, which would also adversely affect heat resistance.
The organohydrogenpolysiloxanes may be prepared by per se known methods. For example, the most commonly used method is by equilibrating octamethylcyclotetrasiloxane and/or tetramethylcyclotetrasiloxane and a compound containing a hexamethyldisiloxane or 1,1-dihydro-2,2,3,3-tetramethyldisiloxane unit, which will become a terminal group in the presence of a catalyst such as sulfuric acid, trifluoromethanesulfonic acid, and methanesulfonic acid, at a temperature between -10° C. and +40° C.
Component (c) is an addition reaction catalyst which is generally selected from platinum, platinum compounds, rhodium and rhodium compounds. Since the catalyst is used for promoting curing addition reaction or hydrosilation between components (a) and (b), it may be a conventional known one. Exemplary are platinum black, chloroplatinic acid, alcohol modified chloroplatinic acid, complexes of chloroplatinic acid with olefins, aldehydes, vinylsiloxanes or acetylene alcohols, and rhodium complexes. The amount of the catalyst added is suitably determined in accordance with a desired curing rate although it is generally in the range of 0.1 to 1000 ppm, preferably 1 to 200 ppm of platinum or rhodium based on the total of the entire components.
In one preferred embodiment where the silicone rubber should have physical strength, the silicone rubber composition further includes finely divided silica having a specific surface area of at least 50 m2 /g in an amount of 0 to 100 parts, preferably 5 to 50 parts, more preferably 10 to 40 parts by weight per 100 parts by weight of the total of components (a) and (b). Exemplary of hydrophilic silica are Aerosil 130, 200 and 300 (commercially available from Nippon Aerosil K.K. and Degussa), Cabosil MS-5 and MS-7 (Cabot Corp.), Rheorosil QS-102 and 103 (Tokuyama Soda K.K.), and Nipsil LP (Nippon Silica K.K.). Exemplary of hydrophobic silica are Aerosil R-812, R-812S, R-972 and R-974 (Degussa), Rheorosil MT-10 (Tokuyama Soda K.K.), and Nipsil SS series (Nippon Silica K.K.).
In some cases, the curing time of the silicone rubber composition must be controlled in order that it be effective in practice. Then a suitable control agent is used. It may be selected from vinyl-containing organopolysiloxanes such as vinylcyclotetrasiloxane, triallylisocyanurate, alkyl maleates, acetylene alcohols and silane or siloxane modified derivatives thereof, hydroperoxides, tetramethylethylenediamine, benzotriazole and mixtures thereof. Also useful are platinum group compounds combined with organic resins and silicone resins.
Moreover, suitable additives may be blended in the silicone rubber composition. Such additives include non-reinforcing fillers such as ground quartz, diatomaceous earth, calcium carbonate, coloring agents including inorganic pigments such as Cobalt Blue and organic dyes, agents for improving heat resistance and flame retardance such as cerium oxide, zinc carbonate, manganese carbonate, iron oxide, titanium oxide, and carbon black.
The composition of the invention is advantageously used to join with organic resins, especially thermoplastic resins to form one-piece articles. Examples of the thermoplastic resin to which the composition can be joined include polypropylene, polyethylene, ABS resins, nylon, polycarbonate, polyphenylene oxide, polybutylene terephthalate, polyphenylene sulfide, polyethylene terephthalate, acrylic resins, polyacetal resins, and other engineering plastics such as polyarylates, polysulfones, polyether sulfones, polyether imides, polyether ether ketones, polyimides, and liquid crystal polymers.
As long as a suitable adhesive agent is selected in accordance with a particular adhered thermoplastic resin by considering its wettability to the resin, there is obtained a silicone rubber composition which adheres well to the thermoplastic resin, although the adhesive agent is free of a functional group except for a hydrogen atom directly attached to a silicon atom. That is, the adhesive agent according to the present invention permits the silicone rubber composition to exert selective adhesion to organic resins to which conventional silicone rubber compositions were regarded impossible to join firmly, while suppressing adhesion to metals, typically metallic molds.
The thermoplastic resin to which the silicone rubber composition is to be joined may take various shapes in common solid state, although resin materials loaded with glass fiber reinforcements, silica reinforcements and other inorganic reinforcements are advantageous to form a more reliable adhesion. The glass fibers may be those commonly used in resin reinforcement. The silica reinforcements include crystalline and amorphous silica powders. Other inorganic reinforcements include metal fibers such as brass fibers, nickel fibers, stainless steel fibers, and aluminum fibers as well as mica, talc, clay, kaolin, aluminum hydroxide, silicon carbide whiskers, calcium sulfate, and calcium carbonate.
Better adhesion is achieved when such fillers have been treated with substances having an unsaturated group such as vinyl-containing silazanes, siloxasilazanes, vinylalkoxysilanes, and vinyl-containing silicone resins. For improving adhesion to a thermoplastic resin, it is also effective to introduce into or add to the thermoplastic resin a component having an unsaturated group. In introducing into or adding to the adhered thermoplastic resin a component having an unsaturated group, it is necessary that the unsaturated group be present at the time of adhesion. Little of such benefit is observed when a compound having an aliphatic unsaturated group and a hydrolysable group attached to a silicon atom is grafted to an olefinic resin so that the unsaturated group is substantially consumed as disclosed in JP-A 183843/1988.
Examples of the adhered thermoplastic resin which is modified by introducing or adding a compound having an unsaturated group include polycarbonate resins terminally modified with an aliphatic unsaturated group such as a vinyl, allyl or methacryl group; polyethylene and polypropylene modified with an aliphatic unsaturated group at a side chain as disclosed in JP-A 269110/1990; acrylic resins modified with an allyl ester group or vinyl dimethyl silyl group at a side chain; and polyamide resins having an aliphatic unsaturated group substituted on a nitrogen atom. Also useful are dispersions in various resins of unsaturated group-containing compounds such as triallyl isocyanurate, triallyl trimellitate, unsaturated group-containing polybutadiene oligomers, oligomers of unsaturated group-containing compounds, and unsaturated group-containing silicone resins or polymers.
There have been described adhesive silicone rubber compositions which provide improved adhesion to organic resins, but minimum adhesion to metals so that they may be used in producing composite articles of integrated silicone rubber and organic resins using molds.
EXAMPLE
Examples of the present invention are given below by way of illustration and not by way of limitation. All parts are by weight.
Examples 1-4 Preparation of Silicone Rubber Composition
A kneader was charged with 100 parts of a dimethylsiloxane polymer blocked with a dimethylvinylsilyl group at either end and having a viscosity of 10,000 centipoise at 25° C., 40 parts of fumed silica having a specific surface area of 300 cm2 /g, 8 parts of hexamethyldisilazane, and 1 part of water. The contents were agitated and mixed at room temperature for one hour, heated to 150° C., and mixed for a further 2 hours at the temperature. Thereafter, the mixture was cooled down to room temperature. To the mixture were added 20 parts of the dimethylsiloxane polymer blocked with a dimethylvinylsilyl group at either end and having a viscosity of 10,000 centipoise at 25° C., 3 parts of a methylhydrogenpolysiloxane represented by formula (i) below and having a viscosity of about 10 centipoise at 25° C., 4 parts of a vinylmethylpolysiloxane containing 5 mol % of a vinyl group directly attached to a silicon atom and having a viscosity of 1,000 centipoise at 25° C., 0.1 part of acetylene alcohol for extending the curing time at room temperature, and 50 ppm calculated as platinum atom of a platinum vinylsiloxane complex. The mixture was fully mixed until uniform, obtaining a liquid addition type silicone rubber composition (S). ##STR8##
Composition (S) was pressed into a sheet at 120° C. for 10 minutes. Upon measurement of mechanical properties, the sheet had a hardness of 40 on JIS A scale, an elongation of 500%, a tensile strength of 100 kgf/cm2, and a tear strength of 35 kgf/cm.
To 100 parts of silicone rubber composition (S) was added 0.5 or 1 part of a compound of formula (ii) or (iii) shown below as the adhesive agent. There were obtained four silicone rubber compositions within the scope of the invention. ##STR9##
Using these four silicone rubber compositions, the following tests were carried out.
Test 1
A polyether ether ketone resin (PEEK) was admitted into a thermoplastic resin injection molding machine where the resin was plasticized at 360° C. and injected into a plurality of sheet-shaped mold cavities whereby a plurality of sheets of 25 mm wide, 100 mm long, and 2 mm thick were molded. The injection molding conditions included an injection time of 15 seconds, a cooling time of 10 seconds, an injection pressure of 1,200 kg/cm2, a clamping pressure of 35 ton, and a cavity temperature of 140° C.
A polyether sulfone resin (PES) was similarly admitted into the injection molding machine. A plurality of sheets of the same dimensions were molded. The molding conditions included a plasticizing temperature of 340° C., an injection time of 10 seconds, a cooling time of 30 seconds, an injection pressure of 1,250 kg/cm2, a clamping pressure of 35 ton, and a cavity temperature of 140° C.
A polyether imide resin (PEI) was similarly admitted into the injection molding machine. A plurality of sheets of the same dimensions were molded. The molding conditions included a plasticizing temperature of 360° C., an injection time of 15 seconds, a cooling time of 30 seconds, an injection pressure of 1,000 kg/cm2, a clamping pressure of 35 ton, and a cavity temperature of 90° C.
To a jig for forming shear adhesion test pieces was fixedly attached each of the resin sheets or each of chromium-plated metal, nickel-plated metal and aluminum alloy sheets of the same dimensions. A proper amount of the silicone rubber composition was poured into the jig where it was cured by heating for 8 minutes in a 120° C. constant temperature oven, obtaining a test piece as shown in the side and plan views of FIGS. 1A and 1B. In FIG. 1, a resin or metal sheet 1 is joined to a cured part of the silicone composition 2 (25×100×2 mm) through a bond zone 3. Supports 4 and 5 support the resin or metal sheet 1 and the cured silicone part 2, respectively. The test pieces were examined by an adhesion test. The results are shown in Table 1.
Using an automatic contact angle meter (manufactured by Kyowa Kaimen Kagaku K.K.), the adhesive agents (ii) and (iii) were measured for contact angle on the polyether ether ketone, polyether sulfon and polyether imide resin sheets. The results are shown in Table 2.
              TABLE 1                                                     
______________________________________                                    
           Example                                                        
           1      2        3        4                                     
______________________________________                                    
Adhesive agent (ii)                                                       
             0.5 pbw  1 pbw    --     --                                  
Adhesive agent (iii)                                                      
             --       --       0.5 pbw                                    
                                      1 pbw                               
Adhered                                                                   
Cr-plated metal                                                           
             peeled   peeled   peeled peeled                              
Ni-plated metal                                                           
             peeled   peeled   peeled peeled                              
Al alloy     peeled   peeled   peeled peeled                              
PEEK         bonded   bonded   bonded bonded                              
PES          bonded   bonded   bonded bonded                              
PEI          bonded   bonded   bonded bonded                              
______________________________________                                    
              TABLE 2                                                     
______________________________________                                    
        Contact angle (θ)                                           
        Adhesive Agent (ii)                                               
                    Adhesive Agent (iii)                                  
______________________________________                                    
PEEK      48.0°  28.7°                                      
PES       49.1°  30.1°                                      
PEI       48.2°  30.5°                                      
______________________________________                                    
Test 2
A terminally allyl-modified polycarbonate resin (PC) was admitted into a thermoplastic resin injection molding machine where the resin was plasticized at 290° C. and injected into a plurality of sheet-shaped mold cavities whereby a plurality of sheets of 25 mm wide, 100 mm long, and 2 mm thick were molded. The injection molding conditions included an injection time of 6 seconds, a cooling time of 30 seconds, an injection pressure of 1,000 kg/cm2, a clamping pressure of 35 ton, and a cavity temperature of 100° C.
To a jig for forming shear adhesion test pieces was fixedly attached the resin sheet or each of chromium-plated metal, nickel-plated metal and aluminum alloy sheets of the same dimensions. A proper amount of the silicone rubber composition was poured into the jig where it was cured by heating for 8 minutes in a 120° C. constant temperature oven, obtaining a test piece as shown in FIG. 1. The test pieces were examined by an adhesion test. The results are shown in Table 3.
Using the automatic contact angle meter used in Test 1, the adhesive agents (ii) and (iii) were measured for contact angle on the polycarbonate resin sheet. The results are shown in Table 4.
              TABLE 3                                                     
______________________________________                                    
           Example                                                        
           1      2        3        4                                     
______________________________________                                    
Adhesive agent (ii)                                                       
             0.5 pbw  1 pbw    --     --                                  
Adhesive agent (iii)                                                      
             --       --       0.5 pbw                                    
                                      1 pbw                               
Adhered                                                                   
Cr-plated metal                                                           
             peeled   peeled   peeled peeled                              
Ni-plated metal                                                           
             peeled   peeled   peeled peeled                              
Al alloy     peeled   peeled   peeled peeled                              
modified PC  bonded   bonded   bonded bonded                              
______________________________________                                    
              TABLE 4                                                     
______________________________________                                    
         Contact angle (θ)                                          
         Adhesive Agent (ii)                                              
                     Adhesive Agent (iii)                                 
______________________________________                                    
modified PC                                                               
           35.9°  10.0°                                     
______________________________________                                    
Test 3
A polybutyrene terephthalate resin (PBT) loaded with 30% by weight of glass fibers was admitted into a thermoplastic resin injection molding machine where the resin was plasticized at 240° C. and injected into a plurality of sheet-shaped mold cavities whereby a plurality of sheets of 25 mm wide, 100 mm long, and 2 mm thick were molded. The injection molding conditions included an injection time of 15 seconds, a cooling time of 10 seconds, an injection pressure of 75 kg/cm2, a clamping pressure of 35 ton, and a cavity temperature of 60° C.
A polycarbonate resin (PC) loaded with 10% by weight of glass fibers was similarly admitted into the injection molding machine. A plurality of sheets of the same dimensions were molded. The molding conditions included a plasticizing temperature of 290° C., an injection time of 10 seconds, a cooling time of 30 seconds, an injection pressure of 1,000 kg/cm2, a clamping pressure of 35 ton, and a cavity temperature of 100° C.
An acrylonitrile-butadiene-styrene resin (ABS) loaded with 15% by weight of glass fibers was similarly admitted into the injection molding machine. A plurality of sheets of the same dimensions were molded. The molding conditions included a plasticizing temperature of 220° C., an injection time of 15 seconds, a cooling time of 30 seconds, an injection pressure of 800 kg/cm2, a clamping pressure of 35 ton, and a cavity temperature of 50° C.
To a jig for forming shear adhesion test pieces was fixedly attached each of the resin sheets or each of chromium-plated metal, nickel-plated metal and aluminum alloy sheets of the same dimensions. A proper amount of the silicone rubber composition was poured into the jig where it was cured by heating for 8 minutes in a 120° C. constant temperature oven, obtaining a test piece as shown in FIG. 1. The test pieces were examined by an adhesion test. The results are shown in Table 5.
Using automatic contact angle meter in Test 1, adhesive agents components (ii) and (iii) were measured for contact angle on the glass fiber-reinforced polybutyrene terephthalate, polycarbonate and ABS resin sheets. The results are shown in Table 6.
              TABLE 5                                                     
______________________________________                                    
           Example                                                        
           1      2        3        4                                     
______________________________________                                    
Adhesive agent (ii)                                                       
             0.5 pbw  1 pbw    --     --                                  
Adhesive agent (iii)                                                      
             --       --       0.5 pbw                                    
                                      1 pbw                               
Adhered                                                                   
Cr-plated metal                                                           
             peeled   peeled   peeled peeled                              
Ni-plated metal                                                           
             peeled   peeled   peeled peeled                              
Al alloy     peeled   peeled   peeled peeled                              
reinforced PBT                                                            
             bonded   bonded   bonded bonded                              
reinforced PC                                                             
             bonded   bonded   bonded bonded                              
reinforced ABS                                                            
             bonded   bonded   bonded bonded                              
______________________________________                                    
              TABLE 6                                                     
______________________________________                                    
         Contact angle (θ)                                          
         Adhesive Agent (ii)                                              
                      Adhesive Agent (iii)                                
______________________________________                                    
reinforced PBT                                                            
           40.3°   18.70                                           
reinforced PC                                                             
           39.1°   20.1°                                    
reinforced ABS                                                            
           38.3°   20.5°                                    
______________________________________                                    
Test 4
To 100 parts of unreinforced polycarbonate resin was added 5 or 10 parts of silica treated with vinyl-containing silazane. Each silica-loaded resin was kneaded in a kneader/extruder at 270° C. for 10 minutes and extruded thereby into strands which were pelletized by means of a rotary cuter.
The silica-loaded polycarbonate resin was admitted into a thermoplastic resin injection molding machine where the resin was plasticized at 290° C. and injected into a plurality of sheet-shaped mold cavities whereby a plurality of sheets of 25 mm wide, 100 mm long, and 2 mm thick were molded. The injection molding conditions included an injection time of 6 seconds, a cooling time of 30 seconds, an injection pressure of 1,000 kg/cm2, a clamping pressure of 35 ton, and a cavity temperature of 100° C.
To a jig for forming shear adhesion test pieces was fixedly attached the resin sheet or each of chromium-plated metal, nickel-plated metal and aluminum alloy sheets of the same dimensions. A proper amount of the silicone rubber composition was poured into the jig where it was cured by heating for 8 minutes in a 120° C. constant temperature over, obtaining a test piece as shown in FIG. 1. The test pieces were examined by an adhesion test. The results are shown in Table 7.
Using the automatic contact angle meter in Test 1, adhesive agents components (ii) and (iii) were measured for contact angle on the silica-loaded polycarbonate resin sheets. The results are shown in Table 8.
              TABLE 7                                                     
______________________________________                                    
           Example                                                        
           1      2        3        4                                     
______________________________________                                    
Adhesive agent (ii)                                                       
             0.5 pbw  1 pbw    --     --                                  
Adhesive agent (iii)                                                      
             --       --       0.5 pbw                                    
                                      1 pbw                               
Adhered                                                                   
Cr-plated metal                                                           
             peeled   peeled   peeled peeled                              
Ni-plated metal                                                           
             peeled   peeled   peeled peeled                              
Al alloy     peeled   peeled   peeled peeled                              
Silica-loaded PC                                                          
 5 pbw       bonded   bonded   bonded bonded                              
10 pbw       bonded   bonded   bonded bonded                              
______________________________________                                    
              TABLE 8                                                     
______________________________________                                    
         Contact angle (θ)                                          
         Adhesive Agent (ii)                                              
                      Adhesive Agent (iii)                                
______________________________________                                    
 5 pbw     25.9°   20.0°                                    
silica-loaded PC                                                          
10 pbw     36.0°   29.2°                                    
silica-loaded PC                                                          
______________________________________                                    
Examples 5-6
To 100 parts of silicone rubber composition (S) in Examples 1-4 was added 0.5 or 1 part of a compound of formula (iv) shown below as the adhesive agent. There were obtained two silicone rubber compositions within the scope of the invention. ##STR10##
Using these two silicone rubber compositions, the following tests were carried out.
Test 5
A nylon-66 resin was admitted into a thermoplastic resin injection molding machine where the resin was plasticized at 280° C. and injected into a plurality of sheet-shaped mold cavities whereby a plurality of sheets of 25 mm wide, 100 mm long, and 2 mm thick were molded. The injection molding conditions included an injection time of 6 seconds, a cooling time of 20 seconds, an injection pressure of 800 kg/cm2, a clamping pressure of 35 ton, and a cavity temperature of 80° C.
To a jig for forming shear adhesion test pieces was fixedly attached the resin sheet or each of chromium-plated metal, nickel-plated metal and aluminum alloy sheets of the same dimensions. A proper amount of the silicone rubber composition was poured into the jig where it was cured by heating for 8 minutes in a 120° C. constant temperature oven, obtaining a test piece as shown in FIG. 1. The test pieces were examined by an adhesion test. The results are shown in Table 9.
Using the automatic contact angle meter in Test 1, the adhesive agent (iv) was measured for contact angle on the nylon-66 resin sheets. The results are shown in Table 10.
              TABLE 9                                                     
______________________________________                                    
                Example                                                   
                5      6                                                  
______________________________________                                    
Adhesive agent (iv)                                                       
                  0.5 pbw  1 pbw                                          
Adhered                                                                   
Cr-plated metal   peeled   peeled                                         
Ni-plated metal   peeled   peeled                                         
Al alloy          peeled   peeled                                         
Nylon-66          bonded   bonded                                         
______________________________________                                    
              TABLE 10                                                    
______________________________________                                    
          Contact angle (θ)                                         
          Adhesive Agent (iv)                                             
______________________________________                                    
Nylon-66    25.0°                                                  
______________________________________                                    
Examples 7-12
To 100 parts of silicone rubber composition (S) in Examples 1-4 was added 0.5 or 1 part of a compound of formula (v), (vi) or (vii) shown below as the adhesive agent. There were obtained six silicone rubber compositions within the scope of the invention. ##STR11##
Using these six silicone rubber compositions, the following tests were carried out.
Test 6
A nylon-66 resin loaded with 30% by weight of glass fibers was admitted into a thermoplastic resin injection molding machine where the resin was plasticized at 270° C. and injected into a plurality of sheet-shaped mold cavities whereby a plurality of sheets of 25 mm wide, 100 mm long, and 2 mm thick were molded. The injection molding conditions included an injection time of 15 seconds, a cooling time of seconds, an injection pressure of 800 kg/cm2, a clamping pressure of 35 ton, and a cavity temperature of 80° C.
Similarly, a polyethylene terephthalate resin (PET) loaded with 30% by weight of glass fibers was admitted into the injection molding machine. A plurality of sheets of the same dimensions were molded. The molding conditions included a plasticizing temperature of 270° C., an injection time of 10 seconds, a cooling time of 30 seconds, an injection pressure of 600 kg/cm2, a clamping pressure of 35 ton, and a cavity temperature of 100° C.
Similarly, a polyphenylene oxide resin (PPO) loaded with 20% by weight of glass fibers was admitted into the injection molding machine. A plurality of sheets of the same dimensions were molded. The molding conditions included a plasticizing temperature of 270° C., an injection time of 10 seconds, a cooling time of 30 seconds, an injection pressure of 1,000 kg/cm2, a clamping pressure of 35 ton, and a cavity temperature of 100° C.
To a jig for forming shear adhesion test pieces was fixedly attached each of the resin sheets or each of chromium-plated metal, nickel-plated metal and aluminum alloy sheets of the same dimensions. A proper amount of the silicone rubber composition was poured into the jig where it was cured by heating for 8 minutes in a 120° C. constant temperature oven, obtaining a test piece as shown in FIG. 1. The test pieces were examined by an adhesion test. The results are shown in Table 11.
              TABLE 11                                                    
______________________________________                                    
       Example                                                            
       7     8       9       10    11    10                               
______________________________________                                    
Adhesive 0.5     1       --    --    --    --                             
agent (v)                                                                 
Adhesive --      --      0.5   1     --    --                             
agent (vi)                                                                
Adhesive --      --      --    --    0.5   1                              
agent (vii)                                                               
Adhered                                                                   
Cr-plated                                                                 
         peeled  peeled  peeled                                           
                               peeled                                     
                                     peeled                               
                                           peeled                         
metal                                                                     
Ni-plated                                                                 
         peeled  peeled  peeled                                           
                               peeled                                     
                                     peeled                               
                                           peeled                         
metal                                                                     
Al alloy peeled  peeled  peeled                                           
                               peeled                                     
                                     peeled                               
                                           peeled                         
Fiber-                                                                    
reinforced                                                                
         bonded  bonded  bonded                                           
                               bonded                                     
                                     bonded                               
                                           bonded                         
nylon 66                                                                  
Fiber-                                                                    
reinforced                                                                
         bonded  bonded  bonded                                           
                               bonded                                     
                                     bonded                               
                                           bonded                         
PET                                                                       
Fiber-                                                                    
reinforced                                                                
         bonded  bonded  bonded                                           
                               bonded                                     
                                     bonded                               
                                           bonded                         
PPO                                                                       
______________________________________                                    
Comparative Examples 1-2
To 100 parts of silicone rubber composition (S) in Examples 1-4 was added 0.5 or 1 part of a compound of formula (viii) shown below. There were obtained two silicone rubber compositions outside the scope of the invention. ##STR12##
To a jig for forming shear adhesion test pieces was fixedly attached each of the polyether ether ketone, polyether sulfone, and polyether imide resin sheets prepared as in the foregoing Examples. A proper amount of the silicone rubber composition was poured into the jig where it was cured by heating for 8 minute in a 120° C. constant temperature oven, obtaining a test piece as shown in FIG. 1. The test pieces were examined by an adhesion test to find that the silicone rubber was readily peeled from each resin sheet.
The compound (viii) had a contact angle of 75.0°, 72.5° and 78.0° on the polyether ether ketone, polyether sulfone, and polyether imide resin sheets, respectively.
Comparative Example 3
To 100 parts of silicone rubber composition (S) in Examples 1-4 was added 2 parts of a compound of formula (ix) or (x) shown below. There were obtained two silicone rubber compositions outside the scope of the invention. ##STR13##
A polypropylene resin modified with 1.5 mol % of a diene compound as described in JP-A 269110/1990 was admitted into a thermoplastic resin injection molding machine where the resin was plasticized at 200° C. and injected into a plurality of sheet-shaped mold cavities whereby a plurality of sheets of 25 mm wide, 100 mm long, and 2 mm thick were molded. The injection molding conditions included an injection time of 6 seconds, a cooling time of 30 seconds, an injection pressure of 1,000 kg/cm2, a clamping pressure of 35 ton, and a cavity temperature of 60° C.
To a jig for forming shear adhesion test pieces was fixedly attached the resin sheet or each of chromium-plated metal, nickel-plated metal and aluminum alloy sheets of the same dimensions. A proper amount of the silicone rubber composition was poured into the jig where it was cured by heating for 8 minutes in a 120° C. constant temperature oven, obtaining a test piece as shown in FIG. 1. The test pieces were examined by an adhesion test. The results are shown in Table 12.
Using the automatic contact angle meter in Test 1, the adhesive agents (ix) and (x) were measured for contact angle on the modified polypropylene resin sheet. The results are shown in Table 13.
              TABLE 12                                                    
______________________________________                                    
            Comparative Example 3                                         
______________________________________                                    
Modified PP   bonded                                                      
Cr-plated metal                                                           
              bonded                                                      
Ni-plated metal                                                           
              bonded                                                      
Aluminum alloy                                                            
              bonded                                                      
______________________________________                                    
              TABLE 13                                                    
______________________________________                                    
        Contact angle (θ)                                           
        Adhesive Agent (ix)                                               
                    Adhesive Agent (x)                                    
______________________________________                                    
Modified  24.1°  15.0°                                      
______________________________________                                    
Although some preferred embodiments have been described, many modifications and variations may be made thereto in the light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.

Claims (16)

We claim:
1. An adhesive silicone rubber composition of addition reaction curing type comprising (a) an organopolysiloxane containing an alkenyl group; (b) an organohydrogenpolysiloxane having at least two hydrogen atoms directly attached to a silicon atom in a molecule; (c) an addition reaction catalyst; and (d) an adhesive agent selected from compounds of the following formulae (I), (II) and (III):
A-(D-B).sub.x -D-A                                         (I)
C-(B-D).sub.x -B-C                                         (II)
A-E                                                        (III)
wherein each of A and B is a silane or siloxane group, each group having at least one hydrogen atom directly attached to a silicon atom and an optional substituent which is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 8 carbon atoms attached to the same or different silicon atom, A being monovalent and B being divalent,
each of C and D is a group having contained therein at least one member selected from the group consisting of a substituted or unsubstituted aryl group, a substituted or unsubstituted arylene group, ##STR14## and an optional substituent which is selected from alkyl or alkylene groups, C being monovalent and D being divalent,
E is a monovalent group as defined for C, with the proviso that the total number of atoms in E other than hydrogen and halogen atoms is at least 8, and
letter x is 0 or a positive number,
said adhesive silicone rubber composition giving a cured product that does not adhere to metal.
2. The adhesive silicone rubber composition of claim 1, wherein said at least one member contained in the groups represented by C, D and E is selected from the following formulae (1) to (10): ##STR15## wherein each of R1 to R9, which may be identical or different, is a monovalent group selected from the group consisting of a hydrogen atom, halogen atom, hydroxyl group, substituted or unsubstituted monovalent hydrocarbon group, and alkoxy groups;
X is a divalent group selected from the group consisting of ##STR16## wherein each of R10 and R11, which may be identical or different, is a monovalent group selected from the group consisting of a hydrogen atom, halogen atom, and substituted or unsubstituted monovalent hydrocarbon group, or R10 and R11 taken together form a carbocyclic or heterocyclic ring, and letter "a" is an integer of at least 2.
3. The composition of claim 1 or 2 wherein said compound has a contact angle of up to 70° on an organic resin to which the composition is to be joined.
4. The adhesive silicone rubber composition according to claim 1, wherein the adhesive agent is at least one compound selected from the group consisting of ##STR17##
5. The adhesive rubber composition according to claim 1, wherein the amount of the adhesive agent in the adhesive silicone rubber composition is from 0.01 to 50 parts by weight per 100 parts by weight of the organopolysiloxane containing an alkenyl group.
6. The adhesive silicone rubber composition according to claim 1, wherein the amount of the adhesive agent in the adhesive silicone rubber composition is from 0.1 to 5 parts weight per 100 parts by weight of the organopolysiloxane containing an alkenyl group.
7. The adhesive silicone rubber composition according to claim 1, wherein the organopolysiloxane containing an alkenyl group is represented by the formula
R.sub.a SiO.sub.(4-a)/2
wherein R is an substituted or unsubstituted monovalent hydrocarbon group, letter a is a number from 1.9 to 2.4, and the content of alkenyl group is from 0.01 to 10 mol % of the entire R groups.
8. The adhesive silicone rubber composition according to claim 7, wherein the content of alkenyl group is from 0.1 to 1 mol % of the entire R groups.
9. The adhesive silicone rubber composition according to claim 1, wherein the organopolysiloxane containing an alkenyl group is selected from the group consisting of ##STR18## wherein R is a substituted or unsubstituted monovalent hydrocarbon group, excluding an aliphatic unsaturated group, and letters m and n are positive numbers and m+n=100 to 5000 and m/(m+n)=0.001 to 0.1.
10. The adhesive silicone rubber composition according to claim 1, wherein the amount of the organohydrogenpolysiloxane in the adhesive silicone rubber composition is from 0.4 to 5 equivalents per alkenyl group in the organopolysiloxane containing an alkenyl group.
11. The adhesive silicone rubber composition according to claim 1, wherein the amount of the organohydrogenpolysiloxane in the adhesive silicone rubber composition is from 0.8 to 2 equivalents per alkenyl group in the organopolysiloxane containing an alkenyl group.
12. The adhesive silicone rubber composition according to claim 1, wherein the addition reaction catalyst is platinum, a platinum compound, rhodium, or a rhodium compound.
13. The adhesive silicone rubber composition according to claim 12, wherein the amount of the addition reaction catalyst in the adhesive silicone rubber composition is from 0.1 to 1000 ppm of platinum or rhodium based on the total composition.
14. The adhesive silicone rubber composition according to claim 12, wherein the amount of the addition reaction catalyst in the adhesive silicone rubber composition is from 1 to 200 ppm of platinum or rhodium based on the total composition.
15. The adhesive silicone rubber composition according to claim 1, wherein the adhesive agent is ##STR19##
16. The adhesive silicone rubber composition according to claim 1, wherein the adhesive agent is ##STR20##
US08/163,556 1992-12-10 1993-12-09 Adhesive silicone rubber compositions Expired - Lifetime US5405896A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4-352679 1992-12-10
JP35267992A JP3324166B2 (en) 1992-12-10 1992-12-10 Adhesive silicone rubber composition

Publications (1)

Publication Number Publication Date
US5405896A true US5405896A (en) 1995-04-11

Family

ID=18425701

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/163,556 Expired - Lifetime US5405896A (en) 1992-12-10 1993-12-09 Adhesive silicone rubber compositions

Country Status (6)

Country Link
US (1) US5405896A (en)
EP (1) EP0601883B1 (en)
JP (1) JP3324166B2 (en)
KR (1) KR100262928B1 (en)
DE (1) DE69334059T2 (en)
TW (1) TW335411B (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5733978A (en) * 1995-04-26 1998-03-31 Dow Corning Toray Silicone Co., Ltd. Curable resin composition
US5977216A (en) * 1997-09-18 1999-11-02 Shin-Etsu Chemical Co. , Ltd. Silicone rubber compositions for high-voltage electrical insulators and polymeric bushings
US6127503A (en) * 1997-11-05 2000-10-03 Shin-Etsu Chemical Co., Ltd. Adhesive silicone compositions
US6262188B1 (en) 1998-12-23 2001-07-17 General Electric Company Functionalized MQ resin as an adhesion enhancing additive
US20020169256A1 (en) * 1999-12-01 2002-11-14 Merfeld Glen David Thermoset composition, method, and article
US20030220460A1 (en) * 2002-04-09 2003-11-27 Glen Merfeld Thermoset composition, method, and article
US6734250B2 (en) * 2000-08-17 2004-05-11 Shin-Etsu Chemical Co., Ltd. Electrically conductive silicone rubber composition
US20040106750A1 (en) * 1999-12-01 2004-06-03 General Electric Company Capped poly(arylene ether) composition and method
US20040122174A1 (en) * 2002-10-11 2004-06-24 Mather Patrick T. Blends of amorphous and semicrystalline polymers having shape memory properties
US6780518B2 (en) 2001-01-05 2004-08-24 Shin-Etsu Chemical Co., Ltd. Silicone rubber adhesive composition and integrally molded article of silicone rubber and thermoplastic resin
US20050089696A1 (en) * 2002-02-06 2005-04-28 Ge Bayer Silicones Gmbh & Co. Kg Self-adhesive, addition cross-linking silicone-rubber blends, method for their production, method for producing composite moulded parts and use of the latter
US20050109990A1 (en) * 2001-01-18 2005-05-26 Yeager Gary W. Electrically conductive thermoset composition, method for the preparation thereof, and articles derived therefrom
US20060048882A1 (en) * 2004-09-09 2006-03-09 Jeffrey Swain Submerged masonry surface treating method
US20070100072A1 (en) * 2003-07-25 2007-05-03 Hiroshi Akitomo Silicone rubber composition
US20080064811A1 (en) * 2006-09-11 2008-03-13 Shin -Etsu Chemical Co., Ltd. Silicone rubber composition for extrusion molding
US20080293859A1 (en) * 2007-05-21 2008-11-27 Shin -Etsu Chemical Co., Ltd. Curable fluoropolyether composition and integral molded resin/rubber articles
US20090326122A1 (en) * 2006-06-27 2009-12-31 Nok Corporation Silicone Rubber Composition
US20110210163A1 (en) * 2010-02-26 2011-09-01 Kerri Kim Clark Package Having An Adhesive-Based Reclosable Fastener And Methods Therefor
US20110213092A1 (en) * 2010-02-26 2011-09-01 Jeffrey James Boyce Low-Tack, UV-Cured Pressure Sensitive Adhesive Suitable for Reclosable Packages
US20120232219A1 (en) * 2011-03-07 2012-09-13 Shin-Etsu Chemical Co., Ltd. Addition curable self-adhesive silicone rubber composition
WO2013002843A2 (en) * 2011-06-30 2013-01-03 Trennel Incorporation Self-adhesive silicone rubber compositions and articles comprising same
US8398306B2 (en) 2005-11-07 2013-03-19 Kraft Foods Global Brands Llc Flexible package with internal, resealable closure feature
US8916646B2 (en) 2012-08-20 2014-12-23 Shin-Etsu Chemical Co., Ltd. Addition curable self-adhesive silicone rubber composition
US8937123B2 (en) 2012-12-21 2015-01-20 Shin-Etsu Chemical Co., Ltd. Addition curable self-adhesive silicone rubber composition
US20150240141A1 (en) * 2014-02-27 2015-08-27 Shin-Etsu Chemical Co., Ltd. Silicone pressure-sensitive adhesive composition having improved substrate adhesion and pressure-sensitive adhesive article
US9532584B2 (en) 2007-06-29 2017-01-03 Kraft Foods Group Brands Llc Processed cheese without emulsifying salts
CN111630084A (en) * 2018-01-17 2020-09-04 信越化学工业株式会社 Heat-conductive film-like cured product, method for producing same, and heat-conductive member
CN113105862A (en) * 2021-05-25 2021-07-13 哈尔滨工业大学 Preparation method of heat-resistant organic silicon pressure-sensitive adhesive
WO2023227714A1 (en) 2022-05-25 2023-11-30 Momentive Performance Materials Gmbh New substituted phosphite transition metal compounds

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2963022B2 (en) * 1994-11-11 1999-10-12 信越化学工業株式会社 Organic silicon compounds
JP3239717B2 (en) * 1995-09-29 2001-12-17 信越化学工業株式会社 Curable composition
GB9814212D0 (en) * 1998-07-01 1998-09-02 Dow Corning Gmbh Polymer composition
JP2002020719A (en) 2000-07-11 2002-01-23 Shin Etsu Chem Co Ltd Silicone rubber adhesive composition and integrated molded article of the adhesive composition with thermoplastic resin
JP4771046B2 (en) * 2005-03-11 2011-09-14 信越化学工業株式会社 Curable silicone rubber composition and method for producing composite molded body of liquid crystal polymer and silicone rubber
JP4634866B2 (en) * 2005-06-02 2011-02-16 信越化学工業株式会社 Addition reaction curable silicone rubber adhesive
JP2007238928A (en) * 2006-02-13 2007-09-20 Shin Etsu Chem Co Ltd Curable fluoropolyether composition and integrated molded product of rubber cured product and organic resin using the composition
DE102007044789A1 (en) 2007-09-19 2009-04-02 Wacker Chemie Ag Self-adhesive addition-curing silicone composition
CN102844370A (en) 2010-04-12 2012-12-26 Nok株式会社 Rubber composition and use thereof
DE102010039085A1 (en) 2010-08-09 2012-02-09 Wacker Chemie Ag Self-adhesive silicone elastomers
KR102320575B1 (en) 2014-06-18 2021-11-02 신에쓰 가가꾸 고교 가부시끼가이샤 Silicone adhesive composition having excellent substrate adhesion, and adhesive product
JP2020111670A (en) 2019-01-11 2020-07-27 信越化学工業株式会社 Addition-curable self-adhesive silicone rubber composition and silicone rubber cured product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584355A (en) * 1984-10-29 1986-04-22 Dow Corning Corporation Silicone pressure-sensitive adhesive process and product with improved lap-shear stability-I
US4585836A (en) * 1984-10-29 1986-04-29 Dow Corning Corporation Silicone pressure-sensitive adhesive process and product with improved lap-shear stability-II
US4591622A (en) * 1984-10-29 1986-05-27 Dow Corning Corporation Silicone pressure-sensitive adhesive process and product thereof
US4774297A (en) * 1986-07-15 1988-09-27 Toray Silicone, Co., Ltd. Silicone pressure-sensitive adhesive composition
US4988779A (en) * 1989-04-17 1991-01-29 General Electric Company Addition cured silicone pressure sensitive adhesive
US5006580A (en) * 1988-06-10 1991-04-09 Toray Silicone Company, Limited Self-bonding curable organopolysiloxane composition

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033777B2 (en) * 1979-03-28 1985-08-05 ト−レ・シリコ−ン株式会社 Coating material for optical communication glass fiber
EP0143994B1 (en) * 1983-11-01 1992-01-02 Sumitomo Bakelite Company Limited Thermoplastic resin-silicone composite shaped article
JPH02218755A (en) * 1989-02-20 1990-08-31 Toray Dow Corning Silicone Co Ltd Curable organopolysiloxane composition
JPH0739571B2 (en) * 1989-11-22 1995-05-01 信越化学工業株式会社 Adhesive organopolysiloxane composition
JPH07119396B2 (en) * 1990-02-27 1995-12-20 信越化学工業株式会社 Adhesive organopolysiloxane composition and cured product thereof
JPH086081B2 (en) * 1990-05-30 1996-01-24 信越化学工業株式会社 Adhesive composition and cured product
US5260377A (en) * 1990-12-31 1993-11-09 University Of Southern California Crosslinkable carbosilane polymer formulations
US5164461A (en) * 1991-03-14 1992-11-17 General Electric Company Addition-curable silicone adhesive compositions
US5190827A (en) * 1991-03-26 1993-03-02 General Electric Company Silicone pressure sensitive adhesive compositions having high solids content
JP2734302B2 (en) * 1992-01-21 1998-03-30 信越化学工業株式会社 Silicone rubber adhesive composition
JP3324284B2 (en) * 1993-07-06 2002-09-17 信越化学工業株式会社 Adhesive silicone composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584355A (en) * 1984-10-29 1986-04-22 Dow Corning Corporation Silicone pressure-sensitive adhesive process and product with improved lap-shear stability-I
US4585836A (en) * 1984-10-29 1986-04-29 Dow Corning Corporation Silicone pressure-sensitive adhesive process and product with improved lap-shear stability-II
US4591622A (en) * 1984-10-29 1986-05-27 Dow Corning Corporation Silicone pressure-sensitive adhesive process and product thereof
US4774297A (en) * 1986-07-15 1988-09-27 Toray Silicone, Co., Ltd. Silicone pressure-sensitive adhesive composition
US5006580A (en) * 1988-06-10 1991-04-09 Toray Silicone Company, Limited Self-bonding curable organopolysiloxane composition
US4988779A (en) * 1989-04-17 1991-01-29 General Electric Company Addition cured silicone pressure sensitive adhesive

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5733978A (en) * 1995-04-26 1998-03-31 Dow Corning Toray Silicone Co., Ltd. Curable resin composition
US5977216A (en) * 1997-09-18 1999-11-02 Shin-Etsu Chemical Co. , Ltd. Silicone rubber compositions for high-voltage electrical insulators and polymeric bushings
US6127503A (en) * 1997-11-05 2000-10-03 Shin-Etsu Chemical Co., Ltd. Adhesive silicone compositions
US6262188B1 (en) 1998-12-23 2001-07-17 General Electric Company Functionalized MQ resin as an adhesion enhancing additive
US6878782B2 (en) 1999-12-01 2005-04-12 General Electric Thermoset composition, method, and article
US20020169256A1 (en) * 1999-12-01 2002-11-14 Merfeld Glen David Thermoset composition, method, and article
US8192649B2 (en) 1999-12-01 2012-06-05 Sabic Innovative Plastics Ip B.V. Capped poly(arylene ether) composition and method
US20040106750A1 (en) * 1999-12-01 2004-06-03 General Electric Company Capped poly(arylene ether) composition and method
US20070191577A1 (en) * 1999-12-01 2007-08-16 Yeager Gary W Capped poly(arylene ether) composition and method
US6734250B2 (en) * 2000-08-17 2004-05-11 Shin-Etsu Chemical Co., Ltd. Electrically conductive silicone rubber composition
US6780518B2 (en) 2001-01-05 2004-08-24 Shin-Etsu Chemical Co., Ltd. Silicone rubber adhesive composition and integrally molded article of silicone rubber and thermoplastic resin
US20050109990A1 (en) * 2001-01-18 2005-05-26 Yeager Gary W. Electrically conductive thermoset composition, method for the preparation thereof, and articles derived therefrom
US20050089696A1 (en) * 2002-02-06 2005-04-28 Ge Bayer Silicones Gmbh & Co. Kg Self-adhesive, addition cross-linking silicone-rubber blends, method for their production, method for producing composite moulded parts and use of the latter
US7288322B2 (en) 2002-02-06 2007-10-30 Ge Bayer Silicones Gmbh & Co. Kg Self-adhesive, addition cross-linking silicone-rubber blends, method for their production, method for producing composite molded parts and use of the latter
US7205035B2 (en) 2002-04-09 2007-04-17 General Electric Company Thermoset composition, method, and article
US20030220460A1 (en) * 2002-04-09 2003-11-27 Glen Merfeld Thermoset composition, method, and article
US7208550B2 (en) 2002-10-11 2007-04-24 The University Of Connecticut Blends of amorphous and semicrystalline polymers having shape memory properties
US20040122174A1 (en) * 2002-10-11 2004-06-24 Mather Patrick T. Blends of amorphous and semicrystalline polymers having shape memory properties
US20070100072A1 (en) * 2003-07-25 2007-05-03 Hiroshi Akitomo Silicone rubber composition
US7527703B2 (en) * 2004-09-09 2009-05-05 Jeffrey Swain Submerged masonry surface treating method
US20060048882A1 (en) * 2004-09-09 2006-03-09 Jeffrey Swain Submerged masonry surface treating method
US8398306B2 (en) 2005-11-07 2013-03-19 Kraft Foods Global Brands Llc Flexible package with internal, resealable closure feature
US20090326122A1 (en) * 2006-06-27 2009-12-31 Nok Corporation Silicone Rubber Composition
US8217132B2 (en) * 2006-06-27 2012-07-10 Nok Corporation Silicone rubber composition
US20080064811A1 (en) * 2006-09-11 2008-03-13 Shin -Etsu Chemical Co., Ltd. Silicone rubber composition for extrusion molding
US20100080999A1 (en) * 2006-09-11 2010-04-01 Shin -Etsu Chemical Co., Ltd. Silicone rubber composition for extrusion molding
US7977417B2 (en) 2006-09-11 2011-07-12 Shin-Etsu Chemical Co., Ltd. Silicone rubber composition for extrusion molding
US20080293859A1 (en) * 2007-05-21 2008-11-27 Shin -Etsu Chemical Co., Ltd. Curable fluoropolyether composition and integral molded resin/rubber articles
US7851066B2 (en) 2007-05-21 2010-12-14 Shin-Etsu Chemical Co., Ltd. Curable fluoropolyether composition and integral molded resin/rubber articles
US9532584B2 (en) 2007-06-29 2017-01-03 Kraft Foods Group Brands Llc Processed cheese without emulsifying salts
US20110210163A1 (en) * 2010-02-26 2011-09-01 Kerri Kim Clark Package Having An Adhesive-Based Reclosable Fastener And Methods Therefor
US9096780B2 (en) 2010-02-26 2015-08-04 Intercontinental Great Brands Llc Reclosable fasteners, packages having reclosable fasteners, and methods for creating reclosable fasteners
US10287077B2 (en) 2010-02-26 2019-05-14 Intercontinental Great Brands Llc Low-tack, UV-cured pressure sensitive adhesive suitable for reclosable packages
US20110213092A1 (en) * 2010-02-26 2011-09-01 Jeffrey James Boyce Low-Tack, UV-Cured Pressure Sensitive Adhesive Suitable for Reclosable Packages
US9382461B2 (en) 2010-02-26 2016-07-05 Intercontinental Great Brands Llc Low-tack, UV-cured pressure sensitive adhesive suitable for reclosable packages
US8389596B2 (en) 2010-02-26 2013-03-05 Kraft Foods Global Brands Llc Low-tack, UV-cured pressure sensitive adhesive suitable for reclosable packages
US20110211778A1 (en) * 2010-02-26 2011-09-01 Paul Anthony Zerfas Reclosable Fasteners, Packages Having Reclosable Fasteners, and Methods for Creating Reclosable Fasteners
US20110211773A1 (en) * 2010-02-26 2011-09-01 Romeo Derek J Reclosable Package Using Low Tack Adhesive
US8763890B2 (en) 2010-02-26 2014-07-01 Intercontinental Great Brands Llc Package having an adhesive-based reclosable fastener and methods therefor
US8580889B2 (en) * 2011-03-07 2013-11-12 Shin-Etsu Chemical Co., Ltd. Addition curable self-adhesive silicone rubber composition
US20120232219A1 (en) * 2011-03-07 2012-09-13 Shin-Etsu Chemical Co., Ltd. Addition curable self-adhesive silicone rubber composition
WO2013002843A2 (en) * 2011-06-30 2013-01-03 Trennel Incorporation Self-adhesive silicone rubber compositions and articles comprising same
WO2013002843A3 (en) * 2011-06-30 2013-02-28 Trennel Incorporation Self-adhesive silicone rubber compositions and articles comprising same
US8916646B2 (en) 2012-08-20 2014-12-23 Shin-Etsu Chemical Co., Ltd. Addition curable self-adhesive silicone rubber composition
US8937123B2 (en) 2012-12-21 2015-01-20 Shin-Etsu Chemical Co., Ltd. Addition curable self-adhesive silicone rubber composition
US20150240141A1 (en) * 2014-02-27 2015-08-27 Shin-Etsu Chemical Co., Ltd. Silicone pressure-sensitive adhesive composition having improved substrate adhesion and pressure-sensitive adhesive article
US9567501B2 (en) * 2014-02-27 2017-02-14 Shin-Etsu Chemical Co., Ltd. Silicone pressure-sensitive adhesive composition having improved substrate adhesion and pressure-sensitive adhesive article
EP2913374A1 (en) 2014-02-27 2015-09-02 Shin-Etsu Chemical Co., Ltd. Silicone pressure-sensitive adhesive composition having improved substrate adhesion and pressure-sensitive adhesive article
CN111630084A (en) * 2018-01-17 2020-09-04 信越化学工业株式会社 Heat-conductive film-like cured product, method for producing same, and heat-conductive member
US11359111B2 (en) * 2018-01-17 2022-06-14 Shin-Etsu Chemical Co., Ltd. Thermally conductive thin-film cured product, method for producing same, and thermally conductive member
CN113105862A (en) * 2021-05-25 2021-07-13 哈尔滨工业大学 Preparation method of heat-resistant organic silicon pressure-sensitive adhesive
CN113105862B (en) * 2021-05-25 2022-07-15 哈尔滨工业大学 Preparation method of heat-resistant organic silicon pressure-sensitive adhesive
WO2023227714A1 (en) 2022-05-25 2023-11-30 Momentive Performance Materials Gmbh New substituted phosphite transition metal compounds

Also Published As

Publication number Publication date
KR100262928B1 (en) 2000-08-01
EP0601883A2 (en) 1994-06-15
DE69334059T2 (en) 2007-03-01
JP3324166B2 (en) 2002-09-17
JPH06172738A (en) 1994-06-21
TW335411B (en) 1998-07-01
EP0601883A3 (en) 1995-11-29
KR940014674A (en) 1994-07-19
EP0601883B1 (en) 2006-08-30
DE69334059D1 (en) 2006-10-12

Similar Documents

Publication Publication Date Title
US5405896A (en) Adhesive silicone rubber compositions
US5366805A (en) Polycarbonate resin/silicone rubber integrally molded article and method for making
US5536803A (en) Adhesive silicone compositions
US5879809A (en) Thermoplastic resin/oil-bleeding silicone rubber integrally molded articles
US5792812A (en) Thermoplastic resin compoistions for use in integral molding with silicone rubber and integrally molded parts
US5438094A (en) Adhesive silicone compositions
EP0601881B1 (en) Polypropylene resin/silicone rubber integrally molded article and method for making
KR100733535B1 (en) Silicone Rubber Adhesive Composition and Integral Molded Product of Silicone Rubber and Thermoplastic Resin
EP1172413B1 (en) Silicone rubber adhesive composition and integrally molded article thereof
JP3552825B2 (en) One-piece automotive waterproof connector made of thermoplastic resin and oil-bleed silicone rubber
US6127503A (en) Adhesive silicone compositions
JP3317092B2 (en) Silicone adhesive composition and composite of cured silicone and organic resin
JPH02218755A (en) Curable organopolysiloxane composition
JP3116760B2 (en) Method for producing composite molded article of thermoplastic resin and silicone rubber
EP0728825B1 (en) Adhesive silicone compositions
US6262188B1 (en) Functionalized MQ resin as an adhesion enhancing additive
JP3127814B2 (en) Thermoplastic resin composition for integral molding of silicone rubber and integral molding of the same with silicone rubber
JP2836432B2 (en) Integrated molded body of ABS resin and silicone rubber and method for producing the same
JPH06171022A (en) Integrated molded object of polypropylene resin and silicone ruber and production thereof
JPH0584780A (en) Production of bonded composite of engineering plastic and silicone rubber
JPH06171023A (en) Integrated molded object of polypropylene resin and silicone rubber and production thereof
JPH08216273A (en) Manufacture of pad for spectacles

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHIN-ETSU CHEMICAL CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FUJIKI, HIRONAO;SHUDO, SHIGEKI;MATSUDA, AKIRA;REEL/FRAME:006803/0146

Effective date: 19931115

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12