US20080096369A1 - Apparatus and method for high-throughput chemical vapor deposition - Google Patents

Apparatus and method for high-throughput chemical vapor deposition Download PDF

Info

Publication number
US20080096369A1
US20080096369A1 US11/573,325 US57332505A US2008096369A1 US 20080096369 A1 US20080096369 A1 US 20080096369A1 US 57332505 A US57332505 A US 57332505A US 2008096369 A1 US2008096369 A1 US 2008096369A1
Authority
US
United States
Prior art keywords
deposition
chamber
susceptor
substrate
purging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/573,325
Other languages
English (en)
Inventor
Piotr Strzyzewski
Peter Baumann
Marcus Schumacher
Johannes Lindner
Antonio Meequilda Kusters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aixtron Inc
Original Assignee
Aixtron Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aixtron Inc filed Critical Aixtron Inc
Assigned to AIXTRON INC. reassignment AIXTRON INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAUMANN, PETER, SCHUMACHER, MARCUS, LINDNER, JOHANNES, STRZEWSKI, PIOTR
Publication of US20080096369A1 publication Critical patent/US20080096369A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C3/00Apparatus in which the work is brought into contact with a bulk quantity of liquid or other fluent material
    • B05C3/18Apparatus in which the work is brought into contact with a bulk quantity of liquid or other fluent material only one side of the work coming into contact with the liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • the present invention relates to an apparatus for depositing at least one in particular thin layer on at least one substrate, having a process chamber which is disposed in a reactor housing and has a movable susceptor which carries the at least one substrate, into which process chamber there open out a plurality of gas feed lines for the introduction of process gases which are different from one another and contain layer-forming components, it being possible for these to be introduced into the process chamber in successive process steps in order for the layer-forming components to be deposited on the substrate.
  • the invention also relates to a method of depositing at least one in particular thin layer on at least one substrate in a process chamber which is disposed in a reactor housing, in which the substrate is carried by a movable susceptor and into which are introduced different process gases which contain layer-forming components which are deposited on the substrate in successive process steps.
  • High-k dielectric materials are to replace SiO 2 .
  • Possible candidates for these materials are, for example, materials containing aluminum oxide or hafnium oxide.
  • these simple oxides are probably not capable of satisfying all the requirements they have to meet in respect of a high dielectric constant, namely a low leakage current density and a high thermal stability. For this reason, it would appear to be necessary to use more complex mixtures of these or similar metal oxides or dopings of these materials.
  • polysilicon will be replaced by new materials as electrodes. Producing these material systems on an industrial scale requires a deposition method which is cost-effective, efficient in manufacture, highly reproducible and allows high-purity uniform films with precisely defined interfaces and also high conformality on structured substrates.
  • MOCVD metal-organic chemical vapor deposition
  • ALD Atomic Layer Deposition
  • MOCVD is no longer suitable for depositing the new complex high-k layers uniformly in a thickness of 10 nm on small or large substrates.
  • MOCVD does not achieve the higher level of conformality on structured substrates as is necessary.
  • ALD different gaseous reactive substances are fed to the substrate alternately and repeatedly. This allows the deposition of mono layers based on alternating, self-limiting surface reactions. The alternating cycles, in which different gaseous reactants are directed into the reactor, are separated from one another by pumping steps and purging steps. This requires complicated switching and valve arrangements.
  • the limited response time of the valves additionally results in delays.
  • the pumping and purging cycles take up most of the process time without contributing to film growth itself.
  • the reactive gases flow parallel to the substrate surface, so that the growth rate decreases and longer cycle lengths are required.
  • Claim 1 provides, first and foremost, that the process chamber has a plurality of deposition chambers which are separate from one another and into which different gas feed lines open out for the introduction of individual gas compositions, and to which the substrate can be conveyed successively by the movement of the susceptor, in order for different layers or layer components to be deposited there.
  • Claim 25 provides, first and foremost that the different process gases are introduced into deposition chambers of the process chamber which are separate from one another, and the at least one substrate is conveyed to the individual deposition chambers one after the other by the movement of the susceptor, and one of the process steps is carried out in each deposition chamber.
  • the invention thus relates to a method and an apparatus which compensate for one or more of the abovementioned problems of the prior art.
  • the substrates are alternately exposed to different chambers which are filled with different gaseous reaction material. These chambers are preferably separated from one another by a dynamic gas-flow seal, so that mixing of the gases of adjacent chambers is significantly reduced.
  • the gases are conducted to the substrates independently of one another. Combining this with a contact-free vaporization system and vaporization method using non-continuous injection of liquid or dissolved metal precursors into a heated volume, in order to convert the precursors into the gas phase and to feed them to the chambers of the reactor, allows a high level of gas-phase saturation.
  • the precursors may also be supplied with a high level of gas-phase saturation via continuous vaporization. Methods in this respect may use bubblers or other gas-delivery systems or methods. The precursors may be supplied to the process chamber using a combination of these apparatuses or methods.
  • FIG. 1 shows a schematic illustration of the construction of a system with two vacuum chambers which are connected to a vacuum-transfer chamber containing a robot arm. It is also possible for a relatively large number of reactor housings to be connected to the transfer chamber and/or the vacuum system;
  • FIG. 2 shows a roughly schematic illustration of a cross-section through an apparatus according to the invention
  • FIG. 3 shows, likewise in roughly schematic form, a cross-section through the process chamber of an apparatus according to the invention, the cross-section being taken along the section line which is designated III-III and is illustrated in FIG. 4 ;
  • FIG. 4 shows a section along line IV-IV in FIG. 3 , through a process chamber top, which forms the chamber-carrying body;
  • FIG. 5 shows a section like that in FIG. 4 for a further exemplary embodiment
  • FIG. 6 shows a section like that in FIG. 4 for a further exemplary embodiment.
  • a deposition-chamber body 1 is disposed within a vacuum chamber 2 and is produced, preferably from metal or quartz, with an adjacent vacuum flange 3 and a substrate loading and unloading door 4 .
  • One or more of these chambers 2 may be associated with an external loading door 8 of a substrate loading system 5 .
  • One or more separating doors 48 may be provided within the loading door 47 or the external loading door 8 .
  • the loading system 5 contains a transfer chamber with an automatic robot arm 7 , which is capable of handling the substrates 9 for loading and unloading purposes.
  • the body designated by reference numeral 1 forms the top 1 of a process chamber and is disposed in the reactor housing 2 . It has a multiplicity of deposition chambers 11 and a multiplicity of purging and pumping chambers 40 .
  • the part which is adjacent to the chambers is a movable susceptor 20 with substrate holders 13 disposed therein and with a substrate-lifting mechanism 14 .
  • the movable susceptor 20 is coupled to a horizontal drive mechanism 15 and to a vertical lifting mechanism 16 . Both the chamber body 1 and the movable susceptor 20 can be heated by at least one external radiation heater or a built-in resistance heater.
  • the chamber body 1 and susceptor 20 are preferably of circular-disk form. Other shapings however, such as a rectangular shape, are also possible.
  • the susceptor 20 with integrated substrate holders 13 and substrate-lifting arrangements 14 can be moved, preferably rotated, in the horizontal direction in relation to the chamber body 1 , a narrow gap 21 remaining between the susceptor 20 and chamber body 1 .
  • the narrow gap 21 serves as a dynamic seal 22 in order significantly to avoid the mixing of gases in the deposition chambers 11 , 11 ′ and/or the pumping or purging chambers 40 , so that the gases can be delivered to the substrates independently of one another.
  • the gap is purged by means of compressed inert gas which is introduced through an inlet channel 24 and is removed through an outlet channel 25 , at reduced pressure.
  • the thickness s of the gap 21 is selected such that minimal gas streams can pass out of the deposition chambers 11 , 11 ′.
  • the substrate 9 may be placed in a depression, so that it preferably has its surface aligned with the surface 20 ′ of the substrate holder 20 .
  • the controlled pressure within the gas gap may be slightly greater than the process pressure within the deposition chamber 11 and significantly higher than the pressure within the adjacent pumping and purging chamber 40 .
  • the gas gap located in the center of the chamber body 1 , isolates the chambers 11 , 11 ′ and 40 from the rotation or translation mechanism.
  • a multiplicity of deposition chambers 11 , 11 ′ and pumping and purging chambers 40 are disposed within the chamber body 1 . Each of these chambers is separated from the others in each case by a narrow gap 21 filled with an inert gas.
  • Each of the suitable and preferably cup-like or box-like deposition chambers 11 , 11 ′ has a base surface 56 and at least three or four preferably vertically oriented side walls 32 .
  • Provided adjacent to the deposition chambers 11 , 11 ′ in the chamber body 1 are one or more infeed channels 34 for one or more reactive gases, these channels opening out into the chamber by way of suitable endpieces 38 , for example nozzles.
  • These infeed channels 34 are connected to external reactive-gas lines or to a vacuum system and to a gas mixing system.
  • the gas is removed through outlet channels 35 . All the outlet channels 35 are connected to a main vacuum line and a vacuum pump.
  • a number of purging-gas-inlet channels 24 and purging-gas-outlet channels are provided for the purging chambers 40 .
  • the upper part of a purging chamber 40 has an opening 42 for an inlet flange 43 of a pump, preferably a turbopump.
  • a portion of a movable susceptor 20 is adjacent to each deposition chamber 11 , 11 ′ or purging chamber 40 .
  • the susceptor 20 may carry a substrate 9 which is disposed on a substrate holder 13 , which preferably has an “electrostatic chuck”, that is to say an electrostatic substrate mount.
  • This substrate holder may be provided with lifting pins 14 of a lifting mechanism 16 .
  • each of these deposition chambers has a circular outline here.
  • the outline may also be configured differently, as, for example, FIG. 6 shows. It is also possible in principle, for the outline of a deposition chamber 11 , 11 ′ and/or of the purging chambers 40 located between the two deposition chambers 11 , 11 ′ to be rectangular, in particular, square.
  • each of the plurality of substrate holders may be assigned a deposition chamber 11 , 11 ′ and/or a purging chamber 40 , so that in a certain rotary position of the susceptor, each substrate 9 is located beneath a deposition chamber 11 , 11 ′ or beneath a purging chamber 40 .
  • the susceptor may be rotated in stepwise operation. It is rotated on at regular intervals and, in rotary positions in which each substrate 9 is associated with a chamber 11 , 11 ′, 40 , is stopped for a certain period of time, during which time it is possible for the chamber-specific processes to take place on the surface of the substrate 9 .
  • the deposition chambers 11 , 11 ′ have outlines which are larger than the outlines of the substrates 9 , so that this apparatus can also be operated in a stepwise manner.
  • the purging chambers 40 here are of considerably narrower configuration. They serve substantially for generating a gas seal between the individual deposition chambers 11 , 11 ′, so that the different process gases of the individual deposition chambers 11 , 11 ′ do not mix.
  • the purging chamber 40 here has a substantially cross-like structure.
  • the gas inlet for the purging gas 29 may be disposed, for example, in the center here.
  • the purging gas it is also possible, however, for the purging gas to be introduced into the purging chamber 40 through the inlet 24 , which is located at the radially outer end of the respective purging chamber 40 .
  • the purging gas it is also possible for each of the two channels 24 , 29 to be used as outlet, so that the purging gas can flow through the purging chamber 40 in the radial direction.
  • each of the four different deposition chambers 11 , 11 ′ has an infeed channel 34 , 34 ′ through which the individual process gas is introduced into the deposition chambers 11 , 11 ′.
  • the shaping of the cross-section of the infeed channel 34 , 34 ′ is only indicated. A special shaping may be provided here in order to ensure homogenous gas-phase distribution within the deposition chambers 11 , 11 ′. The same applies to the shaping of the respective outlet channel 35 , 35 ′.
  • the flows through these two channels 34 , 34 ′; 35 , 35 ′ are set such that as little gas as possible enters into the gap 21 and no purging gas penetrates through the gap 21 into the deposition chamber 11 , 11 ′ by way of the nozzles 29 , 35 .
  • the susceptor 20 is moved, in particular rotated into a loading position for a first substrate holder 13 .
  • the susceptor 20 stops when the first substrate holder 13 is positioned in front of the loading door 4 .
  • the lifting pins 14 are then raised.
  • the gas-separating door 48 opens.
  • a robot arm 7 carrying a substrate 9 then enters into the first cavity 11 and places the substrate 9 on the pins 14 above the substrate holder 13 .
  • These pins are lowered by means of the lifting mechanism 16 , so that the substrate rests on the holder 13 .
  • the substrate holder 13 is preferably an electrostatic substrate holder. However, it may also have mechanical clamping means for the substrate.
  • the substrate holder 20 is then moved into a further loading position for the next substrate holder 13 in relation to the robot arm 7 .
  • loading has been completed.
  • the separating door 48 closes and the empty robot arm 7 moves back into a neutral position.
  • This type of loading operation described relates to the batchwise method.
  • the continuous method requires an alternative loading/unloading operation, which is referred to as “hot swap of substrates”: In this case, the already processed substrate is removed from the robot arm and a blank substrate is positioned on the empty substrate holder.
  • a high-speed twin-arm robot is preferably used for this purpose.
  • the substrates enter into a deposition chamber 11 at a certain point in time.
  • the temperature of the chamber and the substrate temperature within the chamber 11 are kept constant and are adapted to the desired chemical reaction within the chamber.
  • the reactive gas or the reactive vapor forms a thin layer of material on that surface of the substrate which is oriented toward the deposition chamber 11 .
  • the substrate leaves the deposition chamber 11 and moves to a pumping/purging chamber 40 and/or to the next deposition chamber 11 ′.
  • a multiplicity of dynamic sealing regions 22 are provided. These act as a narrow gap 21 between the chamber body 1 and susceptor 20 . This gap is purged continuously by an inert gas. The inert gas is delivered through the channels 29 . A suitable pressure gradient is maintained between the gap, the chambers and the interior of the vacuum recipient. The gap forms a dynamic vacuum seal which prevents reactive gases from flowing between the different cavities 11 and the cavity of the vacuum recipient outside the reactor body 1 .
  • the outline of the purging chambers 40 and/or of the different deposition chambers 11 , 11 ′ is smaller, as seen in the circumferential direction, than the diameter of the circular-disk-form substrates 9 .
  • This apparatus allows continuous rotation of the susceptor 20 .
  • the outline of the deposition chambers 11 , 11 ′ and/or of the purging chambers 40 is selected such that each point of the substrate has an equal residence time within the purging chamber 40 and/or the deposition chambers 11 , 11 ′.
  • the outline is of circular-segment form in particular.
  • EP 1 320 636 A1 is also a suitable vaporizer, for which reason said document is also included in full in the disclosure content of this application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
US11/573,325 2004-08-06 2005-07-01 Apparatus and method for high-throughput chemical vapor deposition Abandoned US20080096369A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102004038539 2004-08-06
DE102004038539.4 2004-08-06
DE102004056170A DE102004056170A1 (de) 2004-08-06 2004-11-20 Vorrichtung und Verfahren zur chemischen Gasphasenabscheidung mit hohem Durchsatz
DE102004056170.2 2004-11-20
PCT/EP2005/053134 WO2006015915A1 (de) 2004-08-06 2005-07-01 Vorrichtung und verfahren zur chemischen gasphasenabscheidung mit hohem durchsatz

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/053134 A-371-Of-International WO2006015915A1 (de) 2004-08-06 2005-07-01 Vorrichtung und verfahren zur chemischen gasphasenabscheidung mit hohem durchsatz

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/038,669 Division US8906456B2 (en) 2004-08-06 2013-09-26 Apparatus and method for high-throughput chemical vapor deposition

Publications (1)

Publication Number Publication Date
US20080096369A1 true US20080096369A1 (en) 2008-04-24

Family

ID=35033498

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/573,325 Abandoned US20080096369A1 (en) 2004-08-06 2005-07-01 Apparatus and method for high-throughput chemical vapor deposition
US14/038,669 Active US8906456B2 (en) 2004-08-06 2013-09-26 Apparatus and method for high-throughput chemical vapor deposition

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/038,669 Active US8906456B2 (en) 2004-08-06 2013-09-26 Apparatus and method for high-throughput chemical vapor deposition

Country Status (7)

Country Link
US (2) US20080096369A1 (ja)
EP (1) EP1774057B1 (ja)
JP (1) JP2008509547A (ja)
KR (1) KR101318940B1 (ja)
DE (2) DE102004056170A1 (ja)
TW (1) TW200609378A (ja)
WO (1) WO2006015915A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090117272A1 (en) * 2007-09-28 2009-05-07 Osram Opto Semiconductors Gmbh Layer Depositing Device and Method for Operating it
US20100055347A1 (en) * 2008-08-29 2010-03-04 Tokyo Electron Limited Activated gas injector, film deposition apparatus, and film deposition method
US20100050942A1 (en) * 2008-08-29 2010-03-04 Tokyo Electron Limited Film deposition apparatus and substrate process apparatus
US20100055315A1 (en) * 2008-09-04 2010-03-04 Tokyo Electron Limited Film deposition apparatus, substrate process apparatus, film deposition method, and computer readable storage medium
US20100116210A1 (en) * 2008-11-10 2010-05-13 Tokyo Electron Limited Gas injector and film deposition apparatus
US20110126985A1 (en) * 2009-12-02 2011-06-02 Tokyo Electron Limited Substrate processing apparatus
CN102094187A (zh) * 2009-12-10 2011-06-15 东京毅力科创株式会社 成膜装置
US20110159187A1 (en) * 2009-12-25 2011-06-30 Tokyo Electron Limited Film deposition apparatus and film deposition method
WO2013157057A1 (en) * 2012-04-18 2013-10-24 Furukawa Co., Ltd. Vapor deposition apparatus and method associated
US8734514B2 (en) 2011-06-16 2014-05-27 Zimmer, Inc. Micro-alloyed porous metal having optimized chemical composition and method of manufacturing the same
US20140242810A1 (en) * 2013-02-27 2014-08-28 Hitachi Kokusai Electric, Inc. Substrate processing apparatus and method of supplying and exhausting gas
US20150031204A1 (en) * 2013-07-24 2015-01-29 Tokyo Electron Limited Method of depositing film
US8956683B2 (en) 2011-06-16 2015-02-17 Zimmer, Inc. Chemical vapor infiltration apparatus and process
US20160027674A1 (en) * 2013-03-15 2016-01-28 Kevin Griffin Carousel Gas Distribution Assembly With Optical Measurements
US20160122873A1 (en) * 2014-10-29 2016-05-05 Tokyo Electron Limited Film forming apparatus and shower head
US9365928B2 (en) 2014-04-24 2016-06-14 Hitachi Kokusai Electric Inc. Substrate processing apparatus, method for manufacturing semiconductor device and computer-readable recording medium
US20160273105A1 (en) * 2015-03-17 2016-09-22 Asm Ip Holding B.V. Atomic layer deposition apparatus
US20170335453A1 (en) * 2016-05-23 2017-11-23 Tokyo Electron Limited Film deposition apparatus
CN108411282A (zh) * 2018-05-18 2018-08-17 中国科学院宁波材料技术与工程研究所 高通量cvd装置及其沉积方法
US10072333B2 (en) * 2013-07-16 2018-09-11 3M Innovative Properties Company Sheet coating method
US10508340B2 (en) * 2013-03-15 2019-12-17 Applied Materials, Inc. Atmospheric lid with rigid plate for carousel processing chambers
US11473196B2 (en) * 2020-03-25 2022-10-18 Kokusai Electric Corporation Substrate processing apparatus

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8043432B2 (en) * 2007-02-12 2011-10-25 Tokyo Electron Limited Atomic layer deposition systems and methods
EP2042619A3 (de) * 2007-09-28 2010-06-02 OSRAM Opto Semiconductors GmbH Beschichtungsvorrichtung und Verfahren zu deren Betrieb
JP4661990B2 (ja) * 2008-06-27 2011-03-30 東京エレクトロン株式会社 成膜装置、成膜方法、基板処理装置及び記憶媒体
JP5310283B2 (ja) * 2008-06-27 2013-10-09 東京エレクトロン株式会社 成膜方法、成膜装置、基板処理装置及び記憶媒体
JP5195176B2 (ja) * 2008-08-29 2013-05-08 東京エレクトロン株式会社 成膜装置
JP5195676B2 (ja) * 2008-08-29 2013-05-08 東京エレクトロン株式会社 成膜装置、基板処理装置、成膜方法及び記憶媒体
JP5262452B2 (ja) * 2008-08-29 2013-08-14 東京エレクトロン株式会社 成膜装置及び基板処理装置
JP5549754B2 (ja) * 2008-08-29 2014-07-16 東京エレクトロン株式会社 成膜装置
JP5280964B2 (ja) * 2008-09-04 2013-09-04 東京エレクトロン株式会社 成膜装置、基板処理装置、成膜方法及び記憶媒体
JP5253932B2 (ja) 2008-09-04 2013-07-31 東京エレクトロン株式会社 成膜装置、基板処理装置、成膜方法及び記憶媒体
JP5031013B2 (ja) * 2008-11-19 2012-09-19 東京エレクトロン株式会社 成膜装置、成膜装置のクリーニング方法、プログラム、プログラムを記憶するコンピュータ可読記憶媒体
JP2010126797A (ja) * 2008-11-28 2010-06-10 Tokyo Electron Ltd 成膜装置、半導体製造装置、これらに用いられるサセプタ、プログラム、およびコンピュータ可読記憶媒体
JP5056735B2 (ja) 2008-12-02 2012-10-24 東京エレクトロン株式会社 成膜装置
JP5107285B2 (ja) * 2009-03-04 2012-12-26 東京エレクトロン株式会社 成膜装置、成膜方法、プログラム、およびコンピュータ可読記憶媒体
US20100227059A1 (en) 2009-03-04 2010-09-09 Tokyo Electron Limited Film deposition apparatus, film deposition method, and computer readable storage medium
JP5141607B2 (ja) * 2009-03-13 2013-02-13 東京エレクトロン株式会社 成膜装置
JP5181100B2 (ja) * 2009-04-09 2013-04-10 東京エレクトロン株式会社 基板処理装置、基板処理方法及び記憶媒体
JP5131240B2 (ja) * 2009-04-09 2013-01-30 東京エレクトロン株式会社 成膜装置、成膜方法及び記憶媒体
JP5396264B2 (ja) * 2009-12-25 2014-01-22 東京エレクトロン株式会社 成膜装置
KR101141927B1 (ko) * 2009-12-28 2012-05-11 엘아이지에이디피 주식회사 금속 유기물 화학기상 증착장치
JP5493062B2 (ja) * 2010-04-15 2014-05-14 サムコ株式会社 有機金属気相成長装置
KR101502857B1 (ko) * 2010-12-29 2015-03-18 세메스 주식회사 기판지지부재, 이를 갖는 기판처리장치 및 기판처리방법
JP5403113B2 (ja) * 2012-06-15 2014-01-29 東京エレクトロン株式会社 成膜装置
JP5883154B2 (ja) * 2012-10-11 2016-03-09 東京エレクトロン株式会社 成膜装置
JP5447632B2 (ja) * 2012-11-29 2014-03-19 東京エレクトロン株式会社 基板処理装置
CN104342751B (zh) * 2013-08-02 2017-07-21 北京北方微电子基地设备工艺研究中心有限责任公司 反应腔和mocvd设备
JP5800972B1 (ja) * 2014-09-10 2015-10-28 株式会社日立国際電気 基板処理装置、半導体装置の製造方法、ガス供給ユニット、カートリッジヘッド及びプログラム
JP6062413B2 (ja) * 2014-11-28 2017-01-18 株式会社日立国際電気 基板処理装置、半導体装置の製造方法およびプログラム
KR102369676B1 (ko) 2017-04-10 2022-03-04 삼성디스플레이 주식회사 표시 장치의 제조장치 및 표시 장치의 제조방법
CN110438473B (zh) * 2019-09-06 2022-02-11 左然 一种化学气相沉积装置及方法
CN114855268B (zh) * 2022-05-07 2023-06-30 北京镓纳光电科技有限公司 一种用于多片生长氮化镓及其合金的hvpe设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5338362A (en) * 1992-08-29 1994-08-16 Tokyo Electron Limited Apparatus for processing semiconductor wafer comprising continuously rotating wafer table and plural chamber compartments
US20030082300A1 (en) * 2001-02-12 2003-05-01 Todd Michael A. Improved Process for Deposition of Semiconductor Films
US6821563B2 (en) * 2002-10-02 2004-11-23 Applied Materials, Inc. Gas distribution system for cyclical layer deposition

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN177541B (ja) * 1990-06-29 1997-02-08 Geoffrey Norman Pain
JP3186872B2 (ja) * 1992-11-19 2001-07-11 神港精機株式会社 パルスプラズマcvdによる成膜方法
KR100342991B1 (ko) * 1999-07-13 2002-07-05 박상일 전구체 기화기 모듈 및 전구체 기화장치
DE10057491A1 (de) * 2000-11-20 2002-05-23 Aixtron Ag Vorrichtung und Verfahren zum Zuführen eines in die Gasform gebrachten flüssigen Ausgangsstoffes in einen CVD-Reaktor
US6820570B2 (en) * 2001-08-15 2004-11-23 Nobel Biocare Services Ag Atomic layer deposition reactor
DE10141084A1 (de) * 2001-08-22 2002-11-28 Infineon Technologies Ag Vorrichtung zur Abscheidung von dünnen Schichten auf einem Stubstrat und entsprechendes Verfahren
KR100782529B1 (ko) * 2001-11-08 2007-12-06 에이에스엠지니텍코리아 주식회사 증착 장치
US20050084610A1 (en) * 2002-08-13 2005-04-21 Selitser Simon I. Atmospheric pressure molecular layer CVD
KR100497748B1 (ko) * 2002-09-17 2005-06-29 주식회사 무한 반도체소자 제조용 원자층 증착 장치 및 원자층 증착 방법
US6972055B2 (en) * 2003-03-28 2005-12-06 Finens Corporation Continuous flow deposition system
JP4879509B2 (ja) * 2004-05-21 2012-02-22 株式会社アルバック 真空成膜装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5338362A (en) * 1992-08-29 1994-08-16 Tokyo Electron Limited Apparatus for processing semiconductor wafer comprising continuously rotating wafer table and plural chamber compartments
US20030082300A1 (en) * 2001-02-12 2003-05-01 Todd Michael A. Improved Process for Deposition of Semiconductor Films
US6821563B2 (en) * 2002-10-02 2004-11-23 Applied Materials, Inc. Gas distribution system for cyclical layer deposition

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9080237B2 (en) 2007-09-28 2015-07-14 Osram Opto Semiconductors Gmbh Layer depositing device and method for operating it
US20090117272A1 (en) * 2007-09-28 2009-05-07 Osram Opto Semiconductors Gmbh Layer Depositing Device and Method for Operating it
US20100055347A1 (en) * 2008-08-29 2010-03-04 Tokyo Electron Limited Activated gas injector, film deposition apparatus, and film deposition method
US20100050942A1 (en) * 2008-08-29 2010-03-04 Tokyo Electron Limited Film deposition apparatus and substrate process apparatus
US8808456B2 (en) 2008-08-29 2014-08-19 Tokyo Electron Limited Film deposition apparatus and substrate process apparatus
US9053909B2 (en) 2008-08-29 2015-06-09 Tokyo Electron Limited Activated gas injector, film deposition apparatus, and film deposition method
US8518183B2 (en) 2008-09-04 2013-08-27 Tokyo Electron Limited Film deposition apparatus, substrate process apparatus, film deposition method, and computer readable storage medium
US20100055315A1 (en) * 2008-09-04 2010-03-04 Tokyo Electron Limited Film deposition apparatus, substrate process apparatus, film deposition method, and computer readable storage medium
US20100116210A1 (en) * 2008-11-10 2010-05-13 Tokyo Electron Limited Gas injector and film deposition apparatus
US8845857B2 (en) 2009-12-02 2014-09-30 Tokyo Electron Limited Substrate processing apparatus
US20110126985A1 (en) * 2009-12-02 2011-06-02 Tokyo Electron Limited Substrate processing apparatus
US20110139074A1 (en) * 2009-12-10 2011-06-16 Tokyo Electron Limited Film deposition apparatus
CN102094187A (zh) * 2009-12-10 2011-06-15 东京毅力科创株式会社 成膜装置
US8721790B2 (en) 2009-12-10 2014-05-13 Tokyo Electron Limited Film deposition apparatus
US20110159187A1 (en) * 2009-12-25 2011-06-30 Tokyo Electron Limited Film deposition apparatus and film deposition method
US8956683B2 (en) 2011-06-16 2015-02-17 Zimmer, Inc. Chemical vapor infiltration apparatus and process
US8734514B2 (en) 2011-06-16 2014-05-27 Zimmer, Inc. Micro-alloyed porous metal having optimized chemical composition and method of manufacturing the same
US9398953B2 (en) 2011-06-16 2016-07-26 Zimmer, Inc. Micro-alloyed porous metal having optimized chemical composition and method of manufacturing the same
US9277998B2 (en) 2011-06-16 2016-03-08 Zimmer, Inc. Chemical vapor infiltration apparatus and process
US9273396B2 (en) 2012-04-18 2016-03-01 Furukawa Co., Ltd. Vapor deposition apparatus and method associated
WO2013157057A1 (en) * 2012-04-18 2013-10-24 Furukawa Co., Ltd. Vapor deposition apparatus and method associated
KR101618495B1 (ko) 2012-04-18 2016-05-04 후루카와 기카이 긴조쿠 가부시키가이샤 기상 증착 장치 및 막 증착 방법
CN104246006A (zh) * 2012-04-18 2014-12-24 古河机械金属株式会社 气相沉积装置以及相关的方法
US20140242810A1 (en) * 2013-02-27 2014-08-28 Hitachi Kokusai Electric, Inc. Substrate processing apparatus and method of supplying and exhausting gas
US20160027674A1 (en) * 2013-03-15 2016-01-28 Kevin Griffin Carousel Gas Distribution Assembly With Optical Measurements
US10508340B2 (en) * 2013-03-15 2019-12-17 Applied Materials, Inc. Atmospheric lid with rigid plate for carousel processing chambers
US10072333B2 (en) * 2013-07-16 2018-09-11 3M Innovative Properties Company Sheet coating method
US9748104B2 (en) * 2013-07-24 2017-08-29 Tokyo Electron Limited Method of depositing film
US20150031204A1 (en) * 2013-07-24 2015-01-29 Tokyo Electron Limited Method of depositing film
US9365928B2 (en) 2014-04-24 2016-06-14 Hitachi Kokusai Electric Inc. Substrate processing apparatus, method for manufacturing semiconductor device and computer-readable recording medium
US20160122873A1 (en) * 2014-10-29 2016-05-05 Tokyo Electron Limited Film forming apparatus and shower head
US10844489B2 (en) * 2014-10-29 2020-11-24 Tokyo Electron Limited Film forming apparatus and shower head
US20160273105A1 (en) * 2015-03-17 2016-09-22 Asm Ip Holding B.V. Atomic layer deposition apparatus
US10954597B2 (en) * 2015-03-17 2021-03-23 Asm Ip Holding B.V. Atomic layer deposition apparatus
US20170335453A1 (en) * 2016-05-23 2017-11-23 Tokyo Electron Limited Film deposition apparatus
US11274372B2 (en) * 2016-05-23 2022-03-15 Tokyo Electron Limited Film deposition apparatus
CN108411282A (zh) * 2018-05-18 2018-08-17 中国科学院宁波材料技术与工程研究所 高通量cvd装置及其沉积方法
US11473196B2 (en) * 2020-03-25 2022-10-18 Kokusai Electric Corporation Substrate processing apparatus
US11926893B2 (en) 2020-03-25 2024-03-12 Kokusai Electric Corporation Substrate processing apparatus, substrate processing method and non-transitory computer-readable recording medium therefor

Also Published As

Publication number Publication date
TW200609378A (en) 2006-03-16
EP1774057B1 (de) 2009-09-02
KR20070039958A (ko) 2007-04-13
DE102004056170A1 (de) 2006-03-16
EP1774057A1 (de) 2007-04-18
WO2006015915A1 (de) 2006-02-16
JP2008509547A (ja) 2008-03-27
WO2006015915B1 (de) 2007-11-22
DE502005008063D1 (de) 2009-10-15
US20140030434A1 (en) 2014-01-30
US8906456B2 (en) 2014-12-09
KR101318940B1 (ko) 2013-10-17

Similar Documents

Publication Publication Date Title
US8906456B2 (en) Apparatus and method for high-throughput chemical vapor deposition
US11377732B2 (en) Reactant vaporizer and related systems and methods
US7422635B2 (en) Methods and apparatus for processing microfeature workpieces, e.g., for depositing materials on microfeature workpieces
CN100419971C (zh) 衬底处理装置以及半导体器件的制造方法
US6821347B2 (en) Apparatus and method for depositing materials onto microelectronic workpieces
US7056806B2 (en) Microfeature workpiece processing apparatus and methods for controlling deposition of materials on microfeature workpieces
US7699932B2 (en) Reactors, systems and methods for depositing thin films onto microfeature workpieces
CN107267962B (zh) 用于处理多个基板的基板处理***及方法
US7235138B2 (en) Microfeature workpiece processing apparatus and methods for batch deposition of materials on microfeature workpieces
US6861094B2 (en) Methods for forming thin layers of materials on micro-device workpieces
US8187381B2 (en) Process gas delivery for semiconductor process chamber
US20090035946A1 (en) In situ deposition of different metal-containing films using cyclopentadienyl metal precursors
US20030106490A1 (en) Apparatus and method for fast-cycle atomic layer deposition
US20080029028A1 (en) Systems and methods for depositing material onto microfeature workpieces in reaction chambers
TWI392761B (zh) 具設在平面上之前室的氣體分佈器
WO2005042160A2 (en) Reaction system for growing a thin film
US7407892B2 (en) Deposition methods
JP2007531256A (ja) 不連続な前駆体の吐出による金属酸化物等の堆積方法及び装置
EP3093368A1 (en) Chemical vapor deposition device, and chemical vapor deposition method
CN103184429A (zh) 成膜方法
EP2047009B1 (en) Methods and apparatus for the vaporization and delivery of solution precursors for atomic layer deposition
KR101804127B1 (ko) 박막 증착 방법

Legal Events

Date Code Title Description
AS Assignment

Owner name: AIXTRON INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STRZEWSKI, PIOTR;BAUMANN, PETER;SCHUMACHER, MARCUS;AND OTHERS;REEL/FRAME:019422/0195;SIGNING DATES FROM 20070110 TO 20070122

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION