US20120264305A1 - Footing Reduction Using Etch-Selective Layer - Google Patents

Footing Reduction Using Etch-Selective Layer Download PDF

Info

Publication number
US20120264305A1
US20120264305A1 US13/085,698 US201113085698A US2012264305A1 US 20120264305 A1 US20120264305 A1 US 20120264305A1 US 201113085698 A US201113085698 A US 201113085698A US 2012264305 A1 US2012264305 A1 US 2012264305A1
Authority
US
United States
Prior art keywords
photoresist
etch
layer
footing
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/085,698
Other versions
US8298951B1 (en
Inventor
Ryu Nakano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASM Japan KK
Original Assignee
ASM Japan KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASM Japan KK filed Critical ASM Japan KK
Priority to US13/085,698 priority Critical patent/US8298951B1/en
Assigned to ASM JAPAN K.K. reassignment ASM JAPAN K.K. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NAKANO, RYU
Publication of US20120264305A1 publication Critical patent/US20120264305A1/en
Application granted granted Critical
Publication of US8298951B1 publication Critical patent/US8298951B1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0276Photolithographic processes using an anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching

Definitions

  • the present invention relates to semiconductor integrated circuit manufacturing and, more particularly to a method of forming side spacers, particularly on space-defined double patterning (SDDP).
  • SDDP space-defined double patterning
  • SDDP space-defined double patterning
  • PR photoresist
  • the present inventors have recognized several problems in SDDP and developed solutions thereto, which solutions can also be applicable to general patterning processes.
  • the present invention relates to improvement on general patterning processes using a hardmask, and particularly on SDDP.
  • a photoresist pattern 12 is formed on a substrate 11 as shown in FIG. 1( a ).
  • each formed photoresist protrusion 12 has a widened footing portion at its bottom, and thus, the distance between the formed photoresist protrusions at their bottoms (W′) is shorter than that their side walls (W).
  • a spacer layer 13 such as a SiO layer by plasma enhanced atomic layer deposition (PE-ALD) over the photoresist pattern as shown in FIG. 1 ( b )
  • PE-ALD plasma enhanced atomic layer deposition
  • the spacer layer is etched by, e.g., reactive ion etching (RIE) to remove the top and bottom to form side spacers 14 as shown in FIG. 1( c )
  • RIE reactive ion etching
  • the widened footings of the photoresist pattern are transferred to the side spacers 14 .
  • the thickness of the side spacer at the bottom appears to be widened (F), which is significantly greater than the thickness of the side spacer itself, thereby causing unexpected critical dimension (CD) changes or the like.
  • a widened footing is formed in the etched photoresist 22 as shown in FIG. 2( a ). While trimming the etched photoresist 22 isotropically ( FIG. 2( b )), the widened footing of the etched photoresist is smaller. However, the footing of the etched photoresist is transferred to the underlying layer as shown in FIG. 2( c ).
  • etch-selective layer by conducting plasma irradiation prior to formation of a spacer layer to anisotropically etch a template constituted by a photoresist formed on and in contact with an etch-selective layer laminated on a substrate, said etch-selective layer has a substantially lower etch rate than that of the photoresist, thereby reducing a widened footing of the photoresist.
  • Some embodiments of the present invention provide a method of forming side spacers upwardly extending from a substrate, comprising: (i) providing a template constituted by a photoresist formed on and in contact with an etch-selective layer laminated on a substrate, said photoresist having footing at a base of the photoresist, said etch-selective layer having a substantially lower etch rate than that of the photoresist; (ii) anisotropically etching the template in a thickness direction with an oxygen-containing plasma to remove the footing of the photoresist and an exposed portion of the underlying layer; (iii) depositing a spacer film on the template by atomic layer deposition (ALD); and (iv) forming side spacers using the spacer film by etching.
  • ALD atomic layer deposition
  • the side spacers are for spacer-defined double patterning (SDDP).
  • the etch-selective layer has a substantially higher etch rate than that of the side spacers.
  • the etch-selective layer is constituted by an organic bottom antireflective coating (BARC) formed from a carbon-containing (or carbon- and silicon-containing) compound having a ratio of (number of C, H, and O atoms in total)/(number of C atoms-number of O atoms) which is no more than 5.
  • BARC organic bottom antireflective coating
  • the etch-selective layer is constituted by an organic bottom antireflective coating (BARC) having an etch selectivity substantially equivalent to that of a SiN film.
  • BARC organic bottom antireflective coating
  • the etch-selective layer is constituted by an inorganic silicon- or carbon-containing layer as an antireflective coating (ARC) and a nitrogen-free oxide layer laminated on the inorganic silicon- or carbon-containing layer.
  • the spacer film is constituted by SiO 2 , TiO, or any suitable metal oxide materials (e.g., a co-assigned U.S. Provisional Application No. 61/427,661, the disclosure of which is herein incorporated by reference in its entirety).
  • an underlying layer formed underneath the etch-selective layer is constituted by amorphous carbon.
  • any of the disclosed methods further comprise etching the photoresist of the template to trim the photoresist (e.g., by isotropical etching or any suitable etching) prior to the anisotropical etching, wherein the etch-selective layer has a substantial resistance to the isotropic trimming, and substantially no footing of the photoresist remains.
  • the anisotropical etching and the deposition of the spacer film are conducted continuously in the same reactor.
  • FIG. 1 is a schematic representation illustrating a part of the SDDP sequence of (a) photoresist (PR) patterning, (b) SiO deposition by PE-ALD, and (c) reactive ion etch (RIE).
  • PR photoresist
  • RIE reactive ion etch
  • FIG. 2 is a schematic representation illustrating a part of the SDDP sequence of (a) photoresist (PR) patterning, (b) the beginning of isotropic PR trimming, and (c) the end of isotropic PR trimming.
  • FIG. 3 is a schematic representation illustrating a part of the SDDP sequence of (a) photoresist (PR) patterning, (b) isotropic PR trimming, (c) anisotropic etching (removal of the footing), (d) etching of the etch-selective layer, (e) spacer layer deposition, (f) etching of top and bottom of the etch-selective layer, (g) removal of the PR, and (h) removal of the remaining etch-selective layer and the top of the side spacers, according to an embodiment of the present invention.
  • PR photoresist
  • FIG. 3 is a schematic representation illustrating a part of the SDDP sequence of (a) photoresist (PR) patterning, (b) isotropic PR trimming, (c) anisotropic etching (removal of the footing), (d) etching of the etch-selective layer, (e) spacer layer deposition, (f) etching of top and
  • FIG. 4 is a schematic representation illustrating a part of the SDDP sequence of (a) photoresist (PR) patterning, (b) isotropic PR trimming, (c) anisotropic etching (removal of the footing and the N-free layer), (d) etching of the etch-selective layer, (e) spacer layer deposition, (f) etching of top and bottom of the etch-selective layer, (g) removal of the PR, and (h) removal of the remaining N-free layer and etch-selective layer and the top of the side spacers, according to an embodiment of the present invention.
  • PR photoresist
  • FIG. 4 is a schematic representation illustrating a part of the SDDP sequence of (a) photoresist (PR) patterning, (b) isotropic PR trimming, (c) anisotropic etching (removal of the footing and the N-free layer), (d) etching of the etch-selective layer, (
  • gas may include vaporized solids and/or liquids and may be constituted by a mixture of gases.
  • the reactant gas, the additive/carrier gas, and the precursor may be different from each other or mutually exclusive in terms of gas types, i.e., there is no overlap of gases among these categories.
  • film refers to a layer continuously extending in a direction perpendicular to a thickness direction substantially without pinholes to cover an entire target or concerned surface, or simply a layer covering a target or concerned surface.
  • layer refers to a structure having a certain thickness formed on a surface or a synonym of film.
  • any defined meanings do not necessarily exclude ordinary and customary meanings in some embodiments.
  • “substantially lower”, “substantially higher”, “substantially different”, etc. refer to a difference of at least 10%, 50%, 100%, 200%, 300%, or any ranges thereof, for example.
  • “substantially the same”, “substantially equivalent”, “substantially uniform”, etc. refer to a difference of less than 20%, less than 10%, less than 5%, less than 1%, or any ranges thereof, for example.
  • the numerical numbers applied in examples may be modified by a range of at least ⁇ 50% in other conditions, and further, in this disclosure, any ranges indicated may include or exclude the endpoints.
  • the skilled artisan in the art can readily provide such conditions and/or structures, in view of the present disclosure, as a matter of routine experimentation.
  • the “footing” or “widened footing” generally refers to an outwardly extended portion at the bottom of a protrusion relative to the side wall of the protrusion, said extended portion being typically inclined or sloped.
  • the size of the footing may be defined as a difference between the width of the protrusion at about 50% of the height and the width at the bottom.
  • the “removal of the footing” does not necessarily refer to removal of the entire footing, but refers to removal of a substantial portion of the footing or substantially diminishing the size of the footing.
  • the “etch rate” refers to an actual etch rate of a material in process or an etch rate evaluated beforehand which is a dry etch rate (NF 3 at 100° C.) or a wet etch rate (DHF at 1:100), depending on the actual process.
  • an etch-selective layer is formed underneath a PR pattern.
  • the etch-selective layer has a substantially lower etch rate than that of the PR, but has a substantially higher etch rate than that of a side spacer.
  • the etch-selective layer is constituted by an organic BARC which has an etch selectivity substantially equivalent to that of a SiN film.
  • the BARC is formed from a carbon-containing (or carbon- and silicon-containing) compound having a ratio of (number of C, H, and O atoms in total)/(number of C atoms-number of O atoms) which is no more than 5.
  • the ratio is called “Ohnishi parameter” (J. Electrochem Soc 143, 130 (1983) H. Gokan, S. Esho and Y. Ohnishi, the disclosure of which is herein incorporated by reference in its entirety).
  • the higher the ratio the higher the concentration of carbon becomes.
  • the concentration of carbon is high, the etch rate becomes low.
  • HMDSO hexamethyldisiloxane
  • HMDS hexamethyldisilazane
  • the etch-selective layer is constituted by an inorganic silicon- or carbon-containing layer and a nitrogen-free oxide layer laminated on the inorganic silicon- or carbon-containing layer.
  • the nitrogen-free oxide layer is used in order to inhibit the occurrence of resist poisoning, and this layer can contribute to suppression of formation of a widened footing (by inhibiting migration of N from the etch-selective layer to the photoresist), but a thinner layer is better (e.g., about 1-3 nm) as long as it is capable of inhibiting contact between the PR and the inorganic silicon- or carbon-containing layer.
  • the etch rate refers to chemical resistance (low dry etch rate, NF 3 at 100° C.) or a wet etch rate (DHF at 1:100).
  • FIG. 3 is a schematic representation illustrating a part of the SDDP sequence using a BARC layer as the etch-selective layer, which includes (a) photoresist (PR) patterning, (b) PR trimming (e.g., isotropic trimming), (c) etching (e.g., anisotropic etching) (removal of the footing), (d) etching of the etch-selective layer, (e) spacer layer deposition, (f) etching of top and bottom of the etch-selective layer, (g) removal of the PR, and (h) removal of the remaining etch-selective layer and the top of the side spacers, according to an embodiment of the present invention, which is not intended to limit the invention.
  • step (b) can be omitted, and in step (c), both PR trimming and footing removal can be accomplished by any suitable etching.
  • sequences of forming a final pattern using a BARC layer as the etch-selective layer are as follows:
  • a BARC layer 31 is formed on a substrate 34 .
  • the BARC layer has high etch selectivity relative to a photoresist (PR).
  • PR photoresist
  • a photoresist film material is then applied on the BARC layer, and prebaked, thereby forming a photoresist film.
  • a pattern circuit area of the photoresist film is then exposed to irradiation, and then developed with a developing liquid, thereby forming a photoresist pattern 32 in the photoresist film ( FIG. 3 ( a )).
  • the photoresist has a widened footing as a result of the patterning.
  • the photoresist is subjected to isotropic trimming using a plasma generated in an environment where a gas containing oxygen is introduced, thereby forming a trimmed photoresist 32 a ( FIG. 3( b )). Because the etching speed of the BARC layer is lower than that of the photoresist, the footing of the photoresist is effectively reduced.
  • This trimming can be conducted continuously from the formation of side spacers in the same reactor.
  • the subsequent steps 4) to 7) can also be conducted continuously in the same reactor.
  • the trimming may not sufficiently remove the footing of the photoresist, although a reduction of the footing is significant. Also, in some embodiments, trimming is not performed.
  • the template including the substrate, BARC layer, and photoresist
  • anisotropic etching thereby removing the remaining footing and forming a photoresist 32 b without footing ( FIG. 3( c )).
  • the anisotropic etching continues to remove the BARC layer, thereby forming the photoresist 32 b and etched BARC layer 31 a underneath the photoresist ( FIG. 3( d )).
  • the BARC layer has higher resistance to etching than the photoresist, when the BARC layer is removed, the photoresist is diminished to a certain degree (the height of the photoresist is lowered due to the anisotropic etching). Considering the above, an appropriate etch selectivity of the BARC layer is selected.
  • an ALD film 33 is formed as a side spacer film on the template ( FIG. 3( e )). Since the ALD film is deposited on the photoresist, the deposition temperature may be, for example, about 150° C. or lower or about 100° C. or lower, depending on the heat resistance of the photoresist and BARC.
  • the photoresist 32 b is irradiated with an O 2 -containing plasma ( FIG. 3( g )), and the BARC layer 31 a is irradiated with the O 2 -containing plasma ( FIG. 3( h )), thereby obtaining a final pattern with side spacers 33 b.
  • the photoresist is arranged at a pitch of about 80 nm ( ⁇ 50%).
  • the side of the photoresist prior to the trimming has a height of about 60 nm ( ⁇ 50%), a width of about 26 nm to about 47 nm ( ⁇ 50%), and a footing of about 11.1 nm ( ⁇ 50%).
  • the side of the photoresist after the trimming has a height of about 47 nm ( ⁇ 50%), a width of about 14 nm to about 17 nm ( ⁇ 50%), and a footing of about 0 nm.
  • a resist used for dry ArF or wet ArF can be used, which can be selected from the group consisting of alicyclic acrylic resin, cycloolefin resin, cyclolefin-maleic anhydride resin, and methacrylate resin.
  • a BARC having a low Ohnishi parameter high in carbon concentration
  • a BARC having high silicon concentration (“a Si-rich BARC”, e.g., at least 5, 10, or 20 atomic %) can be used.
  • the etch selectivity of a BARC relative to the photoresist is adjusted by changing the silicon content of the BARC so that the footing can selectively be etched readily by adjusting the oxygen concentration of an etchant (a Si-rich BARC has effective or substantial resistance to oxygen plasma).
  • a Si-rich BARC has effective or substantial resistance to oxygen plasma
  • the Si-rich BARC can be etched by fluorine-containing oxygen plasma, whereas the photoresist has effective or substantial resistance to the fluorine-containing oxygen plasma so that the height of the photoresist can effectively or substantially be maintained.
  • the BARC can be applied by spin coating or further baking after spin coating to vaporize a resist solvent.
  • the thickness of the BARC is about 10 nm to about 50 nm. If the thickness is lower than the range, it will be difficult to form a layer. On the other hand, if the thickness is greater than the range, when removing the BARC, side spacers may be significantly diminished.
  • the trimming and the footing removal etching can be conducted under conditions as follows:
  • the etch rate of the BARC becomes low, whereas the etch rate of the photoresist becomes high. That is, the higher the oxygen content of the etch gas, the lower the etch rate of the BARC becomes.
  • a gas containing more oxygen e.g., more than 50% of the gas in volume
  • the removal of the BARC can be conducted under conditions as follows or the conditions disclosed in JP 10-261620, for example (the disclosure of which is herein incorporated by reference in its entirety):
  • the etch rate of the BARC containing Si becomes low, whereas when using a gas containing lower oxygen concentration, etching effect by florin becomes more significant, thereby increasing etch rate of the BARC (e.g., JP 2010-205967, the disclosure of which is herein incorporated by reference in its entirety).
  • a gas containing more oxygen e.g., more than 50% of the gas in volume
  • the ALD film is selected from the group consisting of SiO, SiN, SiC, SiCN, and TiO. Any suitable ALD methods can be used. In some embodiments, the methods disclosed in a co-assigned application, U.S. patent application Ser. No. 12/901,323, can be used (the disclosure of which is herein incorporated by reference in its entirety). For example, as a process gas, a combination of BDEAS (bis(diethylamino)silane), O 2 (500 sccm), He (200 sccm), and Ar (2500 sccm) can be used.
  • BDEAS bis(diethylamino)silane
  • O 2 500 sccm
  • He 200 sccm
  • Ar 2500 sccm
  • the pressure is about 200 Pa ( ⁇ 50%), and RF frequency (about 13.56 MHz ⁇ 50%), power (about 50 W ⁇ 50%), and duration (about 0.4 seconds ⁇ 50%) may be used.
  • the precursor is introduced into the reactor for a certain time period to cause the precursor to adsorb on the surface of a substrate, followed by purging the remaining precursor with another gas.
  • RF plasma is then applied to the substrate, thereby oxidizing the adsorbed precursor.
  • the above steps constitute one cycle, and by repeating the cycle, an ALD film such as a SiO film having a desired thickness can be formed on the substrate.
  • a pulse control valve can realize the pulsing of the precursor and/or the inert/additive gas.
  • RF power can be pulsed.
  • the pulsing of the RF power can be accomplished by adjusting a matching box (not shown).
  • the RF power requires a minimum time period for discharging, which is typically as short as 8 msec.
  • the duration of the RF power can easily be controlled at about 0.1 sec, for example.
  • the average thickness deposited per cycle may be about 0.05 nm/cycle to about 0.2 nm/cycle.
  • the pulse supply of the precursor can be continued until a desired thickness of film is obtained. If the desired thickness of film is about 20 nm to about 100 nm, about 100 cycles to about 2,000 cycles (e.g., about 200 to about 1,000 cycles) may be conducted.
  • the removal of the top and bottom of the ALD film can be conducted under conditions shown below:
  • the removal of the enclosed photoresist and BARC through the opened top can be conducted under conditions shown below.
  • a gas containing a high concentration (more than 50% in volume) of oxygen can be used.
  • a gas containing a low concentration (less than 50% in volume) of oxygen can be used, wherein the plasma can be intermittently or continuously applied. If it takes a long time to remove the BARC including Si, the side spacers may be diminished.
  • the oxygen concentration oxygen flow rate
  • FIG. 4 is a schematic representation illustrating a part of the SDDP sequence using a SiN layer as the etch-selective layer, which includes (a) photoresist (PR) patterning, (b) isotropic PR trimming, (c) anisotropic etching (removal of the footing and the N-free layer), (d) etching of the etch-selective layer, (e) spacer layer deposition, (f) etching of top and bottom of the etch-selective layer, (g) removal of the PR, and (h) removal of the remaining N-free layer and etch-selective layer and the top of the side spacers, according to an embodiment of the present invention.
  • PR photoresist
  • FIG. 4 is a schematic representation illustrating a part of the SDDP sequence using a SiN layer as the etch-selective layer, which includes (a) photoresist (PR) patterning, (b) isotropic PR trimming, (c) anisotropic
  • sequences of forming a final pattern using a SiN layer as the etch-selective layer are as follows:
  • a SiN film 41 is formed on a substrate 44 .
  • the SiN film has high etch selectivity relative to a photoresist (PR).
  • PR photoresist
  • the reason for using the SiN film instead of e.g., a SiON film is that it is easier to set substantially different etch selectivity of the SiN film, not only from that of a photoresist but also from that of a SiO film constituting side spacers.
  • a super thin SiO film 45 (N-free film) is formed on the SiN film.
  • N-free film by oxidation of the surface of the SiN film by e.g., O 2 or N 2 O plasma treatment or other oxidation methods, the surface of the SiN film can become N-free.
  • promotion of formation of a widened footing can be suppressed. If a photoresist is in contact directly with the SiN film, footing may be promoted due to the influence of base group including nitrogen during lithography after formation of a photoresist film.
  • the side spacers may also be diminished (i.e., lowering the height of the side spacers).
  • it is preferable to make the film thin e.g., about 1-3 nm.
  • the SiN film 45 and the N-free film 41 also serve as an antireflective film (inorganic ARC).
  • a photoresist film material is then applied on the N-free film and the SiN film, and prebaked, thereby forming a photoresist film.
  • a pattern circuit area of the photoresist film is then exposed to irradiation, and then developed with a developing liquid, thereby forming a photoresist pattern 42 in the photoresist film ( FIG. 4 ( a )).
  • the photoresist has a widened footing as a result of the patterning.
  • the photoresist is subjected to isotropic trimming using a plasma generated in an environment where a gas containing oxygen is introduced, thereby forming a trimmed photoresist 42 a ( FIG. 4( b )).
  • the footing of the photoresist is effectively reduced (although FIG. 4( b ) shows that the N-free film is maintained, through the trimming, most portions of the N-free film may be removed as the footing is reduced).
  • This trimming can be conducted continuously from the formation of side spacers in the same reactor.
  • the subsequent steps 6) to 10) can also be conducted continuously in the same reactor.
  • the trimming may not sufficiently remove the footing of the photoresist, although a reduction of the footing is significant. Also, in some embodiments, trimming is not performed.
  • the template including the substrate, SiN film, and photoresist
  • anisotropic etching thereby removing the remaining footing and forming a photoresist 42 b and the etched N-free film 45 a underneath the photoresist without footing ( FIG. 4( c )).
  • the anisotropic etching continues to remove the SiN film, thereby forming the photoresist 42 b , etched N-free film 45 a , and etched SiN film 41 a underneath the photoresist ( FIG. 4( d )).
  • the SiN film has higher resistance to etching than the photoresist, when the SiN film is removed, the photoresist is diminished to a certain degree (the height of the photoresist is lowered due to the anisotropic etching). Considering the above, an appropriate etch selectivity of the SiN film is selected.
  • an ALD film 43 is formed as a side spacer film on the template ( FIG. 4( e )). Since the ALD film is deposited on the photoresist, the deposition temperature may be about 100° C. or lower.
  • the photoresist 42 b is irradiated with an O 2 -containing plasma ( FIG. 4( g )).
  • the substrate on which the etch-selective layer is formed can be made of poly-silicon or amorphous carbon or other carbon materials.
  • amorphous carbon is used as the substrate without the etch-selective layer disclosed herein, the amorphous carbon is etched while removing an underlying layer, and as a result, a footing is transferred to the amorphous carbon.
  • the substrate made of amorphous carbon is used without formation of footing.
  • the process conditions for the sequence using the inorganic ARC as the etch-selective layer can be similar to or the same as those for the sequence using the organic BARC as the etch-selective layer as described earlier, unless stated otherwise.
  • the inorganic ARC can be formed by CVD or ALD. In some embodiments, the thickness of the inorganic ARC is about 5 nm to about 10 nm. In some embodiments, the inorganic ARC may be selected from the group consisting of SiN, SiC, SiCN, and TiO.
  • the N-free film can be formed by TEOS-Based CVD or ALD-SiO.
  • the thickness of the SiO film may be about 1 nm to about 3 nm. The thinner the better, as long as the film can prevent the photoresist and the SiN film from contacting each other.
  • the N-free film can be formed by an O 2 plasma (e.g., using O 2 gas at a flow rate of 1,000 sccm and an RF power (13.56 MHz) of about 100 to about 500 W at a temperature of about 50-150° C. under a pressure of about 150-800 Pa for a duration of about 10 to about 180 seconds).
  • the temperature depends on the thermal resistance of the photoresist and BARC.
  • the depth of oxidation by the O 2 plasma is about 3 nm.
  • the N-free film can be formed by a N 2 O plasma under conditions corresponding to the O 2 plasma. In some embodiments, the depth of oxidation by the N 2 O plasma is about 3 nm.
  • the trimming and the footing removal etching can be conducted under conditions corresponding to those used for the sequence for the organic BARC.
  • the removal of the N-free film and the SiN film can be conducted under conditions shown below.
  • Etching gas CHF 3 , CF 4 , C 2 F 6 low flow of oxygen
  • Flow rate (sccm) of etching gas About 10 to about 100
  • Additive gas Ar, O 2 Flow rate (sccm) of additive gas About 10 to about 100
  • Plasma Temperature About 50 to about 150, depending on conditions (° C.) the thermal resistance of RR and BARC Pressure (Pa) Less than about 1 RF frequency About 13.56 (MHz) RF power (W) About 30 to about 300
  • a gas containing a low concentration of oxygen is used.
  • the ALD film can be formed under conditions corresponding to those used for the sequence for the organic BARC.
  • the removal of the top and bottom of the ALD film can be conducted under conditions corresponding to those used for the sequence for the organic BARC.
  • the removal of the enclosed photoresist, N-free film, and SiN film through the opened top can be conducted under conditions corresponding to those used for the sequence for the organic BARC.
  • a gas containing a high concentration (more than 50% in volume) of oxygen can be used.
  • a gas containing a low concentration (less than 50% in volume) of oxygen can be used, wherein the plasma can be intermittently or continuously applied. If it takes a long time to remove the N-free film and SiN film, the side spacers may be diminished.
  • the oxygen concentration oxygen flow rate
  • a remote plasma unit can be connected to the apparatus, through which an etching gas or a process gas can be supplied to the interior of the apparatus through a showerhead.

Abstract

A method of forming side spacers upwardly extending from a substrate, includes: providing a template constituted by a photoresist formed on and in contact with an etch-selective layer laminated on a substrate; anisotropically etching the template in a thickness direction with an oxygen-containing plasma to remove a footing of the photoresist and an exposed portion of the underlying layer; depositing a spacer film on the template by atomic layer deposition (ALD); and forming side spacers using the spacer film by etching. The etch-selective layer has a substantially lower etch rate than that of the photoresist.

Description

    BACKGROUND
  • 1. Field of the Invention
  • The present invention relates to semiconductor integrated circuit manufacturing and, more particularly to a method of forming side spacers, particularly on space-defined double patterning (SDDP).
  • 2. Description of the Related Art
  • Photolithography technology has recently faced difficulty of forming patterns having pitches smaller than the submicron level. Various approaches have been studied, and one of the promising methods is space-defined double patterning (SDDP) which makes it possible to create narrow pitches beyond limitations of conventional lithography such as light source wavelength and high index immersion fluid. Generally, SDDP needs one conformal spacer film and hardmask template wherein the conformal spacer film is deposited on the template normally having convex patterns. A silicon oxide layer is commonly used as a conformal spacer, and a hardmask template is typically constituted by photoresist (PR) prepared by a spin-on or CVD process.
  • As discussed below, the present inventors have recognized several problems in SDDP and developed solutions thereto, which solutions can also be applicable to general patterning processes. Thus, the present invention relates to improvement on general patterning processes using a hardmask, and particularly on SDDP.
  • Any discussion of problems and solutions involved in the related art has been included in this disclosure solely for the purposes of providing a context for the present invention, and it should not be taken as an admission that any or all of the discussion were known at the time the invention was made.
  • In SDDP process flow, a photoresist pattern 12 is formed on a substrate 11 as shown in FIG. 1( a). When etching a photoresist layer to form the photoresist pattern, each formed photoresist protrusion 12 has a widened footing portion at its bottom, and thus, the distance between the formed photoresist protrusions at their bottoms (W′) is shorter than that their side walls (W). When depositing a spacer layer 13 such as a SiO layer by plasma enhanced atomic layer deposition (PE-ALD) over the photoresist pattern as shown in FIG. 1(b), the spacer layer 13 deposits along the surface of the photoresist pattern having the widened footing portions. When the spacer layer is etched by, e.g., reactive ion etching (RIE) to remove the top and bottom to form side spacers 14 as shown in FIG. 1( c), the widened footings of the photoresist pattern are transferred to the side spacers 14. As a result, the thickness of the side spacer at the bottom appears to be widened (F), which is significantly greater than the thickness of the side spacer itself, thereby causing unexpected critical dimension (CD) changes or the like.
  • In order to achieve patterning smaller than the resolution limit by, e.g., SDDP, many photoresist trimming techniques such as trimming by plasma have been reported. However, it is still difficult to control the transferred footing shape. For example, by using an underlying layer having an increased etch rate, while trimming a photoresist layer, a mask pattern is formed in the underlying layer (e.g., JP 2004-310019). However, by using a combination of an underlying layer and a photoresist layer, even if the footing of the etched photoresist can be smaller while trimming the etched photoresist, a footing shape is transferred to and formed in the underlying layer. Thus, the footing problem is not solved. FIG. 2 shows this problem. When a photoresist layer which is formed on an underlying layer 21 formed on a substrate 24 is etched, a widened footing is formed in the etched photoresist 22 as shown in FIG. 2( a). While trimming the etched photoresist 22 isotropically (FIG. 2( b)), the widened footing of the etched photoresist is smaller. However, the footing of the etched photoresist is transferred to the underlying layer as shown in FIG. 2( c).
  • SUMMARY
  • In some embodiments of the present invention, by conducting plasma irradiation prior to formation of a spacer layer to anisotropically etch a template constituted by a photoresist formed on and in contact with an etch-selective layer laminated on a substrate, said etch-selective layer has a substantially lower etch rate than that of the photoresist, thereby reducing a widened footing of the photoresist.
  • Some embodiments of the present invention provide a method of forming side spacers upwardly extending from a substrate, comprising: (i) providing a template constituted by a photoresist formed on and in contact with an etch-selective layer laminated on a substrate, said photoresist having footing at a base of the photoresist, said etch-selective layer having a substantially lower etch rate than that of the photoresist; (ii) anisotropically etching the template in a thickness direction with an oxygen-containing plasma to remove the footing of the photoresist and an exposed portion of the underlying layer; (iii) depositing a spacer film on the template by atomic layer deposition (ALD); and (iv) forming side spacers using the spacer film by etching.
  • In some embodiments, the side spacers are for spacer-defined double patterning (SDDP). In some embodiments, the etch-selective layer has a substantially higher etch rate than that of the side spacers. In some embodiments, the etch-selective layer is constituted by an organic bottom antireflective coating (BARC) formed from a carbon-containing (or carbon- and silicon-containing) compound having a ratio of (number of C, H, and O atoms in total)/(number of C atoms-number of O atoms) which is no more than 5. In some embodiments, the etch-selective layer is constituted by an organic bottom antireflective coating (BARC) having an etch selectivity substantially equivalent to that of a SiN film. In some embodiments, the etch-selective layer is constituted by an inorganic silicon- or carbon-containing layer as an antireflective coating (ARC) and a nitrogen-free oxide layer laminated on the inorganic silicon- or carbon-containing layer. In some embodiments, the spacer film is constituted by SiO2, TiO, or any suitable metal oxide materials (e.g., a co-assigned U.S. Provisional Application No. 61/427,661, the disclosure of which is herein incorporated by reference in its entirety). In some embodiments, an underlying layer formed underneath the etch-selective layer is constituted by amorphous carbon.
  • In some embodiments, any of the disclosed methods further comprise etching the photoresist of the template to trim the photoresist (e.g., by isotropical etching or any suitable etching) prior to the anisotropical etching, wherein the etch-selective layer has a substantial resistance to the isotropic trimming, and substantially no footing of the photoresist remains. Particularly, when the inorganic ARC is used as the etch-selective layer, substantially no footing can remain. In some embodiments, the anisotropical etching and the deposition of the spacer film are conducted continuously in the same reactor.
  • For purposes of summarizing aspects of the invention and the advantages achieved over the related art, certain objects and advantages of the invention are described in this disclosure. Of course, it is to be understood that not necessarily all such objects or advantages may be achieved in accordance with any particular embodiment of the invention. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
  • Further aspects, features and advantages of this invention will become apparent from the detailed description which follows.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other features of this invention will now be described with reference to the drawings of preferred embodiments which are intended to illustrate and not to limit the invention. The drawings are oversimplified for illustrative purpose and are not necessarily to scale.
  • FIG. 1 is a schematic representation illustrating a part of the SDDP sequence of (a) photoresist (PR) patterning, (b) SiO deposition by PE-ALD, and (c) reactive ion etch (RIE).
  • FIG. 2 is a schematic representation illustrating a part of the SDDP sequence of (a) photoresist (PR) patterning, (b) the beginning of isotropic PR trimming, and (c) the end of isotropic PR trimming.
  • FIG. 3 is a schematic representation illustrating a part of the SDDP sequence of (a) photoresist (PR) patterning, (b) isotropic PR trimming, (c) anisotropic etching (removal of the footing), (d) etching of the etch-selective layer, (e) spacer layer deposition, (f) etching of top and bottom of the etch-selective layer, (g) removal of the PR, and (h) removal of the remaining etch-selective layer and the top of the side spacers, according to an embodiment of the present invention.
  • FIG. 4 is a schematic representation illustrating a part of the SDDP sequence of (a) photoresist (PR) patterning, (b) isotropic PR trimming, (c) anisotropic etching (removal of the footing and the N-free layer), (d) etching of the etch-selective layer, (e) spacer layer deposition, (f) etching of top and bottom of the etch-selective layer, (g) removal of the PR, and (h) removal of the remaining N-free layer and etch-selective layer and the top of the side spacers, according to an embodiment of the present invention.
  • DETAILED DESCRIPTION
  • In this disclosure, “gas” may include vaporized solids and/or liquids and may be constituted by a mixture of gases. In this disclosure, the reactant gas, the additive/carrier gas, and the precursor may be different from each other or mutually exclusive in terms of gas types, i.e., there is no overlap of gases among these categories. In some embodiments, “film” refers to a layer continuously extending in a direction perpendicular to a thickness direction substantially without pinholes to cover an entire target or concerned surface, or simply a layer covering a target or concerned surface. In some embodiments, “layer” refers to a structure having a certain thickness formed on a surface or a synonym of film. In this disclosure, any defined meanings do not necessarily exclude ordinary and customary meanings in some embodiments. In the disclosure, “substantially lower”, “substantially higher”, “substantially different”, etc. refer to a difference of at least 10%, 50%, 100%, 200%, 300%, or any ranges thereof, for example. Also, in the disclosure, “substantially the same”, “substantially equivalent”, “substantially uniform”, etc. refer to a difference of less than 20%, less than 10%, less than 5%, less than 1%, or any ranges thereof, for example. The numerical numbers applied in examples may be modified by a range of at least ±50% in other conditions, and further, in this disclosure, any ranges indicated may include or exclude the endpoints. In the present disclosure where conditions and/or structures are not specified, the skilled artisan in the art can readily provide such conditions and/or structures, in view of the present disclosure, as a matter of routine experimentation.
  • In the disclosure, the “footing” or “widened footing” generally refers to an outwardly extended portion at the bottom of a protrusion relative to the side wall of the protrusion, said extended portion being typically inclined or sloped. The size of the footing may be defined as a difference between the width of the protrusion at about 50% of the height and the width at the bottom. In some embodiments, the “removal of the footing” does not necessarily refer to removal of the entire footing, but refers to removal of a substantial portion of the footing or substantially diminishing the size of the footing.
  • In the disclosure, the “etch rate” refers to an actual etch rate of a material in process or an etch rate evaluated beforehand which is a dry etch rate (NF3 at 100° C.) or a wet etch rate (DHF at 1:100), depending on the actual process.
  • In the present disclosure where conditions and/or structures are not specified, the skilled artisan in the art can readily provide such conditions and/or structures, in view of the present disclosure, as a matter of routine experimentation.
  • In some embodiments, in order to solve at least one or all of the problems discussed above in patterning processes, an etch-selective layer is formed underneath a PR pattern. The etch-selective layer has a substantially lower etch rate than that of the PR, but has a substantially higher etch rate than that of a side spacer. In some embodiments, the etch-selective layer is constituted by an organic BARC which has an etch selectivity substantially equivalent to that of a SiN film. In some embodiments, the BARC is formed from a carbon-containing (or carbon- and silicon-containing) compound having a ratio of (number of C, H, and O atoms in total)/(number of C atoms-number of O atoms) which is no more than 5. The ratio is called “Ohnishi parameter” (J. Electrochem Soc 143, 130 (1983) H. Gokan, S. Esho and Y. Ohnishi, the disclosure of which is herein incorporated by reference in its entirety). In general, the higher the ratio, the higher the concentration of carbon becomes. When the concentration of carbon is high, the etch rate becomes low. For example, hexamethyldisiloxane (HMDSO) has a ratio of 5, hexamethyldisilazane (HMDS) has a ratio of 4.2.
  • In some embodiments, the etch-selective layer is constituted by an inorganic silicon- or carbon-containing layer and a nitrogen-free oxide layer laminated on the inorganic silicon- or carbon-containing layer. The nitrogen-free oxide layer is used in order to inhibit the occurrence of resist poisoning, and this layer can contribute to suppression of formation of a widened footing (by inhibiting migration of N from the etch-selective layer to the photoresist), but a thinner layer is better (e.g., about 1-3 nm) as long as it is capable of inhibiting contact between the PR and the inorganic silicon- or carbon-containing layer.
  • In some embodiments, the etch rate refers to chemical resistance (low dry etch rate, NF3 at 100° C.) or a wet etch rate (DHF at 1:100).
  • FIG. 3 is a schematic representation illustrating a part of the SDDP sequence using a BARC layer as the etch-selective layer, which includes (a) photoresist (PR) patterning, (b) PR trimming (e.g., isotropic trimming), (c) etching (e.g., anisotropic etching) (removal of the footing), (d) etching of the etch-selective layer, (e) spacer layer deposition, (f) etching of top and bottom of the etch-selective layer, (g) removal of the PR, and (h) removal of the remaining etch-selective layer and the top of the side spacers, according to an embodiment of the present invention, which is not intended to limit the invention. In some embodiments, step (b) can be omitted, and in step (c), both PR trimming and footing removal can be accomplished by any suitable etching.
  • In some embodiments, the sequences of forming a final pattern using a BARC layer as the etch-selective layer are as follows:
  • 1) A BARC layer 31 is formed on a substrate 34. The BARC layer has high etch selectivity relative to a photoresist (PR).
  • 2) A photoresist film material is then applied on the BARC layer, and prebaked, thereby forming a photoresist film. A pattern circuit area of the photoresist film is then exposed to irradiation, and then developed with a developing liquid, thereby forming a photoresist pattern 32 in the photoresist film (FIG. 3 (a)).
  • 3) The photoresist has a widened footing as a result of the patterning. Thus, the photoresist is subjected to isotropic trimming using a plasma generated in an environment where a gas containing oxygen is introduced, thereby forming a trimmed photoresist 32 a (FIG. 3( b)). Because the etching speed of the BARC layer is lower than that of the photoresist, the footing of the photoresist is effectively reduced. This trimming can be conducted continuously from the formation of side spacers in the same reactor. The subsequent steps 4) to 7) can also be conducted continuously in the same reactor.
  • 4) The trimming may not sufficiently remove the footing of the photoresist, although a reduction of the footing is significant. Also, in some embodiments, trimming is not performed. Thus, the template (including the substrate, BARC layer, and photoresist) is subjected to anisotropic etching, thereby removing the remaining footing and forming a photoresist 32 b without footing (FIG. 3( c)). The anisotropic etching continues to remove the BARC layer, thereby forming the photoresist 32 b and etched BARC layer 31 a underneath the photoresist (FIG. 3( d)). Because the BARC layer has higher resistance to etching than the photoresist, when the BARC layer is removed, the photoresist is diminished to a certain degree (the height of the photoresist is lowered due to the anisotropic etching). Considering the above, an appropriate etch selectivity of the BARC layer is selected.
  • 5) Next, an ALD film 33 is formed as a side spacer film on the template (FIG. 3( e)). Since the ALD film is deposited on the photoresist, the deposition temperature may be, for example, about 150° C. or lower or about 100° C. or lower, depending on the heat resistance of the photoresist and BARC.
  • 6) The top and bottom portions of the side spacer film 33 are then removed, thereby forming provisional side spacers 33 a enclosing the photoresist 32 b and the BARC layer 31 a underneath the photoresist as a core material (FIG. 3( f)).
  • 7) After the top of the side spacer film, the photoresist 32 b is irradiated with an O2-containing plasma (FIG. 3( g)), and the BARC layer 31 a is irradiated with the O2-containing plasma (FIG. 3( h)), thereby obtaining a final pattern with side spacers 33 b.
  • In the above, in some embodiments, the photoresist is arranged at a pitch of about 80 nm (±50%). In some embodiments, the side of the photoresist prior to the trimming (FIG. 3( a)) has a height of about 60 nm (±50%), a width of about 26 nm to about 47 nm (±50%), and a footing of about 11.1 nm (±50%). In some embodiments, the side of the photoresist after the trimming (FIG. 3( c)) has a height of about 47 nm (±50%), a width of about 14 nm to about 17 nm (±50%), and a footing of about 0 nm.
  • In some embodiments, as the organic BARC, a resist used for dry ArF or wet ArF can be used, which can be selected from the group consisting of alicyclic acrylic resin, cycloolefin resin, cyclolefin-maleic anhydride resin, and methacrylate resin. In some embodiments, a BARC having a low Ohnishi parameter (high in carbon concentration) can be used. In some embodiments, a BARC having high silicon concentration (“a Si-rich BARC”, e.g., at least 5, 10, or 20 atomic %) can be used. In some embodiments, the etch selectivity of a BARC relative to the photoresist (footing) is adjusted by changing the silicon content of the BARC so that the footing can selectively be etched readily by adjusting the oxygen concentration of an etchant (a Si-rich BARC has effective or substantial resistance to oxygen plasma). As described below, the Si-rich BARC can be etched by fluorine-containing oxygen plasma, whereas the photoresist has effective or substantial resistance to the fluorine-containing oxygen plasma so that the height of the photoresist can effectively or substantially be maintained. In some embodiments, the BARC can be applied by spin coating or further baking after spin coating to vaporize a resist solvent. In some embodiments, the thickness of the BARC is about 10 nm to about 50 nm. If the thickness is lower than the range, it will be difficult to form a layer. On the other hand, if the thickness is greater than the range, when removing the BARC, side spacers may be significantly diminished.
  • In some embodiments, the trimming and the footing removal etching can be conducted under conditions as follows:
  • Gas containing oxygen O2, N2O, and/or CO2
    Flow rate (sccm) of Oxygen- About 100 to about 2,000
    containing gas
    Inert gas Ar, He
    Flow rate (sccm) of Inert gas About 500 to about 1,000
    Plasma Temperature (° C.) About 50 to about 150, depending on
    conditions the thermal resistance of RR and
    BARC
    Pressure (Pa) About 15 to about 800
    RF frequency About 13.56
    (MHz)
    RF power (W) About 30 to about 300
  • When using a gas containing more oxygen (e.g., more than 50% of the gas in volume), the etch rate of the BARC becomes low, whereas the etch rate of the photoresist becomes high. That is, the higher the oxygen content of the etch gas, the lower the etch rate of the BARC becomes.
  • In some embodiments, the removal of the BARC can be conducted under conditions as follows or the conditions disclosed in JP 10-261620, for example (the disclosure of which is herein incorporated by reference in its entirety):
  • Gas for O2-containing O2, CF4 + O2, CF3I + O2
    plasma
    Flow rate (sccm) of About 1,000 to about 2,000 (CF4: about 10
    O2-containing gas to about 100)
    Plasma Temperature About 50 to about 150, depending on the
    conditions (° C.) thermal resistance of RR and BARC
    Pressure (Pa) About 10 to about 2000
    RF frequency About 2.45 GHz (about 400 to 1,200 W) +
    and power about 13.56 MHz (about 30 to 100 W)
  • When using a gas containing more oxygen (e.g., more than 50% of the gas in volume), the etch rate of the BARC containing Si becomes low, whereas when using a gas containing lower oxygen concentration, etching effect by florin becomes more significant, thereby increasing etch rate of the BARC (e.g., JP 2010-205967, the disclosure of which is herein incorporated by reference in its entirety).
  • In some embodiments, the ALD film is selected from the group consisting of SiO, SiN, SiC, SiCN, and TiO. Any suitable ALD methods can be used. In some embodiments, the methods disclosed in a co-assigned application, U.S. patent application Ser. No. 12/901,323, can be used (the disclosure of which is herein incorporated by reference in its entirety). For example, as a process gas, a combination of BDEAS (bis(diethylamino)silane), O2 (500 sccm), He (200 sccm), and Ar (2500 sccm) can be used. In some embodiments, the pressure is about 200 Pa (±50%), and RF frequency (about 13.56 MHz±50%), power (about 50 W±50%), and duration (about 0.4 seconds±50%) may be used. After stabilizing the pressure and gas flows in the reactor, the precursor is introduced into the reactor for a certain time period to cause the precursor to adsorb on the surface of a substrate, followed by purging the remaining precursor with another gas. RF plasma is then applied to the substrate, thereby oxidizing the adsorbed precursor. The above steps constitute one cycle, and by repeating the cycle, an ALD film such as a SiO film having a desired thickness can be formed on the substrate.
  • In some embodiments, a pulse control valve can realize the pulsing of the precursor and/or the inert/additive gas. Further, RF power can be pulsed. In the above, the pulsing of the RF power can be accomplished by adjusting a matching box (not shown). The RF power requires a minimum time period for discharging, which is typically as short as 8 msec. Thus, by adjusting the matching box, the duration of the RF power can easily be controlled at about 0.1 sec, for example. In some embodiments, the average thickness deposited per cycle may be about 0.05 nm/cycle to about 0.2 nm/cycle. The pulse supply of the precursor can be continued until a desired thickness of film is obtained. If the desired thickness of film is about 20 nm to about 100 nm, about 100 cycles to about 2,000 cycles (e.g., about 200 to about 1,000 cycles) may be conducted.
  • In some embodiments, the removal of the top and bottom of the ALD film can be conducted under conditions shown below:
  • Etching gas CHF3, CF4, C2F6
    Flow rate (sccm) of etching About 10 to about 100
    gas
    Additive gas Ar, O2
    Flow rate (sccm) of additive About 10 to about 100
    gas
    Plasma Temperature About 50 to about 150, depending on the
    conditions (° C.) thermal resistance of RR and BARC
    Pressure (Pa) Less than about 1
    RF frequency About 13.56
    (MHz)
    RF power (W) About 50 to about 300
  • In some embodiments, the removal of the enclosed photoresist and BARC through the opened top can be conducted under conditions shown below.
  • Gas for O2-containing O2, CF4 + O2
    plasma
    Flow rate (sccm) of About 1,000 to about 2,000 (CF4: about 10
    O2-containing gas to about 100)
    Plasma Temperature About 50 to about 150, depending on the
    conditions (° C.) thermal resistance of RR and BARC
    Pressure (Pa) About 100 to about 200
    RF frequency About 2.45 GHz (about 400 to 1,200 W) +
    and power about 13.56 MHz (about 30 to 100 W)
  • In some embodiments, in order to remove the enclosed photoresist through the opened top, a gas containing a high concentration (more than 50% in volume) of oxygen can be used. After the completion of the removal of the enclosed photoresist, in order to remove the BARC containing Si, a gas containing a low concentration (less than 50% in volume) of oxygen can be used, wherein the plasma can be intermittently or continuously applied. If it takes a long time to remove the BARC including Si, the side spacers may be diminished. Thus, considering the above, the oxygen concentration (oxygen flow rate) should be appropriately selected.
  • FIG. 4 is a schematic representation illustrating a part of the SDDP sequence using a SiN layer as the etch-selective layer, which includes (a) photoresist (PR) patterning, (b) isotropic PR trimming, (c) anisotropic etching (removal of the footing and the N-free layer), (d) etching of the etch-selective layer, (e) spacer layer deposition, (f) etching of top and bottom of the etch-selective layer, (g) removal of the PR, and (h) removal of the remaining N-free layer and etch-selective layer and the top of the side spacers, according to an embodiment of the present invention.
  • In some embodiments, the sequences of forming a final pattern using a SiN layer as the etch-selective layer are as follows:
  • 1) A SiN film 41 is formed on a substrate 44. The SiN film has high etch selectivity relative to a photoresist (PR). The reason for using the SiN film instead of e.g., a SiON film is that it is easier to set substantially different etch selectivity of the SiN film, not only from that of a photoresist but also from that of a SiO film constituting side spacers.
  • 2) Next, a super thin SiO film 45 (N-free film) is formed on the SiN film. Alternatively, by oxidation of the surface of the SiN film by e.g., O2 or N2O plasma treatment or other oxidation methods, the surface of the SiN film can become N-free. By using the N-free film, promotion of formation of a widened footing can be suppressed. If a photoresist is in contact directly with the SiN film, footing may be promoted due to the influence of base group including nitrogen during lithography after formation of a photoresist film. However, if the N-free film is thick, when removing the N-free film in a subsequent step of removing the photoresist and the SiN film after removing the top of a side spacer film, the side spacers may also be diminished (i.e., lowering the height of the side spacers). Thus, it is preferable to make the film thin (e.g., about 1-3 nm).
  • 3) The SiN film 45 and the N-free film 41 also serve as an antireflective film (inorganic ARC).
  • 4) Next, a photoresist film material is then applied on the N-free film and the SiN film, and prebaked, thereby forming a photoresist film. A pattern circuit area of the photoresist film is then exposed to irradiation, and then developed with a developing liquid, thereby forming a photoresist pattern 42 in the photoresist film (FIG. 4 (a)).
  • 5) The photoresist has a widened footing as a result of the patterning. Thus, the photoresist is subjected to isotropic trimming using a plasma generated in an environment where a gas containing oxygen is introduced, thereby forming a trimmed photoresist 42 a (FIG. 4( b)). Because the etching speed of the SiN film is lower than that of the photoresist, the footing of the photoresist is effectively reduced (although FIG. 4( b) shows that the N-free film is maintained, through the trimming, most portions of the N-free film may be removed as the footing is reduced). This trimming can be conducted continuously from the formation of side spacers in the same reactor. The subsequent steps 6) to 10) can also be conducted continuously in the same reactor.
  • 6) The trimming may not sufficiently remove the footing of the photoresist, although a reduction of the footing is significant. Also, in some embodiments, trimming is not performed. Thus, the template (including the substrate, SiN film, and photoresist) is subjected to anisotropic etching, thereby removing the remaining footing and forming a photoresist 42 b and the etched N-free film 45 a underneath the photoresist without footing (FIG. 4( c)). The anisotropic etching continues to remove the SiN film, thereby forming the photoresist 42 b, etched N-free film 45 a, and etched SiN film 41 a underneath the photoresist (FIG. 4( d)). Because the SiN film has higher resistance to etching than the photoresist, when the SiN film is removed, the photoresist is diminished to a certain degree (the height of the photoresist is lowered due to the anisotropic etching). Considering the above, an appropriate etch selectivity of the SiN film is selected.
  • 7) Next, an ALD film 43 is formed as a side spacer film on the template (FIG. 4( e)). Since the ALD film is deposited on the photoresist, the deposition temperature may be about 100° C. or lower.
  • 8) The top and bottom portions of the side spacer film 43 are then removed, thereby forming provisional side spacers 43 a enclosing the photoresist 42 b, the N-free film 45 a, and the SiN film 41 a underneath the photoresist as a core material (FIG. 4( f)).
  • 9) After the top of the side spacer film is removed, the photoresist 42 b is irradiated with an O2-containing plasma (FIG. 4( g)).
  • 10) After the photoresist 42 b is removed, in order to remove the N-free film 45 a and the SiN film 41 a, they are irradiated with a plasma generated in an environment with a gas containing florin (FIG. 4( h)), thereby obtaining a final pattern with side spacers 43 b.
  • In some embodiments, the substrate on which the etch-selective layer is formed can be made of poly-silicon or amorphous carbon or other carbon materials. When amorphous carbon is used as the substrate without the etch-selective layer disclosed herein, the amorphous carbon is etched while removing an underlying layer, and as a result, a footing is transferred to the amorphous carbon. In some embodiments, the substrate made of amorphous carbon is used without formation of footing.
  • In some embodiments, the process conditions for the sequence using the inorganic ARC as the etch-selective layer can be similar to or the same as those for the sequence using the organic BARC as the etch-selective layer as described earlier, unless stated otherwise.
  • In some embodiments, the inorganic ARC can be formed by CVD or ALD. In some embodiments, the thickness of the inorganic ARC is about 5 nm to about 10 nm. In some embodiments, the inorganic ARC may be selected from the group consisting of SiN, SiC, SiCN, and TiO.
  • In some embodiments, the N-free film can be formed by TEOS-Based CVD or ALD-SiO. In some embodiments, the thickness of the SiO film may be about 1 nm to about 3 nm. The thinner the better, as long as the film can prevent the photoresist and the SiN film from contacting each other. In some embodiments, the N-free film can be formed by an O2 plasma (e.g., using O2 gas at a flow rate of 1,000 sccm and an RF power (13.56 MHz) of about 100 to about 500 W at a temperature of about 50-150° C. under a pressure of about 150-800 Pa for a duration of about 10 to about 180 seconds). The temperature depends on the thermal resistance of the photoresist and BARC. In some embodiments, the depth of oxidation by the O2 plasma is about 3 nm. In some embodiments, the N-free film can be formed by a N2O plasma under conditions corresponding to the O2 plasma. In some embodiments, the depth of oxidation by the N2O plasma is about 3 nm.
  • In some embodiments, the trimming and the footing removal etching can be conducted under conditions corresponding to those used for the sequence for the organic BARC.
  • In some embodiments, the removal of the N-free film and the SiN film can be conducted under conditions shown below.
  • Etching gas CHF3, CF4, C2F6 (low flow of oxygen)
    Flow rate (sccm) of etching gas About 10 to about 100
    Additive gas Ar, O2
    Flow rate (sccm) of additive gas About 10 to about 100
    Plasma Temperature About 50 to about 150, depending on
    conditions (° C.) the thermal resistance of RR and
    BARC
    Pressure (Pa) Less than about 1
    RF frequency About 13.56
    (MHz)
    RF power (W) About 30 to about 300
  • In some embodiments, in order to remove the inorganic films (N-free film (SiO) and SiN), a gas containing a low concentration of oxygen is used.
  • In some embodiments, the ALD film can be formed under conditions corresponding to those used for the sequence for the organic BARC.
  • In some embodiments, the removal of the top and bottom of the ALD film can be conducted under conditions corresponding to those used for the sequence for the organic BARC.
  • In some embodiments, the removal of the enclosed photoresist, N-free film, and SiN film through the opened top can be conducted under conditions corresponding to those used for the sequence for the organic BARC.
  • In some embodiments, in order to remove the enclosed photoresist through the opened top, a gas containing a high concentration (more than 50% in volume) of oxygen can be used. After the completion of the removal of the enclosed photoresist, in order to remove the N-free film and SiN film, a gas containing a low concentration (less than 50% in volume) of oxygen can be used, wherein the plasma can be intermittently or continuously applied. If it takes a long time to remove the N-free film and SiN film, the side spacers may be diminished. Thus, considering the above, the oxygen concentration (oxygen flow rate) should be appropriately selected.
  • A remote plasma unit can be connected to the apparatus, through which an etching gas or a process gas can be supplied to the interior of the apparatus through a showerhead.
  • It will be understood by those of skill in the art that numerous and various modifications can be made without departing from the spirit of the present invention. Therefore, it should be clearly understood that the forms of the present invention are illustrative only and are not intended to limit the scope of the present invention.

Claims (11)

1. A method of forming side spacers upwardly extending from a substrate, comprising:
providing a template constituted by a photoresist formed on and in contact with an etch-selective layer laminated on a substrate, said photoresist having footing at a base of the photoresist, said etch-selective layer having a substantially lower etch rate than that of the photoresist;
anisotropically etching the template in a thickness direction with an oxygen-containing plasma to remove the footing of the photoresist and an exposed portion of the underlying layer;
depositing a spacer film on the template by atomic layer deposition (ALD); and
forming side spacers using the spacer film by etching.
2. The method according to claim 1, wherein the side spacers are for spacer-defined double patterning (SDDP).
3. The method according to claim 1, wherein the etch-selective layer has a substantially higher etch rate than that of the side spacers.
4. The method according to claim 1, wherein the etch-selective layer is constituted by an organic bottom antireflective coating (BARC) formed from a carbon/silicon-containing compound having a ratio of (number of C, H, and O atoms in total)/(number of C atoms-number of O atoms) which is no more than 5.
5. The method according to claim 1, wherein the etch-selective layer is constituted by an organic bottom antireflective coating (BARC) having an etch selectivity substantially equivalent to that of a SiN film.
6. The method according to claim 1, wherein the etch-selective layer is constituted by an inorganic silicon- or carbon-containing layer as an antireflective coating (ARC) and a nitrogen-free oxide layer laminated on the inorganic silicon- or carbon-containing layer.
7. The method according to claim 1, further comprising etching the photoresist of the template to trim the photoresist prior to the anisotropical etching, wherein the etch-selective layer has a substantial resistance to the trimming, and substantially no footing of the photoresist remains.
8. The method according to claim 1, wherein the anisotropical etching and the deposition of the spacer film are conducted continuously in the same reactor.
9. The method according to claim 1, wherein the spacer film is constituted by SiO2 or TiO.
10. The method according to claim 1, wherein an underlying layer formed underneath the etch-selective layer is constituted by amorphous carbon.
11. The method according to claim 1, wherein the etch-selective layer is constituted by a Si-rich organic bottom antireflective coating (BARC), and the anisotropical etching comprises trimming the photoresist and removing the footing by an oxygen-containing plasma, and then etching the Si-rich BARC by a fluorine-containing oxygen plasma.
US13/085,698 2011-04-13 2011-04-13 Footing reduction using etch-selective layer Active 2031-07-14 US8298951B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/085,698 US8298951B1 (en) 2011-04-13 2011-04-13 Footing reduction using etch-selective layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/085,698 US8298951B1 (en) 2011-04-13 2011-04-13 Footing reduction using etch-selective layer

Publications (2)

Publication Number Publication Date
US20120264305A1 true US20120264305A1 (en) 2012-10-18
US8298951B1 US8298951B1 (en) 2012-10-30

Family

ID=47006700

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/085,698 Active 2031-07-14 US8298951B1 (en) 2011-04-13 2011-04-13 Footing reduction using etch-selective layer

Country Status (1)

Country Link
US (1) US8298951B1 (en)

Cited By (230)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120164846A1 (en) * 2010-12-28 2012-06-28 Asm Japan K.K. Method of Forming Metal Oxide Hardmask
CN104701159A (en) * 2013-12-10 2015-06-10 东京毅力科创株式会社 Etching method
EP3007205A1 (en) * 2014-10-07 2016-04-13 Tokyo Electron Limited Workpiece processing method
US9373698B2 (en) 2013-12-27 2016-06-21 Samsung Electronics Co., Ltd. Methods of manufacturing semiconductor devices and electronic devices
US9379019B2 (en) 2014-10-06 2016-06-28 Samsung Electronics Co., Ltd. Methods of manufacturing a semiconductor device
CN105977148A (en) * 2016-07-01 2016-09-28 深圳市华星光电技术有限公司 Method for manufacturing insulating layer, method for manufacturing array and array substrate
WO2018089534A1 (en) * 2016-11-14 2018-05-17 Lam Research Corporation Method for high modulus ald sio2 spacer
US20180198091A1 (en) * 2017-01-09 2018-07-12 Applied Materials, Inc. Encapsulating film stacks for oled applications with desired profile control
US10074543B2 (en) 2016-08-31 2018-09-11 Lam Research Corporation High dry etch rate materials for semiconductor patterning applications
US10109722B2 (en) 2017-03-02 2018-10-23 Globalfoundries Inc. Etch-resistant spacer formation on gate structure
US10141505B2 (en) 2015-09-24 2018-11-27 Lam Research Corporation Bromine containing silicon precursors for encapsulation layers
US10269559B2 (en) 2017-09-13 2019-04-23 Lam Research Corporation Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer
US10446394B2 (en) * 2018-01-26 2019-10-15 Lam Research Corporation Spacer profile control using atomic layer deposition in a multiple patterning process
US10454029B2 (en) 2016-11-11 2019-10-22 Lam Research Corporation Method for reducing the wet etch rate of a sin film without damaging the underlying substrate
US10515815B2 (en) 2017-11-21 2019-12-24 Lam Research Corporation Atomic layer deposition and etch in a single plasma chamber for fin field effect transistor formation
US10629435B2 (en) 2016-07-29 2020-04-21 Lam Research Corporation Doped ALD films for semiconductor patterning applications
US10658174B2 (en) 2017-11-21 2020-05-19 Lam Research Corporation Atomic layer deposition and etch for reducing roughness
CN111254416A (en) * 2018-11-30 2020-06-09 Asm Ip控股有限公司 Method for forming ultraviolet radiation responsive metal oxide containing film
US10734238B2 (en) 2017-11-21 2020-08-04 Lam Research Corporation Atomic layer deposition and etch in a single plasma chamber for critical dimension control
US10804099B2 (en) 2014-11-24 2020-10-13 Lam Research Corporation Selective inhibition in atomic layer deposition of silicon-containing films
US10832908B2 (en) 2016-11-11 2020-11-10 Lam Research Corporation Self-aligned multi-patterning process flow with ALD gapfill spacer mask
US11004977B2 (en) 2017-07-19 2021-05-11 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11001925B2 (en) 2016-12-19 2021-05-11 Asm Ip Holding B.V. Substrate processing apparatus
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11069510B2 (en) 2017-08-30 2021-07-20 Asm Ip Holding B.V. Substrate processing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11094546B2 (en) 2017-10-05 2021-08-17 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US11094582B2 (en) 2016-07-08 2021-08-17 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11101370B2 (en) 2016-05-02 2021-08-24 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11107676B2 (en) 2016-07-28 2021-08-31 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
US11114294B2 (en) 2019-03-08 2021-09-07 Asm Ip Holding B.V. Structure including SiOC layer and method of forming same
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
US11127589B2 (en) 2019-02-01 2021-09-21 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11127617B2 (en) 2017-11-27 2021-09-21 Asm Ip Holding B.V. Storage device for storing wafer cassettes for use with a batch furnace
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11164955B2 (en) 2017-07-18 2021-11-02 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11205585B2 (en) 2016-07-28 2021-12-21 Asm Ip Holding B.V. Substrate processing apparatus and method of operating the same
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11233133B2 (en) 2015-10-21 2022-01-25 Asm Ip Holding B.V. NbMC layers
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US11244825B2 (en) 2018-11-16 2022-02-08 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11251035B2 (en) 2016-12-22 2022-02-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11404275B2 (en) 2018-03-02 2022-08-02 Lam Research Corporation Selective deposition using hydrolysis
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11469098B2 (en) 2018-05-08 2022-10-11 Asm Ip Holding B.V. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11658030B2 (en) 2017-03-29 2023-05-23 Asm Ip Holding B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11798999B2 (en) 2018-11-16 2023-10-24 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
CN117135994A (en) * 2023-10-25 2023-11-28 致真存储(北京)科技有限公司 Method for manufacturing semiconductor device and semiconductor device
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11961741B2 (en) 2020-03-12 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US11959168B2 (en) 2020-04-29 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
US11967488B2 (en) 2013-02-01 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor
US11976359B2 (en) 2020-01-06 2024-05-07 Asm Ip Holding B.V. Gas supply assembly, components thereof, and reactor system including same

Families Citing this family (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10378106B2 (en) 2008-11-14 2019-08-13 Asm Ip Holding B.V. Method of forming insulation film by modified PEALD
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US8802201B2 (en) 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US9390909B2 (en) * 2013-11-07 2016-07-12 Novellus Systems, Inc. Soft landing nanolaminates for advanced patterning
US9312155B2 (en) 2011-06-06 2016-04-12 Asm Japan K.K. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
US9793148B2 (en) 2011-06-22 2017-10-17 Asm Japan K.K. Method for positioning wafers in multiple wafer transport
US10364496B2 (en) 2011-06-27 2019-07-30 Asm Ip Holding B.V. Dual section module having shared and unshared mass flow controllers
US10854498B2 (en) 2011-07-15 2020-12-01 Asm Ip Holding B.V. Wafer-supporting device and method for producing same
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
US8946830B2 (en) 2012-04-04 2015-02-03 Asm Ip Holdings B.V. Metal oxide protective layer for a semiconductor device
US9558931B2 (en) 2012-07-27 2017-01-31 Asm Ip Holding B.V. System and method for gas-phase sulfur passivation of a semiconductor surface
US9659799B2 (en) 2012-08-28 2017-05-23 Asm Ip Holding B.V. Systems and methods for dynamic semiconductor process scheduling
US9021985B2 (en) 2012-09-12 2015-05-05 Asm Ip Holdings B.V. Process gas management for an inductively-coupled plasma deposition reactor
US9324811B2 (en) 2012-09-26 2016-04-26 Asm Ip Holding B.V. Structures and devices including a tensile-stressed silicon arsenic layer and methods of forming same
US9640416B2 (en) 2012-12-26 2017-05-02 Asm Ip Holding B.V. Single-and dual-chamber module-attachable wafer-handling chamber
US9589770B2 (en) 2013-03-08 2017-03-07 Asm Ip Holding B.V. Method and systems for in-situ formation of intermediate reactive species
US9484191B2 (en) 2013-03-08 2016-11-01 Asm Ip Holding B.V. Pulsed remote plasma method and system
US8993054B2 (en) 2013-07-12 2015-03-31 Asm Ip Holding B.V. Method and system to reduce outgassing in a reaction chamber
US9018111B2 (en) 2013-07-22 2015-04-28 Asm Ip Holding B.V. Semiconductor reaction chamber with plasma capabilities
US9793115B2 (en) 2013-08-14 2017-10-17 Asm Ip Holding B.V. Structures and devices including germanium-tin films and methods of forming same
US9240412B2 (en) 2013-09-27 2016-01-19 Asm Ip Holding B.V. Semiconductor structure and device and methods of forming same using selective epitaxial process
US9556516B2 (en) 2013-10-09 2017-01-31 ASM IP Holding B.V Method for forming Ti-containing film by PEALD using TDMAT or TDEAT
US10179947B2 (en) 2013-11-26 2019-01-15 Asm Ip Holding B.V. Method for forming conformal nitrided, oxidized, or carbonized dielectric film by atomic layer deposition
US10683571B2 (en) 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
US9447498B2 (en) 2014-03-18 2016-09-20 Asm Ip Holding B.V. Method for performing uniform processing in gas system-sharing multiple reaction chambers
US10167557B2 (en) 2014-03-18 2019-01-01 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US9404587B2 (en) 2014-04-24 2016-08-02 ASM IP Holding B.V Lockout tagout for semiconductor vacuum valve
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US9543180B2 (en) 2014-08-01 2017-01-10 Asm Ip Holding B.V. Apparatus and method for transporting wafers between wafer carrier and process tool under vacuum
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
KR102300403B1 (en) 2014-11-19 2021-09-09 에이에스엠 아이피 홀딩 비.브이. Method of depositing thin film
KR102263121B1 (en) 2014-12-22 2021-06-09 에이에스엠 아이피 홀딩 비.브이. Semiconductor device and manufacuring method thereof
US9478415B2 (en) 2015-02-13 2016-10-25 Asm Ip Holding B.V. Method for forming film having low resistance and shallow junction depth
US10529542B2 (en) 2015-03-11 2020-01-07 Asm Ip Holdings B.V. Cross-flow reactor and method
US10600673B2 (en) 2015-07-07 2020-03-24 Asm Ip Holding B.V. Magnetic susceptor to baseplate seal
US9899291B2 (en) 2015-07-13 2018-02-20 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US10043661B2 (en) 2015-07-13 2018-08-07 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US10083836B2 (en) 2015-07-24 2018-09-25 Asm Ip Holding B.V. Formation of boron-doped titanium metal films with high work function
US10087525B2 (en) 2015-08-04 2018-10-02 Asm Ip Holding B.V. Variable gap hard stop design
US9647114B2 (en) 2015-08-14 2017-05-09 Asm Ip Holding B.V. Methods of forming highly p-type doped germanium tin films and structures and devices including the films
US9711345B2 (en) 2015-08-25 2017-07-18 Asm Ip Holding B.V. Method for forming aluminum nitride-based film by PEALD
US9960072B2 (en) 2015-09-29 2018-05-01 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US9909214B2 (en) 2015-10-15 2018-03-06 Asm Ip Holding B.V. Method for depositing dielectric film in trenches by PEALD
US10322384B2 (en) 2015-11-09 2019-06-18 Asm Ip Holding B.V. Counter flow mixer for process chamber
US9455138B1 (en) 2015-11-10 2016-09-27 Asm Ip Holding B.V. Method for forming dielectric film in trenches by PEALD using H-containing gas
US9905420B2 (en) 2015-12-01 2018-02-27 Asm Ip Holding B.V. Methods of forming silicon germanium tin films and structures and devices including the films
US9607837B1 (en) 2015-12-21 2017-03-28 Asm Ip Holding B.V. Method for forming silicon oxide cap layer for solid state diffusion process
US9627221B1 (en) 2015-12-28 2017-04-18 Asm Ip Holding B.V. Continuous process incorporating atomic layer etching
US9735024B2 (en) 2015-12-28 2017-08-15 Asm Ip Holding B.V. Method of atomic layer etching using functional group-containing fluorocarbon
US10468251B2 (en) 2016-02-19 2019-11-05 Asm Ip Holding B.V. Method for forming spacers using silicon nitride film for spacer-defined multiple patterning
US9754779B1 (en) 2016-02-19 2017-09-05 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10501866B2 (en) 2016-03-09 2019-12-10 Asm Ip Holding B.V. Gas distribution apparatus for improved film uniformity in an epitaxial system
US10343920B2 (en) 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
US9892913B2 (en) 2016-03-24 2018-02-13 Asm Ip Holding B.V. Radial and thickness control via biased multi-port injection settings
US10087522B2 (en) 2016-04-21 2018-10-02 Asm Ip Holding B.V. Deposition of metal borides
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
KR102592471B1 (en) 2016-05-17 2023-10-20 에이에스엠 아이피 홀딩 비.브이. Method of forming metal interconnection and method of fabricating semiconductor device using the same
US10388509B2 (en) 2016-06-28 2019-08-20 Asm Ip Holding B.V. Formation of epitaxial layers via dislocation filtering
US9793135B1 (en) 2016-07-14 2017-10-17 ASM IP Holding B.V Method of cyclic dry etching using etchant film
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
US10381226B2 (en) 2016-07-27 2019-08-13 Asm Ip Holding B.V. Method of processing substrate
US10395919B2 (en) 2016-07-28 2019-08-27 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10177025B2 (en) 2016-07-28 2019-01-08 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10090316B2 (en) 2016-09-01 2018-10-02 Asm Ip Holding B.V. 3D stacked multilayer semiconductor memory using doped select transistor channel
US10410943B2 (en) 2016-10-13 2019-09-10 Asm Ip Holding B.V. Method for passivating a surface of a semiconductor and related systems
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US10643904B2 (en) 2016-11-01 2020-05-05 Asm Ip Holdings B.V. Methods for forming a semiconductor device and related semiconductor device structures
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10435790B2 (en) 2016-11-01 2019-10-08 Asm Ip Holding B.V. Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
US10340135B2 (en) 2016-11-28 2019-07-02 Asm Ip Holding B.V. Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
US9916980B1 (en) 2016-12-15 2018-03-13 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
US10283353B2 (en) 2017-03-29 2019-05-07 Asm Ip Holding B.V. Method of reforming insulating film deposited on substrate with recess pattern
US10103040B1 (en) 2017-03-31 2018-10-16 Asm Ip Holding B.V. Apparatus and method for manufacturing a semiconductor device
USD830981S1 (en) 2017-04-07 2018-10-16 Asm Ip Holding B.V. Susceptor for semiconductor substrate processing apparatus
KR102457289B1 (en) 2017-04-25 2022-10-21 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US10446393B2 (en) 2017-05-08 2019-10-15 Asm Ip Holding B.V. Methods for forming silicon-containing epitaxial layers and related semiconductor device structures
US10504742B2 (en) 2017-05-31 2019-12-10 Asm Ip Holding B.V. Method of atomic layer etching using hydrogen plasma
US10886123B2 (en) 2017-06-02 2021-01-05 Asm Ip Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
US10605530B2 (en) 2017-07-26 2020-03-31 Asm Ip Holding B.V. Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace
US10312055B2 (en) 2017-07-26 2019-06-04 Asm Ip Holding B.V. Method of depositing film by PEALD using negative bias
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US10236177B1 (en) 2017-08-22 2019-03-19 ASM IP Holding B.V.. Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures
USD900036S1 (en) 2017-08-24 2020-10-27 Asm Ip Holding B.V. Heater electrical connector and adapter
US10607895B2 (en) 2017-09-18 2020-03-31 Asm Ip Holdings B.V. Method for forming a semiconductor device structure comprising a gate fill metal
KR102630301B1 (en) 2017-09-21 2024-01-29 에이에스엠 아이피 홀딩 비.브이. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
KR102443047B1 (en) 2017-11-16 2022-09-14 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US10290508B1 (en) 2017-12-05 2019-05-14 Asm Ip Holding B.V. Method for forming vertical spacers for spacer-defined patterning
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US10535516B2 (en) 2018-02-01 2020-01-14 Asm Ip Holdings B.V. Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
US10658181B2 (en) 2018-02-20 2020-05-19 Asm Ip Holding B.V. Method of spacer-defined direct patterning in semiconductor fabrication
US10510536B2 (en) 2018-03-29 2019-12-17 Asm Ip Holding B.V. Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber
KR102501472B1 (en) 2018-03-30 2023-02-20 에이에스엠 아이피 홀딩 비.브이. Substrate processing method
TWI816783B (en) 2018-05-11 2023-10-01 荷蘭商Asm 智慧財產控股公司 Methods for forming a doped metal carbide film on a substrate and related semiconductor device structures
KR20200002519A (en) 2018-06-29 2020-01-08 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US10483099B1 (en) 2018-07-26 2019-11-19 Asm Ip Holding B.V. Method for forming thermally stable organosilicon polymer film
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
US10381219B1 (en) 2018-10-25 2019-08-13 Asm Ip Holding B.V. Methods for forming a silicon nitride film
US10559458B1 (en) 2018-11-26 2020-02-11 Asm Ip Holding B.V. Method of forming oxynitride film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110183269A1 (en) * 2010-01-25 2011-07-28 Hongbin Zhu Methods Of Forming Patterns, And Methods For Trimming Photoresist Features

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261620A (en) 1997-03-19 1998-09-29 Hitachi Ltd Surface treater
CN1277293C (en) 2001-07-10 2006-09-27 东京毅力科创株式会社 Dry etching method
JP2004134553A (en) 2002-10-10 2004-04-30 Sony Corp Process for forming resist pattern and process for fabricating semiconductor device
JP4369203B2 (en) 2003-03-24 2009-11-18 信越化学工業株式会社 Antireflection film material, substrate having antireflection film, and pattern forming method
JP2004294638A (en) 2003-03-26 2004-10-21 Tokyo Ohka Kogyo Co Ltd Negative resist material and method for forming resist pattern
JP4659856B2 (en) 2007-06-08 2011-03-30 東京エレクトロン株式会社 Method for forming fine pattern
JP5236983B2 (en) 2007-09-28 2013-07-17 東京エレクトロン株式会社 Semiconductor device manufacturing method, semiconductor device manufacturing apparatus, control program, and program storage medium
JP2010205967A (en) 2009-03-04 2010-09-16 Tokyo Electron Ltd Plasma etching method, plasma etching device, and computer storage medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110183269A1 (en) * 2010-01-25 2011-07-28 Hongbin Zhu Methods Of Forming Patterns, And Methods For Trimming Photoresist Features

Cited By (268)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120164846A1 (en) * 2010-12-28 2012-06-28 Asm Japan K.K. Method of Forming Metal Oxide Hardmask
US8901016B2 (en) * 2010-12-28 2014-12-02 Asm Japan K.K. Method of forming metal oxide hardmask
US9171716B2 (en) 2010-12-28 2015-10-27 Asm Japan K.K. Method of forming metal oxide hardmask
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
US11967488B2 (en) 2013-02-01 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor
CN104701159A (en) * 2013-12-10 2015-06-10 东京毅力科创株式会社 Etching method
US9373698B2 (en) 2013-12-27 2016-06-21 Samsung Electronics Co., Ltd. Methods of manufacturing semiconductor devices and electronic devices
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US9379019B2 (en) 2014-10-06 2016-06-28 Samsung Electronics Co., Ltd. Methods of manufacturing a semiconductor device
EP3007205A1 (en) * 2014-10-07 2016-04-13 Tokyo Electron Limited Workpiece processing method
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10804099B2 (en) 2014-11-24 2020-10-13 Lam Research Corporation Selective inhibition in atomic layer deposition of silicon-containing films
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10141505B2 (en) 2015-09-24 2018-11-27 Lam Research Corporation Bromine containing silicon precursors for encapsulation layers
US11233133B2 (en) 2015-10-21 2022-01-25 Asm Ip Holding B.V. NbMC layers
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11956977B2 (en) 2015-12-29 2024-04-09 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11101370B2 (en) 2016-05-02 2021-08-24 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
CN105977148A (en) * 2016-07-01 2016-09-28 深圳市华星光电技术有限公司 Method for manufacturing insulating layer, method for manufacturing array and array substrate
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11094582B2 (en) 2016-07-08 2021-08-17 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11749562B2 (en) 2016-07-08 2023-09-05 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11107676B2 (en) 2016-07-28 2021-08-31 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11205585B2 (en) 2016-07-28 2021-12-21 Asm Ip Holding B.V. Substrate processing apparatus and method of operating the same
US11694892B2 (en) 2016-07-28 2023-07-04 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10629435B2 (en) 2016-07-29 2020-04-21 Lam Research Corporation Doped ALD films for semiconductor patterning applications
US10074543B2 (en) 2016-08-31 2018-09-11 Lam Research Corporation High dry etch rate materials for semiconductor patterning applications
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10832908B2 (en) 2016-11-11 2020-11-10 Lam Research Corporation Self-aligned multi-patterning process flow with ALD gapfill spacer mask
US10454029B2 (en) 2016-11-11 2019-10-22 Lam Research Corporation Method for reducing the wet etch rate of a sin film without damaging the underlying substrate
WO2018089534A1 (en) * 2016-11-14 2018-05-17 Lam Research Corporation Method for high modulus ald sio2 spacer
US10134579B2 (en) 2016-11-14 2018-11-20 Lam Research Corporation Method for high modulus ALD SiO2 spacer
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11851755B2 (en) 2016-12-15 2023-12-26 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11970766B2 (en) 2016-12-15 2024-04-30 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11001925B2 (en) 2016-12-19 2021-05-11 Asm Ip Holding B.V. Substrate processing apparatus
US11251035B2 (en) 2016-12-22 2022-02-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10615368B2 (en) * 2017-01-09 2020-04-07 Applied Materials, Inc. Encapsulating film stacks for OLED applications with desired profile control
US20180198091A1 (en) * 2017-01-09 2018-07-12 Applied Materials, Inc. Encapsulating film stacks for oled applications with desired profile control
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10109722B2 (en) 2017-03-02 2018-10-23 Globalfoundries Inc. Etch-resistant spacer formation on gate structure
US11658030B2 (en) 2017-03-29 2023-05-23 Asm Ip Holding B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11976361B2 (en) 2017-06-28 2024-05-07 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11164955B2 (en) 2017-07-18 2021-11-02 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11695054B2 (en) 2017-07-18 2023-07-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11004977B2 (en) 2017-07-19 2021-05-11 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11581220B2 (en) 2017-08-30 2023-02-14 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11069510B2 (en) 2017-08-30 2021-07-20 Asm Ip Holding B.V. Substrate processing apparatus
US10658172B2 (en) 2017-09-13 2020-05-19 Lam Research Corporation Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer
US10269559B2 (en) 2017-09-13 2019-04-23 Lam Research Corporation Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11094546B2 (en) 2017-10-05 2021-08-17 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10515815B2 (en) 2017-11-21 2019-12-24 Lam Research Corporation Atomic layer deposition and etch in a single plasma chamber for fin field effect transistor formation
US10734238B2 (en) 2017-11-21 2020-08-04 Lam Research Corporation Atomic layer deposition and etch in a single plasma chamber for critical dimension control
US10658174B2 (en) 2017-11-21 2020-05-19 Lam Research Corporation Atomic layer deposition and etch for reducing roughness
US11170997B2 (en) 2017-11-21 2021-11-09 Lam Research Corporation Atomic layer deposition and etch for reducing roughness
US11211253B2 (en) 2017-11-21 2021-12-28 Lam Research Corportation Atomic layer deposition and etch in a single plasma chamber for critical dimension control
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11682572B2 (en) 2017-11-27 2023-06-20 Asm Ip Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11127617B2 (en) 2017-11-27 2021-09-21 Asm Ip Holding B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11972944B2 (en) 2018-01-19 2024-04-30 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US10446394B2 (en) * 2018-01-26 2019-10-15 Lam Research Corporation Spacer profile control using atomic layer deposition in a multiple patterning process
US11735414B2 (en) 2018-02-06 2023-08-22 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11404275B2 (en) 2018-03-02 2022-08-02 Lam Research Corporation Selective deposition using hydrolysis
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11469098B2 (en) 2018-05-08 2022-10-11 Asm Ip Holding B.V. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
US11908733B2 (en) 2018-05-28 2024-02-20 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11837483B2 (en) 2018-06-04 2023-12-05 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11952658B2 (en) 2018-06-27 2024-04-09 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11814715B2 (en) 2018-06-27 2023-11-14 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11735445B2 (en) 2018-10-31 2023-08-22 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11866823B2 (en) 2018-11-02 2024-01-09 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US11244825B2 (en) 2018-11-16 2022-02-08 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11798999B2 (en) 2018-11-16 2023-10-24 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
CN111254416A (en) * 2018-11-30 2020-06-09 Asm Ip控股有限公司 Method for forming ultraviolet radiation responsive metal oxide containing film
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11769670B2 (en) 2018-12-13 2023-09-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11959171B2 (en) 2019-01-17 2024-04-16 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11127589B2 (en) 2019-02-01 2021-09-21 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11798834B2 (en) 2019-02-20 2023-10-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11615980B2 (en) 2019-02-20 2023-03-28 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11114294B2 (en) 2019-03-08 2021-09-07 Asm Ip Holding B.V. Structure including SiOC layer and method of forming same
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11901175B2 (en) 2019-03-08 2024-02-13 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
US11453946B2 (en) 2019-06-06 2022-09-27 Asm Ip Holding B.V. Gas-phase reactor system including a gas detector
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11908684B2 (en) 2019-06-11 2024-02-20 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
US11746414B2 (en) 2019-07-03 2023-09-05 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11876008B2 (en) 2019-07-31 2024-01-16 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11898242B2 (en) 2019-08-23 2024-02-13 Asm Ip Holding B.V. Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11827978B2 (en) 2019-08-23 2023-11-28 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11976359B2 (en) 2020-01-06 2024-05-07 Asm Ip Holding B.V. Gas supply assembly, components thereof, and reactor system including same
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11837494B2 (en) 2020-03-11 2023-12-05 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11961741B2 (en) 2020-03-12 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11959168B2 (en) 2020-04-29 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11798830B2 (en) 2020-05-01 2023-10-24 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
CN117135994A (en) * 2023-10-25 2023-11-28 致真存储(北京)科技有限公司 Method for manufacturing semiconductor device and semiconductor device

Also Published As

Publication number Publication date
US8298951B1 (en) 2012-10-30

Similar Documents

Publication Publication Date Title
US8298951B1 (en) Footing reduction using etch-selective layer
TWI422995B (en) A method of forming a mask pattern, a method of forming a fine pattern, and a film forming apparatus
KR100858877B1 (en) Method for fabricating semiconductor device
US9269590B2 (en) Spacer formation
TWI405244B (en) Methods of fabricating substrates
US20110183269A1 (en) Methods Of Forming Patterns, And Methods For Trimming Photoresist Features
US20070082483A1 (en) Method of etching carbon-containing layer and method of fabricating semiconductor device
KR101322112B1 (en) Method of forming mask pattern
US20030219988A1 (en) Ashable layers for reducing critical dimensions of integrated circuit features
US6589715B2 (en) Process for depositing and developing a plasma polymerized organosilicon photoresist film
KR20190112157A (en) Methods for Reducing Pattern Transfer and Lithographic Defects
WO2022100070A1 (en) Photoresist treatment method and self-aligned double patterning method
JP2005045053A (en) Method for manufacturing semiconductor device
US20080194107A1 (en) Method of manufacturing semiconductor device
US10957550B2 (en) Semiconductor structure and formation method thereof
KR20120096903A (en) Pattern forming method and semiconductor device
KR100893675B1 (en) Method of forming an amorphous carbon film and method of manufacturing semiconductor device using the same
TWI801459B (en) Technique for multi-patterning substrates
KR20220010438A (en) Structures and methods for use in photolithography
US7501679B2 (en) Flash memory device and method for fabricating the same
JP3865323B2 (en) Etching method and semiconductor device manufacturing method
US20240153770A1 (en) Method of Profile Control for Semiconductor Manufacturing
KR101951456B1 (en) A new etching method for forming a fine silicon pattern in a semiconductor manufacturing process
US20220013360A1 (en) Method for forming self-aligned double pattern and semiconductor structures
KR20080085280A (en) Method for forming pattern in semiconductor device

Legal Events

Date Code Title Description
AS Assignment

Owner name: ASM JAPAN K.K., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NAKANO, RYU;REEL/FRAME:026115/0032

Effective date: 20110412

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12