US3814002A - Powder spray booth - Google Patents

Powder spray booth Download PDF

Info

Publication number
US3814002A
US3814002A US00354848A US35484873A US3814002A US 3814002 A US3814002 A US 3814002A US 00354848 A US00354848 A US 00354848A US 35484873 A US35484873 A US 35484873A US 3814002 A US3814002 A US 3814002A
Authority
US
United States
Prior art keywords
booth
trough
side walls
exhaust manifold
spray booth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00354848A
Other languages
English (en)
Inventor
F Rombach
C Venlet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nordson Corp
Original Assignee
Nordson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nordson Corp filed Critical Nordson Corp
Priority to US00354848A priority Critical patent/US3814002A/en
Priority to AU68243/74A priority patent/AU6824374A/en
Priority to IT21890/74A priority patent/IT1010082B/it
Priority to SE7405505A priority patent/SE419178B/xx
Priority to BE143612A priority patent/BE814186A/xx
Priority to DE2419925A priority patent/DE2419925A1/de
Priority to FR7414410A priority patent/FR2227060B1/fr
Priority to ZA00742645A priority patent/ZA742645B/xx
Priority to DK227774AA priority patent/DK141038B/da
Priority to GB1821174A priority patent/GB1469945A/en
Priority to CA198,119A priority patent/CA1035943A/en
Priority to JP4672774A priority patent/JPS574381B2/ja
Priority to ES425709A priority patent/ES425709A1/es
Application granted granted Critical
Publication of US3814002A publication Critical patent/US3814002A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B14/00Arrangements for collecting, re-using or eliminating excess spraying material
    • B05B14/40Arrangements for collecting, re-using or eliminating excess spraying material for use in spray booths
    • B05B14/48Arrangements for collecting, re-using or eliminating excess spraying material for use in spray booths specially adapted for particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/46Spray booths

Definitions

  • ABSTRACT An electrostatic powder spray booth for facilitating the cleaning of the booth and the recovery of powder spray material.
  • the booth has a bottom divided into troughs, each one of which is individually connected to a powder recovery system through a suction hose and manifold connection.
  • a baffle plate configurated so as to create a high velocity air stream along the side walls of the trough and an air turbulence chamber beneath the plate so that powder is swept from the side and bottom walls of the trough and out of the turbulence chamber into the powder recovery system.
  • the baffle plates are adjustably mounted within the bottom troughs so that the velocity of the air stream over the side walls of the trough may be controlled and varied and the'ports which connect the trough to the recovery system are adjustable in size so that the system may be balanced to maximize the cleansing effect of the suction air streams.
  • the invention of this application relates to an improved spray booth within which pulverant materials or powders are sprayed onto the articles.
  • Powder spraying of articles is now a common commercial practice for coating or painting articles without the use of conventional solvents and liquid paint carriers.
  • the powder is applied to the article by entraining very small particles of the powder, generally in a size range between and 80 microns, within a low pressure air stream and directing that stream from an electrostatic powder spray gun toward the article.
  • a high voltage electrical charge is applied to the powder at the nozzle of the spray gun, which charge then causes the particles to migrate toward and to adhere to the grounded object. Subsequently, the powder coating is heated and fused to the article in an oven.
  • electrostatic powder spraying One characteristic of electrostatic powder spraying is that a very high percentage of the total sprayed powder becomes overspray and fails to adhere to the article.
  • This overspray represents such a high percentage of the total quantity of sprayed powder that commercial utilization of the powder spraying technique dictates that the application equipment incorporate some form of powder recovery system.
  • recovery system includes a spray booth within which the powder is sprayed onto the article and a suction system through which all of the overspray is withdrawn from the booth.
  • a common problem encountered with commercial electrostatic powder spray systems is the inconvenience and delay which attends a change in powder composition or powder color.
  • the complete powder spray system including the booth and recovery system, must be completely purged of the old pulverant material or powder in order to prepare it to spray the new.
  • this is a time consuming and expensive operation which generally requires that the side and bottom walls of the booth be manually vacuumed in order to clean the surfaces of the booth of electrostatically charged and consequently adhered powder. Even a very minor amount of such powder if left in the booth can ruin subsequent production when mixed with a different color or composition powder material.
  • Another common problem encountered in electrostatic spray systems is a safety problem which occurs in consequence of a build up of powder material inside the booth and particularly in the bottom of the booth. Such build ups are unsafe because of their potential as heaith, fire or explosion hazards. Therefore another objective of this invention has been to provide a powder spray booth which eliminates all surfaces upon which powder can settle or become deposited so as to give rise to a safety hazard.
  • this invention is partially predicated upon the concept of a booth so designed that there is a high velocity air flow over all surfaces upon which powder would otherwise tend to adhere or collect.
  • the invention of this application is partially predicated upon the concept of utilizing the suction air flow required to recover the oversprayed powder to create high velocity air flow currents over the inside surfaces of the booth upon which powder otherwise tends to settle.
  • each trough is generally W shaped when viewed in cross section and has aninverted V shaped baffle located within the trough.
  • Flanges at theouter lower edges of the baffle function to create narrow air flow passages through which all suction air from the booth must pass. in the course of moving through these narrow passages, high velocity air flow streams are generated which then function to scrub or remove powder from the sides and bottoms of the troughs.
  • channels at the very bottoms of the troughs are smoothly rounded and the high velocity air stream is so directed that it swirls around the bottoms of the channels and picks up powder which otherwise drops out and becomes deposited in the bottoms of the channels.
  • Still another aspect of the invention is predicated upon the adjustability of the high velocity air flow creating passages.
  • This adjustability enables the velocity of the air stream along the side walls of the trough to be adjusted and varied.
  • the passage defining flanges of the baffles rest upon and are supported by adjustment screws which extend through the side walls of the trough.
  • the width of the passage may be varied and thereby the velocity of the air flow over the inside walls of the trough.
  • Still another aspect of this invention is predicated upon the concept of dividing the bottom of the spray booth into individually separated troughs and balancing air flow from each separated section so that each is purged of powder by the air flow through that section.
  • This balancing is effected by the provision of a plurality of apertured plates configurated to fit over openings in the bottoms of troughs which interconnect the trough to the exhaust system.
  • Those apertured plates have different size openings so that by varying the size openings between individual sections of the trough it is possible to increase or decrease the air flow within each section and to use only so much flow within an individual section as is required to effectively evacuate that section.
  • Still another aspect of this invention resides in the creation of self-cleaning air flow patterns internally of an exhaust manifold which interconnects the bottom of the booth to a powder recovery system. It has been found that the manifold, which generally connects the individual bottom trough sections of the booth to the powder recovery system, can and often does serve as a trap where powder collects and is held until it is subsequently disturbed. Eventually though it breaks out of the manifold, often after a color or material change.
  • the powder spray booth of this application includes a main manifold connected to the individual sections of the troughs in the bottom of the booth through individual conduits or hoses, each one of which injects air entrained powder into the manifold in a tangential direction so that a spiral air flow pattern is achieved internally of the manifold. This spiralling air flow scrubs the interior of the manifold of powder and keeps it free of powder build-up.
  • FIG. 1 is a perspective view of the powder spray booth incorporating the invention of this application.
  • FIG. 2 is a cross sectional view through the booth taken on line 2-2 of FIG. 1.
  • FIG. 3 is a cross sectional view through the booth taken on line 3-3 of FIG. 1.
  • FIG. 4 is an exploded perspective view of a portion of the bottom of the booth of FIG. 1.
  • FIG. 5 is an exploded perspective view of a portion of the bottom of the booth.
  • FIG. 6 is a perspective view of a vacuum attachment to the booth.
  • FIG. 7 is a diagrammatic view of the powder spray system incorporating the invention of this application.
  • FIGS. 1 and 7 there is illustrated a spray booth 10 which incorporates the invention of this application.
  • This booth is conventionally used in an electrostatic powder spray system 5 which includes a powder recovery system for recovering and reconditioning oversprayed powder.
  • an electrostatic spray system 5 is illustrated diagrammatically in FIG. 7 and includes electrostatic spray guns 11 and 12 from which air entrained powder is ejected toward an object or article 13 suspended in the booth from conveyorized hooks 14.
  • the powder which normally has a particle size range between IO and 80 microns, is ejected from the guns 11 and 12
  • a high voltage charge is applied to the powder particles so as to cause them to migrate and attach to the grounded object 13.
  • the powder coated object 13 is conveyed from the booth to an oven where the object is heated so as to cause the powdered particles to be fused onto the object 13.
  • the powder recovery system includes a conventional recovery unit 19 in which the air withdrawn from' the booth 10 is caused to pass through filter bags 20 into an exhaust fan 21 and subsequently to atmosphere through a blower silencer 22. In the course of passing through the filter bags, the air entrained powder drops to the bottom of the powder recovery unit 19 where it is fluidized in a conventional fluidizing bed 25.
  • the powder is moved by a pump 26 back to a conventional sieve 27 through a conduit 28. From the sieve 27 the recovered powder, less all foreign particles, such as dust, dirt and debris which may have been picked up by the suction air stream is ejected into a second fluidizing bed 23. From this last fluidizing bed 23 the clean powder is recirculated bypump 24 back to the spray guns 1]. and 12.
  • This powder recovery system 5 (FIG. 7) other than the booth 10, the conduits 17 and manifold 18, are all conventional in the prior art and form no part of the invention of this application. It has only been illustrated and described so as to facilitate an understanding of the operation of the invention of this application.
  • the booth 10 comprises a pair of opposed side walls 30, 31, a pair of opposed end walls 32, 33, a topwall 34, and a bottom wall 35.
  • the end walls 32, 33 and top wall 34 define a longitudinal slot through which conveyorized articles 13 pass while suspended from conveyorized hooks 14.
  • the articles suspended from the hooks pass between spray guns mounted in windows or apertures 38, 39 of the side walls 30, 31, respectively.
  • the bottom 35 of the booth is shaped as two long parallel troughs 40, 41 which extend for. the full length or between the ends 32, 33 of the booth.
  • Each trough 40, 41 is divided into three sections of equal length by a pair of dividers 43, 44 which extend transversely across and between the side walls 30, 31.
  • these divider walls 43, 44 are shaped as an inverted V when viewed in cross section and slope at an angle of approximately 15 to 30 to a vertical plane. The slope is provided on these walls in order to minimize the quantity of electrostatically charged particles adhering to the divider walls.
  • each of the troughs 40, 41 is generally W shapedwhen viewed in cross section and that each is defined by a pair of downwardly and inwardly sloping sidewalls 47 and 48 joined to a pair of upwardly and inwardly sloping walls 49, 50.
  • the side walls 47 and 48 define an angle a of approximately 35 with a vertical plane through the wall and the walls 49 and 50 define an angleB of approximately 50 relative to a vertical plane through the wall.
  • the juncture or the intersection between the side walls 47 and 48 and the walls 49, 50 respectively is rounded at the'bottom with a radius of curvature of approximately 6 millimeters so as to provide a smooth air flow path as is explained more fully hereinafter.
  • baffle 52 Located within each of three sections of each trough 40, 41 there is a removable baffle 52, 53, 54, 55, 56 and 57. These baffles are all identical and therefore only one, 52, will be illustrated and described in detail.
  • Each baffle 52 is generally shaped when viewed in cross section as an inverted V having side walls 59 and 60 which define an included angle C at the apex of approximately The end edges 61 of each baffle are cut so that the ends match the slope of the divider walls 43 and 44 and rest closely adjacent or against the sloping sides of the dividers 43, 44.
  • each baffle wall 59 and 60 has an inwardly turned flange 63, 64,'extending downwardly from it parallel to the side walls 47, 48 of the troughs.
  • These flanges 63, 64 cooperate with the side walls 47, 48 of each trough to define an air flow passage 65, 66 for suction air withdrawn through openings 70, 71, 72, 73, 74,75 in the bottom of the sections of the troughs into the conduits l7 and subsequently into the powder recovery system.
  • passages 65, 66 are relatively narrow (6 millimeters in width w in one preferred embodiment) so that a high velocity air stream is created in the course of passage through the passages, which high velocity air stream is then directed by the flanges and side walls downwardly over and parallel to the inside surface of the side walls 47, 48.
  • This high velocity air stream has the effect of washing or scrubbing powder from the lower inside surface 67, 68 of the side walls 47, 48 and from the rounded channels 45, 46 at the bottom of the troughs where the powder normally tends to collect and adhere.
  • those surfaces which are in the absence of the baffle covered with powder particles sometimes to a depth of several inches at the bottom of the channels 45, 46, swept clean by the high velocity air stream.
  • the baffies 52, 57 are adjustably mounted in the trough so that the width of the passage 65, 66 and consequently the velocity of the air stream passing through the passage may be adjusted and controlled.
  • This adjustment comprises four adjustment screws 80 threaded through each of the side walls 67, 48 against which the flanges 63, 64 of the baffles abut.
  • an optimal velocity through this passage has been found to be approximately 8,000 feet per minute, but an air stream velocity of anywhere from 5,000 to 10,000 feet per minute has been found to be operable.
  • the baffles 52-57 preferably also include handles 81 welded or otherwise secured to the top of the baffle to enable it to be lifted from the trough. Baffle removal is required to enable the air flow from each section of the trough to be adjusted relative to any other section as is explained more fully hereinafter.
  • the baffles are also generally removable so as to enable the bottoms of the troughs to be completely cleaned upon a change of color or material utilized in the system.
  • the orifices 70-75 in the bottom of each section of the troughs 40, M are spaced upwardly from the bottom of the channels 45, 46.
  • the lower edge of the orifices are spaced a distance D of approximately 20 millimeters from the bottoms of the channels 45, 46. This location of the ori fice has been found to be optimal for proper cleansing of the inside surfaces of the trough of powder and for maximum recovery of powder from the booth.
  • the high velocity air streams created by forcing all suction air flow to pass through the passages 65, 66 creates air streams which flow downwardly over the side walls 47, 48 of the troughs, over the bottom of the channels 45, 46 and upwardly again over the walls 49 and 50 in order to enter the opening 70.
  • These air flow streams then create a turbulent flow of air beneath the baffle 52 which wash all of the powder from the underside of the baffles.
  • Optimal cleansing of the surfaces of the booth with the available air supply often requires greater air flow in one section beneath baffies 52-57 than in another.
  • an automatic spray gun is being utilized. at one end of the booth and a hand or manually operated touch up gun at the opposite end, there is a need for a greater exhaust air flow in the area where the majority of powder is being applied by the automatically operated gun.
  • a plurality of balance air flow means or tuning plates 90 having varying size apertures 911 are preferably utilized to cover the orifices -75 in the bottom of each section of the trough.
  • control plates are preferably angled so that they fit over and rest against the inside surface of the walls 49 and 50 in the bottom of each trough.
  • Each plate has an aperture 91 therein which may be of the same or of a differing size from the aperture in the adjacent section of the trough.
  • the preferred embodiment of the invention also incorporates a vacuum hose attached to one of the adjustable orifice plates.
  • the vacuum hose 94 mounted in the aperture 95 of the cover plate 93 enables that cover plate to be mounted over any one of the orifices 70-75 so as to attain a vacuum to clean the side walls of the booth directly from the powder recovery suction air flow. All that is required to use this vacuum attachment is to locate the plate 93 over any one of the orifices 70-75, cover with non-apertured plates so many of the other orifices 70-75 as is necessary to obtain the desired vacuum at the orifice of the vacuum plate 93, and then move the nozzle 96 secured to the flexible hose 94 over the surface to be cleaned.
  • the exhaust manifold has a flow capacity equal to or slightly greater than the total flow capacity of the six conduits 17 which interconnect the manifold 18 to the orifices 70-75 in the bottom of the sections of the troughs 40, 41. It is to be noted that the main exhaust manifold is mounted on one side of the booth spaced a substantial distance from the orifices 74, which are most closely linked to it.
  • the entry ports of the conduits 17 into the exhaust manifold 18 are all located tangentially relative to the circular cross section manifold. This tangential location of the entry ports from the conduits into the exhaust manifold has been found to create a spiral air flow within the exhaust manifold 18, which spiral air flow may continue for as much as 40-50 feet from the point of entry of the conduits into the exhaust manifold and eliminates the accumulation of powder on the inside of the manifold 18. In the absence of this tangential introduction of air flow into the manifold, a buildup of powder occurs adjacent the openings from the conduit 17 into the manifold 18.
  • the exhaust fan 21 is started so as to cause suction air to be pulled from the spray booth downwardly through the troughs 40, 41 into the orifices 70-75 at the bottom of the troughs.
  • This exhaust air is then pulled through the conduits 17 into the exhaust manifold 18 and subsequently back to the bag filter 19, from which the air is exhausted through the fan and a blower silencer 22.
  • Powder having a particle size of from 10 to microns is introduced into the fluidized bed 23 and the pump 24 started. This purnpthen causes powder entrained air to be transmitted to the electrostatic spray guns it and 12 from which electrostatically charged particles are ejected toward an object 13 contained within the booth.
  • the electrostatically charged particles then migrate onto the electrically grounded object 13, but a large percentage of the powdered material ejected from the guns ll, 12 fails to adhere to the object and becomes overspray. These oversprayed particles are withdrawn by the suction air flow downwardly into the troughs 40, 41 with the suction air flow.
  • This suction air flow the quantity of which is controlled by the capacity of the exhaust fan 21, and in one preferred embodiment is equal to approximately 2,100 cubic feet per minute, is then caused to flow downwardly through the restrictions provided by the passages 65 located between the inside walls 47, 48 of the trough and the flanges 63, 64 of the baffle.
  • this air flow stream reaches a velocity of approximately 8,000 feet per minute in the course of passing through the passages 65, 66.
  • the air flow is ejected from the passages it forms a high velocity air stream which cleans the powder from the inside surface 73, 74 at the bottom of the trough and picks up and removes all powder from the bottoms of the channels 45, 46 of the troughs.
  • This air flow then creates a turbulent air flow pattern beneath the baffles 52-57, which turbulent air flow maintains the powder in entrainment in the in the air stream until it is pulled through the orifices 70-75 at the bottom of each section of the trough into the conduits 17.
  • the suction air entrained powder is transmitted to the exhaust manifold l8 and subsequently back to the filter 19.
  • the entrained powder drops downwardly into a fluidized bed while the exhaust air passes through filter bags 20 back out through the exhaust fan.
  • a pump '26 then transmits the powder from the fluidized bed 25 back to the sieve 27 and subsequently into the supply fluidizing bed 23 for return to the spray guns.
  • a spray booth for use in the coating of objects with pulverant material and for facilitating the recovery of surplus pulverant material, which booth comprises side walls, end walls, and a bottom wall, at least one of said side walls having an opening for a spray gun directed into the interior of said booth and said bottom wall having at least one opening, said bottom wall opening being adapted to establish communication between the interior of said booth and a pulverant material recovery system,
  • said bottom wall defining at least one generally open top trough having downwardly and inwardly sloping side walls
  • said high velocity air stream generating means including a baffle located within said trough, said baffle having generally upwardly and inwardly sloping side walls and having bottom edges spaced from but located closely adjacent the inside surface of said trough side walls so as to define a high velocity air flow passage between each of said baffle bottom edges and said trough side walls.
  • baffle has a flange along each of its bottom edges, said flanges extending generally parallel to said side walls of said trough and being operable to direct air flow through said air flow passages and parallel to said side walls of said trough.
  • said trough is generally W shaped when viewed in cross section so as to define a pair of generally parallel channels at the bottom of said trough, each channel being rounded at the bottom so as to provide a smoothly curved air flow path for a high velocity stream of air directed downwardly over the inside surface of the side walls of said trough.
  • said trough is generally W shaped when viewed in cross section so as to define a pair of generally parallel channels atthe bottom of said trough,-each channel being rounded at the bottom so as to provide a smoothly curved air flow path for a high velocity stream of air directed downwardly over the inside surface of the side walls of said trough.
  • the spray booth of claim 1 which further includes means to adjust the velocity of air flow in said air flow passages.
  • said booth further including an exhaust manifold havinga smoothly curved inside surface
  • each of said entrance ports being tangentially located relative to said curved inside surface of said exhaust manifold
  • each of said conduits connecting one of said bottom openings to one of said entrance ports of said exhaust manifold and being so sized and directed that pulverant material is introduced tangentially into said exhaust manifold from said conduits.
  • the spray booth of claim 1 which includes a plurality of open top troughs defined by said bottom wall and a plurality of bottom wall openings, each of said bottom wall openings entering into one of said troughs, said booth further including means to balance air flow from said openings so as to enable the quantity of air pulled through each opening into the pulverant material recovery system to be adjusted relative to the quantity pulled through any other opening.
  • said air flow balancing means includes a plurality of plates having varying size openings therein and shaped so as to fit over said bottom openings.
  • the spray booth of claim 13 which further includes a vacuum attachment for cleaning said booth, said attachment comprising a vacuum plate having an opening therein, and
  • a vacuum pick up nozzle sealingly attached to the opposite end of said hose.
  • a spray booth for use in the coating of objects with pulverant material and for facilitating the recovery of surplus pulverant material, which booth comprises side walls, end walls, and a bottom wall, at least one of said side walls having an opening for a spray gun directed into the interior of said booth and said bottom wall having at least one opening, said opening being adapted to establish communication between the interior of said booth and a pulverant material recovery system,
  • said bottom wall defining at least one generally open top trough having downwardly and inwardly sloping side walls
  • baffle located within said trough, said baffle having generally upwardly and inwardly sloping side walls and having a flange along each of its bottom edges which extends parallel to and is spaced from said side walls of said trough so as to define passages for directing air flow parallel to and along said side walls of said trough so as to sweep pulverant material from said side walls.
  • said trough is generally W shaped when viewed in cross section so as to define a pair of generally parallel channels at the bottom of said trough, each channel being rounded at the bottom so as to provide a smoothly curved air flow path for a high velocity stream of air directed downwardly over the inside surface of the side walls of said trough.
  • the spray booth of claim 15 which further includes means for adjusting the clearance between said flanges of said baffle and said side walls of said trough so as to enable the velocity of air passing through said channels to be varied.
  • said booth further including an exhaust manifold having a smoothly curved inside surface
  • each of said entrance ports being tangentially located relative to said curved inside surface of said exhaust manifold
  • each of said conduits connecting one of said bottom openings to one of said entrance ports of said exhaust manifold and being so sized and directed that pulverant material is introduced tangentially into said exhaust manifold from said conduits.
  • a spray booth for use in the coating of objects with pulverant material and for facilitating the recovery of surplus pulverant material, which booth comprises side walls, end walls, and a bottom wall, at least one of said side walls having an opening for a spray gun directed into the interior of said booth and said bottom wall having at least one opening for establishing communication between the interior of said booth and a pulverant material recovery system,
  • said bottom wall defining at least one generally long open top trough which is generally W shaped when viewed in cross section so as to define a pair of generally parallel channels at the bottom of said trough, each channel being rounded at the bottom so as to provide a smoothly curved air flow path for a high velocity stream of air directed downwardly over the inside surface of the side walls of said trough.
  • said booth further including an exhaust manifold having a smoothly curved inside surface
  • each of said entrance ports being tangentially located relative to said curved inside surface of said exhaust manifold
  • each of said conduits connecting one of said bottom openings to one of said entrance ports of said exhaust manifold and being so sized and directed that pulverant material is introduced tangentially into said exhaust manifold from said conduits.
  • a spray booth for use in the coating of objects with pulverant material and for facilitating the recovery of surplus pulverant material, which booth comprises side walls, end walls, and a bottom wall, at least one of said side walls having an opening for a spray gun directed into the interior of said booth and said bottom wall having a plurality of openings for establishing communication between the interior of said booth and a pulverant material recovery system,
  • said booth further including an exhaust manifold having a smoothly curved inside surface
  • each of said entrance ports being tangentially located relative to said curved inside surface of said exhaust manifold
  • each of said conduits connecting one of said bottom openings to one of said entrance ports of said exhaust manifold and being so sized and directed that pulverant material is introduced tangentially into said exhaust manifold from said conduits.
  • the spray booth of claim 28 which includes a plurality of open top troughs defined by said bottom wall, each of said bottom wall openings entering said one of said troughs, said booth further including balancing means includes a plurality of plates having a vacuum hose sealingly connected at one end to said opening in said vacuum plate, and
  • a vacuum pick up nozzle sealingly attached to the opposite end of said hose.
  • a spray booth for use in the coating of objects with pulverant material and for facilitating the recovery of surplus pulverant material, which booth comprises side walls, end walls, and a bottom wall, at least one of said side walls having an opening for a spray gun directed into the interior of said booth and said bottom wall having a plurality of bottom wall openings, said bottom wall openings being adapted to establish communication between the interior of said booth and a pulverant material recovery system, and
  • said air flow balancing means includes a plurality of plates having varying size openings therein and shaped so as to fit over said bottom openings.
  • the spray booth of claim 35 which further includes a vacuum attachment for cleaning said booth, said attachment comprising a vacuum plate having an opening therein, and
  • a vacuum pick up nozzle sealingly attached to the opposite end of said hose.

Landscapes

  • Details Or Accessories Of Spraying Plant Or Apparatus (AREA)
  • Electrostatic Spraying Apparatus (AREA)
  • Separating Particles In Gases By Inertia (AREA)
US00354848A 1973-04-26 1973-04-26 Powder spray booth Expired - Lifetime US3814002A (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
US00354848A US3814002A (en) 1973-04-26 1973-04-26 Powder spray booth
IT21890/74A IT1010082B (it) 1973-04-26 1974-04-24 Impianto a cabina per spruzzatura a polvere
SE7405505A SE419178B (sv) 1973-04-26 1974-04-24 Sprutskap
AU68243/74A AU6824374A (en) 1973-04-26 1974-04-24 Spray booth
DE2419925A DE2419925A1 (de) 1973-04-26 1974-04-25 Pulverspritzkabine
FR7414410A FR2227060B1 (de) 1973-04-26 1974-04-25
BE143612A BE814186A (fr) 1973-04-26 1974-04-25 Cabine d'enduction electrostatique
ZA00742645A ZA742645B (en) 1973-04-26 1974-04-25 Powder spray booth
DK227774AA DK141038B (da) 1973-04-26 1974-04-25 Anlæg til sprøjtning af pulver på genstande.
GB1821174A GB1469945A (en) 1973-04-26 1974-04-25 Powder spray booth
CA198,119A CA1035943A (en) 1973-04-26 1974-04-25 Powder spray booth
JP4672774A JPS574381B2 (de) 1973-04-26 1974-04-26
ES425709A ES425709A1 (es) 1973-04-26 1974-04-26 Perfeccionamientos en cabinas de atomizacion.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00354848A US3814002A (en) 1973-04-26 1973-04-26 Powder spray booth

Publications (1)

Publication Number Publication Date
US3814002A true US3814002A (en) 1974-06-04

Family

ID=23395152

Family Applications (1)

Application Number Title Priority Date Filing Date
US00354848A Expired - Lifetime US3814002A (en) 1973-04-26 1973-04-26 Powder spray booth

Country Status (13)

Country Link
US (1) US3814002A (de)
JP (1) JPS574381B2 (de)
AU (1) AU6824374A (de)
BE (1) BE814186A (de)
CA (1) CA1035943A (de)
DE (1) DE2419925A1 (de)
DK (1) DK141038B (de)
ES (1) ES425709A1 (de)
FR (1) FR2227060B1 (de)
GB (1) GB1469945A (de)
IT (1) IT1010082B (de)
SE (1) SE419178B (de)
ZA (1) ZA742645B (de)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942420A (en) * 1974-05-06 1976-03-09 Interrad Corporation Spray booth for electrostatic powder coating
US4211154A (en) * 1978-09-20 1980-07-08 Eakes Marion L Apparatus for improving the collection of gases into a suction orifice
US4325292A (en) * 1977-10-25 1982-04-20 Mcninney Jr Richard P Blast room floor
US4430956A (en) * 1982-06-01 1984-02-14 George Koch Sons, Inc. Spray booth with undeposited coating material collection system
US4662309A (en) * 1986-04-22 1987-05-05 Nordson Corporation Portable powder spray booth
US4704953A (en) * 1986-11-12 1987-11-10 Nordson Corporation Powder spray system
US4723505A (en) * 1986-03-17 1988-02-09 Nordson Corporation Powder booth
US4729340A (en) * 1984-04-30 1988-03-08 Zeiss James F Method and apparatus for powder coating elongated objects
US4730647A (en) * 1986-12-08 1988-03-15 Nordson Corporation Powder feeder apparatus
USRE33394E (en) * 1979-01-08 1990-10-23 Continental Can Company, Inc. System for inside powder striping of welded food cans
GB2230715A (en) * 1989-04-21 1990-10-31 Missier Gabriele Trasmetal "Cabinet for electrostatic painting"
US5078084A (en) * 1990-04-16 1992-01-07 Nordson Corporation Powder coating system
US5199989A (en) * 1991-07-31 1993-04-06 Ransburg Corporation Powder booth floor wiping mechanism
US5259879A (en) * 1991-06-27 1993-11-09 Ransburg Corporation Powder application booth liner and method of making it
US5454872A (en) * 1993-07-28 1995-10-03 Nordson Corporation System for controlling and utilizing finer powder particles in a powder coating operation
DE19500873A1 (de) * 1995-01-13 1996-07-18 Gema Volstatic Ag Sprühbeschichtungsvorrichtung
US5743958A (en) * 1993-05-25 1998-04-28 Nordson Corporation Vehicle powder coating system
US6010571A (en) * 1995-10-25 2000-01-04 Abb Flexible Automation Inc. Exhaust systems for powder spray booth
US20020157604A1 (en) * 1997-09-05 2002-10-31 James Ainsworth Powder spray coating
US20030077385A1 (en) * 2000-03-31 2003-04-24 James Ainsworth Powder coating systems
US20030121239A1 (en) * 2002-01-02 2003-07-03 Cole David J. Open powder booth collection design
US6589345B2 (en) * 2000-06-09 2003-07-08 Itw Gema Ag Powder spray-coating cabin
US20040074987A1 (en) * 2001-01-31 2004-04-22 Shutic Jeffrey R. Apparatus and method for automatic powder spray booth cleaning
US6730169B2 (en) 2000-08-22 2004-05-04 Nordson Corporation Electrostatic power coating system
US20040137144A1 (en) * 1993-05-25 2004-07-15 Shutic Jeffrey R. Vehicle powder coating system
US6770139B2 (en) * 2000-12-29 2004-08-03 Platsch Gmbh & Co. Kg Device for dusting products
US7074274B1 (en) 1999-09-17 2006-07-11 Nordson Corporation Quick color change powder coating system
WO2015034774A1 (en) * 2013-09-03 2015-03-12 Nordson Corporation Powder collector with multiple fluidizing beds
CN106000749A (zh) * 2016-07-22 2016-10-12 裕东(中山)机械工程有限公司 一种可变位喷涂室
CN109386629A (zh) * 2017-08-04 2019-02-26 惠州市唐群座椅科技股份有限公司 具有可调整流量的充泄气阀座
CN109537210A (zh) * 2019-01-14 2019-03-29 中国计量大学 一种带有易排气外壳的喷雾涂布机
US11951543B2 (en) 2021-06-30 2024-04-09 General Electric Company Additive manufacturing machine and method with variable powder dispensing assembly

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2551659C2 (de) * 1975-11-18 1987-01-22 Malkmus-Dörnemann, geb. Dörnemann, Carola, Dr., 3320 Salzgitter Anlage zur elektrostatischen Pulverbeschichtung von hängend bewegten Teilen
DE10350332A1 (de) * 2003-10-29 2005-05-25 Itw Gema Ag Pulversprühbeschichtungskabine
DE102007062064B4 (de) * 2007-12-21 2015-05-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Pulverbeschichtungsvorrichtung mit platzsparender Absaugvorrichtung für Overspraypulver
DE102012213500A1 (de) * 2012-07-31 2014-02-06 Gema Switzerland Gmbh Beschichtungskabine zum Beschichten von Werkstücken

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2086514A (en) * 1936-07-14 1937-07-06 Chrysler Corp Coating material recovery process
US3694242A (en) * 1966-07-29 1972-09-26 Sfb Spezial Filterbau M Ofner Method for electrostatically coating the surfaces of articles with pulverulent materials
US3695226A (en) * 1969-06-25 1972-10-03 Aerocoat Sa Spraying booth
US3700389A (en) * 1969-06-25 1972-10-24 Aerocoat Sa Spraying booth
US3714926A (en) * 1970-12-09 1973-02-06 Sfb Spezial Fillerbau Ofner M Apparatus for electrostatically coating the surfaces of articles with pulverulent materials
US3719030A (en) * 1971-03-12 1973-03-06 Metokote Precision Inc Plastic powder spraying recovery method and apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2086514A (en) * 1936-07-14 1937-07-06 Chrysler Corp Coating material recovery process
US3694242A (en) * 1966-07-29 1972-09-26 Sfb Spezial Filterbau M Ofner Method for electrostatically coating the surfaces of articles with pulverulent materials
US3695226A (en) * 1969-06-25 1972-10-03 Aerocoat Sa Spraying booth
US3700389A (en) * 1969-06-25 1972-10-24 Aerocoat Sa Spraying booth
US3714926A (en) * 1970-12-09 1973-02-06 Sfb Spezial Fillerbau Ofner M Apparatus for electrostatically coating the surfaces of articles with pulverulent materials
US3719030A (en) * 1971-03-12 1973-03-06 Metokote Precision Inc Plastic powder spraying recovery method and apparatus

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942420A (en) * 1974-05-06 1976-03-09 Interrad Corporation Spray booth for electrostatic powder coating
US4325292A (en) * 1977-10-25 1982-04-20 Mcninney Jr Richard P Blast room floor
US4211154A (en) * 1978-09-20 1980-07-08 Eakes Marion L Apparatus for improving the collection of gases into a suction orifice
USRE33394E (en) * 1979-01-08 1990-10-23 Continental Can Company, Inc. System for inside powder striping of welded food cans
US4430956A (en) * 1982-06-01 1984-02-14 George Koch Sons, Inc. Spray booth with undeposited coating material collection system
US4729340A (en) * 1984-04-30 1988-03-08 Zeiss James F Method and apparatus for powder coating elongated objects
US4723505A (en) * 1986-03-17 1988-02-09 Nordson Corporation Powder booth
US4662309A (en) * 1986-04-22 1987-05-05 Nordson Corporation Portable powder spray booth
US4704953A (en) * 1986-11-12 1987-11-10 Nordson Corporation Powder spray system
WO1988003441A1 (en) * 1986-11-12 1988-05-19 Nordson Corporation Powder spray system
US4730647A (en) * 1986-12-08 1988-03-15 Nordson Corporation Powder feeder apparatus
GB2230715A (en) * 1989-04-21 1990-10-31 Missier Gabriele Trasmetal "Cabinet for electrostatic painting"
GB2230715B (en) * 1989-04-21 1992-11-18 Missier Gabriele Trasmetal Cabinet for electrostatic painting
US5078084A (en) * 1990-04-16 1992-01-07 Nordson Corporation Powder coating system
US5153028A (en) * 1990-04-16 1992-10-06 Nordson Corporation Method for powder coating objects and collecting oversprayed powder
US5259879A (en) * 1991-06-27 1993-11-09 Ransburg Corporation Powder application booth liner and method of making it
US5199989A (en) * 1991-07-31 1993-04-06 Ransburg Corporation Powder booth floor wiping mechanism
US20060196416A1 (en) * 1993-05-25 2006-09-07 Shutic Jeffrey R Vehicle powder coating system
US6361605B1 (en) 1993-05-25 2002-03-26 Nordson Corporation Vehicle powder coating system
US6929698B2 (en) 1993-05-25 2005-08-16 Nordson Corporation Vehicle powder coating system
US5743958A (en) * 1993-05-25 1998-04-28 Nordson Corporation Vehicle powder coating system
US20070215042A1 (en) * 1993-05-25 2007-09-20 Shutic Jeffrey R Vehicle powder coating system
US6071558A (en) * 1993-05-25 2000-06-06 Nordson Corporation Vehicle powder coating system
US20050235912A1 (en) * 1993-05-25 2005-10-27 Shutic Jeffrey R Vehicle powder coating system
US20040137144A1 (en) * 1993-05-25 2004-07-15 Shutic Jeffrey R. Vehicle powder coating system
US7166164B2 (en) 1993-05-25 2007-01-23 Nordson Corporation Vehicle powder coating system
US7247205B2 (en) 1993-05-25 2007-07-24 Nordson Corporation Vehicle powder coating system
US5454872A (en) * 1993-07-28 1995-10-03 Nordson Corporation System for controlling and utilizing finer powder particles in a powder coating operation
DE19500873A1 (de) * 1995-01-13 1996-07-18 Gema Volstatic Ag Sprühbeschichtungsvorrichtung
US5690995A (en) * 1995-01-13 1997-11-25 Gema Volstatic Ag Spray booth for powder coating
US6010571A (en) * 1995-10-25 2000-01-04 Abb Flexible Automation Inc. Exhaust systems for powder spray booth
US20020157604A1 (en) * 1997-09-05 2002-10-31 James Ainsworth Powder spray coating
US6852165B2 (en) 1997-09-05 2005-02-08 Nordson Corporation Powder spray coating
US7074274B1 (en) 1999-09-17 2006-07-11 Nordson Corporation Quick color change powder coating system
US20110265716A1 (en) * 2000-03-31 2011-11-03 Nordson Corporation Powder coating systems
US6821346B2 (en) 2000-03-31 2004-11-23 Nordson Corporation Powder coating systems
US20030175416A1 (en) * 2000-03-31 2003-09-18 James Ainsworth Powder coating systems
US7014556B2 (en) 2000-03-31 2006-03-21 Nordson Corporation Powder coating systems
US7997963B2 (en) * 2000-03-31 2011-08-16 Nordson Corporation Powder coating systems
US20030077385A1 (en) * 2000-03-31 2003-04-24 James Ainsworth Powder coating systems
US6589345B2 (en) * 2000-06-09 2003-07-08 Itw Gema Ag Powder spray-coating cabin
US6730169B2 (en) 2000-08-22 2004-05-04 Nordson Corporation Electrostatic power coating system
US6770139B2 (en) * 2000-12-29 2004-08-03 Platsch Gmbh & Co. Kg Device for dusting products
US20040074987A1 (en) * 2001-01-31 2004-04-22 Shutic Jeffrey R. Apparatus and method for automatic powder spray booth cleaning
US6723145B2 (en) * 2002-01-02 2004-04-20 Dürr Industries, Inc. Open powder booth collection design
US20030121239A1 (en) * 2002-01-02 2003-07-03 Cole David J. Open powder booth collection design
WO2003059526A1 (en) * 2002-01-02 2003-07-24 Durr Industries, Inc. Open powder booth collection design
WO2003059525A1 (en) * 2002-01-02 2003-07-24 Durr Industries, Inc. Open powder booth collection design
EP1649936A2 (de) * 2002-01-02 2006-04-26 Durr Industries, Inc. Offener Pulverkabinenaufbau zum Auffangen von Pulver
EP1649936A3 (de) * 2002-01-02 2006-11-02 Durr Industries, Inc. Offener Pulverkabinenaufbau zum Auffangen von Pulver
WO2015034774A1 (en) * 2013-09-03 2015-03-12 Nordson Corporation Powder collector with multiple fluidizing beds
CN106000749A (zh) * 2016-07-22 2016-10-12 裕东(中山)机械工程有限公司 一种可变位喷涂室
CN106000749B (zh) * 2016-07-22 2018-11-16 裕东(中山)机械工程有限公司 一种可变位喷涂室
CN109386629A (zh) * 2017-08-04 2019-02-26 惠州市唐群座椅科技股份有限公司 具有可调整流量的充泄气阀座
CN109386629B (zh) * 2017-08-04 2020-01-10 惠州市唐群座椅科技股份有限公司 具有可调整流量的充泄气阀座
CN109537210A (zh) * 2019-01-14 2019-03-29 中国计量大学 一种带有易排气外壳的喷雾涂布机
US11951543B2 (en) 2021-06-30 2024-04-09 General Electric Company Additive manufacturing machine and method with variable powder dispensing assembly

Also Published As

Publication number Publication date
ZA742645B (en) 1975-04-30
CA1035943A (en) 1978-08-08
DE2419925A1 (de) 1974-11-07
SE419178B (sv) 1981-07-20
GB1469945A (en) 1977-04-06
JPS5013429A (de) 1975-02-12
IT1010082B (it) 1977-01-10
AU6824374A (en) 1975-10-30
FR2227060B1 (de) 1977-10-28
ES425709A1 (es) 1976-06-16
BE814186A (fr) 1974-08-16
DK141038B (da) 1979-12-31
FR2227060A1 (de) 1974-11-22
JPS574381B2 (de) 1982-01-26
DK141038C (de) 1980-06-16

Similar Documents

Publication Publication Date Title
US3814002A (en) Powder spray booth
CA1126010A (en) Coating booth for electrostatic application of pulverized materials
EP1007222B1 (de) Verbesserungen zur pulversprühbeschichtung
CA1141148A (en) Coating booth for electrostatic application of pulverized materials
US4704953A (en) Powder spray system
US7014556B2 (en) Powder coating systems
US5288324A (en) Multi-color powder coat paint recovery apparatus
US20050158463A1 (en) Powder coating system and method for quick color change
JPH05505976A (ja) 粉体被覆システム
US6264745B1 (en) Powder spray apparatus
JP2003528709A (ja) 急速色変更粉体塗装システム
US4567818A (en) Circular spray booth
EP0172845B1 (de) Anordnung zum beeinflussen und zum behandlen von oberflächen, zum beispiel zur aufnahme von teilchen, blättern oder abfällen
EP0238238B1 (de) Pulversprühkabinen
US9339835B2 (en) Overspray collection apparatus for a powder spray booth
US3777706A (en) Spray booth and system
JP3238413B2 (ja) スプレー塗装装置
EP0723481B1 (de) Pulverrückgewinnungs-einheit
US6669780B2 (en) Color change booth
US4204497A (en) Electrostatic coating apparatus having conveyor belt, fluidizing and electrostatic means for recirculation of coating particles
EP1958703B1 (de) Reinigung der Innenwände einer Pulversprühkabine mittels pulsierender Luftstösse
US20230372974A1 (en) Powder sieving apparatus for powder coating system
JPH0326944Y2 (de)
JPH0685051U (ja) 粉体塗装装置
JPH04126563A (ja) 粉体塗装ブームシステム