US11073128B1 - Wind aeolipile - Google Patents

Wind aeolipile Download PDF

Info

Publication number
US11073128B1
US11073128B1 US15/709,199 US201715709199A US11073128B1 US 11073128 B1 US11073128 B1 US 11073128B1 US 201715709199 A US201715709199 A US 201715709199A US 11073128 B1 US11073128 B1 US 11073128B1
Authority
US
United States
Prior art keywords
main body
fluid
outlet
wind
hollow interior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/709,199
Inventor
Charles William Van Neste
David Wenzhong Gao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tennessee Technological University
Original Assignee
Tennessee Technological University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tennessee Technological University filed Critical Tennessee Technological University
Priority to US15/709,199 priority Critical patent/US11073128B1/en
Assigned to TENNESSEE TECHNOLOGICAL UNIVERSITY reassignment TENNESSEE TECHNOLOGICAL UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GAO, DAVID WENZHONG, VAN NESTE, CHARLES
Priority to US17/305,249 priority patent/US11619204B2/en
Application granted granted Critical
Publication of US11073128B1 publication Critical patent/US11073128B1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0625Rotors characterised by their aerodynamic shape of the whole rotor, i.e. form features of the rotor unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • F03B3/126Rotors for essentially axial flow, e.g. for propeller turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/05Transmission of mechanical power using hollow exhausting blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • This invention relates generally to the field of deriving energy from wind, and specifically to a wind-energy extraction device that is superior to wind-turbines that employ rotating blades to extract energy from wind.
  • Extant wind-turbines are based on the aerodynamic principles of a wing.
  • the turbine is equipped with wing-shaped turbine blades.
  • pressure differences generated on either side of the blades, in accordance with Bernoulli's Law, create aerodynamic force, or lift. This induces the blades to rotate, and the rotation drives an electric generator.
  • the herein taught invention uses a novel approach to this energy translation problem. It substitutes convergent/divergent, or venturi, nozzles, resembling those such as would be employed by rockets, in place of turbine blades and thereby provides a means by which wind velocity through the device may be amplified.
  • the convergence/divergence as embodied herein may be contained entirely within the nozzle, or may be manifested by convergence of conduit guided fluid flow which diverges only at ejection. But in either case, amplifying this flow-velocity, and commensurately, the ejection velocity at the nozzle, a significant increase in output energy is realized.
  • the increase energy as expresses by the above equation, is not linear function, but is, rather, a function of the cube of the nozzle ejection velocity increase.
  • this invention is able to essentially circumvent the limitations of Betz law by eliminating the employment of precisely the physical components (turbine blades) to which Betz Law applies.
  • Tests were also conducted with respect to an expanded wind-gathering configuration of a horn-shaped inlet extension as in FIG. 7 , below.
  • Test employed inlet airflow velocities of 2, 4, 6, 8, 10, and 12 m/sec and were repeated for various inlet/outlet size ratios.
  • FIG. 8 plots the flow velocity increases, produced for each inlet/outlet size ratio.
  • An object of the invention is to provide a means of deriving energy from fluid flow.
  • An application of this invention is translation of wind energy into useful work or into electrical, mechanical, or hydraulic energy.
  • a device for extracting energy from fluid flow In accordance with a preferred embodiment of the invention, there is disclosed a device for extracting energy from fluid flow.
  • FIG. 1 is a side view of a first embodiment of the wind aeolipile.
  • FIG. 2 is a front, cross-sectional, view of the first embodiment of the wind aeolipile.
  • FIG. 2 b is a front, cross-sectional, view of the first embodiment of the wind aeolipile, also employing a generator, transmission, pump, or other energy translation/transmission device
  • FIG. 3 is a side view of a second embodiment of the wind aeolipile employing blade-shaped nozzles
  • FIG. 4 is a back view of a second embodiment of the wind aeolipile, employing blade-shaped nozzles
  • FIG. 5 is a side view of a third embodiment of the wind aeolipile incorporating a surrounding shroud
  • FIG. 6 is a side view of a fourth embodiment of the wind aeolipile employing a single nozzle
  • FIG. 8 is a chart of input vs. output airflow velocities of a horn-shaped inlet extension
  • FIG. 9 is a front cross-sectional view of a wind aeolipile, showing means of varying the interior diameter of the device, proximal to a nozzle, and also showing an eductor-ejector inlet on each arm.
  • FIG. 9A is a front cross-sectional view of a wind aeolipile, showing means of varying the interior diameter of the device, proximal to a nozzle.
  • FIG. 9B is a front cross-sectional view of a wind aeolipile, showing means of varying the interior diameter of the device proximal to the nozzle.
  • FIG. 9C is an interior view of the eductor-ejector inlet.
  • FIG. 10 is a side view of an aeolipile showing exterior control components in the form of flaps or spoilers.
  • air-flow (A) is directed into a main conduit ( 120 ) from an enlarged inlet ( 110 ).
  • the air will become slightly compressed as it is forced down the thrust nozzles ( 140 ), leaving the nozzle outlets ( 130 ) at right angles to the nozzle inlet ( 110 ).
  • the thrust nozzles ( 140 ) are extensions of the main conduit ( 120 ). These nozzles ( 140 ) act to increase the speed of the air-flow (A) passing through them by “nozzle-effect” wherein the interior walls of the nozzle ( 140 ) smoothly converge, and then, optionally, diverge as the air-flow progresses from intake to outlet, according to established nozzle performance dictates.
  • FIG. 2 a depicts nozzles having this optional convergent to divergent nozzle form ( 145 ).
  • the nozzle shape may be dynamically variable while the device is in operation, to better conform to ambient conditions, thereby increasing efficiency.
  • rotational torque (T) is created about a center axis ( 150 ).
  • useable work is accomplished by mechanically coupling an electrical generator, mechanical transmission, hydraulic pump, or other energy translation or transmission system ( 155 ) to this center axis ( 150 ).
  • the device as depicted in FIGS. 1, 2, 2 a , 3 , 4 , 5 and 6 is configured with two thrust nozzles ( 140 ), although as few as one nozzle may be employed, and there is no theoretical maximum number of thrust nozzles ( 140 ).
  • the nozzle ( 140 ) interior convergent/divergent designs or configurations may be varied according to expected or intended fluid flow rate, specific gravity, and static and dynamic pressure parameters.
  • thrust nozzles ( 145 ) are shaped like hollowed turbine blades.
  • the thrust nozzles ( 145 ) extend outward, away from the main conduit ( 120 ). Air-Flow entering the main conduit ( 120 ) is directed through the thrust nozzle ( 145 ) and leaves the outlets ( 130 ) at right angles to the center axis ( 150 ).
  • the bladed-shaped design of the exterior of the thrust nozzles ( 145 ) augments the rotational torque (T) as bypassing air (A 1 ) flows past the outside of the aeolipile nozzles ( 145 ).
  • the wind aeolipile essentially as of the first or second embodiment is placed inside a cylinder or shroud ( 170 ).
  • a suction is created at the narrow opening ( 160 ) between the rotating portion and the shroud inlet.
  • part of this air-flow (A 2 ) is diverted back through the shroud to ultimately be re-cycled into the inlet ( 110 ) again. Recycling of the air-flow increases efficiency of the device, allowing it to operate in lower velocity wind conditions.
  • an essentially horn-shaped inlet extension ( 180 ) is placed with its outlet ( 187 ) proximal to any embodiment of this wind-aeolipile, as depicted in FIGS. 1-6 .
  • the horn-shaped inlet extension ( 180 ) has a larger diameter at the inlet ( 185 ) than it is at the outlet ( 187 ).
  • This horn-shaped extension ( 180 ) may be curved or straight.
  • the extension ( 180 ) acts to collect an increased volume of airflow (A), and also increases the velocity of the air-flow arriving at the outlet ( 130 ) of the extension ( 180 ).
  • an aeolipile as described in any of the above embodiments or, optionally, a conventional turbine, is positioned.
  • the horn-shaped inlet extension will yield higher output power due to the fact that it increases airflow input velocity to the aeolipile as it emerges at the extension's outlet ( 187 ).
  • the interior or exterior forms of the nozzles or conduits may be controllably variable in such ways as to influence the torque, rotation rate, or fluid flow rate through and/or around the device.
  • the means of varying the interior forms may include incorporation and control of interior baffles, or control of interior nozzle or conduit diameters, such as by employing a choke device ( 142 ) at points encountering the fluid flow.
  • the means of varying the exterior forms may also, or alternatively, include incorporation and control of exterior components such as ailerons, flaps, or spoilers ( 144 ).
  • embodiments may further incorporate eductor-ejector functional components, the inlet of which is depicted as element ( 143 ).
  • the eductor-ejector draws in fluid flow (A), upstream of the area where the flow-rate through the aeolipile is greatest. This fluid is then accelerated and ejected along with the fluid flow that was already passing through the aeolipile, further augmenting potential thrust and torque.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Artificial Intelligence (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

Described herein is essentially a high-efficiency, hybrid fluid-aeolipile. In operation, this hybrid device is placed in the stream of a moving fluid, preferably air. Energy is extracted from the fluid stream by directing a portion of the stream through and, optionally, around the device. As the fluid-flow moves through the device, it is directed into nozzles. These nozzles, which are free to pivot in a cyclical manner, employ the established phenomenon of “nozzle-effect” to accelerate the velocity of the air-flow passing through them, which is ultimately ejected from each nozzle tip, producing thrust. This thrust, amplified by nozzle-effect, drives the nozzles to pivot around a shared axis. The wind energy, thereby converted into cyclical motion, that may be used to perform useful work, is converted with greater efficiency, than is possible in conventional blade-type wind turbines.

Description

This application is a continuation of U.S. patent application Ser. No. 14/090,280, filed Nov. 26, 2013, which is a continuation of U.S. patent application Ser. No. 12/592,119, filed Nov. 19, 2009, now issued as U.S. Pat. No. 8,591,174, which claims benefit of and priority to U.S. Provisional Application No. 61/199,771, filed Nov. 20, 2008, and is entitled to those filing dates for priority. The specifications, figures and complete disclosures of U.S. patent application Ser. Nos. 12/592,119 and 14/090,280 and U.S. Provisional Application No. 61/139,271 are incorporated herein by specific reference for all purposes.
FIELD OF INVENTION
This invention relates generally to the field of deriving energy from wind, and specifically to a wind-energy extraction device that is superior to wind-turbines that employ rotating blades to extract energy from wind.
BACKGROUND OF THE INVENTION
Extant wind-turbines are based on the aerodynamic principles of a wing. The turbine is equipped with wing-shaped turbine blades. As wind blows across the wing-shaped turbine blades, pressure differences generated on either side of the blades, in accordance with Bernoulli's Law, create aerodynamic force, or lift. This induces the blades to rotate, and the rotation drives an electric generator.
The maximum efficiency, according to Betz's law, that a bladed wind turbine can achieve is approximately 59.3%. This has long been considered an absolute limiting function with respect to use of the wind to generate usable energy.
This wind to power extraction available for bladed wind turbines is expressed by the following equation:
P=ρAv 3
where P is the power in watts, ρ is the density of air, A is the cross sectional area swept by the blades, and v is the velocity of the wind.
One may easily surmise, then, that the bladed turbine engineer's only practical means of increasing the power output of a given bladed wind turbine design is to increase the swept area of the blades. This produces an only a linear, or one to one, increase in power output, swept-area unit per power-unit.
However, again referring to the equation, if flow velocity could be increased, a disproportionate benefit would be derived. For example, a mere 50 percent increase in flow velocity would quadruple the theoretical power output. A number of turbine designers, in pursuit of this disproportionate benefit, have attempted to exceed Betz limit by exploiting venturi effect of a shroud or casing so configured as to act as a giant nozzle surrounding essentially conventional turbine blades to increase the wind-velocity impinging upon them. The blades in such designs, however, remain as a limiting factor.
In contrast, the herein taught invention uses a novel approach to this energy translation problem. It substitutes convergent/divergent, or venturi, nozzles, resembling those such as would be employed by rockets, in place of turbine blades and thereby provides a means by which wind velocity through the device may be amplified. The convergence/divergence as embodied herein may be contained entirely within the nozzle, or may be manifested by convergence of conduit guided fluid flow which diverges only at ejection. But in either case, amplifying this flow-velocity, and commensurately, the ejection velocity at the nozzle, a significant increase in output energy is realized. The increase energy, as expresses by the above equation, is not linear function, but is, rather, a function of the cube of the nozzle ejection velocity increase.
If we compare this method of increasing energy output by using nozzles to increase ejection velocity, to the method of increasing output by increasing the blades swept area, the advantage is clear. The ratio of increase based on blade swept area is merely 1 to 1. The increase based on increased ejection velocity, however, is a cubic function, the output energy increasing as a cube of the nozzle ejection velocity.
By exploiting the advantage of the velocity to power function, this invention is able to essentially circumvent the limitations of Betz law by eliminating the employment of precisely the physical components (turbine blades) to which Betz Law applies.
A computational computer model using popular, commercially available three-dimensional and computational fluid dynamics, or CFD, software, was developed for this aeolipile invention to obtain torque production formula, derive efficiency limits, and to demonstrate practicality. Simulations were conducted for a single thrust nozzle to establish flow parameters. For these simulations, an inlet velocity of 2 m/sec was chosen. After 1600 iterations, the corresponding outlet velocity was found to be near 17 m/sec, a flow velocity increase of 15 m/sec, thereby validating the inventions theoretical functionality.
Tests were also conducted with respect to an expanded wind-gathering configuration of a horn-shaped inlet extension as in FIG. 7, below. Test employed inlet airflow velocities of 2, 4, 6, 8, 10, and 12 m/sec and were repeated for various inlet/outlet size ratios. FIG. 8, below plots the flow velocity increases, produced for each inlet/outlet size ratio.
BRIEF SUMMARY OF THE INVENTION
An object of the invention is to provide a means of deriving energy from fluid flow. An application of this invention is translation of wind energy into useful work or into electrical, mechanical, or hydraulic energy.
Other objects and advantages of the present invention will become apparent from the following descriptions, taken in connection with the accompanying drawings wherein, by way of illustration and example, an embodiment of the present invention is disclosed.
In accordance with a preferred embodiment of the invention, there is disclosed a device for extracting energy from fluid flow.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a side view of a first embodiment of the wind aeolipile.
FIG. 2 is a front, cross-sectional, view of the first embodiment of the wind aeolipile.
FIG. 2a , is a front, cross-sectional view of the first embodiment of the wind aeolipile employing divergent nozzle outlets
FIG. 2b , is a front, cross-sectional, view of the first embodiment of the wind aeolipile, also employing a generator, transmission, pump, or other energy translation/transmission device
FIG. 3 is a side view of a second embodiment of the wind aeolipile employing blade-shaped nozzles
FIG. 4 is a back view of a second embodiment of the wind aeolipile, employing blade-shaped nozzles
FIG. 5 is a side view of a third embodiment of the wind aeolipile incorporating a surrounding shroud
FIG. 6 is a side view of a fourth embodiment of the wind aeolipile employing a single nozzle
FIG. 7 is a view of an embodiment of the wind aeolipile incorporating a horn-shaped inlet extension
FIG. 8 is a chart of input vs. output airflow velocities of a horn-shaped inlet extension
FIG. 9 is a front cross-sectional view of a wind aeolipile, showing means of varying the interior diameter of the device, proximal to a nozzle, and also showing an eductor-ejector inlet on each arm.
FIG. 9A is a front cross-sectional view of a wind aeolipile, showing means of varying the interior diameter of the device, proximal to a nozzle.
FIG. 9B is a front cross-sectional view of a wind aeolipile, showing means of varying the interior diameter of the device proximal to the nozzle.
FIG. 9C is an interior view of the eductor-ejector inlet.
FIG. 10 is a side view of an aeolipile showing exterior control components in the form of flaps or spoilers.
LIST OF NUMBERED ELEMENTS
  • 110. nozzle inlet
  • 120. main conduit
  • 130. nozzle outlet
  • 135 divergent nozzle outlet
  • 140. thrust nozzle
  • 142 nozzle choke device
  • 143 eductor-ejector inlet
  • 144 flaps or spoiler
  • 145 blade-shaped thrust nozzle
  • 150. center axis
  • 155 generator, transmission, pump, or other energy translation/transmission device
  • 160. narrow opening between shroud and aeolipile inlet
  • 170. cylinder or shroud
  • 180. horn-shaped inlet extension
  • 185 horn inlet
  • 187 horn outlet
  • 190. aeolipile
  • A airflow
  • A1 bypass airflow
  • A2 re-circulating airflow
  • T torque
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
In a first embodiment, as in FIG. 1 and FIG. 2, air-flow (A) is directed into a main conduit (120) from an enlarged inlet (110). The air will become slightly compressed as it is forced down the thrust nozzles (140), leaving the nozzle outlets (130) at right angles to the nozzle inlet (110).
The thrust nozzles (140) are extensions of the main conduit (120). These nozzles (140) act to increase the speed of the air-flow (A) passing through them by “nozzle-effect” wherein the interior walls of the nozzle (140) smoothly converge, and then, optionally, diverge as the air-flow progresses from intake to outlet, according to established nozzle performance dictates. FIG. 2a depicts nozzles having this optional convergent to divergent nozzle form (145). In more sophisticated embodiments, the nozzle shape may be dynamically variable while the device is in operation, to better conform to ambient conditions, thereby increasing efficiency.
As the flowing air (A) is finally ejected from the nozzle outlet (130), rotational torque (T) is created about a center axis (150). Referring to FIG. 2b , useable work is accomplished by mechanically coupling an electrical generator, mechanical transmission, hydraulic pump, or other energy translation or transmission system (155) to this center axis (150).
The device as depicted in FIGS. 1, 2, 2 a, 3, 4, 5 and 6, is configured with two thrust nozzles (140), although as few as one nozzle may be employed, and there is no theoretical maximum number of thrust nozzles (140). The nozzle (140) interior convergent/divergent designs or configurations may be varied according to expected or intended fluid flow rate, specific gravity, and static and dynamic pressure parameters.
In a second embodiment as in FIG. 3 and FIG. 4, thrust nozzles (145) are shaped like hollowed turbine blades. The thrust nozzles (145) extend outward, away from the main conduit (120). Air-Flow entering the main conduit (120) is directed through the thrust nozzle (145) and leaves the outlets (130) at right angles to the center axis (150). The bladed-shaped design of the exterior of the thrust nozzles (145) augments the rotational torque (T) as bypassing air (A1) flows past the outside of the aeolipile nozzles (145).
In a third embodiment, as in FIG. 5, the wind aeolipile essentially as of the first or second embodiment is placed inside a cylinder or shroud (170). As the air-flow (A1) enters the inlet (110), a suction is created at the narrow opening (160) between the rotating portion and the shroud inlet. Further, after the air-flow is ejected from the outlets (130), part of this air-flow (A2) is diverted back through the shroud to ultimately be re-cycled into the inlet (110) again. Recycling of the air-flow increases efficiency of the device, allowing it to operate in lower velocity wind conditions.
In a fourth embodiment, as in FIG. 6, an essentially horn-shaped inlet extension (180) is placed with its outlet (187) proximal to any embodiment of this wind-aeolipile, as depicted in FIGS. 1-6. The horn-shaped inlet extension (180), has a larger diameter at the inlet (185) than it is at the outlet (187). This horn-shaped extension (180) may be curved or straight. The extension (180) acts to collect an increased volume of airflow (A), and also increases the velocity of the air-flow arriving at the outlet (130) of the extension (180).
At the outlet (187) of the horn, an aeolipile as described in any of the above embodiments or, optionally, a conventional turbine, is positioned. The horn-shaped inlet extension will yield higher output power due to the fact that it increases airflow input velocity to the aeolipile as it emerges at the extension's outlet (187).
In other embodiments the interior or exterior forms of the nozzles or conduits may be controllably variable in such ways as to influence the torque, rotation rate, or fluid flow rate through and/or around the device. Referring to FIGS. 9, 9A, and 9B, the means of varying the interior forms may include incorporation and control of interior baffles, or control of interior nozzle or conduit diameters, such as by employing a choke device (142) at points encountering the fluid flow.
Referring to FIG. 10, the means of varying the exterior forms may also, or alternatively, include incorporation and control of exterior components such as ailerons, flaps, or spoilers (144).
Referring again to FIG. 9, and to FIG. 9C, embodiments may further incorporate eductor-ejector functional components, the inlet of which is depicted as element (143). In such a configuration, the eductor-ejector draws in fluid flow (A), upstream of the area where the flow-rate through the aeolipile is greatest. This fluid is then accelerated and ejected along with the fluid flow that was already passing through the aeolipile, further augmenting potential thrust and torque.
While the invention has been described in connection with a preferred embodiment, it is not intended to limit the scope of the invention to the particular form set forth, but on the contrary, it is intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.

Claims (13)

What is claimed is:
1. A wind turbine, comprising:
a rotating main body with a front and a rear, wherein the main body has a hollow interior that narrows in diameter from the front to the rear, and wherein the main body rotates around an axis of rotation extending longitudinally between the front and the rear;
an inlet opening in the front of the main body adapted to collect wind and direct it to the hollow interior;
one or more outlet nozzles defining one or more outlet openings in the rear of the main body, the wind from the hollow interior directed to the one or more outlet nozzles, the one or more outlet nozzles extending at an angle from the rear of the main body, thereby causing the main body to rotate about the longitudinal axis; and
a shroud at least partially surrounding the main body and the one or more outlet nozzles, the shroud oriented to direct ejected wind from the one or more outlet nozzles toward the inlet opening.
2. The wind turbine of claim 1, wherein said one or more outlet nozzles is in the shape of an aerodynamic foil.
3. The wind turbine of claim 1, wherein the hollow interior of the main body is adjustable.
4. The wind turbine of claim 1, wherein said one or more outlet nozzles is adjustable.
5. An energy-generating device, comprising:
a rotating main body with a front and a rear, wherein the main body has a hollow interior that narrows in diameter from the front to the rear, and wherein the main body rotates around an axis of rotation extending longitudinally between the front and the rear;
an inlet opening in the front of the main body, said inlet opening adapted to collect fluid and direct it to the hollow interior;
at least one outlet opening in the rear of the main body, said at least one outlet opening adapted to expel collected fluid from the hollow interior; and
an eductor-ejector located between the inlet opening and the at least one outlet opening, said eductor-ejector adapted to draw additional fluid into the hollow interior.
6. The device of claim 5, wherein the fluid comprises air or a gas.
7. The device of claim 5, wherein the fluid comprises water or a liquid.
8. The device of claim 5, wherein said at least one outlet opening comprises an outlet nozzle extending at an angle from the main body.
9. The device of claim 8, wherein said outlet nozzle is in the shape of an aerodynamic foil.
10. The device of claim 5, wherein the hollow interior is adjustable.
11. The device of claim 8, wherein said outlet nozzle is adjustable.
12. The device of claim 5, further comprising an inlet funnel adapted to direct fluid into the inlet opening.
13. A device for generating energy, comprising:
an aeolipile with an axis of rotation, and one or more conduits, each of said one or more conduits having an intake end and an ejection end;
wherein each of said one or more conduits narrows in diameter from the intake end to the ejection end;
wherein the intake end of each of said one or more conduits is adapted to collect fluid from a fluid flow and direct it through the corresponding conduit to the corresponding ejection end;
wherein the ejection end of each of said one or more conduits is adapted to eject the fluid at an angle relative to the axis of rotation to cause the aeolipile to rotate around the axis of rotation; and
one or more eductor-ejector components located between the intake end and the ejection end of the corresponding one or more conduits, said one or more eductor-ejector components adapted to draw additional fluid into the corresponding one or more conduits.
US15/709,199 2008-11-20 2017-09-19 Wind aeolipile Active 2030-02-15 US11073128B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/709,199 US11073128B1 (en) 2008-11-20 2017-09-19 Wind aeolipile
US17/305,249 US11619204B2 (en) 2008-11-20 2021-07-02 Wind aeolipile

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US19977108P 2008-11-20 2008-11-20
US12/592,119 US8591174B1 (en) 2008-11-20 2009-11-19 Wind aeolipile
US14/090,280 US9765755B2 (en) 2008-11-20 2013-11-26 Wind aeolipile
US15/709,199 US11073128B1 (en) 2008-11-20 2017-09-19 Wind aeolipile

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/090,280 Continuation US9765755B2 (en) 2008-11-20 2013-11-26 Wind aeolipile

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/305,249 Continuation US11619204B2 (en) 2008-11-20 2021-07-02 Wind aeolipile

Publications (1)

Publication Number Publication Date
US11073128B1 true US11073128B1 (en) 2021-07-27

Family

ID=49596576

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/592,119 Active 2032-06-08 US8591174B1 (en) 2008-11-20 2009-11-19 Wind aeolipile
US14/090,280 Active 2031-05-17 US9765755B2 (en) 2008-11-20 2013-11-26 Wind aeolipile
US15/709,199 Active 2030-02-15 US11073128B1 (en) 2008-11-20 2017-09-19 Wind aeolipile
US17/305,249 Active US11619204B2 (en) 2008-11-20 2021-07-02 Wind aeolipile

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12/592,119 Active 2032-06-08 US8591174B1 (en) 2008-11-20 2009-11-19 Wind aeolipile
US14/090,280 Active 2031-05-17 US9765755B2 (en) 2008-11-20 2013-11-26 Wind aeolipile

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/305,249 Active US11619204B2 (en) 2008-11-20 2021-07-02 Wind aeolipile

Country Status (1)

Country Link
US (4) US8591174B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8591174B1 (en) * 2008-11-20 2013-11-26 David Wenzhong Gao Wind aeolipile
IL201222A (en) * 2009-09-29 2015-02-26 Re 10 Ltd Tapered hollow helical turbine for energy transduction
CN104018996B (en) * 2014-05-30 2016-06-29 西安交通大学 A kind of blade of wind-driven generator for automatically adjusting front face area
EA036646B1 (en) * 2015-08-28 2020-12-03 Андрей Игоревич ДУБИНСКИЙ Device for obtaining mechanical work from a non-thermal energy source (variants)
CN107762734A (en) * 2017-10-09 2018-03-06 智凌云科技(北京)有限公司 A kind of wind electricity generating system and system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB700879A (en) * 1950-06-09 1953-12-09 Jean Edouard Andreau Improvements in rotors for wind motors
US2799989A (en) * 1954-09-24 1957-07-23 Peter G Kappus Variable area jet nozzle
DE4414208A1 (en) * 1994-04-23 1995-10-26 Schubert Werner Low pressure wind power driven gas turbine
EP1635056A1 (en) * 2004-09-09 2006-03-15 Eberhard Herr Wind turbine
DE202008000543U1 (en) * 2008-01-15 2008-03-20 Becker, Friedrich turbine
US8591174B1 (en) * 2008-11-20 2013-11-26 David Wenzhong Gao Wind aeolipile

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2001529A (en) * 1933-02-02 1935-05-14 Dornier Claude Rotor for helicopters
US2131472A (en) * 1936-01-10 1938-09-27 Coanda Henri Motor
US2485543A (en) * 1943-10-19 1949-10-25 Andreau Jean Edouard Power plant
US2548804A (en) * 1945-03-23 1951-04-10 Stewart Warner Corp Jet propulsion apparatus
US2474685A (en) * 1945-04-12 1949-06-28 Stewart Warner Corp Jet propulsion apparatus
GB682627A (en) * 1949-07-13 1952-11-12 Jean Edouard Andreau Improvements in wind motors having hollow blades with a radial flow of air therethrough
FR1090979A (en) * 1953-10-07 1955-04-06 Neyrpic Ets Improvements to the blades of wind turbines of the air suction type
US2831543A (en) * 1956-04-23 1958-04-22 Westinghouse Electric Corp Jet driven helicopter rotor system
US3008293A (en) * 1957-05-18 1961-11-14 Snecma Intermittently-operating thermo-propulsive duct designed for driving a shaft and applicable to rotary wing aircraft
US3129767A (en) * 1962-01-12 1964-04-21 Walter G Finch Torque converting propeller
US3279546A (en) * 1965-09-22 1966-10-18 Gen Electric Rotor-tip-mounted propulsion system for helicopters
CH564687A5 (en) * 1973-04-12 1975-07-31 Vadas Jmre Wind power driven rotor with hollow blade - has air flow diverting channel on side facing wind
FR2335135A5 (en) * 1973-12-28 1977-07-08 Charpentier Jean Fluid operated propulsive machine - has L-shaped radial tubes projecting from open ended cylinder on shaft
US4069662A (en) * 1975-12-05 1978-01-24 United Technologies Corporation Clearance control for gas turbine engine
JPS555442A (en) * 1978-06-27 1980-01-16 Toshiba Corp Pure reaction type fluid turbine
WO1981000887A1 (en) * 1979-09-28 1981-04-02 R Rougemont Station for collecting wind energy
FR2484026A2 (en) * 1980-06-04 1981-12-11 Rougemont Raoul Wind energy collector station - has tower with inlet and outlet vents which function irrespective of wind direction, and housing coaxial horizontal rotors
FR2486491A1 (en) * 1980-07-14 1982-01-15 Thompson Darrow AERODYNE WITH ROTATING WING PROVIDED WITH EJECTION TUYERES
SE430529B (en) * 1982-12-30 1983-11-21 Vindkraft Goeteborg Kb DEVICE FOR WIND TURBINES
DE4030559A1 (en) * 1990-09-27 1992-04-02 Schubert Werner Wind driven turbine assembly - has curved blades of hyperbolic form along radial axis
US5236349A (en) * 1990-10-23 1993-08-17 Gracio Fabris Two-phase reaction turbine
US5408824A (en) * 1993-12-15 1995-04-25 Schlote; Andrew Rotary heat engine
DE19845907A1 (en) * 1998-10-06 2000-04-13 Janine Seemann Wind power machine with axial rotors has rotor nave with aperture on front side and is hollow so that air can be sucked through it and through centrifugal force can be emitted through
US6492743B1 (en) * 2001-06-28 2002-12-10 Kari Appa Jet assisted hybrid wind turbine system
US6668539B2 (en) * 2001-08-20 2003-12-30 Innovative Energy, Inc. Rotary heat engine
US6877960B1 (en) 2002-06-05 2005-04-12 Flodesign, Inc. Lobed convergent/divergent supersonic nozzle ejector system
FR2853622B1 (en) * 2003-04-14 2005-05-27 Eurocopter France ROTARY SHUTTER AND ELEMENT SUSTENTATOR, IN PARTICULAR HELICOPTER BLADE, PROVIDED WITH SUCH A ROTARY SHUTTER
FR2959281B1 (en) * 2010-04-23 2014-01-03 Philippe Echevarria INTRA-ANIMATED ROTATION PROPELLER

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB700879A (en) * 1950-06-09 1953-12-09 Jean Edouard Andreau Improvements in rotors for wind motors
US2799989A (en) * 1954-09-24 1957-07-23 Peter G Kappus Variable area jet nozzle
DE4414208A1 (en) * 1994-04-23 1995-10-26 Schubert Werner Low pressure wind power driven gas turbine
EP1635056A1 (en) * 2004-09-09 2006-03-15 Eberhard Herr Wind turbine
DE202008000543U1 (en) * 2008-01-15 2008-03-20 Becker, Friedrich turbine
US8591174B1 (en) * 2008-11-20 2013-11-26 David Wenzhong Gao Wind aeolipile
US9765755B2 (en) * 2008-11-20 2017-09-19 David Wenzhong Gao Wind aeolipile

Also Published As

Publication number Publication date
US11619204B2 (en) 2023-04-04
US9765755B2 (en) 2017-09-19
US20210343293A1 (en) 2021-11-04
US20140154052A1 (en) 2014-06-05
US8591174B1 (en) 2013-11-26

Similar Documents

Publication Publication Date Title
US11073128B1 (en) Wind aeolipile
US8461713B2 (en) Adaptive control ducted compound wind turbine
US8829706B1 (en) Adaptive control ducted compound wind turbine
US8664781B2 (en) Tunnel power turbine system to generate potential energy from waste kinetic energy
US20070014657A1 (en) Blade for wind turbine
JP2011503407A (en) Wind turbine with two consecutive propellers
EP2418374A2 (en) Tunnel turbine system generates potential energy from dormant kinetic energy
MXPA06012371A (en) Blade for a rotor of a wind energy turbine.
US20050019151A1 (en) Wind turbine assembly
US20090160195A1 (en) Wind-catcher and accelerator for generating electricity
GB2471349A (en) Wind turbine with fans
US20130287543A1 (en) Down wind fluid turbine
Sedaghat et al. Analysis of accelerating devices for enclosure wind turbines
Solanki et al. Design modification & analysis for venturi section of INVELOX system to maximize power using multiple wind turbine
US8376699B1 (en) Vortex hydro turbine
CN113357080B (en) Wind-powered electricity generation blade ring volume control system that blows
US20060275122A1 (en) Aerovortex mill 2
WO2022195611A1 (en) Shrouded fluid turbine system augmented with energy feedback, control and method thereof
Sivasegaram Power augmentation in wind rotors: a review
US20220307462A1 (en) Wind Turbine Blades and Wind Turbine Systems That Include a Co-flow Jet
RU2498106C1 (en) Wind-driven plant with forced vacuum of exhaust space
US20060067825A1 (en) Aerovortex mill
CN207470356U (en) A kind of wind energy conversion system vortex decay device
US10190603B2 (en) Power generation from atmospheric air pressure
CN107023319A (en) One kind is by external force or power-actuated power set

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO MICRO (ORIGINAL EVENT CODE: MICR); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE