US10844943B2 - Rotating body, power transmission device using same, and rotating body production method - Google Patents

Rotating body, power transmission device using same, and rotating body production method Download PDF

Info

Publication number
US10844943B2
US10844943B2 US15/767,195 US201615767195A US10844943B2 US 10844943 B2 US10844943 B2 US 10844943B2 US 201615767195 A US201615767195 A US 201615767195A US 10844943 B2 US10844943 B2 US 10844943B2
Authority
US
United States
Prior art keywords
rotating body
power transmission
transmission device
engaging
drive shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/767,195
Other versions
US20190072166A1 (en
Inventor
Jun Ohmura
Koji Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority claimed from PCT/JP2016/081297 external-priority patent/WO2017069248A1/en
Assigned to HONDA MOTOR CO., LTD. reassignment HONDA MOTOR CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ONO, KOJI, OHMURA, JUN
Publication of US20190072166A1 publication Critical patent/US20190072166A1/en
Application granted granted Critical
Publication of US10844943B2 publication Critical patent/US10844943B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D1/108Quick-acting couplings in which the parts are connected by simply bringing them together axially having retaining means rotating with the coupling and acting by interengaging parts, i.e. positive coupling
    • F16D1/116Quick-acting couplings in which the parts are connected by simply bringing them together axially having retaining means rotating with the coupling and acting by interengaging parts, i.e. positive coupling the interengaging parts including a continuous or interrupted circumferential groove in the surface of one of the coupling parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • F16H48/42Constructional details characterised by features of the input shafts, e.g. mounting of drive gears thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D2001/103Quick-acting couplings in which the parts are connected by simply bringing them together axially the torque is transmitted via splined connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/08Differential gearings with gears having orbital motion comprising bevel gears
    • F16H2048/085Differential gearings with gears having orbital motion comprising bevel gears characterised by shafts or gear carriers for orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/08Differential gearings with gears having orbital motion comprising bevel gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/20Arrangements for suppressing or influencing the differential action, e.g. locking devices
    • F16H48/22Arrangements for suppressing or influencing the differential action, e.g. locking devices using friction clutches or brakes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/70Interfitted members
    • Y10T403/7026Longitudinally splined or fluted rod
    • Y10T403/7035Specific angle or shape of rib, key, groove, or shoulder

Definitions

  • the present invention relates to a rotating body disposed on a power transmission path through which power from a prime mover is transmitted, or a power transmission device using this rotating body, a vehicle using the same, and a rotating body production method.
  • a differential device which distributes power to left and right drive shafts as a power transmission device (for example, see Japanese Patent Laid-Open No. 2012-167793).
  • This differential device has a configuration in which a fragile portion of a drive shaft is formed in a differential case of the differential device so that if a drive shaft is broken, the drive shaft is allowed to be broken within the differential case.
  • Patent Literature 1 Japanese Patent Laid-Open No. 2012-167793
  • the present invention has an object to provide a rotating body capable of improving the degree of freedom in setting the location of breakage when the rotating body such as a drive shaft is broken.
  • the present invention provides a rotating body (for example, a drive shaft 7 in an embodiment, the same shall apply hereinafter) disposed on a power transmission path between a prime mover (for example, an internal combustion engine 5 in the embodiment, the same shall apply hereinafter) and a wheel (for example, a rear wheel 4 in the embodiment, the same shall apply hereinafter).
  • a prime mover for example, an internal combustion engine 5 in the embodiment, the same shall apply hereinafter
  • a wheel for example, a rear wheel 4 in the embodiment, the same shall apply hereinafter.
  • the rotating body comprises: an engaging portion (for example, an engaging portion 7 c in an embodiment, the same shall apply hereinafter) located on one side of the rotating body in a direction of a rotational axis (for example, a rotational axis L 1 in the embodiment, the same shall apply hereinafter) and having an engaging groove (for example, an engaging groove 15 in the embodiment, the same shall apply hereinafter) engraved on an outer periphery thereof; and a sliding portion (for example, a sliding portion 7 b in the embodiment, the same shall apply hereinafter) located on the other side of the rotating body in the rotation axial direction and slidably abutted by an abutment member (for example, a differential case 9 in the embodiment, the same shall apply hereinafter) which can rotate relative to the rotating body, wherein the rotating body is arranged such that the sliding portion is located closer to a wheel side on the power transmission path than the engaging portion, the engaging groove comprises a plurality of engaging grooves extending in the rotation axial direction and formed circum
  • the rotating body of the present invention when a force large enough to break the rotating body is applied, the rotating body is broken at a small diameter portion disposed in the engaging portion having engaging grooves formed thereon. Therefore, the present invention can improve the degree of freedom in setting the broken portion as compared with the conventional product in which a fragile portion is provided avoiding the engaging portion.
  • the small diameter portion is formed such that a deepest portion thereof is located radially outwardly of a bottom position of the engaging grooves. Such a configuration can prevent the rotating body from being broken starting from a portion where a difference in outer diameter between the small diameter portion and the sliding portion is generated by forming the small diameter portion.
  • a power transmission device of the present invention comprises another rotating body (for example, a side gear 14 in the embodiment, the same shall apply hereinafter) engaged with the engaging grooves and integrally rotatable with the rotating body.
  • another rotating body for example, a side gear 14 in the embodiment, the same shall apply hereinafter
  • the present invention allows another rotating body to be engaged with the engaging grooves, causing the portion of the engaging grooves engaged with the other rotating body to be unlikely broken. Since the point of application of a twisting load of the other rotating body is an end portion of the other rotating body, the broken portion can be set by the engagement between the engaging grooves and the other rotating body.
  • the small diameter portion of the engaging portion Since the outer diameter of the small diameter portion of the engaging portion is set smaller than the outer diameter of the sliding portion, the small diameter portion of the engaging portion functions as the fragile portion. Thus, when the twisting load large enough to break the rotating body is applied to the rotating body, the break occurs at the small diameter portion of the engaging portion.
  • the abutment member locks the enlarged diameter portion in breakage region using the radially outward expansion in diameter due to the breakage of the small diameter portion of the rotating body without separately providing a movement prevention device for preventing the rotating body from moving in the rotation axial direction, thus achieving reduction in size of the power transmission device.
  • the rotating body is defined as a first rotating body and the other rotating body is defined as a second rotating body
  • the power transmission device of the present invention comprises a regulating member (for example, a set ring 16 in the embodiment, the same shall apply hereinafter) which is disposed between the first rotating body and the second rotating body and regulates relative movement between the first rotating body and the second rotating body in the rotation axial direction, wherein
  • a regulating member for example, a set ring 16 in the embodiment, the same shall apply hereinafter
  • an end portion on the other side of the small diameter portion of the first rotating body is located closer to the other side than an end portion (for example, an outer end portion 14 c in the embodiment, the same shall apply hereinafter) on the other side of the second rotating body.
  • Such a configuration can prevent the second rotating body from suppressing the radial expansion of the broken portion when the first rotating body is broken at the small diameter portion.
  • the broken portion of the first rotating body is allowed to greatly expand radially outwardly, and thus the broken portion can be firmly locked to the abutment member.
  • the power transmission device of the present invention comprises
  • an interposed member for example, a washer 17 in the embodiment, the same shall apply hereinafter
  • an interposed member for example, a washer 17 in the embodiment, the same shall apply hereinafter
  • the interposed member includes an insertion hole (for example, an insertion hole 17 a in the embodiment, the same shall apply hereinafter) for inserting the first rotating body.
  • an insertion hole for example, an insertion hole 17 a in the embodiment, the same shall apply hereinafter
  • Such a configuration can prevent the interposed member from narrowing the distance between the second rotating body and the abutment member in the rotation axial direction and can maintain the distance between the second rotating body and the abutment member in the rotation axial direction so that the broken portion has a distance enough to expand radially outwardly when the first rotating body is broken.
  • the insertion hole of the interposed member is formed to have an inner diameter larger by a predetermined amount than an outer diameter of the first rotating body. Such a configuration allows the broken portion of the first rotating body to expand radially further easily.
  • the inner diameter of the insertion hole is formed larger than a maximum outer diameter of an enlarged diameter portion whose diameter is enlarged due to breakage of the first rotating body after the first rotating body is broken as a predetermined or more twisting torque is inputted to the first rotating body.
  • the radial expansion at the time of breakage of the first rotating body can be experimentally obtained in advance.
  • forming the inner diameter of the insertion hole of the interposed member larger than the experimentally obtained maximum outer diameter of the enlarged diameter portion of the first rotating body can prevent the radial expansion from being suppressed by the interposed member when the first rotating body is broken, and thus the broken portion can be firmly locked to the abutment member by a portion expanded radially outwardly by the breakage of the small diameter portion of the first rotating body.
  • the interposed member is radially unmovably fixed to the second rotating body or the abutment member.
  • Such a configuration can circumferentially uniformly secure enough space for the broken portion to expand in diameter at the time of breakage of the small diameter portion of the first rotating body.
  • the engaging grooves are formed up to one end (for example, one end 7 f in the embodiment, the same shall apply hereinafter) which is an end portion on one side of the first rotating body.
  • Such a configuration allows the engaging grooves to be formed from the one end of the first rotating body toward the abutment member.
  • the present invention provides a rotating body production method
  • the rotating body being disposed on a power transmission path between a prime mover and a wheel of a vehicle
  • the rotating body includes an engaging portion located on one side of the rotating body in a rotation axial direction thereof and having an engaging groove engraved on an outer periphery thereof; a sliding portion located on the other side of the rotating body in the rotation axial direction and slidably abutted by an abutment member which can rotate relative to the rotating body; and a small diameter portion located on the one side of the rotating body in the rotation axial direction and having an outer diameter set smaller than an outer diameter of the sliding portion, wherein
  • the rotating body is arranged such that the sliding portion is located closer to a wheel side on the power transmission path than the engaging portion
  • the engaging groove comprises a plurality of engaging grooves extending in the rotation axial direction and formed circumferentially at intervals, the method comprising:
  • a third step of forming the engaging portion by cutting the engaging grooves extending in the rotation axial direction from the one side of the rotating body to the other side than an end portion on the other side of the small diameter portion.
  • the method of the present invention can accurately form the shape of the small diameter portion by forming the engaging grooves after forming the small diameter portion.
  • a deepest portion of the engaging groove in the third step is formed radially inwardly of a deepest portion of the small diameter portion in the second step.
  • the method of the present invention allows a mountain portion (for example, a mountain portion 15 a in the embodiment) between the circumferentially adjacent engaging grooves to be broken and expand radially when the first rotating body is broken.
  • the method of the present invention comprises a fourth step of polishing the sliding portion.
  • the method of the present invention can reduce friction of the sliding portion and smoothly rotate the first rotating body with respect to the abutment member.
  • the method of the present invention can remove burrs and the like generated when the engaging grooves are cut in the third step.
  • the second step is followed by a hollowing step of hollowing the interior of the rotating body, which is followed by the third step.
  • the method of the present invention performs the hollowing step of performing a hollowing process before the third step of forming the engaging grooves, and thus can perform the hollowing process before forming the engaging grooves to reduce rigidity and can improve the degree of processing freedom of the hollowing process.
  • performing the hollowing process can reduce the weight of the rotating body. Further, since the hollowing process is performed before the engaging grooves are formed, the rotating body can be easily grasped with a jig or the like, thus facilitating the hollowing process.
  • the second step is followed by a heat treatment step of heating the rotating body, which is followed by the third step.
  • the heat treatment step can improve the rigidity of the rotating body. Further, since the heat treatment is performed before the engaging grooves are formed, the first rotating body can be easily grasped with a jig or the like, thus facilitating the heat treatment.
  • the rotating body or the power transmission device of the present invention can be used in a vehicle including a prime mover and a wheel.
  • FIG. 1 is a schematic view illustrating a vehicle including an embodiment of a power transmission device of the present invention.
  • FIG. 2 is a sectional view illustrating the power transmission device of the present embodiment.
  • FIG. 3 is a sectional view illustrating a first rotating body of the present embodiment.
  • FIG. 4 is a perspective view illustrating engaging grooves of the first rotating body of the present embodiment.
  • FIG. 5 is a sectional view illustrating a state where the first rotating body of the present embodiment is broken.
  • FIG. 6 is an explanatory drawing illustrating a state where a stepped portion expands in diameter when the first rotating body of the present embodiment is broken, as viewed from the rotation axial direction.
  • a power transmission device 1 is disposed in a rear portion of a midship type vehicle 2 .
  • the vehicle 2 includes a pair of front wheels 3 and 3 , a pair of rear wheels 4 and 4 , an internal combustion engine 5 , a transmission 6 , and a pair of left and right drive shafts 7 and 7 connected to the pair of left and right rear wheels 4 and 4 respectively.
  • the power transmission device 1 has a function as a differential mechanism (diff) which distributes driving force output from the internal combustion engine 5 through the transmission 6 to the pair of left and right drive shafts 7 and 7 .
  • diff differential mechanism
  • the power transmission device 1 of the present embodiment includes a ring gear 8 , a differential case 9 , a pair of left and right multi-plate clutches 10 , a pair of left and right pressure rings 11 , a spring (unillustrated) which allows the pair of pressure rings 11 to be separated from each other so that an initial torque can be transmitted to the multi-plate clutches 10 , a pinion shaft 12 , a pinion 13 , and a pair of left and right side gears 14 .
  • the ring gear 8 is a hypoid ring gear of a hypoid gear meshed with a hypoid pinion 8 a as an output member of the transmission 6 , and functions as a final driven gear.
  • the side gears 14 and 14 include a through-hole 14 a .
  • Each of the drive shafts 7 is inserted into the through-hole 14 a , causing the drive shafts 7 and the side gears 14 to be spline-connected to each other.
  • the differential case 9 includes a cylindrical portion 9 a which slidably abuts and holds the pair of drive shafts 7 and 7 .
  • a portion held by the cylindrical portion 9 a corresponds to the sliding portion 7 b of the present embodiment (see the area indicated by arrows 7 b in FIGS. 4 and 5 ).
  • the driving force outputted from the internal combustion engine 5 is speed-changed by the transmission 6 and then transmitted to the power transmission device 1 through the hypoid pinion 8 a and the ring gear 8 .
  • the driving force inputted to the power transmission device 1 is distributed to the pair of left and right side gears 14 and 14 through the differential case 9 , the multi-plate clutch 10 , the pressure ring 11 , the pinion shaft 12 , and the pinion 13 .
  • the driving force transmitted to the side gear 14 is transmitted to the rear wheel 4 through the drive shaft 7 .
  • the power transmission path includes the transmission 6 , the hypoid pinion 8 a , the ring gear 8 , the differential case 9 of the power transmission device 1 , the multi-plate clutch 10 , the pressure ring 11 , the pinion shaft 12 , the pinion 13 , the side gear 14 , and the drive shaft 7 .
  • FIG. 3 illustrates a sectional view of the drive shaft 7 .
  • the engaging groove 15 for spline connection with the side gear 14 is engraved in an end portion inside (on the side gear side of) the drive shaft 7 .
  • the engaging groove 15 comprises a plurality of engaging grooves 15 which are formed circumferentially at intervals by cutting processing, and the mountain portion 15 a is formed circumferentially between the adjacent engaging grooves 15 .
  • an end portion (on the sliding portion side end portion with respect to the differential case 9 ) outside (on the sliding portion side with respect to the differential case 9 ) the deepest portion (bottom portion) of the engaging groove 15 draws a gentle arc while curving smoothly and gradually becoming shallow to form a curved end portion 15 b continuing to an outer peripheral surface of the drive shaft 7 .
  • the mountain portion 15 a formed between the engaging grooves 15 includes a region having the curved end portion 15 b formed therein and the stepped portion 15 c formed in a position overlapping the drive shaft 7 in the direction of the rotational axis L 1 such that the inner portion of the mountain portion 15 a is smaller in diameter than the outer portion thereof.
  • a portion of a small diameter inside (on the side gear side of) the stepped portion 15 c corresponds to the small diameter portion 15 d .
  • Reference numeral 15 e in FIGS. 3 and 4 denotes the other end of the engaging grooves 15 .
  • annular groove 7 a is formed in an inner end portion (an end portion on the side gear side) of the drive shaft 7 .
  • a set ring 16 is disposed in the annular groove 7 a .
  • Internal teeth 14 b engaging with the engaging grooves 15 are formed on an inner peripheral surface of the through-hole 14 a of the side gear 14 .
  • the set ring 16 When the set ring 16 is disposed in the annular groove 7 a and the drive shaft 7 is inserted into the through-hole 14 a , the set ring 16 exceeds the internal teeth 14 b . Then, the set ring 16 expands in diameter by the restoring force, causing the set ring 16 to be locked to the inner end of the internal teeth 14 b in the axial direction thereof. As a result, the drive shaft 7 is prevented from slipping out of the side gear 14 .
  • a portion outside (on the differential case side), being spaced at a predetermined interval from the stepped portion 15 c of the drive shaft 7 is rotatably abutted and held by the cylindrical portion 9 a of the differential case 9 to be slidable.
  • a portion held by the cylindrical portion 9 a corresponds to the sliding portion 7 b of the present embodiment (see the area indicated by arrows 7 b in FIGS. 4 and 5 ).
  • a portion having the engaging grooves 15 formed therein corresponds to the engaging portion 7 c of the present embodiment.
  • a washer 17 for maintaining a constant distance between the differential case 9 and the side gear 14 is disposed between the differential case 9 and the side gear 14 .
  • An insertion hole 17 a for inserting the drive shaft 7 is disposed in the washer 17 .
  • the inner diameter of the insertion hole 17 a is formed larger than the outer diameter of the drive shaft 7 (the outer diameter of the sliding portion 7 b ) by a predetermined amount.
  • This predetermined amount is preferably set corresponding to the maximum expanded diameter amount statistically obtained at the time of breakage by experimentally breaking the drive shaft 7 .
  • the washer 17 includes a projected portion (unillustrated) projecting toward the differential case 9 in the direction of the rotational axis L 1 .
  • This projected portion is engaged with a depressed portion (unillustrated) recessed on a surface facing the washer 17 of the differential case 9 .
  • This configuration allows the washer 17 to be engaged with the differential case 9 and prevents the washer 17 from moving in the radial direction. Locking the washer 17 to the differential case 9 in this manner can uniformly secure enough space for the broken portion to expand in diameter at the time of breakage of the drive shaft 7 outward in the circumferential direction of the broken portion.
  • the differential case 9 may include a projected portion projecting toward the washer 17 and the washer 17 may include a depressed portion engaged with the projected portion of the differential case 9 .
  • the washer 17 may be fixed to the side gear 14 .
  • a depressed projected portion for mutual engagement may be disposed between the side gear 14 and the washer 17 .
  • the method of fixing the washer 17 is not limited to the engagement fixing like the present embodiment, but the washer 17 may be fixed with bolts, screws, or the like.
  • forming the small diameter portion 15 d allows a portion inside (on the side gear side of) the stepped portion 15 c to serve as the fragile portion which is broken in the direction of the rotational axis L 1 .
  • the break occurs at a portion closer to the rear wheel 4 side (outside in the direction of the rotational axis L 1 ) than a spline-engaged portion between the side gear 14 and the drive shaft 7 .
  • a portion of the mountain portion 15 a in a portion outside (on the differential case side of) the drive shaft 7 broken in the direction of the rotational axis L 1 is broken radially outwardly so as to rolled up from the base of the mountain portion 15 a , and expands in diameter more than the inner diameter of the cylindrical portion 9 a . Therefore, the enlarged diameter portion is caught on the inner end (side gear side end) of the cylindrical portion 9 a and prevents the broken portion from slipping out.
  • a predetermined distance from the stepped portion 15 c to the differential case 9 in the direction of the rotational axis L 1 in a state where the drive shaft 7 and the differential case 9 are assembled as illustrated in FIG. 5 is set to maintain such a distance that when the drive shaft 7 is broken at a portion inside the stepped portion 15 c in the direction of the rotational axis L 1 , the broken cross sections of the drive shaft 7 are not caught on each other, and a portion outside (on the differential case side of) the broken drive shaft 7 is rotatable without being affected by a portion inside (on the side gear side of) the drive shaft 7 .
  • a seal member 19 between a housing 18 of the power transmission device 1 and the drive shaft 7 may be disengaged, causing lubricating oil to leak.
  • the mountain portion 15 a which is rolled up due to breakage in the small diameter portion 15 d as the fragile portion is locked to the inner surface of the differential case 9 , and thus the drive shaft 7 can be prevented from moving excessively in the rotation axial direction. Therefore, even if the drive shaft 7 is broken near the stepped portion 15 c of the small diameter portion 15 d , lubricating oil can be prevented from leaking from between the housing 18 and the drive shaft 7 .
  • the drive shaft 7 is an output flange constituting a part of the drive shaft 7 .
  • a flange portion 7 d (see FIG. 3 ) and a shaft main body portion 7 e (see FIG. 3 ) whose one end is connected to the flange portion 7 d are molded by die forging.
  • the small diameter portion 15 d is formed at the other end of the shaft main body portion 7 e by cutting and rough processing.
  • the stepped portion 15 c is formed by this cutting processing.
  • the shaft main body portion 7 e of the drive shaft 7 as the output flange is hollowed from the other end side in the direction of the rotational axis L 1 to reduce the weight thereof.
  • a quenching and tempering treatment is performed on the drive shaft 7 as the output flange to improve the strength of the drive shaft 7 . Since the heat treatment is performed before the engaging grooves 15 are formed, the drive shaft 7 can be easily fixed with a jig or the like, thus facilitating the heat treatment.
  • one end portion of the shaft main body portion 7 e is cut to form the engaging grooves 15 .
  • the engaging grooves 15 are formed extending from the one end 7 f of the shaft main body portion 7 e , passing through the small diameter portion 15 d , exceeding the stepped portion 15 c , and reaching a portion separated by a predetermined distance from the small diameter portion 15 d .
  • This predetermined distance is set such that the stepped portion 15 c overlaps the curved end portion 15 b of the engaging groove 15 in the direction of the rotational axis L 1 .
  • the engaging portion 7 c corresponds to the portion in which the engaging grooves 15 of the shaft main body portion 7 e are formed.
  • the sliding portion 7 b corresponds to the portion from the stepped portion 15 c of the shaft main body portion 7 e to the other side.
  • the engaging grooves 15 and the small diameter portion 15 d are formed such that the deepest portion of the engaging grooves 15 (the portion located on the radially innermost side, the bottom of the grooves) is located closer to a radially inner side than the deepest portion of the small diameter portion 15 d (the portion located on the radially innermost side).
  • the sliding portion 7 b and the engaging portion 7 c are polished to reduce frictional resistance of the sliding portion 7 b and remove burrs and the like caused by formation of the engaging grooves 15 of the engaging portion 7 c .
  • a portion (a small diameter portion closer to the other end side than the stepped portion 15 c ) overlapping the small diameter portion 15 d in the direction of the rotational axis L 1 is not polished because the portion is smaller in diameter than the sliding portion 7 b.
  • the first rotating body in order to prevent oil leak due to breakage of the rotating body, it is considered to provide the first rotating body with a movement prevention device for preventing the first rotating body from moving axially by a predetermined value or more, but providing the movement prevention device may increase the size of the power transmission device and the production cost.
  • the small diameter portion 15 d is provided in the engaging portion 7 c so as to be located corresponding to between the drive shaft 7 and the differential case 9 in the direction of the rotational axis L 1 , and the stepped portion 15 c is formed between the small diameter portion 15 d and the sliding portion 7 b . Therefore, the small diameter portion 15 d of the engaging portion 7 c functions as the fragile portion. When a large twisting load is applied to the drive shaft 7 and the drive shaft 7 is broken, the break occurs at the small diameter portion 15 d of the engaging portion 7 c.
  • the mountain portion 15 a is torn off from the base and rolled up as illustrated in FIG. 6 , causing the broken portion to expand in diameter radially outwardly.
  • the expansion in diameter of the mountain portion 15 a at the time of the breakage causes the enlarged diameter portion to be caught on the differential case 9 in a space formed between the side gear 14 and the differential case 9 .
  • the catching on the differential case 9 can prevent a situation such that the drive shaft 7 excessively moves in the rotation axial direction and the oil leakage prevention function by the seal member 19 between the housing 18 and the drive shaft 7 of the power transmission device 1 does not work and oil may leak from the housing 18 .
  • the differential case 9 locks the enlarged diameter portion due to the breakage using the radially outward expansion in diameter due to the breakage of the small diameter portion 15 d of the drive shaft 7 without separately providing the movement prevention device for preventing the drive shaft 7 from moving in the rotation axial direction, thus achieving reduction in size of the power transmission device 1 .
  • the set ring 16 is provided between the drive shaft 7 and the side gear 14 to regulate relative movement between the drive shaft 7 and the side gear 14 in the direction of the rotational axis L 1 .
  • the sliding portion side end portion of the small diameter portion 15 d of the drive shaft 7 with respect to the differential case 9 is located closer to the differential case side than the outer end portion 14 c (see the enlarged view in FIG. 5 ) facing the differential case 9 of the side gear 14 in the direction of the rotational axis L 1 in a state of being regulated by the set ring 16 .
  • the differential case side end portion is constituted of the set ring 16 and the small diameter portion 15 d of the drive shaft 7 as described above.
  • the side gear 14 can be prevented from suppressing the radial expansion of the broken portion.
  • the broken portion of the drive shaft 7 is allowed to greatly expand radially outward, and thus the broken portion can be firmly locked to the differential case 9 .
  • a washer 17 is provided between the side gear 14 and the differential case 9 in the direction of the rotational axis L 1 to secure a distance between the side gear 14 and the differential case 9 in the direction of the rotational axis L 1 , wherein the washer 17 includes the insertion hole 17 a for inserting the drive shaft 7 .
  • Providing the washer 17 between the differential case 9 and the side gear 14 in this manner can prevent the washer 17 from narrowing the distance between the side gear 14 and the differential case 9 in the direction of the rotational axis L 1 and can maintain the distance between the side gear 14 and the differential case 9 in the direction of the rotational axis L 1 so that the broken portion has a distance enough to expand radially outwardly when the drive shaft 7 is broken.
  • the inner diameter of the insertion hole 17 a of the washer 17 is formed larger by a predetermined amount than the outer diameter of the drive shaft 7 .
  • the predetermined amount is set by experimentally obtaining the maximum enlarged diameter amount in advance at the time of breakage of the drive shaft 7 .
  • the washer 17 does not need to include internal teeth engaged with the engaging grooves 15 of the drive shaft 7 . Therefore, even if the inner diameter of the insertion hole 17 a is set to be the same as the inner diameter of the side gear 14 , the radial space can be increased by the space occupied by internal teeth. If this space can correspond to the maximum enlarged diameter amount at the time of breakage of the drive shaft 7 , the inner diameter of the insertion hole 17 a may be set to be the same as the inner diameter of the side gear 14 (the inner diameter of the through-hole 14 a , excluding the internal teeth 14 b ).
  • the inner diameter of the insertion hole 17 a is formed larger than the maximum outer diameter of the enlarged diameter portion whose diameter is enlarged due to breakage of the drive shaft 7 after the drive shaft 7 is broken as a predetermined or more twisting torque is inputted to the drive shaft 7 .
  • the radial expansion at the time of breakage of the drive shaft 7 can be experimentally obtained in advance.
  • forming the inner diameter of the insertion hole 17 a of the washer 17 larger than the experimentally obtained maximum outer diameter of the enlarged diameter portion whose diameter is enlarged due to breakage of the drive shaft 7 can prevent the radial expansion from being suppressed by the washer 17 when the drive shaft 7 is broken and thus the broken portion can be firmly locked to the differential case 9 by a portion expanded radially outwardly by the breakage of the small diameter portion 15 d of the drive shaft 7 .
  • the small diameter portion 15 d is formed such that the deepest portion thereof is located radially outwardly of the bottom position of the engaging groove 15 .
  • Such a configuration can prevent the drive shaft 7 from being broken only in the direction of the rotational axis L 1 .
  • a portion tom off from the base of the mountain portion 15 a so as to be rolled up can expand in diameter sufficiently radially outwardly of the outer diameter of the sliding portion 7 b.
  • the present embodiment has been described using the power transmission device 1 having the multi-plate clutch 10 , but the power transmission device 1 of the present invention may be applied to a device not having the multi-plate clutch 10 .
  • the pressure ring 11 is not required, and the pinion shaft 12 may be connected to the differential case 9 .
  • the engaging groove 15 of the drive shaft 7 has been described to be formed by cutting, but the method of forming the engaging groove 15 of the first rotating body according to the present invention is not limited to this.
  • the fragile portion of the present embodiment has been described using the small diameter portion 15 d extending from the stepped portion 15 c to the inner end in the direction of the rotational axis L 1 , but the fragile portion of the present invention is not limited to the shape of the small diameter portion 15 d of the present embodiment.
  • the mountain portion 15 a in the direction of the rotational axis L 1 is cut along the entire circumference to form an annular groove, and the annular groove may be used as the small diameter portion of the present invention.
  • prime mover of the present embodiment has been described using the internal combustion engine, but the prime mover of the present invention is not limited to this.
  • a regenerative electric motor may be provided in addition to the internal combustion engine or only the regenerative electric motor may be used as the prime mover.
  • the present embodiment has been described using a midship type vehicle 2 , but the vehicle of the present invention is not limited to the midship type vehicle, but the power transmission device of the present invention may be used for a front engine/front drive type vehicle, a front engine/rear drive type vehicle, and a four wheel drive vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Retarders (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

A drive shaft (7) as a rotating body includes an engaging portion (7 c) engaging with a side gear (14) and a sliding portion (7 b) abutted by a differential case (9). The engaging portion (7 c) includes a plurality of engaging grooves (15). The engaging grooves (15) engage with the side gear (14). The engaging portion (7 c) includes a small diameter portion (15 d) at a position corresponding to between the drive shaft (7) and the differential case (9) in a direction of a rotational axis L1. The small diameter portion (15 d) has an outer diameter smaller than the outer diameter of the sliding portion (7 b).

Description

TECHNICAL FIELD
The present invention relates to a rotating body disposed on a power transmission path through which power from a prime mover is transmitted, or a power transmission device using this rotating body, a vehicle using the same, and a rotating body production method.
BACKGROUND ART
There has conventionally been known a differential device (diff) which distributes power to left and right drive shafts as a power transmission device (for example, see Japanese Patent Laid-Open No. 2012-167793). This differential device has a configuration in which a fragile portion of a drive shaft is formed in a differential case of the differential device so that if a drive shaft is broken, the drive shaft is allowed to be broken within the differential case.
CITATION LIST Patent Literature
Patent Literature 1: Japanese Patent Laid-Open No. 2012-167793
SUMMARY OF INVENTION Technical Problem
The present invention has an object to provide a rotating body capable of improving the degree of freedom in setting the location of breakage when the rotating body such as a drive shaft is broken.
Solution to Problem
[1] In order to solve the above object, the present invention provides a rotating body (for example, a drive shaft 7 in an embodiment, the same shall apply hereinafter) disposed on a power transmission path between a prime mover (for example, an internal combustion engine 5 in the embodiment, the same shall apply hereinafter) and a wheel (for example, a rear wheel 4 in the embodiment, the same shall apply hereinafter). The rotating body comprises: an engaging portion (for example, an engaging portion 7 c in an embodiment, the same shall apply hereinafter) located on one side of the rotating body in a direction of a rotational axis (for example, a rotational axis L1 in the embodiment, the same shall apply hereinafter) and having an engaging groove (for example, an engaging groove 15 in the embodiment, the same shall apply hereinafter) engraved on an outer periphery thereof; and a sliding portion (for example, a sliding portion 7 b in the embodiment, the same shall apply hereinafter) located on the other side of the rotating body in the rotation axial direction and slidably abutted by an abutment member (for example, a differential case 9 in the embodiment, the same shall apply hereinafter) which can rotate relative to the rotating body, wherein the rotating body is arranged such that the sliding portion is located closer to a wheel side on the power transmission path than the engaging portion, the engaging groove comprises a plurality of engaging grooves extending in the rotation axial direction and formed circumferentially at intervals, the engaging portion includes a small diameter portion (for example, a small diameter portion 15 d in the embodiment, the same shall apply hereinafter) located closer to the one side in the rotation axial direction than the other side (for example, other end 15 e in the embodiment, the same shall apply hereinafter) which is an end portion on the other side of the engaging groove, and the small diameter portion has an outer diameter smaller than an outer diameter of the sliding portion.
According to the rotating body of the present invention, when a force large enough to break the rotating body is applied, the rotating body is broken at a small diameter portion disposed in the engaging portion having engaging grooves formed thereon. Therefore, the present invention can improve the degree of freedom in setting the broken portion as compared with the conventional product in which a fragile portion is provided avoiding the engaging portion.
[2] In addition, in the rotating body of the present invention, it is preferable that the small diameter portion is formed such that a deepest portion thereof is located radially outwardly of a bottom position of the engaging grooves. Such a configuration can prevent the rotating body from being broken starting from a portion where a difference in outer diameter between the small diameter portion and the sliding portion is generated by forming the small diameter portion.
[3] In addition, a power transmission device of the present invention comprises another rotating body (for example, a side gear 14 in the embodiment, the same shall apply hereinafter) engaged with the engaging grooves and integrally rotatable with the rotating body.
The present invention allows another rotating body to be engaged with the engaging grooves, causing the portion of the engaging grooves engaged with the other rotating body to be unlikely broken. Since the point of application of a twisting load of the other rotating body is an end portion of the other rotating body, the broken portion can be set by the engagement between the engaging grooves and the other rotating body.
Since the outer diameter of the small diameter portion of the engaging portion is set smaller than the outer diameter of the sliding portion, the small diameter portion of the engaging portion functions as the fragile portion. Thus, when the twisting load large enough to break the rotating body is applied to the rotating body, the break occurs at the small diameter portion of the engaging portion.
At this time, as the small diameter portion is twisted and broken, a mountain portion between the circumferentially adjacent engaging grooves is tom off from the base and rolled up, causing the broken portion to expand in diameter radially outwardly. The expansion in diameter of the mountain portion at the time of the breakage causes the enlarged diameter portion to be caught on a portion on one side of the abutment member. The catching on the abutment member can prevent the rotating body from excessively moving in the rotation axial direction.
In addition, according to the present invention, the abutment member locks the enlarged diameter portion in breakage region using the radially outward expansion in diameter due to the breakage of the small diameter portion of the rotating body without separately providing a movement prevention device for preventing the rotating body from moving in the rotation axial direction, thus achieving reduction in size of the power transmission device.
[4] In addition, it is preferable that
assuming that the rotating body is defined as a first rotating body and the other rotating body is defined as a second rotating body,
the power transmission device of the present invention comprises a regulating member (for example, a set ring 16 in the embodiment, the same shall apply hereinafter) which is disposed between the first rotating body and the second rotating body and regulates relative movement between the first rotating body and the second rotating body in the rotation axial direction, wherein
in a state where the first rotating body and the second rotating body are regulated by the regulating member, an end portion (for example, a stepped portion 15 c in the embodiment, the same shall apply hereinafter) on the other side of the small diameter portion of the first rotating body is located closer to the other side than an end portion (for example, an outer end portion 14 c in the embodiment, the same shall apply hereinafter) on the other side of the second rotating body.
Such a configuration can prevent the second rotating body from suppressing the radial expansion of the broken portion when the first rotating body is broken at the small diameter portion. Thus, the broken portion of the first rotating body is allowed to greatly expand radially outwardly, and thus the broken portion can be firmly locked to the abutment member.
[5] In addition, it is preferable that the power transmission device of the present invention comprises
an interposed member (for example, a washer 17 in the embodiment, the same shall apply hereinafter) disposed between the second rotating body and the abutment member in the rotation axial direction to secure a distance between the second rotating body and the abutment member in the rotation axial direction, wherein
the interposed member includes an insertion hole (for example, an insertion hole 17 a in the embodiment, the same shall apply hereinafter) for inserting the first rotating body.
Such a configuration can prevent the interposed member from narrowing the distance between the second rotating body and the abutment member in the rotation axial direction and can maintain the distance between the second rotating body and the abutment member in the rotation axial direction so that the broken portion has a distance enough to expand radially outwardly when the first rotating body is broken.
[6] In addition, it is preferable that in the present invention, the insertion hole of the interposed member is formed to have an inner diameter larger by a predetermined amount than an outer diameter of the first rotating body. Such a configuration allows the broken portion of the first rotating body to expand radially further easily.
[7] In addition, it is preferable that in the present invention, the inner diameter of the insertion hole is formed larger than a maximum outer diameter of an enlarged diameter portion whose diameter is enlarged due to breakage of the first rotating body after the first rotating body is broken as a predetermined or more twisting torque is inputted to the first rotating body.
The radial expansion at the time of breakage of the first rotating body can be experimentally obtained in advance. Thus, forming the inner diameter of the insertion hole of the interposed member larger than the experimentally obtained maximum outer diameter of the enlarged diameter portion of the first rotating body can prevent the radial expansion from being suppressed by the interposed member when the first rotating body is broken, and thus the broken portion can be firmly locked to the abutment member by a portion expanded radially outwardly by the breakage of the small diameter portion of the first rotating body.
[8] In addition, it is preferable that in the present invention, the interposed member is radially unmovably fixed to the second rotating body or the abutment member. Such a configuration can circumferentially uniformly secure enough space for the broken portion to expand in diameter at the time of breakage of the small diameter portion of the first rotating body.
[9] In addition, it is preferable that in the present invention, the engaging grooves are formed up to one end (for example, one end 7 f in the embodiment, the same shall apply hereinafter) which is an end portion on one side of the first rotating body. Such a configuration allows the engaging grooves to be formed from the one end of the first rotating body toward the abutment member. Thus, it is easier to process the engaging grooves than, for example, a configuration of forming the engaging grooves only in an intermediate portion of the first rotating body.
[10] In addition, the present invention provides a rotating body production method,
the rotating body being disposed on a power transmission path between a prime mover and a wheel of a vehicle,
the rotating body includes an engaging portion located on one side of the rotating body in a rotation axial direction thereof and having an engaging groove engraved on an outer periphery thereof; a sliding portion located on the other side of the rotating body in the rotation axial direction and slidably abutted by an abutment member which can rotate relative to the rotating body; and a small diameter portion located on the one side of the rotating body in the rotation axial direction and having an outer diameter set smaller than an outer diameter of the sliding portion, wherein
the rotating body is arranged such that the sliding portion is located closer to a wheel side on the power transmission path than the engaging portion,
the engaging groove comprises a plurality of engaging grooves extending in the rotation axial direction and formed circumferentially at intervals, the method comprising:
a first step of forming an outer periphery of the rotating body;
a second step of forming the small diameter portion from the one side of the outer periphery of the rotating body to the other side; and
a third step of forming the engaging portion by cutting the engaging grooves extending in the rotation axial direction from the one side of the rotating body to the other side than an end portion on the other side of the small diameter portion.
The method of the present invention can accurately form the shape of the small diameter portion by forming the engaging grooves after forming the small diameter portion.
[11] In addition, it is preferable that in the method of the present invention, a deepest portion of the engaging groove in the third step is formed radially inwardly of a deepest portion of the small diameter portion in the second step. The method of the present invention allows a mountain portion (for example, a mountain portion 15 a in the embodiment) between the circumferentially adjacent engaging grooves to be broken and expand radially when the first rotating body is broken.
[12] In addition, it is preferable that the method of the present invention comprises a fourth step of polishing the sliding portion. The method of the present invention can reduce friction of the sliding portion and smoothly rotate the first rotating body with respect to the abutment member. In addition, the method of the present invention can remove burrs and the like generated when the engaging grooves are cut in the third step.
[13] In addition, it is preferable that in the method of the present invention, the second step is followed by a hollowing step of hollowing the interior of the rotating body, which is followed by the third step.
The method of the present invention performs the hollowing step of performing a hollowing process before the third step of forming the engaging grooves, and thus can perform the hollowing process before forming the engaging grooves to reduce rigidity and can improve the degree of processing freedom of the hollowing process. In addition, performing the hollowing process can reduce the weight of the rotating body. Further, since the hollowing process is performed before the engaging grooves are formed, the rotating body can be easily grasped with a jig or the like, thus facilitating the hollowing process.
[14] In addition, it is preferable that in the method of the present invention, the second step is followed by a heat treatment step of heating the rotating body, which is followed by the third step. According to the method of the present invention, the heat treatment step can improve the rigidity of the rotating body. Further, since the heat treatment is performed before the engaging grooves are formed, the first rotating body can be easily grasped with a jig or the like, thus facilitating the heat treatment.
[15] In addition, the rotating body or the power transmission device of the present invention can be used in a vehicle including a prime mover and a wheel.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a schematic view illustrating a vehicle including an embodiment of a power transmission device of the present invention.
FIG. 2 is a sectional view illustrating the power transmission device of the present embodiment.
FIG. 3 is a sectional view illustrating a first rotating body of the present embodiment.
FIG. 4 is a perspective view illustrating engaging grooves of the first rotating body of the present embodiment.
FIG. 5 is a sectional view illustrating a state where the first rotating body of the present embodiment is broken.
FIG. 6 is an explanatory drawing illustrating a state where a stepped portion expands in diameter when the first rotating body of the present embodiment is broken, as viewed from the rotation axial direction.
DESCRIPTION OF EMBODIMENTS
As illustrated in FIG. 1, a power transmission device 1 according to an embodiment of the present invention is disposed in a rear portion of a midship type vehicle 2. The vehicle 2 includes a pair of front wheels 3 and 3, a pair of rear wheels 4 and 4, an internal combustion engine 5, a transmission 6, and a pair of left and right drive shafts 7 and 7 connected to the pair of left and right rear wheels 4 and 4 respectively.
The power transmission device 1 has a function as a differential mechanism (diff) which distributes driving force output from the internal combustion engine 5 through the transmission 6 to the pair of left and right drive shafts 7 and 7.
As illustrated in FIG. 2, the power transmission device 1 of the present embodiment includes a ring gear 8, a differential case 9, a pair of left and right multi-plate clutches 10, a pair of left and right pressure rings 11, a spring (unillustrated) which allows the pair of pressure rings 11 to be separated from each other so that an initial torque can be transmitted to the multi-plate clutches 10, a pinion shaft 12, a pinion 13, and a pair of left and right side gears 14. The ring gear 8 is a hypoid ring gear of a hypoid gear meshed with a hypoid pinion 8 a as an output member of the transmission 6, and functions as a final driven gear.
The side gears 14 and 14 include a through-hole 14 a. Each of the drive shafts 7 is inserted into the through-hole 14 a, causing the drive shafts 7 and the side gears 14 to be spline-connected to each other.
The differential case 9 includes a cylindrical portion 9 a which slidably abuts and holds the pair of drive shafts 7 and 7. In the drive shaft 7, a portion held by the cylindrical portion 9 a corresponds to the sliding portion 7 b of the present embodiment (see the area indicated by arrows 7 b in FIGS. 4 and 5).
The driving force outputted from the internal combustion engine 5 is speed-changed by the transmission 6 and then transmitted to the power transmission device 1 through the hypoid pinion 8 a and the ring gear 8. The driving force inputted to the power transmission device 1 is distributed to the pair of left and right side gears 14 and 14 through the differential case 9, the multi-plate clutch 10, the pressure ring 11, the pinion shaft 12, and the pinion 13. The driving force transmitted to the side gear 14 is transmitted to the rear wheel 4 through the drive shaft 7.
In short, the power transmission path according to the present embodiment includes the transmission 6, the hypoid pinion 8 a, the ring gear 8, the differential case 9 of the power transmission device 1, the multi-plate clutch 10, the pressure ring 11, the pinion shaft 12, the pinion 13, the side gear 14, and the drive shaft 7.
FIG. 3 illustrates a sectional view of the drive shaft 7. The engaging groove 15 for spline connection with the side gear 14 is engraved in an end portion inside (on the side gear side of) the drive shaft 7. The engaging groove 15 comprises a plurality of engaging grooves 15 which are formed circumferentially at intervals by cutting processing, and the mountain portion 15 a is formed circumferentially between the adjacent engaging grooves 15.
As partially enlarged in FIG. 3, and as illustrated by a perspective view of FIG. 4, an end portion (on the sliding portion side end portion with respect to the differential case 9) outside (on the sliding portion side with respect to the differential case 9) the deepest portion (bottom portion) of the engaging groove 15 draws a gentle arc while curving smoothly and gradually becoming shallow to form a curved end portion 15 b continuing to an outer peripheral surface of the drive shaft 7.
In addition, the mountain portion 15 a formed between the engaging grooves 15 includes a region having the curved end portion 15 b formed therein and the stepped portion 15 c formed in a position overlapping the drive shaft 7 in the direction of the rotational axis L1 such that the inner portion of the mountain portion 15 a is smaller in diameter than the outer portion thereof. In the present embodiment, a portion of a small diameter inside (on the side gear side of) the stepped portion 15 c corresponds to the small diameter portion 15 d. Reference numeral 15 e in FIGS. 3 and 4 denotes the other end of the engaging grooves 15.
As illustrated in FIG. 5, an annular groove 7 a is formed in an inner end portion (an end portion on the side gear side) of the drive shaft 7. A set ring 16 is disposed in the annular groove 7 a. Internal teeth 14 b engaging with the engaging grooves 15 are formed on an inner peripheral surface of the through-hole 14 a of the side gear 14.
When the set ring 16 is disposed in the annular groove 7 a and the drive shaft 7 is inserted into the through-hole 14 a, the set ring 16 exceeds the internal teeth 14 b. Then, the set ring 16 expands in diameter by the restoring force, causing the set ring 16 to be locked to the inner end of the internal teeth 14 b in the axial direction thereof. As a result, the drive shaft 7 is prevented from slipping out of the side gear 14.
A portion outside (on the differential case side), being spaced at a predetermined interval from the stepped portion 15 c of the drive shaft 7 is rotatably abutted and held by the cylindrical portion 9 a of the differential case 9 to be slidable. In the drive shaft 7, a portion held by the cylindrical portion 9 a corresponds to the sliding portion 7 b of the present embodiment (see the area indicated by arrows 7 b in FIGS. 4 and 5). Further, in the drive shaft 7, a portion having the engaging grooves 15 formed therein corresponds to the engaging portion 7 c of the present embodiment.
In addition, a washer 17 for maintaining a constant distance between the differential case 9 and the side gear 14 is disposed between the differential case 9 and the side gear 14. An insertion hole 17 a for inserting the drive shaft 7 is disposed in the washer 17.
The inner diameter of the insertion hole 17 a is formed larger than the outer diameter of the drive shaft 7 (the outer diameter of the sliding portion 7 b) by a predetermined amount. This predetermined amount is preferably set corresponding to the maximum expanded diameter amount statistically obtained at the time of breakage by experimentally breaking the drive shaft 7.
The washer 17 includes a projected portion (unillustrated) projecting toward the differential case 9 in the direction of the rotational axis L1. This projected portion is engaged with a depressed portion (unillustrated) recessed on a surface facing the washer 17 of the differential case 9. This configuration allows the washer 17 to be engaged with the differential case 9 and prevents the washer 17 from moving in the radial direction. Locking the washer 17 to the differential case 9 in this manner can uniformly secure enough space for the broken portion to expand in diameter at the time of breakage of the drive shaft 7 outward in the circumferential direction of the broken portion.
Alternatively, the differential case 9 may include a projected portion projecting toward the washer 17 and the washer 17 may include a depressed portion engaged with the projected portion of the differential case 9. Still alternatively, the washer 17 may be fixed to the side gear 14. In this case, a depressed projected portion for mutual engagement may be disposed between the side gear 14 and the washer 17. Further, the method of fixing the washer 17 is not limited to the engagement fixing like the present embodiment, but the washer 17 may be fixed with bolts, screws, or the like.
As illustrated in FIG. 5, forming the small diameter portion 15 d allows a portion inside (on the side gear side of) the stepped portion 15 c to serve as the fragile portion which is broken in the direction of the rotational axis L1. In other words, the break occurs at a portion closer to the rear wheel 4 side (outside in the direction of the rotational axis L1) than a spline-engaged portion between the side gear 14 and the drive shaft 7. At this time, as illustrated in FIG. 6, a portion of the mountain portion 15 a in a portion outside (on the differential case side of) the drive shaft 7 broken in the direction of the rotational axis L1 is broken radially outwardly so as to rolled up from the base of the mountain portion 15 a, and expands in diameter more than the inner diameter of the cylindrical portion 9 a. Therefore, the enlarged diameter portion is caught on the inner end (side gear side end) of the cylindrical portion 9 a and prevents the broken portion from slipping out.
Note that a predetermined distance from the stepped portion 15 c to the differential case 9 in the direction of the rotational axis L1 in a state where the drive shaft 7 and the differential case 9 are assembled as illustrated in FIG. 5 is set to maintain such a distance that when the drive shaft 7 is broken at a portion inside the stepped portion 15 c in the direction of the rotational axis L1, the broken cross sections of the drive shaft 7 are not caught on each other, and a portion outside (on the differential case side of) the broken drive shaft 7 is rotatable without being affected by a portion inside (on the side gear side of) the drive shaft 7.
Here, if a portion outside (on the differential case side of) the broken drive shaft 7 moves excessively in the direction of the rotational axis L1, a seal member 19 between a housing 18 of the power transmission device 1 and the drive shaft 7 may be disengaged, causing lubricating oil to leak.
According to the power transmission device 1 of the present embodiment, assuming that the small diameter portion 15 d axially inside (on the side gear side of) the stepped portion 15 c is defined as the fragile portion and the broken position is defined, the mountain portion 15 a which is rolled up due to breakage in the small diameter portion 15 d as the fragile portion is locked to the inner surface of the differential case 9, and thus the drive shaft 7 can be prevented from moving excessively in the rotation axial direction. Therefore, even if the drive shaft 7 is broken near the stepped portion 15 c of the small diameter portion 15 d, lubricating oil can be prevented from leaking from between the housing 18 and the drive shaft 7.
Then, the method of producing the drive shaft 7 will be described. More specifically, the drive shaft 7 is an output flange constituting a part of the drive shaft 7. First, as a first step, a flange portion 7 d (see FIG. 3) and a shaft main body portion 7 e (see FIG. 3) whose one end is connected to the flange portion 7 d are molded by die forging.
Then, as a second step, the small diameter portion 15 d is formed at the other end of the shaft main body portion 7 e by cutting and rough processing. The stepped portion 15 c is formed by this cutting processing.
Then, as the hollowing step, the shaft main body portion 7 e of the drive shaft 7 as the output flange is hollowed from the other end side in the direction of the rotational axis L1 to reduce the weight thereof. Performing the hollowing process before forming the engaging grooves 15 allows hollowing before the strength declines and can improve the degree of processing freedom of the hollowing process. In addition, since the hollowing process is performed before the engaging grooves 15 are formed, the drive shaft 7 can be easily fixed with a jig or the like, thus facilitating the hollowing process.
Then, as the heat treatment step, a quenching and tempering treatment is performed on the drive shaft 7 as the output flange to improve the strength of the drive shaft 7. Since the heat treatment is performed before the engaging grooves 15 are formed, the drive shaft 7 can be easily fixed with a jig or the like, thus facilitating the heat treatment.
Then, as the third step, one end portion of the shaft main body portion 7 e is cut to form the engaging grooves 15. The engaging grooves 15 are formed extending from the one end 7 f of the shaft main body portion 7 e, passing through the small diameter portion 15 d, exceeding the stepped portion 15 c, and reaching a portion separated by a predetermined distance from the small diameter portion 15 d. This predetermined distance is set such that the stepped portion 15 c overlaps the curved end portion 15 b of the engaging groove 15 in the direction of the rotational axis L1.
In addition, the engaging portion 7 c corresponds to the portion in which the engaging grooves 15 of the shaft main body portion 7 e are formed. The sliding portion 7 b corresponds to the portion from the stepped portion 15 c of the shaft main body portion 7 e to the other side.
In addition, the engaging grooves 15 and the small diameter portion 15 d are formed such that the deepest portion of the engaging grooves 15 (the portion located on the radially innermost side, the bottom of the grooves) is located closer to a radially inner side than the deepest portion of the small diameter portion 15 d (the portion located on the radially innermost side).
Then, as the fourth step, the sliding portion 7 b and the engaging portion 7 c are polished to reduce frictional resistance of the sliding portion 7 b and remove burrs and the like caused by formation of the engaging grooves 15 of the engaging portion 7 c. Note that in the fourth step, of the engaging portion 7 c, a portion (a small diameter portion closer to the other end side than the stepped portion 15 c) overlapping the small diameter portion 15 d in the direction of the rotational axis L1 is not polished because the portion is smaller in diameter than the sliding portion 7 b.
Here, when the rotating body such as the drive shaft and the output shaft is broken in the differential case in the conventional power transmission device, a portion outside the rotating body moves from the broken portion to axially outside and the seal member between the rotating body and the housing of the power transmission device does not work, which may cause oil to leak from inside the power transmission device.
Meanwhile, in the conventional power transmission device, in order to prevent oil leak due to breakage of the rotating body, it is considered to provide the first rotating body with a movement prevention device for preventing the first rotating body from moving axially by a predetermined value or more, but providing the movement prevention device may increase the size of the power transmission device and the production cost.
According to the power transmission device 1 of the present embodiment, the small diameter portion 15 d is provided in the engaging portion 7 c so as to be located corresponding to between the drive shaft 7 and the differential case 9 in the direction of the rotational axis L1, and the stepped portion 15 c is formed between the small diameter portion 15 d and the sliding portion 7 b. Therefore, the small diameter portion 15 d of the engaging portion 7 c functions as the fragile portion. When a large twisting load is applied to the drive shaft 7 and the drive shaft 7 is broken, the break occurs at the small diameter portion 15 d of the engaging portion 7 c.
At this time, as the small diameter portion 15 d is twisted and broken, the mountain portion 15 a is torn off from the base and rolled up as illustrated in FIG. 6, causing the broken portion to expand in diameter radially outwardly. The expansion in diameter of the mountain portion 15 a at the time of the breakage causes the enlarged diameter portion to be caught on the differential case 9 in a space formed between the side gear 14 and the differential case 9. The catching on the differential case 9 can prevent a situation such that the drive shaft 7 excessively moves in the rotation axial direction and the oil leakage prevention function by the seal member 19 between the housing 18 and the drive shaft 7 of the power transmission device 1 does not work and oil may leak from the housing 18.
In addition, according to the power transmission device 1 of the present embodiment, the differential case 9 locks the enlarged diameter portion due to the breakage using the radially outward expansion in diameter due to the breakage of the small diameter portion 15 d of the drive shaft 7 without separately providing the movement prevention device for preventing the drive shaft 7 from moving in the rotation axial direction, thus achieving reduction in size of the power transmission device 1.
In addition, according to the power transmission device 1 of the present embodiment, the set ring 16 is provided between the drive shaft 7 and the side gear 14 to regulate relative movement between the drive shaft 7 and the side gear 14 in the direction of the rotational axis L1.
Then, the sliding portion side end portion of the small diameter portion 15 d of the drive shaft 7 with respect to the differential case 9 is located closer to the differential case side than the outer end portion 14 c (see the enlarged view in FIG. 5) facing the differential case 9 of the side gear 14 in the direction of the rotational axis L1 in a state of being regulated by the set ring 16.
The differential case side end portion is constituted of the set ring 16 and the small diameter portion 15 d of the drive shaft 7 as described above. When the drive shaft 7 is broken at a portion adjacent to the stepped portion 15 c of the small diameter portion 15 d, the side gear 14 can be prevented from suppressing the radial expansion of the broken portion. Thus, the broken portion of the drive shaft 7 is allowed to greatly expand radially outward, and thus the broken portion can be firmly locked to the differential case 9.
Further, according to the power transmission device 1 of the present embodiment, a washer 17 is provided between the side gear 14 and the differential case 9 in the direction of the rotational axis L1 to secure a distance between the side gear 14 and the differential case 9 in the direction of the rotational axis L1, wherein the washer 17 includes the insertion hole 17 a for inserting the drive shaft 7.
Providing the washer 17 between the differential case 9 and the side gear 14 in this manner can prevent the washer 17 from narrowing the distance between the side gear 14 and the differential case 9 in the direction of the rotational axis L1 and can maintain the distance between the side gear 14 and the differential case 9 in the direction of the rotational axis L1 so that the broken portion has a distance enough to expand radially outwardly when the drive shaft 7 is broken.
Further, according to the power transmission device 1 of the present embodiment, the inner diameter of the insertion hole 17 a of the washer 17 is formed larger by a predetermined amount than the outer diameter of the drive shaft 7. Thus, the broken portion of the drive shaft 7 can be expanded radially further easily. The predetermined amount is set by experimentally obtaining the maximum enlarged diameter amount in advance at the time of breakage of the drive shaft 7.
Note that unlike the side gear 14, the washer 17 does not need to include internal teeth engaged with the engaging grooves 15 of the drive shaft 7. Therefore, even if the inner diameter of the insertion hole 17 a is set to be the same as the inner diameter of the side gear 14, the radial space can be increased by the space occupied by internal teeth. If this space can correspond to the maximum enlarged diameter amount at the time of breakage of the drive shaft 7, the inner diameter of the insertion hole 17 a may be set to be the same as the inner diameter of the side gear 14 (the inner diameter of the through-hole 14 a, excluding the internal teeth 14 b).
Further, according to the power transmission device 1 of the present embodiment, the inner diameter of the insertion hole 17 a is formed larger than the maximum outer diameter of the enlarged diameter portion whose diameter is enlarged due to breakage of the drive shaft 7 after the drive shaft 7 is broken as a predetermined or more twisting torque is inputted to the drive shaft 7.
The radial expansion at the time of breakage of the drive shaft 7 can be experimentally obtained in advance. Thus, forming the inner diameter of the insertion hole 17 a of the washer 17 larger than the experimentally obtained maximum outer diameter of the enlarged diameter portion whose diameter is enlarged due to breakage of the drive shaft 7 can prevent the radial expansion from being suppressed by the washer 17 when the drive shaft 7 is broken and thus the broken portion can be firmly locked to the differential case 9 by a portion expanded radially outwardly by the breakage of the small diameter portion 15 d of the drive shaft 7.
Further, according to the power transmission device 1 of the present embodiment, the small diameter portion 15 d is formed such that the deepest portion thereof is located radially outwardly of the bottom position of the engaging groove 15. Such a configuration can prevent the drive shaft 7 from being broken only in the direction of the rotational axis L1. Thus, a portion tom off from the base of the mountain portion 15 a so as to be rolled up can expand in diameter sufficiently radially outwardly of the outer diameter of the sliding portion 7 b.
Note that hereinbefore, the present embodiment has been described using the power transmission device 1 having the multi-plate clutch 10, but the power transmission device 1 of the present invention may be applied to a device not having the multi-plate clutch 10. In this case, the pressure ring 11 is not required, and the pinion shaft 12 may be connected to the differential case 9.
Note also that the engaging groove 15 of the drive shaft 7 has been described to be formed by cutting, but the method of forming the engaging groove 15 of the first rotating body according to the present invention is not limited to this.
Note also that the fragile portion of the present embodiment has been described using the small diameter portion 15 d extending from the stepped portion 15 c to the inner end in the direction of the rotational axis L1, but the fragile portion of the present invention is not limited to the shape of the small diameter portion 15 d of the present embodiment. For example, only a short range of the mountain portion 15 a in the direction of the rotational axis L1 is cut along the entire circumference to form an annular groove, and the annular groove may be used as the small diameter portion of the present invention.
Note also that the prime mover of the present embodiment has been described using the internal combustion engine, but the prime mover of the present invention is not limited to this. For example, a regenerative electric motor may be provided in addition to the internal combustion engine or only the regenerative electric motor may be used as the prime mover.
Note also that the present embodiment has been described using a midship type vehicle 2, but the vehicle of the present invention is not limited to the midship type vehicle, but the power transmission device of the present invention may be used for a front engine/front drive type vehicle, a front engine/rear drive type vehicle, and a four wheel drive vehicle.
REFERENCE SIGNS LIST
  • 1 power transmission device
  • 2 vehicle
  • 3 front wheel
  • 4 rear wheel
  • 5 internal combustion engine
  • 6 transmission
  • 7 drive shaft
  • 7 a annular groove
  • 7 b sliding portion
  • 7 c engaging portion
  • 7 d flange portion
  • 7 e shaft main body portion
  • 7 f one end
  • 8 ring gear
  • 8 a hypoid pinion
  • 9 differential case
  • 9 a cylindrical portion
  • 10 multi-plate clutch
  • 11 pressure ring
  • 12 pinion shaft
  • 13 pinion
  • 14 side gear
  • 14 a through-hole
  • 14 b internal teeth
  • 14 c outer end portion
  • 15 engaging groove
  • 15 a mountain portion
  • 15 b curved end portion
  • 15 c stepped portion
  • 15 d small diameter portion
  • 15 e the other end
  • 16 set ring
  • 17 washer
  • 17 a insertion hole
  • 18 housing
  • 19 seal member
  • L1 rotational axis

Claims (8)

The invention claimed is:
1. A power transmission device comprising:
a rotating body disposed on a power transmission path between a prime mover and a wheel, the rotating body comprising an engaging portion located on one side of the rotating body in a rotation axial direction thereof and having an engaging groove engraved on an outer periphery thereof; and a sliding portion located on the other side of the rotating body in the rotation axial direction and configured to be slidably abutted by an abutment member which can rotate relative to the rotating body, and
an other rotating body engaged with the engaging grooves and integrally rotatable with the rotating body,
an interposed member disposed between the other rotating body and the abutment member in the rotation axial direction to secure a distance between the other rotating body and the abutment member in the rotation axial direction,
wherein the interposed member includes an insertion hole for inserting the rotating body,
wherein the rotating body is arranged such that the sliding portion is located closer to a wheel side on the power transmission path than the engaging portion,
wherein the engaging groove comprises a plurality of engaging grooves extending in the rotation axial direction and formed circumferentially at intervals,
wherein the engaging portion includes a small diameter portion located closer to the one side in the rotation axial direction than the other side which is an end portion on the other side of the engaging groove, and
wherein the small diameter portion has an outer diameter smaller than an outer diameter of the sliding portion.
2. The power transmission device according to claim 1,
wherein the small diameter portion is formed such that a mountain portion thereof is formed between each of the engaging grooves, the mountain portion being located radially outwardly of a bottom position of the engaging grooves.
3. The power transmission device according to claim 1,
wherein the rotating body is defined as a first rotating body and the other rotating body is defined as a second rotating body,
wherein the power transmission device further comprises a regulating member which is disposed between the first rotating body and the second rotating body and regulates relative movement between the first rotating body and the second rotating body in the rotation axial direction, and
wherein, in a state where the first rotating body and the second rotating body are regulated by the regulating member, an end portion on the other side of the small diameter portion of the first rotating body is located closer to the other side than an end portion on the other side of the second rotating body.
4. The power transmission device according to claim 1, wherein
the insertion hole of the interposed member is formed to have an inner diameter larger by a predetermined amount than an outer diameter of the first rotating body.
5. The power transmission device according to claim 4, wherein
the inner diameter of the insertion hole is formed larger than a maximum outer diameter of an enlarged diameter portion whose diameter is enlarged due to breakage of the first rotating body after the first rotating body is broken as a predetermined or more twisting torque is inputted to the first rotating body.
6. The power transmission device according to claim 4, wherein
the interposed member is radially unmovably fixed to the second rotating body or the abutment member.
7. The power transmission device using the rotating body according to claim 1, wherein
the engaging grooves are formed up to one end which is an end portion on the one side of the rotating body.
8. A vehicle comprising the rotating body or the power transmission device; the prime mover; and the wheel according to claim 1.
US15/767,195 2015-10-23 2016-10-21 Rotating body, power transmission device using same, and rotating body production method Active 2037-10-17 US10844943B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015209408 2015-10-23
JP2015-209408 2015-10-23
JP2016-009083 2016-01-20
JP2016009083A JP6178882B2 (en) 2015-10-23 2016-01-20 Power transmission device and vehicle equipped with the same
PCT/JP2016/081297 WO2017069248A1 (en) 2015-10-23 2016-10-21 Rotating body, power transmission device using same, and rotating body production method

Publications (2)

Publication Number Publication Date
US20190072166A1 US20190072166A1 (en) 2019-03-07
US10844943B2 true US10844943B2 (en) 2020-11-24

Family

ID=58711641

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/767,195 Active 2037-10-17 US10844943B2 (en) 2015-10-23 2016-10-21 Rotating body, power transmission device using same, and rotating body production method

Country Status (3)

Country Link
US (1) US10844943B2 (en)
JP (2) JP6178882B2 (en)
CN (1) CN108138930B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4123951A (en) * 1975-12-19 1978-11-07 Aisin Seiki Kabushiki Kaisha Differential gear mechanism for vehicles
US4939953A (en) * 1987-12-08 1990-07-10 Toyota Jidosha Kabushiki Kaisha Limited slip differential
JPH0527401U (en) 1991-09-25 1993-04-09 栃木富士産業株式会社 Defarency device
CN1246175A (en) 1997-02-07 2000-03-01 Gkn洛布罗有限公司 Side shaft journal for differential gear with CV articulated shaft adjusted joint component
JP2012167793A (en) 2011-02-16 2012-09-06 Toyota Motor Corp Vehicle drive shaft

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2039771U (en) * 1988-12-03 1989-06-21 丁宪明 Automatic skid-proof differential coupling device for automobile and wheel tractor
CN1009944B (en) * 1988-12-03 1990-10-10 丁宪明 Automatic antiskid differential for motor vehicles and wheel type tractors
JPH0527401A (en) * 1991-07-24 1993-02-05 Fuji Photo Film Co Ltd Photosensitive material processing device
CN200974466Y (en) * 2006-10-10 2007-11-14 江苏悦达盐城拖拉机制造有限公司 Wheel-type tractor rear axle half-axle and driving shaft transmission device
JP5391605B2 (en) * 2008-08-04 2014-01-15 株式会社ジェイテクト Vehicle differential
CN201313501Y (en) * 2008-09-01 2009-09-23 安徽安凯福田曙光车桥有限公司 13 tonner double reduction driving axle
WO2013065198A1 (en) * 2011-11-04 2013-05-10 トヨタ自動車株式会社 Vehicle differential device
CN203115043U (en) * 2012-12-20 2013-08-07 青特集团有限公司 Interaxial differential front shell
JP2015158256A (en) * 2014-02-25 2015-09-03 武蔵精密工業株式会社 Differential device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4123951A (en) * 1975-12-19 1978-11-07 Aisin Seiki Kabushiki Kaisha Differential gear mechanism for vehicles
US4939953A (en) * 1987-12-08 1990-07-10 Toyota Jidosha Kabushiki Kaisha Limited slip differential
JPH0527401U (en) 1991-09-25 1993-04-09 栃木富士産業株式会社 Defarency device
CN1246175A (en) 1997-02-07 2000-03-01 Gkn洛布罗有限公司 Side shaft journal for differential gear with CV articulated shaft adjusted joint component
JP2012167793A (en) 2011-02-16 2012-09-06 Toyota Motor Corp Vehicle drive shaft

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
International Search Report dated Jan. 24, 2017, issued in counterpart International Application No. PCT/JP2016/081297 (1 page).
Office Action dated May 25, 2020, issued in counterpart CN Application No. 201680058752.0, with English Translation. (23 pages).

Also Published As

Publication number Publication date
CN108138930A (en) 2018-06-08
US20190072166A1 (en) 2019-03-07
JP2017083003A (en) 2017-05-18
JP6178882B2 (en) 2017-08-09
CN108138930B (en) 2021-06-01
JP2017083021A (en) 2017-05-18

Similar Documents

Publication Publication Date Title
US10443657B2 (en) Power transmission device for vehicle
US9797495B2 (en) Clutch and differential device with same
JP6485543B2 (en) Torque transmission joint and worm reducer
US8409050B2 (en) Gear retention assembly
CN108458047B (en) Friction damper
KR101714144B1 (en) Lubrication structure in friction fastening elemet of automatic transmission for vehicle
JP6362628B2 (en) One-way clutch carrier assembly
KR20200054179A (en) Torque limiter for drive train
KR101463321B1 (en) Caulking-fastened component, method of fastening the caulking-fastened component, and method of manufacturing the caulking-fastened component
US10830292B2 (en) Torque limiter
JP4770788B2 (en) Differential gear device for vehicle
US10844943B2 (en) Rotating body, power transmission device using same, and rotating body production method
JP5283832B2 (en) Constant velocity universal joint
US9695929B2 (en) Speed change device
WO2017069248A1 (en) Rotating body, power transmission device using same, and rotating body production method
JP6372454B2 (en) Spline shaft mating structure
CN112775341A (en) Chipless manufacturing of hub for pulley decoupler
CN112747087A (en) Planetary gear system, torsion safety device and method for operating transmission system
JP2020153486A (en) Drive shaft for vehicle
JP2017110741A (en) Power transmission device for vehicle
US20240159297A1 (en) Device for Transmitting Torque and Axially Securing Two Torque-Transmitting Components
JP6659506B2 (en) Machining method of output shaft of hybrid power plant
EP3707400B1 (en) Transmission input shaft arrangement
JP2017110740A (en) Power transmission device for vehicle
JP2017155898A (en) Rotating body and power transmission using rotating body

Legal Events

Date Code Title Description
AS Assignment

Owner name: HONDA MOTOR CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OHMURA, JUN;ONO, KOJI;SIGNING DATES FROM 20180215 TO 20180219;REEL/FRAME:045495/0347

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE